atw.c revision 1.12 1 /* $NetBSD: atw.c,v 1.12 2003/11/16 09:02:42 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.12 2003/11/16 09:02:42 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/atwvar.h>
82 #include <dev/ic/smc93cx6var.h>
83
84 /* XXX TBD open questions
85 *
86 *
87 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
88 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
89 * handle this for me?
90 *
91 */
92 /* device attachment
93 *
94 * print TOFS[012]
95 *
96 * device initialization
97 *
98 * clear ATW_FRCTL_MAXPSP to disable max power saving
99 * set ATW_TXBR_ALCUPDATE to enable ALC
100 * set TOFS[012]? (hope not)
101 * disable rx/tx
102 * set ATW_PAR_SWR (software reset)
103 * wait for ATW_PAR_SWR clear
104 * disable interrupts
105 * ack status register
106 * enable interrupts
107 *
108 * rx/tx initialization
109 *
110 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111 * allocate and init descriptor rings
112 * write ATW_PAR_DSL (descriptor skip length)
113 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
114 * write ATW_NAR_SQ for one/both transmit descriptor rings
115 * write ATW_NAR_SQ for one/both transmit descriptor rings
116 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
117 *
118 * rx/tx end
119 *
120 * stop DMA
121 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
122 * flush tx w/ ATW_NAR_HF
123 *
124 * scan
125 *
126 * initialize rx/tx
127 *
128 * IBSS join/create
129 *
130 * set ATW_NAR_EA (is set by ASIC?)
131 *
132 * BSS join: (re)association response
133 *
134 * set ATW_FRCTL_AID
135 *
136 * optimizations ???
137 *
138 */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_rfio_enable_delay = 20 * 1000;
145 int atw_rfio_disable_delay = 2 * 1000;
146 int atw_writewep_delay = 5;
147 int atw_beacon_len_adjust = 4;
148 int atw_dwelltime = 200;
149
150 #ifdef ATW_DEBUG
151 int atw_xhdrctl = 0;
152 int atw_xrtylmt = ~0;
153 int atw_xservice = IEEE80211_PLCP_SERVICE;
154 int atw_xpaylen = 0;
155
156 int atw_debug = 0;
157
158 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
159 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
160 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
161 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
162 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
163 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
164 static void atw_print_regs(struct atw_softc *, const char *);
165 static void atw_rf3000_print(struct atw_softc *);
166 static void atw_si4126_print(struct atw_softc *);
167 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
168 #else
169 #define ATW_DPRINTF(x)
170 #define ATW_DPRINTF2(x)
171 #define ATW_DPRINTF3(x)
172 #define DPRINTF(sc, x) /* nothing */
173 #define DPRINTF2(sc, x) /* nothing */
174 #define DPRINTF3(sc, x) /* nothing */
175 #endif
176
177 #ifdef ATW_STATS
178 void atw_print_stats __P((struct atw_softc *));
179 #endif
180
181 void atw_start __P((struct ifnet *));
182 void atw_watchdog __P((struct ifnet *));
183 int atw_ioctl __P((struct ifnet *, u_long, caddr_t));
184 int atw_init __P((struct ifnet *));
185 void atw_stop __P((struct ifnet *, int));
186
187 void atw_reset __P((struct atw_softc *));
188 int atw_read_srom __P((struct atw_softc *));
189
190 void atw_shutdown __P((void *));
191
192 void atw_rxdrain __P((struct atw_softc *));
193 int atw_add_rxbuf __P((struct atw_softc *, int));
194 void atw_idle __P((struct atw_softc *, u_int32_t));
195
196 int atw_enable __P((struct atw_softc *));
197 void atw_disable __P((struct atw_softc *));
198 void atw_power __P((int, void *));
199
200 void atw_rxintr __P((struct atw_softc *));
201 void atw_txintr __P((struct atw_softc *));
202 void atw_linkintr __P((struct atw_softc *, u_int32_t));
203
204 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
205 static void atw_tsf(struct atw_softc *);
206 static void atw_start_beacon(struct atw_softc *, int);
207 static void atw_write_wep(struct atw_softc *);
208 static void atw_write_bssid(struct atw_softc *);
209 static void atw_write_bcn_thresh(struct atw_softc *);
210 static void atw_write_ssid(struct atw_softc *);
211 static void atw_write_sup_rates(struct atw_softc *);
212 static void atw_clear_sram(struct atw_softc *);
213 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
214 static int atw_media_change(struct ifnet *);
215 static void atw_media_status(struct ifnet *, struct ifmediareq *);
216 static void atw_filter_setup(struct atw_softc *);
217 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
218 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
219 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
220 struct ieee80211_node *, int, int, u_int32_t);
221 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
222 struct ieee80211_node *, int, int, u_int32_t);
223 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
224 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
225
226 static int atw_tune(struct atw_softc *);
227
228 static void atw_rfio_enable(struct atw_softc *, int);
229
230 /* RFMD RF3000 Baseband Processor */
231 static int atw_rf3000_init(struct atw_softc *);
232 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
233 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
234 #ifdef ATW_DEBUG
235 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
236 #endif /* ATW_DEBUG */
237
238 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
239 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
240 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
241 #ifdef ATW_DEBUG
242 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
243 #endif /* ATW_DEBUG */
244
245 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
246 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
247
248 const char *atw_tx_state[] = {
249 "STOPPED",
250 "RUNNING - FETCH",
251 "RUNNING - WAIT",
252 "RUNNING - READING",
253 "-- RESERVED1 --",
254 "-- RESERVED2 --",
255 "SUSPENDED",
256 "RUNNING - CLOSE"
257 };
258
259 const char *atw_rx_state[] = {
260 "STOPPED",
261 "RUNNING - FETCH",
262 "RUNNING - CHECK",
263 "RUNNING - WAIT",
264 "SUSPENDED",
265 "RUNNING - CLOSE",
266 "RUNNING - FLUSH",
267 "RUNNING - QUEUE"
268 };
269
270 int
271 atw_activate(struct device *self, enum devact act)
272 {
273 struct atw_softc *sc = (struct atw_softc *)self;
274 int rv = 0, s;
275
276 s = splnet();
277 switch (act) {
278 case DVACT_ACTIVATE:
279 rv = EOPNOTSUPP;
280 break;
281
282 case DVACT_DEACTIVATE:
283 if_deactivate(&sc->sc_ic.ic_if);
284 break;
285 }
286 splx(s);
287 return rv;
288 }
289
290 /*
291 * atw_enable:
292 *
293 * Enable the ADM8211 chip.
294 */
295 int
296 atw_enable(sc)
297 struct atw_softc *sc;
298 {
299
300 if (ATW_IS_ENABLED(sc) == 0) {
301 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
302 printf("%s: device enable failed\n",
303 sc->sc_dev.dv_xname);
304 return (EIO);
305 }
306 sc->sc_flags |= ATWF_ENABLED;
307 }
308 return (0);
309 }
310
311 /*
312 * atw_disable:
313 *
314 * Disable the ADM8211 chip.
315 */
316 void
317 atw_disable(sc)
318 struct atw_softc *sc;
319 {
320 if (!ATW_IS_ENABLED(sc))
321 return;
322 if (sc->sc_disable != NULL)
323 (*sc->sc_disable)(sc);
324 sc->sc_flags &= ~ATWF_ENABLED;
325 }
326
327 /* Returns -1 on failure. */
328 int
329 atw_read_srom(struct atw_softc *sc)
330 {
331 struct seeprom_descriptor sd;
332 u_int32_t reg;
333
334 (void)memset(&sd, 0, sizeof(sd));
335
336 reg = ATW_READ(sc, ATW_TEST0);
337
338 if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
339 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
340 return -1;
341 }
342
343 switch (reg & ATW_TEST0_EPTYP_MASK) {
344 case ATW_TEST0_EPTYP_93c66:
345 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
346 sc->sc_sromsz = 512;
347 sd.sd_chip = C56_66;
348 break;
349 case ATW_TEST0_EPTYP_93c46:
350 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
351 sc->sc_sromsz = 128;
352 sd.sd_chip = C46;
353 break;
354 default:
355 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
356 MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
357 return -1;
358 }
359
360 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
361
362 if (sc->sc_srom == NULL) {
363 printf("%s: unable to allocate SROM buffer\n",
364 sc->sc_dev.dv_xname);
365 return -1;
366 }
367
368 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
369
370 /* ADM8211 has a single 32-bit register for controlling the
371 * 93cx6 SROM. Bit SRS enables the serial port. There is no
372 * "ready" bit. The ADM8211 input/output sense is the reverse
373 * of read_seeprom's.
374 */
375 sd.sd_tag = sc->sc_st;
376 sd.sd_bsh = sc->sc_sh;
377 sd.sd_regsize = 4;
378 sd.sd_control_offset = ATW_SPR;
379 sd.sd_status_offset = ATW_SPR;
380 sd.sd_dataout_offset = ATW_SPR;
381 sd.sd_CK = ATW_SPR_SCLK;
382 sd.sd_CS = ATW_SPR_SCS;
383 sd.sd_DI = ATW_SPR_SDO;
384 sd.sd_DO = ATW_SPR_SDI;
385 sd.sd_MS = ATW_SPR_SRS;
386 sd.sd_RDY = 0;
387
388 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
389 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
390 free(sc->sc_srom, M_DEVBUF);
391 return -1;
392 }
393 #ifdef ATW_DEBUG
394 {
395 int i;
396 ATW_DPRINTF2(("\nSerial EEPROM:\n\t"));
397 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
398 if (((i % 8) == 0) && (i != 0)) {
399 ATW_DPRINTF2(("\n\t"));
400 }
401 ATW_DPRINTF2((" 0x%x", sc->sc_srom[i]));
402 }
403 ATW_DPRINTF2(("\n"));
404 }
405 #endif /* ATW_DEBUG */
406 return 0;
407 }
408
409 #ifdef ATW_DEBUG
410 static void
411 atw_print_regs(struct atw_softc *sc, const char *where)
412 {
413 #define PRINTREG(sc, reg) \
414 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
415 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
416
417 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
418
419 PRINTREG(sc, ATW_PAR);
420 PRINTREG(sc, ATW_FRCTL);
421 PRINTREG(sc, ATW_TDR);
422 PRINTREG(sc, ATW_WTDP);
423 PRINTREG(sc, ATW_RDR);
424 PRINTREG(sc, ATW_WRDP);
425 PRINTREG(sc, ATW_RDB);
426 PRINTREG(sc, ATW_CSR3A);
427 PRINTREG(sc, ATW_TDBD);
428 PRINTREG(sc, ATW_TDBP);
429 PRINTREG(sc, ATW_STSR);
430 PRINTREG(sc, ATW_CSR5A);
431 PRINTREG(sc, ATW_NAR);
432 PRINTREG(sc, ATW_CSR6A);
433 PRINTREG(sc, ATW_IER);
434 PRINTREG(sc, ATW_CSR7A);
435 PRINTREG(sc, ATW_LPC);
436 PRINTREG(sc, ATW_TEST1);
437 PRINTREG(sc, ATW_SPR);
438 PRINTREG(sc, ATW_TEST0);
439 PRINTREG(sc, ATW_WCSR);
440 PRINTREG(sc, ATW_WPDR);
441 PRINTREG(sc, ATW_GPTMR);
442 PRINTREG(sc, ATW_GPIO);
443 PRINTREG(sc, ATW_BBPCTL);
444 PRINTREG(sc, ATW_SYNCTL);
445 PRINTREG(sc, ATW_PLCPHD);
446 PRINTREG(sc, ATW_MMIWADDR);
447 PRINTREG(sc, ATW_MMIRADDR1);
448 PRINTREG(sc, ATW_MMIRADDR2);
449 PRINTREG(sc, ATW_TXBR);
450 PRINTREG(sc, ATW_CSR15A);
451 PRINTREG(sc, ATW_ALCSTAT);
452 PRINTREG(sc, ATW_TOFS2);
453 PRINTREG(sc, ATW_CMDR);
454 PRINTREG(sc, ATW_PCIC);
455 PRINTREG(sc, ATW_PMCSR);
456 PRINTREG(sc, ATW_PAR0);
457 PRINTREG(sc, ATW_PAR1);
458 PRINTREG(sc, ATW_MAR0);
459 PRINTREG(sc, ATW_MAR1);
460 PRINTREG(sc, ATW_ATIMDA0);
461 PRINTREG(sc, ATW_ABDA1);
462 PRINTREG(sc, ATW_BSSID0);
463 PRINTREG(sc, ATW_TXLMT);
464 PRINTREG(sc, ATW_MIBCNT);
465 PRINTREG(sc, ATW_BCNT);
466 PRINTREG(sc, ATW_TSFTH);
467 PRINTREG(sc, ATW_TSC);
468 PRINTREG(sc, ATW_SYNRF);
469 PRINTREG(sc, ATW_BPLI);
470 PRINTREG(sc, ATW_CAP0);
471 PRINTREG(sc, ATW_CAP1);
472 PRINTREG(sc, ATW_RMD);
473 PRINTREG(sc, ATW_CFPP);
474 PRINTREG(sc, ATW_TOFS0);
475 PRINTREG(sc, ATW_TOFS1);
476 PRINTREG(sc, ATW_IFST);
477 PRINTREG(sc, ATW_RSPT);
478 PRINTREG(sc, ATW_TSFTL);
479 PRINTREG(sc, ATW_WEPCTL);
480 PRINTREG(sc, ATW_WESK);
481 PRINTREG(sc, ATW_WEPCNT);
482 PRINTREG(sc, ATW_MACTEST);
483 PRINTREG(sc, ATW_FER);
484 PRINTREG(sc, ATW_FEMR);
485 PRINTREG(sc, ATW_FPSR);
486 PRINTREG(sc, ATW_FFER);
487 #undef PRINTREG
488 }
489 #endif /* ATW_DEBUG */
490
491 /*
492 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
493 */
494 void
495 atw_attach(struct atw_softc *sc)
496 {
497 struct ieee80211com *ic = &sc->sc_ic;
498 struct ifnet *ifp = &ic->ic_if;
499 int country_code, error, i, nrate;
500 u_int32_t reg;
501 static const char *type_strings[] = {"Intersil (not supported)",
502 "RFMD", "Marvel (not supported)"};
503 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
504 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
505 };
506
507 sc->sc_txth = atw_txthresh_tab_lo;
508
509 SIMPLEQ_INIT(&sc->sc_txfreeq);
510 SIMPLEQ_INIT(&sc->sc_txdirtyq);
511
512 #ifdef ATW_DEBUG
513 atw_print_regs(sc, "atw_attach");
514 #endif /* ATW_DEBUG */
515
516 /*
517 * Allocate the control data structures, and create and load the
518 * DMA map for it.
519 */
520 if ((error = bus_dmamem_alloc(sc->sc_dmat,
521 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
522 1, &sc->sc_cdnseg, 0)) != 0) {
523 printf("%s: unable to allocate control data, error = %d\n",
524 sc->sc_dev.dv_xname, error);
525 goto fail_0;
526 }
527
528 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
529 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
530 BUS_DMA_COHERENT)) != 0) {
531 printf("%s: unable to map control data, error = %d\n",
532 sc->sc_dev.dv_xname, error);
533 goto fail_1;
534 }
535
536 if ((error = bus_dmamap_create(sc->sc_dmat,
537 sizeof(struct atw_control_data), 1,
538 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
539 printf("%s: unable to create control data DMA map, "
540 "error = %d\n", sc->sc_dev.dv_xname, error);
541 goto fail_2;
542 }
543
544 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
545 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
546 0)) != 0) {
547 printf("%s: unable to load control data DMA map, error = %d\n",
548 sc->sc_dev.dv_xname, error);
549 goto fail_3;
550 }
551
552 /*
553 * Create the transmit buffer DMA maps.
554 */
555 sc->sc_ntxsegs = ATW_NTXSEGS;
556 for (i = 0; i < ATW_TXQUEUELEN; i++) {
557 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
558 sc->sc_ntxsegs, MCLBYTES, 0, 0,
559 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
560 printf("%s: unable to create tx DMA map %d, "
561 "error = %d\n", sc->sc_dev.dv_xname, i, error);
562 goto fail_4;
563 }
564 }
565
566 /*
567 * Create the receive buffer DMA maps.
568 */
569 for (i = 0; i < ATW_NRXDESC; i++) {
570 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
571 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
572 printf("%s: unable to create rx DMA map %d, "
573 "error = %d\n", sc->sc_dev.dv_xname, i, error);
574 goto fail_5;
575 }
576 sc->sc_rxsoft[i].rxs_mbuf = NULL;
577 }
578
579 /* Reset the chip to a known state. */
580 atw_reset(sc);
581
582 if (atw_read_srom(sc) == -1)
583 return;
584
585 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
586 ATW_SR_RFTYPE_MASK);
587
588 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
589 ATW_SR_BBPTYPE_MASK);
590
591 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
592 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
593 return;
594 }
595 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
596 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
597 return;
598 }
599
600 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
601 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
602
603 /* XXX There exists a Linux driver which seems to use RFType = 0 for
604 * MARVEL. My bug, or theirs?
605 */
606
607 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
608
609 switch (sc->sc_rftype) {
610 case ATW_RFTYPE_INTERSIL:
611 reg |= ATW_SYNCTL_CS1;
612 break;
613 case ATW_RFTYPE_RFMD:
614 reg |= ATW_SYNCTL_CS0;
615 break;
616 case ATW_RFTYPE_MARVEL:
617 break;
618 }
619
620 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
621 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
622
623 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
624
625 switch (sc->sc_bbptype) {
626 case ATW_RFTYPE_INTERSIL:
627 reg |= ATW_BBPCTL_TWI;
628 break;
629 case ATW_RFTYPE_RFMD:
630 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
631 ATW_BBPCTL_CCA_ACTLO;
632 break;
633 case ATW_RFTYPE_MARVEL:
634 break;
635 }
636
637 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
638 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
639
640 /*
641 * From this point forward, the attachment cannot fail. A failure
642 * before this point releases all resources that may have been
643 * allocated.
644 */
645 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
646
647 ATW_DPRINTF2((" SROM MAC %04x%04x%04x",
648 htole16(sc->sc_srom[ATW_SR_MAC00]),
649 htole16(sc->sc_srom[ATW_SR_MAC01]),
650 htole16(sc->sc_srom[ATW_SR_MAC10])));
651
652 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
653 ATW_SR_CTRY_MASK);
654
655 #define ADD_CHANNEL(_ic, _chan) do { \
656 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
657 _ic->ic_channels[_chan].ic_freq = \
658 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
659 } while (0)
660
661 /* Find available channels */
662 switch (country_code) {
663 case COUNTRY_MMK2: /* 1-14 */
664 ADD_CHANNEL(ic, 14);
665 /*FALLTHROUGH*/
666 case COUNTRY_ETSI: /* 1-13 */
667 for (i = 1; i <= 13; i++)
668 ADD_CHANNEL(ic, i);
669 break;
670 case COUNTRY_FCC: /* 1-11 */
671 case COUNTRY_IC: /* 1-11 */
672 for (i = 1; i <= 11; i++)
673 ADD_CHANNEL(ic, i);
674 break;
675 case COUNTRY_MMK: /* 14 */
676 ADD_CHANNEL(ic, 14);
677 break;
678 case COUNTRY_FRANCE: /* 10-13 */
679 for (i = 10; i <= 13; i++)
680 ADD_CHANNEL(ic, i);
681 break;
682 default: /* assume channels 10-11 */
683 case COUNTRY_SPAIN: /* 10-11 */
684 for (i = 10; i <= 11; i++)
685 ADD_CHANNEL(ic, i);
686 break;
687 }
688
689 /* Read the MAC address. */
690 reg = ATW_READ(sc, ATW_PAR0);
691 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
692 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
693 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
694 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
695 reg = ATW_READ(sc, ATW_PAR1);
696 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
697 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
698
699 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
700 printf(" could not get mac address, attach failed\n");
701 return;
702 }
703
704 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
705
706 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
707 ifp->if_softc = sc;
708 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
709 IFF_NOTRAILERS;
710 ifp->if_ioctl = atw_ioctl;
711 ifp->if_start = atw_start;
712 ifp->if_watchdog = atw_watchdog;
713 ifp->if_init = atw_init;
714 ifp->if_stop = atw_stop;
715 IFQ_SET_READY(&ifp->if_snd);
716
717 ic->ic_phytype = IEEE80211_T_DS;
718 ic->ic_opmode = IEEE80211_M_STA;
719 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
720 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
721
722 nrate = 0;
723 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
724 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
725 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
726 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
727 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
728
729 /*
730 * Call MI attach routines.
731 */
732
733 if_attach(ifp);
734 ieee80211_ifattach(ifp);
735
736 sc->sc_newstate = ic->ic_newstate;
737 ic->ic_newstate = atw_newstate;
738
739 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
740 ic->ic_recv_mgmt = atw_recv_mgmt;
741
742 sc->sc_node_free = ic->ic_node_free;
743 ic->ic_node_free = atw_node_free;
744
745 sc->sc_node_alloc = ic->ic_node_alloc;
746 ic->ic_node_alloc = atw_node_alloc;
747
748 /* possibly we should fill in our own sc_send_prresp, since
749 * the ADM8211 is probably sending probe responses in ad hoc
750 * mode.
751 */
752
753 /* complete initialization */
754 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
755 callout_init(&sc->sc_scan_ch);
756
757 #if NBPFILTER > 0
758 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
759 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
760 #endif
761
762 /*
763 * Make sure the interface is shutdown during reboot.
764 */
765 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
766 if (sc->sc_sdhook == NULL)
767 printf("%s: WARNING: unable to establish shutdown hook\n",
768 sc->sc_dev.dv_xname);
769
770 /*
771 * Add a suspend hook to make sure we come back up after a
772 * resume.
773 */
774 sc->sc_powerhook = powerhook_establish(atw_power, sc);
775 if (sc->sc_powerhook == NULL)
776 printf("%s: WARNING: unable to establish power hook\n",
777 sc->sc_dev.dv_xname);
778
779 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
780 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
781 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
782
783 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
784 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
785 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
786
787 return;
788
789 /*
790 * Free any resources we've allocated during the failed attach
791 * attempt. Do this in reverse order and fall through.
792 */
793 fail_5:
794 for (i = 0; i < ATW_NRXDESC; i++) {
795 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
796 continue;
797 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
798 }
799 fail_4:
800 for (i = 0; i < ATW_TXQUEUELEN; i++) {
801 if (sc->sc_txsoft[i].txs_dmamap == NULL)
802 continue;
803 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
804 }
805 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
806 fail_3:
807 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
808 fail_2:
809 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
810 sizeof(struct atw_control_data));
811 fail_1:
812 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
813 fail_0:
814 return;
815 }
816
817 static struct ieee80211_node *
818 atw_node_alloc(struct ieee80211com *ic)
819 {
820 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
821 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
822
823 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
824 return ni;
825 }
826
827 static void
828 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
829 {
830 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
831
832 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
833 ether_sprintf(ni->ni_bssid)));
834 (*sc->sc_node_free)(ic, ni);
835 }
836
837 /*
838 * atw_reset:
839 *
840 * Perform a soft reset on the ADM8211.
841 */
842 void
843 atw_reset(sc)
844 struct atw_softc *sc;
845 {
846 int i;
847
848 if (ATW_IS_ENABLED(sc) == 0)
849 return;
850
851 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
852
853 for (i = 0; i < 10000; i++) {
854 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
855 break;
856 DELAY(1);
857 }
858
859 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
860
861 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
862 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
863
864 /* Turn off maximum power saving. */
865 ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
866
867 /* Recall EEPROM. */
868 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
869
870 DELAY(10 * 1000);
871
872 /* A reset seems to affect the SRAM contents, so put them into
873 * a known state.
874 */
875 atw_clear_sram(sc);
876
877 memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
878
879 sc->sc_lost_bcn_thresh = 0;
880 }
881
882 static void
883 atw_clear_sram(sc)
884 struct atw_softc *sc;
885 {
886 #if 0
887 for (addr = 0; addr < 448; addr++) {
888 ATW_WRITE(sc, ATW_WEPCTL,
889 ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0 | addr);
890 DELAY(1000);
891 ATW_WRITE(sc, ATW_WESK, 0);
892 DELAY(1000); /* paranoia */
893 }
894 return;
895 #endif
896 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
897 /* XXX not for revision 0x20. */
898 atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
899 }
900
901 /* TBD atw_init
902 *
903 * set MAC based on ic->ic_bss->myaddr
904 * write WEP keys
905 * set TX rate
906 */
907
908 /*
909 * atw_init: [ ifnet interface function ]
910 *
911 * Initialize the interface. Must be called at splnet().
912 */
913 int
914 atw_init(ifp)
915 struct ifnet *ifp;
916 {
917 struct atw_softc *sc = ifp->if_softc;
918 struct ieee80211com *ic = &sc->sc_ic;
919 struct atw_txsoft *txs;
920 struct atw_rxsoft *rxs;
921 u_int32_t reg;
922 int i, error = 0;
923
924 if ((error = atw_enable(sc)) != 0)
925 goto out;
926
927 /*
928 * Cancel any pending I/O. This also resets.
929 */
930 atw_stop(ifp, 0);
931
932 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
933 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
934 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
935 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
936
937 /* Turn off APM??? (A binary-only driver does this.)
938 *
939 * Set Rx store-and-forward mode.
940 */
941 reg = ATW_READ(sc, ATW_CMDR);
942 reg &= ~ATW_CMDR_APM;
943 reg &= ~ATW_CMDR_DRT_MASK;
944 reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
945
946 ATW_WRITE(sc, ATW_CMDR, reg);
947
948 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
949 *
950 * XXX a binary-only driver sets a different service field than
951 * 0. why?
952 */
953 reg = ATW_READ(sc, ATW_PLCPHD);
954 reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
955 reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
956 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
957 ATW_WRITE(sc, ATW_PLCPHD, reg);
958
959 /* XXX */
960 reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
961 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
962 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
963 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
964 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
965 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
966 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
967 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
968 ATW_WRITE(sc, ATW_TOFS2, reg);
969
970 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
971 LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
972
973 /* XXX this resets an Intersil RF front-end? */
974 /* TBD condition on Intersil RFType? */
975 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
976 DELAY(10 * 1000);
977 ATW_WRITE(sc, ATW_SYNRF, 0);
978 DELAY(5 * 1000);
979
980 /* 16 TU max duration for contention-free period */
981 reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
982 ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
983
984 /* XXX I guess that the Cardbus clock is 22MHz?
985 * I am assuming that the role of ATW_TOFS0_USCNT is
986 * to divide the bus clock to get a 1MHz clock---the datasheet is not
987 * very clear on this point. It says in the datasheet that it is
988 * possible for the ADM8211 to accomodate bus speeds between 22MHz
989 * and 33MHz; maybe this is the way? I see a binary-only driver write
990 * these values. These values are also the power-on default.
991 */
992 ATW_WRITE(sc, ATW_TOFS0,
993 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
994 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
995
996 /* Initialize interframe spacing. EIFS=0x64 is used by a binary-only
997 * driver. go figure.
998 */
999 reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1000 LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
1001 ATW_IFST_SIFS_MASK) |
1002 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1003 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1004
1005 ATW_WRITE(sc, ATW_IFST, reg);
1006
1007 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1008 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1009
1010 /* Set up the MMI read/write addresses for the BBP.
1011 *
1012 * TBD find out the Marvel settings.
1013 */
1014 switch (sc->sc_bbptype) {
1015 case ATW_BBPTYPE_INTERSIL:
1016 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1017 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1018 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1019 break;
1020 case ATW_BBPTYPE_MARVEL:
1021 break;
1022 case ATW_BBPTYPE_RFMD:
1023 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1024 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1025 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1026 default:
1027 break;
1028 }
1029
1030 sc->sc_wepctl = 0;
1031 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1032
1033 if ((error = atw_rf3000_init(sc)) != 0)
1034 goto out;
1035
1036 /*
1037 * Initialize the PCI Access Register.
1038 */
1039 sc->sc_busmode = ATW_PAR_BAR; /* XXX what is this? */
1040
1041 /*
1042 * If we're allowed to do so, use Memory Read Line
1043 * and Memory Read Multiple.
1044 *
1045 * XXX Should we use Memory Write and Invalidate?
1046 */
1047 if (sc->sc_flags & ATWF_MRL)
1048 sc->sc_busmode |= ATW_PAR_MRLE;
1049 if (sc->sc_flags & ATWF_MRM)
1050 sc->sc_busmode |= ATW_PAR_MRME;
1051 if (sc->sc_flags & ATWF_MWI)
1052 sc->sc_busmode |= ATW_PAR_MWIE;
1053 if (sc->sc_maxburst == 0)
1054 sc->sc_maxburst = 8; /* ADM8211 default */
1055
1056 switch (sc->sc_cacheline) {
1057 default:
1058 /* Use burst length. */
1059 break;
1060 case 8:
1061 sc->sc_busmode |= ATW_PAR_CAL_8DW;
1062 break;
1063 case 16:
1064 sc->sc_busmode |= ATW_PAR_CAL_16DW;
1065 break;
1066 case 32:
1067 sc->sc_busmode |= ATW_PAR_CAL_32DW;
1068 break;
1069 }
1070 switch (sc->sc_maxburst) {
1071 case 1:
1072 sc->sc_busmode |= ATW_PAR_PBL_1DW;
1073 break;
1074 case 2:
1075 sc->sc_busmode |= ATW_PAR_PBL_2DW;
1076 break;
1077 case 4:
1078 sc->sc_busmode |= ATW_PAR_PBL_4DW;
1079 break;
1080 case 8:
1081 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1082 break;
1083 case 16:
1084 sc->sc_busmode |= ATW_PAR_PBL_16DW;
1085 break;
1086 case 32:
1087 sc->sc_busmode |= ATW_PAR_PBL_32DW;
1088 break;
1089 default:
1090 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1091 break;
1092 }
1093
1094 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1095 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1096 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1097
1098 /*
1099 * Initialize the OPMODE register. We don't write it until
1100 * we're ready to begin the transmit and receive processes.
1101 */
1102 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1103 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1104
1105 /*
1106 * Initialize the transmit descriptor ring.
1107 */
1108 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1109 for (i = 0; i < ATW_NTXDESC; i++) {
1110 /* no transmit chaining */
1111 sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1112 sc->sc_txdescs[i].at_buf2 =
1113 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1114 }
1115 /* use ring mode */
1116 sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1117 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1118 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1119 sc->sc_txfree = ATW_NTXDESC;
1120 sc->sc_txnext = 0;
1121
1122 /*
1123 * Initialize the transmit job descriptors.
1124 */
1125 SIMPLEQ_INIT(&sc->sc_txfreeq);
1126 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1127 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1128 txs = &sc->sc_txsoft[i];
1129 txs->txs_mbuf = NULL;
1130 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1131 }
1132
1133 /*
1134 * Initialize the receive descriptor and receive job
1135 * descriptor rings.
1136 */
1137 for (i = 0; i < ATW_NRXDESC; i++) {
1138 rxs = &sc->sc_rxsoft[i];
1139 if (rxs->rxs_mbuf == NULL) {
1140 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1141 printf("%s: unable to allocate or map rx "
1142 "buffer %d, error = %d\n",
1143 sc->sc_dev.dv_xname, i, error);
1144 /*
1145 * XXX Should attempt to run with fewer receive
1146 * XXX buffers instead of just failing.
1147 */
1148 atw_rxdrain(sc);
1149 goto out;
1150 }
1151 } else
1152 ATW_INIT_RXDESC(sc, i);
1153 }
1154 sc->sc_rxptr = 0;
1155
1156 /* disable all wake-up events */
1157 ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1158 ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1159 ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1160 ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1161
1162 /* ack all wake-up events */
1163 ATW_SET(sc, ATW_WCSR, 0);
1164
1165 /*
1166 * Initialize the interrupt mask and enable interrupts.
1167 */
1168 /* normal interrupts */
1169 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1170 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1171
1172 /* abnormal interrupts */
1173 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1174 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1175 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1176
1177 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1178 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1179
1180 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1181 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1182 ATW_INTR_TRT;
1183
1184 sc->sc_linkint_mask &= sc->sc_inten;
1185 sc->sc_rxint_mask &= sc->sc_inten;
1186 sc->sc_txint_mask &= sc->sc_inten;
1187
1188 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1189 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1190 if (sc->sc_intr_ack != NULL)
1191 (*sc->sc_intr_ack)(sc);
1192
1193 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1194 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1195
1196 /*
1197 * Give the transmit and receive rings to the ADM8211.
1198 */
1199 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1200 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1201
1202 /* common 802.11 configuration */
1203 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1204 switch (ic->ic_opmode) {
1205 case IEEE80211_M_HOSTAP: /* XXX */
1206 case IEEE80211_M_STA:
1207 sc->sc_opmode &= ~ATW_NAR_EA;
1208 break;
1209 case IEEE80211_M_AHDEMO: /* XXX */
1210 case IEEE80211_M_IBSS:
1211 /* EA bit seems important for ad hoc reception. */
1212 sc->sc_opmode |= ATW_NAR_EA;
1213 ic->ic_flags |= IEEE80211_F_IBSSON;
1214 break;
1215 case IEEE80211_M_MONITOR: /* XXX */
1216 break;
1217 }
1218
1219 atw_start_beacon(sc, 0);
1220
1221 switch (ic->ic_opmode) {
1222 case IEEE80211_M_AHDEMO:
1223 case IEEE80211_M_HOSTAP:
1224 ic->ic_bss->ni_intval = ic->ic_lintval;
1225 ic->ic_bss->ni_rssi = 0;
1226 ic->ic_bss->ni_rstamp = 0;
1227 break;
1228 default: /* XXX */
1229 break;
1230 }
1231
1232 atw_write_ssid(sc);
1233 atw_write_sup_rates(sc);
1234 if (ic->ic_caps & IEEE80211_C_WEP)
1235 atw_write_wep(sc);
1236
1237 /*
1238 * Set the receive filter. This will start the transmit and
1239 * receive processes.
1240 */
1241 atw_filter_setup(sc);
1242
1243 /*
1244 * Start the receive process.
1245 */
1246 ATW_WRITE(sc, ATW_RDR, 0x1);
1247
1248 /*
1249 * Note that the interface is now running.
1250 */
1251 ifp->if_flags |= IFF_RUNNING;
1252 ifp->if_flags &= ~IFF_OACTIVE;
1253 ic->ic_state = IEEE80211_S_INIT;
1254
1255 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1256 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1257 else
1258 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1259 out:
1260 if (error) {
1261 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1262 ifp->if_timer = 0;
1263 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1264 }
1265 #ifdef ATW_DEBUG
1266 atw_print_regs(sc, "end of init");
1267 #endif /* ATW_DEBUG */
1268
1269 return (error);
1270 }
1271
1272 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1273 * 0: MAC control of RF3000/Si4126.
1274 *
1275 * Applies power, or selects RF front-end? Sets reset condition.
1276 *
1277 * TBD support non-RFMD BBP, non-SiLabs synth.
1278 */
1279 static void
1280 atw_rfio_enable(struct atw_softc *sc, int enable)
1281 {
1282 if (enable) {
1283 ATW_WRITE(sc, ATW_SYNRF,
1284 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1285 DELAY(atw_rfio_enable_delay);
1286 } else {
1287 ATW_WRITE(sc, ATW_SYNRF, 0);
1288 DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1289 }
1290 }
1291
1292 static int
1293 atw_tune(sc)
1294 struct atw_softc *sc;
1295 {
1296 int rc;
1297 u_int32_t reg;
1298 int chan;
1299 struct ieee80211com *ic = &sc->sc_ic;
1300
1301 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1302 if (chan == IEEE80211_CHAN_ANY)
1303 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1304
1305 if (chan == sc->sc_cur_chan)
1306 return 0;
1307
1308 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1309 sc->sc_cur_chan, chan));
1310
1311 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1312
1313 if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1314 (rc = atw_rf3000_tune(sc, chan)) != 0)
1315 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1316 chan);
1317
1318 reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1319 ATW_WRITE(sc, ATW_CAP0,
1320 reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1321
1322 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1323
1324 if (rc == 0)
1325 sc->sc_cur_chan = chan;
1326
1327 return rc;
1328 }
1329
1330 #ifdef ATW_DEBUG
1331 static void
1332 atw_si4126_print(sc)
1333 struct atw_softc *sc;
1334 {
1335 struct ifnet *ifp = &sc->sc_ic.ic_if;
1336 u_int addr, val;
1337
1338 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1339 return;
1340
1341 for (addr = 0; addr <= 8; addr++) {
1342 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1343 if (atw_si4126_read(sc, addr, &val) == 0) {
1344 printf("<unknown> (quitting print-out)\n");
1345 break;
1346 }
1347 printf("%05x\n", val);
1348 }
1349 }
1350 #endif /* ATW_DEBUG */
1351
1352 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1353 *
1354 * The RF/IF synthesizer produces two reference frequencies for
1355 * the RF2948B transceiver. The first frequency the RF2948B requires
1356 * is two times the so-called "intermediate frequency" (IF). Since
1357 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1358 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1359 * frequency required by the transceiver is the radio frequency
1360 * (RF). This is a superheterodyne transceiver; for f(chan) the
1361 * center frequency of the channel we are tuning, RF = f(chan) -
1362 * IF.
1363 *
1364 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1365 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1366 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1367 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1368 */
1369 static int
1370 atw_si4126_tune(sc, chan)
1371 struct atw_softc *sc;
1372 u_int8_t chan;
1373 {
1374 int rc = 0;
1375 u_int mhz;
1376 u_int R;
1377 u_int32_t reg;
1378 u_int16_t gain;
1379
1380 #ifdef ATW_DEBUG
1381 atw_si4126_print(sc);
1382 #endif /* ATW_DEBUG */
1383
1384 if (chan == 14)
1385 mhz = 2484;
1386 else
1387 mhz = 2412 + 5 * (chan - 1);
1388
1389 /* Tune IF to 748MHz to suit the IF LO input of the
1390 * RF2494B, which is 2 x IF. No need to set an IF divider
1391 * because an IF in 526MHz - 952MHz is allowed.
1392 *
1393 * XIN is 44.000MHz, so divide it by two to get allowable
1394 * range of 2-25MHz. SiLabs tells me that this is not
1395 * strictly necessary.
1396 */
1397
1398 R = 44;
1399
1400 atw_rfio_enable(sc, 1);
1401
1402 /* Power-up RF, IF synthesizers. */
1403 if ((rc = atw_si4126_write(sc, SI4126_POWER,
1404 SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1405 goto out;
1406
1407 /* If RF2 N > 2047, then set KP2 to 1. */
1408 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1409
1410 if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1411 goto out;
1412
1413 /* set LPWR, too? */
1414 if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1415 SI4126_MAIN_XINDIV2)) != 0)
1416 goto out;
1417
1418 /* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN. XIN = 44MHz.
1419 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1420 */
1421 if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1422 goto out;
1423
1424 if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1425 goto out;
1426
1427 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1428 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1429 * which has no RF1!
1430 */
1431 if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1432 goto out;
1433
1434 if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1435 goto out;
1436
1437 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1438 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1439 * Now let's multiply it to mhz. So mhz - IF = N.
1440 */
1441 if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1442 goto out;
1443
1444 if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1445 goto out;
1446
1447 /* wait 100us from power-up for RF, IF to settle */
1448 DELAY(100);
1449
1450 if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1451 /* XXX there is a binary driver which sends
1452 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1453 * that this enables the Si4126 by raising its PWDN#, but I
1454 * think that it actually sets the Prism RF front-end
1455 * to a special mode for channel 14.
1456 */
1457 reg = ATW_READ(sc, ATW_GPIO);
1458 reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1459 reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1460 ATW_WRITE(sc, ATW_GPIO, reg);
1461 }
1462
1463 #ifdef ATW_DEBUG
1464 atw_si4126_print(sc);
1465 #endif /* ATW_DEBUG */
1466
1467 out:
1468 atw_rfio_enable(sc, 0);
1469
1470 return rc;
1471 }
1472
1473 /* Baseline initialization of RF3000 BBP: set CCA mode, enable antenna
1474 * diversity, and write some magic.
1475 *
1476 * Call this w/ Tx/Rx suspended.
1477 */
1478 static int
1479 atw_rf3000_init(sc)
1480 struct atw_softc *sc;
1481 {
1482 int rc = 0;
1483
1484 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1485
1486 atw_rfio_enable(sc, 1);
1487
1488 /* enable diversity */
1489 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1490
1491 if (rc != 0)
1492 goto out;
1493
1494 /* sensible setting from a binary-only driver */
1495 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1496 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1497
1498 if (rc != 0)
1499 goto out;
1500
1501 /* magic from a binary-only driver */
1502 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1503 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1504
1505 if (rc != 0)
1506 goto out;
1507
1508 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1509
1510 if (rc != 0)
1511 goto out;
1512
1513 /* magic derived from binary-only driver */
1514 rc = atw_rf3000_write(sc, RF3000_MAGIC0, RF3000_MAGIC0_VAL);
1515
1516 if (rc != 0)
1517 goto out;
1518
1519 rc = atw_rf3000_write(sc, RF3000_MAGIC1, RF3000_MAGIC1_VAL);
1520
1521 if (rc != 0)
1522 goto out;
1523
1524 /* CCA is acquisition sensitive */
1525 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1526 LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1527
1528 if (rc != 0)
1529 goto out;
1530
1531 out:
1532 atw_rfio_enable(sc, 0);
1533 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1534 return rc;
1535 }
1536
1537 #ifdef ATW_DEBUG
1538 static void
1539 atw_rf3000_print(sc)
1540 struct atw_softc *sc;
1541 {
1542 struct ifnet *ifp = &sc->sc_ic.ic_if;
1543 u_int addr, val;
1544
1545 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1546 return;
1547
1548 for (addr = 0x01; addr <= 0x15; addr++) {
1549 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1550 if (atw_rf3000_read(sc, addr, &val) != 0) {
1551 printf("<unknown> (quitting print-out)\n");
1552 break;
1553 }
1554 printf("%08x\n", val);
1555 }
1556 }
1557 #endif /* ATW_DEBUG */
1558
1559 /* Set the power settings on the BBP for channel `chan'. */
1560 static int
1561 atw_rf3000_tune(sc, chan)
1562 struct atw_softc *sc;
1563 u_int8_t chan;
1564 {
1565 int rc = 0;
1566 u_int32_t reg;
1567 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1568
1569 atw_rfio_enable(sc, 1);
1570
1571 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1572 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1573 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1574
1575 /* odd channels: LSB, even channels: MSB */
1576 if (chan % 2 == 1) {
1577 txpower &= 0xFF;
1578 lpf_cutoff &= 0xFF;
1579 lna_gs_thresh &= 0xFF;
1580 } else {
1581 txpower >>= 8;
1582 lpf_cutoff >>= 8;
1583 lna_gs_thresh >>= 8;
1584 }
1585
1586 #ifdef ATW_DEBUG
1587 atw_rf3000_print(sc);
1588 #endif /* ATW_DEBUG */
1589
1590 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1591 "lna_gs_thresh %02x\n",
1592 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1593
1594 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1595 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1596 goto out;
1597
1598 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1599 goto out;
1600
1601 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1602 goto out;
1603
1604 /* from a binary-only driver. */
1605 reg = ATW_READ(sc, ATW_PLCPHD);
1606 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1607 reg |= LSHIFT(txpower << 2, ATW_PLCPHD_SERVICE_MASK);
1608 ATW_WRITE(sc, ATW_PLCPHD, reg);
1609
1610 #ifdef ATW_DEBUG
1611 atw_rf3000_print(sc);
1612 #endif /* ATW_DEBUG */
1613
1614 out:
1615 atw_rfio_enable(sc, 0);
1616
1617 return rc;
1618 }
1619
1620 /* Write a register on the RF3000 baseband processor using the
1621 * registers provided by the ADM8211 for this purpose.
1622 *
1623 * Return 0 on success.
1624 */
1625 static int
1626 atw_rf3000_write(sc, addr, val)
1627 struct atw_softc *sc;
1628 u_int addr, val;
1629 {
1630 u_int32_t reg;
1631 int i;
1632
1633 for (i = 1000; --i >= 0; ) {
1634 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1635 break;
1636 DELAY(100);
1637 }
1638
1639 if (i < 0) {
1640 printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1641 return ETIMEDOUT;
1642 }
1643
1644 reg = sc->sc_bbpctl_wr |
1645 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1646 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1647
1648 ATW_WRITE(sc, ATW_BBPCTL, reg);
1649
1650 for (i = 1000; --i >= 0; ) {
1651 DELAY(100);
1652 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1653 break;
1654 }
1655
1656 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1657
1658 if (i < 0) {
1659 printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1660 return ETIMEDOUT;
1661 }
1662 return 0;
1663 }
1664
1665 /* Read a register on the RF3000 baseband processor using the registers
1666 * the ADM8211 provides for this purpose.
1667 *
1668 * The 7-bit register address is addr. Record the 8-bit data in the register
1669 * in *val.
1670 *
1671 * Return 0 on success.
1672 *
1673 * XXX This does not seem to work. The ADM8211 must require more or
1674 * different magic to read the chip than to write it. Possibly some
1675 * of the magic I have derived from a binary-only driver concerns
1676 * the "chip address" (see the RF3000 manual).
1677 */
1678 #ifdef ATW_DEBUG
1679 static int
1680 atw_rf3000_read(sc, addr, val)
1681 struct atw_softc *sc;
1682 u_int addr, *val;
1683 {
1684 u_int32_t reg;
1685 int i;
1686
1687 for (i = 1000; --i >= 0; ) {
1688 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1689 break;
1690 DELAY(100);
1691 }
1692
1693 if (i < 0) {
1694 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1695 sc->sc_dev.dv_xname);
1696 return ETIMEDOUT;
1697 }
1698
1699 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1700
1701 ATW_WRITE(sc, ATW_BBPCTL, reg);
1702
1703 for (i = 1000; --i >= 0; ) {
1704 DELAY(100);
1705 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1706 break;
1707 }
1708
1709 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1710
1711 if (i < 0) {
1712 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1713 sc->sc_dev.dv_xname, reg);
1714 return ETIMEDOUT;
1715 }
1716 if (val != NULL)
1717 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1718 return 0;
1719 }
1720 #endif /* ATW_DEBUG */
1721
1722 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1723 * provided by the ADM8211 for that purpose.
1724 *
1725 * val is 18 bits of data, and val is the 4-bit address of the register.
1726 *
1727 * Return 0 on success.
1728 */
1729 static int
1730 atw_si4126_write(sc, addr, val)
1731 struct atw_softc *sc;
1732 u_int addr, val;
1733 {
1734 u_int32_t reg;
1735 int i;
1736
1737 for (i = 1000; --i >= 0; ) {
1738 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1739 break;
1740 DELAY(100);
1741 }
1742
1743 if (i < 0) {
1744 printf("%s: start atw_si4126_write, SYNCTL busy\n",
1745 sc->sc_dev.dv_xname);
1746 return ETIMEDOUT;
1747 }
1748
1749 reg = sc->sc_synctl_wr |
1750 LSHIFT(((val & 0x3ffff) << 4) | (addr & 0xf), ATW_SYNCTL_DATA_MASK);
1751
1752 ATW_WRITE(sc, ATW_SYNCTL, reg);
1753
1754 for (i = 1000; --i >= 0; ) {
1755 DELAY(100);
1756 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1757 break;
1758 }
1759
1760 /* restore to acceptable starting condition */
1761 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1762
1763 if (i < 0) {
1764 printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1765 sc->sc_dev.dv_xname, reg);
1766 return ETIMEDOUT;
1767 }
1768 return 0;
1769 }
1770
1771 /* Read 18-bit data from the 4-bit address addr in Si4126
1772 * RF synthesizer and write the data to *val. Return 0 on success.
1773 *
1774 * XXX This does not seem to work. The ADM8211 must require more or
1775 * different magic to read the chip than to write it.
1776 */
1777 #ifdef ATW_DEBUG
1778 static int
1779 atw_si4126_read(sc, addr, val)
1780 struct atw_softc *sc;
1781 u_int addr;
1782 u_int *val;
1783 {
1784 u_int32_t reg;
1785 int i;
1786
1787 for (i = 1000; --i >= 0; ) {
1788 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1789 break;
1790 DELAY(100);
1791 }
1792
1793 if (i < 0) {
1794 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1795 sc->sc_dev.dv_xname);
1796 return ETIMEDOUT;
1797 }
1798
1799 reg = sc->sc_synctl_rd | LSHIFT(addr & 0xf, ATW_SYNCTL_DATA_MASK);
1800
1801 ATW_WRITE(sc, ATW_SYNCTL, reg);
1802
1803 for (i = 1000; --i >= 0; ) {
1804 DELAY(100);
1805 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1806 break;
1807 }
1808
1809 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1810
1811 if (i < 0) {
1812 printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1813 sc->sc_dev.dv_xname, reg);
1814 return ETIMEDOUT;
1815 }
1816 if (val != NULL)
1817 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1818 ATW_SYNCTL_DATA_MASK);
1819 return 0;
1820 }
1821 #endif /* ATW_DEBUG */
1822
1823 /* XXX is the endianness correct? test. */
1824 #define atw_calchash(addr) \
1825 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1826
1827 /*
1828 * atw_filter_setup:
1829 *
1830 * Set the ADM8211's receive filter.
1831 */
1832 static void
1833 atw_filter_setup(sc)
1834 struct atw_softc *sc;
1835 {
1836 struct ieee80211com *ic = &sc->sc_ic;
1837 struct ethercom *ec = &ic->ic_ec;
1838 struct ifnet *ifp = &sc->sc_ic.ic_if;
1839 int hash;
1840 u_int32_t hashes[2] = { 0, 0 };
1841 struct ether_multi *enm;
1842 struct ether_multistep step;
1843
1844 DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1845 sc->sc_dev.dv_xname, sc->sc_flags));
1846
1847 /*
1848 * If we're running, idle the receive engine. If we're NOT running,
1849 * we're being called from atw_init(), and our writing ATW_NAR will
1850 * start the transmit and receive processes in motion.
1851 */
1852 if (ifp->if_flags & IFF_RUNNING)
1853 atw_idle(sc, ATW_NAR_SR);
1854
1855 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1856
1857 ifp->if_flags &= ~IFF_ALLMULTI;
1858
1859 if (ifp->if_flags & IFF_PROMISC) {
1860 sc->sc_opmode |= ATW_NAR_PR;
1861 allmulti:
1862 ifp->if_flags |= IFF_ALLMULTI;
1863 goto setit;
1864 }
1865
1866 /*
1867 * Program the 64-bit multicast hash filter.
1868 */
1869 ETHER_FIRST_MULTI(step, ec, enm);
1870 while (enm != NULL) {
1871 /* XXX */
1872 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1873 ETHER_ADDR_LEN) != 0)
1874 goto allmulti;
1875
1876 hash = atw_calchash(enm->enm_addrlo);
1877 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1878 ETHER_NEXT_MULTI(step, enm);
1879 }
1880
1881 if (ifp->if_flags & IFF_BROADCAST) {
1882 hash = atw_calchash(etherbroadcastaddr);
1883 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1884 }
1885
1886 /* all bits set => hash is useless */
1887 if (~(hashes[0] & hashes[1]) == 0)
1888 goto allmulti;
1889
1890 setit:
1891 if (ifp->if_flags & IFF_ALLMULTI)
1892 sc->sc_opmode |= ATW_NAR_MM;
1893
1894 /* XXX in scan mode, do not filter packets. maybe this is
1895 * unnecessary.
1896 */
1897 if (ic->ic_state == IEEE80211_S_SCAN)
1898 sc->sc_opmode |= ATW_NAR_PR;
1899
1900 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1901 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1902 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1903 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1904 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1905
1906 DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1907 }
1908
1909 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1910 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1911 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1912 * no beacon with the preferred BSSID and SSID in the number of
1913 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1914 */
1915 static void
1916 atw_write_bssid(sc)
1917 struct atw_softc *sc;
1918 {
1919 struct ieee80211com *ic = &sc->sc_ic;
1920 u_int8_t *bssid;
1921
1922 bssid = ic->ic_bss->ni_bssid;
1923
1924 ATW_WRITE(sc, ATW_ABDA1,
1925 (ATW_READ(sc, ATW_ABDA1) &
1926 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1927 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1928 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1929
1930 ATW_WRITE(sc, ATW_BSSID0,
1931 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1932 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1933 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1934 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1935
1936 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1937 ether_sprintf(sc->sc_bssid)));
1938 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1939
1940 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1941 }
1942
1943 /* Tell the ADM8211 how many beacon intervals must pass without
1944 * receiving a beacon with the preferred BSSID & SSID set by
1945 * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
1946 * raised.
1947 */
1948 static void
1949 atw_write_bcn_thresh(sc)
1950 struct atw_softc *sc;
1951 {
1952 struct ieee80211com *ic = &sc->sc_ic;
1953 int lost_bcn_thresh;
1954
1955 /* Lose link after one second or 7 beacons, whichever comes
1956 * first, but do not lose link before 2 beacons are lost.
1957 *
1958 * In host AP mode, set the lost-beacon threshold to 0.
1959 */
1960 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1961 lost_bcn_thresh = 0;
1962 else
1963 lost_bcn_thresh = MAX(2,
1964 MIN(1000000/(IEEE80211_DUR_TU * ic->ic_bss->ni_intval), 7));
1965
1966 /* XXX resets wake-up status bits */
1967 ATW_WRITE(sc, ATW_WCSR,
1968 (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
1969 (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
1970
1971 DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
1972 sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
1973
1974 sc->sc_lost_bcn_thresh = lost_bcn_thresh;
1975
1976 DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
1977 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
1978 }
1979
1980 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1981 * 16-bit word.
1982 */
1983 static void
1984 atw_write_sram(sc, ofs, buf, buflen)
1985 struct atw_softc *sc;
1986 u_int ofs;
1987 u_int8_t *buf;
1988 u_int buflen;
1989 {
1990 u_int i;
1991 u_int8_t *ptr;
1992
1993 memcpy(&sc->sc_sram[ofs], buf, buflen);
1994
1995 if (ofs % 2 != 0) {
1996 ofs--;
1997 buflen++;
1998 }
1999
2000 if (buflen % 2 != 0)
2001 buflen++;
2002
2003 assert(buflen + ofs <= ATW_SRAM_SIZE);
2004
2005 ptr = &sc->sc_sram[ofs];
2006
2007 for (i = 0; i < buflen; i += 2) {
2008 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2009 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2010 DELAY(atw_writewep_delay);
2011
2012 ATW_WRITE(sc, ATW_WESK,
2013 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2014 DELAY(atw_writewep_delay);
2015 }
2016 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2017
2018 if (sc->sc_if.if_flags & IFF_DEBUG) {
2019 int n_octets = 0;
2020 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2021 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2022 for (i = 0; i < buflen; i++) {
2023 printf(" %02x", ptr[i]);
2024 if (++n_octets % 24 == 0)
2025 printf("\n");
2026 }
2027 if (n_octets % 24 != 0)
2028 printf("\n");
2029 }
2030 }
2031
2032 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2033 static void
2034 atw_write_wep(sc)
2035 struct atw_softc *sc;
2036 {
2037 struct ieee80211com *ic = &sc->sc_ic;
2038 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2039 u_int8_t buf[IEEE80211_WEP_NKID]
2040 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2041 u_int32_t reg;
2042 int i;
2043
2044 sc->sc_wepctl = 0;
2045 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2046
2047 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2048 return;
2049
2050 memset(&buf[0][0], 0, sizeof(buf));
2051
2052 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2053 if (ic->ic_nw_keys[i].wk_len > 5) {
2054 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2055 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2056 buf[i][1] = ATW_WEP_ENABLED;
2057 } else {
2058 buf[i][1] = 0;
2059 continue;
2060 }
2061 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2062 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2063 ic->ic_nw_keys[i].wk_len - 1);
2064 }
2065
2066 reg = ATW_READ(sc, ATW_MACTEST);
2067 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2068 reg &= ~ATW_MACTEST_KEYID_MASK;
2069 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2070 ATW_WRITE(sc, ATW_MACTEST, reg);
2071
2072 /* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2073 * throughout.)
2074 */
2075 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2076 if (sc->sc_if.if_flags & IFF_LINK2)
2077 sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2078
2079 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2080 sizeof(buf));
2081 }
2082
2083 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2084
2085 static void
2086 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2087 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2088 {
2089 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2090
2091 switch (subtype) {
2092 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2093 /* do nothing: hardware answers probe request */
2094 break;
2095 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2096 case IEEE80211_FC0_SUBTYPE_BEACON:
2097 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2098 break;
2099 default:
2100 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2101 break;
2102 }
2103 return;
2104 }
2105
2106 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2107 * of IBSSs with like SSID/channel but different BSSID. It joins the
2108 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2109 * convention. Possibly the ADMtek chip does this for us; I will have
2110 * to test to find out.
2111 *
2112 * XXX we should add the duration field of the received beacon to
2113 * the TSF time it contains before comparing it with the ADM8211's
2114 * TSF.
2115 */
2116 static void
2117 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2118 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2119 {
2120 struct atw_softc *sc;
2121 struct ieee80211_frame *wh;
2122 u_int64_t tsft, bcn_tsft;
2123 u_int32_t tsftl, tsfth;
2124 int do_print = 0;
2125
2126 sc = (struct atw_softc*)ic->ic_if.if_softc;
2127
2128 if (ic->ic_if.if_flags & IFF_DEBUG)
2129 do_print = (ic->ic_if.if_flags & IFF_LINK0)
2130 ? 1 : ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval);
2131
2132 wh = mtod(m0, struct ieee80211_frame *);
2133
2134 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2135
2136 if (ic->ic_state != IEEE80211_S_RUN) {
2137 if (do_print)
2138 printf("%s: atw_recv_beacon: not running\n",
2139 sc->sc_dev.dv_xname);
2140 return;
2141 }
2142
2143 if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2144 ic->ic_bss->ni_chan)) == NULL) {
2145 if (do_print)
2146 printf("%s: atw_recv_beacon: no node %s\n",
2147 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2148 return;
2149 }
2150
2151 if (ieee80211_match_bss(ic, ni) != 0) {
2152 if (do_print)
2153 printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2154 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2155 return;
2156 }
2157
2158 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2159 return;
2160
2161 if (do_print)
2162 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2163 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2164
2165 if (ic->ic_opmode != IEEE80211_M_IBSS)
2166 return;
2167
2168 /* If we read TSFTL right before rollover, we read a TSF timer
2169 * that is too high rather than too low. This prevents a spurious
2170 * synchronization down the line, however, our IBSS could suffer
2171 * from a creeping TSF....
2172 */
2173 tsftl = ATW_READ(sc, ATW_TSFTL);
2174 tsfth = ATW_READ(sc, ATW_TSFTH);
2175
2176 tsft = (u_int64_t)tsfth << 32 | tsftl;
2177 bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2178
2179 if (do_print)
2180 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2181 sc->sc_dev.dv_xname, tsft, bcn_tsft);
2182
2183 /* we are faster, let the other guy catch up */
2184 if (bcn_tsft < tsft)
2185 return;
2186
2187 if (do_print)
2188 printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2189 ether_sprintf(wh->i_addr2));
2190
2191 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2192
2193 #if 0
2194 atw_tsf(sc);
2195 #endif
2196
2197 /* negotiate rates with new IBSS */
2198 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2199 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2200 if (ni->ni_rates.rs_nrates == 0) {
2201 printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2202 ether_sprintf(ni->ni_bssid));
2203 return;
2204 }
2205
2206 if (do_print) {
2207 printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2208 ether_sprintf(ic->ic_bss->ni_bssid));
2209 printf("%s ", ether_sprintf(ni->ni_bssid));
2210 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2211 }
2212
2213 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2214
2215 atw_write_bssid(sc);
2216 atw_write_bcn_thresh(sc);
2217 atw_start_beacon(sc, 1);
2218 }
2219
2220 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2221 * In ad hoc mode, the SSID is written to the beacons sent by the
2222 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2223 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2224 * indications.
2225 */
2226 static void
2227 atw_write_ssid(sc)
2228 struct atw_softc *sc;
2229 {
2230 struct ieee80211com *ic = &sc->sc_ic;
2231 /* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2232 u_int8_t buf[1 /* length */ + IEEE80211_NWID_LEN +
2233 1 /* for a round number */];
2234
2235 memset(buf, 0, sizeof(buf));
2236 buf[0] = ic->ic_bss->ni_esslen;
2237 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2238
2239 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2240 }
2241
2242 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2243 * In ad hoc mode, the supported rates are written to beacons sent by the
2244 * ADM8211.
2245 */
2246 static void
2247 atw_write_sup_rates(sc)
2248 struct atw_softc *sc;
2249 {
2250 struct ieee80211com *ic = &sc->sc_ic;
2251 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2252 * supported rates
2253 */
2254 u_int8_t buf[1 /* length */ + IEEE80211_RATE_SIZE +
2255 1 /* for a round number */];
2256
2257 memset(buf, 0, sizeof(buf));
2258
2259 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2260
2261 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2262 ic->ic_bss->ni_rates.rs_nrates);
2263
2264 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2265 }
2266
2267 /* Start/stop sending beacons. */
2268 void
2269 atw_start_beacon(struct atw_softc *sc, int start)
2270 {
2271 struct ieee80211com *ic = &sc->sc_ic;
2272 u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2273
2274 if (ATW_IS_ENABLED(sc) == 0)
2275 return;
2276
2277 len = capinfo = 0;
2278
2279 /* start beacons */
2280 len = sizeof(struct ieee80211_frame) +
2281 8 /* timestamp */ + 2 /* beacon interval */ +
2282 2 /* capability info */ +
2283 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2284 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2285 3 /* DS parameters */ +
2286 IEEE80211_CRC_LEN;
2287
2288 reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2289
2290 reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2291
2292 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2293 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2294
2295 if (!start)
2296 return;
2297
2298 /* TBD use ni_capinfo */
2299
2300 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2301 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2302 if (ic->ic_flags & IEEE80211_F_WEPON)
2303 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2304
2305 switch (ic->ic_opmode) {
2306 case IEEE80211_M_IBSS:
2307 len += 4; /* IBSS parameters */
2308 capinfo |= IEEE80211_CAPINFO_IBSS;
2309 break;
2310 case IEEE80211_M_HOSTAP:
2311 /* XXX 6-byte minimum TIM */
2312 len += atw_beacon_len_adjust;
2313 capinfo |= IEEE80211_CAPINFO_ESS;
2314 break;
2315 default:
2316 return;
2317 }
2318
2319 reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2320 reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2321
2322 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2323 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2324
2325 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2326 sc->sc_dev.dv_xname, reg_bcnt));
2327
2328 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2329 sc->sc_dev.dv_xname, reg_cap1));
2330 }
2331
2332 /* First beacon was sent at time 0 microseconds, current time is
2333 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2334 * microseconds. Return the expected time in microseconds for the
2335 * beacon after next.
2336 */
2337 static __inline u_int64_t
2338 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2339 {
2340 return tsft + (tbtt - tsft % tbtt);
2341 }
2342
2343 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2344 * the ieee80211com.
2345 *
2346 * Predict the next target beacon transmission time (TBTT) and
2347 * write it to the ADM8211.
2348 */
2349 static void
2350 atw_tsf(struct atw_softc *sc)
2351 {
2352 #define TBTTOFS 20 /* TU */
2353
2354 struct ieee80211com *ic = &sc->sc_ic;
2355 u_int64_t tsft, tbtt;
2356
2357 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2358 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2359 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2360 tsft = ATW_READ(sc, ATW_TSFTH);
2361 tsft <<= 32;
2362 tsft |= ATW_READ(sc, ATW_TSFTL);
2363 *(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2364 } else
2365 tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2366
2367 tbtt = atw_predict_beacon(tsft,
2368 ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2369
2370 /* skip one more beacon so that the TBTT cannot pass before
2371 * we've programmed it, and also so that we can subtract a
2372 * few TU so that we wake a little before TBTT.
2373 */
2374 tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2375
2376 /* wake up a little early */
2377 tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2378
2379 DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2380 sc->sc_dev.dv_xname, tsft, tbtt));
2381
2382 ATW_WRITE(sc, ATW_TOFS1,
2383 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2384 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2385 LSHIFT(
2386 MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2387 ATW_TOFS1_TBTTPRE_MASK));
2388 #undef TBTTOFS
2389 }
2390
2391 static void
2392 atw_next_scan(void *arg)
2393 {
2394 struct atw_softc *sc = arg;
2395 struct ieee80211com *ic = &sc->sc_ic;
2396 struct ifnet *ifp = &ic->ic_if;
2397 int s;
2398
2399 /* don't call atw_start w/o network interrupts blocked */
2400 s = splnet();
2401 if (ic->ic_state == IEEE80211_S_SCAN)
2402 ieee80211_next_scan(ifp);
2403 splx(s);
2404 }
2405
2406 /* Synchronize the hardware state with the software state. */
2407 static int
2408 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2409 {
2410 struct ifnet *ifp = &ic->ic_if;
2411 struct atw_softc *sc = ifp->if_softc;
2412 enum ieee80211_state ostate;
2413 int error;
2414
2415 ostate = ic->ic_state;
2416
2417 if (nstate == IEEE80211_S_INIT) {
2418 callout_stop(&sc->sc_scan_ch);
2419 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2420 atw_start_beacon(sc, 0);
2421 return (*sc->sc_newstate)(ic, nstate, arg);
2422 }
2423
2424 if ((error = atw_tune(sc)) != 0)
2425 return error;
2426
2427 switch (nstate) {
2428 case IEEE80211_S_ASSOC:
2429 break;
2430 case IEEE80211_S_INIT:
2431 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2432 break;
2433 case IEEE80211_S_SCAN:
2434 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2435 atw_write_bssid(sc);
2436
2437 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2438 atw_next_scan, sc);
2439
2440 break;
2441 case IEEE80211_S_RUN:
2442 if (ic->ic_opmode == IEEE80211_M_STA)
2443 break;
2444 /*FALLTHROUGH*/
2445 case IEEE80211_S_AUTH:
2446 atw_write_bssid(sc);
2447 atw_write_bcn_thresh(sc);
2448 atw_write_ssid(sc);
2449 atw_write_sup_rates(sc);
2450
2451 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2452 ic->ic_opmode == IEEE80211_M_MONITOR)
2453 break;
2454
2455 /* set listen interval
2456 * XXX do software units agree w/ hardware?
2457 */
2458 ATW_WRITE(sc, ATW_BPLI,
2459 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2460 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2461 ATW_BPLI_LI_MASK));
2462
2463 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2464 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2465
2466 atw_tsf(sc);
2467 break;
2468 }
2469
2470 if (nstate != IEEE80211_S_SCAN)
2471 callout_stop(&sc->sc_scan_ch);
2472
2473 if (nstate == IEEE80211_S_RUN &&
2474 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2475 ic->ic_opmode == IEEE80211_M_IBSS))
2476 atw_start_beacon(sc, 1);
2477 else
2478 atw_start_beacon(sc, 0);
2479
2480 return (*sc->sc_newstate)(ic, nstate, arg);
2481 }
2482
2483 /*
2484 * atw_add_rxbuf:
2485 *
2486 * Add a receive buffer to the indicated descriptor.
2487 */
2488 int
2489 atw_add_rxbuf(sc, idx)
2490 struct atw_softc *sc;
2491 int idx;
2492 {
2493 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2494 struct mbuf *m;
2495 int error;
2496
2497 MGETHDR(m, M_DONTWAIT, MT_DATA);
2498 if (m == NULL)
2499 return (ENOBUFS);
2500
2501 MCLGET(m, M_DONTWAIT);
2502 if ((m->m_flags & M_EXT) == 0) {
2503 m_freem(m);
2504 return (ENOBUFS);
2505 }
2506
2507 if (rxs->rxs_mbuf != NULL)
2508 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2509
2510 rxs->rxs_mbuf = m;
2511
2512 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2513 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2514 BUS_DMA_READ|BUS_DMA_NOWAIT);
2515 if (error) {
2516 printf("%s: can't load rx DMA map %d, error = %d\n",
2517 sc->sc_dev.dv_xname, idx, error);
2518 panic("atw_add_rxbuf"); /* XXX */
2519 }
2520
2521 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2522 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2523
2524 ATW_INIT_RXDESC(sc, idx);
2525
2526 return (0);
2527 }
2528
2529 /*
2530 * atw_stop: [ ifnet interface function ]
2531 *
2532 * Stop transmission on the interface.
2533 */
2534 void
2535 atw_stop(ifp, disable)
2536 struct ifnet *ifp;
2537 int disable;
2538 {
2539 struct atw_softc *sc = ifp->if_softc;
2540 struct ieee80211com *ic = &sc->sc_ic;
2541 struct atw_txsoft *txs;
2542
2543 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2544
2545 /* Disable interrupts. */
2546 ATW_WRITE(sc, ATW_IER, 0);
2547
2548 /* Stop the transmit and receive processes. */
2549 sc->sc_opmode = 0;
2550 ATW_WRITE(sc, ATW_NAR, 0);
2551 ATW_WRITE(sc, ATW_TDBD, 0);
2552 ATW_WRITE(sc, ATW_TDBP, 0);
2553 ATW_WRITE(sc, ATW_RDB, 0);
2554
2555 /*
2556 * Release any queued transmit buffers.
2557 */
2558 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2559 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2560 if (txs->txs_mbuf != NULL) {
2561 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2562 m_freem(txs->txs_mbuf);
2563 txs->txs_mbuf = NULL;
2564 }
2565 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2566 }
2567
2568 if (disable) {
2569 atw_rxdrain(sc);
2570 atw_disable(sc);
2571 }
2572
2573 /*
2574 * Mark the interface down and cancel the watchdog timer.
2575 */
2576 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2577 ifp->if_timer = 0;
2578
2579 /* XXX */
2580 atw_reset(sc);
2581 }
2582
2583 /*
2584 * atw_rxdrain:
2585 *
2586 * Drain the receive queue.
2587 */
2588 void
2589 atw_rxdrain(sc)
2590 struct atw_softc *sc;
2591 {
2592 struct atw_rxsoft *rxs;
2593 int i;
2594
2595 for (i = 0; i < ATW_NRXDESC; i++) {
2596 rxs = &sc->sc_rxsoft[i];
2597 if (rxs->rxs_mbuf == NULL)
2598 continue;
2599 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2600 m_freem(rxs->rxs_mbuf);
2601 rxs->rxs_mbuf = NULL;
2602 }
2603 }
2604
2605 /*
2606 * atw_detach:
2607 *
2608 * Detach an ADM8211 interface.
2609 */
2610 int
2611 atw_detach(sc)
2612 struct atw_softc *sc;
2613 {
2614 struct ifnet *ifp = &sc->sc_ic.ic_if;
2615 struct atw_rxsoft *rxs;
2616 struct atw_txsoft *txs;
2617 int i;
2618
2619 /*
2620 * Succeed now if there isn't any work to do.
2621 */
2622 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2623 return (0);
2624
2625 ieee80211_ifdetach(ifp);
2626 if_detach(ifp);
2627
2628 for (i = 0; i < ATW_NRXDESC; i++) {
2629 rxs = &sc->sc_rxsoft[i];
2630 if (rxs->rxs_mbuf != NULL) {
2631 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2632 m_freem(rxs->rxs_mbuf);
2633 rxs->rxs_mbuf = NULL;
2634 }
2635 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2636 }
2637 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2638 txs = &sc->sc_txsoft[i];
2639 if (txs->txs_mbuf != NULL) {
2640 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2641 m_freem(txs->txs_mbuf);
2642 txs->txs_mbuf = NULL;
2643 }
2644 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2645 }
2646 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2647 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2648 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2649 sizeof(struct atw_control_data));
2650 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2651
2652 shutdownhook_disestablish(sc->sc_sdhook);
2653 powerhook_disestablish(sc->sc_powerhook);
2654
2655 if (sc->sc_srom)
2656 free(sc->sc_srom, M_DEVBUF);
2657
2658 return (0);
2659 }
2660
2661 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2662 void
2663 atw_shutdown(arg)
2664 void *arg;
2665 {
2666 struct atw_softc *sc = arg;
2667
2668 atw_stop(&sc->sc_ic.ic_if, 1);
2669 }
2670
2671 int
2672 atw_intr(arg)
2673 void *arg;
2674 {
2675 struct atw_softc *sc = arg;
2676 struct ifnet *ifp = &sc->sc_ic.ic_if;
2677 u_int32_t status, rxstatus, txstatus, linkstatus;
2678 int handled = 0, txthresh;
2679
2680 #ifdef DEBUG
2681 if (ATW_IS_ENABLED(sc) == 0)
2682 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2683 #endif
2684
2685 /*
2686 * If the interface isn't running, the interrupt couldn't
2687 * possibly have come from us.
2688 */
2689 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2690 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2691 return (0);
2692
2693 for (;;) {
2694 status = ATW_READ(sc, ATW_STSR);
2695
2696 if (status)
2697 ATW_WRITE(sc, ATW_STSR, status);
2698
2699 if (sc->sc_intr_ack != NULL)
2700 (*sc->sc_intr_ack)(sc);
2701
2702 #ifdef ATW_DEBUG
2703 #define PRINTINTR(flag) do { \
2704 if ((status & flag) != 0) { \
2705 printf("%s" #flag, delim); \
2706 delim = ","; \
2707 } \
2708 } while (0)
2709
2710 if (atw_debug > 1 && status) {
2711 const char *delim = "<";
2712
2713 printf("%s: reg[STSR] = %x",
2714 sc->sc_dev.dv_xname, status);
2715
2716 PRINTINTR(ATW_INTR_FBE);
2717 PRINTINTR(ATW_INTR_LINKOFF);
2718 PRINTINTR(ATW_INTR_LINKON);
2719 PRINTINTR(ATW_INTR_RCI);
2720 PRINTINTR(ATW_INTR_RDU);
2721 PRINTINTR(ATW_INTR_RPS);
2722 PRINTINTR(ATW_INTR_TCI);
2723 PRINTINTR(ATW_INTR_TDU);
2724 PRINTINTR(ATW_INTR_TLT);
2725 PRINTINTR(ATW_INTR_TPS);
2726 PRINTINTR(ATW_INTR_TRT);
2727 PRINTINTR(ATW_INTR_TUF);
2728 PRINTINTR(ATW_INTR_BCNTC);
2729 PRINTINTR(ATW_INTR_ATIME);
2730 PRINTINTR(ATW_INTR_TBTT);
2731 PRINTINTR(ATW_INTR_TSCZ);
2732 PRINTINTR(ATW_INTR_TSFTF);
2733 printf(">\n");
2734 }
2735 #undef PRINTINTR
2736 #endif /* ATW_DEBUG */
2737
2738 if ((status & sc->sc_inten) == 0)
2739 break;
2740
2741 handled = 1;
2742
2743 rxstatus = status & sc->sc_rxint_mask;
2744 txstatus = status & sc->sc_txint_mask;
2745 linkstatus = status & sc->sc_linkint_mask;
2746
2747 if (linkstatus) {
2748 atw_linkintr(sc, linkstatus);
2749 }
2750
2751 if (rxstatus) {
2752 /* Grab any new packets. */
2753 atw_rxintr(sc);
2754
2755 if (rxstatus & ATW_INTR_RDU) {
2756 printf("%s: receive ring overrun\n",
2757 sc->sc_dev.dv_xname);
2758 /* Get the receive process going again. */
2759 ATW_WRITE(sc, ATW_RDR, 0x1);
2760 break;
2761 }
2762 }
2763
2764 if (txstatus) {
2765 /* Sweep up transmit descriptors. */
2766 atw_txintr(sc);
2767
2768 if (txstatus & ATW_INTR_TLT)
2769 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2770 sc->sc_dev.dv_xname));
2771
2772 if (txstatus & ATW_INTR_TRT)
2773 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2774 sc->sc_dev.dv_xname));
2775
2776 /* If Tx under-run, increase our transmit threshold
2777 * if another is available.
2778 */
2779 txthresh = sc->sc_txthresh + 1;
2780 if ((txstatus & ATW_INTR_TUF) &&
2781 sc->sc_txth[txthresh].txth_name != NULL) {
2782 /* Idle the transmit process. */
2783 atw_idle(sc, ATW_NAR_ST);
2784
2785 sc->sc_txthresh = txthresh;
2786 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2787 sc->sc_opmode |=
2788 sc->sc_txth[txthresh].txth_opmode;
2789 printf("%s: transmit underrun; new "
2790 "threshold: %s\n", sc->sc_dev.dv_xname,
2791 sc->sc_txth[txthresh].txth_name);
2792
2793 /* Set the new threshold and restart
2794 * the transmit process.
2795 */
2796 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2797 /* XXX Log every Nth underrun from
2798 * XXX now on?
2799 */
2800 }
2801 }
2802
2803 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2804 if (status & ATW_INTR_TPS)
2805 printf("%s: transmit process stopped\n",
2806 sc->sc_dev.dv_xname);
2807 if (status & ATW_INTR_RPS)
2808 printf("%s: receive process stopped\n",
2809 sc->sc_dev.dv_xname);
2810 (void)atw_init(ifp);
2811 break;
2812 }
2813
2814 if (status & ATW_INTR_FBE) {
2815 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2816 (void)atw_init(ifp);
2817 break;
2818 }
2819
2820 /*
2821 * Not handled:
2822 *
2823 * Transmit buffer unavailable -- normal
2824 * condition, nothing to do, really.
2825 *
2826 * Early receive interrupt -- not available on
2827 * all chips, we just use RI. We also only
2828 * use single-segment receive DMA, so this
2829 * is mostly useless.
2830 *
2831 * TBD others
2832 */
2833 }
2834
2835 /* Try to get more packets going. */
2836 atw_start(ifp);
2837
2838 return (handled);
2839 }
2840
2841 /*
2842 * atw_idle:
2843 *
2844 * Cause the transmit and/or receive processes to go idle.
2845 *
2846 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2847 * process in STSR if I clear SR or ST after the process has already
2848 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2849 * do not seem to be too reliable. Perhaps I have the sense of the
2850 * Rx bits switched with the Tx bits?
2851 */
2852 void
2853 atw_idle(sc, bits)
2854 struct atw_softc *sc;
2855 u_int32_t bits;
2856 {
2857 u_int32_t ackmask = 0, opmode, stsr, test0;
2858 int i, s;
2859
2860 /* without this, somehow we run concurrently w/ interrupt handler */
2861 s = splnet();
2862
2863 opmode = sc->sc_opmode & ~bits;
2864
2865 if (bits & ATW_NAR_SR)
2866 ackmask |= ATW_INTR_RPS;
2867
2868 if (bits & ATW_NAR_ST) {
2869 ackmask |= ATW_INTR_TPS;
2870 /* set ATW_NAR_HF to flush TX FIFO. */
2871 opmode |= ATW_NAR_HF;
2872 }
2873
2874 ATW_WRITE(sc, ATW_NAR, opmode);
2875
2876 for (i = 0; i < 1000; i++) {
2877 stsr = ATW_READ(sc, ATW_STSR);
2878 if ((stsr & ackmask) == ackmask)
2879 break;
2880 DELAY(10);
2881 }
2882
2883 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2884
2885 if ((stsr & ackmask) == ackmask)
2886 goto out;
2887
2888 test0 = ATW_READ(sc, ATW_TEST0);
2889
2890 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2891 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2892 printf("%s: transmit process not idle [%s]\n",
2893 sc->sc_dev.dv_xname,
2894 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2895 printf("%s: bits %08x test0 %08x stsr %08x\n",
2896 sc->sc_dev.dv_xname, bits, test0, stsr);
2897 }
2898
2899 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2900 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2901 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2902 sc->sc_dev.dv_xname,
2903 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2904 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2905 sc->sc_dev.dv_xname, bits, test0, stsr));
2906 }
2907 out:
2908 splx(s);
2909 return;
2910 }
2911
2912 /*
2913 * atw_linkintr:
2914 *
2915 * Helper; handle link-status interrupts.
2916 */
2917 void
2918 atw_linkintr(sc, linkstatus)
2919 struct atw_softc *sc;
2920 u_int32_t linkstatus;
2921 {
2922 struct ieee80211com *ic = &sc->sc_ic;
2923
2924 if (ic->ic_state != IEEE80211_S_RUN)
2925 return;
2926
2927 if (linkstatus & ATW_INTR_LINKON) {
2928 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2929 sc->sc_rescan_timer = 0;
2930 } else if (linkstatus & ATW_INTR_LINKOFF) {
2931 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2932 switch (ic->ic_opmode) {
2933 case IEEE80211_M_IBSS:
2934 if (ic->ic_flags & IEEE80211_F_SIBSS)
2935 return;
2936 /* FALL THROUGH */
2937 case IEEE80211_M_STA:
2938 sc->sc_rescan_timer = 3;
2939 ic->ic_if.if_timer = 1;
2940 break;
2941 default:
2942 break;
2943 }
2944 }
2945 }
2946
2947 /*
2948 * atw_rxintr:
2949 *
2950 * Helper; handle receive interrupts.
2951 */
2952 void
2953 atw_rxintr(sc)
2954 struct atw_softc *sc;
2955 {
2956 static int rate_tbl[] = {2, 4, 11, 22, 44};
2957 struct ieee80211com *ic = &sc->sc_ic;
2958 struct ieee80211_node *ni;
2959 struct ieee80211_frame *wh;
2960 struct ifnet *ifp = &ic->ic_if;
2961 struct atw_rxsoft *rxs;
2962 struct mbuf *m;
2963 u_int32_t rxstat;
2964 int i, len, rate, rate0, rssi;
2965
2966 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2967 rxs = &sc->sc_rxsoft[i];
2968
2969 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2970
2971 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2972 rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2973 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2974
2975 if (rxstat & ATW_RXSTAT_OWN)
2976 break; /* We have processed all receive buffers. */
2977
2978 ATW_DPRINTF3(("%s: rssi %d\n", sc->sc_dev.dv_xname, rssi));
2979
2980 /*
2981 * Make sure the packet fit in one buffer. This should
2982 * always be the case.
2983 */
2984 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2985 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2986 printf("%s: incoming packet spilled, resetting\n",
2987 sc->sc_dev.dv_xname);
2988 (void)atw_init(ifp);
2989 return;
2990 }
2991
2992 /*
2993 * If an error occurred, update stats, clear the status
2994 * word, and leave the packet buffer in place. It will
2995 * simply be reused the next time the ring comes around.
2996 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2997 * error.
2998 */
2999
3000 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3001 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3002 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3003 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3004 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3005 ATW_RXSTAT_ICVE)) != 0)) {
3006 #define PRINTERR(bit, str) \
3007 if (rxstat & (bit)) \
3008 printf("%s: receive error: %s\n", \
3009 sc->sc_dev.dv_xname, str)
3010 ifp->if_ierrors++;
3011 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3012 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3013 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3014 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3015 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3016 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3017 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3018 #undef PRINTERR
3019 ATW_INIT_RXDESC(sc, i);
3020 continue;
3021 }
3022
3023 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3024 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3025
3026 /*
3027 * No errors; receive the packet. Note the ADM8211
3028 * includes the CRC in promiscuous mode.
3029 */
3030 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3031
3032 /*
3033 * Allocate a new mbuf cluster. If that fails, we are
3034 * out of memory, and must drop the packet and recycle
3035 * the buffer that's already attached to this descriptor.
3036 */
3037 m = rxs->rxs_mbuf;
3038 if (atw_add_rxbuf(sc, i) != 0) {
3039 ifp->if_ierrors++;
3040 ATW_INIT_RXDESC(sc, i);
3041 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3042 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3043 continue;
3044 }
3045
3046 ifp->if_ipackets++;
3047 if (sc->sc_opmode & ATW_NAR_PR)
3048 m->m_flags |= M_HASFCS;
3049 m->m_pkthdr.rcvif = ifp;
3050 m->m_pkthdr.len = m->m_len = len;
3051
3052 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3053 rate = 0;
3054 else
3055 rate = rate_tbl[rate0];
3056
3057 #if NBPFILTER > 0
3058 /* Pass this up to any BPF listeners. */
3059 if (sc->sc_radiobpf != NULL) {
3060 struct mbuf mb;
3061
3062 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3063
3064 tap->ar_rate = rate;
3065 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3066 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3067
3068 /* TBD verify units are dB */
3069 tap->ar_antsignal = rssi;
3070 /* TBD tap->ar_flags */
3071
3072 M_COPY_PKTHDR(&mb, m);
3073 mb.m_data = (caddr_t)tap;
3074 mb.m_len = tap->ar_ihdr.it_len;
3075 mb.m_next = m;
3076 mb.m_pkthdr.len += mb.m_len;
3077 bpf_mtap(sc->sc_radiobpf, &mb);
3078 }
3079 #endif /* NPBFILTER > 0 */
3080
3081 wh = mtod(m, struct ieee80211_frame *);
3082 ni = ieee80211_find_rxnode(ic, wh);
3083 ieee80211_input(ifp, m, ni, rssi, 0);
3084 /*
3085 * The frame may have caused the node to be marked for
3086 * reclamation (e.g. in response to a DEAUTH message)
3087 * so use free_node here instead of unref_node.
3088 */
3089 if (ni == ic->ic_bss)
3090 ieee80211_unref_node(&ni);
3091 else
3092 ieee80211_free_node(ic, ni);
3093 }
3094
3095 /* Update the receive pointer. */
3096 sc->sc_rxptr = i;
3097 }
3098
3099 /*
3100 * atw_txintr:
3101 *
3102 * Helper; handle transmit interrupts.
3103 */
3104 void
3105 atw_txintr(sc)
3106 struct atw_softc *sc;
3107 {
3108 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3109 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3110 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3111 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3112
3113 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3114 struct ifnet *ifp = &sc->sc_ic.ic_if;
3115 struct atw_txsoft *txs;
3116 u_int32_t txstat;
3117
3118 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3119 sc->sc_dev.dv_xname, sc->sc_flags));
3120
3121 ifp->if_flags &= ~IFF_OACTIVE;
3122
3123 /*
3124 * Go through our Tx list and free mbufs for those
3125 * frames that have been transmitted.
3126 */
3127 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3128 ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3129 txs->txs_ndescs,
3130 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3131
3132 #ifdef ATW_DEBUG
3133 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3134 int i;
3135 printf(" txsoft %p transmit chain:\n", txs);
3136 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3137 printf(" descriptor %d:\n", i);
3138 printf(" at_status: 0x%08x\n",
3139 le32toh(sc->sc_txdescs[i].at_stat));
3140 printf(" at_flags: 0x%08x\n",
3141 le32toh(sc->sc_txdescs[i].at_flags));
3142 printf(" at_buf1: 0x%08x\n",
3143 le32toh(sc->sc_txdescs[i].at_buf1));
3144 printf(" at_buf2: 0x%08x\n",
3145 le32toh(sc->sc_txdescs[i].at_buf2));
3146 if (i == txs->txs_lastdesc)
3147 break;
3148 }
3149 }
3150 #endif
3151
3152 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3153 if (txstat & ATW_TXSTAT_OWN)
3154 break;
3155
3156 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3157
3158 sc->sc_txfree += txs->txs_ndescs;
3159
3160 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3161 0, txs->txs_dmamap->dm_mapsize,
3162 BUS_DMASYNC_POSTWRITE);
3163 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3164 m_freem(txs->txs_mbuf);
3165 txs->txs_mbuf = NULL;
3166
3167 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3168
3169 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3170 (txstat & TXSTAT_ERRMASK) != 0) {
3171 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3172 txstat_buf, sizeof(txstat_buf));
3173 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3174 txstat_buf,
3175 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3176 }
3177
3178 /*
3179 * Check for errors and collisions.
3180 */
3181 if (txstat & ATW_TXSTAT_TUF)
3182 sc->sc_stats.ts_tx_tuf++;
3183 if (txstat & ATW_TXSTAT_TLT)
3184 sc->sc_stats.ts_tx_tlt++;
3185 if (txstat & ATW_TXSTAT_TRT)
3186 sc->sc_stats.ts_tx_trt++;
3187 if (txstat & ATW_TXSTAT_TRO)
3188 sc->sc_stats.ts_tx_tro++;
3189 if (txstat & ATW_TXSTAT_SOFBR) {
3190 sc->sc_stats.ts_tx_sofbr++;
3191 }
3192
3193 if ((txstat & ATW_TXSTAT_ES) == 0)
3194 ifp->if_collisions +=
3195 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3196 else
3197 ifp->if_oerrors++;
3198
3199 ifp->if_opackets++;
3200 }
3201
3202 /*
3203 * If there are no more pending transmissions, cancel the watchdog
3204 * timer.
3205 */
3206 if (txs == NULL)
3207 sc->sc_tx_timer = 0;
3208 #undef TXSTAT_ERRMASK
3209 #undef TXSTAT_FMT
3210 }
3211
3212 /*
3213 * atw_watchdog: [ifnet interface function]
3214 *
3215 * Watchdog timer handler.
3216 */
3217 void
3218 atw_watchdog(ifp)
3219 struct ifnet *ifp;
3220 {
3221 struct atw_softc *sc = ifp->if_softc;
3222 struct ieee80211com *ic = &sc->sc_ic;
3223
3224 ifp->if_timer = 0;
3225 if (ATW_IS_ENABLED(sc) == 0)
3226 return;
3227
3228 if (sc->sc_rescan_timer) {
3229 if (--sc->sc_rescan_timer == 0)
3230 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3231 }
3232 if (sc->sc_tx_timer) {
3233 if (--sc->sc_tx_timer == 0 &&
3234 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3235 printf("%s: transmit timeout\n", ifp->if_xname);
3236 ifp->if_oerrors++;
3237 (void)atw_init(ifp);
3238 atw_start(ifp);
3239 }
3240 }
3241 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3242 ifp->if_timer = 1;
3243 ieee80211_watchdog(ifp);
3244 }
3245
3246 /* Compute the 802.11 Duration field and the PLCP Length fields for
3247 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3248 * Write the fields to the ADM8211 Tx header, frm.
3249 *
3250 * TBD use the fragmentation threshold to find the right duration for
3251 * the first & last fragments.
3252 *
3253 * TBD make certain of the duration fields applied by the ADM8211 to each
3254 * fragment. I think that the ADM8211 knows how to subtract the CTS
3255 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3256 * I also think that the ADM8211 does *some* arithmetic for us, because
3257 * otherwise I think we would have to set a first duration for CTS/first
3258 * fragment, a second duration for fragments between the first and the
3259 * last, and a third duration for the last fragment.
3260 *
3261 * TBD make certain that duration fields reflect addition of FCS/WEP
3262 * and correct duration arithmetic as necessary.
3263 */
3264 static void
3265 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3266 int len)
3267 {
3268 int remainder;
3269
3270 /* deal also with encrypted fragments */
3271 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3272 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3273 sc->sc_dev.dv_xname));
3274 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3275 IEEE80211_WEP_CRCLEN;
3276 }
3277
3278 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3279 * duration (XXX added by MAC?).
3280 */
3281 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3282 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3283
3284 if (rate <= 4)
3285 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3286 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3287 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3288 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3289 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3290 else
3291 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3292 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3293 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3294 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3295 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3296
3297 /* lengthen duration if long preamble */
3298 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3299 frm->atw_head_dur +=
3300 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3301 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3302 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3303 IEEE80211_DUR_DS_FAST_PLCPHDR);
3304
3305 if (remainder != 0)
3306 frm->atw_head_dur++;
3307
3308 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3309 (rate == 2 || rate == 4)) {
3310 /* derived from Linux: how could this be right? */
3311 frm->atw_head_plcplen = frm->atw_head_dur;
3312 } else {
3313 frm->atw_head_plcplen = (16 * len) / rate;
3314 remainder = (80 * len) % (rate * 5);
3315
3316 if (remainder != 0) {
3317 frm->atw_head_plcplen++;
3318
3319 /* XXX magic */
3320 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3321 rate == 22 && remainder <= 30)
3322 frm->atw_head_plcplen |= 0x8000;
3323 }
3324 }
3325 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3326 htole16(frm->atw_head_plcplen);
3327 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3328 }
3329
3330 #ifdef ATW_DEBUG
3331 static void
3332 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3333 {
3334 struct atw_softc *sc = ifp->if_softc;
3335 struct mbuf *m;
3336 int i, noctets = 0;
3337
3338 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3339 m0->m_pkthdr.len);
3340
3341 for (m = m0; m; m = m->m_next) {
3342 if (m->m_len == 0)
3343 continue;
3344 for (i = 0; i < m->m_len; i++) {
3345 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3346 if (++noctets % 24 == 0)
3347 printf("\n");
3348 }
3349 }
3350 printf("%s%s: %d bytes emitted\n",
3351 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3352 }
3353 #endif /* ATW_DEBUG */
3354
3355 /*
3356 * atw_start: [ifnet interface function]
3357 *
3358 * Start packet transmission on the interface.
3359 */
3360 void
3361 atw_start(ifp)
3362 struct ifnet *ifp;
3363 {
3364 struct atw_softc *sc = ifp->if_softc;
3365 struct ieee80211com *ic = &sc->sc_ic;
3366 struct ieee80211_node *ni;
3367 struct ieee80211_frame *wh;
3368 struct atw_frame *hh;
3369 struct mbuf *m0, *m;
3370 struct atw_txsoft *txs, *last_txs;
3371 struct atw_txdesc *txd;
3372 int do_encrypt, rate;
3373 bus_dmamap_t dmamap;
3374 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3375
3376 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3377 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3378
3379 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3380 return;
3381
3382 #if 0 /* TBD ??? */
3383 if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3384 return;
3385 #endif
3386
3387 /*
3388 * Remember the previous number of free descriptors and
3389 * the first descriptor we'll use.
3390 */
3391 ofree = sc->sc_txfree;
3392 firsttx = sc->sc_txnext;
3393
3394 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3395 sc->sc_dev.dv_xname, ofree, firsttx));
3396
3397 /*
3398 * Loop through the send queue, setting up transmit descriptors
3399 * until we drain the queue, or use up all available transmit
3400 * descriptors.
3401 */
3402 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3403 sc->sc_txfree != 0) {
3404
3405 do_encrypt = 0;
3406 /*
3407 * Grab a packet off the management queue, if it
3408 * is not empty. Otherwise, from the data queue.
3409 */
3410 IF_DEQUEUE(&ic->ic_mgtq, m0);
3411 if (m0 != NULL) {
3412 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3413 m0->m_pkthdr.rcvif = NULL;
3414 } else {
3415 IFQ_DEQUEUE(&ifp->if_snd, m0);
3416 if (m0 == NULL)
3417 break;
3418 #if NBPFILTER > 0
3419 if (ifp->if_bpf != NULL)
3420 bpf_mtap(ifp->if_bpf, m0);
3421 #endif /* NBPFILTER > 0 */
3422 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3423 ifp->if_oerrors++;
3424 break;
3425 }
3426 }
3427
3428 rate = MAX(ieee80211_get_rate(ic), 2);
3429
3430 #if NBPFILTER > 0
3431 /*
3432 * Pass the packet to any BPF listeners.
3433 */
3434 if (ic->ic_rawbpf != NULL)
3435 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3436
3437 if (sc->sc_radiobpf != NULL) {
3438 struct mbuf mb;
3439 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3440
3441 tap->at_rate = rate;
3442 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3443 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3444
3445 /* TBD tap->at_flags */
3446
3447 M_COPY_PKTHDR(&mb, m0);
3448 mb.m_data = (caddr_t)tap;
3449 mb.m_len = tap->at_ihdr.it_len;
3450 mb.m_next = m0;
3451 mb.m_pkthdr.len += mb.m_len;
3452 bpf_mtap(sc->sc_radiobpf, &mb);
3453 }
3454 #endif /* NBPFILTER > 0 */
3455
3456 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3457
3458 if (ni != NULL && ni != ic->ic_bss)
3459 ieee80211_free_node(ic, ni);
3460
3461 if (m0 == NULL) {
3462 ifp->if_oerrors++;
3463 break;
3464 }
3465
3466 /* just to make sure. */
3467 m0 = m_pullup(m0, sizeof(struct atw_frame));
3468
3469 if (m0 == NULL) {
3470 ifp->if_oerrors++;
3471 break;
3472 }
3473
3474 hh = mtod(m0, struct atw_frame *);
3475 wh = &hh->atw_ihdr;
3476
3477 do_encrypt = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
3478
3479 /* Copy everything we need from the 802.11 header:
3480 * Frame Control; address 1, address 3, or addresses
3481 * 3 and 4. NIC fills in BSSID, SA.
3482 */
3483 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3484 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3485 panic("%s: illegal WDS frame",
3486 sc->sc_dev.dv_xname);
3487 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3488 } else
3489 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3490
3491 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3492
3493 /* initialize remaining Tx parameters */
3494 memset(&hh->u, 0, sizeof(hh->u));
3495
3496 hh->atw_rate = rate * 5;
3497 /* XXX this could be incorrect if M_FCS. _encap should
3498 * probably strip FCS just in case it sticks around in
3499 * bridged packets.
3500 */
3501 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3502 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3503 sizeof(struct atw_frame));
3504
3505 #if 0
3506 /* this virtually guaranteed that WEP-encrypted frames
3507 * are fragmented. oops.
3508 */
3509 hh->atw_fragthr = htole16(m0->m_pkthdr.len -
3510 sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
3511 hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3512 #else
3513 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3514 #endif
3515
3516 hh->atw_rtylmt = 3;
3517 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3518 if (do_encrypt) {
3519 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3520 hh->atw_keyid = ic->ic_wep_txkey;
3521 }
3522
3523 /* TBD 4-addr frames */
3524 atw_frame_setdurs(sc, hh, rate,
3525 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3526 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3527
3528 /* never fragment multicast frames */
3529 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3530 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3531 } else if (sc->sc_flags & ATWF_RTSCTS) {
3532 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3533 }
3534
3535 #ifdef ATW_DEBUG
3536 /* experimental stuff */
3537 if (atw_xrtylmt != ~0)
3538 hh->atw_rtylmt = atw_xrtylmt;
3539 if (atw_xhdrctl != 0)
3540 hh->atw_hdrctl |= htole16(atw_xhdrctl);
3541 if (atw_xservice != IEEE80211_PLCP_SERVICE)
3542 hh->atw_service = atw_xservice;
3543 if (atw_xpaylen != 0)
3544 hh->atw_paylen = htole16(atw_xpaylen);
3545 hh->atw_fragnum = 0;
3546
3547 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3548 printf("%s: dst = %s, rate = 0x%02x, "
3549 "service = 0x%02x, paylen = 0x%04x\n",
3550 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3551 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3552
3553 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3554 "dur1 = 0x%04x, dur2 = 0x%04x, "
3555 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3556 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3557 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3558 hh->atw_tail_dur, hh->atw_head_dur);
3559
3560 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3561 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3562 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3563 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3564
3565 printf("%s: keyid = %d\n",
3566 sc->sc_dev.dv_xname, hh->atw_keyid);
3567
3568 atw_dump_pkt(ifp, m0);
3569 }
3570 #endif /* ATW_DEBUG */
3571
3572 dmamap = txs->txs_dmamap;
3573
3574 /*
3575 * Load the DMA map. Copy and try (once) again if the packet
3576 * didn't fit in the alloted number of segments.
3577 */
3578 for (first = 1;
3579 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3580 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3581 first = 0) {
3582 MGETHDR(m, M_DONTWAIT, MT_DATA);
3583 if (m == NULL) {
3584 printf("%s: unable to allocate Tx mbuf\n",
3585 sc->sc_dev.dv_xname);
3586 break;
3587 }
3588 if (m0->m_pkthdr.len > MHLEN) {
3589 MCLGET(m, M_DONTWAIT);
3590 if ((m->m_flags & M_EXT) == 0) {
3591 printf("%s: unable to allocate Tx "
3592 "cluster\n", sc->sc_dev.dv_xname);
3593 m_freem(m);
3594 break;
3595 }
3596 }
3597 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3598 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3599 m_freem(m0);
3600 m0 = m;
3601 m = NULL;
3602 }
3603 if (error != 0) {
3604 printf("%s: unable to load Tx buffer, "
3605 "error = %d\n", sc->sc_dev.dv_xname, error);
3606 m_freem(m0);
3607 break;
3608 }
3609
3610 /*
3611 * Ensure we have enough descriptors free to describe
3612 * the packet.
3613 */
3614 if (dmamap->dm_nsegs > sc->sc_txfree) {
3615 /*
3616 * Not enough free descriptors to transmit
3617 * this packet. Unload the DMA map and
3618 * drop the packet. Notify the upper layer
3619 * that there are no more slots left.
3620 *
3621 * XXX We could allocate an mbuf and copy, but
3622 * XXX it is worth it?
3623 */
3624 ifp->if_flags |= IFF_OACTIVE;
3625 bus_dmamap_unload(sc->sc_dmat, dmamap);
3626 m_freem(m0);
3627 break;
3628 }
3629
3630 /*
3631 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3632 */
3633
3634 /* Sync the DMA map. */
3635 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3636 BUS_DMASYNC_PREWRITE);
3637
3638 /* XXX arbitrary retry limit; 8 because I have seen it in
3639 * use already and maybe 0 means "no tries" !
3640 */
3641 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3642
3643 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3644 sc->sc_dev.dv_xname, rate * 5));
3645 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3646
3647 /*
3648 * Initialize the transmit descriptors.
3649 */
3650 for (nexttx = sc->sc_txnext, seg = 0;
3651 seg < dmamap->dm_nsegs;
3652 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3653 /*
3654 * If this is the first descriptor we're
3655 * enqueueing, don't set the OWN bit just
3656 * yet. That could cause a race condition.
3657 * We'll do it below.
3658 */
3659 txd = &sc->sc_txdescs[nexttx];
3660 txd->at_ctl = ctl |
3661 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3662
3663 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3664 txd->at_flags =
3665 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3666 ATW_TXFLAG_TBS1_MASK)) |
3667 ((nexttx == (ATW_NTXDESC - 1))
3668 ? htole32(ATW_TXFLAG_TER) : 0);
3669 lasttx = nexttx;
3670 }
3671
3672 KASSERT(lasttx != -1, ("bad lastx"));
3673 /* Set `first segment' and `last segment' appropriately. */
3674 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3675 htole32(ATW_TXFLAG_FS);
3676 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3677
3678 #ifdef ATW_DEBUG
3679 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3680 printf(" txsoft %p transmit chain:\n", txs);
3681 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3682 printf(" descriptor %d:\n", seg);
3683 printf(" at_ctl: 0x%08x\n",
3684 le32toh(sc->sc_txdescs[seg].at_ctl));
3685 printf(" at_flags: 0x%08x\n",
3686 le32toh(sc->sc_txdescs[seg].at_flags));
3687 printf(" at_buf1: 0x%08x\n",
3688 le32toh(sc->sc_txdescs[seg].at_buf1));
3689 printf(" at_buf2: 0x%08x\n",
3690 le32toh(sc->sc_txdescs[seg].at_buf2));
3691 if (seg == lasttx)
3692 break;
3693 }
3694 }
3695 #endif
3696
3697 /* Sync the descriptors we're using. */
3698 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3699 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3700
3701 /*
3702 * Store a pointer to the packet so we can free it later,
3703 * and remember what txdirty will be once the packet is
3704 * done.
3705 */
3706 txs->txs_mbuf = m0;
3707 txs->txs_firstdesc = sc->sc_txnext;
3708 txs->txs_lastdesc = lasttx;
3709 txs->txs_ndescs = dmamap->dm_nsegs;
3710
3711 /* Advance the tx pointer. */
3712 sc->sc_txfree -= dmamap->dm_nsegs;
3713 sc->sc_txnext = nexttx;
3714
3715 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3716 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3717
3718 last_txs = txs;
3719 }
3720
3721 if (txs == NULL || sc->sc_txfree == 0) {
3722 /* No more slots left; notify upper layer. */
3723 ifp->if_flags |= IFF_OACTIVE;
3724 }
3725
3726 if (sc->sc_txfree != ofree) {
3727 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3728 sc->sc_dev.dv_xname, lasttx, firsttx));
3729 /*
3730 * Cause a transmit interrupt to happen on the
3731 * last packet we enqueued.
3732 */
3733 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3734 ATW_CDTXSYNC(sc, lasttx, 1,
3735 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3736
3737 /*
3738 * The entire packet chain is set up. Give the
3739 * first descriptor to the chip now.
3740 */
3741 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3742 ATW_CDTXSYNC(sc, firsttx, 1,
3743 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3744
3745 /* Wake up the transmitter. */
3746 /* XXX USE AUTOPOLLING? */
3747 ATW_WRITE(sc, ATW_TDR, 0x1);
3748
3749 /* Set a watchdog timer in case the chip flakes out. */
3750 sc->sc_tx_timer = 5;
3751 ifp->if_timer = 1;
3752 }
3753 }
3754
3755 /*
3756 * atw_power:
3757 *
3758 * Power management (suspend/resume) hook.
3759 */
3760 void
3761 atw_power(why, arg)
3762 int why;
3763 void *arg;
3764 {
3765 struct atw_softc *sc = arg;
3766 struct ifnet *ifp = &sc->sc_ic.ic_if;
3767 int s;
3768
3769 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3770
3771 s = splnet();
3772 switch (why) {
3773 case PWR_STANDBY:
3774 /* XXX do nothing. */
3775 break;
3776 case PWR_SUSPEND:
3777 atw_stop(ifp, 0);
3778 if (sc->sc_power != NULL)
3779 (*sc->sc_power)(sc, why);
3780 break;
3781 case PWR_RESUME:
3782 if (ifp->if_flags & IFF_UP) {
3783 if (sc->sc_power != NULL)
3784 (*sc->sc_power)(sc, why);
3785 atw_init(ifp);
3786 }
3787 break;
3788 case PWR_SOFTSUSPEND:
3789 case PWR_SOFTSTANDBY:
3790 case PWR_SOFTRESUME:
3791 break;
3792 }
3793 splx(s);
3794 }
3795
3796 /*
3797 * atw_ioctl: [ifnet interface function]
3798 *
3799 * Handle control requests from the operator.
3800 */
3801 int
3802 atw_ioctl(ifp, cmd, data)
3803 struct ifnet *ifp;
3804 u_long cmd;
3805 caddr_t data;
3806 {
3807 struct atw_softc *sc = ifp->if_softc;
3808 struct ifreq *ifr = (struct ifreq *)data;
3809 int s, error = 0;
3810
3811 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3812 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3813 return ENXIO;
3814
3815 s = splnet();
3816
3817 switch (cmd) {
3818 case SIOCSIFFLAGS:
3819 if (ifp->if_flags & IFF_UP) {
3820 if (ATW_IS_ENABLED(sc)) {
3821 /*
3822 * To avoid rescanning another access point,
3823 * do not call atw_init() here. Instead,
3824 * only reflect media settings.
3825 */
3826 atw_filter_setup(sc);
3827 } else
3828 error = atw_init(ifp);
3829 } else if (ATW_IS_ENABLED(sc))
3830 atw_stop(ifp, 1);
3831 break;
3832 case SIOCADDMULTI:
3833 case SIOCDELMULTI:
3834 error = (cmd == SIOCADDMULTI) ?
3835 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3836 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3837 if (error == ENETRESET) {
3838 if (ATW_IS_ENABLED(sc))
3839 atw_filter_setup(sc); /* do not rescan */
3840 error = 0;
3841 }
3842 break;
3843 default:
3844 error = ieee80211_ioctl(ifp, cmd, data);
3845 if (error == ENETRESET) {
3846 if (ATW_IS_ENABLED(sc))
3847 error = atw_init(ifp);
3848 else
3849 error = 0;
3850 }
3851 break;
3852 }
3853
3854 /* Try to get more packets going. */
3855 if (ATW_IS_ENABLED(sc))
3856 atw_start(ifp);
3857
3858 splx(s);
3859 return (error);
3860 }
3861
3862 static int
3863 atw_media_change(struct ifnet *ifp)
3864 {
3865 int error;
3866
3867 error = ieee80211_media_change(ifp);
3868 if (error == ENETRESET) {
3869 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3870 (IFF_RUNNING|IFF_UP))
3871 atw_init(ifp); /* XXX lose error */
3872 error = 0;
3873 }
3874 return error;
3875 }
3876
3877 static void
3878 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3879 {
3880 struct atw_softc *sc = ifp->if_softc;
3881
3882 if (ATW_IS_ENABLED(sc) == 0) {
3883 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3884 imr->ifm_status = 0;
3885 return;
3886 }
3887 ieee80211_media_status(ifp, imr);
3888 }
3889