atw.c revision 1.13 1 /* $NetBSD: atw.c,v 1.13 2004/01/10 06:30:35 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.13 2004/01/10 06:30:35 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/atwvar.h>
82 #include <dev/ic/smc93cx6var.h>
83
84 /* XXX TBD open questions
85 *
86 *
87 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
88 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
89 * handle this for me?
90 *
91 */
92 /* device attachment
93 *
94 * print TOFS[012]
95 *
96 * device initialization
97 *
98 * clear ATW_FRCTL_MAXPSP to disable max power saving
99 * set ATW_TXBR_ALCUPDATE to enable ALC
100 * set TOFS[012]? (hope not)
101 * disable rx/tx
102 * set ATW_PAR_SWR (software reset)
103 * wait for ATW_PAR_SWR clear
104 * disable interrupts
105 * ack status register
106 * enable interrupts
107 *
108 * rx/tx initialization
109 *
110 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111 * allocate and init descriptor rings
112 * write ATW_PAR_DSL (descriptor skip length)
113 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
114 * write ATW_NAR_SQ for one/both transmit descriptor rings
115 * write ATW_NAR_SQ for one/both transmit descriptor rings
116 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
117 *
118 * rx/tx end
119 *
120 * stop DMA
121 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
122 * flush tx w/ ATW_NAR_HF
123 *
124 * scan
125 *
126 * initialize rx/tx
127 *
128 * IBSS join/create
129 *
130 * set ATW_NAR_EA (is set by ASIC?)
131 *
132 * BSS join: (re)association response
133 *
134 * set ATW_FRCTL_AID
135 *
136 * optimizations ???
137 *
138 */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_rfio_enable_delay = 20 * 1000;
145 int atw_rfio_disable_delay = 2 * 1000;
146 int atw_writewep_delay = 5;
147 int atw_beacon_len_adjust = 4;
148 int atw_dwelltime = 200;
149
150 #ifdef ATW_DEBUG
151 int atw_xhdrctl = 0;
152 int atw_xrtylmt = ~0;
153 int atw_xservice = IEEE80211_PLCP_SERVICE;
154 int atw_xpaylen = 0;
155
156 int atw_debug = 0;
157
158 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
159 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
160 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
161 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
162 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
163 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
164 static void atw_print_regs(struct atw_softc *, const char *);
165 static void atw_rf3000_print(struct atw_softc *);
166 static void atw_si4126_print(struct atw_softc *);
167 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
168 #else
169 #define ATW_DPRINTF(x)
170 #define ATW_DPRINTF2(x)
171 #define ATW_DPRINTF3(x)
172 #define DPRINTF(sc, x) /* nothing */
173 #define DPRINTF2(sc, x) /* nothing */
174 #define DPRINTF3(sc, x) /* nothing */
175 #endif
176
177 #ifdef ATW_STATS
178 void atw_print_stats __P((struct atw_softc *));
179 #endif
180
181 void atw_start __P((struct ifnet *));
182 void atw_watchdog __P((struct ifnet *));
183 int atw_ioctl __P((struct ifnet *, u_long, caddr_t));
184 int atw_init __P((struct ifnet *));
185 void atw_stop __P((struct ifnet *, int));
186
187 void atw_reset __P((struct atw_softc *));
188 int atw_read_srom __P((struct atw_softc *));
189
190 void atw_shutdown __P((void *));
191
192 void atw_rxdrain __P((struct atw_softc *));
193 int atw_add_rxbuf __P((struct atw_softc *, int));
194 void atw_idle __P((struct atw_softc *, u_int32_t));
195
196 int atw_enable __P((struct atw_softc *));
197 void atw_disable __P((struct atw_softc *));
198 void atw_power __P((int, void *));
199
200 void atw_rxintr __P((struct atw_softc *));
201 void atw_txintr __P((struct atw_softc *));
202 void atw_linkintr __P((struct atw_softc *, u_int32_t));
203
204 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
205 static void atw_tsf(struct atw_softc *);
206 static void atw_start_beacon(struct atw_softc *, int);
207 static void atw_write_wep(struct atw_softc *);
208 static void atw_write_bssid(struct atw_softc *);
209 static void atw_write_bcn_thresh(struct atw_softc *);
210 static void atw_write_ssid(struct atw_softc *);
211 static void atw_write_sup_rates(struct atw_softc *);
212 static void atw_clear_sram(struct atw_softc *);
213 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
214 static int atw_media_change(struct ifnet *);
215 static void atw_media_status(struct ifnet *, struct ifmediareq *);
216 static void atw_filter_setup(struct atw_softc *);
217 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
218 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
219 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
220 struct ieee80211_node *, int, int, u_int32_t);
221 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
222 struct ieee80211_node *, int, int, u_int32_t);
223 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
224 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
225
226 static int atw_tune(struct atw_softc *);
227
228 static void atw_rfio_enable(struct atw_softc *, int);
229
230 /* RFMD RF3000 Baseband Processor */
231 static int atw_rf3000_init(struct atw_softc *);
232 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
233 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
234 #ifdef ATW_DEBUG
235 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
236 #endif /* ATW_DEBUG */
237
238 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
239 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
240 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
241 #ifdef ATW_DEBUG
242 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
243 #endif /* ATW_DEBUG */
244
245 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
246 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
247
248 const char *atw_tx_state[] = {
249 "STOPPED",
250 "RUNNING - FETCH",
251 "RUNNING - WAIT",
252 "RUNNING - READING",
253 "-- RESERVED1 --",
254 "-- RESERVED2 --",
255 "SUSPENDED",
256 "RUNNING - CLOSE"
257 };
258
259 const char *atw_rx_state[] = {
260 "STOPPED",
261 "RUNNING - FETCH",
262 "RUNNING - CHECK",
263 "RUNNING - WAIT",
264 "SUSPENDED",
265 "RUNNING - CLOSE",
266 "RUNNING - FLUSH",
267 "RUNNING - QUEUE"
268 };
269
270 int
271 atw_activate(struct device *self, enum devact act)
272 {
273 struct atw_softc *sc = (struct atw_softc *)self;
274 int rv = 0, s;
275
276 s = splnet();
277 switch (act) {
278 case DVACT_ACTIVATE:
279 rv = EOPNOTSUPP;
280 break;
281
282 case DVACT_DEACTIVATE:
283 if_deactivate(&sc->sc_ic.ic_if);
284 break;
285 }
286 splx(s);
287 return rv;
288 }
289
290 /*
291 * atw_enable:
292 *
293 * Enable the ADM8211 chip.
294 */
295 int
296 atw_enable(sc)
297 struct atw_softc *sc;
298 {
299
300 if (ATW_IS_ENABLED(sc) == 0) {
301 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
302 printf("%s: device enable failed\n",
303 sc->sc_dev.dv_xname);
304 return (EIO);
305 }
306 sc->sc_flags |= ATWF_ENABLED;
307 }
308 return (0);
309 }
310
311 /*
312 * atw_disable:
313 *
314 * Disable the ADM8211 chip.
315 */
316 void
317 atw_disable(sc)
318 struct atw_softc *sc;
319 {
320 if (!ATW_IS_ENABLED(sc))
321 return;
322 if (sc->sc_disable != NULL)
323 (*sc->sc_disable)(sc);
324 sc->sc_flags &= ~ATWF_ENABLED;
325 }
326
327 /* Returns -1 on failure. */
328 int
329 atw_read_srom(struct atw_softc *sc)
330 {
331 struct seeprom_descriptor sd;
332 u_int32_t reg;
333
334 (void)memset(&sd, 0, sizeof(sd));
335
336 reg = ATW_READ(sc, ATW_TEST0);
337
338 if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
339 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
340 return -1;
341 }
342
343 switch (reg & ATW_TEST0_EPTYP_MASK) {
344 case ATW_TEST0_EPTYP_93c66:
345 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
346 sc->sc_sromsz = 512;
347 sd.sd_chip = C56_66;
348 break;
349 case ATW_TEST0_EPTYP_93c46:
350 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
351 sc->sc_sromsz = 128;
352 sd.sd_chip = C46;
353 break;
354 default:
355 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
356 MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
357 return -1;
358 }
359
360 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
361
362 if (sc->sc_srom == NULL) {
363 printf("%s: unable to allocate SROM buffer\n",
364 sc->sc_dev.dv_xname);
365 return -1;
366 }
367
368 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
369
370 /* ADM8211 has a single 32-bit register for controlling the
371 * 93cx6 SROM. Bit SRS enables the serial port. There is no
372 * "ready" bit. The ADM8211 input/output sense is the reverse
373 * of read_seeprom's.
374 */
375 sd.sd_tag = sc->sc_st;
376 sd.sd_bsh = sc->sc_sh;
377 sd.sd_regsize = 4;
378 sd.sd_control_offset = ATW_SPR;
379 sd.sd_status_offset = ATW_SPR;
380 sd.sd_dataout_offset = ATW_SPR;
381 sd.sd_CK = ATW_SPR_SCLK;
382 sd.sd_CS = ATW_SPR_SCS;
383 sd.sd_DI = ATW_SPR_SDO;
384 sd.sd_DO = ATW_SPR_SDI;
385 sd.sd_MS = ATW_SPR_SRS;
386 sd.sd_RDY = 0;
387
388 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
389 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
390 free(sc->sc_srom, M_DEVBUF);
391 return -1;
392 }
393 #ifdef ATW_DEBUG
394 {
395 int i;
396 ATW_DPRINTF2(("\nSerial EEPROM:\n\t"));
397 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
398 if (((i % 8) == 0) && (i != 0)) {
399 ATW_DPRINTF2(("\n\t"));
400 }
401 ATW_DPRINTF2((" 0x%x", sc->sc_srom[i]));
402 }
403 ATW_DPRINTF2(("\n"));
404 }
405 #endif /* ATW_DEBUG */
406 return 0;
407 }
408
409 #ifdef ATW_DEBUG
410 static void
411 atw_print_regs(struct atw_softc *sc, const char *where)
412 {
413 #define PRINTREG(sc, reg) \
414 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
415 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
416
417 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
418
419 PRINTREG(sc, ATW_PAR);
420 PRINTREG(sc, ATW_FRCTL);
421 PRINTREG(sc, ATW_TDR);
422 PRINTREG(sc, ATW_WTDP);
423 PRINTREG(sc, ATW_RDR);
424 PRINTREG(sc, ATW_WRDP);
425 PRINTREG(sc, ATW_RDB);
426 PRINTREG(sc, ATW_CSR3A);
427 PRINTREG(sc, ATW_TDBD);
428 PRINTREG(sc, ATW_TDBP);
429 PRINTREG(sc, ATW_STSR);
430 PRINTREG(sc, ATW_CSR5A);
431 PRINTREG(sc, ATW_NAR);
432 PRINTREG(sc, ATW_CSR6A);
433 PRINTREG(sc, ATW_IER);
434 PRINTREG(sc, ATW_CSR7A);
435 PRINTREG(sc, ATW_LPC);
436 PRINTREG(sc, ATW_TEST1);
437 PRINTREG(sc, ATW_SPR);
438 PRINTREG(sc, ATW_TEST0);
439 PRINTREG(sc, ATW_WCSR);
440 PRINTREG(sc, ATW_WPDR);
441 PRINTREG(sc, ATW_GPTMR);
442 PRINTREG(sc, ATW_GPIO);
443 PRINTREG(sc, ATW_BBPCTL);
444 PRINTREG(sc, ATW_SYNCTL);
445 PRINTREG(sc, ATW_PLCPHD);
446 PRINTREG(sc, ATW_MMIWADDR);
447 PRINTREG(sc, ATW_MMIRADDR1);
448 PRINTREG(sc, ATW_MMIRADDR2);
449 PRINTREG(sc, ATW_TXBR);
450 PRINTREG(sc, ATW_CSR15A);
451 PRINTREG(sc, ATW_ALCSTAT);
452 PRINTREG(sc, ATW_TOFS2);
453 PRINTREG(sc, ATW_CMDR);
454 PRINTREG(sc, ATW_PCIC);
455 PRINTREG(sc, ATW_PMCSR);
456 PRINTREG(sc, ATW_PAR0);
457 PRINTREG(sc, ATW_PAR1);
458 PRINTREG(sc, ATW_MAR0);
459 PRINTREG(sc, ATW_MAR1);
460 PRINTREG(sc, ATW_ATIMDA0);
461 PRINTREG(sc, ATW_ABDA1);
462 PRINTREG(sc, ATW_BSSID0);
463 PRINTREG(sc, ATW_TXLMT);
464 PRINTREG(sc, ATW_MIBCNT);
465 PRINTREG(sc, ATW_BCNT);
466 PRINTREG(sc, ATW_TSFTH);
467 PRINTREG(sc, ATW_TSC);
468 PRINTREG(sc, ATW_SYNRF);
469 PRINTREG(sc, ATW_BPLI);
470 PRINTREG(sc, ATW_CAP0);
471 PRINTREG(sc, ATW_CAP1);
472 PRINTREG(sc, ATW_RMD);
473 PRINTREG(sc, ATW_CFPP);
474 PRINTREG(sc, ATW_TOFS0);
475 PRINTREG(sc, ATW_TOFS1);
476 PRINTREG(sc, ATW_IFST);
477 PRINTREG(sc, ATW_RSPT);
478 PRINTREG(sc, ATW_TSFTL);
479 PRINTREG(sc, ATW_WEPCTL);
480 PRINTREG(sc, ATW_WESK);
481 PRINTREG(sc, ATW_WEPCNT);
482 PRINTREG(sc, ATW_MACTEST);
483 PRINTREG(sc, ATW_FER);
484 PRINTREG(sc, ATW_FEMR);
485 PRINTREG(sc, ATW_FPSR);
486 PRINTREG(sc, ATW_FFER);
487 #undef PRINTREG
488 }
489 #endif /* ATW_DEBUG */
490
491 /*
492 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
493 */
494 void
495 atw_attach(struct atw_softc *sc)
496 {
497 struct ieee80211com *ic = &sc->sc_ic;
498 struct ifnet *ifp = &ic->ic_if;
499 int country_code, error, i, nrate;
500 u_int32_t reg;
501 static const char *type_strings[] = {"Intersil (not supported)",
502 "RFMD", "Marvel (not supported)"};
503 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
504 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
505 };
506
507 sc->sc_txth = atw_txthresh_tab_lo;
508
509 SIMPLEQ_INIT(&sc->sc_txfreeq);
510 SIMPLEQ_INIT(&sc->sc_txdirtyq);
511
512 #ifdef ATW_DEBUG
513 atw_print_regs(sc, "atw_attach");
514 #endif /* ATW_DEBUG */
515
516 /*
517 * Allocate the control data structures, and create and load the
518 * DMA map for it.
519 */
520 if ((error = bus_dmamem_alloc(sc->sc_dmat,
521 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
522 1, &sc->sc_cdnseg, 0)) != 0) {
523 printf("%s: unable to allocate control data, error = %d\n",
524 sc->sc_dev.dv_xname, error);
525 goto fail_0;
526 }
527
528 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
529 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
530 BUS_DMA_COHERENT)) != 0) {
531 printf("%s: unable to map control data, error = %d\n",
532 sc->sc_dev.dv_xname, error);
533 goto fail_1;
534 }
535
536 if ((error = bus_dmamap_create(sc->sc_dmat,
537 sizeof(struct atw_control_data), 1,
538 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
539 printf("%s: unable to create control data DMA map, "
540 "error = %d\n", sc->sc_dev.dv_xname, error);
541 goto fail_2;
542 }
543
544 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
545 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
546 0)) != 0) {
547 printf("%s: unable to load control data DMA map, error = %d\n",
548 sc->sc_dev.dv_xname, error);
549 goto fail_3;
550 }
551
552 /*
553 * Create the transmit buffer DMA maps.
554 */
555 sc->sc_ntxsegs = ATW_NTXSEGS;
556 for (i = 0; i < ATW_TXQUEUELEN; i++) {
557 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
558 sc->sc_ntxsegs, MCLBYTES, 0, 0,
559 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
560 printf("%s: unable to create tx DMA map %d, "
561 "error = %d\n", sc->sc_dev.dv_xname, i, error);
562 goto fail_4;
563 }
564 }
565
566 /*
567 * Create the receive buffer DMA maps.
568 */
569 for (i = 0; i < ATW_NRXDESC; i++) {
570 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
571 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
572 printf("%s: unable to create rx DMA map %d, "
573 "error = %d\n", sc->sc_dev.dv_xname, i, error);
574 goto fail_5;
575 }
576 sc->sc_rxsoft[i].rxs_mbuf = NULL;
577 }
578
579 /* Reset the chip to a known state. */
580 atw_reset(sc);
581
582 if (atw_read_srom(sc) == -1)
583 return;
584
585 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
586 ATW_SR_RFTYPE_MASK);
587
588 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
589 ATW_SR_BBPTYPE_MASK);
590
591 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
592 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
593 return;
594 }
595 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
596 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
597 return;
598 }
599
600 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
601 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
602
603 /* XXX There exists a Linux driver which seems to use RFType = 0 for
604 * MARVEL. My bug, or theirs?
605 */
606
607 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
608
609 switch (sc->sc_rftype) {
610 case ATW_RFTYPE_INTERSIL:
611 reg |= ATW_SYNCTL_CS1;
612 break;
613 case ATW_RFTYPE_RFMD:
614 reg |= ATW_SYNCTL_CS0;
615 break;
616 case ATW_RFTYPE_MARVEL:
617 break;
618 }
619
620 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
621 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
622
623 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
624
625 switch (sc->sc_bbptype) {
626 case ATW_RFTYPE_INTERSIL:
627 reg |= ATW_BBPCTL_TWI;
628 break;
629 case ATW_RFTYPE_RFMD:
630 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
631 ATW_BBPCTL_CCA_ACTLO;
632 break;
633 case ATW_RFTYPE_MARVEL:
634 break;
635 }
636
637 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
638 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
639
640 /*
641 * From this point forward, the attachment cannot fail. A failure
642 * before this point releases all resources that may have been
643 * allocated.
644 */
645 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
646
647 ATW_DPRINTF2((" SROM MAC %04x%04x%04x",
648 htole16(sc->sc_srom[ATW_SR_MAC00]),
649 htole16(sc->sc_srom[ATW_SR_MAC01]),
650 htole16(sc->sc_srom[ATW_SR_MAC10])));
651
652 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
653 ATW_SR_CTRY_MASK);
654
655 #define ADD_CHANNEL(_ic, _chan) do { \
656 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
657 _ic->ic_channels[_chan].ic_freq = \
658 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
659 } while (0)
660
661 /* Find available channels */
662 switch (country_code) {
663 case COUNTRY_MMK2: /* 1-14 */
664 ADD_CHANNEL(ic, 14);
665 /*FALLTHROUGH*/
666 case COUNTRY_ETSI: /* 1-13 */
667 for (i = 1; i <= 13; i++)
668 ADD_CHANNEL(ic, i);
669 break;
670 case COUNTRY_FCC: /* 1-11 */
671 case COUNTRY_IC: /* 1-11 */
672 for (i = 1; i <= 11; i++)
673 ADD_CHANNEL(ic, i);
674 break;
675 case COUNTRY_MMK: /* 14 */
676 ADD_CHANNEL(ic, 14);
677 break;
678 case COUNTRY_FRANCE: /* 10-13 */
679 for (i = 10; i <= 13; i++)
680 ADD_CHANNEL(ic, i);
681 break;
682 default: /* assume channels 10-11 */
683 case COUNTRY_SPAIN: /* 10-11 */
684 for (i = 10; i <= 11; i++)
685 ADD_CHANNEL(ic, i);
686 break;
687 }
688
689 /* Read the MAC address. */
690 reg = ATW_READ(sc, ATW_PAR0);
691 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
692 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
693 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
694 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
695 reg = ATW_READ(sc, ATW_PAR1);
696 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
697 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
698
699 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
700 printf(" could not get mac address, attach failed\n");
701 return;
702 }
703
704 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
705
706 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
707 ifp->if_softc = sc;
708 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
709 IFF_NOTRAILERS;
710 ifp->if_ioctl = atw_ioctl;
711 ifp->if_start = atw_start;
712 ifp->if_watchdog = atw_watchdog;
713 ifp->if_init = atw_init;
714 ifp->if_stop = atw_stop;
715 IFQ_SET_READY(&ifp->if_snd);
716
717 ic->ic_phytype = IEEE80211_T_DS;
718 ic->ic_opmode = IEEE80211_M_STA;
719 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
720 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
721
722 nrate = 0;
723 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
724 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
725 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
726 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
727 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
728
729 /*
730 * Call MI attach routines.
731 */
732
733 if_attach(ifp);
734 ieee80211_ifattach(ifp);
735
736 sc->sc_newstate = ic->ic_newstate;
737 ic->ic_newstate = atw_newstate;
738
739 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
740 ic->ic_recv_mgmt = atw_recv_mgmt;
741
742 sc->sc_node_free = ic->ic_node_free;
743 ic->ic_node_free = atw_node_free;
744
745 sc->sc_node_alloc = ic->ic_node_alloc;
746 ic->ic_node_alloc = atw_node_alloc;
747
748 /* possibly we should fill in our own sc_send_prresp, since
749 * the ADM8211 is probably sending probe responses in ad hoc
750 * mode.
751 */
752
753 /* complete initialization */
754 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
755 callout_init(&sc->sc_scan_ch);
756
757 #if NBPFILTER > 0
758 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
759 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
760 #endif
761
762 /*
763 * Make sure the interface is shutdown during reboot.
764 */
765 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
766 if (sc->sc_sdhook == NULL)
767 printf("%s: WARNING: unable to establish shutdown hook\n",
768 sc->sc_dev.dv_xname);
769
770 /*
771 * Add a suspend hook to make sure we come back up after a
772 * resume.
773 */
774 sc->sc_powerhook = powerhook_establish(atw_power, sc);
775 if (sc->sc_powerhook == NULL)
776 printf("%s: WARNING: unable to establish power hook\n",
777 sc->sc_dev.dv_xname);
778
779 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
780 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
781 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
782
783 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
784 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
785 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
786
787 return;
788
789 /*
790 * Free any resources we've allocated during the failed attach
791 * attempt. Do this in reverse order and fall through.
792 */
793 fail_5:
794 for (i = 0; i < ATW_NRXDESC; i++) {
795 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
796 continue;
797 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
798 }
799 fail_4:
800 for (i = 0; i < ATW_TXQUEUELEN; i++) {
801 if (sc->sc_txsoft[i].txs_dmamap == NULL)
802 continue;
803 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
804 }
805 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
806 fail_3:
807 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
808 fail_2:
809 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
810 sizeof(struct atw_control_data));
811 fail_1:
812 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
813 fail_0:
814 return;
815 }
816
817 static struct ieee80211_node *
818 atw_node_alloc(struct ieee80211com *ic)
819 {
820 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
821 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
822
823 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
824 return ni;
825 }
826
827 static void
828 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
829 {
830 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
831
832 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
833 ether_sprintf(ni->ni_bssid)));
834 (*sc->sc_node_free)(ic, ni);
835 }
836
837 /*
838 * atw_reset:
839 *
840 * Perform a soft reset on the ADM8211.
841 */
842 void
843 atw_reset(sc)
844 struct atw_softc *sc;
845 {
846 int i;
847
848 if (ATW_IS_ENABLED(sc) == 0)
849 return;
850
851 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
852
853 for (i = 0; i < 10000; i++) {
854 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
855 break;
856 DELAY(1);
857 }
858
859 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
860
861 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
862 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
863
864 /* Turn off maximum power saving. */
865 ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
866
867 /* Recall EEPROM. */
868 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
869
870 DELAY(10 * 1000);
871
872 /* A reset seems to affect the SRAM contents, so put them into
873 * a known state.
874 */
875 atw_clear_sram(sc);
876
877 memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
878
879 sc->sc_lost_bcn_thresh = 0;
880 }
881
882 static void
883 atw_clear_sram(sc)
884 struct atw_softc *sc;
885 {
886 #if 0
887 for (addr = 0; addr < 448; addr++) {
888 ATW_WRITE(sc, ATW_WEPCTL,
889 ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0 | addr);
890 DELAY(1000);
891 ATW_WRITE(sc, ATW_WESK, 0);
892 DELAY(1000); /* paranoia */
893 }
894 return;
895 #endif
896 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
897 /* XXX not for revision 0x20. */
898 atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
899 }
900
901 /* TBD atw_init
902 *
903 * set MAC based on ic->ic_bss->myaddr
904 * write WEP keys
905 * set TX rate
906 */
907
908 /*
909 * atw_init: [ ifnet interface function ]
910 *
911 * Initialize the interface. Must be called at splnet().
912 */
913 int
914 atw_init(ifp)
915 struct ifnet *ifp;
916 {
917 struct atw_softc *sc = ifp->if_softc;
918 struct ieee80211com *ic = &sc->sc_ic;
919 struct atw_txsoft *txs;
920 struct atw_rxsoft *rxs;
921 u_int32_t reg;
922 int i, error = 0;
923
924 if ((error = atw_enable(sc)) != 0)
925 goto out;
926
927 /*
928 * Cancel any pending I/O. This also resets.
929 */
930 atw_stop(ifp, 0);
931
932 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
933 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
934 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
935 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
936
937 /* Turn off APM??? (A binary-only driver does this.)
938 *
939 * Set Rx store-and-forward mode.
940 */
941 reg = ATW_READ(sc, ATW_CMDR);
942 reg &= ~ATW_CMDR_APM;
943 reg &= ~ATW_CMDR_DRT_MASK;
944 reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
945
946 ATW_WRITE(sc, ATW_CMDR, reg);
947
948 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
949 *
950 * XXX a binary-only driver sets a different service field than
951 * 0. why?
952 */
953 reg = ATW_READ(sc, ATW_PLCPHD);
954 reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
955 reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
956 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
957 ATW_WRITE(sc, ATW_PLCPHD, reg);
958
959 /* XXX */
960 reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
961 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
962 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
963 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
964 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
965 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
966 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
967 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
968 ATW_WRITE(sc, ATW_TOFS2, reg);
969
970 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
971 LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
972
973 /* XXX this resets an Intersil RF front-end? */
974 /* TBD condition on Intersil RFType? */
975 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
976 DELAY(10 * 1000);
977 ATW_WRITE(sc, ATW_SYNRF, 0);
978 DELAY(5 * 1000);
979
980 /* 16 TU max duration for contention-free period */
981 reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
982 ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
983
984 /* XXX I guess that the Cardbus clock is 22MHz?
985 * I am assuming that the role of ATW_TOFS0_USCNT is
986 * to divide the bus clock to get a 1MHz clock---the datasheet is not
987 * very clear on this point. It says in the datasheet that it is
988 * possible for the ADM8211 to accomodate bus speeds between 22MHz
989 * and 33MHz; maybe this is the way? I see a binary-only driver write
990 * these values. These values are also the power-on default.
991 */
992 ATW_WRITE(sc, ATW_TOFS0,
993 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
994 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
995
996 /* Initialize interframe spacing. EIFS=0x64 is used by a binary-only
997 * driver. go figure.
998 */
999 reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1000 LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
1001 ATW_IFST_SIFS_MASK) |
1002 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1003 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1004
1005 ATW_WRITE(sc, ATW_IFST, reg);
1006
1007 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1008 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1009
1010 /* Set up the MMI read/write addresses for the BBP.
1011 *
1012 * TBD find out the Marvel settings.
1013 */
1014 switch (sc->sc_bbptype) {
1015 case ATW_BBPTYPE_INTERSIL:
1016 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1017 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1018 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1019 break;
1020 case ATW_BBPTYPE_MARVEL:
1021 break;
1022 case ATW_BBPTYPE_RFMD:
1023 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1024 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1025 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1026 default:
1027 break;
1028 }
1029
1030 sc->sc_wepctl = 0;
1031 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1032
1033 if ((error = atw_rf3000_init(sc)) != 0)
1034 goto out;
1035
1036 /*
1037 * Initialize the PCI Access Register.
1038 */
1039 sc->sc_busmode = ATW_PAR_BAR; /* XXX what is this? */
1040
1041 /*
1042 * If we're allowed to do so, use Memory Read Line
1043 * and Memory Read Multiple.
1044 *
1045 * XXX Should we use Memory Write and Invalidate?
1046 */
1047 if (sc->sc_flags & ATWF_MRL)
1048 sc->sc_busmode |= ATW_PAR_MRLE;
1049 if (sc->sc_flags & ATWF_MRM)
1050 sc->sc_busmode |= ATW_PAR_MRME;
1051 if (sc->sc_flags & ATWF_MWI)
1052 sc->sc_busmode |= ATW_PAR_MWIE;
1053 if (sc->sc_maxburst == 0)
1054 sc->sc_maxburst = 8; /* ADM8211 default */
1055
1056 switch (sc->sc_cacheline) {
1057 default:
1058 /* Use burst length. */
1059 break;
1060 case 8:
1061 sc->sc_busmode |= ATW_PAR_CAL_8DW;
1062 break;
1063 case 16:
1064 sc->sc_busmode |= ATW_PAR_CAL_16DW;
1065 break;
1066 case 32:
1067 sc->sc_busmode |= ATW_PAR_CAL_32DW;
1068 break;
1069 }
1070 switch (sc->sc_maxburst) {
1071 case 1:
1072 sc->sc_busmode |= ATW_PAR_PBL_1DW;
1073 break;
1074 case 2:
1075 sc->sc_busmode |= ATW_PAR_PBL_2DW;
1076 break;
1077 case 4:
1078 sc->sc_busmode |= ATW_PAR_PBL_4DW;
1079 break;
1080 case 8:
1081 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1082 break;
1083 case 16:
1084 sc->sc_busmode |= ATW_PAR_PBL_16DW;
1085 break;
1086 case 32:
1087 sc->sc_busmode |= ATW_PAR_PBL_32DW;
1088 break;
1089 default:
1090 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1091 break;
1092 }
1093
1094 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1095 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1096 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1097
1098 /*
1099 * Initialize the OPMODE register. We don't write it until
1100 * we're ready to begin the transmit and receive processes.
1101 */
1102 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1103 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1104
1105 /*
1106 * Initialize the transmit descriptor ring.
1107 */
1108 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1109 for (i = 0; i < ATW_NTXDESC; i++) {
1110 /* no transmit chaining */
1111 sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1112 sc->sc_txdescs[i].at_buf2 =
1113 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1114 }
1115 /* use ring mode */
1116 sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1117 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1118 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1119 sc->sc_txfree = ATW_NTXDESC;
1120 sc->sc_txnext = 0;
1121
1122 /*
1123 * Initialize the transmit job descriptors.
1124 */
1125 SIMPLEQ_INIT(&sc->sc_txfreeq);
1126 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1127 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1128 txs = &sc->sc_txsoft[i];
1129 txs->txs_mbuf = NULL;
1130 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1131 }
1132
1133 /*
1134 * Initialize the receive descriptor and receive job
1135 * descriptor rings.
1136 */
1137 for (i = 0; i < ATW_NRXDESC; i++) {
1138 rxs = &sc->sc_rxsoft[i];
1139 if (rxs->rxs_mbuf == NULL) {
1140 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1141 printf("%s: unable to allocate or map rx "
1142 "buffer %d, error = %d\n",
1143 sc->sc_dev.dv_xname, i, error);
1144 /*
1145 * XXX Should attempt to run with fewer receive
1146 * XXX buffers instead of just failing.
1147 */
1148 atw_rxdrain(sc);
1149 goto out;
1150 }
1151 } else
1152 ATW_INIT_RXDESC(sc, i);
1153 }
1154 sc->sc_rxptr = 0;
1155
1156 /* disable all wake-up events */
1157 ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1158 ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1159 ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1160 ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1161
1162 /* ack all wake-up events */
1163 ATW_SET(sc, ATW_WCSR, 0);
1164
1165 /*
1166 * Initialize the interrupt mask and enable interrupts.
1167 */
1168 /* normal interrupts */
1169 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1170 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1171
1172 /* abnormal interrupts */
1173 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1174 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1175 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1176
1177 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1178 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1179
1180 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1181 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1182 ATW_INTR_TRT;
1183
1184 sc->sc_linkint_mask &= sc->sc_inten;
1185 sc->sc_rxint_mask &= sc->sc_inten;
1186 sc->sc_txint_mask &= sc->sc_inten;
1187
1188 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1189 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1190 if (sc->sc_intr_ack != NULL)
1191 (*sc->sc_intr_ack)(sc);
1192
1193 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1194 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1195
1196 /*
1197 * Give the transmit and receive rings to the ADM8211.
1198 */
1199 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1200 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1201
1202 /* common 802.11 configuration */
1203 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1204 switch (ic->ic_opmode) {
1205 case IEEE80211_M_HOSTAP: /* XXX */
1206 case IEEE80211_M_STA:
1207 sc->sc_opmode &= ~ATW_NAR_EA;
1208 break;
1209 case IEEE80211_M_AHDEMO: /* XXX */
1210 case IEEE80211_M_IBSS:
1211 /* EA bit seems important for ad hoc reception. */
1212 sc->sc_opmode |= ATW_NAR_EA;
1213 ic->ic_flags |= IEEE80211_F_IBSSON;
1214 break;
1215 case IEEE80211_M_MONITOR: /* XXX */
1216 break;
1217 }
1218
1219 atw_start_beacon(sc, 0);
1220
1221 switch (ic->ic_opmode) {
1222 case IEEE80211_M_AHDEMO:
1223 case IEEE80211_M_HOSTAP:
1224 ic->ic_bss->ni_intval = ic->ic_lintval;
1225 ic->ic_bss->ni_rssi = 0;
1226 ic->ic_bss->ni_rstamp = 0;
1227 break;
1228 default: /* XXX */
1229 break;
1230 }
1231
1232 atw_write_ssid(sc);
1233 atw_write_sup_rates(sc);
1234 if (ic->ic_caps & IEEE80211_C_WEP)
1235 atw_write_wep(sc);
1236
1237 /*
1238 * Set the receive filter. This will start the transmit and
1239 * receive processes.
1240 */
1241 atw_filter_setup(sc);
1242
1243 /*
1244 * Start the receive process.
1245 */
1246 ATW_WRITE(sc, ATW_RDR, 0x1);
1247
1248 /*
1249 * Note that the interface is now running.
1250 */
1251 ifp->if_flags |= IFF_RUNNING;
1252 ifp->if_flags &= ~IFF_OACTIVE;
1253 ic->ic_state = IEEE80211_S_INIT;
1254
1255 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1256 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1257 else
1258 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1259 out:
1260 if (error) {
1261 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1262 ifp->if_timer = 0;
1263 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1264 }
1265 #ifdef ATW_DEBUG
1266 atw_print_regs(sc, "end of init");
1267 #endif /* ATW_DEBUG */
1268
1269 return (error);
1270 }
1271
1272 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1273 * 0: MAC control of RF3000/Si4126.
1274 *
1275 * Applies power, or selects RF front-end? Sets reset condition.
1276 *
1277 * TBD support non-RFMD BBP, non-SiLabs synth.
1278 */
1279 static void
1280 atw_rfio_enable(struct atw_softc *sc, int enable)
1281 {
1282 if (enable) {
1283 ATW_WRITE(sc, ATW_SYNRF,
1284 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1285 DELAY(atw_rfio_enable_delay);
1286 } else {
1287 ATW_WRITE(sc, ATW_SYNRF, 0);
1288 DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1289 }
1290 }
1291
1292 static int
1293 atw_tune(sc)
1294 struct atw_softc *sc;
1295 {
1296 int rc;
1297 u_int32_t reg;
1298 int chan;
1299 struct ieee80211com *ic = &sc->sc_ic;
1300
1301 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1302 if (chan == IEEE80211_CHAN_ANY)
1303 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1304
1305 if (chan == sc->sc_cur_chan)
1306 return 0;
1307
1308 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1309 sc->sc_cur_chan, chan));
1310
1311 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1312
1313 if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1314 (rc = atw_rf3000_tune(sc, chan)) != 0)
1315 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1316 chan);
1317
1318 reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1319 ATW_WRITE(sc, ATW_CAP0,
1320 reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1321
1322 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1323
1324 if (rc == 0)
1325 sc->sc_cur_chan = chan;
1326
1327 return rc;
1328 }
1329
1330 #ifdef ATW_DEBUG
1331 static void
1332 atw_si4126_print(sc)
1333 struct atw_softc *sc;
1334 {
1335 struct ifnet *ifp = &sc->sc_ic.ic_if;
1336 u_int addr, val;
1337
1338 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1339 return;
1340
1341 for (addr = 0; addr <= 8; addr++) {
1342 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1343 if (atw_si4126_read(sc, addr, &val) == 0) {
1344 printf("<unknown> (quitting print-out)\n");
1345 break;
1346 }
1347 printf("%05x\n", val);
1348 }
1349 }
1350 #endif /* ATW_DEBUG */
1351
1352 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1353 *
1354 * The RF/IF synthesizer produces two reference frequencies for
1355 * the RF2948B transceiver. The first frequency the RF2948B requires
1356 * is two times the so-called "intermediate frequency" (IF). Since
1357 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1358 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1359 * frequency required by the transceiver is the radio frequency
1360 * (RF). This is a superheterodyne transceiver; for f(chan) the
1361 * center frequency of the channel we are tuning, RF = f(chan) -
1362 * IF.
1363 *
1364 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1365 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1366 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1367 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1368 */
1369 static int
1370 atw_si4126_tune(sc, chan)
1371 struct atw_softc *sc;
1372 u_int8_t chan;
1373 {
1374 int rc = 0;
1375 u_int mhz;
1376 u_int R;
1377 u_int32_t reg;
1378 u_int16_t gain;
1379
1380 #ifdef ATW_DEBUG
1381 atw_si4126_print(sc);
1382 #endif /* ATW_DEBUG */
1383
1384 if (chan == 14)
1385 mhz = 2484;
1386 else
1387 mhz = 2412 + 5 * (chan - 1);
1388
1389 /* Tune IF to 748MHz to suit the IF LO input of the
1390 * RF2494B, which is 2 x IF. No need to set an IF divider
1391 * because an IF in 526MHz - 952MHz is allowed.
1392 *
1393 * XIN is 44.000MHz, so divide it by two to get allowable
1394 * range of 2-25MHz. SiLabs tells me that this is not
1395 * strictly necessary.
1396 */
1397
1398 R = 44;
1399
1400 atw_rfio_enable(sc, 1);
1401
1402 /* Power-up RF, IF synthesizers. */
1403 if ((rc = atw_si4126_write(sc, SI4126_POWER,
1404 SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1405 goto out;
1406
1407 /* If RF2 N > 2047, then set KP2 to 1. */
1408 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1409
1410 if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1411 goto out;
1412
1413 /* set LPWR, too? */
1414 if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1415 SI4126_MAIN_XINDIV2)) != 0)
1416 goto out;
1417
1418 /* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN. XIN = 44MHz.
1419 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1420 */
1421 if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1422 goto out;
1423
1424 if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1425 goto out;
1426
1427 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1428 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1429 * which has no RF1!
1430 */
1431 if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1432 goto out;
1433
1434 if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1435 goto out;
1436
1437 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1438 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1439 * Now let's multiply it to mhz. So mhz - IF = N.
1440 */
1441 if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1442 goto out;
1443
1444 if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1445 goto out;
1446
1447 /* wait 100us from power-up for RF, IF to settle */
1448 DELAY(100);
1449
1450 if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1451 /* XXX there is a binary driver which sends
1452 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1453 * that this enables the Si4126 by raising its PWDN#, but I
1454 * think that it actually sets the Prism RF front-end
1455 * to a special mode for channel 14.
1456 */
1457 reg = ATW_READ(sc, ATW_GPIO);
1458 reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1459 reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1460 ATW_WRITE(sc, ATW_GPIO, reg);
1461 }
1462
1463 #ifdef ATW_DEBUG
1464 atw_si4126_print(sc);
1465 #endif /* ATW_DEBUG */
1466
1467 out:
1468 atw_rfio_enable(sc, 0);
1469
1470 return rc;
1471 }
1472
1473 /* Baseline initialization of RF3000 BBP: set CCA mode, enable antenna
1474 * diversity, and write some magic.
1475 *
1476 * Call this w/ Tx/Rx suspended.
1477 */
1478 static int
1479 atw_rf3000_init(sc)
1480 struct atw_softc *sc;
1481 {
1482 int rc = 0;
1483
1484 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1485
1486 atw_rfio_enable(sc, 1);
1487
1488 /* enable diversity */
1489 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1490
1491 if (rc != 0)
1492 goto out;
1493
1494 /* sensible setting from a binary-only driver */
1495 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1496 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1497
1498 if (rc != 0)
1499 goto out;
1500
1501 /* magic from a binary-only driver */
1502 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1503 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1504
1505 if (rc != 0)
1506 goto out;
1507
1508 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1509
1510 if (rc != 0)
1511 goto out;
1512
1513 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1514
1515 if (rc != 0)
1516 goto out;
1517
1518 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1519
1520 if (rc != 0)
1521 goto out;
1522
1523 /* CCA is acquisition sensitive */
1524 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1525 LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1526
1527 if (rc != 0)
1528 goto out;
1529
1530 out:
1531 atw_rfio_enable(sc, 0);
1532 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1533 return rc;
1534 }
1535
1536 #ifdef ATW_DEBUG
1537 static void
1538 atw_rf3000_print(sc)
1539 struct atw_softc *sc;
1540 {
1541 struct ifnet *ifp = &sc->sc_ic.ic_if;
1542 u_int addr, val;
1543
1544 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1545 return;
1546
1547 for (addr = 0x01; addr <= 0x15; addr++) {
1548 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1549 if (atw_rf3000_read(sc, addr, &val) != 0) {
1550 printf("<unknown> (quitting print-out)\n");
1551 break;
1552 }
1553 printf("%08x\n", val);
1554 }
1555 }
1556 #endif /* ATW_DEBUG */
1557
1558 /* Set the power settings on the BBP for channel `chan'. */
1559 static int
1560 atw_rf3000_tune(sc, chan)
1561 struct atw_softc *sc;
1562 u_int8_t chan;
1563 {
1564 int rc = 0;
1565 u_int32_t reg;
1566 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1567
1568 atw_rfio_enable(sc, 1);
1569
1570 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1571 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1572 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1573
1574 /* odd channels: LSB, even channels: MSB */
1575 if (chan % 2 == 1) {
1576 txpower &= 0xFF;
1577 lpf_cutoff &= 0xFF;
1578 lna_gs_thresh &= 0xFF;
1579 } else {
1580 txpower >>= 8;
1581 lpf_cutoff >>= 8;
1582 lna_gs_thresh >>= 8;
1583 }
1584
1585 #ifdef ATW_DEBUG
1586 atw_rf3000_print(sc);
1587 #endif /* ATW_DEBUG */
1588
1589 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1590 "lna_gs_thresh %02x\n",
1591 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1592
1593 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1594 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1595 goto out;
1596
1597 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1598 goto out;
1599
1600 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1601 goto out;
1602
1603 /* from a binary-only driver. */
1604 reg = ATW_READ(sc, ATW_PLCPHD);
1605 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1606 reg |= LSHIFT(txpower << 2, ATW_PLCPHD_SERVICE_MASK);
1607 ATW_WRITE(sc, ATW_PLCPHD, reg);
1608
1609 #ifdef ATW_DEBUG
1610 atw_rf3000_print(sc);
1611 #endif /* ATW_DEBUG */
1612
1613 out:
1614 atw_rfio_enable(sc, 0);
1615
1616 return rc;
1617 }
1618
1619 /* Write a register on the RF3000 baseband processor using the
1620 * registers provided by the ADM8211 for this purpose.
1621 *
1622 * Return 0 on success.
1623 */
1624 static int
1625 atw_rf3000_write(sc, addr, val)
1626 struct atw_softc *sc;
1627 u_int addr, val;
1628 {
1629 u_int32_t reg;
1630 int i;
1631
1632 for (i = 1000; --i >= 0; ) {
1633 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1634 break;
1635 DELAY(100);
1636 }
1637
1638 if (i < 0) {
1639 printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1640 return ETIMEDOUT;
1641 }
1642
1643 reg = sc->sc_bbpctl_wr |
1644 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1645 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1646
1647 ATW_WRITE(sc, ATW_BBPCTL, reg);
1648
1649 for (i = 1000; --i >= 0; ) {
1650 DELAY(100);
1651 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1652 break;
1653 }
1654
1655 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1656
1657 if (i < 0) {
1658 printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1659 return ETIMEDOUT;
1660 }
1661 return 0;
1662 }
1663
1664 /* Read a register on the RF3000 baseband processor using the registers
1665 * the ADM8211 provides for this purpose.
1666 *
1667 * The 7-bit register address is addr. Record the 8-bit data in the register
1668 * in *val.
1669 *
1670 * Return 0 on success.
1671 *
1672 * XXX This does not seem to work. The ADM8211 must require more or
1673 * different magic to read the chip than to write it. Possibly some
1674 * of the magic I have derived from a binary-only driver concerns
1675 * the "chip address" (see the RF3000 manual).
1676 */
1677 #ifdef ATW_DEBUG
1678 static int
1679 atw_rf3000_read(sc, addr, val)
1680 struct atw_softc *sc;
1681 u_int addr, *val;
1682 {
1683 u_int32_t reg;
1684 int i;
1685
1686 for (i = 1000; --i >= 0; ) {
1687 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1688 break;
1689 DELAY(100);
1690 }
1691
1692 if (i < 0) {
1693 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1694 sc->sc_dev.dv_xname);
1695 return ETIMEDOUT;
1696 }
1697
1698 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1699
1700 ATW_WRITE(sc, ATW_BBPCTL, reg);
1701
1702 for (i = 1000; --i >= 0; ) {
1703 DELAY(100);
1704 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1705 break;
1706 }
1707
1708 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1709
1710 if (i < 0) {
1711 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1712 sc->sc_dev.dv_xname, reg);
1713 return ETIMEDOUT;
1714 }
1715 if (val != NULL)
1716 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1717 return 0;
1718 }
1719 #endif /* ATW_DEBUG */
1720
1721 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1722 * provided by the ADM8211 for that purpose.
1723 *
1724 * val is 18 bits of data, and val is the 4-bit address of the register.
1725 *
1726 * Return 0 on success.
1727 */
1728 static int
1729 atw_si4126_write(sc, addr, val)
1730 struct atw_softc *sc;
1731 u_int addr, val;
1732 {
1733 u_int32_t reg;
1734 int i;
1735
1736 for (i = 1000; --i >= 0; ) {
1737 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1738 break;
1739 DELAY(100);
1740 }
1741
1742 if (i < 0) {
1743 printf("%s: start atw_si4126_write, SYNCTL busy\n",
1744 sc->sc_dev.dv_xname);
1745 return ETIMEDOUT;
1746 }
1747
1748 reg = sc->sc_synctl_wr |
1749 LSHIFT(((val & 0x3ffff) << 4) | (addr & 0xf), ATW_SYNCTL_DATA_MASK);
1750
1751 ATW_WRITE(sc, ATW_SYNCTL, reg);
1752
1753 for (i = 1000; --i >= 0; ) {
1754 DELAY(100);
1755 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1756 break;
1757 }
1758
1759 /* restore to acceptable starting condition */
1760 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1761
1762 if (i < 0) {
1763 printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1764 sc->sc_dev.dv_xname, reg);
1765 return ETIMEDOUT;
1766 }
1767 return 0;
1768 }
1769
1770 /* Read 18-bit data from the 4-bit address addr in Si4126
1771 * RF synthesizer and write the data to *val. Return 0 on success.
1772 *
1773 * XXX This does not seem to work. The ADM8211 must require more or
1774 * different magic to read the chip than to write it.
1775 */
1776 #ifdef ATW_DEBUG
1777 static int
1778 atw_si4126_read(sc, addr, val)
1779 struct atw_softc *sc;
1780 u_int addr;
1781 u_int *val;
1782 {
1783 u_int32_t reg;
1784 int i;
1785
1786 for (i = 1000; --i >= 0; ) {
1787 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1788 break;
1789 DELAY(100);
1790 }
1791
1792 if (i < 0) {
1793 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1794 sc->sc_dev.dv_xname);
1795 return ETIMEDOUT;
1796 }
1797
1798 reg = sc->sc_synctl_rd | LSHIFT(addr & 0xf, ATW_SYNCTL_DATA_MASK);
1799
1800 ATW_WRITE(sc, ATW_SYNCTL, reg);
1801
1802 for (i = 1000; --i >= 0; ) {
1803 DELAY(100);
1804 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1805 break;
1806 }
1807
1808 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1809
1810 if (i < 0) {
1811 printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1812 sc->sc_dev.dv_xname, reg);
1813 return ETIMEDOUT;
1814 }
1815 if (val != NULL)
1816 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1817 ATW_SYNCTL_DATA_MASK);
1818 return 0;
1819 }
1820 #endif /* ATW_DEBUG */
1821
1822 /* XXX is the endianness correct? test. */
1823 #define atw_calchash(addr) \
1824 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1825
1826 /*
1827 * atw_filter_setup:
1828 *
1829 * Set the ADM8211's receive filter.
1830 */
1831 static void
1832 atw_filter_setup(sc)
1833 struct atw_softc *sc;
1834 {
1835 struct ieee80211com *ic = &sc->sc_ic;
1836 struct ethercom *ec = &ic->ic_ec;
1837 struct ifnet *ifp = &sc->sc_ic.ic_if;
1838 int hash;
1839 u_int32_t hashes[2] = { 0, 0 };
1840 struct ether_multi *enm;
1841 struct ether_multistep step;
1842
1843 DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1844 sc->sc_dev.dv_xname, sc->sc_flags));
1845
1846 /*
1847 * If we're running, idle the receive engine. If we're NOT running,
1848 * we're being called from atw_init(), and our writing ATW_NAR will
1849 * start the transmit and receive processes in motion.
1850 */
1851 if (ifp->if_flags & IFF_RUNNING)
1852 atw_idle(sc, ATW_NAR_SR);
1853
1854 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1855
1856 ifp->if_flags &= ~IFF_ALLMULTI;
1857
1858 if (ifp->if_flags & IFF_PROMISC) {
1859 sc->sc_opmode |= ATW_NAR_PR;
1860 allmulti:
1861 ifp->if_flags |= IFF_ALLMULTI;
1862 goto setit;
1863 }
1864
1865 /*
1866 * Program the 64-bit multicast hash filter.
1867 */
1868 ETHER_FIRST_MULTI(step, ec, enm);
1869 while (enm != NULL) {
1870 /* XXX */
1871 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1872 ETHER_ADDR_LEN) != 0)
1873 goto allmulti;
1874
1875 hash = atw_calchash(enm->enm_addrlo);
1876 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1877 ETHER_NEXT_MULTI(step, enm);
1878 }
1879
1880 if (ifp->if_flags & IFF_BROADCAST) {
1881 hash = atw_calchash(etherbroadcastaddr);
1882 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1883 }
1884
1885 /* all bits set => hash is useless */
1886 if (~(hashes[0] & hashes[1]) == 0)
1887 goto allmulti;
1888
1889 setit:
1890 if (ifp->if_flags & IFF_ALLMULTI)
1891 sc->sc_opmode |= ATW_NAR_MM;
1892
1893 /* XXX in scan mode, do not filter packets. maybe this is
1894 * unnecessary.
1895 */
1896 if (ic->ic_state == IEEE80211_S_SCAN)
1897 sc->sc_opmode |= ATW_NAR_PR;
1898
1899 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1900 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1901 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1902 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1903 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1904
1905 DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1906 }
1907
1908 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1909 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1910 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1911 * no beacon with the preferred BSSID and SSID in the number of
1912 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1913 */
1914 static void
1915 atw_write_bssid(sc)
1916 struct atw_softc *sc;
1917 {
1918 struct ieee80211com *ic = &sc->sc_ic;
1919 u_int8_t *bssid;
1920
1921 bssid = ic->ic_bss->ni_bssid;
1922
1923 ATW_WRITE(sc, ATW_ABDA1,
1924 (ATW_READ(sc, ATW_ABDA1) &
1925 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1926 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1927 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1928
1929 ATW_WRITE(sc, ATW_BSSID0,
1930 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1931 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1932 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1933 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1934
1935 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1936 ether_sprintf(sc->sc_bssid)));
1937 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1938
1939 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1940 }
1941
1942 /* Tell the ADM8211 how many beacon intervals must pass without
1943 * receiving a beacon with the preferred BSSID & SSID set by
1944 * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
1945 * raised.
1946 */
1947 static void
1948 atw_write_bcn_thresh(sc)
1949 struct atw_softc *sc;
1950 {
1951 struct ieee80211com *ic = &sc->sc_ic;
1952 int lost_bcn_thresh;
1953
1954 /* Lose link after one second or 7 beacons, whichever comes
1955 * first, but do not lose link before 2 beacons are lost.
1956 *
1957 * In host AP mode, set the lost-beacon threshold to 0.
1958 */
1959 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1960 lost_bcn_thresh = 0;
1961 else
1962 lost_bcn_thresh = MAX(2,
1963 MIN(1000000/(IEEE80211_DUR_TU * ic->ic_bss->ni_intval), 7));
1964
1965 /* XXX resets wake-up status bits */
1966 ATW_WRITE(sc, ATW_WCSR,
1967 (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
1968 (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
1969
1970 DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
1971 sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
1972
1973 sc->sc_lost_bcn_thresh = lost_bcn_thresh;
1974
1975 DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
1976 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
1977 }
1978
1979 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1980 * 16-bit word.
1981 */
1982 static void
1983 atw_write_sram(sc, ofs, buf, buflen)
1984 struct atw_softc *sc;
1985 u_int ofs;
1986 u_int8_t *buf;
1987 u_int buflen;
1988 {
1989 u_int i;
1990 u_int8_t *ptr;
1991
1992 memcpy(&sc->sc_sram[ofs], buf, buflen);
1993
1994 if (ofs % 2 != 0) {
1995 ofs--;
1996 buflen++;
1997 }
1998
1999 if (buflen % 2 != 0)
2000 buflen++;
2001
2002 assert(buflen + ofs <= ATW_SRAM_SIZE);
2003
2004 ptr = &sc->sc_sram[ofs];
2005
2006 for (i = 0; i < buflen; i += 2) {
2007 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2008 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2009 DELAY(atw_writewep_delay);
2010
2011 ATW_WRITE(sc, ATW_WESK,
2012 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2013 DELAY(atw_writewep_delay);
2014 }
2015 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2016
2017 if (sc->sc_if.if_flags & IFF_DEBUG) {
2018 int n_octets = 0;
2019 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2020 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2021 for (i = 0; i < buflen; i++) {
2022 printf(" %02x", ptr[i]);
2023 if (++n_octets % 24 == 0)
2024 printf("\n");
2025 }
2026 if (n_octets % 24 != 0)
2027 printf("\n");
2028 }
2029 }
2030
2031 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2032 static void
2033 atw_write_wep(sc)
2034 struct atw_softc *sc;
2035 {
2036 struct ieee80211com *ic = &sc->sc_ic;
2037 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2038 u_int8_t buf[IEEE80211_WEP_NKID]
2039 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2040 u_int32_t reg;
2041 int i;
2042
2043 sc->sc_wepctl = 0;
2044 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2045
2046 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2047 return;
2048
2049 memset(&buf[0][0], 0, sizeof(buf));
2050
2051 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2052 if (ic->ic_nw_keys[i].wk_len > 5) {
2053 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2054 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2055 buf[i][1] = ATW_WEP_ENABLED;
2056 } else {
2057 buf[i][1] = 0;
2058 continue;
2059 }
2060 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2061 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2062 ic->ic_nw_keys[i].wk_len - 1);
2063 }
2064
2065 reg = ATW_READ(sc, ATW_MACTEST);
2066 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2067 reg &= ~ATW_MACTEST_KEYID_MASK;
2068 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2069 ATW_WRITE(sc, ATW_MACTEST, reg);
2070
2071 /* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2072 * throughout.)
2073 */
2074 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2075 if (sc->sc_if.if_flags & IFF_LINK2)
2076 sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2077
2078 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2079 sizeof(buf));
2080 }
2081
2082 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2083
2084 static void
2085 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2086 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2087 {
2088 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2089
2090 switch (subtype) {
2091 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2092 /* do nothing: hardware answers probe request */
2093 break;
2094 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2095 case IEEE80211_FC0_SUBTYPE_BEACON:
2096 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2097 break;
2098 default:
2099 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2100 break;
2101 }
2102 return;
2103 }
2104
2105 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2106 * of IBSSs with like SSID/channel but different BSSID. It joins the
2107 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2108 * convention. Possibly the ADMtek chip does this for us; I will have
2109 * to test to find out.
2110 *
2111 * XXX we should add the duration field of the received beacon to
2112 * the TSF time it contains before comparing it with the ADM8211's
2113 * TSF.
2114 */
2115 static void
2116 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2117 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2118 {
2119 struct atw_softc *sc;
2120 struct ieee80211_frame *wh;
2121 u_int64_t tsft, bcn_tsft;
2122 u_int32_t tsftl, tsfth;
2123 int do_print = 0;
2124
2125 sc = (struct atw_softc*)ic->ic_if.if_softc;
2126
2127 if (ic->ic_if.if_flags & IFF_DEBUG)
2128 do_print = (ic->ic_if.if_flags & IFF_LINK0)
2129 ? 1 : ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval);
2130
2131 wh = mtod(m0, struct ieee80211_frame *);
2132
2133 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2134
2135 if (ic->ic_state != IEEE80211_S_RUN) {
2136 if (do_print)
2137 printf("%s: atw_recv_beacon: not running\n",
2138 sc->sc_dev.dv_xname);
2139 return;
2140 }
2141
2142 if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2143 ic->ic_bss->ni_chan)) == NULL) {
2144 if (do_print)
2145 printf("%s: atw_recv_beacon: no node %s\n",
2146 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2147 return;
2148 }
2149
2150 if (ieee80211_match_bss(ic, ni) != 0) {
2151 if (do_print)
2152 printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2153 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2154 return;
2155 }
2156
2157 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2158 return;
2159
2160 if (do_print)
2161 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2162 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2163
2164 if (ic->ic_opmode != IEEE80211_M_IBSS)
2165 return;
2166
2167 /* If we read TSFTL right before rollover, we read a TSF timer
2168 * that is too high rather than too low. This prevents a spurious
2169 * synchronization down the line, however, our IBSS could suffer
2170 * from a creeping TSF....
2171 */
2172 tsftl = ATW_READ(sc, ATW_TSFTL);
2173 tsfth = ATW_READ(sc, ATW_TSFTH);
2174
2175 tsft = (u_int64_t)tsfth << 32 | tsftl;
2176 bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2177
2178 if (do_print)
2179 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2180 sc->sc_dev.dv_xname, tsft, bcn_tsft);
2181
2182 /* we are faster, let the other guy catch up */
2183 if (bcn_tsft < tsft)
2184 return;
2185
2186 if (do_print)
2187 printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2188 ether_sprintf(wh->i_addr2));
2189
2190 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2191
2192 #if 0
2193 atw_tsf(sc);
2194 #endif
2195
2196 /* negotiate rates with new IBSS */
2197 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2198 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2199 if (ni->ni_rates.rs_nrates == 0) {
2200 printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2201 ether_sprintf(ni->ni_bssid));
2202 return;
2203 }
2204
2205 if (do_print) {
2206 printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2207 ether_sprintf(ic->ic_bss->ni_bssid));
2208 printf("%s ", ether_sprintf(ni->ni_bssid));
2209 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2210 }
2211
2212 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2213
2214 atw_write_bssid(sc);
2215 atw_write_bcn_thresh(sc);
2216 atw_start_beacon(sc, 1);
2217 }
2218
2219 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2220 * In ad hoc mode, the SSID is written to the beacons sent by the
2221 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2222 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2223 * indications.
2224 */
2225 static void
2226 atw_write_ssid(sc)
2227 struct atw_softc *sc;
2228 {
2229 struct ieee80211com *ic = &sc->sc_ic;
2230 /* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2231 u_int8_t buf[1 /* length */ + IEEE80211_NWID_LEN +
2232 1 /* for a round number */];
2233
2234 memset(buf, 0, sizeof(buf));
2235 buf[0] = ic->ic_bss->ni_esslen;
2236 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2237
2238 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2239 }
2240
2241 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2242 * In ad hoc mode, the supported rates are written to beacons sent by the
2243 * ADM8211.
2244 */
2245 static void
2246 atw_write_sup_rates(sc)
2247 struct atw_softc *sc;
2248 {
2249 struct ieee80211com *ic = &sc->sc_ic;
2250 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2251 * supported rates
2252 */
2253 u_int8_t buf[1 /* length */ + IEEE80211_RATE_SIZE +
2254 1 /* for a round number */];
2255
2256 memset(buf, 0, sizeof(buf));
2257
2258 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2259
2260 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2261 ic->ic_bss->ni_rates.rs_nrates);
2262
2263 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2264 }
2265
2266 /* Start/stop sending beacons. */
2267 void
2268 atw_start_beacon(struct atw_softc *sc, int start)
2269 {
2270 struct ieee80211com *ic = &sc->sc_ic;
2271 u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2272
2273 if (ATW_IS_ENABLED(sc) == 0)
2274 return;
2275
2276 len = capinfo = 0;
2277
2278 /* start beacons */
2279 len = sizeof(struct ieee80211_frame) +
2280 8 /* timestamp */ + 2 /* beacon interval */ +
2281 2 /* capability info */ +
2282 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2283 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2284 3 /* DS parameters */ +
2285 IEEE80211_CRC_LEN;
2286
2287 reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2288
2289 reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2290
2291 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2292 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2293
2294 if (!start)
2295 return;
2296
2297 /* TBD use ni_capinfo */
2298
2299 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2300 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2301 if (ic->ic_flags & IEEE80211_F_WEPON)
2302 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2303
2304 switch (ic->ic_opmode) {
2305 case IEEE80211_M_IBSS:
2306 len += 4; /* IBSS parameters */
2307 capinfo |= IEEE80211_CAPINFO_IBSS;
2308 break;
2309 case IEEE80211_M_HOSTAP:
2310 /* XXX 6-byte minimum TIM */
2311 len += atw_beacon_len_adjust;
2312 capinfo |= IEEE80211_CAPINFO_ESS;
2313 break;
2314 default:
2315 return;
2316 }
2317
2318 reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2319 reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2320
2321 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2322 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2323
2324 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2325 sc->sc_dev.dv_xname, reg_bcnt));
2326
2327 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2328 sc->sc_dev.dv_xname, reg_cap1));
2329 }
2330
2331 /* First beacon was sent at time 0 microseconds, current time is
2332 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2333 * microseconds. Return the expected time in microseconds for the
2334 * beacon after next.
2335 */
2336 static __inline u_int64_t
2337 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2338 {
2339 return tsft + (tbtt - tsft % tbtt);
2340 }
2341
2342 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2343 * the ieee80211com.
2344 *
2345 * Predict the next target beacon transmission time (TBTT) and
2346 * write it to the ADM8211.
2347 */
2348 static void
2349 atw_tsf(struct atw_softc *sc)
2350 {
2351 #define TBTTOFS 20 /* TU */
2352
2353 struct ieee80211com *ic = &sc->sc_ic;
2354 u_int64_t tsft, tbtt;
2355
2356 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2357 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2358 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2359 tsft = ATW_READ(sc, ATW_TSFTH);
2360 tsft <<= 32;
2361 tsft |= ATW_READ(sc, ATW_TSFTL);
2362 *(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2363 } else
2364 tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2365
2366 tbtt = atw_predict_beacon(tsft,
2367 ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2368
2369 /* skip one more beacon so that the TBTT cannot pass before
2370 * we've programmed it, and also so that we can subtract a
2371 * few TU so that we wake a little before TBTT.
2372 */
2373 tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2374
2375 /* wake up a little early */
2376 tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2377
2378 DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2379 sc->sc_dev.dv_xname, tsft, tbtt));
2380
2381 ATW_WRITE(sc, ATW_TOFS1,
2382 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2383 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2384 LSHIFT(
2385 MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2386 ATW_TOFS1_TBTTPRE_MASK));
2387 #undef TBTTOFS
2388 }
2389
2390 static void
2391 atw_next_scan(void *arg)
2392 {
2393 struct atw_softc *sc = arg;
2394 struct ieee80211com *ic = &sc->sc_ic;
2395 struct ifnet *ifp = &ic->ic_if;
2396 int s;
2397
2398 /* don't call atw_start w/o network interrupts blocked */
2399 s = splnet();
2400 if (ic->ic_state == IEEE80211_S_SCAN)
2401 ieee80211_next_scan(ifp);
2402 splx(s);
2403 }
2404
2405 /* Synchronize the hardware state with the software state. */
2406 static int
2407 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2408 {
2409 struct ifnet *ifp = &ic->ic_if;
2410 struct atw_softc *sc = ifp->if_softc;
2411 enum ieee80211_state ostate;
2412 int error;
2413
2414 ostate = ic->ic_state;
2415
2416 if (nstate == IEEE80211_S_INIT) {
2417 callout_stop(&sc->sc_scan_ch);
2418 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2419 atw_start_beacon(sc, 0);
2420 return (*sc->sc_newstate)(ic, nstate, arg);
2421 }
2422
2423 if ((error = atw_tune(sc)) != 0)
2424 return error;
2425
2426 switch (nstate) {
2427 case IEEE80211_S_ASSOC:
2428 break;
2429 case IEEE80211_S_INIT:
2430 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2431 break;
2432 case IEEE80211_S_SCAN:
2433 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2434 atw_write_bssid(sc);
2435
2436 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2437 atw_next_scan, sc);
2438
2439 break;
2440 case IEEE80211_S_RUN:
2441 if (ic->ic_opmode == IEEE80211_M_STA)
2442 break;
2443 /*FALLTHROUGH*/
2444 case IEEE80211_S_AUTH:
2445 atw_write_bssid(sc);
2446 atw_write_bcn_thresh(sc);
2447 atw_write_ssid(sc);
2448 atw_write_sup_rates(sc);
2449
2450 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2451 ic->ic_opmode == IEEE80211_M_MONITOR)
2452 break;
2453
2454 /* set listen interval
2455 * XXX do software units agree w/ hardware?
2456 */
2457 ATW_WRITE(sc, ATW_BPLI,
2458 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2459 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2460 ATW_BPLI_LI_MASK));
2461
2462 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2463 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2464
2465 atw_tsf(sc);
2466 break;
2467 }
2468
2469 if (nstate != IEEE80211_S_SCAN)
2470 callout_stop(&sc->sc_scan_ch);
2471
2472 if (nstate == IEEE80211_S_RUN &&
2473 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2474 ic->ic_opmode == IEEE80211_M_IBSS))
2475 atw_start_beacon(sc, 1);
2476 else
2477 atw_start_beacon(sc, 0);
2478
2479 return (*sc->sc_newstate)(ic, nstate, arg);
2480 }
2481
2482 /*
2483 * atw_add_rxbuf:
2484 *
2485 * Add a receive buffer to the indicated descriptor.
2486 */
2487 int
2488 atw_add_rxbuf(sc, idx)
2489 struct atw_softc *sc;
2490 int idx;
2491 {
2492 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2493 struct mbuf *m;
2494 int error;
2495
2496 MGETHDR(m, M_DONTWAIT, MT_DATA);
2497 if (m == NULL)
2498 return (ENOBUFS);
2499
2500 MCLGET(m, M_DONTWAIT);
2501 if ((m->m_flags & M_EXT) == 0) {
2502 m_freem(m);
2503 return (ENOBUFS);
2504 }
2505
2506 if (rxs->rxs_mbuf != NULL)
2507 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2508
2509 rxs->rxs_mbuf = m;
2510
2511 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2512 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2513 BUS_DMA_READ|BUS_DMA_NOWAIT);
2514 if (error) {
2515 printf("%s: can't load rx DMA map %d, error = %d\n",
2516 sc->sc_dev.dv_xname, idx, error);
2517 panic("atw_add_rxbuf"); /* XXX */
2518 }
2519
2520 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2521 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2522
2523 ATW_INIT_RXDESC(sc, idx);
2524
2525 return (0);
2526 }
2527
2528 /*
2529 * atw_stop: [ ifnet interface function ]
2530 *
2531 * Stop transmission on the interface.
2532 */
2533 void
2534 atw_stop(ifp, disable)
2535 struct ifnet *ifp;
2536 int disable;
2537 {
2538 struct atw_softc *sc = ifp->if_softc;
2539 struct ieee80211com *ic = &sc->sc_ic;
2540 struct atw_txsoft *txs;
2541
2542 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2543
2544 /* Disable interrupts. */
2545 ATW_WRITE(sc, ATW_IER, 0);
2546
2547 /* Stop the transmit and receive processes. */
2548 sc->sc_opmode = 0;
2549 ATW_WRITE(sc, ATW_NAR, 0);
2550 ATW_WRITE(sc, ATW_TDBD, 0);
2551 ATW_WRITE(sc, ATW_TDBP, 0);
2552 ATW_WRITE(sc, ATW_RDB, 0);
2553
2554 /*
2555 * Release any queued transmit buffers.
2556 */
2557 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2558 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2559 if (txs->txs_mbuf != NULL) {
2560 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2561 m_freem(txs->txs_mbuf);
2562 txs->txs_mbuf = NULL;
2563 }
2564 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2565 }
2566
2567 if (disable) {
2568 atw_rxdrain(sc);
2569 atw_disable(sc);
2570 }
2571
2572 /*
2573 * Mark the interface down and cancel the watchdog timer.
2574 */
2575 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2576 ifp->if_timer = 0;
2577
2578 /* XXX */
2579 atw_reset(sc);
2580 }
2581
2582 /*
2583 * atw_rxdrain:
2584 *
2585 * Drain the receive queue.
2586 */
2587 void
2588 atw_rxdrain(sc)
2589 struct atw_softc *sc;
2590 {
2591 struct atw_rxsoft *rxs;
2592 int i;
2593
2594 for (i = 0; i < ATW_NRXDESC; i++) {
2595 rxs = &sc->sc_rxsoft[i];
2596 if (rxs->rxs_mbuf == NULL)
2597 continue;
2598 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2599 m_freem(rxs->rxs_mbuf);
2600 rxs->rxs_mbuf = NULL;
2601 }
2602 }
2603
2604 /*
2605 * atw_detach:
2606 *
2607 * Detach an ADM8211 interface.
2608 */
2609 int
2610 atw_detach(sc)
2611 struct atw_softc *sc;
2612 {
2613 struct ifnet *ifp = &sc->sc_ic.ic_if;
2614 struct atw_rxsoft *rxs;
2615 struct atw_txsoft *txs;
2616 int i;
2617
2618 /*
2619 * Succeed now if there isn't any work to do.
2620 */
2621 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2622 return (0);
2623
2624 ieee80211_ifdetach(ifp);
2625 if_detach(ifp);
2626
2627 for (i = 0; i < ATW_NRXDESC; i++) {
2628 rxs = &sc->sc_rxsoft[i];
2629 if (rxs->rxs_mbuf != NULL) {
2630 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2631 m_freem(rxs->rxs_mbuf);
2632 rxs->rxs_mbuf = NULL;
2633 }
2634 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2635 }
2636 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2637 txs = &sc->sc_txsoft[i];
2638 if (txs->txs_mbuf != NULL) {
2639 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2640 m_freem(txs->txs_mbuf);
2641 txs->txs_mbuf = NULL;
2642 }
2643 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2644 }
2645 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2646 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2647 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2648 sizeof(struct atw_control_data));
2649 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2650
2651 shutdownhook_disestablish(sc->sc_sdhook);
2652 powerhook_disestablish(sc->sc_powerhook);
2653
2654 if (sc->sc_srom)
2655 free(sc->sc_srom, M_DEVBUF);
2656
2657 return (0);
2658 }
2659
2660 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2661 void
2662 atw_shutdown(arg)
2663 void *arg;
2664 {
2665 struct atw_softc *sc = arg;
2666
2667 atw_stop(&sc->sc_ic.ic_if, 1);
2668 }
2669
2670 int
2671 atw_intr(arg)
2672 void *arg;
2673 {
2674 struct atw_softc *sc = arg;
2675 struct ifnet *ifp = &sc->sc_ic.ic_if;
2676 u_int32_t status, rxstatus, txstatus, linkstatus;
2677 int handled = 0, txthresh;
2678
2679 #ifdef DEBUG
2680 if (ATW_IS_ENABLED(sc) == 0)
2681 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2682 #endif
2683
2684 /*
2685 * If the interface isn't running, the interrupt couldn't
2686 * possibly have come from us.
2687 */
2688 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2689 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2690 return (0);
2691
2692 for (;;) {
2693 status = ATW_READ(sc, ATW_STSR);
2694
2695 if (status)
2696 ATW_WRITE(sc, ATW_STSR, status);
2697
2698 if (sc->sc_intr_ack != NULL)
2699 (*sc->sc_intr_ack)(sc);
2700
2701 #ifdef ATW_DEBUG
2702 #define PRINTINTR(flag) do { \
2703 if ((status & flag) != 0) { \
2704 printf("%s" #flag, delim); \
2705 delim = ","; \
2706 } \
2707 } while (0)
2708
2709 if (atw_debug > 1 && status) {
2710 const char *delim = "<";
2711
2712 printf("%s: reg[STSR] = %x",
2713 sc->sc_dev.dv_xname, status);
2714
2715 PRINTINTR(ATW_INTR_FBE);
2716 PRINTINTR(ATW_INTR_LINKOFF);
2717 PRINTINTR(ATW_INTR_LINKON);
2718 PRINTINTR(ATW_INTR_RCI);
2719 PRINTINTR(ATW_INTR_RDU);
2720 PRINTINTR(ATW_INTR_RPS);
2721 PRINTINTR(ATW_INTR_TCI);
2722 PRINTINTR(ATW_INTR_TDU);
2723 PRINTINTR(ATW_INTR_TLT);
2724 PRINTINTR(ATW_INTR_TPS);
2725 PRINTINTR(ATW_INTR_TRT);
2726 PRINTINTR(ATW_INTR_TUF);
2727 PRINTINTR(ATW_INTR_BCNTC);
2728 PRINTINTR(ATW_INTR_ATIME);
2729 PRINTINTR(ATW_INTR_TBTT);
2730 PRINTINTR(ATW_INTR_TSCZ);
2731 PRINTINTR(ATW_INTR_TSFTF);
2732 printf(">\n");
2733 }
2734 #undef PRINTINTR
2735 #endif /* ATW_DEBUG */
2736
2737 if ((status & sc->sc_inten) == 0)
2738 break;
2739
2740 handled = 1;
2741
2742 rxstatus = status & sc->sc_rxint_mask;
2743 txstatus = status & sc->sc_txint_mask;
2744 linkstatus = status & sc->sc_linkint_mask;
2745
2746 if (linkstatus) {
2747 atw_linkintr(sc, linkstatus);
2748 }
2749
2750 if (rxstatus) {
2751 /* Grab any new packets. */
2752 atw_rxintr(sc);
2753
2754 if (rxstatus & ATW_INTR_RDU) {
2755 printf("%s: receive ring overrun\n",
2756 sc->sc_dev.dv_xname);
2757 /* Get the receive process going again. */
2758 ATW_WRITE(sc, ATW_RDR, 0x1);
2759 break;
2760 }
2761 }
2762
2763 if (txstatus) {
2764 /* Sweep up transmit descriptors. */
2765 atw_txintr(sc);
2766
2767 if (txstatus & ATW_INTR_TLT)
2768 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2769 sc->sc_dev.dv_xname));
2770
2771 if (txstatus & ATW_INTR_TRT)
2772 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2773 sc->sc_dev.dv_xname));
2774
2775 /* If Tx under-run, increase our transmit threshold
2776 * if another is available.
2777 */
2778 txthresh = sc->sc_txthresh + 1;
2779 if ((txstatus & ATW_INTR_TUF) &&
2780 sc->sc_txth[txthresh].txth_name != NULL) {
2781 /* Idle the transmit process. */
2782 atw_idle(sc, ATW_NAR_ST);
2783
2784 sc->sc_txthresh = txthresh;
2785 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2786 sc->sc_opmode |=
2787 sc->sc_txth[txthresh].txth_opmode;
2788 printf("%s: transmit underrun; new "
2789 "threshold: %s\n", sc->sc_dev.dv_xname,
2790 sc->sc_txth[txthresh].txth_name);
2791
2792 /* Set the new threshold and restart
2793 * the transmit process.
2794 */
2795 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2796 /* XXX Log every Nth underrun from
2797 * XXX now on?
2798 */
2799 }
2800 }
2801
2802 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2803 if (status & ATW_INTR_TPS)
2804 printf("%s: transmit process stopped\n",
2805 sc->sc_dev.dv_xname);
2806 if (status & ATW_INTR_RPS)
2807 printf("%s: receive process stopped\n",
2808 sc->sc_dev.dv_xname);
2809 (void)atw_init(ifp);
2810 break;
2811 }
2812
2813 if (status & ATW_INTR_FBE) {
2814 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2815 (void)atw_init(ifp);
2816 break;
2817 }
2818
2819 /*
2820 * Not handled:
2821 *
2822 * Transmit buffer unavailable -- normal
2823 * condition, nothing to do, really.
2824 *
2825 * Early receive interrupt -- not available on
2826 * all chips, we just use RI. We also only
2827 * use single-segment receive DMA, so this
2828 * is mostly useless.
2829 *
2830 * TBD others
2831 */
2832 }
2833
2834 /* Try to get more packets going. */
2835 atw_start(ifp);
2836
2837 return (handled);
2838 }
2839
2840 /*
2841 * atw_idle:
2842 *
2843 * Cause the transmit and/or receive processes to go idle.
2844 *
2845 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2846 * process in STSR if I clear SR or ST after the process has already
2847 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2848 * do not seem to be too reliable. Perhaps I have the sense of the
2849 * Rx bits switched with the Tx bits?
2850 */
2851 void
2852 atw_idle(sc, bits)
2853 struct atw_softc *sc;
2854 u_int32_t bits;
2855 {
2856 u_int32_t ackmask = 0, opmode, stsr, test0;
2857 int i, s;
2858
2859 /* without this, somehow we run concurrently w/ interrupt handler */
2860 s = splnet();
2861
2862 opmode = sc->sc_opmode & ~bits;
2863
2864 if (bits & ATW_NAR_SR)
2865 ackmask |= ATW_INTR_RPS;
2866
2867 if (bits & ATW_NAR_ST) {
2868 ackmask |= ATW_INTR_TPS;
2869 /* set ATW_NAR_HF to flush TX FIFO. */
2870 opmode |= ATW_NAR_HF;
2871 }
2872
2873 ATW_WRITE(sc, ATW_NAR, opmode);
2874
2875 for (i = 0; i < 1000; i++) {
2876 stsr = ATW_READ(sc, ATW_STSR);
2877 if ((stsr & ackmask) == ackmask)
2878 break;
2879 DELAY(10);
2880 }
2881
2882 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2883
2884 if ((stsr & ackmask) == ackmask)
2885 goto out;
2886
2887 test0 = ATW_READ(sc, ATW_TEST0);
2888
2889 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2890 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2891 printf("%s: transmit process not idle [%s]\n",
2892 sc->sc_dev.dv_xname,
2893 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2894 printf("%s: bits %08x test0 %08x stsr %08x\n",
2895 sc->sc_dev.dv_xname, bits, test0, stsr);
2896 }
2897
2898 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2899 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2900 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2901 sc->sc_dev.dv_xname,
2902 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2903 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2904 sc->sc_dev.dv_xname, bits, test0, stsr));
2905 }
2906 out:
2907 splx(s);
2908 return;
2909 }
2910
2911 /*
2912 * atw_linkintr:
2913 *
2914 * Helper; handle link-status interrupts.
2915 */
2916 void
2917 atw_linkintr(sc, linkstatus)
2918 struct atw_softc *sc;
2919 u_int32_t linkstatus;
2920 {
2921 struct ieee80211com *ic = &sc->sc_ic;
2922
2923 if (ic->ic_state != IEEE80211_S_RUN)
2924 return;
2925
2926 if (linkstatus & ATW_INTR_LINKON) {
2927 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2928 sc->sc_rescan_timer = 0;
2929 } else if (linkstatus & ATW_INTR_LINKOFF) {
2930 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2931 switch (ic->ic_opmode) {
2932 case IEEE80211_M_IBSS:
2933 if (ic->ic_flags & IEEE80211_F_SIBSS)
2934 return;
2935 /* FALL THROUGH */
2936 case IEEE80211_M_STA:
2937 sc->sc_rescan_timer = 3;
2938 ic->ic_if.if_timer = 1;
2939 break;
2940 default:
2941 break;
2942 }
2943 }
2944 }
2945
2946 /*
2947 * atw_rxintr:
2948 *
2949 * Helper; handle receive interrupts.
2950 */
2951 void
2952 atw_rxintr(sc)
2953 struct atw_softc *sc;
2954 {
2955 static int rate_tbl[] = {2, 4, 11, 22, 44};
2956 struct ieee80211com *ic = &sc->sc_ic;
2957 struct ieee80211_node *ni;
2958 struct ieee80211_frame *wh;
2959 struct ifnet *ifp = &ic->ic_if;
2960 struct atw_rxsoft *rxs;
2961 struct mbuf *m;
2962 u_int32_t rxstat;
2963 int i, len, rate, rate0, rssi;
2964
2965 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2966 rxs = &sc->sc_rxsoft[i];
2967
2968 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2969
2970 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2971 rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2972 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2973
2974 if (rxstat & ATW_RXSTAT_OWN)
2975 break; /* We have processed all receive buffers. */
2976
2977 ATW_DPRINTF3(("%s: rssi %d\n", sc->sc_dev.dv_xname, rssi));
2978
2979 /*
2980 * Make sure the packet fit in one buffer. This should
2981 * always be the case.
2982 */
2983 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2984 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2985 printf("%s: incoming packet spilled, resetting\n",
2986 sc->sc_dev.dv_xname);
2987 (void)atw_init(ifp);
2988 return;
2989 }
2990
2991 /*
2992 * If an error occurred, update stats, clear the status
2993 * word, and leave the packet buffer in place. It will
2994 * simply be reused the next time the ring comes around.
2995 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2996 * error.
2997 */
2998
2999 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3000 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3001 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3002 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3003 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3004 ATW_RXSTAT_ICVE)) != 0)) {
3005 #define PRINTERR(bit, str) \
3006 if (rxstat & (bit)) \
3007 printf("%s: receive error: %s\n", \
3008 sc->sc_dev.dv_xname, str)
3009 ifp->if_ierrors++;
3010 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3011 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3012 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3013 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3014 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3015 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3016 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3017 #undef PRINTERR
3018 ATW_INIT_RXDESC(sc, i);
3019 continue;
3020 }
3021
3022 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3023 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3024
3025 /*
3026 * No errors; receive the packet. Note the ADM8211
3027 * includes the CRC in promiscuous mode.
3028 */
3029 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3030
3031 /*
3032 * Allocate a new mbuf cluster. If that fails, we are
3033 * out of memory, and must drop the packet and recycle
3034 * the buffer that's already attached to this descriptor.
3035 */
3036 m = rxs->rxs_mbuf;
3037 if (atw_add_rxbuf(sc, i) != 0) {
3038 ifp->if_ierrors++;
3039 ATW_INIT_RXDESC(sc, i);
3040 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3041 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3042 continue;
3043 }
3044
3045 ifp->if_ipackets++;
3046 if (sc->sc_opmode & ATW_NAR_PR)
3047 m->m_flags |= M_HASFCS;
3048 m->m_pkthdr.rcvif = ifp;
3049 m->m_pkthdr.len = m->m_len = len;
3050
3051 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3052 rate = 0;
3053 else
3054 rate = rate_tbl[rate0];
3055
3056 #if NBPFILTER > 0
3057 /* Pass this up to any BPF listeners. */
3058 if (sc->sc_radiobpf != NULL) {
3059 struct mbuf mb;
3060
3061 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3062
3063 tap->ar_rate = rate;
3064 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3065 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3066
3067 /* TBD verify units are dB */
3068 tap->ar_antsignal = rssi;
3069 /* TBD tap->ar_flags */
3070
3071 M_COPY_PKTHDR(&mb, m);
3072 mb.m_data = (caddr_t)tap;
3073 mb.m_len = tap->ar_ihdr.it_len;
3074 mb.m_next = m;
3075 mb.m_pkthdr.len += mb.m_len;
3076 bpf_mtap(sc->sc_radiobpf, &mb);
3077 }
3078 #endif /* NPBFILTER > 0 */
3079
3080 wh = mtod(m, struct ieee80211_frame *);
3081 ni = ieee80211_find_rxnode(ic, wh);
3082 ieee80211_input(ifp, m, ni, rssi, 0);
3083 /*
3084 * The frame may have caused the node to be marked for
3085 * reclamation (e.g. in response to a DEAUTH message)
3086 * so use free_node here instead of unref_node.
3087 */
3088 if (ni == ic->ic_bss)
3089 ieee80211_unref_node(&ni);
3090 else
3091 ieee80211_free_node(ic, ni);
3092 }
3093
3094 /* Update the receive pointer. */
3095 sc->sc_rxptr = i;
3096 }
3097
3098 /*
3099 * atw_txintr:
3100 *
3101 * Helper; handle transmit interrupts.
3102 */
3103 void
3104 atw_txintr(sc)
3105 struct atw_softc *sc;
3106 {
3107 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3108 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3109 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3110 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3111
3112 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3113 struct ifnet *ifp = &sc->sc_ic.ic_if;
3114 struct atw_txsoft *txs;
3115 u_int32_t txstat;
3116
3117 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3118 sc->sc_dev.dv_xname, sc->sc_flags));
3119
3120 ifp->if_flags &= ~IFF_OACTIVE;
3121
3122 /*
3123 * Go through our Tx list and free mbufs for those
3124 * frames that have been transmitted.
3125 */
3126 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3127 ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3128 txs->txs_ndescs,
3129 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3130
3131 #ifdef ATW_DEBUG
3132 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3133 int i;
3134 printf(" txsoft %p transmit chain:\n", txs);
3135 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3136 printf(" descriptor %d:\n", i);
3137 printf(" at_status: 0x%08x\n",
3138 le32toh(sc->sc_txdescs[i].at_stat));
3139 printf(" at_flags: 0x%08x\n",
3140 le32toh(sc->sc_txdescs[i].at_flags));
3141 printf(" at_buf1: 0x%08x\n",
3142 le32toh(sc->sc_txdescs[i].at_buf1));
3143 printf(" at_buf2: 0x%08x\n",
3144 le32toh(sc->sc_txdescs[i].at_buf2));
3145 if (i == txs->txs_lastdesc)
3146 break;
3147 }
3148 }
3149 #endif
3150
3151 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3152 if (txstat & ATW_TXSTAT_OWN)
3153 break;
3154
3155 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3156
3157 sc->sc_txfree += txs->txs_ndescs;
3158
3159 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3160 0, txs->txs_dmamap->dm_mapsize,
3161 BUS_DMASYNC_POSTWRITE);
3162 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3163 m_freem(txs->txs_mbuf);
3164 txs->txs_mbuf = NULL;
3165
3166 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3167
3168 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3169 (txstat & TXSTAT_ERRMASK) != 0) {
3170 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3171 txstat_buf, sizeof(txstat_buf));
3172 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3173 txstat_buf,
3174 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3175 }
3176
3177 /*
3178 * Check for errors and collisions.
3179 */
3180 if (txstat & ATW_TXSTAT_TUF)
3181 sc->sc_stats.ts_tx_tuf++;
3182 if (txstat & ATW_TXSTAT_TLT)
3183 sc->sc_stats.ts_tx_tlt++;
3184 if (txstat & ATW_TXSTAT_TRT)
3185 sc->sc_stats.ts_tx_trt++;
3186 if (txstat & ATW_TXSTAT_TRO)
3187 sc->sc_stats.ts_tx_tro++;
3188 if (txstat & ATW_TXSTAT_SOFBR) {
3189 sc->sc_stats.ts_tx_sofbr++;
3190 }
3191
3192 if ((txstat & ATW_TXSTAT_ES) == 0)
3193 ifp->if_collisions +=
3194 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3195 else
3196 ifp->if_oerrors++;
3197
3198 ifp->if_opackets++;
3199 }
3200
3201 /*
3202 * If there are no more pending transmissions, cancel the watchdog
3203 * timer.
3204 */
3205 if (txs == NULL)
3206 sc->sc_tx_timer = 0;
3207 #undef TXSTAT_ERRMASK
3208 #undef TXSTAT_FMT
3209 }
3210
3211 /*
3212 * atw_watchdog: [ifnet interface function]
3213 *
3214 * Watchdog timer handler.
3215 */
3216 void
3217 atw_watchdog(ifp)
3218 struct ifnet *ifp;
3219 {
3220 struct atw_softc *sc = ifp->if_softc;
3221 struct ieee80211com *ic = &sc->sc_ic;
3222
3223 ifp->if_timer = 0;
3224 if (ATW_IS_ENABLED(sc) == 0)
3225 return;
3226
3227 if (sc->sc_rescan_timer) {
3228 if (--sc->sc_rescan_timer == 0)
3229 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3230 }
3231 if (sc->sc_tx_timer) {
3232 if (--sc->sc_tx_timer == 0 &&
3233 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3234 printf("%s: transmit timeout\n", ifp->if_xname);
3235 ifp->if_oerrors++;
3236 (void)atw_init(ifp);
3237 atw_start(ifp);
3238 }
3239 }
3240 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3241 ifp->if_timer = 1;
3242 ieee80211_watchdog(ifp);
3243 }
3244
3245 /* Compute the 802.11 Duration field and the PLCP Length fields for
3246 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3247 * Write the fields to the ADM8211 Tx header, frm.
3248 *
3249 * TBD use the fragmentation threshold to find the right duration for
3250 * the first & last fragments.
3251 *
3252 * TBD make certain of the duration fields applied by the ADM8211 to each
3253 * fragment. I think that the ADM8211 knows how to subtract the CTS
3254 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3255 * I also think that the ADM8211 does *some* arithmetic for us, because
3256 * otherwise I think we would have to set a first duration for CTS/first
3257 * fragment, a second duration for fragments between the first and the
3258 * last, and a third duration for the last fragment.
3259 *
3260 * TBD make certain that duration fields reflect addition of FCS/WEP
3261 * and correct duration arithmetic as necessary.
3262 */
3263 static void
3264 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3265 int len)
3266 {
3267 int remainder;
3268
3269 /* deal also with encrypted fragments */
3270 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3271 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3272 sc->sc_dev.dv_xname));
3273 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3274 IEEE80211_WEP_CRCLEN;
3275 }
3276
3277 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3278 * duration (XXX added by MAC?).
3279 */
3280 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3281 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3282
3283 if (rate <= 4)
3284 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3285 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3286 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3287 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3288 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3289 else
3290 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3291 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3292 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3293 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3294 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3295
3296 /* lengthen duration if long preamble */
3297 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3298 frm->atw_head_dur +=
3299 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3300 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3301 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3302 IEEE80211_DUR_DS_FAST_PLCPHDR);
3303
3304 if (remainder != 0)
3305 frm->atw_head_dur++;
3306
3307 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3308 (rate == 2 || rate == 4)) {
3309 /* derived from Linux: how could this be right? */
3310 frm->atw_head_plcplen = frm->atw_head_dur;
3311 } else {
3312 frm->atw_head_plcplen = (16 * len) / rate;
3313 remainder = (80 * len) % (rate * 5);
3314
3315 if (remainder != 0) {
3316 frm->atw_head_plcplen++;
3317
3318 /* XXX magic */
3319 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3320 rate == 22 && remainder <= 30)
3321 frm->atw_head_plcplen |= 0x8000;
3322 }
3323 }
3324 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3325 htole16(frm->atw_head_plcplen);
3326 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3327 }
3328
3329 #ifdef ATW_DEBUG
3330 static void
3331 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3332 {
3333 struct atw_softc *sc = ifp->if_softc;
3334 struct mbuf *m;
3335 int i, noctets = 0;
3336
3337 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3338 m0->m_pkthdr.len);
3339
3340 for (m = m0; m; m = m->m_next) {
3341 if (m->m_len == 0)
3342 continue;
3343 for (i = 0; i < m->m_len; i++) {
3344 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3345 if (++noctets % 24 == 0)
3346 printf("\n");
3347 }
3348 }
3349 printf("%s%s: %d bytes emitted\n",
3350 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3351 }
3352 #endif /* ATW_DEBUG */
3353
3354 /*
3355 * atw_start: [ifnet interface function]
3356 *
3357 * Start packet transmission on the interface.
3358 */
3359 void
3360 atw_start(ifp)
3361 struct ifnet *ifp;
3362 {
3363 struct atw_softc *sc = ifp->if_softc;
3364 struct ieee80211com *ic = &sc->sc_ic;
3365 struct ieee80211_node *ni;
3366 struct ieee80211_frame *wh;
3367 struct atw_frame *hh;
3368 struct mbuf *m0, *m;
3369 struct atw_txsoft *txs, *last_txs;
3370 struct atw_txdesc *txd;
3371 int do_encrypt, rate;
3372 bus_dmamap_t dmamap;
3373 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3374
3375 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3376 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3377
3378 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3379 return;
3380
3381 #if 0 /* TBD ??? */
3382 if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3383 return;
3384 #endif
3385
3386 /*
3387 * Remember the previous number of free descriptors and
3388 * the first descriptor we'll use.
3389 */
3390 ofree = sc->sc_txfree;
3391 firsttx = sc->sc_txnext;
3392
3393 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3394 sc->sc_dev.dv_xname, ofree, firsttx));
3395
3396 /*
3397 * Loop through the send queue, setting up transmit descriptors
3398 * until we drain the queue, or use up all available transmit
3399 * descriptors.
3400 */
3401 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3402 sc->sc_txfree != 0) {
3403
3404 do_encrypt = 0;
3405 /*
3406 * Grab a packet off the management queue, if it
3407 * is not empty. Otherwise, from the data queue.
3408 */
3409 IF_DEQUEUE(&ic->ic_mgtq, m0);
3410 if (m0 != NULL) {
3411 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3412 m0->m_pkthdr.rcvif = NULL;
3413 } else {
3414 IFQ_DEQUEUE(&ifp->if_snd, m0);
3415 if (m0 == NULL)
3416 break;
3417 #if NBPFILTER > 0
3418 if (ifp->if_bpf != NULL)
3419 bpf_mtap(ifp->if_bpf, m0);
3420 #endif /* NBPFILTER > 0 */
3421 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3422 ifp->if_oerrors++;
3423 break;
3424 }
3425 }
3426
3427 rate = MAX(ieee80211_get_rate(ic), 2);
3428
3429 #if NBPFILTER > 0
3430 /*
3431 * Pass the packet to any BPF listeners.
3432 */
3433 if (ic->ic_rawbpf != NULL)
3434 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3435
3436 if (sc->sc_radiobpf != NULL) {
3437 struct mbuf mb;
3438 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3439
3440 tap->at_rate = rate;
3441 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3442 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3443
3444 /* TBD tap->at_flags */
3445
3446 M_COPY_PKTHDR(&mb, m0);
3447 mb.m_data = (caddr_t)tap;
3448 mb.m_len = tap->at_ihdr.it_len;
3449 mb.m_next = m0;
3450 mb.m_pkthdr.len += mb.m_len;
3451 bpf_mtap(sc->sc_radiobpf, &mb);
3452 }
3453 #endif /* NBPFILTER > 0 */
3454
3455 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3456
3457 if (ni != NULL && ni != ic->ic_bss)
3458 ieee80211_free_node(ic, ni);
3459
3460 if (m0 == NULL) {
3461 ifp->if_oerrors++;
3462 break;
3463 }
3464
3465 /* just to make sure. */
3466 m0 = m_pullup(m0, sizeof(struct atw_frame));
3467
3468 if (m0 == NULL) {
3469 ifp->if_oerrors++;
3470 break;
3471 }
3472
3473 hh = mtod(m0, struct atw_frame *);
3474 wh = &hh->atw_ihdr;
3475
3476 do_encrypt = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
3477
3478 /* Copy everything we need from the 802.11 header:
3479 * Frame Control; address 1, address 3, or addresses
3480 * 3 and 4. NIC fills in BSSID, SA.
3481 */
3482 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3483 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3484 panic("%s: illegal WDS frame",
3485 sc->sc_dev.dv_xname);
3486 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3487 } else
3488 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3489
3490 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3491
3492 /* initialize remaining Tx parameters */
3493 memset(&hh->u, 0, sizeof(hh->u));
3494
3495 hh->atw_rate = rate * 5;
3496 /* XXX this could be incorrect if M_FCS. _encap should
3497 * probably strip FCS just in case it sticks around in
3498 * bridged packets.
3499 */
3500 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3501 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3502 sizeof(struct atw_frame));
3503
3504 #if 0
3505 /* this virtually guaranteed that WEP-encrypted frames
3506 * are fragmented. oops.
3507 */
3508 hh->atw_fragthr = htole16(m0->m_pkthdr.len -
3509 sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
3510 hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3511 #else
3512 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3513 #endif
3514
3515 hh->atw_rtylmt = 3;
3516 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3517 if (do_encrypt) {
3518 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3519 hh->atw_keyid = ic->ic_wep_txkey;
3520 }
3521
3522 /* TBD 4-addr frames */
3523 atw_frame_setdurs(sc, hh, rate,
3524 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3525 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3526
3527 /* never fragment multicast frames */
3528 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3529 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3530 } else if (sc->sc_flags & ATWF_RTSCTS) {
3531 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3532 }
3533
3534 #ifdef ATW_DEBUG
3535 /* experimental stuff */
3536 if (atw_xrtylmt != ~0)
3537 hh->atw_rtylmt = atw_xrtylmt;
3538 if (atw_xhdrctl != 0)
3539 hh->atw_hdrctl |= htole16(atw_xhdrctl);
3540 if (atw_xservice != IEEE80211_PLCP_SERVICE)
3541 hh->atw_service = atw_xservice;
3542 if (atw_xpaylen != 0)
3543 hh->atw_paylen = htole16(atw_xpaylen);
3544 hh->atw_fragnum = 0;
3545
3546 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3547 printf("%s: dst = %s, rate = 0x%02x, "
3548 "service = 0x%02x, paylen = 0x%04x\n",
3549 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3550 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3551
3552 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3553 "dur1 = 0x%04x, dur2 = 0x%04x, "
3554 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3555 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3556 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3557 hh->atw_tail_dur, hh->atw_head_dur);
3558
3559 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3560 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3561 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3562 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3563
3564 printf("%s: keyid = %d\n",
3565 sc->sc_dev.dv_xname, hh->atw_keyid);
3566
3567 atw_dump_pkt(ifp, m0);
3568 }
3569 #endif /* ATW_DEBUG */
3570
3571 dmamap = txs->txs_dmamap;
3572
3573 /*
3574 * Load the DMA map. Copy and try (once) again if the packet
3575 * didn't fit in the alloted number of segments.
3576 */
3577 for (first = 1;
3578 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3579 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3580 first = 0) {
3581 MGETHDR(m, M_DONTWAIT, MT_DATA);
3582 if (m == NULL) {
3583 printf("%s: unable to allocate Tx mbuf\n",
3584 sc->sc_dev.dv_xname);
3585 break;
3586 }
3587 if (m0->m_pkthdr.len > MHLEN) {
3588 MCLGET(m, M_DONTWAIT);
3589 if ((m->m_flags & M_EXT) == 0) {
3590 printf("%s: unable to allocate Tx "
3591 "cluster\n", sc->sc_dev.dv_xname);
3592 m_freem(m);
3593 break;
3594 }
3595 }
3596 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3597 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3598 m_freem(m0);
3599 m0 = m;
3600 m = NULL;
3601 }
3602 if (error != 0) {
3603 printf("%s: unable to load Tx buffer, "
3604 "error = %d\n", sc->sc_dev.dv_xname, error);
3605 m_freem(m0);
3606 break;
3607 }
3608
3609 /*
3610 * Ensure we have enough descriptors free to describe
3611 * the packet.
3612 */
3613 if (dmamap->dm_nsegs > sc->sc_txfree) {
3614 /*
3615 * Not enough free descriptors to transmit
3616 * this packet. Unload the DMA map and
3617 * drop the packet. Notify the upper layer
3618 * that there are no more slots left.
3619 *
3620 * XXX We could allocate an mbuf and copy, but
3621 * XXX it is worth it?
3622 */
3623 ifp->if_flags |= IFF_OACTIVE;
3624 bus_dmamap_unload(sc->sc_dmat, dmamap);
3625 m_freem(m0);
3626 break;
3627 }
3628
3629 /*
3630 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3631 */
3632
3633 /* Sync the DMA map. */
3634 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3635 BUS_DMASYNC_PREWRITE);
3636
3637 /* XXX arbitrary retry limit; 8 because I have seen it in
3638 * use already and maybe 0 means "no tries" !
3639 */
3640 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3641
3642 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3643 sc->sc_dev.dv_xname, rate * 5));
3644 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3645
3646 /*
3647 * Initialize the transmit descriptors.
3648 */
3649 for (nexttx = sc->sc_txnext, seg = 0;
3650 seg < dmamap->dm_nsegs;
3651 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3652 /*
3653 * If this is the first descriptor we're
3654 * enqueueing, don't set the OWN bit just
3655 * yet. That could cause a race condition.
3656 * We'll do it below.
3657 */
3658 txd = &sc->sc_txdescs[nexttx];
3659 txd->at_ctl = ctl |
3660 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3661
3662 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3663 txd->at_flags =
3664 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3665 ATW_TXFLAG_TBS1_MASK)) |
3666 ((nexttx == (ATW_NTXDESC - 1))
3667 ? htole32(ATW_TXFLAG_TER) : 0);
3668 lasttx = nexttx;
3669 }
3670
3671 KASSERT(lasttx != -1, ("bad lastx"));
3672 /* Set `first segment' and `last segment' appropriately. */
3673 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3674 htole32(ATW_TXFLAG_FS);
3675 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3676
3677 #ifdef ATW_DEBUG
3678 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3679 printf(" txsoft %p transmit chain:\n", txs);
3680 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3681 printf(" descriptor %d:\n", seg);
3682 printf(" at_ctl: 0x%08x\n",
3683 le32toh(sc->sc_txdescs[seg].at_ctl));
3684 printf(" at_flags: 0x%08x\n",
3685 le32toh(sc->sc_txdescs[seg].at_flags));
3686 printf(" at_buf1: 0x%08x\n",
3687 le32toh(sc->sc_txdescs[seg].at_buf1));
3688 printf(" at_buf2: 0x%08x\n",
3689 le32toh(sc->sc_txdescs[seg].at_buf2));
3690 if (seg == lasttx)
3691 break;
3692 }
3693 }
3694 #endif
3695
3696 /* Sync the descriptors we're using. */
3697 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3698 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3699
3700 /*
3701 * Store a pointer to the packet so we can free it later,
3702 * and remember what txdirty will be once the packet is
3703 * done.
3704 */
3705 txs->txs_mbuf = m0;
3706 txs->txs_firstdesc = sc->sc_txnext;
3707 txs->txs_lastdesc = lasttx;
3708 txs->txs_ndescs = dmamap->dm_nsegs;
3709
3710 /* Advance the tx pointer. */
3711 sc->sc_txfree -= dmamap->dm_nsegs;
3712 sc->sc_txnext = nexttx;
3713
3714 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3715 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3716
3717 last_txs = txs;
3718 }
3719
3720 if (txs == NULL || sc->sc_txfree == 0) {
3721 /* No more slots left; notify upper layer. */
3722 ifp->if_flags |= IFF_OACTIVE;
3723 }
3724
3725 if (sc->sc_txfree != ofree) {
3726 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3727 sc->sc_dev.dv_xname, lasttx, firsttx));
3728 /*
3729 * Cause a transmit interrupt to happen on the
3730 * last packet we enqueued.
3731 */
3732 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3733 ATW_CDTXSYNC(sc, lasttx, 1,
3734 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3735
3736 /*
3737 * The entire packet chain is set up. Give the
3738 * first descriptor to the chip now.
3739 */
3740 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3741 ATW_CDTXSYNC(sc, firsttx, 1,
3742 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3743
3744 /* Wake up the transmitter. */
3745 /* XXX USE AUTOPOLLING? */
3746 ATW_WRITE(sc, ATW_TDR, 0x1);
3747
3748 /* Set a watchdog timer in case the chip flakes out. */
3749 sc->sc_tx_timer = 5;
3750 ifp->if_timer = 1;
3751 }
3752 }
3753
3754 /*
3755 * atw_power:
3756 *
3757 * Power management (suspend/resume) hook.
3758 */
3759 void
3760 atw_power(why, arg)
3761 int why;
3762 void *arg;
3763 {
3764 struct atw_softc *sc = arg;
3765 struct ifnet *ifp = &sc->sc_ic.ic_if;
3766 int s;
3767
3768 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3769
3770 s = splnet();
3771 switch (why) {
3772 case PWR_STANDBY:
3773 /* XXX do nothing. */
3774 break;
3775 case PWR_SUSPEND:
3776 atw_stop(ifp, 0);
3777 if (sc->sc_power != NULL)
3778 (*sc->sc_power)(sc, why);
3779 break;
3780 case PWR_RESUME:
3781 if (ifp->if_flags & IFF_UP) {
3782 if (sc->sc_power != NULL)
3783 (*sc->sc_power)(sc, why);
3784 atw_init(ifp);
3785 }
3786 break;
3787 case PWR_SOFTSUSPEND:
3788 case PWR_SOFTSTANDBY:
3789 case PWR_SOFTRESUME:
3790 break;
3791 }
3792 splx(s);
3793 }
3794
3795 /*
3796 * atw_ioctl: [ifnet interface function]
3797 *
3798 * Handle control requests from the operator.
3799 */
3800 int
3801 atw_ioctl(ifp, cmd, data)
3802 struct ifnet *ifp;
3803 u_long cmd;
3804 caddr_t data;
3805 {
3806 struct atw_softc *sc = ifp->if_softc;
3807 struct ifreq *ifr = (struct ifreq *)data;
3808 int s, error = 0;
3809
3810 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3811 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3812 return ENXIO;
3813
3814 s = splnet();
3815
3816 switch (cmd) {
3817 case SIOCSIFFLAGS:
3818 if (ifp->if_flags & IFF_UP) {
3819 if (ATW_IS_ENABLED(sc)) {
3820 /*
3821 * To avoid rescanning another access point,
3822 * do not call atw_init() here. Instead,
3823 * only reflect media settings.
3824 */
3825 atw_filter_setup(sc);
3826 } else
3827 error = atw_init(ifp);
3828 } else if (ATW_IS_ENABLED(sc))
3829 atw_stop(ifp, 1);
3830 break;
3831 case SIOCADDMULTI:
3832 case SIOCDELMULTI:
3833 error = (cmd == SIOCADDMULTI) ?
3834 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3835 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3836 if (error == ENETRESET) {
3837 if (ATW_IS_ENABLED(sc))
3838 atw_filter_setup(sc); /* do not rescan */
3839 error = 0;
3840 }
3841 break;
3842 default:
3843 error = ieee80211_ioctl(ifp, cmd, data);
3844 if (error == ENETRESET) {
3845 if (ATW_IS_ENABLED(sc))
3846 error = atw_init(ifp);
3847 else
3848 error = 0;
3849 }
3850 break;
3851 }
3852
3853 /* Try to get more packets going. */
3854 if (ATW_IS_ENABLED(sc))
3855 atw_start(ifp);
3856
3857 splx(s);
3858 return (error);
3859 }
3860
3861 static int
3862 atw_media_change(struct ifnet *ifp)
3863 {
3864 int error;
3865
3866 error = ieee80211_media_change(ifp);
3867 if (error == ENETRESET) {
3868 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3869 (IFF_RUNNING|IFF_UP))
3870 atw_init(ifp); /* XXX lose error */
3871 error = 0;
3872 }
3873 return error;
3874 }
3875
3876 static void
3877 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3878 {
3879 struct atw_softc *sc = ifp->if_softc;
3880
3881 if (ATW_IS_ENABLED(sc) == 0) {
3882 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3883 imr->ifm_status = 0;
3884 return;
3885 }
3886 ieee80211_media_status(ifp, imr);
3887 }
3888