atw.c revision 1.119 1 /* $NetBSD: atw.c,v 1.119 2006/08/31 19:24:37 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.119 2006/08/31 19:24:37 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59 #include <lib/libkern/libkern.h>
60
61 #include <machine/endian.h>
62
63 #include <uvm/uvm_extern.h>
64
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_ether.h>
69
70 #include <net80211/ieee80211_netbsd.h>
71 #include <net80211/ieee80211_var.h>
72 #include <net80211/ieee80211_radiotap.h>
73
74 #if NBPFILTER > 0
75 #include <net/bpf.h>
76 #endif
77
78 #include <machine/bus.h>
79 #include <machine/intr.h>
80
81 #include <dev/ic/atwreg.h>
82 #include <dev/ic/rf3000reg.h>
83 #include <dev/ic/si4136reg.h>
84 #include <dev/ic/atwvar.h>
85 #include <dev/ic/smc93cx6var.h>
86
87 /* XXX TBD open questions
88 *
89 *
90 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
91 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
92 * handle this for me?
93 *
94 */
95 /* device attachment
96 *
97 * print TOFS[012]
98 *
99 * device initialization
100 *
101 * clear ATW_FRCTL_MAXPSP to disable max power saving
102 * set ATW_TXBR_ALCUPDATE to enable ALC
103 * set TOFS[012]? (hope not)
104 * disable rx/tx
105 * set ATW_PAR_SWR (software reset)
106 * wait for ATW_PAR_SWR clear
107 * disable interrupts
108 * ack status register
109 * enable interrupts
110 *
111 * rx/tx initialization
112 *
113 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
114 * allocate and init descriptor rings
115 * write ATW_PAR_DSL (descriptor skip length)
116 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * write ATW_NAR_SQ for one/both transmit descriptor rings
119 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
120 *
121 * rx/tx end
122 *
123 * stop DMA
124 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
125 * flush tx w/ ATW_NAR_HF
126 *
127 * scan
128 *
129 * initialize rx/tx
130 *
131 * BSS join: (re)association response
132 *
133 * set ATW_FRCTL_AID
134 *
135 * optimizations ???
136 *
137 */
138
139 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
140
141 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
142 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
143 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
144
145 int atw_pseudo_milli = 1;
146 int atw_magic_delay1 = 100 * 1000;
147 int atw_magic_delay2 = 100 * 1000;
148 /* more magic multi-millisecond delays (units: microseconds) */
149 int atw_nar_delay = 20 * 1000;
150 int atw_magic_delay4 = 10 * 1000;
151 int atw_rf_delay1 = 10 * 1000;
152 int atw_rf_delay2 = 5 * 1000;
153 int atw_plcphd_delay = 2 * 1000;
154 int atw_bbp_io_enable_delay = 20 * 1000;
155 int atw_bbp_io_disable_delay = 2 * 1000;
156 int atw_writewep_delay = 1000;
157 int atw_beacon_len_adjust = 4;
158 int atw_dwelltime = 200;
159 int atw_xindiv2 = 0;
160
161 #ifdef ATW_DEBUG
162 int atw_debug = 0;
163
164 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
165 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
166 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
167 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
168 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
169 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
170
171 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
172 static void atw_print_regs(struct atw_softc *, const char *);
173
174 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
175 # ifdef ATW_BBPDEBUG
176 static void atw_rf3000_print(struct atw_softc *);
177 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
178 # endif /* ATW_BBPDEBUG */
179
180 # ifdef ATW_SYNDEBUG
181 static void atw_si4126_print(struct atw_softc *);
182 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
183 # endif /* ATW_SYNDEBUG */
184
185 #else
186 #define ATW_DPRINTF(x)
187 #define ATW_DPRINTF2(x)
188 #define ATW_DPRINTF3(x)
189 #define DPRINTF(sc, x) /* nothing */
190 #define DPRINTF2(sc, x) /* nothing */
191 #define DPRINTF3(sc, x) /* nothing */
192 #endif
193
194 /* ifnet methods */
195 int atw_init(struct ifnet *);
196 int atw_ioctl(struct ifnet *, u_long, caddr_t);
197 void atw_start(struct ifnet *);
198 void atw_stop(struct ifnet *, int);
199 void atw_watchdog(struct ifnet *);
200
201 /* Device attachment */
202 void atw_attach(struct atw_softc *);
203 int atw_detach(struct atw_softc *);
204
205 /* Rx/Tx process */
206 int atw_add_rxbuf(struct atw_softc *, int);
207 void atw_idle(struct atw_softc *, u_int32_t);
208 void atw_rxdrain(struct atw_softc *);
209 void atw_txdrain(struct atw_softc *);
210
211 /* Device (de)activation and power state */
212 void atw_disable(struct atw_softc *);
213 int atw_enable(struct atw_softc *);
214 void atw_power(int, void *);
215 void atw_reset(struct atw_softc *);
216 void atw_shutdown(void *);
217
218 /* Interrupt handlers */
219 void atw_linkintr(struct atw_softc *, u_int32_t);
220 void atw_rxintr(struct atw_softc *);
221 void atw_txintr(struct atw_softc *);
222
223 /* 802.11 state machine */
224 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
225 static void atw_next_scan(void *);
226 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
227 struct ieee80211_node *, int, int, u_int32_t);
228 static int atw_tune(struct atw_softc *);
229
230 /* Device initialization */
231 static void atw_bbp_io_init(struct atw_softc *);
232 static void atw_cfp_init(struct atw_softc *);
233 static void atw_cmdr_init(struct atw_softc *);
234 static void atw_ifs_init(struct atw_softc *);
235 static void atw_nar_init(struct atw_softc *);
236 static void atw_response_times_init(struct atw_softc *);
237 static void atw_rf_reset(struct atw_softc *);
238 static void atw_test1_init(struct atw_softc *);
239 static void atw_tofs0_init(struct atw_softc *);
240 static void atw_tofs2_init(struct atw_softc *);
241 static void atw_txlmt_init(struct atw_softc *);
242 static void atw_wcsr_init(struct atw_softc *);
243
244 /* Key management */
245 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
246 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
247 const u_int8_t[IEEE80211_ADDR_LEN]);
248 static void atw_key_update_begin(struct ieee80211com *);
249 static void atw_key_update_end(struct ieee80211com *);
250
251 /* RAM/ROM utilities */
252 static void atw_clear_sram(struct atw_softc *);
253 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
254 static int atw_read_srom(struct atw_softc *);
255
256 /* BSS setup */
257 static void atw_predict_beacon(struct atw_softc *);
258 static void atw_start_beacon(struct atw_softc *, int);
259 static void atw_write_bssid(struct atw_softc *);
260 static void atw_write_ssid(struct atw_softc *);
261 static void atw_write_sup_rates(struct atw_softc *);
262 static void atw_write_wep(struct atw_softc *);
263
264 /* Media */
265 static int atw_media_change(struct ifnet *);
266
267 static void atw_filter_setup(struct atw_softc *);
268
269 /* 802.11 utilities */
270 static uint64_t atw_get_tsft(struct atw_softc *);
271 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
272 uint32_t);
273 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
274 static void atw_node_free(struct ieee80211_node *);
275
276 /*
277 * Tuner/transceiver/modem
278 */
279 static void atw_bbp_io_enable(struct atw_softc *, int);
280
281 /* RFMD RF3000 Baseband Processor */
282 static int atw_rf3000_init(struct atw_softc *);
283 static int atw_rf3000_tune(struct atw_softc *, u_int);
284 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
285
286 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
287 static void atw_si4126_tune(struct atw_softc *, u_int);
288 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
289
290 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
291 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
292
293 const char *atw_tx_state[] = {
294 "STOPPED",
295 "RUNNING - read descriptor",
296 "RUNNING - transmitting",
297 "RUNNING - filling fifo", /* XXX */
298 "SUSPENDED",
299 "RUNNING -- write descriptor",
300 "RUNNING -- write last descriptor",
301 "RUNNING - fifo full"
302 };
303
304 const char *atw_rx_state[] = {
305 "STOPPED",
306 "RUNNING - read descriptor",
307 "RUNNING - check this packet, pre-fetch next",
308 "RUNNING - wait for reception",
309 "SUSPENDED",
310 "RUNNING - write descriptor",
311 "RUNNING - flush fifo",
312 "RUNNING - fifo drain"
313 };
314
315 static inline int
316 is_running(struct ifnet *ifp)
317 {
318 return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
319 }
320
321 int
322 atw_activate(struct device *self, enum devact act)
323 {
324 struct atw_softc *sc = (struct atw_softc *)self;
325 int rv = 0, s;
326
327 s = splnet();
328 switch (act) {
329 case DVACT_ACTIVATE:
330 rv = EOPNOTSUPP;
331 break;
332
333 case DVACT_DEACTIVATE:
334 if_deactivate(&sc->sc_if);
335 break;
336 }
337 splx(s);
338 return rv;
339 }
340
341 /*
342 * atw_enable:
343 *
344 * Enable the ADM8211 chip.
345 */
346 int
347 atw_enable(struct atw_softc *sc)
348 {
349
350 if (ATW_IS_ENABLED(sc) == 0) {
351 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
352 printf("%s: device enable failed\n",
353 sc->sc_dev.dv_xname);
354 return (EIO);
355 }
356 sc->sc_flags |= ATWF_ENABLED;
357 /* Power may have been removed, and WEP keys thus
358 * reset.
359 */
360 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
361 }
362 return (0);
363 }
364
365 /*
366 * atw_disable:
367 *
368 * Disable the ADM8211 chip.
369 */
370 void
371 atw_disable(struct atw_softc *sc)
372 {
373 if (!ATW_IS_ENABLED(sc))
374 return;
375 if (sc->sc_disable != NULL)
376 (*sc->sc_disable)(sc);
377 sc->sc_flags &= ~ATWF_ENABLED;
378 }
379
380 /* Returns -1 on failure. */
381 static int
382 atw_read_srom(struct atw_softc *sc)
383 {
384 struct seeprom_descriptor sd;
385 uint32_t test0, fail_bits;
386
387 (void)memset(&sd, 0, sizeof(sd));
388
389 test0 = ATW_READ(sc, ATW_TEST0);
390
391 switch (sc->sc_rev) {
392 case ATW_REVISION_BA:
393 case ATW_REVISION_CA:
394 fail_bits = ATW_TEST0_EPNE;
395 break;
396 default:
397 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
398 break;
399 }
400 if ((test0 & fail_bits) != 0) {
401 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
402 return -1;
403 }
404
405 switch (test0 & ATW_TEST0_EPTYP_MASK) {
406 case ATW_TEST0_EPTYP_93c66:
407 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
408 sc->sc_sromsz = 512;
409 sd.sd_chip = C56_66;
410 break;
411 case ATW_TEST0_EPTYP_93c46:
412 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
413 sc->sc_sromsz = 128;
414 sd.sd_chip = C46;
415 break;
416 default:
417 printf("%s: unknown SROM type %d\n",
418 sc->sc_dev.dv_xname,
419 __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
420 return -1;
421 }
422
423 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
424
425 if (sc->sc_srom == NULL) {
426 printf("%s: unable to allocate SROM buffer\n",
427 sc->sc_dev.dv_xname);
428 return -1;
429 }
430
431 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
432
433 /* ADM8211 has a single 32-bit register for controlling the
434 * 93cx6 SROM. Bit SRS enables the serial port. There is no
435 * "ready" bit. The ADM8211 input/output sense is the reverse
436 * of read_seeprom's.
437 */
438 sd.sd_tag = sc->sc_st;
439 sd.sd_bsh = sc->sc_sh;
440 sd.sd_regsize = 4;
441 sd.sd_control_offset = ATW_SPR;
442 sd.sd_status_offset = ATW_SPR;
443 sd.sd_dataout_offset = ATW_SPR;
444 sd.sd_CK = ATW_SPR_SCLK;
445 sd.sd_CS = ATW_SPR_SCS;
446 sd.sd_DI = ATW_SPR_SDO;
447 sd.sd_DO = ATW_SPR_SDI;
448 sd.sd_MS = ATW_SPR_SRS;
449 sd.sd_RDY = 0;
450
451 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
452 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
453 free(sc->sc_srom, M_DEVBUF);
454 return -1;
455 }
456 #ifdef ATW_DEBUG
457 {
458 int i;
459 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
460 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
461 if (((i % 8) == 0) && (i != 0)) {
462 ATW_DPRINTF(("\n\t"));
463 }
464 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
465 }
466 ATW_DPRINTF(("\n"));
467 }
468 #endif /* ATW_DEBUG */
469 return 0;
470 }
471
472 #ifdef ATW_DEBUG
473 static void
474 atw_print_regs(struct atw_softc *sc, const char *where)
475 {
476 #define PRINTREG(sc, reg) \
477 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
478 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
479
480 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
481
482 PRINTREG(sc, ATW_PAR);
483 PRINTREG(sc, ATW_FRCTL);
484 PRINTREG(sc, ATW_TDR);
485 PRINTREG(sc, ATW_WTDP);
486 PRINTREG(sc, ATW_RDR);
487 PRINTREG(sc, ATW_WRDP);
488 PRINTREG(sc, ATW_RDB);
489 PRINTREG(sc, ATW_CSR3A);
490 PRINTREG(sc, ATW_TDBD);
491 PRINTREG(sc, ATW_TDBP);
492 PRINTREG(sc, ATW_STSR);
493 PRINTREG(sc, ATW_CSR5A);
494 PRINTREG(sc, ATW_NAR);
495 PRINTREG(sc, ATW_CSR6A);
496 PRINTREG(sc, ATW_IER);
497 PRINTREG(sc, ATW_CSR7A);
498 PRINTREG(sc, ATW_LPC);
499 PRINTREG(sc, ATW_TEST1);
500 PRINTREG(sc, ATW_SPR);
501 PRINTREG(sc, ATW_TEST0);
502 PRINTREG(sc, ATW_WCSR);
503 PRINTREG(sc, ATW_WPDR);
504 PRINTREG(sc, ATW_GPTMR);
505 PRINTREG(sc, ATW_GPIO);
506 PRINTREG(sc, ATW_BBPCTL);
507 PRINTREG(sc, ATW_SYNCTL);
508 PRINTREG(sc, ATW_PLCPHD);
509 PRINTREG(sc, ATW_MMIWADDR);
510 PRINTREG(sc, ATW_MMIRADDR1);
511 PRINTREG(sc, ATW_MMIRADDR2);
512 PRINTREG(sc, ATW_TXBR);
513 PRINTREG(sc, ATW_CSR15A);
514 PRINTREG(sc, ATW_ALCSTAT);
515 PRINTREG(sc, ATW_TOFS2);
516 PRINTREG(sc, ATW_CMDR);
517 PRINTREG(sc, ATW_PCIC);
518 PRINTREG(sc, ATW_PMCSR);
519 PRINTREG(sc, ATW_PAR0);
520 PRINTREG(sc, ATW_PAR1);
521 PRINTREG(sc, ATW_MAR0);
522 PRINTREG(sc, ATW_MAR1);
523 PRINTREG(sc, ATW_ATIMDA0);
524 PRINTREG(sc, ATW_ABDA1);
525 PRINTREG(sc, ATW_BSSID0);
526 PRINTREG(sc, ATW_TXLMT);
527 PRINTREG(sc, ATW_MIBCNT);
528 PRINTREG(sc, ATW_BCNT);
529 PRINTREG(sc, ATW_TSFTH);
530 PRINTREG(sc, ATW_TSC);
531 PRINTREG(sc, ATW_SYNRF);
532 PRINTREG(sc, ATW_BPLI);
533 PRINTREG(sc, ATW_CAP0);
534 PRINTREG(sc, ATW_CAP1);
535 PRINTREG(sc, ATW_RMD);
536 PRINTREG(sc, ATW_CFPP);
537 PRINTREG(sc, ATW_TOFS0);
538 PRINTREG(sc, ATW_TOFS1);
539 PRINTREG(sc, ATW_IFST);
540 PRINTREG(sc, ATW_RSPT);
541 PRINTREG(sc, ATW_TSFTL);
542 PRINTREG(sc, ATW_WEPCTL);
543 PRINTREG(sc, ATW_WESK);
544 PRINTREG(sc, ATW_WEPCNT);
545 PRINTREG(sc, ATW_MACTEST);
546 PRINTREG(sc, ATW_FER);
547 PRINTREG(sc, ATW_FEMR);
548 PRINTREG(sc, ATW_FPSR);
549 PRINTREG(sc, ATW_FFER);
550 #undef PRINTREG
551 }
552 #endif /* ATW_DEBUG */
553
554 /*
555 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
556 */
557 void
558 atw_attach(struct atw_softc *sc)
559 {
560 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
561 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
562 };
563 struct ieee80211com *ic = &sc->sc_ic;
564 struct ifnet *ifp = &sc->sc_if;
565 int country_code, error, i, nrate, srom_major;
566 u_int32_t reg;
567 static const char *type_strings[] = {"Intersil (not supported)",
568 "RFMD", "Marvel (not supported)"};
569
570 sc->sc_txth = atw_txthresh_tab_lo;
571
572 SIMPLEQ_INIT(&sc->sc_txfreeq);
573 SIMPLEQ_INIT(&sc->sc_txdirtyq);
574
575 #ifdef ATW_DEBUG
576 atw_print_regs(sc, "atw_attach");
577 #endif /* ATW_DEBUG */
578
579 /*
580 * Allocate the control data structures, and create and load the
581 * DMA map for it.
582 */
583 if ((error = bus_dmamem_alloc(sc->sc_dmat,
584 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
585 1, &sc->sc_cdnseg, 0)) != 0) {
586 printf("%s: unable to allocate control data, error = %d\n",
587 sc->sc_dev.dv_xname, error);
588 goto fail_0;
589 }
590
591 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
592 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
593 BUS_DMA_COHERENT)) != 0) {
594 printf("%s: unable to map control data, error = %d\n",
595 sc->sc_dev.dv_xname, error);
596 goto fail_1;
597 }
598
599 if ((error = bus_dmamap_create(sc->sc_dmat,
600 sizeof(struct atw_control_data), 1,
601 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
602 printf("%s: unable to create control data DMA map, "
603 "error = %d\n", sc->sc_dev.dv_xname, error);
604 goto fail_2;
605 }
606
607 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
608 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
609 0)) != 0) {
610 printf("%s: unable to load control data DMA map, error = %d\n",
611 sc->sc_dev.dv_xname, error);
612 goto fail_3;
613 }
614
615 /*
616 * Create the transmit buffer DMA maps.
617 */
618 sc->sc_ntxsegs = ATW_NTXSEGS;
619 for (i = 0; i < ATW_TXQUEUELEN; i++) {
620 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
621 sc->sc_ntxsegs, MCLBYTES, 0, 0,
622 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
623 printf("%s: unable to create tx DMA map %d, "
624 "error = %d\n", sc->sc_dev.dv_xname, i, error);
625 goto fail_4;
626 }
627 }
628
629 /*
630 * Create the receive buffer DMA maps.
631 */
632 for (i = 0; i < ATW_NRXDESC; i++) {
633 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
634 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
635 printf("%s: unable to create rx DMA map %d, "
636 "error = %d\n", sc->sc_dev.dv_xname, i, error);
637 goto fail_5;
638 }
639 }
640 for (i = 0; i < ATW_NRXDESC; i++) {
641 sc->sc_rxsoft[i].rxs_mbuf = NULL;
642 }
643
644 switch (sc->sc_rev) {
645 case ATW_REVISION_AB:
646 case ATW_REVISION_AF:
647 sc->sc_sramlen = ATW_SRAM_A_SIZE;
648 break;
649 case ATW_REVISION_BA:
650 case ATW_REVISION_CA:
651 sc->sc_sramlen = ATW_SRAM_B_SIZE;
652 break;
653 }
654
655 /* Reset the chip to a known state. */
656 atw_reset(sc);
657
658 if (atw_read_srom(sc) == -1)
659 return;
660
661 sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
662 ATW_SR_RFTYPE_MASK);
663
664 sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
665 ATW_SR_BBPTYPE_MASK);
666
667 if (sc->sc_rftype >= __arraycount(type_strings)) {
668 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
669 return;
670 }
671 if (sc->sc_bbptype >= __arraycount(type_strings)) {
672 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
673 return;
674 }
675
676 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
677 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
678
679 /* XXX There exists a Linux driver which seems to use RFType = 0 for
680 * MARVEL. My bug, or theirs?
681 */
682
683 reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
684
685 switch (sc->sc_rftype) {
686 case ATW_RFTYPE_INTERSIL:
687 reg |= ATW_SYNCTL_CS1;
688 break;
689 case ATW_RFTYPE_RFMD:
690 reg |= ATW_SYNCTL_CS0;
691 break;
692 case ATW_RFTYPE_MARVEL:
693 break;
694 }
695
696 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
697 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
698
699 reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
700
701 switch (sc->sc_bbptype) {
702 case ATW_BBPTYPE_INTERSIL:
703 reg |= ATW_BBPCTL_TWI;
704 break;
705 case ATW_BBPTYPE_RFMD:
706 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
707 ATW_BBPCTL_CCA_ACTLO;
708 break;
709 case ATW_BBPTYPE_MARVEL:
710 break;
711 case ATW_C_BBPTYPE_RFMD:
712 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
713 sc->sc_dev.dv_xname);
714 break;
715 }
716
717 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
718 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
719
720 /*
721 * From this point forward, the attachment cannot fail. A failure
722 * before this point releases all resources that may have been
723 * allocated.
724 */
725 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
726
727 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
728 htole16(sc->sc_srom[ATW_SR_MAC00]),
729 htole16(sc->sc_srom[ATW_SR_MAC01]),
730 htole16(sc->sc_srom[ATW_SR_MAC10])));
731
732 srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
733 ATW_SR_MAJOR_MASK);
734
735 if (srom_major < 2)
736 sc->sc_rf3000_options1 = 0;
737 else if (sc->sc_rev == ATW_REVISION_BA) {
738 sc->sc_rf3000_options1 =
739 __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
740 ATW_SR_CR28_MASK);
741 } else
742 sc->sc_rf3000_options1 = 0;
743
744 sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
745 ATW_SR_CR29_MASK);
746
747 country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
748 ATW_SR_CTRY_MASK);
749
750 #define ADD_CHANNEL(_ic, _chan) do { \
751 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
752 _ic->ic_channels[_chan].ic_freq = \
753 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
754 } while (0)
755
756 /* Find available channels */
757 switch (country_code) {
758 case COUNTRY_MMK2: /* 1-14 */
759 ADD_CHANNEL(ic, 14);
760 /*FALLTHROUGH*/
761 case COUNTRY_ETSI: /* 1-13 */
762 for (i = 1; i <= 13; i++)
763 ADD_CHANNEL(ic, i);
764 break;
765 case COUNTRY_FCC: /* 1-11 */
766 case COUNTRY_IC: /* 1-11 */
767 for (i = 1; i <= 11; i++)
768 ADD_CHANNEL(ic, i);
769 break;
770 case COUNTRY_MMK: /* 14 */
771 ADD_CHANNEL(ic, 14);
772 break;
773 case COUNTRY_FRANCE: /* 10-13 */
774 for (i = 10; i <= 13; i++)
775 ADD_CHANNEL(ic, i);
776 break;
777 default: /* assume channels 10-11 */
778 case COUNTRY_SPAIN: /* 10-11 */
779 for (i = 10; i <= 11; i++)
780 ADD_CHANNEL(ic, i);
781 break;
782 }
783
784 /* Read the MAC address. */
785 reg = ATW_READ(sc, ATW_PAR0);
786 ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
787 ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
788 ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
789 ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
790 reg = ATW_READ(sc, ATW_PAR1);
791 ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
792 ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
793
794 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
795 printf(" could not get mac address, attach failed\n");
796 return;
797 }
798
799 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
800
801 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
802 ifp->if_softc = sc;
803 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
804 IFF_NOTRAILERS;
805 ifp->if_ioctl = atw_ioctl;
806 ifp->if_start = atw_start;
807 ifp->if_watchdog = atw_watchdog;
808 ifp->if_init = atw_init;
809 ifp->if_stop = atw_stop;
810 IFQ_SET_READY(&ifp->if_snd);
811
812 ic->ic_ifp = ifp;
813 ic->ic_phytype = IEEE80211_T_DS;
814 ic->ic_opmode = IEEE80211_M_STA;
815 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
816 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
817
818 nrate = 0;
819 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
820 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
821 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
822 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
823 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
824
825 /*
826 * Call MI attach routines.
827 */
828
829 if_attach(ifp);
830 ieee80211_ifattach(ic);
831
832 sc->sc_newstate = ic->ic_newstate;
833 ic->ic_newstate = atw_newstate;
834
835 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
836 ic->ic_recv_mgmt = atw_recv_mgmt;
837
838 sc->sc_node_free = ic->ic_node_free;
839 ic->ic_node_free = atw_node_free;
840
841 sc->sc_node_alloc = ic->ic_node_alloc;
842 ic->ic_node_alloc = atw_node_alloc;
843
844 ic->ic_crypto.cs_key_delete = atw_key_delete;
845 ic->ic_crypto.cs_key_set = atw_key_set;
846 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
847 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
848
849 /* possibly we should fill in our own sc_send_prresp, since
850 * the ADM8211 is probably sending probe responses in ad hoc
851 * mode.
852 */
853
854 /* complete initialization */
855 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
856 callout_init(&sc->sc_scan_ch);
857
858 #if NBPFILTER > 0
859 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
860 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
861 #endif
862
863 /*
864 * Make sure the interface is shutdown during reboot.
865 */
866 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
867 if (sc->sc_sdhook == NULL)
868 printf("%s: WARNING: unable to establish shutdown hook\n",
869 sc->sc_dev.dv_xname);
870
871 /*
872 * Add a suspend hook to make sure we come back up after a
873 * resume.
874 */
875 sc->sc_powerhook = powerhook_establish(atw_power, sc);
876 if (sc->sc_powerhook == NULL)
877 printf("%s: WARNING: unable to establish power hook\n",
878 sc->sc_dev.dv_xname);
879
880 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
881 sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
882 sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
883
884 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
885 sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
886 sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
887
888 ieee80211_announce(ic);
889 return;
890
891 /*
892 * Free any resources we've allocated during the failed attach
893 * attempt. Do this in reverse order and fall through.
894 */
895 fail_5:
896 for (i = 0; i < ATW_NRXDESC; i++) {
897 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
898 continue;
899 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
900 }
901 fail_4:
902 for (i = 0; i < ATW_TXQUEUELEN; i++) {
903 if (sc->sc_txsoft[i].txs_dmamap == NULL)
904 continue;
905 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
906 }
907 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
908 fail_3:
909 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
910 fail_2:
911 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
912 sizeof(struct atw_control_data));
913 fail_1:
914 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
915 fail_0:
916 return;
917 }
918
919 static struct ieee80211_node *
920 atw_node_alloc(struct ieee80211_node_table *nt)
921 {
922 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
923 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
924
925 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
926 return ni;
927 }
928
929 static void
930 atw_node_free(struct ieee80211_node *ni)
931 {
932 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
933
934 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
935 ether_sprintf(ni->ni_bssid)));
936 (*sc->sc_node_free)(ni);
937 }
938
939
940 static void
941 atw_test1_reset(struct atw_softc *sc)
942 {
943 switch (sc->sc_rev) {
944 case ATW_REVISION_BA:
945 if (1 /* XXX condition on transceiver type */) {
946 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
947 }
948 break;
949 case ATW_REVISION_CA:
950 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
951 break;
952 default:
953 break;
954 }
955 }
956
957 /*
958 * atw_reset:
959 *
960 * Perform a soft reset on the ADM8211.
961 */
962 void
963 atw_reset(struct atw_softc *sc)
964 {
965 int i;
966 uint32_t lpc;
967
968 ATW_WRITE(sc, ATW_NAR, 0x0);
969 DELAY(atw_nar_delay);
970
971 /* Reference driver has a cryptic remark indicating that this might
972 * power-on the chip. I know that it turns off power-saving....
973 */
974 ATW_WRITE(sc, ATW_FRCTL, 0x0);
975
976 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
977
978 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
979 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
980 break;
981 DELAY(atw_pseudo_milli);
982 }
983
984 /* ... and then pause 100ms longer for good measure. */
985 DELAY(atw_magic_delay1);
986
987 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
988
989 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
990 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
991
992 /*
993 * Initialize the PCI Access Register.
994 */
995 sc->sc_busmode = ATW_PAR_PBL_8DW;
996
997 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
998 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
999 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1000
1001 atw_test1_reset(sc);
1002
1003 /* Turn off maximum power saving, etc. */
1004 ATW_WRITE(sc, ATW_FRCTL, 0x0);
1005
1006 DELAY(atw_magic_delay2);
1007
1008 /* Recall EEPROM. */
1009 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1010
1011 DELAY(atw_magic_delay4);
1012
1013 lpc = ATW_READ(sc, ATW_LPC);
1014
1015 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1016
1017 /* A reset seems to affect the SRAM contents, so put them into
1018 * a known state.
1019 */
1020 atw_clear_sram(sc);
1021
1022 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1023 }
1024
1025 static void
1026 atw_clear_sram(struct atw_softc *sc)
1027 {
1028 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1029 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1030 /* XXX not for revision 0x20. */
1031 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1032 }
1033
1034 /* TBD atw_init
1035 *
1036 * set MAC based on ic->ic_bss->myaddr
1037 * write WEP keys
1038 * set TX rate
1039 */
1040
1041 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1042 * without receiving a beacon with the preferred BSSID & SSID.
1043 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1044 */
1045 static void
1046 atw_wcsr_init(struct atw_softc *sc)
1047 {
1048 uint32_t wcsr;
1049
1050 wcsr = ATW_READ(sc, ATW_WCSR);
1051 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1052 wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1053 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1054
1055 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1056 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1057 }
1058
1059 /* Turn off power management. Set Rx store-and-forward mode. */
1060 static void
1061 atw_cmdr_init(struct atw_softc *sc)
1062 {
1063 uint32_t cmdr;
1064 cmdr = ATW_READ(sc, ATW_CMDR);
1065 cmdr &= ~ATW_CMDR_APM;
1066 cmdr |= ATW_CMDR_RTE;
1067 cmdr &= ~ATW_CMDR_DRT_MASK;
1068 cmdr |= ATW_CMDR_DRT_SF;
1069
1070 ATW_WRITE(sc, ATW_CMDR, cmdr);
1071 }
1072
1073 static void
1074 atw_tofs2_init(struct atw_softc *sc)
1075 {
1076 uint32_t tofs2;
1077 /* XXX this magic can probably be figured out from the RFMD docs */
1078 #ifndef ATW_REFSLAVE
1079 tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1080 __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1081 __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1082 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1083 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1084 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1085 __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1086 __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1087 #else
1088 /* XXX new magic from reference driver source */
1089 tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1090 __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1091 __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */
1092 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1093 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1094 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1095 __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */
1096 __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */
1097 #endif
1098 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1099 }
1100
1101 static void
1102 atw_nar_init(struct atw_softc *sc)
1103 {
1104 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1105 }
1106
1107 static void
1108 atw_txlmt_init(struct atw_softc *sc)
1109 {
1110 ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1111 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1112 }
1113
1114 static void
1115 atw_test1_init(struct atw_softc *sc)
1116 {
1117 uint32_t test1;
1118
1119 test1 = ATW_READ(sc, ATW_TEST1);
1120 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1121 /* XXX magic 0x1 */
1122 test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1123 ATW_WRITE(sc, ATW_TEST1, test1);
1124 }
1125
1126 static void
1127 atw_rf_reset(struct atw_softc *sc)
1128 {
1129 /* XXX this resets an Intersil RF front-end? */
1130 /* TBD condition on Intersil RFType? */
1131 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1132 DELAY(atw_rf_delay1);
1133 ATW_WRITE(sc, ATW_SYNRF, 0);
1134 DELAY(atw_rf_delay2);
1135 }
1136
1137 /* Set 16 TU max duration for the contention-free period (CFP). */
1138 static void
1139 atw_cfp_init(struct atw_softc *sc)
1140 {
1141 uint32_t cfpp;
1142
1143 cfpp = ATW_READ(sc, ATW_CFPP);
1144 cfpp &= ~ATW_CFPP_CFPMD;
1145 cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1146 ATW_WRITE(sc, ATW_CFPP, cfpp);
1147 }
1148
1149 static void
1150 atw_tofs0_init(struct atw_softc *sc)
1151 {
1152 /* XXX I guess that the Cardbus clock is 22 MHz?
1153 * I am assuming that the role of ATW_TOFS0_USCNT is
1154 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1155 * very clear on this point. It says in the datasheet that it is
1156 * possible for the ADM8211 to accomodate bus speeds between 22 MHz
1157 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1158 * these values. These values are also the power-on default.
1159 */
1160 ATW_WRITE(sc, ATW_TOFS0,
1161 __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1162 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1163 }
1164
1165 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1166 static void
1167 atw_ifs_init(struct atw_softc *sc)
1168 {
1169 uint32_t ifst;
1170 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1171 * Go figure.
1172 */
1173 ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1174 __SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1175 ATW_IFST_SIFS_MASK) |
1176 __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1177 __SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1178
1179 ATW_WRITE(sc, ATW_IFST, ifst);
1180 }
1181
1182 static void
1183 atw_response_times_init(struct atw_softc *sc)
1184 {
1185 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1186 * indicate that the MAC expects at least SIFS + MIRT microseconds
1187 * to pass after it transmits a frame that requires a response;
1188 * it waits at most SIFS + MART microseconds for the response.
1189 * Surely this is not the ACK timeout?
1190 */
1191 ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1192 __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1193 }
1194
1195 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1196 * engines read and write baseband registers after Rx and before
1197 * Tx, respectively.
1198 */
1199 static void
1200 atw_bbp_io_init(struct atw_softc *sc)
1201 {
1202 uint32_t mmiraddr2;
1203
1204 /* XXX The reference driver does this, but is it *really*
1205 * necessary?
1206 */
1207 switch (sc->sc_rev) {
1208 case ATW_REVISION_AB:
1209 case ATW_REVISION_AF:
1210 mmiraddr2 = 0x0;
1211 break;
1212 default:
1213 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1214 mmiraddr2 &=
1215 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1216 break;
1217 }
1218
1219 switch (sc->sc_bbptype) {
1220 case ATW_BBPTYPE_INTERSIL:
1221 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1222 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1223 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1224 break;
1225 case ATW_BBPTYPE_MARVEL:
1226 /* TBD find out the Marvel settings. */
1227 break;
1228 case ATW_BBPTYPE_RFMD:
1229 default:
1230 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1231 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1232 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1233 break;
1234 }
1235 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1236 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1237 }
1238
1239 /*
1240 * atw_init: [ ifnet interface function ]
1241 *
1242 * Initialize the interface. Must be called at splnet().
1243 */
1244 int
1245 atw_init(struct ifnet *ifp)
1246 {
1247 struct atw_softc *sc = ifp->if_softc;
1248 struct ieee80211com *ic = &sc->sc_ic;
1249 struct atw_txsoft *txs;
1250 struct atw_rxsoft *rxs;
1251 int i, error = 0;
1252
1253 if ((error = atw_enable(sc)) != 0)
1254 goto out;
1255
1256 /*
1257 * Cancel any pending I/O. This also resets.
1258 */
1259 atw_stop(ifp, 0);
1260
1261 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1262 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1263 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1264
1265 atw_wcsr_init(sc);
1266
1267 atw_cmdr_init(sc);
1268
1269 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1270 *
1271 * XXX Set transmit power for ATIM, RTS, Beacon.
1272 */
1273 ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1274 __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1275
1276 atw_tofs2_init(sc);
1277
1278 atw_nar_init(sc);
1279
1280 atw_txlmt_init(sc);
1281
1282 atw_test1_init(sc);
1283
1284 atw_rf_reset(sc);
1285
1286 atw_cfp_init(sc);
1287
1288 atw_tofs0_init(sc);
1289
1290 atw_ifs_init(sc);
1291
1292 /* XXX Fall asleep after one second of inactivity.
1293 * XXX A frame may only dribble in for 65536us.
1294 */
1295 ATW_WRITE(sc, ATW_RMD,
1296 __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1297
1298 atw_response_times_init(sc);
1299
1300 atw_bbp_io_init(sc);
1301
1302 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1303
1304 if ((error = atw_rf3000_init(sc)) != 0)
1305 goto out;
1306
1307 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1308 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1309 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1310
1311 /*
1312 * Initialize the transmit descriptor ring.
1313 */
1314 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1315 for (i = 0; i < ATW_NTXDESC; i++) {
1316 sc->sc_txdescs[i].at_ctl = 0;
1317 /* no transmit chaining */
1318 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1319 sc->sc_txdescs[i].at_buf2 =
1320 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1321 }
1322 /* use ring mode */
1323 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1324 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1325 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1326 sc->sc_txfree = ATW_NTXDESC;
1327 sc->sc_txnext = 0;
1328
1329 /*
1330 * Initialize the transmit job descriptors.
1331 */
1332 SIMPLEQ_INIT(&sc->sc_txfreeq);
1333 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1334 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1335 txs = &sc->sc_txsoft[i];
1336 txs->txs_mbuf = NULL;
1337 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1338 }
1339
1340 /*
1341 * Initialize the receive descriptor and receive job
1342 * descriptor rings.
1343 */
1344 for (i = 0; i < ATW_NRXDESC; i++) {
1345 rxs = &sc->sc_rxsoft[i];
1346 if (rxs->rxs_mbuf == NULL) {
1347 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1348 printf("%s: unable to allocate or map rx "
1349 "buffer %d, error = %d\n",
1350 sc->sc_dev.dv_xname, i, error);
1351 /*
1352 * XXX Should attempt to run with fewer receive
1353 * XXX buffers instead of just failing.
1354 */
1355 atw_rxdrain(sc);
1356 goto out;
1357 }
1358 } else
1359 ATW_INIT_RXDESC(sc, i);
1360 }
1361 sc->sc_rxptr = 0;
1362
1363 /*
1364 * Initialize the interrupt mask and enable interrupts.
1365 */
1366 /* normal interrupts */
1367 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1368 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1369
1370 /* abnormal interrupts */
1371 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1372 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1373 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1374
1375 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1376 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1377 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1378 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1379 ATW_INTR_TRT;
1380
1381 sc->sc_linkint_mask &= sc->sc_inten;
1382 sc->sc_rxint_mask &= sc->sc_inten;
1383 sc->sc_txint_mask &= sc->sc_inten;
1384
1385 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1386 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1387
1388 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1389 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1390
1391 /*
1392 * Give the transmit and receive rings to the ADM8211.
1393 */
1394 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1395 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1396
1397 sc->sc_txthresh = 0;
1398 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1399 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1400
1401 /* common 802.11 configuration */
1402 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1403 switch (ic->ic_opmode) {
1404 case IEEE80211_M_STA:
1405 break;
1406 case IEEE80211_M_AHDEMO: /* XXX */
1407 case IEEE80211_M_IBSS:
1408 ic->ic_flags |= IEEE80211_F_IBSSON;
1409 /*FALLTHROUGH*/
1410 case IEEE80211_M_HOSTAP: /* XXX */
1411 break;
1412 case IEEE80211_M_MONITOR: /* XXX */
1413 break;
1414 }
1415
1416 switch (ic->ic_opmode) {
1417 case IEEE80211_M_AHDEMO:
1418 case IEEE80211_M_HOSTAP:
1419 #ifndef IEEE80211_NO_HOSTAP
1420 ic->ic_bss->ni_intval = ic->ic_lintval;
1421 ic->ic_bss->ni_rssi = 0;
1422 ic->ic_bss->ni_rstamp = 0;
1423 #endif /* !IEEE80211_NO_HOSTAP */
1424 break;
1425 default: /* XXX */
1426 break;
1427 }
1428
1429 sc->sc_wepctl = 0;
1430
1431 atw_write_ssid(sc);
1432 atw_write_sup_rates(sc);
1433 atw_write_wep(sc);
1434
1435 ic->ic_state = IEEE80211_S_INIT;
1436
1437 /*
1438 * Set the receive filter. This will start the transmit and
1439 * receive processes.
1440 */
1441 atw_filter_setup(sc);
1442
1443 /*
1444 * Start the receive process.
1445 */
1446 ATW_WRITE(sc, ATW_RDR, 0x1);
1447
1448 /*
1449 * Note that the interface is now running.
1450 */
1451 ifp->if_flags |= IFF_RUNNING;
1452 ifp->if_flags &= ~IFF_OACTIVE;
1453
1454 /* send no beacons, yet. */
1455 atw_start_beacon(sc, 0);
1456
1457 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1458 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1459 else
1460 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1461 out:
1462 if (error) {
1463 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1464 sc->sc_tx_timer = 0;
1465 ifp->if_timer = 0;
1466 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1467 }
1468 #ifdef ATW_DEBUG
1469 atw_print_regs(sc, "end of init");
1470 #endif /* ATW_DEBUG */
1471
1472 return (error);
1473 }
1474
1475 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1476 * 0: MAC control of RF3000/Si4126.
1477 *
1478 * Applies power, or selects RF front-end? Sets reset condition.
1479 *
1480 * TBD support non-RFMD BBP, non-SiLabs synth.
1481 */
1482 static void
1483 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1484 {
1485 if (enable) {
1486 ATW_WRITE(sc, ATW_SYNRF,
1487 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1488 DELAY(atw_bbp_io_enable_delay);
1489 } else {
1490 ATW_WRITE(sc, ATW_SYNRF, 0);
1491 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1492 }
1493 }
1494
1495 static int
1496 atw_tune(struct atw_softc *sc)
1497 {
1498 int rc;
1499 u_int chan;
1500 struct ieee80211com *ic = &sc->sc_ic;
1501
1502 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1503 if (chan == IEEE80211_CHAN_ANY)
1504 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1505
1506 if (chan == sc->sc_cur_chan)
1507 return 0;
1508
1509 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1510 sc->sc_cur_chan, chan));
1511
1512 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1513
1514 atw_si4126_tune(sc, chan);
1515 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1516 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1517 chan);
1518
1519 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1520 DELAY(atw_nar_delay);
1521 ATW_WRITE(sc, ATW_RDR, 0x1);
1522
1523 if (rc == 0)
1524 sc->sc_cur_chan = chan;
1525
1526 return rc;
1527 }
1528
1529 #ifdef ATW_SYNDEBUG
1530 static void
1531 atw_si4126_print(struct atw_softc *sc)
1532 {
1533 struct ifnet *ifp = &sc->sc_if;
1534 u_int addr, val;
1535
1536 val = 0;
1537
1538 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1539 return;
1540
1541 for (addr = 0; addr <= 8; addr++) {
1542 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1543 if (atw_si4126_read(sc, addr, &val) == 0) {
1544 printf("<unknown> (quitting print-out)\n");
1545 break;
1546 }
1547 printf("%05x\n", val);
1548 }
1549 }
1550 #endif /* ATW_SYNDEBUG */
1551
1552 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1553 *
1554 * The RF/IF synthesizer produces two reference frequencies for
1555 * the RF2948B transceiver. The first frequency the RF2948B requires
1556 * is two times the so-called "intermediate frequency" (IF). Since
1557 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1558 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second
1559 * frequency required by the transceiver is the radio frequency
1560 * (RF). This is a superheterodyne transceiver; for f(chan) the
1561 * center frequency of the channel we are tuning, RF = f(chan) -
1562 * IF.
1563 *
1564 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1565 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1566 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1567 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1568 */
1569 static void
1570 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1571 {
1572 u_int mhz;
1573 u_int R;
1574 u_int32_t gpio;
1575 u_int16_t gain;
1576
1577 #ifdef ATW_SYNDEBUG
1578 atw_si4126_print(sc);
1579 #endif /* ATW_SYNDEBUG */
1580
1581 if (chan == 14)
1582 mhz = 2484;
1583 else
1584 mhz = 2412 + 5 * (chan - 1);
1585
1586 /* Tune IF to 748 MHz to suit the IF LO input of the
1587 * RF2494B, which is 2 x IF. No need to set an IF divider
1588 * because an IF in 526 MHz - 952 MHz is allowed.
1589 *
1590 * XIN is 44.000 MHz, so divide it by two to get allowable
1591 * range of 2-25 MHz. SiLabs tells me that this is not
1592 * strictly necessary.
1593 */
1594
1595 if (atw_xindiv2)
1596 R = 44;
1597 else
1598 R = 88;
1599
1600 /* Power-up RF, IF synthesizers. */
1601 atw_si4126_write(sc, SI4126_POWER,
1602 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1603
1604 /* set LPWR, too? */
1605 atw_si4126_write(sc, SI4126_MAIN,
1606 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1607
1608 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1609 * set KP2 to 1.
1610 *
1611 * REFDIF This is different from the reference driver, which
1612 * always sets SI4126_GAIN to 0.
1613 */
1614 gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1615
1616 atw_si4126_write(sc, SI4126_GAIN, gain);
1617
1618 /* XIN = 44 MHz.
1619 *
1620 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1621 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1622 *
1623 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1624 * so that 1496/88 * 44 MHz = 748 MHz.
1625 */
1626 atw_si4126_write(sc, SI4126_IFN, 1496);
1627
1628 atw_si4126_write(sc, SI4126_IFR, R);
1629
1630 #ifndef ATW_REFSLAVE
1631 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1632 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1633 * which has no RF1!
1634 */
1635 atw_si4126_write(sc, SI4126_RF1R, R);
1636
1637 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1638 #endif
1639
1640 /* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1641 * where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44.
1642 * Now let's multiply it to mhz. So mhz - IF = N.
1643 */
1644 atw_si4126_write(sc, SI4126_RF2R, R);
1645
1646 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1647
1648 /* wait 100us from power-up for RF, IF to settle */
1649 DELAY(100);
1650
1651 gpio = ATW_READ(sc, ATW_GPIO);
1652 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1653 gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1654
1655 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1656 /* Set a Prism RF front-end to a special mode for channel 14?
1657 *
1658 * Apparently the SMC2635W needs this, although I don't think
1659 * it has a Prism RF.
1660 */
1661 gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1662 }
1663 ATW_WRITE(sc, ATW_GPIO, gpio);
1664
1665 #ifdef ATW_SYNDEBUG
1666 atw_si4126_print(sc);
1667 #endif /* ATW_SYNDEBUG */
1668 }
1669
1670 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1671 * diversity.
1672 *
1673 * !!!
1674 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1675 * !!!
1676 */
1677 static int
1678 atw_rf3000_init(struct atw_softc *sc)
1679 {
1680 int rc = 0;
1681
1682 atw_bbp_io_enable(sc, 1);
1683
1684 /* CCA is acquisition sensitive */
1685 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1686 __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1687
1688 if (rc != 0)
1689 goto out;
1690
1691 /* enable diversity */
1692 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1693
1694 if (rc != 0)
1695 goto out;
1696
1697 /* sensible setting from a binary-only driver */
1698 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1699 __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1700
1701 if (rc != 0)
1702 goto out;
1703
1704 /* magic from a binary-only driver */
1705 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1706 __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1707
1708 if (rc != 0)
1709 goto out;
1710
1711 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1712
1713 if (rc != 0)
1714 goto out;
1715
1716 /* XXX Reference driver remarks that Abocom sets this to 50.
1717 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1718 * in the "reserved" area of register RF3000_OPTIONS1.
1719 */
1720 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1721
1722 if (rc != 0)
1723 goto out;
1724
1725 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1726
1727 if (rc != 0)
1728 goto out;
1729
1730 out:
1731 atw_bbp_io_enable(sc, 0);
1732 return rc;
1733 }
1734
1735 #ifdef ATW_BBPDEBUG
1736 static void
1737 atw_rf3000_print(struct atw_softc *sc)
1738 {
1739 struct ifnet *ifp = &sc->sc_if;
1740 u_int addr, val;
1741
1742 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1743 return;
1744
1745 for (addr = 0x01; addr <= 0x15; addr++) {
1746 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1747 if (atw_rf3000_read(sc, addr, &val) != 0) {
1748 printf("<unknown> (quitting print-out)\n");
1749 break;
1750 }
1751 printf("%08x\n", val);
1752 }
1753 }
1754 #endif /* ATW_BBPDEBUG */
1755
1756 /* Set the power settings on the BBP for channel `chan'. */
1757 static int
1758 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1759 {
1760 int rc = 0;
1761 u_int32_t reg;
1762 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1763
1764 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1765 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1766 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1767
1768 /* odd channels: LSB, even channels: MSB */
1769 if (chan % 2 == 1) {
1770 txpower &= 0xFF;
1771 lpf_cutoff &= 0xFF;
1772 lna_gs_thresh &= 0xFF;
1773 } else {
1774 txpower >>= 8;
1775 lpf_cutoff >>= 8;
1776 lna_gs_thresh >>= 8;
1777 }
1778
1779 #ifdef ATW_BBPDEBUG
1780 atw_rf3000_print(sc);
1781 #endif /* ATW_BBPDEBUG */
1782
1783 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1784 "lna_gs_thresh %02x\n",
1785 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1786
1787 atw_bbp_io_enable(sc, 1);
1788
1789 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1790 __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1791 goto out;
1792
1793 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1794 goto out;
1795
1796 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1797 goto out;
1798
1799 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1800
1801 if (rc != 0)
1802 goto out;
1803
1804 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1805
1806 if (rc != 0)
1807 goto out;
1808
1809 #ifdef ATW_BBPDEBUG
1810 atw_rf3000_print(sc);
1811 #endif /* ATW_BBPDEBUG */
1812
1813 out:
1814 atw_bbp_io_enable(sc, 0);
1815
1816 /* set beacon, rts, atim transmit power */
1817 reg = ATW_READ(sc, ATW_PLCPHD);
1818 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1819 reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1820 ATW_PLCPHD_SERVICE_MASK);
1821 ATW_WRITE(sc, ATW_PLCPHD, reg);
1822 DELAY(atw_plcphd_delay);
1823
1824 return rc;
1825 }
1826
1827 /* Write a register on the RF3000 baseband processor using the
1828 * registers provided by the ADM8211 for this purpose.
1829 *
1830 * Return 0 on success.
1831 */
1832 static int
1833 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1834 {
1835 u_int32_t reg;
1836 int i;
1837
1838 reg = sc->sc_bbpctl_wr |
1839 __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1840 __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1841
1842 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1843 ATW_WRITE(sc, ATW_BBPCTL, reg);
1844 DELAY(2 * atw_pseudo_milli);
1845 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1846 break;
1847 }
1848
1849 if (i < 0) {
1850 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1851 return ETIMEDOUT;
1852 }
1853 return 0;
1854 }
1855
1856 /* Read a register on the RF3000 baseband processor using the registers
1857 * the ADM8211 provides for this purpose.
1858 *
1859 * The 7-bit register address is addr. Record the 8-bit data in the register
1860 * in *val.
1861 *
1862 * Return 0 on success.
1863 *
1864 * XXX This does not seem to work. The ADM8211 must require more or
1865 * different magic to read the chip than to write it. Possibly some
1866 * of the magic I have derived from a binary-only driver concerns
1867 * the "chip address" (see the RF3000 manual).
1868 */
1869 #ifdef ATW_BBPDEBUG
1870 static int
1871 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1872 {
1873 u_int32_t reg;
1874 int i;
1875
1876 for (i = 1000; --i >= 0; ) {
1877 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1878 break;
1879 DELAY(100);
1880 }
1881
1882 if (i < 0) {
1883 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1884 sc->sc_dev.dv_xname);
1885 return ETIMEDOUT;
1886 }
1887
1888 reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1889
1890 ATW_WRITE(sc, ATW_BBPCTL, reg);
1891
1892 for (i = 1000; --i >= 0; ) {
1893 DELAY(100);
1894 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1895 break;
1896 }
1897
1898 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1899
1900 if (i < 0) {
1901 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1902 sc->sc_dev.dv_xname, reg);
1903 return ETIMEDOUT;
1904 }
1905 if (val != NULL)
1906 *val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1907 return 0;
1908 }
1909 #endif /* ATW_BBPDEBUG */
1910
1911 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1912 * provided by the ADM8211 for that purpose.
1913 *
1914 * val is 18 bits of data, and val is the 4-bit address of the register.
1915 *
1916 * Return 0 on success.
1917 */
1918 static void
1919 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1920 {
1921 uint32_t bits, mask, reg;
1922 const int nbits = 22;
1923
1924 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1925 KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1926
1927 bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1928 __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1929
1930 reg = ATW_SYNRF_SELSYN;
1931 /* reference driver: reset Si4126 serial bus to initial
1932 * conditions?
1933 */
1934 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1935 ATW_WRITE(sc, ATW_SYNRF, reg);
1936
1937 for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1938 if ((bits & mask) != 0)
1939 reg |= ATW_SYNRF_SYNDATA;
1940 else
1941 reg &= ~ATW_SYNRF_SYNDATA;
1942 ATW_WRITE(sc, ATW_SYNRF, reg);
1943 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1944 ATW_WRITE(sc, ATW_SYNRF, reg);
1945 }
1946 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1947 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1948 }
1949
1950 /* Read 18-bit data from the 4-bit address addr in Si4126
1951 * RF synthesizer and write the data to *val. Return 0 on success.
1952 *
1953 * XXX This does not seem to work. The ADM8211 must require more or
1954 * different magic to read the chip than to write it.
1955 */
1956 #ifdef ATW_SYNDEBUG
1957 static int
1958 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1959 {
1960 u_int32_t reg;
1961 int i;
1962
1963 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1964
1965 for (i = 1000; --i >= 0; ) {
1966 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1967 break;
1968 DELAY(100);
1969 }
1970
1971 if (i < 0) {
1972 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1973 sc->sc_dev.dv_xname);
1974 return ETIMEDOUT;
1975 }
1976
1977 reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1978
1979 ATW_WRITE(sc, ATW_SYNCTL, reg);
1980
1981 for (i = 1000; --i >= 0; ) {
1982 DELAY(100);
1983 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1984 break;
1985 }
1986
1987 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1988
1989 if (i < 0) {
1990 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1991 sc->sc_dev.dv_xname, reg);
1992 return ETIMEDOUT;
1993 }
1994 if (val != NULL)
1995 *val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1996 ATW_SYNCTL_DATA_MASK);
1997 return 0;
1998 }
1999 #endif /* ATW_SYNDEBUG */
2000
2001 /* XXX is the endianness correct? test. */
2002 #define atw_calchash(addr) \
2003 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
2004
2005 /*
2006 * atw_filter_setup:
2007 *
2008 * Set the ADM8211's receive filter.
2009 */
2010 static void
2011 atw_filter_setup(struct atw_softc *sc)
2012 {
2013 struct ieee80211com *ic = &sc->sc_ic;
2014 struct ethercom *ec = &sc->sc_ec;
2015 struct ifnet *ifp = &sc->sc_if;
2016 int hash;
2017 u_int32_t hashes[2];
2018 struct ether_multi *enm;
2019 struct ether_multistep step;
2020
2021 /* According to comments in tlp_al981_filter_setup
2022 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2023 * multicast filter to be set while it is running. Hopefully
2024 * the ADM8211 is not the same!
2025 */
2026 if ((ifp->if_flags & IFF_RUNNING) != 0)
2027 atw_idle(sc, ATW_NAR_SR);
2028
2029 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2030 ifp->if_flags &= ~IFF_ALLMULTI;
2031
2032 /* XXX in scan mode, do not filter packets. Maybe this is
2033 * unnecessary.
2034 */
2035 if (ic->ic_state == IEEE80211_S_SCAN ||
2036 (ifp->if_flags & IFF_PROMISC) != 0) {
2037 sc->sc_opmode |= ATW_NAR_PR;
2038 goto allmulti;
2039 }
2040
2041 hashes[0] = hashes[1] = 0x0;
2042
2043 /*
2044 * Program the 64-bit multicast hash filter.
2045 */
2046 ETHER_FIRST_MULTI(step, ec, enm);
2047 while (enm != NULL) {
2048 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2049 ETHER_ADDR_LEN) != 0)
2050 goto allmulti;
2051
2052 hash = atw_calchash(enm->enm_addrlo);
2053 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2054 ETHER_NEXT_MULTI(step, enm);
2055 sc->sc_opmode |= ATW_NAR_MM;
2056 }
2057 ifp->if_flags &= ~IFF_ALLMULTI;
2058 goto setit;
2059
2060 allmulti:
2061 sc->sc_opmode |= ATW_NAR_MM;
2062 ifp->if_flags |= IFF_ALLMULTI;
2063 hashes[0] = hashes[1] = 0xffffffff;
2064
2065 setit:
2066 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2067 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2068 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2069 DELAY(atw_nar_delay);
2070 ATW_WRITE(sc, ATW_RDR, 0x1);
2071
2072 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2073 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2074 }
2075
2076 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2077 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2078 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2079 * no beacon with the preferred BSSID and SSID in the number of
2080 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2081 */
2082 static void
2083 atw_write_bssid(struct atw_softc *sc)
2084 {
2085 struct ieee80211com *ic = &sc->sc_ic;
2086 u_int8_t *bssid;
2087
2088 bssid = ic->ic_bss->ni_bssid;
2089
2090 ATW_WRITE(sc, ATW_BSSID0,
2091 __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2092 __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2093 __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2094 __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2095
2096 ATW_WRITE(sc, ATW_ABDA1,
2097 (ATW_READ(sc, ATW_ABDA1) &
2098 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2099 __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2100 __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2101
2102 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2103 ether_sprintf(sc->sc_bssid)));
2104 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2105
2106 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2107 }
2108
2109 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2110 * 16-bit word.
2111 */
2112 static void
2113 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2114 {
2115 u_int i;
2116 u_int8_t *ptr;
2117
2118 memcpy(&sc->sc_sram[ofs], buf, buflen);
2119
2120 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2121
2122 KASSERT(buflen + ofs <= sc->sc_sramlen);
2123
2124 ptr = &sc->sc_sram[ofs];
2125
2126 for (i = 0; i < buflen; i += 2) {
2127 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2128 __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2129 DELAY(atw_writewep_delay);
2130
2131 ATW_WRITE(sc, ATW_WESK,
2132 __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2133 DELAY(atw_writewep_delay);
2134 }
2135 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2136
2137 if (sc->sc_if.if_flags & IFF_DEBUG) {
2138 int n_octets = 0;
2139 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2140 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2141 for (i = 0; i < buflen; i++) {
2142 printf(" %02x", ptr[i]);
2143 if (++n_octets % 24 == 0)
2144 printf("\n");
2145 }
2146 if (n_octets % 24 != 0)
2147 printf("\n");
2148 }
2149 }
2150
2151 static int
2152 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2153 {
2154 struct atw_softc *sc = ic->ic_ifp->if_softc;
2155 u_int keyix = k->wk_keyix;
2156
2157 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2158
2159 if (keyix >= IEEE80211_WEP_NKID)
2160 return 0;
2161 if (k->wk_keylen != 0)
2162 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2163
2164 return 1;
2165 }
2166
2167 static int
2168 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2169 const u_int8_t mac[IEEE80211_ADDR_LEN])
2170 {
2171 struct atw_softc *sc = ic->ic_ifp->if_softc;
2172
2173 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2174
2175 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2176 return 0;
2177
2178 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2179
2180 return 1;
2181 }
2182
2183 static void
2184 atw_key_update_begin(struct ieee80211com *ic)
2185 {
2186 #ifdef ATW_DEBUG
2187 struct ifnet *ifp = ic->ic_ifp;
2188 struct atw_softc *sc = ifp->if_softc;
2189 #endif
2190
2191 DPRINTF(sc, ("%s:\n", __func__));
2192 }
2193
2194 static void
2195 atw_key_update_end(struct ieee80211com *ic)
2196 {
2197 struct ifnet *ifp = ic->ic_ifp;
2198 struct atw_softc *sc = ifp->if_softc;
2199
2200 DPRINTF(sc, ("%s:\n", __func__));
2201
2202 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2203 return;
2204 if (ATW_IS_ENABLED(sc) == 0)
2205 return;
2206 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2207 atw_write_wep(sc);
2208 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2209 DELAY(atw_nar_delay);
2210 ATW_WRITE(sc, ATW_RDR, 0x1);
2211 }
2212
2213 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2214 static void
2215 atw_write_wep(struct atw_softc *sc)
2216 {
2217 #if 0
2218 struct ieee80211com *ic = &sc->sc_ic;
2219 u_int32_t reg;
2220 int i;
2221 #endif
2222 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2223 u_int8_t buf[IEEE80211_WEP_NKID]
2224 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2225
2226 sc->sc_wepctl = 0;
2227 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2228
2229 memset(&buf[0][0], 0, sizeof(buf));
2230
2231 #if 0
2232 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2233 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2234 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2235 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2236 buf[i][1] = ATW_WEP_ENABLED;
2237 } else {
2238 buf[i][1] = 0;
2239 continue;
2240 }
2241 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2242 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2243 ic->ic_nw_keys[i].wk_keylen - 1);
2244 }
2245
2246 reg = ATW_READ(sc, ATW_MACTEST);
2247 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2248 reg &= ~ATW_MACTEST_KEYID_MASK;
2249 reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2250 ATW_WRITE(sc, ATW_MACTEST, reg);
2251
2252 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2253 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2254
2255 switch (sc->sc_rev) {
2256 case ATW_REVISION_AB:
2257 case ATW_REVISION_AF:
2258 /* Bypass WEP on Rx. */
2259 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2260 break;
2261 default:
2262 break;
2263 }
2264 #endif
2265
2266 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2267 sizeof(buf));
2268
2269 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2270 }
2271
2272 static void
2273 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2274 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2275 {
2276 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2277
2278 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2279 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2280 return;
2281
2282 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2283
2284 switch (subtype) {
2285 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2286 case IEEE80211_FC0_SUBTYPE_BEACON:
2287 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2288 ic->ic_state == IEEE80211_S_RUN) {
2289 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2290 (void)ieee80211_ibss_merge(ni);
2291 }
2292 break;
2293 default:
2294 break;
2295 }
2296 return;
2297 }
2298
2299 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2300 * In ad hoc mode, the SSID is written to the beacons sent by the
2301 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2302 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2303 * indications.
2304 */
2305 static void
2306 atw_write_ssid(struct atw_softc *sc)
2307 {
2308 struct ieee80211com *ic = &sc->sc_ic;
2309 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2310 * it only expects the element length, not its ID.
2311 */
2312 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2313
2314 memset(buf, 0, sizeof(buf));
2315 buf[0] = ic->ic_bss->ni_esslen;
2316 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2317
2318 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2319 roundup(1 + ic->ic_bss->ni_esslen, 2));
2320 }
2321
2322 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2323 * In ad hoc mode, the supported rates are written to beacons sent by the
2324 * ADM8211.
2325 */
2326 static void
2327 atw_write_sup_rates(struct atw_softc *sc)
2328 {
2329 struct ieee80211com *ic = &sc->sc_ic;
2330 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2331 * supported rates
2332 */
2333 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2334
2335 memset(buf, 0, sizeof(buf));
2336
2337 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2338
2339 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2340 ic->ic_bss->ni_rates.rs_nrates);
2341
2342 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2343 }
2344
2345 /* Start/stop sending beacons. */
2346 void
2347 atw_start_beacon(struct atw_softc *sc, int start)
2348 {
2349 struct ieee80211com *ic = &sc->sc_ic;
2350 uint16_t chan;
2351 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2352 size_t len;
2353
2354 if (ATW_IS_ENABLED(sc) == 0)
2355 return;
2356
2357 /* start beacons */
2358 len = sizeof(struct ieee80211_frame) +
2359 8 /* timestamp */ + 2 /* beacon interval */ +
2360 2 /* capability info */ +
2361 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2362 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2363 3 /* DS parameters */ +
2364 IEEE80211_CRC_LEN;
2365
2366 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2367 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2368 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2369
2370 ATW_WRITE(sc, ATW_BCNT, bcnt);
2371 ATW_WRITE(sc, ATW_CAP1, cap1);
2372
2373 if (!start)
2374 return;
2375
2376 /* TBD use ni_capinfo */
2377
2378 capinfo = 0;
2379 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2380 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2381 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2382 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2383
2384 switch (ic->ic_opmode) {
2385 case IEEE80211_M_IBSS:
2386 len += 4; /* IBSS parameters */
2387 capinfo |= IEEE80211_CAPINFO_IBSS;
2388 break;
2389 case IEEE80211_M_HOSTAP:
2390 /* XXX 6-byte minimum TIM */
2391 len += atw_beacon_len_adjust;
2392 capinfo |= IEEE80211_CAPINFO_ESS;
2393 break;
2394 default:
2395 return;
2396 }
2397
2398 /* set listen interval
2399 * XXX do software units agree w/ hardware?
2400 */
2401 bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2402 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2403
2404 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2405
2406 bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2407 cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2408 cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2409
2410 ATW_WRITE(sc, ATW_BCNT, bcnt);
2411 ATW_WRITE(sc, ATW_BPLI, bpli);
2412 ATW_WRITE(sc, ATW_CAP0, cap0);
2413 ATW_WRITE(sc, ATW_CAP1, cap1);
2414
2415 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2416 sc->sc_dev.dv_xname, bcnt));
2417
2418 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2419 sc->sc_dev.dv_xname, cap1));
2420 }
2421
2422 /* Return the 32 lsb of the last TSFT divisible by ival. */
2423 static inline uint32_t
2424 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2425 {
2426 /* Following the reference driver's lead, I compute
2427 *
2428 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2429 *
2430 * without using 64-bit arithmetic, using the following
2431 * relationship:
2432 *
2433 * (0x100000000 * H + L) % m
2434 * = ((0x100000000 % m) * H + L) % m
2435 * = (((0xffffffff + 1) % m) * H + L) % m
2436 * = ((0xffffffff % m + 1 % m) * H + L) % m
2437 * = ((0xffffffff % m + 1) * H + L) % m
2438 */
2439 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2440 }
2441
2442 static uint64_t
2443 atw_get_tsft(struct atw_softc *sc)
2444 {
2445 int i;
2446 uint32_t tsfth, tsftl;
2447 for (i = 0; i < 2; i++) {
2448 tsfth = ATW_READ(sc, ATW_TSFTH);
2449 tsftl = ATW_READ(sc, ATW_TSFTL);
2450 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2451 break;
2452 }
2453 return ((uint64_t)tsfth << 32) | tsftl;
2454 }
2455
2456 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2457 * the ieee80211com.
2458 *
2459 * Predict the next target beacon transmission time (TBTT) and
2460 * write it to the ADM8211.
2461 */
2462 static void
2463 atw_predict_beacon(struct atw_softc *sc)
2464 {
2465 #define TBTTOFS 20 /* TU */
2466
2467 struct ieee80211com *ic = &sc->sc_ic;
2468 uint64_t tsft;
2469 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2470 union {
2471 uint64_t word;
2472 uint8_t tstamp[8];
2473 } u;
2474
2475 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2476 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2477 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2478 tsft = atw_get_tsft(sc);
2479 u.word = htole64(tsft);
2480 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2481 sizeof(ic->ic_bss->ni_tstamp));
2482 } else
2483 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2484
2485 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2486
2487 tsftl = tsft & 0xFFFFFFFF;
2488 tsfth = tsft >> 32;
2489
2490 /* We sent/received the last beacon `past' microseconds
2491 * after the interval divided the TSF timer.
2492 */
2493 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2494
2495 /* Skip ten beacons so that the TBTT cannot pass before
2496 * we've programmed it. Ten is an arbitrary number.
2497 */
2498 tbtt = past_even + ival * 10;
2499
2500 ATW_WRITE(sc, ATW_TOFS1,
2501 __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2502 __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2503 __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2504 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2505 #undef TBTTOFS
2506 }
2507
2508 static void
2509 atw_next_scan(void *arg)
2510 {
2511 struct atw_softc *sc = arg;
2512 struct ieee80211com *ic = &sc->sc_ic;
2513 int s;
2514
2515 /* don't call atw_start w/o network interrupts blocked */
2516 s = splnet();
2517 if (ic->ic_state == IEEE80211_S_SCAN)
2518 ieee80211_next_scan(ic);
2519 splx(s);
2520 }
2521
2522 /* Synchronize the hardware state with the software state. */
2523 static int
2524 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2525 {
2526 struct ifnet *ifp = ic->ic_ifp;
2527 struct atw_softc *sc = ifp->if_softc;
2528 enum ieee80211_state ostate;
2529 int error = 0;
2530
2531 ostate = ic->ic_state;
2532 callout_stop(&sc->sc_scan_ch);
2533
2534 switch (nstate) {
2535 case IEEE80211_S_AUTH:
2536 case IEEE80211_S_ASSOC:
2537 atw_write_bssid(sc);
2538 error = atw_tune(sc);
2539 break;
2540 case IEEE80211_S_INIT:
2541 callout_stop(&sc->sc_scan_ch);
2542 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2543 atw_start_beacon(sc, 0);
2544 break;
2545 case IEEE80211_S_SCAN:
2546 error = atw_tune(sc);
2547 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2548 atw_next_scan, sc);
2549 break;
2550 case IEEE80211_S_RUN:
2551 error = atw_tune(sc);
2552 atw_write_bssid(sc);
2553 atw_write_ssid(sc);
2554 atw_write_sup_rates(sc);
2555
2556 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2557 ic->ic_opmode == IEEE80211_M_MONITOR)
2558 break;
2559
2560 /* set listen interval
2561 * XXX do software units agree w/ hardware?
2562 */
2563 ATW_WRITE(sc, ATW_BPLI,
2564 __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2565 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2566 ATW_BPLI_LI_MASK));
2567
2568 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", sc->sc_dev.dv_xname,
2569 ATW_READ(sc, ATW_BPLI)));
2570
2571 atw_predict_beacon(sc);
2572
2573 switch (ic->ic_opmode) {
2574 case IEEE80211_M_AHDEMO:
2575 case IEEE80211_M_HOSTAP:
2576 case IEEE80211_M_IBSS:
2577 atw_start_beacon(sc, 1);
2578 break;
2579 case IEEE80211_M_MONITOR:
2580 case IEEE80211_M_STA:
2581 break;
2582 }
2583
2584 break;
2585 }
2586 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2587 }
2588
2589 /*
2590 * atw_add_rxbuf:
2591 *
2592 * Add a receive buffer to the indicated descriptor.
2593 */
2594 int
2595 atw_add_rxbuf(struct atw_softc *sc, int idx)
2596 {
2597 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2598 struct mbuf *m;
2599 int error;
2600
2601 MGETHDR(m, M_DONTWAIT, MT_DATA);
2602 if (m == NULL)
2603 return (ENOBUFS);
2604
2605 MCLGET(m, M_DONTWAIT);
2606 if ((m->m_flags & M_EXT) == 0) {
2607 m_freem(m);
2608 return (ENOBUFS);
2609 }
2610
2611 if (rxs->rxs_mbuf != NULL)
2612 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2613
2614 rxs->rxs_mbuf = m;
2615
2616 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2617 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2618 BUS_DMA_READ|BUS_DMA_NOWAIT);
2619 if (error) {
2620 printf("%s: can't load rx DMA map %d, error = %d\n",
2621 sc->sc_dev.dv_xname, idx, error);
2622 panic("atw_add_rxbuf"); /* XXX */
2623 }
2624
2625 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2626 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2627
2628 ATW_INIT_RXDESC(sc, idx);
2629
2630 return (0);
2631 }
2632
2633 /*
2634 * Release any queued transmit buffers.
2635 */
2636 void
2637 atw_txdrain(struct atw_softc *sc)
2638 {
2639 struct atw_txsoft *txs;
2640
2641 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2642 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2643 if (txs->txs_mbuf != NULL) {
2644 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2645 m_freem(txs->txs_mbuf);
2646 txs->txs_mbuf = NULL;
2647 }
2648 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2649 sc->sc_txfree += txs->txs_ndescs;
2650 }
2651
2652 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2653 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2654 sc->sc_txfree != ATW_NTXDESC));
2655 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2656 sc->sc_tx_timer = 0;
2657 }
2658
2659 /*
2660 * atw_stop: [ ifnet interface function ]
2661 *
2662 * Stop transmission on the interface.
2663 */
2664 void
2665 atw_stop(struct ifnet *ifp, int disable)
2666 {
2667 struct atw_softc *sc = ifp->if_softc;
2668 struct ieee80211com *ic = &sc->sc_ic;
2669
2670 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2671
2672 /* Disable interrupts. */
2673 ATW_WRITE(sc, ATW_IER, 0);
2674
2675 /* Stop the transmit and receive processes. */
2676 sc->sc_opmode = 0;
2677 ATW_WRITE(sc, ATW_NAR, 0);
2678 DELAY(atw_nar_delay);
2679 ATW_WRITE(sc, ATW_TDBD, 0);
2680 ATW_WRITE(sc, ATW_TDBP, 0);
2681 ATW_WRITE(sc, ATW_RDB, 0);
2682
2683 atw_txdrain(sc);
2684
2685 if (disable) {
2686 atw_rxdrain(sc);
2687 atw_disable(sc);
2688 }
2689
2690 /*
2691 * Mark the interface down and cancel the watchdog timer.
2692 */
2693 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2694 sc->sc_tx_timer = 0;
2695 ifp->if_timer = 0;
2696
2697 if (!disable)
2698 atw_reset(sc);
2699 }
2700
2701 /*
2702 * atw_rxdrain:
2703 *
2704 * Drain the receive queue.
2705 */
2706 void
2707 atw_rxdrain(struct atw_softc *sc)
2708 {
2709 struct atw_rxsoft *rxs;
2710 int i;
2711
2712 for (i = 0; i < ATW_NRXDESC; i++) {
2713 rxs = &sc->sc_rxsoft[i];
2714 if (rxs->rxs_mbuf == NULL)
2715 continue;
2716 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2717 m_freem(rxs->rxs_mbuf);
2718 rxs->rxs_mbuf = NULL;
2719 }
2720 }
2721
2722 /*
2723 * atw_detach:
2724 *
2725 * Detach an ADM8211 interface.
2726 */
2727 int
2728 atw_detach(struct atw_softc *sc)
2729 {
2730 struct ifnet *ifp = &sc->sc_if;
2731 struct atw_rxsoft *rxs;
2732 struct atw_txsoft *txs;
2733 int i;
2734
2735 /*
2736 * Succeed now if there isn't any work to do.
2737 */
2738 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2739 return (0);
2740
2741 callout_stop(&sc->sc_scan_ch);
2742
2743 ieee80211_ifdetach(&sc->sc_ic);
2744 if_detach(ifp);
2745
2746 for (i = 0; i < ATW_NRXDESC; i++) {
2747 rxs = &sc->sc_rxsoft[i];
2748 if (rxs->rxs_mbuf != NULL) {
2749 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2750 m_freem(rxs->rxs_mbuf);
2751 rxs->rxs_mbuf = NULL;
2752 }
2753 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2754 }
2755 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2756 txs = &sc->sc_txsoft[i];
2757 if (txs->txs_mbuf != NULL) {
2758 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2759 m_freem(txs->txs_mbuf);
2760 txs->txs_mbuf = NULL;
2761 }
2762 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2763 }
2764 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2765 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2766 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2767 sizeof(struct atw_control_data));
2768 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2769
2770 shutdownhook_disestablish(sc->sc_sdhook);
2771 powerhook_disestablish(sc->sc_powerhook);
2772
2773 if (sc->sc_srom)
2774 free(sc->sc_srom, M_DEVBUF);
2775
2776 return (0);
2777 }
2778
2779 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2780 void
2781 atw_shutdown(void *arg)
2782 {
2783 struct atw_softc *sc = arg;
2784
2785 atw_stop(&sc->sc_if, 1);
2786 }
2787
2788 int
2789 atw_intr(void *arg)
2790 {
2791 struct atw_softc *sc = arg;
2792 struct ifnet *ifp = &sc->sc_if;
2793 u_int32_t status, rxstatus, txstatus, linkstatus;
2794 int handled = 0, txthresh;
2795
2796 #ifdef DEBUG
2797 if (ATW_IS_ENABLED(sc) == 0)
2798 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2799 #endif
2800
2801 /*
2802 * If the interface isn't running, the interrupt couldn't
2803 * possibly have come from us.
2804 */
2805 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2806 !device_is_active(&sc->sc_dev))
2807 return (0);
2808
2809 for (;;) {
2810 status = ATW_READ(sc, ATW_STSR);
2811
2812 if (status)
2813 ATW_WRITE(sc, ATW_STSR, status);
2814
2815 #ifdef ATW_DEBUG
2816 #define PRINTINTR(flag) do { \
2817 if ((status & flag) != 0) { \
2818 printf("%s" #flag, delim); \
2819 delim = ","; \
2820 } \
2821 } while (0)
2822
2823 if (atw_debug > 1 && status) {
2824 const char *delim = "<";
2825
2826 printf("%s: reg[STSR] = %x",
2827 sc->sc_dev.dv_xname, status);
2828
2829 PRINTINTR(ATW_INTR_FBE);
2830 PRINTINTR(ATW_INTR_LINKOFF);
2831 PRINTINTR(ATW_INTR_LINKON);
2832 PRINTINTR(ATW_INTR_RCI);
2833 PRINTINTR(ATW_INTR_RDU);
2834 PRINTINTR(ATW_INTR_REIS);
2835 PRINTINTR(ATW_INTR_RPS);
2836 PRINTINTR(ATW_INTR_TCI);
2837 PRINTINTR(ATW_INTR_TDU);
2838 PRINTINTR(ATW_INTR_TLT);
2839 PRINTINTR(ATW_INTR_TPS);
2840 PRINTINTR(ATW_INTR_TRT);
2841 PRINTINTR(ATW_INTR_TUF);
2842 PRINTINTR(ATW_INTR_BCNTC);
2843 PRINTINTR(ATW_INTR_ATIME);
2844 PRINTINTR(ATW_INTR_TBTT);
2845 PRINTINTR(ATW_INTR_TSCZ);
2846 PRINTINTR(ATW_INTR_TSFTF);
2847 printf(">\n");
2848 }
2849 #undef PRINTINTR
2850 #endif /* ATW_DEBUG */
2851
2852 if ((status & sc->sc_inten) == 0)
2853 break;
2854
2855 handled = 1;
2856
2857 rxstatus = status & sc->sc_rxint_mask;
2858 txstatus = status & sc->sc_txint_mask;
2859 linkstatus = status & sc->sc_linkint_mask;
2860
2861 if (linkstatus) {
2862 atw_linkintr(sc, linkstatus);
2863 }
2864
2865 if (rxstatus) {
2866 /* Grab any new packets. */
2867 atw_rxintr(sc);
2868
2869 if (rxstatus & ATW_INTR_RDU) {
2870 printf("%s: receive ring overrun\n",
2871 sc->sc_dev.dv_xname);
2872 /* Get the receive process going again. */
2873 ATW_WRITE(sc, ATW_RDR, 0x1);
2874 break;
2875 }
2876 }
2877
2878 if (txstatus) {
2879 /* Sweep up transmit descriptors. */
2880 atw_txintr(sc);
2881
2882 if (txstatus & ATW_INTR_TLT)
2883 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2884 sc->sc_dev.dv_xname));
2885
2886 if (txstatus & ATW_INTR_TRT)
2887 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2888 sc->sc_dev.dv_xname));
2889
2890 /* If Tx under-run, increase our transmit threshold
2891 * if another is available.
2892 */
2893 txthresh = sc->sc_txthresh + 1;
2894 if ((txstatus & ATW_INTR_TUF) &&
2895 sc->sc_txth[txthresh].txth_name != NULL) {
2896 /* Idle the transmit process. */
2897 atw_idle(sc, ATW_NAR_ST);
2898
2899 sc->sc_txthresh = txthresh;
2900 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2901 sc->sc_opmode |=
2902 sc->sc_txth[txthresh].txth_opmode;
2903 printf("%s: transmit underrun; new "
2904 "threshold: %s\n", sc->sc_dev.dv_xname,
2905 sc->sc_txth[txthresh].txth_name);
2906
2907 /* Set the new threshold and restart
2908 * the transmit process.
2909 */
2910 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2911 DELAY(atw_nar_delay);
2912 ATW_WRITE(sc, ATW_RDR, 0x1);
2913 /* XXX Log every Nth underrun from
2914 * XXX now on?
2915 */
2916 }
2917 }
2918
2919 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2920 if (status & ATW_INTR_TPS)
2921 printf("%s: transmit process stopped\n",
2922 sc->sc_dev.dv_xname);
2923 if (status & ATW_INTR_RPS)
2924 printf("%s: receive process stopped\n",
2925 sc->sc_dev.dv_xname);
2926 (void)atw_init(ifp);
2927 break;
2928 }
2929
2930 if (status & ATW_INTR_FBE) {
2931 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2932 (void)atw_init(ifp);
2933 break;
2934 }
2935
2936 /*
2937 * Not handled:
2938 *
2939 * Transmit buffer unavailable -- normal
2940 * condition, nothing to do, really.
2941 *
2942 * Early receive interrupt -- not available on
2943 * all chips, we just use RI. We also only
2944 * use single-segment receive DMA, so this
2945 * is mostly useless.
2946 *
2947 * TBD others
2948 */
2949 }
2950
2951 /* Try to get more packets going. */
2952 atw_start(ifp);
2953
2954 return (handled);
2955 }
2956
2957 /*
2958 * atw_idle:
2959 *
2960 * Cause the transmit and/or receive processes to go idle.
2961 *
2962 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2963 * process in STSR if I clear SR or ST after the process has already
2964 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2965 * do not seem to be too reliable. Perhaps I have the sense of the
2966 * Rx bits switched with the Tx bits?
2967 */
2968 void
2969 atw_idle(struct atw_softc *sc, u_int32_t bits)
2970 {
2971 u_int32_t ackmask = 0, opmode, stsr, test0;
2972 int i, s;
2973
2974 s = splnet();
2975
2976 opmode = sc->sc_opmode & ~bits;
2977
2978 if (bits & ATW_NAR_SR)
2979 ackmask |= ATW_INTR_RPS;
2980
2981 if (bits & ATW_NAR_ST) {
2982 ackmask |= ATW_INTR_TPS;
2983 /* set ATW_NAR_HF to flush TX FIFO. */
2984 opmode |= ATW_NAR_HF;
2985 }
2986
2987 ATW_WRITE(sc, ATW_NAR, opmode);
2988 DELAY(atw_nar_delay);
2989
2990 for (i = 0; i < 1000; i++) {
2991 stsr = ATW_READ(sc, ATW_STSR);
2992 if ((stsr & ackmask) == ackmask)
2993 break;
2994 DELAY(10);
2995 }
2996
2997 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2998
2999 if ((stsr & ackmask) == ackmask)
3000 goto out;
3001
3002 test0 = ATW_READ(sc, ATW_TEST0);
3003
3004 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3005 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3006 printf("%s: transmit process not idle [%s]\n",
3007 sc->sc_dev.dv_xname,
3008 atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3009 printf("%s: bits %08x test0 %08x stsr %08x\n",
3010 sc->sc_dev.dv_xname, bits, test0, stsr);
3011 }
3012
3013 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3014 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3015 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3016 sc->sc_dev.dv_xname,
3017 atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3018 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3019 sc->sc_dev.dv_xname, bits, test0, stsr));
3020 }
3021 out:
3022 if ((bits & ATW_NAR_ST) != 0)
3023 atw_txdrain(sc);
3024 splx(s);
3025 return;
3026 }
3027
3028 /*
3029 * atw_linkintr:
3030 *
3031 * Helper; handle link-status interrupts.
3032 */
3033 void
3034 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3035 {
3036 struct ieee80211com *ic = &sc->sc_ic;
3037
3038 if (ic->ic_state != IEEE80211_S_RUN)
3039 return;
3040
3041 if (linkstatus & ATW_INTR_LINKON) {
3042 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3043 sc->sc_rescan_timer = 0;
3044 } else if (linkstatus & ATW_INTR_LINKOFF) {
3045 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3046 if (ic->ic_opmode != IEEE80211_M_STA)
3047 return;
3048 sc->sc_rescan_timer = 3;
3049 sc->sc_if.if_timer = 1;
3050 }
3051 }
3052
3053 static inline int
3054 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3055 {
3056 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3057 return 0;
3058 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3059 return 0;
3060 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3061 }
3062
3063 /*
3064 * atw_rxintr:
3065 *
3066 * Helper; handle receive interrupts.
3067 */
3068 void
3069 atw_rxintr(struct atw_softc *sc)
3070 {
3071 static int rate_tbl[] = {2, 4, 11, 22, 44};
3072 struct ieee80211com *ic = &sc->sc_ic;
3073 struct ieee80211_node *ni;
3074 struct ieee80211_frame_min *wh;
3075 struct ifnet *ifp = &sc->sc_if;
3076 struct atw_rxsoft *rxs;
3077 struct mbuf *m;
3078 u_int32_t rxstat;
3079 int i, len, rate, rate0;
3080 u_int32_t rssi, rssi0;
3081
3082 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3083 rxs = &sc->sc_rxsoft[i];
3084
3085 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3086
3087 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3088 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3089 rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3090
3091 if (rxstat & ATW_RXSTAT_OWN)
3092 break; /* We have processed all receive buffers. */
3093
3094 DPRINTF3(sc,
3095 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3096 sc->sc_dev.dv_xname,
3097 rxstat, rssi0,
3098 le32toh(sc->sc_rxdescs[i].ar_buf1),
3099 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3100
3101 /*
3102 * Make sure the packet fits in one buffer. This should
3103 * always be the case.
3104 */
3105 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3106 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3107 printf("%s: incoming packet spilled, resetting\n",
3108 sc->sc_dev.dv_xname);
3109 (void)atw_init(ifp);
3110 return;
3111 }
3112
3113 /*
3114 * If an error occurred, update stats, clear the status
3115 * word, and leave the packet buffer in place. It will
3116 * simply be reused the next time the ring comes around.
3117 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3118 * error.
3119 */
3120
3121 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3122 ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3123 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3124 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3125 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3126 ATW_RXSTAT_ICVE)) != 0)) {
3127 #define PRINTERR(bit, str) \
3128 if (rxstat & (bit)) \
3129 printf("%s: receive error: %s\n", \
3130 sc->sc_dev.dv_xname, str)
3131 ifp->if_ierrors++;
3132 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3133 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3134 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3135 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3136 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3137 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3138 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3139 #undef PRINTERR
3140 ATW_INIT_RXDESC(sc, i);
3141 continue;
3142 }
3143
3144 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3145 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3146
3147 /*
3148 * No errors; receive the packet. Note the ADM8211
3149 * includes the CRC in promiscuous mode.
3150 */
3151 len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3152
3153 /*
3154 * Allocate a new mbuf cluster. If that fails, we are
3155 * out of memory, and must drop the packet and recycle
3156 * the buffer that's already attached to this descriptor.
3157 */
3158 m = rxs->rxs_mbuf;
3159 if (atw_add_rxbuf(sc, i) != 0) {
3160 ifp->if_ierrors++;
3161 ATW_INIT_RXDESC(sc, i);
3162 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3163 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3164 continue;
3165 }
3166
3167 ifp->if_ipackets++;
3168 if (sc->sc_opmode & ATW_NAR_PR)
3169 len -= IEEE80211_CRC_LEN;
3170 m->m_pkthdr.rcvif = ifp;
3171 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3172
3173 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3174 rate = 0;
3175 else
3176 rate = rate_tbl[rate0];
3177
3178 /* The RSSI comes straight from a register in the
3179 * baseband processor. I know that for the RF3000,
3180 * the RSSI register also contains the antenna-selection
3181 * bits. Mask those off.
3182 *
3183 * TBD Treat other basebands.
3184 */
3185 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3186 rssi = rssi0 & RF3000_RSSI_MASK;
3187 else
3188 rssi = rssi0;
3189
3190 #if NBPFILTER > 0
3191 /* Pass this up to any BPF listeners. */
3192 if (sc->sc_radiobpf != NULL) {
3193 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3194
3195 tap->ar_rate = rate;
3196 tap->ar_chan_freq = htole16(ic->ic_curchan->ic_freq);
3197 tap->ar_chan_flags = htole16(ic->ic_curchan->ic_flags);
3198
3199 /* TBD verify units are dB */
3200 tap->ar_antsignal = (int)rssi;
3201 /* TBD tap->ar_flags */
3202
3203 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3204 tap->ar_ihdr.it_len, m);
3205 }
3206 #endif /* NPBFILTER > 0 */
3207
3208 wh = mtod(m, struct ieee80211_frame_min *);
3209 ni = ieee80211_find_rxnode(ic, wh);
3210 #if 0
3211 if (atw_hw_decrypted(sc, wh)) {
3212 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3213 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3214 }
3215 #endif
3216 ieee80211_input(ic, m, ni, (int)rssi, 0);
3217 ieee80211_free_node(ni);
3218 }
3219
3220 /* Update the receive pointer. */
3221 sc->sc_rxptr = i;
3222 }
3223
3224 /*
3225 * atw_txintr:
3226 *
3227 * Helper; handle transmit interrupts.
3228 */
3229 void
3230 atw_txintr(struct atw_softc *sc)
3231 {
3232 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3233 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3234 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3235 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3236
3237 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3238 struct ifnet *ifp = &sc->sc_if;
3239 struct atw_txsoft *txs;
3240 u_int32_t txstat;
3241
3242 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3243 sc->sc_dev.dv_xname, sc->sc_flags));
3244
3245 /*
3246 * Go through our Tx list and free mbufs for those
3247 * frames that have been transmitted.
3248 */
3249 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3250 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3251 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3252
3253 #ifdef ATW_DEBUG
3254 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3255 int i;
3256 printf(" txsoft %p transmit chain:\n", txs);
3257 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3258 txs->txs_ndescs - 1,
3259 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3260 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3261 printf(" descriptor %d:\n", i);
3262 printf(" at_status: 0x%08x\n",
3263 le32toh(sc->sc_txdescs[i].at_stat));
3264 printf(" at_flags: 0x%08x\n",
3265 le32toh(sc->sc_txdescs[i].at_flags));
3266 printf(" at_buf1: 0x%08x\n",
3267 le32toh(sc->sc_txdescs[i].at_buf1));
3268 printf(" at_buf2: 0x%08x\n",
3269 le32toh(sc->sc_txdescs[i].at_buf2));
3270 if (i == txs->txs_lastdesc)
3271 break;
3272 }
3273 }
3274 #endif
3275
3276 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3277 if (txstat & ATW_TXSTAT_OWN)
3278 break;
3279
3280 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3281
3282 sc->sc_txfree += txs->txs_ndescs;
3283
3284 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3285 0, txs->txs_dmamap->dm_mapsize,
3286 BUS_DMASYNC_POSTWRITE);
3287 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3288 m_freem(txs->txs_mbuf);
3289 txs->txs_mbuf = NULL;
3290
3291 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3292
3293 KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3294 sc->sc_txfree == 0));
3295 ifp->if_flags &= ~IFF_OACTIVE;
3296
3297 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3298 (txstat & TXSTAT_ERRMASK) != 0) {
3299 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3300 txstat_buf, sizeof(txstat_buf));
3301 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3302 txstat_buf,
3303 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3304 }
3305
3306 /*
3307 * Check for errors and collisions.
3308 */
3309 if (txstat & ATW_TXSTAT_TUF)
3310 sc->sc_stats.ts_tx_tuf++;
3311 if (txstat & ATW_TXSTAT_TLT)
3312 sc->sc_stats.ts_tx_tlt++;
3313 if (txstat & ATW_TXSTAT_TRT)
3314 sc->sc_stats.ts_tx_trt++;
3315 if (txstat & ATW_TXSTAT_TRO)
3316 sc->sc_stats.ts_tx_tro++;
3317 if (txstat & ATW_TXSTAT_SOFBR) {
3318 sc->sc_stats.ts_tx_sofbr++;
3319 }
3320
3321 if ((txstat & ATW_TXSTAT_ES) == 0)
3322 ifp->if_collisions +=
3323 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3324 else
3325 ifp->if_oerrors++;
3326
3327 ifp->if_opackets++;
3328 }
3329
3330 /*
3331 * If there are no more pending transmissions, cancel the watchdog
3332 * timer.
3333 */
3334 if (txs == NULL) {
3335 KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3336 sc->sc_tx_timer = 0;
3337 }
3338 #undef TXSTAT_ERRMASK
3339 #undef TXSTAT_FMT
3340 }
3341
3342 /*
3343 * atw_watchdog: [ifnet interface function]
3344 *
3345 * Watchdog timer handler.
3346 */
3347 void
3348 atw_watchdog(struct ifnet *ifp)
3349 {
3350 struct atw_softc *sc = ifp->if_softc;
3351 struct ieee80211com *ic = &sc->sc_ic;
3352
3353 ifp->if_timer = 0;
3354 if (ATW_IS_ENABLED(sc) == 0)
3355 return;
3356
3357 if (sc->sc_rescan_timer) {
3358 if (--sc->sc_rescan_timer == 0)
3359 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3360 }
3361 if (sc->sc_tx_timer) {
3362 if (--sc->sc_tx_timer == 0 &&
3363 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3364 printf("%s: transmit timeout\n", ifp->if_xname);
3365 ifp->if_oerrors++;
3366 (void)atw_init(ifp);
3367 atw_start(ifp);
3368 }
3369 }
3370 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3371 ifp->if_timer = 1;
3372 ieee80211_watchdog(ic);
3373 }
3374
3375 #ifdef ATW_DEBUG
3376 static void
3377 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3378 {
3379 struct atw_softc *sc = ifp->if_softc;
3380 struct mbuf *m;
3381 int i, noctets = 0;
3382
3383 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3384 m0->m_pkthdr.len);
3385
3386 for (m = m0; m; m = m->m_next) {
3387 if (m->m_len == 0)
3388 continue;
3389 for (i = 0; i < m->m_len; i++) {
3390 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3391 if (++noctets % 24 == 0)
3392 printf("\n");
3393 }
3394 }
3395 printf("%s%s: %d bytes emitted\n",
3396 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3397 }
3398 #endif /* ATW_DEBUG */
3399
3400 /*
3401 * atw_start: [ifnet interface function]
3402 *
3403 * Start packet transmission on the interface.
3404 */
3405 void
3406 atw_start(struct ifnet *ifp)
3407 {
3408 struct atw_softc *sc = ifp->if_softc;
3409 struct ieee80211_key *k;
3410 struct ieee80211com *ic = &sc->sc_ic;
3411 struct ieee80211_node *ni;
3412 struct ieee80211_frame_min *whm;
3413 struct ieee80211_frame *wh;
3414 struct atw_frame *hh;
3415 struct mbuf *m0, *m;
3416 struct atw_txsoft *txs, *last_txs;
3417 struct atw_txdesc *txd;
3418 int npkt, rate;
3419 bus_dmamap_t dmamap;
3420 int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3421
3422 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3423 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3424
3425 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3426 return;
3427
3428 /*
3429 * Remember the previous number of free descriptors and
3430 * the first descriptor we'll use.
3431 */
3432 ofree = sc->sc_txfree;
3433 firsttx = lasttx = sc->sc_txnext;
3434
3435 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3436 sc->sc_dev.dv_xname, ofree, firsttx));
3437
3438 /*
3439 * Loop through the send queue, setting up transmit descriptors
3440 * until we drain the queue, or use up all available transmit
3441 * descriptors.
3442 */
3443 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3444 sc->sc_txfree != 0) {
3445
3446 /*
3447 * Grab a packet off the management queue, if it
3448 * is not empty. Otherwise, from the data queue.
3449 */
3450 IF_DEQUEUE(&ic->ic_mgtq, m0);
3451 if (m0 != NULL) {
3452 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3453 m0->m_pkthdr.rcvif = NULL;
3454 } else if (ic->ic_state != IEEE80211_S_RUN)
3455 break; /* send no data until associated */
3456 else {
3457 IFQ_DEQUEUE(&ifp->if_snd, m0);
3458 if (m0 == NULL)
3459 break;
3460 #if NBPFILTER > 0
3461 if (ifp->if_bpf != NULL)
3462 bpf_mtap(ifp->if_bpf, m0);
3463 #endif /* NBPFILTER > 0 */
3464 ni = ieee80211_find_txnode(ic,
3465 mtod(m0, struct ether_header *)->ether_dhost);
3466 if (ni == NULL) {
3467 ifp->if_oerrors++;
3468 break;
3469 }
3470 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3471 ieee80211_free_node(ni);
3472 ifp->if_oerrors++;
3473 break;
3474 }
3475 }
3476
3477 rate = MAX(ieee80211_get_rate(ni), 2);
3478
3479 whm = mtod(m0, struct ieee80211_frame_min *);
3480
3481 if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3482 k = NULL;
3483 else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3484 m_freem(m0);
3485 ieee80211_free_node(ni);
3486 ifp->if_oerrors++;
3487 break;
3488 }
3489
3490 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3491 ic->ic_flags, ic->ic_fragthreshold, rate,
3492 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3493 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3494 m_freem(m0);
3495 break;
3496 }
3497
3498 /* XXX Misleading if fragmentation is enabled. Better
3499 * to fragment in software?
3500 */
3501 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3502
3503 #if NBPFILTER > 0
3504 /*
3505 * Pass the packet to any BPF listeners.
3506 */
3507 if (ic->ic_rawbpf != NULL)
3508 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3509
3510 if (sc->sc_radiobpf != NULL) {
3511 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3512
3513 tap->at_rate = rate;
3514 tap->at_chan_freq = htole16(ic->ic_curchan->ic_freq);
3515 tap->at_chan_flags = htole16(ic->ic_curchan->ic_flags);
3516
3517 /* TBD tap->at_flags */
3518
3519 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3520 tap->at_ihdr.it_len, m0);
3521 }
3522 #endif /* NBPFILTER > 0 */
3523
3524 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3525
3526 if (ni != NULL)
3527 ieee80211_free_node(ni);
3528
3529 if (m0 == NULL) {
3530 ifp->if_oerrors++;
3531 break;
3532 }
3533
3534 /* just to make sure. */
3535 m0 = m_pullup(m0, sizeof(struct atw_frame));
3536
3537 if (m0 == NULL) {
3538 ifp->if_oerrors++;
3539 break;
3540 }
3541
3542 hh = mtod(m0, struct atw_frame *);
3543 wh = &hh->atw_ihdr;
3544
3545 /* Copy everything we need from the 802.11 header:
3546 * Frame Control; address 1, address 3, or addresses
3547 * 3 and 4. NIC fills in BSSID, SA.
3548 */
3549 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3550 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3551 panic("%s: illegal WDS frame",
3552 sc->sc_dev.dv_xname);
3553 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3554 } else
3555 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3556
3557 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3558
3559 /* initialize remaining Tx parameters */
3560 memset(&hh->u, 0, sizeof(hh->u));
3561
3562 hh->atw_rate = rate * 5;
3563 /* XXX this could be incorrect if M_FCS. _encap should
3564 * probably strip FCS just in case it sticks around in
3565 * bridged packets.
3566 */
3567 hh->atw_service = 0x00; /* XXX guess */
3568 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3569 sizeof(struct atw_frame));
3570
3571 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3572 hh->atw_rtylmt = 3;
3573 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3574 #if 0
3575 if (do_encrypt) {
3576 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3577 hh->atw_keyid = ic->ic_def_txkey;
3578 }
3579 #endif
3580
3581 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3582 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3583 if (txs->txs_d0.d_residue)
3584 hh->atw_head_plcplen |= htole16(0x8000);
3585 if (txs->txs_dn.d_residue)
3586 hh->atw_tail_plcplen |= htole16(0x8000);
3587 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3588 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3589
3590 /* never fragment multicast frames */
3591 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3592 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3593 } else if (sc->sc_flags & ATWF_RTSCTS) {
3594 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3595 }
3596
3597 #ifdef ATW_DEBUG
3598 hh->atw_fragnum = 0;
3599
3600 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3601 printf("%s: dst = %s, rate = 0x%02x, "
3602 "service = 0x%02x, paylen = 0x%04x\n",
3603 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3604 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3605
3606 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3607 "dur1 = 0x%04x, dur2 = 0x%04x, "
3608 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3609 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3610 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3611 hh->atw_tail_dur, hh->atw_head_dur);
3612
3613 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3614 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3615 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3616 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3617
3618 printf("%s: keyid = %d\n",
3619 sc->sc_dev.dv_xname, hh->atw_keyid);
3620
3621 atw_dump_pkt(ifp, m0);
3622 }
3623 #endif /* ATW_DEBUG */
3624
3625 dmamap = txs->txs_dmamap;
3626
3627 /*
3628 * Load the DMA map. Copy and try (once) again if the packet
3629 * didn't fit in the alloted number of segments.
3630 */
3631 for (first = 1;
3632 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3633 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3634 first = 0) {
3635 MGETHDR(m, M_DONTWAIT, MT_DATA);
3636 if (m == NULL) {
3637 printf("%s: unable to allocate Tx mbuf\n",
3638 sc->sc_dev.dv_xname);
3639 break;
3640 }
3641 if (m0->m_pkthdr.len > MHLEN) {
3642 MCLGET(m, M_DONTWAIT);
3643 if ((m->m_flags & M_EXT) == 0) {
3644 printf("%s: unable to allocate Tx "
3645 "cluster\n", sc->sc_dev.dv_xname);
3646 m_freem(m);
3647 break;
3648 }
3649 }
3650 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3651 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3652 m_freem(m0);
3653 m0 = m;
3654 m = NULL;
3655 }
3656 if (error != 0) {
3657 printf("%s: unable to load Tx buffer, "
3658 "error = %d\n", sc->sc_dev.dv_xname, error);
3659 m_freem(m0);
3660 break;
3661 }
3662
3663 /*
3664 * Ensure we have enough descriptors free to describe
3665 * the packet.
3666 */
3667 if (dmamap->dm_nsegs > sc->sc_txfree) {
3668 /*
3669 * Not enough free descriptors to transmit
3670 * this packet. Unload the DMA map and
3671 * drop the packet. Notify the upper layer
3672 * that there are no more slots left.
3673 *
3674 * XXX We could allocate an mbuf and copy, but
3675 * XXX it is worth it?
3676 */
3677 bus_dmamap_unload(sc->sc_dmat, dmamap);
3678 m_freem(m0);
3679 break;
3680 }
3681
3682 /*
3683 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3684 */
3685
3686 /* Sync the DMA map. */
3687 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3688 BUS_DMASYNC_PREWRITE);
3689
3690 /* XXX arbitrary retry limit; 8 because I have seen it in
3691 * use already and maybe 0 means "no tries" !
3692 */
3693 ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3694
3695 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3696 sc->sc_dev.dv_xname, rate * 5));
3697 ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3698
3699 /*
3700 * Initialize the transmit descriptors.
3701 */
3702 for (nexttx = sc->sc_txnext, seg = 0;
3703 seg < dmamap->dm_nsegs;
3704 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3705 /*
3706 * If this is the first descriptor we're
3707 * enqueueing, don't set the OWN bit just
3708 * yet. That could cause a race condition.
3709 * We'll do it below.
3710 */
3711 txd = &sc->sc_txdescs[nexttx];
3712 txd->at_ctl = ctl |
3713 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3714
3715 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3716 txd->at_flags =
3717 htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3718 ATW_TXFLAG_TBS1_MASK)) |
3719 ((nexttx == (ATW_NTXDESC - 1))
3720 ? htole32(ATW_TXFLAG_TER) : 0);
3721 lasttx = nexttx;
3722 }
3723
3724 /* Set `first segment' and `last segment' appropriately. */
3725 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3726 htole32(ATW_TXFLAG_FS);
3727 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3728
3729 #ifdef ATW_DEBUG
3730 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3731 printf(" txsoft %p transmit chain:\n", txs);
3732 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3733 printf(" descriptor %d:\n", seg);
3734 printf(" at_ctl: 0x%08x\n",
3735 le32toh(sc->sc_txdescs[seg].at_ctl));
3736 printf(" at_flags: 0x%08x\n",
3737 le32toh(sc->sc_txdescs[seg].at_flags));
3738 printf(" at_buf1: 0x%08x\n",
3739 le32toh(sc->sc_txdescs[seg].at_buf1));
3740 printf(" at_buf2: 0x%08x\n",
3741 le32toh(sc->sc_txdescs[seg].at_buf2));
3742 if (seg == lasttx)
3743 break;
3744 }
3745 }
3746 #endif
3747
3748 /* Sync the descriptors we're using. */
3749 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3750 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3751
3752 /*
3753 * Store a pointer to the packet so we can free it later,
3754 * and remember what txdirty will be once the packet is
3755 * done.
3756 */
3757 txs->txs_mbuf = m0;
3758 txs->txs_firstdesc = sc->sc_txnext;
3759 txs->txs_lastdesc = lasttx;
3760 txs->txs_ndescs = dmamap->dm_nsegs;
3761
3762 /* Advance the tx pointer. */
3763 sc->sc_txfree -= dmamap->dm_nsegs;
3764 sc->sc_txnext = nexttx;
3765
3766 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3767 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3768
3769 last_txs = txs;
3770 }
3771
3772 if (sc->sc_txfree != ofree) {
3773 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3774 sc->sc_dev.dv_xname, lasttx, firsttx));
3775 /*
3776 * Cause a transmit interrupt to happen on the
3777 * last packet we enqueued.
3778 */
3779 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3780 ATW_CDTXSYNC(sc, lasttx, 1,
3781 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3782
3783 /*
3784 * The entire packet chain is set up. Give the
3785 * first descriptor to the chip now.
3786 */
3787 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3788 ATW_CDTXSYNC(sc, firsttx, 1,
3789 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3790
3791 /* Wake up the transmitter. */
3792 ATW_WRITE(sc, ATW_TDR, 0x1);
3793
3794 if (txs == NULL || sc->sc_txfree == 0)
3795 ifp->if_flags |= IFF_OACTIVE;
3796
3797 /* Set a watchdog timer in case the chip flakes out. */
3798 sc->sc_tx_timer = 5;
3799 ifp->if_timer = 1;
3800 }
3801 }
3802
3803 /*
3804 * atw_power:
3805 *
3806 * Power management (suspend/resume) hook.
3807 */
3808 void
3809 atw_power(int why, void *arg)
3810 {
3811 struct atw_softc *sc = arg;
3812 struct ifnet *ifp = &sc->sc_if;
3813 int s;
3814
3815 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3816
3817 s = splnet();
3818 switch (why) {
3819 case PWR_STANDBY:
3820 /* XXX do nothing. */
3821 break;
3822 case PWR_SUSPEND:
3823 atw_stop(ifp, 0);
3824 if (sc->sc_power != NULL)
3825 (*sc->sc_power)(sc, why);
3826 break;
3827 case PWR_RESUME:
3828 if (ifp->if_flags & IFF_UP) {
3829 if (sc->sc_power != NULL)
3830 (*sc->sc_power)(sc, why);
3831 atw_init(ifp);
3832 }
3833 break;
3834 case PWR_SOFTSUSPEND:
3835 case PWR_SOFTSTANDBY:
3836 case PWR_SOFTRESUME:
3837 break;
3838 }
3839 splx(s);
3840 }
3841
3842 /*
3843 * atw_ioctl: [ifnet interface function]
3844 *
3845 * Handle control requests from the operator.
3846 */
3847 int
3848 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3849 {
3850 struct atw_softc *sc = ifp->if_softc;
3851 struct ifreq *ifr = (struct ifreq *)data;
3852 int s, error = 0;
3853
3854 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3855 if (!device_is_active(&sc->sc_dev))
3856 return ENXIO;
3857
3858 s = splnet();
3859
3860 switch (cmd) {
3861 case SIOCSIFFLAGS:
3862 if (ifp->if_flags & IFF_UP) {
3863 if (ATW_IS_ENABLED(sc)) {
3864 /*
3865 * To avoid rescanning another access point,
3866 * do not call atw_init() here. Instead,
3867 * only reflect media settings.
3868 */
3869 atw_filter_setup(sc);
3870 } else
3871 error = atw_init(ifp);
3872 } else if (ATW_IS_ENABLED(sc))
3873 atw_stop(ifp, 1);
3874 break;
3875 case SIOCADDMULTI:
3876 case SIOCDELMULTI:
3877 error = (cmd == SIOCADDMULTI) ?
3878 ether_addmulti(ifr, &sc->sc_ec) :
3879 ether_delmulti(ifr, &sc->sc_ec);
3880 if (error == ENETRESET) {
3881 if (ifp->if_flags & IFF_RUNNING)
3882 atw_filter_setup(sc); /* do not rescan */
3883 error = 0;
3884 }
3885 break;
3886 default:
3887 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3888 if (error == ENETRESET || error == ERESTART) {
3889 if (is_running(ifp))
3890 error = atw_init(ifp);
3891 else
3892 error = 0;
3893 }
3894 break;
3895 }
3896
3897 /* Try to get more packets going. */
3898 if (ATW_IS_ENABLED(sc))
3899 atw_start(ifp);
3900
3901 splx(s);
3902 return (error);
3903 }
3904
3905 static int
3906 atw_media_change(struct ifnet *ifp)
3907 {
3908 int error;
3909
3910 error = ieee80211_media_change(ifp);
3911 if (error == ENETRESET) {
3912 if (is_running(ifp))
3913 error = atw_init(ifp);
3914 else
3915 error = 0;
3916 }
3917 return error;
3918 }
3919