atw.c revision 1.134 1 /* $NetBSD: atw.c,v 1.134 2007/11/16 23:51:02 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.134 2007/11/16 23:51:02 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59 #include <lib/libkern/libkern.h>
60
61 #include <machine/endian.h>
62
63 #include <uvm/uvm_extern.h>
64
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_ether.h>
69
70 #include <net80211/ieee80211_netbsd.h>
71 #include <net80211/ieee80211_var.h>
72 #include <net80211/ieee80211_radiotap.h>
73
74 #if NBPFILTER > 0
75 #include <net/bpf.h>
76 #endif
77
78 #include <sys/bus.h>
79 #include <sys/intr.h>
80
81 #include <dev/ic/atwreg.h>
82 #include <dev/ic/rf3000reg.h>
83 #include <dev/ic/si4136reg.h>
84 #include <dev/ic/atwvar.h>
85 #include <dev/ic/smc93cx6var.h>
86
87 /* XXX TBD open questions
88 *
89 *
90 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
91 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
92 * handle this for me?
93 *
94 */
95 /* device attachment
96 *
97 * print TOFS[012]
98 *
99 * device initialization
100 *
101 * clear ATW_FRCTL_MAXPSP to disable max power saving
102 * set ATW_TXBR_ALCUPDATE to enable ALC
103 * set TOFS[012]? (hope not)
104 * disable rx/tx
105 * set ATW_PAR_SWR (software reset)
106 * wait for ATW_PAR_SWR clear
107 * disable interrupts
108 * ack status register
109 * enable interrupts
110 *
111 * rx/tx initialization
112 *
113 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
114 * allocate and init descriptor rings
115 * write ATW_PAR_DSL (descriptor skip length)
116 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * write ATW_NAR_SQ for one/both transmit descriptor rings
119 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
120 *
121 * rx/tx end
122 *
123 * stop DMA
124 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
125 * flush tx w/ ATW_NAR_HF
126 *
127 * scan
128 *
129 * initialize rx/tx
130 *
131 * BSS join: (re)association response
132 *
133 * set ATW_FRCTL_AID
134 *
135 * optimizations ???
136 *
137 */
138
139 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
140
141 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
142 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
143 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
144
145 int atw_pseudo_milli = 1;
146 int atw_magic_delay1 = 100 * 1000;
147 int atw_magic_delay2 = 100 * 1000;
148 /* more magic multi-millisecond delays (units: microseconds) */
149 int atw_nar_delay = 20 * 1000;
150 int atw_magic_delay4 = 10 * 1000;
151 int atw_rf_delay1 = 10 * 1000;
152 int atw_rf_delay2 = 5 * 1000;
153 int atw_plcphd_delay = 2 * 1000;
154 int atw_bbp_io_enable_delay = 20 * 1000;
155 int atw_bbp_io_disable_delay = 2 * 1000;
156 int atw_writewep_delay = 1000;
157 int atw_beacon_len_adjust = 4;
158 int atw_dwelltime = 200;
159 int atw_xindiv2 = 0;
160
161 #ifdef ATW_DEBUG
162 int atw_debug = 0;
163
164 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
165 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
166 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
167 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
168 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
169 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
170
171 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
172 static void atw_print_regs(struct atw_softc *, const char *);
173
174 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
175 # ifdef ATW_BBPDEBUG
176 static void atw_rf3000_print(struct atw_softc *);
177 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
178 # endif /* ATW_BBPDEBUG */
179
180 # ifdef ATW_SYNDEBUG
181 static void atw_si4126_print(struct atw_softc *);
182 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
183 # endif /* ATW_SYNDEBUG */
184
185 #else
186 #define ATW_DPRINTF(x)
187 #define ATW_DPRINTF2(x)
188 #define ATW_DPRINTF3(x)
189 #define DPRINTF(sc, x) /* nothing */
190 #define DPRINTF2(sc, x) /* nothing */
191 #define DPRINTF3(sc, x) /* nothing */
192 #endif
193
194 /* ifnet methods */
195 int atw_init(struct ifnet *);
196 int atw_ioctl(struct ifnet *, u_long, void *);
197 void atw_start(struct ifnet *);
198 void atw_stop(struct ifnet *, int);
199 void atw_watchdog(struct ifnet *);
200
201 /* Device attachment */
202 void atw_attach(struct atw_softc *);
203 int atw_detach(struct atw_softc *);
204 static void atw_evcnt_attach(struct atw_softc *);
205 static void atw_evcnt_detach(struct atw_softc *);
206
207 /* Rx/Tx process */
208 int atw_add_rxbuf(struct atw_softc *, int);
209 void atw_idle(struct atw_softc *, u_int32_t);
210 void atw_rxdrain(struct atw_softc *);
211 void atw_txdrain(struct atw_softc *);
212
213 /* Device (de)activation and power state */
214 void atw_disable(struct atw_softc *);
215 int atw_enable(struct atw_softc *);
216 void atw_power(int, void *);
217 void atw_reset(struct atw_softc *);
218 void atw_shutdown(void *);
219
220 /* Interrupt handlers */
221 void atw_linkintr(struct atw_softc *, u_int32_t);
222 void atw_rxintr(struct atw_softc *);
223 void atw_txintr(struct atw_softc *);
224
225 /* 802.11 state machine */
226 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
227 static void atw_next_scan(void *);
228 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
229 struct ieee80211_node *, int, int, u_int32_t);
230 static int atw_tune(struct atw_softc *);
231
232 /* Device initialization */
233 static void atw_bbp_io_init(struct atw_softc *);
234 static void atw_cfp_init(struct atw_softc *);
235 static void atw_cmdr_init(struct atw_softc *);
236 static void atw_ifs_init(struct atw_softc *);
237 static void atw_nar_init(struct atw_softc *);
238 static void atw_response_times_init(struct atw_softc *);
239 static void atw_rf_reset(struct atw_softc *);
240 static void atw_test1_init(struct atw_softc *);
241 static void atw_tofs0_init(struct atw_softc *);
242 static void atw_tofs2_init(struct atw_softc *);
243 static void atw_txlmt_init(struct atw_softc *);
244 static void atw_wcsr_init(struct atw_softc *);
245
246 /* Key management */
247 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
248 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
249 const u_int8_t[IEEE80211_ADDR_LEN]);
250 static void atw_key_update_begin(struct ieee80211com *);
251 static void atw_key_update_end(struct ieee80211com *);
252
253 /* RAM/ROM utilities */
254 static void atw_clear_sram(struct atw_softc *);
255 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
256 static int atw_read_srom(struct atw_softc *);
257
258 /* BSS setup */
259 static void atw_predict_beacon(struct atw_softc *);
260 static void atw_start_beacon(struct atw_softc *, int);
261 static void atw_write_bssid(struct atw_softc *);
262 static void atw_write_ssid(struct atw_softc *);
263 static void atw_write_sup_rates(struct atw_softc *);
264 static void atw_write_wep(struct atw_softc *);
265
266 /* Media */
267 static int atw_media_change(struct ifnet *);
268
269 static void atw_filter_setup(struct atw_softc *);
270
271 /* 802.11 utilities */
272 static uint64_t atw_get_tsft(struct atw_softc *);
273 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
274 uint32_t);
275 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
276 static void atw_node_free(struct ieee80211_node *);
277
278 /*
279 * Tuner/transceiver/modem
280 */
281 static void atw_bbp_io_enable(struct atw_softc *, int);
282
283 /* RFMD RF3000 Baseband Processor */
284 static int atw_rf3000_init(struct atw_softc *);
285 static int atw_rf3000_tune(struct atw_softc *, u_int);
286 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
287
288 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
289 static void atw_si4126_tune(struct atw_softc *, u_int);
290 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
291
292 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
293 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
294
295 const char *atw_tx_state[] = {
296 "STOPPED",
297 "RUNNING - read descriptor",
298 "RUNNING - transmitting",
299 "RUNNING - filling fifo", /* XXX */
300 "SUSPENDED",
301 "RUNNING -- write descriptor",
302 "RUNNING -- write last descriptor",
303 "RUNNING - fifo full"
304 };
305
306 const char *atw_rx_state[] = {
307 "STOPPED",
308 "RUNNING - read descriptor",
309 "RUNNING - check this packet, pre-fetch next",
310 "RUNNING - wait for reception",
311 "SUSPENDED",
312 "RUNNING - write descriptor",
313 "RUNNING - flush fifo",
314 "RUNNING - fifo drain"
315 };
316
317 static inline int
318 is_running(struct ifnet *ifp)
319 {
320 return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
321 }
322
323 int
324 atw_activate(struct device *self, enum devact act)
325 {
326 struct atw_softc *sc = (struct atw_softc *)self;
327 int rv = 0, s;
328
329 s = splnet();
330 switch (act) {
331 case DVACT_ACTIVATE:
332 rv = EOPNOTSUPP;
333 break;
334
335 case DVACT_DEACTIVATE:
336 if_deactivate(&sc->sc_if);
337 break;
338 }
339 splx(s);
340 return rv;
341 }
342
343 /*
344 * atw_enable:
345 *
346 * Enable the ADM8211 chip.
347 */
348 int
349 atw_enable(struct atw_softc *sc)
350 {
351
352 if (ATW_IS_ENABLED(sc) == 0) {
353 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
354 printf("%s: device enable failed\n",
355 sc->sc_dev.dv_xname);
356 return (EIO);
357 }
358 sc->sc_flags |= ATWF_ENABLED;
359 /* Power may have been removed, and WEP keys thus
360 * reset.
361 */
362 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
363 }
364 return (0);
365 }
366
367 /*
368 * atw_disable:
369 *
370 * Disable the ADM8211 chip.
371 */
372 void
373 atw_disable(struct atw_softc *sc)
374 {
375 if (!ATW_IS_ENABLED(sc))
376 return;
377 if (sc->sc_disable != NULL)
378 (*sc->sc_disable)(sc);
379 sc->sc_flags &= ~ATWF_ENABLED;
380 }
381
382 /* Returns -1 on failure. */
383 static int
384 atw_read_srom(struct atw_softc *sc)
385 {
386 struct seeprom_descriptor sd;
387 uint32_t test0, fail_bits;
388
389 (void)memset(&sd, 0, sizeof(sd));
390
391 test0 = ATW_READ(sc, ATW_TEST0);
392
393 switch (sc->sc_rev) {
394 case ATW_REVISION_BA:
395 case ATW_REVISION_CA:
396 fail_bits = ATW_TEST0_EPNE;
397 break;
398 default:
399 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
400 break;
401 }
402 if ((test0 & fail_bits) != 0) {
403 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
404 return -1;
405 }
406
407 switch (test0 & ATW_TEST0_EPTYP_MASK) {
408 case ATW_TEST0_EPTYP_93c66:
409 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
410 sc->sc_sromsz = 512;
411 sd.sd_chip = C56_66;
412 break;
413 case ATW_TEST0_EPTYP_93c46:
414 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
415 sc->sc_sromsz = 128;
416 sd.sd_chip = C46;
417 break;
418 default:
419 printf("%s: unknown SROM type %" __PRIuBITS "\n",
420 sc->sc_dev.dv_xname,
421 __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
422 return -1;
423 }
424
425 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
426
427 if (sc->sc_srom == NULL) {
428 printf("%s: unable to allocate SROM buffer\n",
429 sc->sc_dev.dv_xname);
430 return -1;
431 }
432
433 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
434
435 /* ADM8211 has a single 32-bit register for controlling the
436 * 93cx6 SROM. Bit SRS enables the serial port. There is no
437 * "ready" bit. The ADM8211 input/output sense is the reverse
438 * of read_seeprom's.
439 */
440 sd.sd_tag = sc->sc_st;
441 sd.sd_bsh = sc->sc_sh;
442 sd.sd_regsize = 4;
443 sd.sd_control_offset = ATW_SPR;
444 sd.sd_status_offset = ATW_SPR;
445 sd.sd_dataout_offset = ATW_SPR;
446 sd.sd_CK = ATW_SPR_SCLK;
447 sd.sd_CS = ATW_SPR_SCS;
448 sd.sd_DI = ATW_SPR_SDO;
449 sd.sd_DO = ATW_SPR_SDI;
450 sd.sd_MS = ATW_SPR_SRS;
451 sd.sd_RDY = 0;
452
453 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
454 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
455 free(sc->sc_srom, M_DEVBUF);
456 return -1;
457 }
458 #ifdef ATW_DEBUG
459 {
460 int i;
461 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
462 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
463 if (((i % 8) == 0) && (i != 0)) {
464 ATW_DPRINTF(("\n\t"));
465 }
466 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
467 }
468 ATW_DPRINTF(("\n"));
469 }
470 #endif /* ATW_DEBUG */
471 return 0;
472 }
473
474 #ifdef ATW_DEBUG
475 static void
476 atw_print_regs(struct atw_softc *sc, const char *where)
477 {
478 #define PRINTREG(sc, reg) \
479 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
480 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
481
482 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
483
484 PRINTREG(sc, ATW_PAR);
485 PRINTREG(sc, ATW_FRCTL);
486 PRINTREG(sc, ATW_TDR);
487 PRINTREG(sc, ATW_WTDP);
488 PRINTREG(sc, ATW_RDR);
489 PRINTREG(sc, ATW_WRDP);
490 PRINTREG(sc, ATW_RDB);
491 PRINTREG(sc, ATW_CSR3A);
492 PRINTREG(sc, ATW_TDBD);
493 PRINTREG(sc, ATW_TDBP);
494 PRINTREG(sc, ATW_STSR);
495 PRINTREG(sc, ATW_CSR5A);
496 PRINTREG(sc, ATW_NAR);
497 PRINTREG(sc, ATW_CSR6A);
498 PRINTREG(sc, ATW_IER);
499 PRINTREG(sc, ATW_CSR7A);
500 PRINTREG(sc, ATW_LPC);
501 PRINTREG(sc, ATW_TEST1);
502 PRINTREG(sc, ATW_SPR);
503 PRINTREG(sc, ATW_TEST0);
504 PRINTREG(sc, ATW_WCSR);
505 PRINTREG(sc, ATW_WPDR);
506 PRINTREG(sc, ATW_GPTMR);
507 PRINTREG(sc, ATW_GPIO);
508 PRINTREG(sc, ATW_BBPCTL);
509 PRINTREG(sc, ATW_SYNCTL);
510 PRINTREG(sc, ATW_PLCPHD);
511 PRINTREG(sc, ATW_MMIWADDR);
512 PRINTREG(sc, ATW_MMIRADDR1);
513 PRINTREG(sc, ATW_MMIRADDR2);
514 PRINTREG(sc, ATW_TXBR);
515 PRINTREG(sc, ATW_CSR15A);
516 PRINTREG(sc, ATW_ALCSTAT);
517 PRINTREG(sc, ATW_TOFS2);
518 PRINTREG(sc, ATW_CMDR);
519 PRINTREG(sc, ATW_PCIC);
520 PRINTREG(sc, ATW_PMCSR);
521 PRINTREG(sc, ATW_PAR0);
522 PRINTREG(sc, ATW_PAR1);
523 PRINTREG(sc, ATW_MAR0);
524 PRINTREG(sc, ATW_MAR1);
525 PRINTREG(sc, ATW_ATIMDA0);
526 PRINTREG(sc, ATW_ABDA1);
527 PRINTREG(sc, ATW_BSSID0);
528 PRINTREG(sc, ATW_TXLMT);
529 PRINTREG(sc, ATW_MIBCNT);
530 PRINTREG(sc, ATW_BCNT);
531 PRINTREG(sc, ATW_TSFTH);
532 PRINTREG(sc, ATW_TSC);
533 PRINTREG(sc, ATW_SYNRF);
534 PRINTREG(sc, ATW_BPLI);
535 PRINTREG(sc, ATW_CAP0);
536 PRINTREG(sc, ATW_CAP1);
537 PRINTREG(sc, ATW_RMD);
538 PRINTREG(sc, ATW_CFPP);
539 PRINTREG(sc, ATW_TOFS0);
540 PRINTREG(sc, ATW_TOFS1);
541 PRINTREG(sc, ATW_IFST);
542 PRINTREG(sc, ATW_RSPT);
543 PRINTREG(sc, ATW_TSFTL);
544 PRINTREG(sc, ATW_WEPCTL);
545 PRINTREG(sc, ATW_WESK);
546 PRINTREG(sc, ATW_WEPCNT);
547 PRINTREG(sc, ATW_MACTEST);
548 PRINTREG(sc, ATW_FER);
549 PRINTREG(sc, ATW_FEMR);
550 PRINTREG(sc, ATW_FPSR);
551 PRINTREG(sc, ATW_FFER);
552 #undef PRINTREG
553 }
554 #endif /* ATW_DEBUG */
555
556 /*
557 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
558 */
559 void
560 atw_attach(struct atw_softc *sc)
561 {
562 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
563 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
564 };
565 struct ieee80211com *ic = &sc->sc_ic;
566 struct ifnet *ifp = &sc->sc_if;
567 int country_code, error, i, nrate, srom_major;
568 u_int32_t reg;
569 static const char *type_strings[] = {"Intersil (not supported)",
570 "RFMD", "Marvel (not supported)"};
571
572 sc->sc_txth = atw_txthresh_tab_lo;
573
574 SIMPLEQ_INIT(&sc->sc_txfreeq);
575 SIMPLEQ_INIT(&sc->sc_txdirtyq);
576
577 #ifdef ATW_DEBUG
578 atw_print_regs(sc, "atw_attach");
579 #endif /* ATW_DEBUG */
580
581 /*
582 * Allocate the control data structures, and create and load the
583 * DMA map for it.
584 */
585 if ((error = bus_dmamem_alloc(sc->sc_dmat,
586 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
587 1, &sc->sc_cdnseg, 0)) != 0) {
588 printf("%s: unable to allocate control data, error = %d\n",
589 sc->sc_dev.dv_xname, error);
590 goto fail_0;
591 }
592
593 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
594 sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
595 BUS_DMA_COHERENT)) != 0) {
596 printf("%s: unable to map control data, error = %d\n",
597 sc->sc_dev.dv_xname, error);
598 goto fail_1;
599 }
600
601 if ((error = bus_dmamap_create(sc->sc_dmat,
602 sizeof(struct atw_control_data), 1,
603 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
604 printf("%s: unable to create control data DMA map, "
605 "error = %d\n", sc->sc_dev.dv_xname, error);
606 goto fail_2;
607 }
608
609 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
610 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
611 0)) != 0) {
612 printf("%s: unable to load control data DMA map, error = %d\n",
613 sc->sc_dev.dv_xname, error);
614 goto fail_3;
615 }
616
617 /*
618 * Create the transmit buffer DMA maps.
619 */
620 sc->sc_ntxsegs = ATW_NTXSEGS;
621 for (i = 0; i < ATW_TXQUEUELEN; i++) {
622 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
623 sc->sc_ntxsegs, MCLBYTES, 0, 0,
624 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
625 printf("%s: unable to create tx DMA map %d, "
626 "error = %d\n", sc->sc_dev.dv_xname, i, error);
627 goto fail_4;
628 }
629 }
630
631 /*
632 * Create the receive buffer DMA maps.
633 */
634 for (i = 0; i < ATW_NRXDESC; i++) {
635 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
636 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
637 printf("%s: unable to create rx DMA map %d, "
638 "error = %d\n", sc->sc_dev.dv_xname, i, error);
639 goto fail_5;
640 }
641 }
642 for (i = 0; i < ATW_NRXDESC; i++) {
643 sc->sc_rxsoft[i].rxs_mbuf = NULL;
644 }
645
646 switch (sc->sc_rev) {
647 case ATW_REVISION_AB:
648 case ATW_REVISION_AF:
649 sc->sc_sramlen = ATW_SRAM_A_SIZE;
650 break;
651 case ATW_REVISION_BA:
652 case ATW_REVISION_CA:
653 sc->sc_sramlen = ATW_SRAM_B_SIZE;
654 break;
655 }
656
657 /* Reset the chip to a known state. */
658 atw_reset(sc);
659
660 if (atw_read_srom(sc) == -1)
661 return;
662
663 sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
664 ATW_SR_RFTYPE_MASK);
665
666 sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
667 ATW_SR_BBPTYPE_MASK);
668
669 if (sc->sc_rftype >= __arraycount(type_strings)) {
670 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
671 return;
672 }
673 if (sc->sc_bbptype >= __arraycount(type_strings)) {
674 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
675 return;
676 }
677
678 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
679 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
680
681 /* XXX There exists a Linux driver which seems to use RFType = 0 for
682 * MARVEL. My bug, or theirs?
683 */
684
685 reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
686
687 switch (sc->sc_rftype) {
688 case ATW_RFTYPE_INTERSIL:
689 reg |= ATW_SYNCTL_CS1;
690 break;
691 case ATW_RFTYPE_RFMD:
692 reg |= ATW_SYNCTL_CS0;
693 break;
694 case ATW_RFTYPE_MARVEL:
695 break;
696 }
697
698 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
699 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
700
701 reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
702
703 switch (sc->sc_bbptype) {
704 case ATW_BBPTYPE_INTERSIL:
705 reg |= ATW_BBPCTL_TWI;
706 break;
707 case ATW_BBPTYPE_RFMD:
708 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
709 ATW_BBPCTL_CCA_ACTLO;
710 break;
711 case ATW_BBPTYPE_MARVEL:
712 break;
713 case ATW_C_BBPTYPE_RFMD:
714 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
715 sc->sc_dev.dv_xname);
716 break;
717 }
718
719 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
720 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
721
722 /*
723 * From this point forward, the attachment cannot fail. A failure
724 * before this point releases all resources that may have been
725 * allocated.
726 */
727 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
728
729 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
730 htole16(sc->sc_srom[ATW_SR_MAC00]),
731 htole16(sc->sc_srom[ATW_SR_MAC01]),
732 htole16(sc->sc_srom[ATW_SR_MAC10])));
733
734 srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
735 ATW_SR_MAJOR_MASK);
736
737 if (srom_major < 2)
738 sc->sc_rf3000_options1 = 0;
739 else if (sc->sc_rev == ATW_REVISION_BA) {
740 sc->sc_rf3000_options1 =
741 __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
742 ATW_SR_CR28_MASK);
743 } else
744 sc->sc_rf3000_options1 = 0;
745
746 sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
747 ATW_SR_CR29_MASK);
748
749 country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
750 ATW_SR_CTRY_MASK);
751
752 #define ADD_CHANNEL(_ic, _chan) do { \
753 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
754 _ic->ic_channels[_chan].ic_freq = \
755 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
756 } while (0)
757
758 /* Find available channels */
759 switch (country_code) {
760 case COUNTRY_MMK2: /* 1-14 */
761 ADD_CHANNEL(ic, 14);
762 /*FALLTHROUGH*/
763 case COUNTRY_ETSI: /* 1-13 */
764 for (i = 1; i <= 13; i++)
765 ADD_CHANNEL(ic, i);
766 break;
767 case COUNTRY_FCC: /* 1-11 */
768 case COUNTRY_IC: /* 1-11 */
769 for (i = 1; i <= 11; i++)
770 ADD_CHANNEL(ic, i);
771 break;
772 case COUNTRY_MMK: /* 14 */
773 ADD_CHANNEL(ic, 14);
774 break;
775 case COUNTRY_FRANCE: /* 10-13 */
776 for (i = 10; i <= 13; i++)
777 ADD_CHANNEL(ic, i);
778 break;
779 default: /* assume channels 10-11 */
780 case COUNTRY_SPAIN: /* 10-11 */
781 for (i = 10; i <= 11; i++)
782 ADD_CHANNEL(ic, i);
783 break;
784 }
785
786 /* Read the MAC address. */
787 reg = ATW_READ(sc, ATW_PAR0);
788 ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
789 ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
790 ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
791 ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
792 reg = ATW_READ(sc, ATW_PAR1);
793 ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
794 ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
795
796 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
797 printf(" could not get mac address, attach failed\n");
798 return;
799 }
800
801 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
802
803 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
804 ifp->if_softc = sc;
805 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
806 IFF_NOTRAILERS;
807 ifp->if_ioctl = atw_ioctl;
808 ifp->if_start = atw_start;
809 ifp->if_watchdog = atw_watchdog;
810 ifp->if_init = atw_init;
811 ifp->if_stop = atw_stop;
812 IFQ_SET_READY(&ifp->if_snd);
813
814 ic->ic_ifp = ifp;
815 ic->ic_phytype = IEEE80211_T_DS;
816 ic->ic_opmode = IEEE80211_M_STA;
817 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
818 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
819
820 nrate = 0;
821 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
822 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
823 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
824 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
825 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
826
827 /*
828 * Call MI attach routines.
829 */
830
831 if_attach(ifp);
832 ieee80211_ifattach(ic);
833
834 atw_evcnt_attach(sc);
835
836 sc->sc_newstate = ic->ic_newstate;
837 ic->ic_newstate = atw_newstate;
838
839 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
840 ic->ic_recv_mgmt = atw_recv_mgmt;
841
842 sc->sc_node_free = ic->ic_node_free;
843 ic->ic_node_free = atw_node_free;
844
845 sc->sc_node_alloc = ic->ic_node_alloc;
846 ic->ic_node_alloc = atw_node_alloc;
847
848 ic->ic_crypto.cs_key_delete = atw_key_delete;
849 ic->ic_crypto.cs_key_set = atw_key_set;
850 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
851 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
852
853 /* possibly we should fill in our own sc_send_prresp, since
854 * the ADM8211 is probably sending probe responses in ad hoc
855 * mode.
856 */
857
858 /* complete initialization */
859 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
860 callout_init(&sc->sc_scan_ch, 0);
861
862 #if NBPFILTER > 0
863 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
864 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
865 #endif
866
867 /*
868 * Make sure the interface is shutdown during reboot.
869 */
870 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
871 if (sc->sc_sdhook == NULL)
872 printf("%s: WARNING: unable to establish shutdown hook\n",
873 sc->sc_dev.dv_xname);
874
875 /*
876 * Add a suspend hook to make sure we come back up after a
877 * resume.
878 */
879 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
880 atw_power, sc);
881 if (sc->sc_powerhook == NULL)
882 printf("%s: WARNING: unable to establish power hook\n",
883 sc->sc_dev.dv_xname);
884
885 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
886 sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
887 sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
888
889 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
890 sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
891 sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
892
893 ieee80211_announce(ic);
894 return;
895
896 /*
897 * Free any resources we've allocated during the failed attach
898 * attempt. Do this in reverse order and fall through.
899 */
900 fail_5:
901 for (i = 0; i < ATW_NRXDESC; i++) {
902 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
903 continue;
904 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
905 }
906 fail_4:
907 for (i = 0; i < ATW_TXQUEUELEN; i++) {
908 if (sc->sc_txsoft[i].txs_dmamap == NULL)
909 continue;
910 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
911 }
912 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
913 fail_3:
914 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
915 fail_2:
916 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
917 sizeof(struct atw_control_data));
918 fail_1:
919 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
920 fail_0:
921 return;
922 }
923
924 static struct ieee80211_node *
925 atw_node_alloc(struct ieee80211_node_table *nt)
926 {
927 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
928 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
929
930 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
931 return ni;
932 }
933
934 static void
935 atw_node_free(struct ieee80211_node *ni)
936 {
937 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
938
939 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
940 ether_sprintf(ni->ni_bssid)));
941 (*sc->sc_node_free)(ni);
942 }
943
944
945 static void
946 atw_test1_reset(struct atw_softc *sc)
947 {
948 switch (sc->sc_rev) {
949 case ATW_REVISION_BA:
950 if (1 /* XXX condition on transceiver type */) {
951 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
952 }
953 break;
954 case ATW_REVISION_CA:
955 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
956 break;
957 default:
958 break;
959 }
960 }
961
962 /*
963 * atw_reset:
964 *
965 * Perform a soft reset on the ADM8211.
966 */
967 void
968 atw_reset(struct atw_softc *sc)
969 {
970 int i;
971 uint32_t lpc;
972
973 ATW_WRITE(sc, ATW_NAR, 0x0);
974 DELAY(atw_nar_delay);
975
976 /* Reference driver has a cryptic remark indicating that this might
977 * power-on the chip. I know that it turns off power-saving....
978 */
979 ATW_WRITE(sc, ATW_FRCTL, 0x0);
980
981 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
982
983 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
984 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
985 break;
986 DELAY(atw_pseudo_milli);
987 }
988
989 /* ... and then pause 100ms longer for good measure. */
990 DELAY(atw_magic_delay1);
991
992 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
993
994 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
995 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
996
997 /*
998 * Initialize the PCI Access Register.
999 */
1000 sc->sc_busmode = ATW_PAR_PBL_8DW;
1001
1002 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1003 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1004 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1005
1006 atw_test1_reset(sc);
1007
1008 /* Turn off maximum power saving, etc. */
1009 ATW_WRITE(sc, ATW_FRCTL, 0x0);
1010
1011 DELAY(atw_magic_delay2);
1012
1013 /* Recall EEPROM. */
1014 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1015
1016 DELAY(atw_magic_delay4);
1017
1018 lpc = ATW_READ(sc, ATW_LPC);
1019
1020 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1021
1022 /* A reset seems to affect the SRAM contents, so put them into
1023 * a known state.
1024 */
1025 atw_clear_sram(sc);
1026
1027 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1028 }
1029
1030 static void
1031 atw_clear_sram(struct atw_softc *sc)
1032 {
1033 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1034 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1035 /* XXX not for revision 0x20. */
1036 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1037 }
1038
1039 /* TBD atw_init
1040 *
1041 * set MAC based on ic->ic_bss->myaddr
1042 * write WEP keys
1043 * set TX rate
1044 */
1045
1046 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1047 * without receiving a beacon with the preferred BSSID & SSID.
1048 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1049 */
1050 static void
1051 atw_wcsr_init(struct atw_softc *sc)
1052 {
1053 uint32_t wcsr;
1054
1055 wcsr = ATW_READ(sc, ATW_WCSR);
1056 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1057 wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1058 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1059
1060 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1061 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1062 }
1063
1064 /* Turn off power management. Set Rx store-and-forward mode. */
1065 static void
1066 atw_cmdr_init(struct atw_softc *sc)
1067 {
1068 uint32_t cmdr;
1069 cmdr = ATW_READ(sc, ATW_CMDR);
1070 cmdr &= ~ATW_CMDR_APM;
1071 cmdr |= ATW_CMDR_RTE;
1072 cmdr &= ~ATW_CMDR_DRT_MASK;
1073 cmdr |= ATW_CMDR_DRT_SF;
1074
1075 ATW_WRITE(sc, ATW_CMDR, cmdr);
1076 }
1077
1078 static void
1079 atw_tofs2_init(struct atw_softc *sc)
1080 {
1081 uint32_t tofs2;
1082 /* XXX this magic can probably be figured out from the RFMD docs */
1083 #ifndef ATW_REFSLAVE
1084 tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1085 __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1086 __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1087 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1088 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1089 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1090 __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1091 __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1092 #else
1093 /* XXX new magic from reference driver source */
1094 tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1095 __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1096 __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */
1097 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1098 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1099 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1100 __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */
1101 __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */
1102 #endif
1103 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1104 }
1105
1106 static void
1107 atw_nar_init(struct atw_softc *sc)
1108 {
1109 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1110 }
1111
1112 static void
1113 atw_txlmt_init(struct atw_softc *sc)
1114 {
1115 ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1116 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1117 }
1118
1119 static void
1120 atw_test1_init(struct atw_softc *sc)
1121 {
1122 uint32_t test1;
1123
1124 test1 = ATW_READ(sc, ATW_TEST1);
1125 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1126 /* XXX magic 0x1 */
1127 test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1128 ATW_WRITE(sc, ATW_TEST1, test1);
1129 }
1130
1131 static void
1132 atw_rf_reset(struct atw_softc *sc)
1133 {
1134 /* XXX this resets an Intersil RF front-end? */
1135 /* TBD condition on Intersil RFType? */
1136 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1137 DELAY(atw_rf_delay1);
1138 ATW_WRITE(sc, ATW_SYNRF, 0);
1139 DELAY(atw_rf_delay2);
1140 }
1141
1142 /* Set 16 TU max duration for the contention-free period (CFP). */
1143 static void
1144 atw_cfp_init(struct atw_softc *sc)
1145 {
1146 uint32_t cfpp;
1147
1148 cfpp = ATW_READ(sc, ATW_CFPP);
1149 cfpp &= ~ATW_CFPP_CFPMD;
1150 cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1151 ATW_WRITE(sc, ATW_CFPP, cfpp);
1152 }
1153
1154 static void
1155 atw_tofs0_init(struct atw_softc *sc)
1156 {
1157 /* XXX I guess that the Cardbus clock is 22 MHz?
1158 * I am assuming that the role of ATW_TOFS0_USCNT is
1159 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1160 * very clear on this point. It says in the datasheet that it is
1161 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1162 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1163 * these values. These values are also the power-on default.
1164 */
1165 ATW_WRITE(sc, ATW_TOFS0,
1166 __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1167 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1168 }
1169
1170 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1171 static void
1172 atw_ifs_init(struct atw_softc *sc)
1173 {
1174 uint32_t ifst;
1175 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1176 * Go figure.
1177 */
1178 ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1179 __SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1180 ATW_IFST_SIFS_MASK) |
1181 __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1182 __SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1183
1184 ATW_WRITE(sc, ATW_IFST, ifst);
1185 }
1186
1187 static void
1188 atw_response_times_init(struct atw_softc *sc)
1189 {
1190 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1191 * indicate that the MAC expects at least SIFS + MIRT microseconds
1192 * to pass after it transmits a frame that requires a response;
1193 * it waits at most SIFS + MART microseconds for the response.
1194 * Surely this is not the ACK timeout?
1195 */
1196 ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1197 __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1198 }
1199
1200 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1201 * engines read and write baseband registers after Rx and before
1202 * Tx, respectively.
1203 */
1204 static void
1205 atw_bbp_io_init(struct atw_softc *sc)
1206 {
1207 uint32_t mmiraddr2;
1208
1209 /* XXX The reference driver does this, but is it *really*
1210 * necessary?
1211 */
1212 switch (sc->sc_rev) {
1213 case ATW_REVISION_AB:
1214 case ATW_REVISION_AF:
1215 mmiraddr2 = 0x0;
1216 break;
1217 default:
1218 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1219 mmiraddr2 &=
1220 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1221 break;
1222 }
1223
1224 switch (sc->sc_bbptype) {
1225 case ATW_BBPTYPE_INTERSIL:
1226 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1227 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1228 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1229 break;
1230 case ATW_BBPTYPE_MARVEL:
1231 /* TBD find out the Marvel settings. */
1232 break;
1233 case ATW_BBPTYPE_RFMD:
1234 default:
1235 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1236 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1237 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1238 break;
1239 }
1240 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1241 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1242 }
1243
1244 /*
1245 * atw_init: [ ifnet interface function ]
1246 *
1247 * Initialize the interface. Must be called at splnet().
1248 */
1249 int
1250 atw_init(struct ifnet *ifp)
1251 {
1252 struct atw_softc *sc = ifp->if_softc;
1253 struct ieee80211com *ic = &sc->sc_ic;
1254 struct atw_txsoft *txs;
1255 struct atw_rxsoft *rxs;
1256 int i, error = 0;
1257
1258 if ((error = atw_enable(sc)) != 0)
1259 goto out;
1260
1261 /*
1262 * Cancel any pending I/O. This also resets.
1263 */
1264 atw_stop(ifp, 0);
1265
1266 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1267 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1268 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1269
1270 atw_wcsr_init(sc);
1271
1272 atw_cmdr_init(sc);
1273
1274 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1275 *
1276 * XXX Set transmit power for ATIM, RTS, Beacon.
1277 */
1278 ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1279 __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1280
1281 atw_tofs2_init(sc);
1282
1283 atw_nar_init(sc);
1284
1285 atw_txlmt_init(sc);
1286
1287 atw_test1_init(sc);
1288
1289 atw_rf_reset(sc);
1290
1291 atw_cfp_init(sc);
1292
1293 atw_tofs0_init(sc);
1294
1295 atw_ifs_init(sc);
1296
1297 /* XXX Fall asleep after one second of inactivity.
1298 * XXX A frame may only dribble in for 65536us.
1299 */
1300 ATW_WRITE(sc, ATW_RMD,
1301 __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1302
1303 atw_response_times_init(sc);
1304
1305 atw_bbp_io_init(sc);
1306
1307 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1308
1309 if ((error = atw_rf3000_init(sc)) != 0)
1310 goto out;
1311
1312 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1313 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1314 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1315
1316 /*
1317 * Initialize the transmit descriptor ring.
1318 */
1319 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1320 for (i = 0; i < ATW_NTXDESC; i++) {
1321 sc->sc_txdescs[i].at_ctl = 0;
1322 /* no transmit chaining */
1323 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1324 sc->sc_txdescs[i].at_buf2 =
1325 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1326 }
1327 /* use ring mode */
1328 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1329 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1330 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1331 sc->sc_txfree = ATW_NTXDESC;
1332 sc->sc_txnext = 0;
1333
1334 /*
1335 * Initialize the transmit job descriptors.
1336 */
1337 SIMPLEQ_INIT(&sc->sc_txfreeq);
1338 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1339 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1340 txs = &sc->sc_txsoft[i];
1341 txs->txs_mbuf = NULL;
1342 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1343 }
1344
1345 /*
1346 * Initialize the receive descriptor and receive job
1347 * descriptor rings.
1348 */
1349 for (i = 0; i < ATW_NRXDESC; i++) {
1350 rxs = &sc->sc_rxsoft[i];
1351 if (rxs->rxs_mbuf == NULL) {
1352 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1353 printf("%s: unable to allocate or map rx "
1354 "buffer %d, error = %d\n",
1355 sc->sc_dev.dv_xname, i, error);
1356 /*
1357 * XXX Should attempt to run with fewer receive
1358 * XXX buffers instead of just failing.
1359 */
1360 atw_rxdrain(sc);
1361 goto out;
1362 }
1363 } else
1364 atw_init_rxdesc(sc, i);
1365 }
1366 sc->sc_rxptr = 0;
1367
1368 /*
1369 * Initialize the interrupt mask and enable interrupts.
1370 */
1371 /* normal interrupts */
1372 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1373 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1374
1375 /* abnormal interrupts */
1376 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1377 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1378 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1379
1380 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1381 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1382 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1383 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1384 ATW_INTR_TRT;
1385
1386 sc->sc_linkint_mask &= sc->sc_inten;
1387 sc->sc_rxint_mask &= sc->sc_inten;
1388 sc->sc_txint_mask &= sc->sc_inten;
1389
1390 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1391 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1392
1393 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1394 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1395
1396 /*
1397 * Give the transmit and receive rings to the ADM8211.
1398 */
1399 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1400 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1401
1402 sc->sc_txthresh = 0;
1403 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1404 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1405
1406 /* common 802.11 configuration */
1407 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1408 switch (ic->ic_opmode) {
1409 case IEEE80211_M_STA:
1410 break;
1411 case IEEE80211_M_AHDEMO: /* XXX */
1412 case IEEE80211_M_IBSS:
1413 ic->ic_flags |= IEEE80211_F_IBSSON;
1414 /*FALLTHROUGH*/
1415 case IEEE80211_M_HOSTAP: /* XXX */
1416 break;
1417 case IEEE80211_M_MONITOR: /* XXX */
1418 break;
1419 }
1420
1421 switch (ic->ic_opmode) {
1422 case IEEE80211_M_AHDEMO:
1423 case IEEE80211_M_HOSTAP:
1424 #ifndef IEEE80211_NO_HOSTAP
1425 ic->ic_bss->ni_intval = ic->ic_lintval;
1426 ic->ic_bss->ni_rssi = 0;
1427 ic->ic_bss->ni_rstamp = 0;
1428 #endif /* !IEEE80211_NO_HOSTAP */
1429 break;
1430 default: /* XXX */
1431 break;
1432 }
1433
1434 sc->sc_wepctl = 0;
1435
1436 atw_write_ssid(sc);
1437 atw_write_sup_rates(sc);
1438 atw_write_wep(sc);
1439
1440 ic->ic_state = IEEE80211_S_INIT;
1441
1442 /*
1443 * Set the receive filter. This will start the transmit and
1444 * receive processes.
1445 */
1446 atw_filter_setup(sc);
1447
1448 /*
1449 * Start the receive process.
1450 */
1451 ATW_WRITE(sc, ATW_RDR, 0x1);
1452
1453 /*
1454 * Note that the interface is now running.
1455 */
1456 ifp->if_flags |= IFF_RUNNING;
1457 ifp->if_flags &= ~IFF_OACTIVE;
1458
1459 /* send no beacons, yet. */
1460 atw_start_beacon(sc, 0);
1461
1462 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1463 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1464 else
1465 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1466 out:
1467 if (error) {
1468 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1469 sc->sc_tx_timer = 0;
1470 ifp->if_timer = 0;
1471 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1472 }
1473 #ifdef ATW_DEBUG
1474 atw_print_regs(sc, "end of init");
1475 #endif /* ATW_DEBUG */
1476
1477 return (error);
1478 }
1479
1480 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1481 * 0: MAC control of RF3000/Si4126.
1482 *
1483 * Applies power, or selects RF front-end? Sets reset condition.
1484 *
1485 * TBD support non-RFMD BBP, non-SiLabs synth.
1486 */
1487 static void
1488 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1489 {
1490 if (enable) {
1491 ATW_WRITE(sc, ATW_SYNRF,
1492 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1493 DELAY(atw_bbp_io_enable_delay);
1494 } else {
1495 ATW_WRITE(sc, ATW_SYNRF, 0);
1496 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1497 }
1498 }
1499
1500 static int
1501 atw_tune(struct atw_softc *sc)
1502 {
1503 int rc;
1504 u_int chan;
1505 struct ieee80211com *ic = &sc->sc_ic;
1506
1507 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1508 if (chan == IEEE80211_CHAN_ANY)
1509 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1510
1511 if (chan == sc->sc_cur_chan)
1512 return 0;
1513
1514 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1515 sc->sc_cur_chan, chan));
1516
1517 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1518
1519 atw_si4126_tune(sc, chan);
1520 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1521 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1522 chan);
1523
1524 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1525 DELAY(atw_nar_delay);
1526 ATW_WRITE(sc, ATW_RDR, 0x1);
1527
1528 if (rc == 0) {
1529 sc->sc_cur_chan = chan;
1530 sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1531 htole16(ic->ic_curchan->ic_freq);
1532 sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1533 htole16(ic->ic_curchan->ic_flags);
1534 }
1535
1536 return rc;
1537 }
1538
1539 #ifdef ATW_SYNDEBUG
1540 static void
1541 atw_si4126_print(struct atw_softc *sc)
1542 {
1543 struct ifnet *ifp = &sc->sc_if;
1544 u_int addr, val;
1545
1546 val = 0;
1547
1548 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1549 return;
1550
1551 for (addr = 0; addr <= 8; addr++) {
1552 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1553 if (atw_si4126_read(sc, addr, &val) == 0) {
1554 printf("<unknown> (quitting print-out)\n");
1555 break;
1556 }
1557 printf("%05x\n", val);
1558 }
1559 }
1560 #endif /* ATW_SYNDEBUG */
1561
1562 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1563 *
1564 * The RF/IF synthesizer produces two reference frequencies for
1565 * the RF2948B transceiver. The first frequency the RF2948B requires
1566 * is two times the so-called "intermediate frequency" (IF). Since
1567 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1568 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second
1569 * frequency required by the transceiver is the radio frequency
1570 * (RF). This is a superheterodyne transceiver; for f(chan) the
1571 * center frequency of the channel we are tuning, RF = f(chan) -
1572 * IF.
1573 *
1574 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1575 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1576 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1577 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1578 */
1579 static void
1580 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1581 {
1582 u_int mhz;
1583 u_int R;
1584 u_int32_t gpio;
1585 u_int16_t gain;
1586
1587 #ifdef ATW_SYNDEBUG
1588 atw_si4126_print(sc);
1589 #endif /* ATW_SYNDEBUG */
1590
1591 if (chan == 14)
1592 mhz = 2484;
1593 else
1594 mhz = 2412 + 5 * (chan - 1);
1595
1596 /* Tune IF to 748 MHz to suit the IF LO input of the
1597 * RF2494B, which is 2 x IF. No need to set an IF divider
1598 * because an IF in 526 MHz - 952 MHz is allowed.
1599 *
1600 * XIN is 44.000 MHz, so divide it by two to get allowable
1601 * range of 2-25 MHz. SiLabs tells me that this is not
1602 * strictly necessary.
1603 */
1604
1605 if (atw_xindiv2)
1606 R = 44;
1607 else
1608 R = 88;
1609
1610 /* Power-up RF, IF synthesizers. */
1611 atw_si4126_write(sc, SI4126_POWER,
1612 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1613
1614 /* set LPWR, too? */
1615 atw_si4126_write(sc, SI4126_MAIN,
1616 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1617
1618 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1619 * set KP2 to 1.
1620 *
1621 * REFDIF This is different from the reference driver, which
1622 * always sets SI4126_GAIN to 0.
1623 */
1624 gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1625
1626 atw_si4126_write(sc, SI4126_GAIN, gain);
1627
1628 /* XIN = 44 MHz.
1629 *
1630 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1631 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1632 *
1633 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1634 * so that 1496/88 * 44 MHz = 748 MHz.
1635 */
1636 atw_si4126_write(sc, SI4126_IFN, 1496);
1637
1638 atw_si4126_write(sc, SI4126_IFR, R);
1639
1640 #ifndef ATW_REFSLAVE
1641 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1642 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1643 * which has no RF1!
1644 */
1645 atw_si4126_write(sc, SI4126_RF1R, R);
1646
1647 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1648 #endif
1649
1650 /* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1651 * where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44.
1652 * Now let's multiply it to mhz. So mhz - IF = N.
1653 */
1654 atw_si4126_write(sc, SI4126_RF2R, R);
1655
1656 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1657
1658 /* wait 100us from power-up for RF, IF to settle */
1659 DELAY(100);
1660
1661 gpio = ATW_READ(sc, ATW_GPIO);
1662 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1663 gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1664
1665 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1666 /* Set a Prism RF front-end to a special mode for channel 14?
1667 *
1668 * Apparently the SMC2635W needs this, although I don't think
1669 * it has a Prism RF.
1670 */
1671 gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1672 }
1673 ATW_WRITE(sc, ATW_GPIO, gpio);
1674
1675 #ifdef ATW_SYNDEBUG
1676 atw_si4126_print(sc);
1677 #endif /* ATW_SYNDEBUG */
1678 }
1679
1680 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1681 * diversity.
1682 *
1683 * !!!
1684 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1685 * !!!
1686 */
1687 static int
1688 atw_rf3000_init(struct atw_softc *sc)
1689 {
1690 int rc = 0;
1691
1692 atw_bbp_io_enable(sc, 1);
1693
1694 /* CCA is acquisition sensitive */
1695 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1696 __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1697
1698 if (rc != 0)
1699 goto out;
1700
1701 /* enable diversity */
1702 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1703
1704 if (rc != 0)
1705 goto out;
1706
1707 /* sensible setting from a binary-only driver */
1708 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1709 __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1710
1711 if (rc != 0)
1712 goto out;
1713
1714 /* magic from a binary-only driver */
1715 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1716 __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1717
1718 if (rc != 0)
1719 goto out;
1720
1721 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1722
1723 if (rc != 0)
1724 goto out;
1725
1726 /* XXX Reference driver remarks that Abocom sets this to 50.
1727 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1728 * in the "reserved" area of register RF3000_OPTIONS1.
1729 */
1730 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1731
1732 if (rc != 0)
1733 goto out;
1734
1735 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1736
1737 if (rc != 0)
1738 goto out;
1739
1740 out:
1741 atw_bbp_io_enable(sc, 0);
1742 return rc;
1743 }
1744
1745 #ifdef ATW_BBPDEBUG
1746 static void
1747 atw_rf3000_print(struct atw_softc *sc)
1748 {
1749 struct ifnet *ifp = &sc->sc_if;
1750 u_int addr, val;
1751
1752 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1753 return;
1754
1755 for (addr = 0x01; addr <= 0x15; addr++) {
1756 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1757 if (atw_rf3000_read(sc, addr, &val) != 0) {
1758 printf("<unknown> (quitting print-out)\n");
1759 break;
1760 }
1761 printf("%08x\n", val);
1762 }
1763 }
1764 #endif /* ATW_BBPDEBUG */
1765
1766 /* Set the power settings on the BBP for channel `chan'. */
1767 static int
1768 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1769 {
1770 int rc = 0;
1771 u_int32_t reg;
1772 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1773
1774 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1775 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1776 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1777
1778 /* odd channels: LSB, even channels: MSB */
1779 if (chan % 2 == 1) {
1780 txpower &= 0xFF;
1781 lpf_cutoff &= 0xFF;
1782 lna_gs_thresh &= 0xFF;
1783 } else {
1784 txpower >>= 8;
1785 lpf_cutoff >>= 8;
1786 lna_gs_thresh >>= 8;
1787 }
1788
1789 #ifdef ATW_BBPDEBUG
1790 atw_rf3000_print(sc);
1791 #endif /* ATW_BBPDEBUG */
1792
1793 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1794 "lna_gs_thresh %02x\n",
1795 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1796
1797 atw_bbp_io_enable(sc, 1);
1798
1799 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1800 __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1801 goto out;
1802
1803 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1804 goto out;
1805
1806 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1807 goto out;
1808
1809 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1810
1811 if (rc != 0)
1812 goto out;
1813
1814 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1815
1816 if (rc != 0)
1817 goto out;
1818
1819 #ifdef ATW_BBPDEBUG
1820 atw_rf3000_print(sc);
1821 #endif /* ATW_BBPDEBUG */
1822
1823 out:
1824 atw_bbp_io_enable(sc, 0);
1825
1826 /* set beacon, rts, atim transmit power */
1827 reg = ATW_READ(sc, ATW_PLCPHD);
1828 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1829 reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1830 ATW_PLCPHD_SERVICE_MASK);
1831 ATW_WRITE(sc, ATW_PLCPHD, reg);
1832 DELAY(atw_plcphd_delay);
1833
1834 return rc;
1835 }
1836
1837 /* Write a register on the RF3000 baseband processor using the
1838 * registers provided by the ADM8211 for this purpose.
1839 *
1840 * Return 0 on success.
1841 */
1842 static int
1843 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1844 {
1845 u_int32_t reg;
1846 int i;
1847
1848 reg = sc->sc_bbpctl_wr |
1849 __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1850 __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1851
1852 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1853 ATW_WRITE(sc, ATW_BBPCTL, reg);
1854 DELAY(2 * atw_pseudo_milli);
1855 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1856 break;
1857 }
1858
1859 if (i < 0) {
1860 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1861 return ETIMEDOUT;
1862 }
1863 return 0;
1864 }
1865
1866 /* Read a register on the RF3000 baseband processor using the registers
1867 * the ADM8211 provides for this purpose.
1868 *
1869 * The 7-bit register address is addr. Record the 8-bit data in the register
1870 * in *val.
1871 *
1872 * Return 0 on success.
1873 *
1874 * XXX This does not seem to work. The ADM8211 must require more or
1875 * different magic to read the chip than to write it. Possibly some
1876 * of the magic I have derived from a binary-only driver concerns
1877 * the "chip address" (see the RF3000 manual).
1878 */
1879 #ifdef ATW_BBPDEBUG
1880 static int
1881 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1882 {
1883 u_int32_t reg;
1884 int i;
1885
1886 for (i = 1000; --i >= 0; ) {
1887 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1888 break;
1889 DELAY(100);
1890 }
1891
1892 if (i < 0) {
1893 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1894 sc->sc_dev.dv_xname);
1895 return ETIMEDOUT;
1896 }
1897
1898 reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1899
1900 ATW_WRITE(sc, ATW_BBPCTL, reg);
1901
1902 for (i = 1000; --i >= 0; ) {
1903 DELAY(100);
1904 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1905 break;
1906 }
1907
1908 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1909
1910 if (i < 0) {
1911 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1912 sc->sc_dev.dv_xname, reg);
1913 return ETIMEDOUT;
1914 }
1915 if (val != NULL)
1916 *val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1917 return 0;
1918 }
1919 #endif /* ATW_BBPDEBUG */
1920
1921 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1922 * provided by the ADM8211 for that purpose.
1923 *
1924 * val is 18 bits of data, and val is the 4-bit address of the register.
1925 *
1926 * Return 0 on success.
1927 */
1928 static void
1929 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1930 {
1931 uint32_t bits, mask, reg;
1932 const int nbits = 22;
1933
1934 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1935 KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1936
1937 bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1938 __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1939
1940 reg = ATW_SYNRF_SELSYN;
1941 /* reference driver: reset Si4126 serial bus to initial
1942 * conditions?
1943 */
1944 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1945 ATW_WRITE(sc, ATW_SYNRF, reg);
1946
1947 for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1948 if ((bits & mask) != 0)
1949 reg |= ATW_SYNRF_SYNDATA;
1950 else
1951 reg &= ~ATW_SYNRF_SYNDATA;
1952 ATW_WRITE(sc, ATW_SYNRF, reg);
1953 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1954 ATW_WRITE(sc, ATW_SYNRF, reg);
1955 }
1956 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1957 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1958 }
1959
1960 /* Read 18-bit data from the 4-bit address addr in Si4126
1961 * RF synthesizer and write the data to *val. Return 0 on success.
1962 *
1963 * XXX This does not seem to work. The ADM8211 must require more or
1964 * different magic to read the chip than to write it.
1965 */
1966 #ifdef ATW_SYNDEBUG
1967 static int
1968 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1969 {
1970 u_int32_t reg;
1971 int i;
1972
1973 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1974
1975 for (i = 1000; --i >= 0; ) {
1976 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1977 break;
1978 DELAY(100);
1979 }
1980
1981 if (i < 0) {
1982 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1983 sc->sc_dev.dv_xname);
1984 return ETIMEDOUT;
1985 }
1986
1987 reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1988
1989 ATW_WRITE(sc, ATW_SYNCTL, reg);
1990
1991 for (i = 1000; --i >= 0; ) {
1992 DELAY(100);
1993 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1994 break;
1995 }
1996
1997 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1998
1999 if (i < 0) {
2000 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
2001 sc->sc_dev.dv_xname, reg);
2002 return ETIMEDOUT;
2003 }
2004 if (val != NULL)
2005 *val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
2006 ATW_SYNCTL_DATA_MASK);
2007 return 0;
2008 }
2009 #endif /* ATW_SYNDEBUG */
2010
2011 /* XXX is the endianness correct? test. */
2012 #define atw_calchash(addr) \
2013 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
2014
2015 /*
2016 * atw_filter_setup:
2017 *
2018 * Set the ADM8211's receive filter.
2019 */
2020 static void
2021 atw_filter_setup(struct atw_softc *sc)
2022 {
2023 struct ieee80211com *ic = &sc->sc_ic;
2024 struct ethercom *ec = &sc->sc_ec;
2025 struct ifnet *ifp = &sc->sc_if;
2026 int hash;
2027 u_int32_t hashes[2];
2028 struct ether_multi *enm;
2029 struct ether_multistep step;
2030
2031 /* According to comments in tlp_al981_filter_setup
2032 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2033 * multicast filter to be set while it is running. Hopefully
2034 * the ADM8211 is not the same!
2035 */
2036 if ((ifp->if_flags & IFF_RUNNING) != 0)
2037 atw_idle(sc, ATW_NAR_SR);
2038
2039 sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
2040 ifp->if_flags &= ~IFF_ALLMULTI;
2041
2042 /* XXX in scan mode, do not filter packets. Maybe this is
2043 * unnecessary.
2044 */
2045 if (ic->ic_state == IEEE80211_S_SCAN ||
2046 (ifp->if_flags & IFF_PROMISC) != 0) {
2047 sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2048 goto allmulti;
2049 }
2050
2051 hashes[0] = hashes[1] = 0x0;
2052
2053 /*
2054 * Program the 64-bit multicast hash filter.
2055 */
2056 ETHER_FIRST_MULTI(step, ec, enm);
2057 while (enm != NULL) {
2058 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2059 ETHER_ADDR_LEN) != 0)
2060 goto allmulti;
2061
2062 hash = atw_calchash(enm->enm_addrlo);
2063 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2064 ETHER_NEXT_MULTI(step, enm);
2065 sc->sc_opmode |= ATW_NAR_MM;
2066 }
2067 ifp->if_flags &= ~IFF_ALLMULTI;
2068 goto setit;
2069
2070 allmulti:
2071 sc->sc_opmode |= ATW_NAR_MM;
2072 ifp->if_flags |= IFF_ALLMULTI;
2073 hashes[0] = hashes[1] = 0xffffffff;
2074
2075 setit:
2076 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2077 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2078 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2079 DELAY(atw_nar_delay);
2080 ATW_WRITE(sc, ATW_RDR, 0x1);
2081
2082 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2083 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2084 }
2085
2086 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2087 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2088 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2089 * no beacon with the preferred BSSID and SSID in the number of
2090 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2091 */
2092 static void
2093 atw_write_bssid(struct atw_softc *sc)
2094 {
2095 struct ieee80211com *ic = &sc->sc_ic;
2096 u_int8_t *bssid;
2097
2098 bssid = ic->ic_bss->ni_bssid;
2099
2100 ATW_WRITE(sc, ATW_BSSID0,
2101 __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2102 __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2103 __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2104 __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2105
2106 ATW_WRITE(sc, ATW_ABDA1,
2107 (ATW_READ(sc, ATW_ABDA1) &
2108 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2109 __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2110 __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2111
2112 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2113 ether_sprintf(sc->sc_bssid)));
2114 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2115
2116 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2117 }
2118
2119 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2120 * 16-bit word.
2121 */
2122 static void
2123 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2124 {
2125 u_int i;
2126 u_int8_t *ptr;
2127
2128 memcpy(&sc->sc_sram[ofs], buf, buflen);
2129
2130 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2131
2132 KASSERT(buflen + ofs <= sc->sc_sramlen);
2133
2134 ptr = &sc->sc_sram[ofs];
2135
2136 for (i = 0; i < buflen; i += 2) {
2137 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2138 __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2139 DELAY(atw_writewep_delay);
2140
2141 ATW_WRITE(sc, ATW_WESK,
2142 __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2143 DELAY(atw_writewep_delay);
2144 }
2145 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2146
2147 if (sc->sc_if.if_flags & IFF_DEBUG) {
2148 int n_octets = 0;
2149 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2150 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2151 for (i = 0; i < buflen; i++) {
2152 printf(" %02x", ptr[i]);
2153 if (++n_octets % 24 == 0)
2154 printf("\n");
2155 }
2156 if (n_octets % 24 != 0)
2157 printf("\n");
2158 }
2159 }
2160
2161 static int
2162 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2163 {
2164 struct atw_softc *sc = ic->ic_ifp->if_softc;
2165 u_int keyix = k->wk_keyix;
2166
2167 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2168
2169 if (keyix >= IEEE80211_WEP_NKID)
2170 return 0;
2171 if (k->wk_keylen != 0)
2172 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2173
2174 return 1;
2175 }
2176
2177 static int
2178 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2179 const u_int8_t mac[IEEE80211_ADDR_LEN])
2180 {
2181 struct atw_softc *sc = ic->ic_ifp->if_softc;
2182
2183 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2184
2185 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2186 return 0;
2187
2188 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2189
2190 return 1;
2191 }
2192
2193 static void
2194 atw_key_update_begin(struct ieee80211com *ic)
2195 {
2196 #ifdef ATW_DEBUG
2197 struct ifnet *ifp = ic->ic_ifp;
2198 struct atw_softc *sc = ifp->if_softc;
2199 #endif
2200
2201 DPRINTF(sc, ("%s:\n", __func__));
2202 }
2203
2204 static void
2205 atw_key_update_end(struct ieee80211com *ic)
2206 {
2207 struct ifnet *ifp = ic->ic_ifp;
2208 struct atw_softc *sc = ifp->if_softc;
2209
2210 DPRINTF(sc, ("%s:\n", __func__));
2211
2212 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2213 return;
2214 if (ATW_IS_ENABLED(sc) == 0)
2215 return;
2216 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2217 atw_write_wep(sc);
2218 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2219 DELAY(atw_nar_delay);
2220 ATW_WRITE(sc, ATW_RDR, 0x1);
2221 }
2222
2223 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2224 static void
2225 atw_write_wep(struct atw_softc *sc)
2226 {
2227 #if 0
2228 struct ieee80211com *ic = &sc->sc_ic;
2229 u_int32_t reg;
2230 int i;
2231 #endif
2232 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2233 u_int8_t buf[IEEE80211_WEP_NKID]
2234 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2235
2236 sc->sc_wepctl = 0;
2237 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2238
2239 memset(&buf[0][0], 0, sizeof(buf));
2240
2241 #if 0
2242 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2243 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2244 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2245 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2246 buf[i][1] = ATW_WEP_ENABLED;
2247 } else {
2248 buf[i][1] = 0;
2249 continue;
2250 }
2251 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2252 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2253 ic->ic_nw_keys[i].wk_keylen - 1);
2254 }
2255
2256 reg = ATW_READ(sc, ATW_MACTEST);
2257 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2258 reg &= ~ATW_MACTEST_KEYID_MASK;
2259 reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2260 ATW_WRITE(sc, ATW_MACTEST, reg);
2261
2262 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2263 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2264
2265 switch (sc->sc_rev) {
2266 case ATW_REVISION_AB:
2267 case ATW_REVISION_AF:
2268 /* Bypass WEP on Rx. */
2269 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2270 break;
2271 default:
2272 break;
2273 }
2274 #endif
2275
2276 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2277 sizeof(buf));
2278
2279 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2280 }
2281
2282 static void
2283 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2284 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2285 {
2286 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2287
2288 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2289 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2290 return;
2291
2292 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2293
2294 switch (subtype) {
2295 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2296 case IEEE80211_FC0_SUBTYPE_BEACON:
2297 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2298 ic->ic_state == IEEE80211_S_RUN) {
2299 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2300 (void)ieee80211_ibss_merge(ni);
2301 }
2302 break;
2303 default:
2304 break;
2305 }
2306 return;
2307 }
2308
2309 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2310 * In ad hoc mode, the SSID is written to the beacons sent by the
2311 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2312 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2313 * indications.
2314 */
2315 static void
2316 atw_write_ssid(struct atw_softc *sc)
2317 {
2318 struct ieee80211com *ic = &sc->sc_ic;
2319 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2320 * it only expects the element length, not its ID.
2321 */
2322 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2323
2324 memset(buf, 0, sizeof(buf));
2325 buf[0] = ic->ic_bss->ni_esslen;
2326 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2327
2328 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2329 roundup(1 + ic->ic_bss->ni_esslen, 2));
2330 }
2331
2332 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2333 * In ad hoc mode, the supported rates are written to beacons sent by the
2334 * ADM8211.
2335 */
2336 static void
2337 atw_write_sup_rates(struct atw_softc *sc)
2338 {
2339 struct ieee80211com *ic = &sc->sc_ic;
2340 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2341 * supported rates
2342 */
2343 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2344
2345 memset(buf, 0, sizeof(buf));
2346
2347 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2348
2349 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2350 ic->ic_bss->ni_rates.rs_nrates);
2351
2352 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2353 }
2354
2355 /* Start/stop sending beacons. */
2356 void
2357 atw_start_beacon(struct atw_softc *sc, int start)
2358 {
2359 struct ieee80211com *ic = &sc->sc_ic;
2360 uint16_t chan;
2361 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2362 size_t len;
2363
2364 if (ATW_IS_ENABLED(sc) == 0)
2365 return;
2366
2367 /* start beacons */
2368 len = sizeof(struct ieee80211_frame) +
2369 8 /* timestamp */ + 2 /* beacon interval */ +
2370 2 /* capability info */ +
2371 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2372 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2373 3 /* DS parameters */ +
2374 IEEE80211_CRC_LEN;
2375
2376 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2377 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2378 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2379
2380 ATW_WRITE(sc, ATW_BCNT, bcnt);
2381 ATW_WRITE(sc, ATW_CAP1, cap1);
2382
2383 if (!start)
2384 return;
2385
2386 /* TBD use ni_capinfo */
2387
2388 capinfo = 0;
2389 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2390 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2391 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2392 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2393
2394 switch (ic->ic_opmode) {
2395 case IEEE80211_M_IBSS:
2396 len += 4; /* IBSS parameters */
2397 capinfo |= IEEE80211_CAPINFO_IBSS;
2398 break;
2399 case IEEE80211_M_HOSTAP:
2400 /* XXX 6-byte minimum TIM */
2401 len += atw_beacon_len_adjust;
2402 capinfo |= IEEE80211_CAPINFO_ESS;
2403 break;
2404 default:
2405 return;
2406 }
2407
2408 /* set listen interval
2409 * XXX do software units agree w/ hardware?
2410 */
2411 bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2412 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2413
2414 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2415
2416 bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2417 cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2418 cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2419
2420 ATW_WRITE(sc, ATW_BCNT, bcnt);
2421 ATW_WRITE(sc, ATW_BPLI, bpli);
2422 ATW_WRITE(sc, ATW_CAP0, cap0);
2423 ATW_WRITE(sc, ATW_CAP1, cap1);
2424
2425 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2426 sc->sc_dev.dv_xname, bcnt));
2427
2428 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2429 sc->sc_dev.dv_xname, cap1));
2430 }
2431
2432 /* Return the 32 lsb of the last TSFT divisible by ival. */
2433 static inline uint32_t
2434 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2435 {
2436 /* Following the reference driver's lead, I compute
2437 *
2438 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2439 *
2440 * without using 64-bit arithmetic, using the following
2441 * relationship:
2442 *
2443 * (0x100000000 * H + L) % m
2444 * = ((0x100000000 % m) * H + L) % m
2445 * = (((0xffffffff + 1) % m) * H + L) % m
2446 * = ((0xffffffff % m + 1 % m) * H + L) % m
2447 * = ((0xffffffff % m + 1) * H + L) % m
2448 */
2449 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2450 }
2451
2452 static uint64_t
2453 atw_get_tsft(struct atw_softc *sc)
2454 {
2455 int i;
2456 uint32_t tsfth, tsftl;
2457 for (i = 0; i < 2; i++) {
2458 tsfth = ATW_READ(sc, ATW_TSFTH);
2459 tsftl = ATW_READ(sc, ATW_TSFTL);
2460 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2461 break;
2462 }
2463 return ((uint64_t)tsfth << 32) | tsftl;
2464 }
2465
2466 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2467 * the ieee80211com.
2468 *
2469 * Predict the next target beacon transmission time (TBTT) and
2470 * write it to the ADM8211.
2471 */
2472 static void
2473 atw_predict_beacon(struct atw_softc *sc)
2474 {
2475 #define TBTTOFS 20 /* TU */
2476
2477 struct ieee80211com *ic = &sc->sc_ic;
2478 uint64_t tsft;
2479 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2480 union {
2481 uint64_t word;
2482 uint8_t tstamp[8];
2483 } u;
2484
2485 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2486 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2487 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2488 tsft = atw_get_tsft(sc);
2489 u.word = htole64(tsft);
2490 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2491 sizeof(ic->ic_bss->ni_tstamp));
2492 } else
2493 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2494
2495 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2496
2497 tsftl = tsft & 0xFFFFFFFF;
2498 tsfth = tsft >> 32;
2499
2500 /* We sent/received the last beacon `past' microseconds
2501 * after the interval divided the TSF timer.
2502 */
2503 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2504
2505 /* Skip ten beacons so that the TBTT cannot pass before
2506 * we've programmed it. Ten is an arbitrary number.
2507 */
2508 tbtt = past_even + ival * 10;
2509
2510 ATW_WRITE(sc, ATW_TOFS1,
2511 __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2512 __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2513 __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2514 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2515 #undef TBTTOFS
2516 }
2517
2518 static void
2519 atw_next_scan(void *arg)
2520 {
2521 struct atw_softc *sc = arg;
2522 struct ieee80211com *ic = &sc->sc_ic;
2523 int s;
2524
2525 /* don't call atw_start w/o network interrupts blocked */
2526 s = splnet();
2527 if (ic->ic_state == IEEE80211_S_SCAN)
2528 ieee80211_next_scan(ic);
2529 splx(s);
2530 }
2531
2532 /* Synchronize the hardware state with the software state. */
2533 static int
2534 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2535 {
2536 struct ifnet *ifp = ic->ic_ifp;
2537 struct atw_softc *sc = ifp->if_softc;
2538 enum ieee80211_state ostate;
2539 int error = 0;
2540
2541 ostate = ic->ic_state;
2542 callout_stop(&sc->sc_scan_ch);
2543
2544 switch (nstate) {
2545 case IEEE80211_S_AUTH:
2546 case IEEE80211_S_ASSOC:
2547 atw_write_bssid(sc);
2548 error = atw_tune(sc);
2549 break;
2550 case IEEE80211_S_INIT:
2551 callout_stop(&sc->sc_scan_ch);
2552 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2553 atw_start_beacon(sc, 0);
2554 break;
2555 case IEEE80211_S_SCAN:
2556 error = atw_tune(sc);
2557 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2558 atw_next_scan, sc);
2559 break;
2560 case IEEE80211_S_RUN:
2561 error = atw_tune(sc);
2562 atw_write_bssid(sc);
2563 atw_write_ssid(sc);
2564 atw_write_sup_rates(sc);
2565
2566 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2567 ic->ic_opmode == IEEE80211_M_MONITOR)
2568 break;
2569
2570 /* set listen interval
2571 * XXX do software units agree w/ hardware?
2572 */
2573 ATW_WRITE(sc, ATW_BPLI,
2574 __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2575 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2576 ATW_BPLI_LI_MASK));
2577
2578 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", sc->sc_dev.dv_xname,
2579 ATW_READ(sc, ATW_BPLI)));
2580
2581 atw_predict_beacon(sc);
2582
2583 switch (ic->ic_opmode) {
2584 case IEEE80211_M_AHDEMO:
2585 case IEEE80211_M_HOSTAP:
2586 case IEEE80211_M_IBSS:
2587 atw_start_beacon(sc, 1);
2588 break;
2589 case IEEE80211_M_MONITOR:
2590 case IEEE80211_M_STA:
2591 break;
2592 }
2593
2594 break;
2595 }
2596 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2597 }
2598
2599 /*
2600 * atw_add_rxbuf:
2601 *
2602 * Add a receive buffer to the indicated descriptor.
2603 */
2604 int
2605 atw_add_rxbuf(struct atw_softc *sc, int idx)
2606 {
2607 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2608 struct mbuf *m;
2609 int error;
2610
2611 MGETHDR(m, M_DONTWAIT, MT_DATA);
2612 if (m == NULL)
2613 return (ENOBUFS);
2614
2615 MCLGET(m, M_DONTWAIT);
2616 if ((m->m_flags & M_EXT) == 0) {
2617 m_freem(m);
2618 return (ENOBUFS);
2619 }
2620
2621 if (rxs->rxs_mbuf != NULL)
2622 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2623
2624 rxs->rxs_mbuf = m;
2625
2626 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2627 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2628 BUS_DMA_READ|BUS_DMA_NOWAIT);
2629 if (error) {
2630 printf("%s: can't load rx DMA map %d, error = %d\n",
2631 sc->sc_dev.dv_xname, idx, error);
2632 panic("atw_add_rxbuf"); /* XXX */
2633 }
2634
2635 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2636 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2637
2638 atw_init_rxdesc(sc, idx);
2639
2640 return (0);
2641 }
2642
2643 /*
2644 * Release any queued transmit buffers.
2645 */
2646 void
2647 atw_txdrain(struct atw_softc *sc)
2648 {
2649 struct atw_txsoft *txs;
2650
2651 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2652 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2653 if (txs->txs_mbuf != NULL) {
2654 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2655 m_freem(txs->txs_mbuf);
2656 txs->txs_mbuf = NULL;
2657 }
2658 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2659 sc->sc_txfree += txs->txs_ndescs;
2660 }
2661
2662 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2663 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2664 sc->sc_txfree != ATW_NTXDESC));
2665 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2666 sc->sc_tx_timer = 0;
2667 }
2668
2669 /*
2670 * atw_stop: [ ifnet interface function ]
2671 *
2672 * Stop transmission on the interface.
2673 */
2674 void
2675 atw_stop(struct ifnet *ifp, int disable)
2676 {
2677 struct atw_softc *sc = ifp->if_softc;
2678 struct ieee80211com *ic = &sc->sc_ic;
2679
2680 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2681
2682 /* Disable interrupts. */
2683 ATW_WRITE(sc, ATW_IER, 0);
2684
2685 /* Stop the transmit and receive processes. */
2686 sc->sc_opmode = 0;
2687 ATW_WRITE(sc, ATW_NAR, 0);
2688 DELAY(atw_nar_delay);
2689 ATW_WRITE(sc, ATW_TDBD, 0);
2690 ATW_WRITE(sc, ATW_TDBP, 0);
2691 ATW_WRITE(sc, ATW_RDB, 0);
2692
2693 atw_txdrain(sc);
2694
2695 if (disable) {
2696 atw_rxdrain(sc);
2697 atw_disable(sc);
2698 }
2699
2700 /*
2701 * Mark the interface down and cancel the watchdog timer.
2702 */
2703 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2704 sc->sc_tx_timer = 0;
2705 ifp->if_timer = 0;
2706
2707 if (!disable)
2708 atw_reset(sc);
2709 }
2710
2711 /*
2712 * atw_rxdrain:
2713 *
2714 * Drain the receive queue.
2715 */
2716 void
2717 atw_rxdrain(struct atw_softc *sc)
2718 {
2719 struct atw_rxsoft *rxs;
2720 int i;
2721
2722 for (i = 0; i < ATW_NRXDESC; i++) {
2723 rxs = &sc->sc_rxsoft[i];
2724 if (rxs->rxs_mbuf == NULL)
2725 continue;
2726 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2727 m_freem(rxs->rxs_mbuf);
2728 rxs->rxs_mbuf = NULL;
2729 }
2730 }
2731
2732 /*
2733 * atw_detach:
2734 *
2735 * Detach an ADM8211 interface.
2736 */
2737 int
2738 atw_detach(struct atw_softc *sc)
2739 {
2740 struct ifnet *ifp = &sc->sc_if;
2741 struct atw_rxsoft *rxs;
2742 struct atw_txsoft *txs;
2743 int i;
2744
2745 /*
2746 * Succeed now if there isn't any work to do.
2747 */
2748 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2749 return (0);
2750
2751 callout_stop(&sc->sc_scan_ch);
2752
2753 ieee80211_ifdetach(&sc->sc_ic);
2754 if_detach(ifp);
2755
2756 for (i = 0; i < ATW_NRXDESC; i++) {
2757 rxs = &sc->sc_rxsoft[i];
2758 if (rxs->rxs_mbuf != NULL) {
2759 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2760 m_freem(rxs->rxs_mbuf);
2761 rxs->rxs_mbuf = NULL;
2762 }
2763 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2764 }
2765 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2766 txs = &sc->sc_txsoft[i];
2767 if (txs->txs_mbuf != NULL) {
2768 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2769 m_freem(txs->txs_mbuf);
2770 txs->txs_mbuf = NULL;
2771 }
2772 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2773 }
2774 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2775 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2776 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2777 sizeof(struct atw_control_data));
2778 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2779
2780 shutdownhook_disestablish(sc->sc_sdhook);
2781 powerhook_disestablish(sc->sc_powerhook);
2782
2783 if (sc->sc_srom)
2784 free(sc->sc_srom, M_DEVBUF);
2785
2786 atw_evcnt_detach(sc);
2787
2788 return (0);
2789 }
2790
2791 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2792 void
2793 atw_shutdown(void *arg)
2794 {
2795 struct atw_softc *sc = arg;
2796
2797 atw_stop(&sc->sc_if, 1);
2798 }
2799
2800 int
2801 atw_intr(void *arg)
2802 {
2803 struct atw_softc *sc = arg;
2804 struct ifnet *ifp = &sc->sc_if;
2805 u_int32_t status, rxstatus, txstatus, linkstatus;
2806 int handled = 0, txthresh;
2807
2808 #ifdef DEBUG
2809 if (ATW_IS_ENABLED(sc) == 0)
2810 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2811 #endif
2812
2813 /*
2814 * If the interface isn't running, the interrupt couldn't
2815 * possibly have come from us.
2816 */
2817 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2818 !device_is_active(&sc->sc_dev))
2819 return (0);
2820
2821 for (;;) {
2822 status = ATW_READ(sc, ATW_STSR);
2823
2824 if (status)
2825 ATW_WRITE(sc, ATW_STSR, status);
2826
2827 #ifdef ATW_DEBUG
2828 #define PRINTINTR(flag) do { \
2829 if ((status & flag) != 0) { \
2830 printf("%s" #flag, delim); \
2831 delim = ","; \
2832 } \
2833 } while (0)
2834
2835 if (atw_debug > 1 && status) {
2836 const char *delim = "<";
2837
2838 printf("%s: reg[STSR] = %x",
2839 sc->sc_dev.dv_xname, status);
2840
2841 PRINTINTR(ATW_INTR_FBE);
2842 PRINTINTR(ATW_INTR_LINKOFF);
2843 PRINTINTR(ATW_INTR_LINKON);
2844 PRINTINTR(ATW_INTR_RCI);
2845 PRINTINTR(ATW_INTR_RDU);
2846 PRINTINTR(ATW_INTR_REIS);
2847 PRINTINTR(ATW_INTR_RPS);
2848 PRINTINTR(ATW_INTR_TCI);
2849 PRINTINTR(ATW_INTR_TDU);
2850 PRINTINTR(ATW_INTR_TLT);
2851 PRINTINTR(ATW_INTR_TPS);
2852 PRINTINTR(ATW_INTR_TRT);
2853 PRINTINTR(ATW_INTR_TUF);
2854 PRINTINTR(ATW_INTR_BCNTC);
2855 PRINTINTR(ATW_INTR_ATIME);
2856 PRINTINTR(ATW_INTR_TBTT);
2857 PRINTINTR(ATW_INTR_TSCZ);
2858 PRINTINTR(ATW_INTR_TSFTF);
2859 printf(">\n");
2860 }
2861 #undef PRINTINTR
2862 #endif /* ATW_DEBUG */
2863
2864 if ((status & sc->sc_inten) == 0)
2865 break;
2866
2867 handled = 1;
2868
2869 rxstatus = status & sc->sc_rxint_mask;
2870 txstatus = status & sc->sc_txint_mask;
2871 linkstatus = status & sc->sc_linkint_mask;
2872
2873 if (linkstatus) {
2874 atw_linkintr(sc, linkstatus);
2875 }
2876
2877 if (rxstatus) {
2878 /* Grab any new packets. */
2879 atw_rxintr(sc);
2880
2881 if (rxstatus & ATW_INTR_RDU) {
2882 printf("%s: receive ring overrun\n",
2883 sc->sc_dev.dv_xname);
2884 /* Get the receive process going again. */
2885 ATW_WRITE(sc, ATW_RDR, 0x1);
2886 break;
2887 }
2888 }
2889
2890 if (txstatus) {
2891 /* Sweep up transmit descriptors. */
2892 atw_txintr(sc);
2893
2894 if (txstatus & ATW_INTR_TLT) {
2895 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2896 sc->sc_dev.dv_xname));
2897 }
2898
2899 if (txstatus & ATW_INTR_TRT) {
2900 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2901 sc->sc_dev.dv_xname));
2902 }
2903
2904 /* If Tx under-run, increase our transmit threshold
2905 * if another is available.
2906 */
2907 txthresh = sc->sc_txthresh + 1;
2908 if ((txstatus & ATW_INTR_TUF) &&
2909 sc->sc_txth[txthresh].txth_name != NULL) {
2910 /* Idle the transmit process. */
2911 atw_idle(sc, ATW_NAR_ST);
2912
2913 sc->sc_txthresh = txthresh;
2914 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2915 sc->sc_opmode |=
2916 sc->sc_txth[txthresh].txth_opmode;
2917 printf("%s: transmit underrun; new "
2918 "threshold: %s\n", sc->sc_dev.dv_xname,
2919 sc->sc_txth[txthresh].txth_name);
2920
2921 /* Set the new threshold and restart
2922 * the transmit process.
2923 */
2924 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2925 DELAY(atw_nar_delay);
2926 ATW_WRITE(sc, ATW_RDR, 0x1);
2927 /* XXX Log every Nth underrun from
2928 * XXX now on?
2929 */
2930 }
2931 }
2932
2933 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2934 if (status & ATW_INTR_TPS)
2935 printf("%s: transmit process stopped\n",
2936 sc->sc_dev.dv_xname);
2937 if (status & ATW_INTR_RPS)
2938 printf("%s: receive process stopped\n",
2939 sc->sc_dev.dv_xname);
2940 (void)atw_init(ifp);
2941 break;
2942 }
2943
2944 if (status & ATW_INTR_FBE) {
2945 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2946 (void)atw_init(ifp);
2947 break;
2948 }
2949
2950 /*
2951 * Not handled:
2952 *
2953 * Transmit buffer unavailable -- normal
2954 * condition, nothing to do, really.
2955 *
2956 * Early receive interrupt -- not available on
2957 * all chips, we just use RI. We also only
2958 * use single-segment receive DMA, so this
2959 * is mostly useless.
2960 *
2961 * TBD others
2962 */
2963 }
2964
2965 /* Try to get more packets going. */
2966 atw_start(ifp);
2967
2968 return (handled);
2969 }
2970
2971 /*
2972 * atw_idle:
2973 *
2974 * Cause the transmit and/or receive processes to go idle.
2975 *
2976 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2977 * process in STSR if I clear SR or ST after the process has already
2978 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2979 * do not seem to be too reliable. Perhaps I have the sense of the
2980 * Rx bits switched with the Tx bits?
2981 */
2982 void
2983 atw_idle(struct atw_softc *sc, u_int32_t bits)
2984 {
2985 u_int32_t ackmask = 0, opmode, stsr, test0;
2986 int i, s;
2987
2988 s = splnet();
2989
2990 opmode = sc->sc_opmode & ~bits;
2991
2992 if (bits & ATW_NAR_SR)
2993 ackmask |= ATW_INTR_RPS;
2994
2995 if (bits & ATW_NAR_ST) {
2996 ackmask |= ATW_INTR_TPS;
2997 /* set ATW_NAR_HF to flush TX FIFO. */
2998 opmode |= ATW_NAR_HF;
2999 }
3000
3001 ATW_WRITE(sc, ATW_NAR, opmode);
3002 DELAY(atw_nar_delay);
3003
3004 for (i = 0; i < 1000; i++) {
3005 stsr = ATW_READ(sc, ATW_STSR);
3006 if ((stsr & ackmask) == ackmask)
3007 break;
3008 DELAY(10);
3009 }
3010
3011 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3012
3013 if ((stsr & ackmask) == ackmask)
3014 goto out;
3015
3016 test0 = ATW_READ(sc, ATW_TEST0);
3017
3018 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3019 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3020 printf("%s: transmit process not idle [%s]\n",
3021 sc->sc_dev.dv_xname,
3022 atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3023 printf("%s: bits %08x test0 %08x stsr %08x\n",
3024 sc->sc_dev.dv_xname, bits, test0, stsr);
3025 }
3026
3027 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3028 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3029 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3030 sc->sc_dev.dv_xname,
3031 atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3032 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3033 sc->sc_dev.dv_xname, bits, test0, stsr));
3034 }
3035 out:
3036 if ((bits & ATW_NAR_ST) != 0)
3037 atw_txdrain(sc);
3038 splx(s);
3039 return;
3040 }
3041
3042 /*
3043 * atw_linkintr:
3044 *
3045 * Helper; handle link-status interrupts.
3046 */
3047 void
3048 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3049 {
3050 struct ieee80211com *ic = &sc->sc_ic;
3051
3052 if (ic->ic_state != IEEE80211_S_RUN)
3053 return;
3054
3055 if (linkstatus & ATW_INTR_LINKON) {
3056 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3057 sc->sc_rescan_timer = 0;
3058 } else if (linkstatus & ATW_INTR_LINKOFF) {
3059 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3060 if (ic->ic_opmode != IEEE80211_M_STA)
3061 return;
3062 sc->sc_rescan_timer = 3;
3063 sc->sc_if.if_timer = 1;
3064 }
3065 }
3066
3067 static inline int
3068 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3069 {
3070 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3071 return 0;
3072 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3073 return 0;
3074 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3075 }
3076
3077 /*
3078 * atw_rxintr:
3079 *
3080 * Helper; handle receive interrupts.
3081 */
3082 void
3083 atw_rxintr(struct atw_softc *sc)
3084 {
3085 static int rate_tbl[] = {2, 4, 11, 22, 44};
3086 struct ieee80211com *ic = &sc->sc_ic;
3087 struct ieee80211_node *ni;
3088 struct ieee80211_frame_min *wh;
3089 struct ifnet *ifp = &sc->sc_if;
3090 struct atw_rxsoft *rxs;
3091 struct mbuf *m;
3092 u_int32_t rxstat;
3093 int i, len, rate, rate0;
3094 u_int32_t rssi, ctlrssi;
3095
3096 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3097 rxs = &sc->sc_rxsoft[i];
3098
3099 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3100
3101 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3102 ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3103 rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3104
3105 if (rxstat & ATW_RXSTAT_OWN)
3106 break; /* We have processed all receive buffers. */
3107
3108 DPRINTF3(sc,
3109 ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3110 sc->sc_dev.dv_xname,
3111 rxstat, ctlrssi,
3112 le32toh(sc->sc_rxdescs[i].ar_buf1),
3113 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3114
3115 /*
3116 * Make sure the packet fits in one buffer. This should
3117 * always be the case.
3118 */
3119 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3120 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3121 printf("%s: incoming packet spilled, resetting\n",
3122 sc->sc_dev.dv_xname);
3123 (void)atw_init(ifp);
3124 return;
3125 }
3126
3127 /*
3128 * If an error occurred, update stats, clear the status
3129 * word, and leave the packet buffer in place. It will
3130 * simply be reused the next time the ring comes around.
3131 */
3132 if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3133 #define PRINTERR(bit, str) \
3134 if (rxstat & (bit)) \
3135 printf("%s: receive error: %s\n", \
3136 sc->sc_dev.dv_xname, str)
3137 ifp->if_ierrors++;
3138 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3139 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3140 #if 0
3141 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3142 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3143 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3144 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3145 #endif
3146 #undef PRINTERR
3147 atw_init_rxdesc(sc, i);
3148 continue;
3149 }
3150
3151 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3152 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3153
3154 /*
3155 * No errors; receive the packet. Note the ADM8211
3156 * includes the CRC in promiscuous mode.
3157 */
3158 len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3159
3160 /*
3161 * Allocate a new mbuf cluster. If that fails, we are
3162 * out of memory, and must drop the packet and recycle
3163 * the buffer that's already attached to this descriptor.
3164 */
3165 m = rxs->rxs_mbuf;
3166 if (atw_add_rxbuf(sc, i) != 0) {
3167 ifp->if_ierrors++;
3168 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3169 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3170 atw_init_rxdesc(sc, i);
3171 continue;
3172 }
3173
3174 ifp->if_ipackets++;
3175 m->m_pkthdr.rcvif = ifp;
3176 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3177
3178 rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3179
3180 /* The RSSI comes straight from a register in the
3181 * baseband processor. I know that for the RF3000,
3182 * the RSSI register also contains the antenna-selection
3183 * bits. Mask those off.
3184 *
3185 * TBD Treat other basebands.
3186 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3187 */
3188 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3189 rssi = ctlrssi & RF3000_RSSI_MASK;
3190 else
3191 rssi = ctlrssi;
3192
3193 #if NBPFILTER > 0
3194 /* Pass this up to any BPF listeners. */
3195 if (sc->sc_radiobpf != NULL) {
3196 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3197
3198 tap->ar_rate = rate;
3199
3200 /* TBD verify units are dB */
3201 tap->ar_antsignal = (int)rssi;
3202 if (sc->sc_opmode & ATW_NAR_PR)
3203 tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3204 else
3205 tap->ar_flags = 0;
3206
3207 if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3208 tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3209
3210 bpf_mtap2(sc->sc_radiobpf, tap,
3211 sizeof(sc->sc_rxtapu), m);
3212 }
3213 #endif /* NBPFILTER > 0 */
3214
3215 sc->sc_recv_ev.ev_count++;
3216
3217 if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3218 if (rxstat & ATW_RXSTAT_CRC16E)
3219 sc->sc_crc16e_ev.ev_count++;
3220 if (rxstat & ATW_RXSTAT_CRC32E)
3221 sc->sc_crc32e_ev.ev_count++;
3222 if (rxstat & ATW_RXSTAT_ICVE)
3223 sc->sc_icve_ev.ev_count++;
3224 if (rxstat & ATW_RXSTAT_SFDE)
3225 sc->sc_sfde_ev.ev_count++;
3226 if (rxstat & ATW_RXSTAT_SIGE)
3227 sc->sc_sige_ev.ev_count++;
3228 ifp->if_ierrors++;
3229 m_freem(m);
3230 continue;
3231 }
3232
3233 if (sc->sc_opmode & ATW_NAR_PR)
3234 m_adj(m, -IEEE80211_CRC_LEN);
3235
3236 wh = mtod(m, struct ieee80211_frame_min *);
3237 ni = ieee80211_find_rxnode(ic, wh);
3238 #if 0
3239 if (atw_hw_decrypted(sc, wh)) {
3240 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3241 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3242 }
3243 #endif
3244 ieee80211_input(ic, m, ni, (int)rssi, 0);
3245 ieee80211_free_node(ni);
3246 }
3247
3248 /* Update the receive pointer. */
3249 sc->sc_rxptr = i;
3250 }
3251
3252 /*
3253 * atw_txintr:
3254 *
3255 * Helper; handle transmit interrupts.
3256 */
3257 void
3258 atw_txintr(struct atw_softc *sc)
3259 {
3260 static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3261 struct ifnet *ifp = &sc->sc_if;
3262 struct atw_txsoft *txs;
3263 u_int32_t txstat;
3264
3265 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3266 sc->sc_dev.dv_xname, sc->sc_flags));
3267
3268 /*
3269 * Go through our Tx list and free mbufs for those
3270 * frames that have been transmitted.
3271 */
3272 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3273 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3274 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3275
3276 #ifdef ATW_DEBUG
3277 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3278 int i;
3279 printf(" txsoft %p transmit chain:\n", txs);
3280 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3281 txs->txs_ndescs - 1,
3282 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3283 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3284 printf(" descriptor %d:\n", i);
3285 printf(" at_status: 0x%08x\n",
3286 le32toh(sc->sc_txdescs[i].at_stat));
3287 printf(" at_flags: 0x%08x\n",
3288 le32toh(sc->sc_txdescs[i].at_flags));
3289 printf(" at_buf1: 0x%08x\n",
3290 le32toh(sc->sc_txdescs[i].at_buf1));
3291 printf(" at_buf2: 0x%08x\n",
3292 le32toh(sc->sc_txdescs[i].at_buf2));
3293 if (i == txs->txs_lastdesc)
3294 break;
3295 }
3296 }
3297 #endif
3298
3299 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3300 if (txstat & ATW_TXSTAT_OWN)
3301 break;
3302
3303 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3304
3305 sc->sc_txfree += txs->txs_ndescs;
3306
3307 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3308 0, txs->txs_dmamap->dm_mapsize,
3309 BUS_DMASYNC_POSTWRITE);
3310 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3311 m_freem(txs->txs_mbuf);
3312 txs->txs_mbuf = NULL;
3313
3314 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3315
3316 KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3317 sc->sc_txfree == 0));
3318 ifp->if_flags &= ~IFF_OACTIVE;
3319
3320 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3321 (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3322 bitmask_snprintf(txstat & ATW_TXSTAT_ERRMASK,
3323 ATW_TXSTAT_FMT, txstat_buf, sizeof(txstat_buf));
3324 printf("%s: txstat %s %" __PRIuBITS "\n",
3325 sc->sc_dev.dv_xname, txstat_buf,
3326 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3327 }
3328
3329 /*
3330 * Check for errors and collisions.
3331 */
3332 if (txstat & ATW_TXSTAT_TUF)
3333 sc->sc_stats.ts_tx_tuf++;
3334 if (txstat & ATW_TXSTAT_TLT)
3335 sc->sc_stats.ts_tx_tlt++;
3336 if (txstat & ATW_TXSTAT_TRT)
3337 sc->sc_stats.ts_tx_trt++;
3338 if (txstat & ATW_TXSTAT_TRO)
3339 sc->sc_stats.ts_tx_tro++;
3340 if (txstat & ATW_TXSTAT_SOFBR) {
3341 sc->sc_stats.ts_tx_sofbr++;
3342 }
3343
3344 if ((txstat & ATW_TXSTAT_ES) == 0)
3345 ifp->if_collisions +=
3346 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3347 else
3348 ifp->if_oerrors++;
3349
3350 ifp->if_opackets++;
3351 }
3352
3353 /*
3354 * If there are no more pending transmissions, cancel the watchdog
3355 * timer.
3356 */
3357 if (txs == NULL) {
3358 KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3359 sc->sc_tx_timer = 0;
3360 }
3361 }
3362
3363 /*
3364 * atw_watchdog: [ifnet interface function]
3365 *
3366 * Watchdog timer handler.
3367 */
3368 void
3369 atw_watchdog(struct ifnet *ifp)
3370 {
3371 struct atw_softc *sc = ifp->if_softc;
3372 struct ieee80211com *ic = &sc->sc_ic;
3373
3374 ifp->if_timer = 0;
3375 if (ATW_IS_ENABLED(sc) == 0)
3376 return;
3377
3378 if (sc->sc_rescan_timer) {
3379 if (--sc->sc_rescan_timer == 0)
3380 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3381 }
3382 if (sc->sc_tx_timer) {
3383 if (--sc->sc_tx_timer == 0 &&
3384 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3385 printf("%s: transmit timeout\n", ifp->if_xname);
3386 ifp->if_oerrors++;
3387 (void)atw_init(ifp);
3388 atw_start(ifp);
3389 }
3390 }
3391 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3392 ifp->if_timer = 1;
3393 ieee80211_watchdog(ic);
3394 }
3395
3396 static void
3397 atw_evcnt_detach(struct atw_softc *sc)
3398 {
3399 evcnt_detach(&sc->sc_sige_ev);
3400 evcnt_detach(&sc->sc_sfde_ev);
3401 evcnt_detach(&sc->sc_icve_ev);
3402 evcnt_detach(&sc->sc_crc32e_ev);
3403 evcnt_detach(&sc->sc_crc16e_ev);
3404 evcnt_detach(&sc->sc_recv_ev);
3405 }
3406
3407 static void
3408 atw_evcnt_attach(struct atw_softc *sc)
3409 {
3410 evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3411 NULL, sc->sc_if.if_xname, "recv");
3412 evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3413 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3414 evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3415 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3416 evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3417 &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3418 evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3419 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3420 evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3421 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3422 }
3423
3424 #ifdef ATW_DEBUG
3425 static void
3426 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3427 {
3428 struct atw_softc *sc = ifp->if_softc;
3429 struct mbuf *m;
3430 int i, noctets = 0;
3431
3432 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3433 m0->m_pkthdr.len);
3434
3435 for (m = m0; m; m = m->m_next) {
3436 if (m->m_len == 0)
3437 continue;
3438 for (i = 0; i < m->m_len; i++) {
3439 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3440 if (++noctets % 24 == 0)
3441 printf("\n");
3442 }
3443 }
3444 printf("%s%s: %d bytes emitted\n",
3445 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3446 }
3447 #endif /* ATW_DEBUG */
3448
3449 /*
3450 * atw_start: [ifnet interface function]
3451 *
3452 * Start packet transmission on the interface.
3453 */
3454 void
3455 atw_start(struct ifnet *ifp)
3456 {
3457 struct atw_softc *sc = ifp->if_softc;
3458 struct ieee80211_key *k;
3459 struct ieee80211com *ic = &sc->sc_ic;
3460 struct ieee80211_node *ni;
3461 struct ieee80211_frame_min *whm;
3462 struct ieee80211_frame *wh;
3463 struct atw_frame *hh;
3464 struct mbuf *m0, *m;
3465 struct atw_txsoft *txs, *last_txs;
3466 struct atw_txdesc *txd;
3467 int npkt, rate;
3468 bus_dmamap_t dmamap;
3469 int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3470
3471 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3472 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3473
3474 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3475 return;
3476
3477 /*
3478 * Remember the previous number of free descriptors and
3479 * the first descriptor we'll use.
3480 */
3481 ofree = sc->sc_txfree;
3482 firsttx = lasttx = sc->sc_txnext;
3483
3484 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3485 sc->sc_dev.dv_xname, ofree, firsttx));
3486
3487 /*
3488 * Loop through the send queue, setting up transmit descriptors
3489 * until we drain the queue, or use up all available transmit
3490 * descriptors.
3491 */
3492 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3493 sc->sc_txfree != 0) {
3494
3495 /*
3496 * Grab a packet off the management queue, if it
3497 * is not empty. Otherwise, from the data queue.
3498 */
3499 IF_DEQUEUE(&ic->ic_mgtq, m0);
3500 if (m0 != NULL) {
3501 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3502 m0->m_pkthdr.rcvif = NULL;
3503 } else if (ic->ic_state != IEEE80211_S_RUN)
3504 break; /* send no data until associated */
3505 else {
3506 IFQ_DEQUEUE(&ifp->if_snd, m0);
3507 if (m0 == NULL)
3508 break;
3509 #if NBPFILTER > 0
3510 if (ifp->if_bpf != NULL)
3511 bpf_mtap(ifp->if_bpf, m0);
3512 #endif /* NBPFILTER > 0 */
3513 ni = ieee80211_find_txnode(ic,
3514 mtod(m0, struct ether_header *)->ether_dhost);
3515 if (ni == NULL) {
3516 ifp->if_oerrors++;
3517 break;
3518 }
3519 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3520 ieee80211_free_node(ni);
3521 ifp->if_oerrors++;
3522 break;
3523 }
3524 }
3525
3526 rate = MAX(ieee80211_get_rate(ni), 2);
3527
3528 whm = mtod(m0, struct ieee80211_frame_min *);
3529
3530 if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3531 k = NULL;
3532 else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3533 m_freem(m0);
3534 ieee80211_free_node(ni);
3535 ifp->if_oerrors++;
3536 break;
3537 }
3538
3539 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3540 ic->ic_flags, ic->ic_fragthreshold, rate,
3541 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3542 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3543 m_freem(m0);
3544 break;
3545 }
3546
3547 /* XXX Misleading if fragmentation is enabled. Better
3548 * to fragment in software?
3549 */
3550 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3551
3552 #if NBPFILTER > 0
3553 /*
3554 * Pass the packet to any BPF listeners.
3555 */
3556 if (ic->ic_rawbpf != NULL)
3557 bpf_mtap((void *)ic->ic_rawbpf, m0);
3558
3559 if (sc->sc_radiobpf != NULL) {
3560 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3561
3562 tap->at_rate = rate;
3563
3564 bpf_mtap2(sc->sc_radiobpf, tap,
3565 sizeof(sc->sc_txtapu), m0);
3566 }
3567 #endif /* NBPFILTER > 0 */
3568
3569 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3570
3571 if (ni != NULL)
3572 ieee80211_free_node(ni);
3573
3574 if (m0 == NULL) {
3575 ifp->if_oerrors++;
3576 break;
3577 }
3578
3579 /* just to make sure. */
3580 m0 = m_pullup(m0, sizeof(struct atw_frame));
3581
3582 if (m0 == NULL) {
3583 ifp->if_oerrors++;
3584 break;
3585 }
3586
3587 hh = mtod(m0, struct atw_frame *);
3588 wh = &hh->atw_ihdr;
3589
3590 /* Copy everything we need from the 802.11 header:
3591 * Frame Control; address 1, address 3, or addresses
3592 * 3 and 4. NIC fills in BSSID, SA.
3593 */
3594 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3595 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3596 panic("%s: illegal WDS frame",
3597 sc->sc_dev.dv_xname);
3598 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3599 } else
3600 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3601
3602 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3603
3604 /* initialize remaining Tx parameters */
3605 memset(&hh->u, 0, sizeof(hh->u));
3606
3607 hh->atw_rate = rate * 5;
3608 /* XXX this could be incorrect if M_FCS. _encap should
3609 * probably strip FCS just in case it sticks around in
3610 * bridged packets.
3611 */
3612 hh->atw_service = 0x00; /* XXX guess */
3613 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3614 sizeof(struct atw_frame));
3615
3616 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3617 hh->atw_rtylmt = 3;
3618 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3619 #if 0
3620 if (do_encrypt) {
3621 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3622 hh->atw_keyid = ic->ic_def_txkey;
3623 }
3624 #endif
3625
3626 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3627 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3628 if (txs->txs_d0.d_residue)
3629 hh->atw_head_plcplen |= htole16(0x8000);
3630 if (txs->txs_dn.d_residue)
3631 hh->atw_tail_plcplen |= htole16(0x8000);
3632 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3633 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3634
3635 /* never fragment multicast frames */
3636 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3637 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3638 } else if (sc->sc_flags & ATWF_RTSCTS) {
3639 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3640 }
3641
3642 #ifdef ATW_DEBUG
3643 hh->atw_fragnum = 0;
3644
3645 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3646 printf("%s: dst = %s, rate = 0x%02x, "
3647 "service = 0x%02x, paylen = 0x%04x\n",
3648 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3649 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3650
3651 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3652 "dur1 = 0x%04x, dur2 = 0x%04x, "
3653 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3654 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3655 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3656 hh->atw_tail_dur, hh->atw_head_dur);
3657
3658 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3659 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3660 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3661 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3662
3663 printf("%s: keyid = %d\n",
3664 sc->sc_dev.dv_xname, hh->atw_keyid);
3665
3666 atw_dump_pkt(ifp, m0);
3667 }
3668 #endif /* ATW_DEBUG */
3669
3670 dmamap = txs->txs_dmamap;
3671
3672 /*
3673 * Load the DMA map. Copy and try (once) again if the packet
3674 * didn't fit in the alloted number of segments.
3675 */
3676 for (first = 1;
3677 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3678 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3679 first = 0) {
3680 MGETHDR(m, M_DONTWAIT, MT_DATA);
3681 if (m == NULL) {
3682 printf("%s: unable to allocate Tx mbuf\n",
3683 sc->sc_dev.dv_xname);
3684 break;
3685 }
3686 if (m0->m_pkthdr.len > MHLEN) {
3687 MCLGET(m, M_DONTWAIT);
3688 if ((m->m_flags & M_EXT) == 0) {
3689 printf("%s: unable to allocate Tx "
3690 "cluster\n", sc->sc_dev.dv_xname);
3691 m_freem(m);
3692 break;
3693 }
3694 }
3695 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3696 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3697 m_freem(m0);
3698 m0 = m;
3699 m = NULL;
3700 }
3701 if (error != 0) {
3702 printf("%s: unable to load Tx buffer, "
3703 "error = %d\n", sc->sc_dev.dv_xname, error);
3704 m_freem(m0);
3705 break;
3706 }
3707
3708 /*
3709 * Ensure we have enough descriptors free to describe
3710 * the packet.
3711 */
3712 if (dmamap->dm_nsegs > sc->sc_txfree) {
3713 /*
3714 * Not enough free descriptors to transmit
3715 * this packet. Unload the DMA map and
3716 * drop the packet. Notify the upper layer
3717 * that there are no more slots left.
3718 *
3719 * XXX We could allocate an mbuf and copy, but
3720 * XXX it is worth it?
3721 */
3722 bus_dmamap_unload(sc->sc_dmat, dmamap);
3723 m_freem(m0);
3724 break;
3725 }
3726
3727 /*
3728 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3729 */
3730
3731 /* Sync the DMA map. */
3732 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3733 BUS_DMASYNC_PREWRITE);
3734
3735 /* XXX arbitrary retry limit; 8 because I have seen it in
3736 * use already and maybe 0 means "no tries" !
3737 */
3738 ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3739
3740 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3741 sc->sc_dev.dv_xname, rate * 5));
3742 ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3743
3744 /*
3745 * Initialize the transmit descriptors.
3746 */
3747 for (nexttx = sc->sc_txnext, seg = 0;
3748 seg < dmamap->dm_nsegs;
3749 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3750 /*
3751 * If this is the first descriptor we're
3752 * enqueueing, don't set the OWN bit just
3753 * yet. That could cause a race condition.
3754 * We'll do it below.
3755 */
3756 txd = &sc->sc_txdescs[nexttx];
3757 txd->at_ctl = ctl |
3758 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3759
3760 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3761 txd->at_flags =
3762 htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3763 ATW_TXFLAG_TBS1_MASK)) |
3764 ((nexttx == (ATW_NTXDESC - 1))
3765 ? htole32(ATW_TXFLAG_TER) : 0);
3766 lasttx = nexttx;
3767 }
3768
3769 /* Set `first segment' and `last segment' appropriately. */
3770 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3771 htole32(ATW_TXFLAG_FS);
3772 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3773
3774 #ifdef ATW_DEBUG
3775 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3776 printf(" txsoft %p transmit chain:\n", txs);
3777 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3778 printf(" descriptor %d:\n", seg);
3779 printf(" at_ctl: 0x%08x\n",
3780 le32toh(sc->sc_txdescs[seg].at_ctl));
3781 printf(" at_flags: 0x%08x\n",
3782 le32toh(sc->sc_txdescs[seg].at_flags));
3783 printf(" at_buf1: 0x%08x\n",
3784 le32toh(sc->sc_txdescs[seg].at_buf1));
3785 printf(" at_buf2: 0x%08x\n",
3786 le32toh(sc->sc_txdescs[seg].at_buf2));
3787 if (seg == lasttx)
3788 break;
3789 }
3790 }
3791 #endif
3792
3793 /* Sync the descriptors we're using. */
3794 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3795 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3796
3797 /*
3798 * Store a pointer to the packet so we can free it later,
3799 * and remember what txdirty will be once the packet is
3800 * done.
3801 */
3802 txs->txs_mbuf = m0;
3803 txs->txs_firstdesc = sc->sc_txnext;
3804 txs->txs_lastdesc = lasttx;
3805 txs->txs_ndescs = dmamap->dm_nsegs;
3806
3807 /* Advance the tx pointer. */
3808 sc->sc_txfree -= dmamap->dm_nsegs;
3809 sc->sc_txnext = nexttx;
3810
3811 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3812 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3813
3814 last_txs = txs;
3815 }
3816
3817 if (sc->sc_txfree != ofree) {
3818 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3819 sc->sc_dev.dv_xname, lasttx, firsttx));
3820 /*
3821 * Cause a transmit interrupt to happen on the
3822 * last packet we enqueued.
3823 */
3824 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3825 ATW_CDTXSYNC(sc, lasttx, 1,
3826 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3827
3828 /*
3829 * The entire packet chain is set up. Give the
3830 * first descriptor to the chip now.
3831 */
3832 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3833 ATW_CDTXSYNC(sc, firsttx, 1,
3834 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3835
3836 /* Wake up the transmitter. */
3837 ATW_WRITE(sc, ATW_TDR, 0x1);
3838
3839 if (txs == NULL || sc->sc_txfree == 0)
3840 ifp->if_flags |= IFF_OACTIVE;
3841
3842 /* Set a watchdog timer in case the chip flakes out. */
3843 sc->sc_tx_timer = 5;
3844 ifp->if_timer = 1;
3845 }
3846 }
3847
3848 /*
3849 * atw_power:
3850 *
3851 * Power management (suspend/resume) hook.
3852 */
3853 void
3854 atw_power(int why, void *arg)
3855 {
3856 struct atw_softc *sc = arg;
3857 struct ifnet *ifp = &sc->sc_if;
3858 int s;
3859
3860 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3861
3862 s = splnet();
3863 switch (why) {
3864 case PWR_STANDBY:
3865 /* XXX do nothing. */
3866 break;
3867 case PWR_SUSPEND:
3868 atw_stop(ifp, 0);
3869 if (sc->sc_power != NULL)
3870 (*sc->sc_power)(sc, why);
3871 break;
3872 case PWR_RESUME:
3873 if (ifp->if_flags & IFF_UP) {
3874 if (sc->sc_power != NULL)
3875 (*sc->sc_power)(sc, why);
3876 atw_init(ifp);
3877 }
3878 break;
3879 case PWR_SOFTSUSPEND:
3880 case PWR_SOFTSTANDBY:
3881 case PWR_SOFTRESUME:
3882 break;
3883 }
3884 splx(s);
3885 }
3886
3887 /*
3888 * atw_ioctl: [ifnet interface function]
3889 *
3890 * Handle control requests from the operator.
3891 */
3892 int
3893 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3894 {
3895 struct atw_softc *sc = ifp->if_softc;
3896 int s, error = 0;
3897
3898 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3899 if (!device_is_active(&sc->sc_dev))
3900 return ENXIO;
3901
3902 s = splnet();
3903
3904 switch (cmd) {
3905 case SIOCSIFFLAGS:
3906 if (ifp->if_flags & IFF_UP) {
3907 if (ATW_IS_ENABLED(sc)) {
3908 /*
3909 * To avoid rescanning another access point,
3910 * do not call atw_init() here. Instead,
3911 * only reflect media settings.
3912 */
3913 atw_filter_setup(sc);
3914 } else
3915 error = atw_init(ifp);
3916 } else if (ATW_IS_ENABLED(sc))
3917 atw_stop(ifp, 1);
3918 break;
3919 case SIOCADDMULTI:
3920 case SIOCDELMULTI:
3921 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3922 if (ifp->if_flags & IFF_RUNNING)
3923 atw_filter_setup(sc); /* do not rescan */
3924 error = 0;
3925 }
3926 break;
3927 default:
3928 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3929 if (error == ENETRESET || error == ERESTART) {
3930 if (is_running(ifp))
3931 error = atw_init(ifp);
3932 else
3933 error = 0;
3934 }
3935 break;
3936 }
3937
3938 /* Try to get more packets going. */
3939 if (ATW_IS_ENABLED(sc))
3940 atw_start(ifp);
3941
3942 splx(s);
3943 return (error);
3944 }
3945
3946 static int
3947 atw_media_change(struct ifnet *ifp)
3948 {
3949 int error;
3950
3951 error = ieee80211_media_change(ifp);
3952 if (error == ENETRESET) {
3953 if (is_running(ifp))
3954 error = atw_init(ifp);
3955 else
3956 error = 0;
3957 }
3958 return error;
3959 }
3960