atw.c revision 1.136 1 /* $NetBSD: atw.c,v 1.136 2008/03/11 23:58:06 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.136 2008/03/11 23:58:06 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59 #include <lib/libkern/libkern.h>
60
61 #include <machine/endian.h>
62
63 #include <uvm/uvm_extern.h>
64
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_ether.h>
69
70 #include <net80211/ieee80211_netbsd.h>
71 #include <net80211/ieee80211_var.h>
72 #include <net80211/ieee80211_radiotap.h>
73
74 #if NBPFILTER > 0
75 #include <net/bpf.h>
76 #endif
77
78 #include <sys/bus.h>
79 #include <sys/intr.h>
80
81 #include <dev/ic/atwreg.h>
82 #include <dev/ic/rf3000reg.h>
83 #include <dev/ic/si4136reg.h>
84 #include <dev/ic/atwvar.h>
85 #include <dev/ic/smc93cx6var.h>
86
87 /* XXX TBD open questions
88 *
89 *
90 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
91 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
92 * handle this for me?
93 *
94 */
95 /* device attachment
96 *
97 * print TOFS[012]
98 *
99 * device initialization
100 *
101 * clear ATW_FRCTL_MAXPSP to disable max power saving
102 * set ATW_TXBR_ALCUPDATE to enable ALC
103 * set TOFS[012]? (hope not)
104 * disable rx/tx
105 * set ATW_PAR_SWR (software reset)
106 * wait for ATW_PAR_SWR clear
107 * disable interrupts
108 * ack status register
109 * enable interrupts
110 *
111 * rx/tx initialization
112 *
113 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
114 * allocate and init descriptor rings
115 * write ATW_PAR_DSL (descriptor skip length)
116 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * write ATW_NAR_SQ for one/both transmit descriptor rings
119 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
120 *
121 * rx/tx end
122 *
123 * stop DMA
124 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
125 * flush tx w/ ATW_NAR_HF
126 *
127 * scan
128 *
129 * initialize rx/tx
130 *
131 * BSS join: (re)association response
132 *
133 * set ATW_FRCTL_AID
134 *
135 * optimizations ???
136 *
137 */
138
139 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
140
141 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
142 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
143 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
144
145 int atw_pseudo_milli = 1;
146 int atw_magic_delay1 = 100 * 1000;
147 int atw_magic_delay2 = 100 * 1000;
148 /* more magic multi-millisecond delays (units: microseconds) */
149 int atw_nar_delay = 20 * 1000;
150 int atw_magic_delay4 = 10 * 1000;
151 int atw_rf_delay1 = 10 * 1000;
152 int atw_rf_delay2 = 5 * 1000;
153 int atw_plcphd_delay = 2 * 1000;
154 int atw_bbp_io_enable_delay = 20 * 1000;
155 int atw_bbp_io_disable_delay = 2 * 1000;
156 int atw_writewep_delay = 1000;
157 int atw_beacon_len_adjust = 4;
158 int atw_dwelltime = 200;
159 int atw_xindiv2 = 0;
160
161 #ifdef ATW_DEBUG
162 int atw_debug = 0;
163
164 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
165 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
166 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
167 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
168 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
169 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
170
171 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
172 static void atw_print_regs(struct atw_softc *, const char *);
173
174 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
175 # ifdef ATW_BBPDEBUG
176 static void atw_rf3000_print(struct atw_softc *);
177 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
178 # endif /* ATW_BBPDEBUG */
179
180 # ifdef ATW_SYNDEBUG
181 static void atw_si4126_print(struct atw_softc *);
182 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
183 # endif /* ATW_SYNDEBUG */
184
185 #else
186 #define ATW_DPRINTF(x)
187 #define ATW_DPRINTF2(x)
188 #define ATW_DPRINTF3(x)
189 #define DPRINTF(sc, x) /* nothing */
190 #define DPRINTF2(sc, x) /* nothing */
191 #define DPRINTF3(sc, x) /* nothing */
192 #endif
193
194 /* ifnet methods */
195 int atw_init(struct ifnet *);
196 int atw_ioctl(struct ifnet *, u_long, void *);
197 void atw_start(struct ifnet *);
198 void atw_stop(struct ifnet *, int);
199 void atw_watchdog(struct ifnet *);
200
201 /* Device attachment */
202 void atw_attach(struct atw_softc *);
203 int atw_detach(struct atw_softc *);
204 static void atw_evcnt_attach(struct atw_softc *);
205 static void atw_evcnt_detach(struct atw_softc *);
206
207 /* Rx/Tx process */
208 int atw_add_rxbuf(struct atw_softc *, int);
209 void atw_idle(struct atw_softc *, u_int32_t);
210 void atw_rxdrain(struct atw_softc *);
211 void atw_txdrain(struct atw_softc *);
212
213 /* Device (de)activation and power state */
214 void atw_disable(struct atw_softc *);
215 int atw_enable(struct atw_softc *);
216 void atw_reset(struct atw_softc *);
217
218 /* Interrupt handlers */
219 void atw_linkintr(struct atw_softc *, u_int32_t);
220 void atw_rxintr(struct atw_softc *);
221 void atw_txintr(struct atw_softc *);
222
223 /* 802.11 state machine */
224 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
225 static void atw_next_scan(void *);
226 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
227 struct ieee80211_node *, int, int, u_int32_t);
228 static int atw_tune(struct atw_softc *);
229
230 /* Device initialization */
231 static void atw_bbp_io_init(struct atw_softc *);
232 static void atw_cfp_init(struct atw_softc *);
233 static void atw_cmdr_init(struct atw_softc *);
234 static void atw_ifs_init(struct atw_softc *);
235 static void atw_nar_init(struct atw_softc *);
236 static void atw_response_times_init(struct atw_softc *);
237 static void atw_rf_reset(struct atw_softc *);
238 static void atw_test1_init(struct atw_softc *);
239 static void atw_tofs0_init(struct atw_softc *);
240 static void atw_tofs2_init(struct atw_softc *);
241 static void atw_txlmt_init(struct atw_softc *);
242 static void atw_wcsr_init(struct atw_softc *);
243
244 /* Key management */
245 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
246 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
247 const u_int8_t[IEEE80211_ADDR_LEN]);
248 static void atw_key_update_begin(struct ieee80211com *);
249 static void atw_key_update_end(struct ieee80211com *);
250
251 /* RAM/ROM utilities */
252 static void atw_clear_sram(struct atw_softc *);
253 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
254 static int atw_read_srom(struct atw_softc *);
255
256 /* BSS setup */
257 static void atw_predict_beacon(struct atw_softc *);
258 static void atw_start_beacon(struct atw_softc *, int);
259 static void atw_write_bssid(struct atw_softc *);
260 static void atw_write_ssid(struct atw_softc *);
261 static void atw_write_sup_rates(struct atw_softc *);
262 static void atw_write_wep(struct atw_softc *);
263
264 /* Media */
265 static int atw_media_change(struct ifnet *);
266
267 static void atw_filter_setup(struct atw_softc *);
268
269 /* 802.11 utilities */
270 static uint64_t atw_get_tsft(struct atw_softc *);
271 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
272 uint32_t);
273 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
274 static void atw_node_free(struct ieee80211_node *);
275
276 /*
277 * Tuner/transceiver/modem
278 */
279 static void atw_bbp_io_enable(struct atw_softc *, int);
280
281 /* RFMD RF3000 Baseband Processor */
282 static int atw_rf3000_init(struct atw_softc *);
283 static int atw_rf3000_tune(struct atw_softc *, u_int);
284 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
285
286 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
287 static void atw_si4126_tune(struct atw_softc *, u_int);
288 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
289
290 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
291 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
292
293 const char *atw_tx_state[] = {
294 "STOPPED",
295 "RUNNING - read descriptor",
296 "RUNNING - transmitting",
297 "RUNNING - filling fifo", /* XXX */
298 "SUSPENDED",
299 "RUNNING -- write descriptor",
300 "RUNNING -- write last descriptor",
301 "RUNNING - fifo full"
302 };
303
304 const char *atw_rx_state[] = {
305 "STOPPED",
306 "RUNNING - read descriptor",
307 "RUNNING - check this packet, pre-fetch next",
308 "RUNNING - wait for reception",
309 "SUSPENDED",
310 "RUNNING - write descriptor",
311 "RUNNING - flush fifo",
312 "RUNNING - fifo drain"
313 };
314
315 static inline int
316 is_running(struct ifnet *ifp)
317 {
318 return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
319 }
320
321 int
322 atw_activate(device_t self, enum devact act)
323 {
324 struct atw_softc *sc = device_private(self);
325 int rv = 0, s;
326
327 s = splnet();
328 switch (act) {
329 case DVACT_ACTIVATE:
330 rv = EOPNOTSUPP;
331 break;
332
333 case DVACT_DEACTIVATE:
334 if_deactivate(&sc->sc_if);
335 break;
336 }
337 splx(s);
338 return rv;
339 }
340
341 /*
342 * atw_enable:
343 *
344 * Enable the ADM8211 chip.
345 */
346 int
347 atw_enable(struct atw_softc *sc)
348 {
349
350 if (ATW_IS_ENABLED(sc) == 0) {
351 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
352 printf("%s: device enable failed\n",
353 sc->sc_dev.dv_xname);
354 return (EIO);
355 }
356 sc->sc_flags |= ATWF_ENABLED;
357 /* Power may have been removed, and WEP keys thus
358 * reset.
359 */
360 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
361 }
362 return (0);
363 }
364
365 /*
366 * atw_disable:
367 *
368 * Disable the ADM8211 chip.
369 */
370 void
371 atw_disable(struct atw_softc *sc)
372 {
373 if (!ATW_IS_ENABLED(sc))
374 return;
375 if (sc->sc_disable != NULL)
376 (*sc->sc_disable)(sc);
377 sc->sc_flags &= ~ATWF_ENABLED;
378 }
379
380 /* Returns -1 on failure. */
381 static int
382 atw_read_srom(struct atw_softc *sc)
383 {
384 struct seeprom_descriptor sd;
385 uint32_t test0, fail_bits;
386
387 (void)memset(&sd, 0, sizeof(sd));
388
389 test0 = ATW_READ(sc, ATW_TEST0);
390
391 switch (sc->sc_rev) {
392 case ATW_REVISION_BA:
393 case ATW_REVISION_CA:
394 fail_bits = ATW_TEST0_EPNE;
395 break;
396 default:
397 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
398 break;
399 }
400 if ((test0 & fail_bits) != 0) {
401 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
402 return -1;
403 }
404
405 switch (test0 & ATW_TEST0_EPTYP_MASK) {
406 case ATW_TEST0_EPTYP_93c66:
407 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
408 sc->sc_sromsz = 512;
409 sd.sd_chip = C56_66;
410 break;
411 case ATW_TEST0_EPTYP_93c46:
412 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
413 sc->sc_sromsz = 128;
414 sd.sd_chip = C46;
415 break;
416 default:
417 printf("%s: unknown SROM type %" __PRIuBITS "\n",
418 sc->sc_dev.dv_xname,
419 __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
420 return -1;
421 }
422
423 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
424
425 if (sc->sc_srom == NULL) {
426 printf("%s: unable to allocate SROM buffer\n",
427 sc->sc_dev.dv_xname);
428 return -1;
429 }
430
431 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
432
433 /* ADM8211 has a single 32-bit register for controlling the
434 * 93cx6 SROM. Bit SRS enables the serial port. There is no
435 * "ready" bit. The ADM8211 input/output sense is the reverse
436 * of read_seeprom's.
437 */
438 sd.sd_tag = sc->sc_st;
439 sd.sd_bsh = sc->sc_sh;
440 sd.sd_regsize = 4;
441 sd.sd_control_offset = ATW_SPR;
442 sd.sd_status_offset = ATW_SPR;
443 sd.sd_dataout_offset = ATW_SPR;
444 sd.sd_CK = ATW_SPR_SCLK;
445 sd.sd_CS = ATW_SPR_SCS;
446 sd.sd_DI = ATW_SPR_SDO;
447 sd.sd_DO = ATW_SPR_SDI;
448 sd.sd_MS = ATW_SPR_SRS;
449 sd.sd_RDY = 0;
450
451 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
452 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
453 free(sc->sc_srom, M_DEVBUF);
454 return -1;
455 }
456 #ifdef ATW_DEBUG
457 {
458 int i;
459 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
460 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
461 if (((i % 8) == 0) && (i != 0)) {
462 ATW_DPRINTF(("\n\t"));
463 }
464 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
465 }
466 ATW_DPRINTF(("\n"));
467 }
468 #endif /* ATW_DEBUG */
469 return 0;
470 }
471
472 #ifdef ATW_DEBUG
473 static void
474 atw_print_regs(struct atw_softc *sc, const char *where)
475 {
476 #define PRINTREG(sc, reg) \
477 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
478 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
479
480 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
481
482 PRINTREG(sc, ATW_PAR);
483 PRINTREG(sc, ATW_FRCTL);
484 PRINTREG(sc, ATW_TDR);
485 PRINTREG(sc, ATW_WTDP);
486 PRINTREG(sc, ATW_RDR);
487 PRINTREG(sc, ATW_WRDP);
488 PRINTREG(sc, ATW_RDB);
489 PRINTREG(sc, ATW_CSR3A);
490 PRINTREG(sc, ATW_TDBD);
491 PRINTREG(sc, ATW_TDBP);
492 PRINTREG(sc, ATW_STSR);
493 PRINTREG(sc, ATW_CSR5A);
494 PRINTREG(sc, ATW_NAR);
495 PRINTREG(sc, ATW_CSR6A);
496 PRINTREG(sc, ATW_IER);
497 PRINTREG(sc, ATW_CSR7A);
498 PRINTREG(sc, ATW_LPC);
499 PRINTREG(sc, ATW_TEST1);
500 PRINTREG(sc, ATW_SPR);
501 PRINTREG(sc, ATW_TEST0);
502 PRINTREG(sc, ATW_WCSR);
503 PRINTREG(sc, ATW_WPDR);
504 PRINTREG(sc, ATW_GPTMR);
505 PRINTREG(sc, ATW_GPIO);
506 PRINTREG(sc, ATW_BBPCTL);
507 PRINTREG(sc, ATW_SYNCTL);
508 PRINTREG(sc, ATW_PLCPHD);
509 PRINTREG(sc, ATW_MMIWADDR);
510 PRINTREG(sc, ATW_MMIRADDR1);
511 PRINTREG(sc, ATW_MMIRADDR2);
512 PRINTREG(sc, ATW_TXBR);
513 PRINTREG(sc, ATW_CSR15A);
514 PRINTREG(sc, ATW_ALCSTAT);
515 PRINTREG(sc, ATW_TOFS2);
516 PRINTREG(sc, ATW_CMDR);
517 PRINTREG(sc, ATW_PCIC);
518 PRINTREG(sc, ATW_PMCSR);
519 PRINTREG(sc, ATW_PAR0);
520 PRINTREG(sc, ATW_PAR1);
521 PRINTREG(sc, ATW_MAR0);
522 PRINTREG(sc, ATW_MAR1);
523 PRINTREG(sc, ATW_ATIMDA0);
524 PRINTREG(sc, ATW_ABDA1);
525 PRINTREG(sc, ATW_BSSID0);
526 PRINTREG(sc, ATW_TXLMT);
527 PRINTREG(sc, ATW_MIBCNT);
528 PRINTREG(sc, ATW_BCNT);
529 PRINTREG(sc, ATW_TSFTH);
530 PRINTREG(sc, ATW_TSC);
531 PRINTREG(sc, ATW_SYNRF);
532 PRINTREG(sc, ATW_BPLI);
533 PRINTREG(sc, ATW_CAP0);
534 PRINTREG(sc, ATW_CAP1);
535 PRINTREG(sc, ATW_RMD);
536 PRINTREG(sc, ATW_CFPP);
537 PRINTREG(sc, ATW_TOFS0);
538 PRINTREG(sc, ATW_TOFS1);
539 PRINTREG(sc, ATW_IFST);
540 PRINTREG(sc, ATW_RSPT);
541 PRINTREG(sc, ATW_TSFTL);
542 PRINTREG(sc, ATW_WEPCTL);
543 PRINTREG(sc, ATW_WESK);
544 PRINTREG(sc, ATW_WEPCNT);
545 PRINTREG(sc, ATW_MACTEST);
546 PRINTREG(sc, ATW_FER);
547 PRINTREG(sc, ATW_FEMR);
548 PRINTREG(sc, ATW_FPSR);
549 PRINTREG(sc, ATW_FFER);
550 #undef PRINTREG
551 }
552 #endif /* ATW_DEBUG */
553
554 /*
555 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
556 */
557 void
558 atw_attach(struct atw_softc *sc)
559 {
560 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
561 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
562 };
563 struct ieee80211com *ic = &sc->sc_ic;
564 struct ifnet *ifp = &sc->sc_if;
565 int country_code, error, i, nrate, srom_major;
566 u_int32_t reg;
567 static const char *type_strings[] = {"Intersil (not supported)",
568 "RFMD", "Marvel (not supported)"};
569
570 sc->sc_txth = atw_txthresh_tab_lo;
571
572 SIMPLEQ_INIT(&sc->sc_txfreeq);
573 SIMPLEQ_INIT(&sc->sc_txdirtyq);
574
575 #ifdef ATW_DEBUG
576 atw_print_regs(sc, "atw_attach");
577 #endif /* ATW_DEBUG */
578
579 /*
580 * Allocate the control data structures, and create and load the
581 * DMA map for it.
582 */
583 if ((error = bus_dmamem_alloc(sc->sc_dmat,
584 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
585 1, &sc->sc_cdnseg, 0)) != 0) {
586 printf("%s: unable to allocate control data, error = %d\n",
587 sc->sc_dev.dv_xname, error);
588 goto fail_0;
589 }
590
591 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
592 sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
593 BUS_DMA_COHERENT)) != 0) {
594 printf("%s: unable to map control data, error = %d\n",
595 sc->sc_dev.dv_xname, error);
596 goto fail_1;
597 }
598
599 if ((error = bus_dmamap_create(sc->sc_dmat,
600 sizeof(struct atw_control_data), 1,
601 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
602 printf("%s: unable to create control data DMA map, "
603 "error = %d\n", sc->sc_dev.dv_xname, error);
604 goto fail_2;
605 }
606
607 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
608 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
609 0)) != 0) {
610 printf("%s: unable to load control data DMA map, error = %d\n",
611 sc->sc_dev.dv_xname, error);
612 goto fail_3;
613 }
614
615 /*
616 * Create the transmit buffer DMA maps.
617 */
618 sc->sc_ntxsegs = ATW_NTXSEGS;
619 for (i = 0; i < ATW_TXQUEUELEN; i++) {
620 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
621 sc->sc_ntxsegs, MCLBYTES, 0, 0,
622 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
623 printf("%s: unable to create tx DMA map %d, "
624 "error = %d\n", sc->sc_dev.dv_xname, i, error);
625 goto fail_4;
626 }
627 }
628
629 /*
630 * Create the receive buffer DMA maps.
631 */
632 for (i = 0; i < ATW_NRXDESC; i++) {
633 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
634 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
635 printf("%s: unable to create rx DMA map %d, "
636 "error = %d\n", sc->sc_dev.dv_xname, i, error);
637 goto fail_5;
638 }
639 }
640 for (i = 0; i < ATW_NRXDESC; i++) {
641 sc->sc_rxsoft[i].rxs_mbuf = NULL;
642 }
643
644 switch (sc->sc_rev) {
645 case ATW_REVISION_AB:
646 case ATW_REVISION_AF:
647 sc->sc_sramlen = ATW_SRAM_A_SIZE;
648 break;
649 case ATW_REVISION_BA:
650 case ATW_REVISION_CA:
651 sc->sc_sramlen = ATW_SRAM_B_SIZE;
652 break;
653 }
654
655 /* Reset the chip to a known state. */
656 atw_reset(sc);
657
658 if (atw_read_srom(sc) == -1)
659 return;
660
661 sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
662 ATW_SR_RFTYPE_MASK);
663
664 sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
665 ATW_SR_BBPTYPE_MASK);
666
667 if (sc->sc_rftype >= __arraycount(type_strings)) {
668 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
669 return;
670 }
671 if (sc->sc_bbptype >= __arraycount(type_strings)) {
672 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
673 return;
674 }
675
676 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
677 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
678
679 /* XXX There exists a Linux driver which seems to use RFType = 0 for
680 * MARVEL. My bug, or theirs?
681 */
682
683 reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
684
685 switch (sc->sc_rftype) {
686 case ATW_RFTYPE_INTERSIL:
687 reg |= ATW_SYNCTL_CS1;
688 break;
689 case ATW_RFTYPE_RFMD:
690 reg |= ATW_SYNCTL_CS0;
691 break;
692 case ATW_RFTYPE_MARVEL:
693 break;
694 }
695
696 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
697 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
698
699 reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
700
701 switch (sc->sc_bbptype) {
702 case ATW_BBPTYPE_INTERSIL:
703 reg |= ATW_BBPCTL_TWI;
704 break;
705 case ATW_BBPTYPE_RFMD:
706 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
707 ATW_BBPCTL_CCA_ACTLO;
708 break;
709 case ATW_BBPTYPE_MARVEL:
710 break;
711 case ATW_C_BBPTYPE_RFMD:
712 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
713 sc->sc_dev.dv_xname);
714 break;
715 }
716
717 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
718 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
719
720 /*
721 * From this point forward, the attachment cannot fail. A failure
722 * before this point releases all resources that may have been
723 * allocated.
724 */
725 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
726
727 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
728 htole16(sc->sc_srom[ATW_SR_MAC00]),
729 htole16(sc->sc_srom[ATW_SR_MAC01]),
730 htole16(sc->sc_srom[ATW_SR_MAC10])));
731
732 srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
733 ATW_SR_MAJOR_MASK);
734
735 if (srom_major < 2)
736 sc->sc_rf3000_options1 = 0;
737 else if (sc->sc_rev == ATW_REVISION_BA) {
738 sc->sc_rf3000_options1 =
739 __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
740 ATW_SR_CR28_MASK);
741 } else
742 sc->sc_rf3000_options1 = 0;
743
744 sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
745 ATW_SR_CR29_MASK);
746
747 country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
748 ATW_SR_CTRY_MASK);
749
750 #define ADD_CHANNEL(_ic, _chan) do { \
751 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
752 _ic->ic_channels[_chan].ic_freq = \
753 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
754 } while (0)
755
756 /* Find available channels */
757 switch (country_code) {
758 case COUNTRY_MMK2: /* 1-14 */
759 ADD_CHANNEL(ic, 14);
760 /*FALLTHROUGH*/
761 case COUNTRY_ETSI: /* 1-13 */
762 for (i = 1; i <= 13; i++)
763 ADD_CHANNEL(ic, i);
764 break;
765 case COUNTRY_FCC: /* 1-11 */
766 case COUNTRY_IC: /* 1-11 */
767 for (i = 1; i <= 11; i++)
768 ADD_CHANNEL(ic, i);
769 break;
770 case COUNTRY_MMK: /* 14 */
771 ADD_CHANNEL(ic, 14);
772 break;
773 case COUNTRY_FRANCE: /* 10-13 */
774 for (i = 10; i <= 13; i++)
775 ADD_CHANNEL(ic, i);
776 break;
777 default: /* assume channels 10-11 */
778 case COUNTRY_SPAIN: /* 10-11 */
779 for (i = 10; i <= 11; i++)
780 ADD_CHANNEL(ic, i);
781 break;
782 }
783
784 /* Read the MAC address. */
785 reg = ATW_READ(sc, ATW_PAR0);
786 ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
787 ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
788 ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
789 ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
790 reg = ATW_READ(sc, ATW_PAR1);
791 ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
792 ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
793
794 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
795 printf(" could not get mac address, attach failed\n");
796 return;
797 }
798
799 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
800
801 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
802 ifp->if_softc = sc;
803 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
804 IFF_NOTRAILERS;
805 ifp->if_ioctl = atw_ioctl;
806 ifp->if_start = atw_start;
807 ifp->if_watchdog = atw_watchdog;
808 ifp->if_init = atw_init;
809 ifp->if_stop = atw_stop;
810 IFQ_SET_READY(&ifp->if_snd);
811
812 ic->ic_ifp = ifp;
813 ic->ic_phytype = IEEE80211_T_DS;
814 ic->ic_opmode = IEEE80211_M_STA;
815 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
816 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
817
818 nrate = 0;
819 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
820 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
821 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
822 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
823 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
824
825 /*
826 * Call MI attach routines.
827 */
828
829 if_attach(ifp);
830 ieee80211_ifattach(ic);
831
832 atw_evcnt_attach(sc);
833
834 sc->sc_newstate = ic->ic_newstate;
835 ic->ic_newstate = atw_newstate;
836
837 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
838 ic->ic_recv_mgmt = atw_recv_mgmt;
839
840 sc->sc_node_free = ic->ic_node_free;
841 ic->ic_node_free = atw_node_free;
842
843 sc->sc_node_alloc = ic->ic_node_alloc;
844 ic->ic_node_alloc = atw_node_alloc;
845
846 ic->ic_crypto.cs_key_delete = atw_key_delete;
847 ic->ic_crypto.cs_key_set = atw_key_set;
848 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
849 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
850
851 /* possibly we should fill in our own sc_send_prresp, since
852 * the ADM8211 is probably sending probe responses in ad hoc
853 * mode.
854 */
855
856 /* complete initialization */
857 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
858 callout_init(&sc->sc_scan_ch, 0);
859
860 #if NBPFILTER > 0
861 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
862 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
863 #endif
864
865 if (!pmf_device_register1(&sc->sc_dev, NULL, NULL, atw_shutdown)) {
866 aprint_error_dev(&sc->sc_dev,
867 "couldn't establish power handler\n");
868 } else
869 pmf_class_network_register(&sc->sc_dev, &sc->sc_if);
870
871 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
872 sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
873 sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
874
875 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
876 sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
877 sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
878
879 ieee80211_announce(ic);
880 return;
881
882 /*
883 * Free any resources we've allocated during the failed attach
884 * attempt. Do this in reverse order and fall through.
885 */
886 fail_5:
887 for (i = 0; i < ATW_NRXDESC; i++) {
888 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
889 continue;
890 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
891 }
892 fail_4:
893 for (i = 0; i < ATW_TXQUEUELEN; i++) {
894 if (sc->sc_txsoft[i].txs_dmamap == NULL)
895 continue;
896 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
897 }
898 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
899 fail_3:
900 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
901 fail_2:
902 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
903 sizeof(struct atw_control_data));
904 fail_1:
905 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
906 fail_0:
907 return;
908 }
909
910 static struct ieee80211_node *
911 atw_node_alloc(struct ieee80211_node_table *nt)
912 {
913 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
914 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
915
916 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
917 return ni;
918 }
919
920 static void
921 atw_node_free(struct ieee80211_node *ni)
922 {
923 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
924
925 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
926 ether_sprintf(ni->ni_bssid)));
927 (*sc->sc_node_free)(ni);
928 }
929
930
931 static void
932 atw_test1_reset(struct atw_softc *sc)
933 {
934 switch (sc->sc_rev) {
935 case ATW_REVISION_BA:
936 if (1 /* XXX condition on transceiver type */) {
937 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
938 }
939 break;
940 case ATW_REVISION_CA:
941 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
942 break;
943 default:
944 break;
945 }
946 }
947
948 /*
949 * atw_reset:
950 *
951 * Perform a soft reset on the ADM8211.
952 */
953 void
954 atw_reset(struct atw_softc *sc)
955 {
956 int i;
957 uint32_t lpc;
958
959 ATW_WRITE(sc, ATW_NAR, 0x0);
960 DELAY(atw_nar_delay);
961
962 /* Reference driver has a cryptic remark indicating that this might
963 * power-on the chip. I know that it turns off power-saving....
964 */
965 ATW_WRITE(sc, ATW_FRCTL, 0x0);
966
967 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
968
969 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
970 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
971 break;
972 DELAY(atw_pseudo_milli);
973 }
974
975 /* ... and then pause 100ms longer for good measure. */
976 DELAY(atw_magic_delay1);
977
978 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
979
980 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
981 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
982
983 /*
984 * Initialize the PCI Access Register.
985 */
986 sc->sc_busmode = ATW_PAR_PBL_8DW;
987
988 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
989 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
990 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
991
992 atw_test1_reset(sc);
993
994 /* Turn off maximum power saving, etc. */
995 ATW_WRITE(sc, ATW_FRCTL, 0x0);
996
997 DELAY(atw_magic_delay2);
998
999 /* Recall EEPROM. */
1000 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1001
1002 DELAY(atw_magic_delay4);
1003
1004 lpc = ATW_READ(sc, ATW_LPC);
1005
1006 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1007
1008 /* A reset seems to affect the SRAM contents, so put them into
1009 * a known state.
1010 */
1011 atw_clear_sram(sc);
1012
1013 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1014 }
1015
1016 static void
1017 atw_clear_sram(struct atw_softc *sc)
1018 {
1019 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1020 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1021 /* XXX not for revision 0x20. */
1022 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1023 }
1024
1025 /* TBD atw_init
1026 *
1027 * set MAC based on ic->ic_bss->myaddr
1028 * write WEP keys
1029 * set TX rate
1030 */
1031
1032 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1033 * without receiving a beacon with the preferred BSSID & SSID.
1034 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1035 */
1036 static void
1037 atw_wcsr_init(struct atw_softc *sc)
1038 {
1039 uint32_t wcsr;
1040
1041 wcsr = ATW_READ(sc, ATW_WCSR);
1042 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1043 wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1044 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1045
1046 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1047 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1048 }
1049
1050 /* Turn off power management. Set Rx store-and-forward mode. */
1051 static void
1052 atw_cmdr_init(struct atw_softc *sc)
1053 {
1054 uint32_t cmdr;
1055 cmdr = ATW_READ(sc, ATW_CMDR);
1056 cmdr &= ~ATW_CMDR_APM;
1057 cmdr |= ATW_CMDR_RTE;
1058 cmdr &= ~ATW_CMDR_DRT_MASK;
1059 cmdr |= ATW_CMDR_DRT_SF;
1060
1061 ATW_WRITE(sc, ATW_CMDR, cmdr);
1062 }
1063
1064 static void
1065 atw_tofs2_init(struct atw_softc *sc)
1066 {
1067 uint32_t tofs2;
1068 /* XXX this magic can probably be figured out from the RFMD docs */
1069 #ifndef ATW_REFSLAVE
1070 tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1071 __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1072 __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1073 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1074 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1075 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1076 __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1077 __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1078 #else
1079 /* XXX new magic from reference driver source */
1080 tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1081 __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1082 __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */
1083 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1084 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1085 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1086 __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */
1087 __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */
1088 #endif
1089 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1090 }
1091
1092 static void
1093 atw_nar_init(struct atw_softc *sc)
1094 {
1095 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1096 }
1097
1098 static void
1099 atw_txlmt_init(struct atw_softc *sc)
1100 {
1101 ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1102 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1103 }
1104
1105 static void
1106 atw_test1_init(struct atw_softc *sc)
1107 {
1108 uint32_t test1;
1109
1110 test1 = ATW_READ(sc, ATW_TEST1);
1111 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1112 /* XXX magic 0x1 */
1113 test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1114 ATW_WRITE(sc, ATW_TEST1, test1);
1115 }
1116
1117 static void
1118 atw_rf_reset(struct atw_softc *sc)
1119 {
1120 /* XXX this resets an Intersil RF front-end? */
1121 /* TBD condition on Intersil RFType? */
1122 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1123 DELAY(atw_rf_delay1);
1124 ATW_WRITE(sc, ATW_SYNRF, 0);
1125 DELAY(atw_rf_delay2);
1126 }
1127
1128 /* Set 16 TU max duration for the contention-free period (CFP). */
1129 static void
1130 atw_cfp_init(struct atw_softc *sc)
1131 {
1132 uint32_t cfpp;
1133
1134 cfpp = ATW_READ(sc, ATW_CFPP);
1135 cfpp &= ~ATW_CFPP_CFPMD;
1136 cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1137 ATW_WRITE(sc, ATW_CFPP, cfpp);
1138 }
1139
1140 static void
1141 atw_tofs0_init(struct atw_softc *sc)
1142 {
1143 /* XXX I guess that the Cardbus clock is 22 MHz?
1144 * I am assuming that the role of ATW_TOFS0_USCNT is
1145 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1146 * very clear on this point. It says in the datasheet that it is
1147 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1148 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1149 * these values. These values are also the power-on default.
1150 */
1151 ATW_WRITE(sc, ATW_TOFS0,
1152 __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1153 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1154 }
1155
1156 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1157 static void
1158 atw_ifs_init(struct atw_softc *sc)
1159 {
1160 uint32_t ifst;
1161 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1162 * Go figure.
1163 */
1164 ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1165 __SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1166 ATW_IFST_SIFS_MASK) |
1167 __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1168 __SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1169
1170 ATW_WRITE(sc, ATW_IFST, ifst);
1171 }
1172
1173 static void
1174 atw_response_times_init(struct atw_softc *sc)
1175 {
1176 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1177 * indicate that the MAC expects at least SIFS + MIRT microseconds
1178 * to pass after it transmits a frame that requires a response;
1179 * it waits at most SIFS + MART microseconds for the response.
1180 * Surely this is not the ACK timeout?
1181 */
1182 ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1183 __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1184 }
1185
1186 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1187 * engines read and write baseband registers after Rx and before
1188 * Tx, respectively.
1189 */
1190 static void
1191 atw_bbp_io_init(struct atw_softc *sc)
1192 {
1193 uint32_t mmiraddr2;
1194
1195 /* XXX The reference driver does this, but is it *really*
1196 * necessary?
1197 */
1198 switch (sc->sc_rev) {
1199 case ATW_REVISION_AB:
1200 case ATW_REVISION_AF:
1201 mmiraddr2 = 0x0;
1202 break;
1203 default:
1204 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1205 mmiraddr2 &=
1206 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1207 break;
1208 }
1209
1210 switch (sc->sc_bbptype) {
1211 case ATW_BBPTYPE_INTERSIL:
1212 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1213 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1214 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1215 break;
1216 case ATW_BBPTYPE_MARVEL:
1217 /* TBD find out the Marvel settings. */
1218 break;
1219 case ATW_BBPTYPE_RFMD:
1220 default:
1221 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1222 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1223 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1224 break;
1225 }
1226 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1227 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1228 }
1229
1230 /*
1231 * atw_init: [ ifnet interface function ]
1232 *
1233 * Initialize the interface. Must be called at splnet().
1234 */
1235 int
1236 atw_init(struct ifnet *ifp)
1237 {
1238 struct atw_softc *sc = ifp->if_softc;
1239 struct ieee80211com *ic = &sc->sc_ic;
1240 struct atw_txsoft *txs;
1241 struct atw_rxsoft *rxs;
1242 int i, error = 0;
1243
1244 if ((error = atw_enable(sc)) != 0)
1245 goto out;
1246
1247 /*
1248 * Cancel any pending I/O. This also resets.
1249 */
1250 atw_stop(ifp, 0);
1251
1252 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1253 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1254 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1255
1256 atw_wcsr_init(sc);
1257
1258 atw_cmdr_init(sc);
1259
1260 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1261 *
1262 * XXX Set transmit power for ATIM, RTS, Beacon.
1263 */
1264 ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1265 __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1266
1267 atw_tofs2_init(sc);
1268
1269 atw_nar_init(sc);
1270
1271 atw_txlmt_init(sc);
1272
1273 atw_test1_init(sc);
1274
1275 atw_rf_reset(sc);
1276
1277 atw_cfp_init(sc);
1278
1279 atw_tofs0_init(sc);
1280
1281 atw_ifs_init(sc);
1282
1283 /* XXX Fall asleep after one second of inactivity.
1284 * XXX A frame may only dribble in for 65536us.
1285 */
1286 ATW_WRITE(sc, ATW_RMD,
1287 __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1288
1289 atw_response_times_init(sc);
1290
1291 atw_bbp_io_init(sc);
1292
1293 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1294
1295 if ((error = atw_rf3000_init(sc)) != 0)
1296 goto out;
1297
1298 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1299 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1300 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1301
1302 /*
1303 * Initialize the transmit descriptor ring.
1304 */
1305 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1306 for (i = 0; i < ATW_NTXDESC; i++) {
1307 sc->sc_txdescs[i].at_ctl = 0;
1308 /* no transmit chaining */
1309 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1310 sc->sc_txdescs[i].at_buf2 =
1311 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1312 }
1313 /* use ring mode */
1314 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1315 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1316 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1317 sc->sc_txfree = ATW_NTXDESC;
1318 sc->sc_txnext = 0;
1319
1320 /*
1321 * Initialize the transmit job descriptors.
1322 */
1323 SIMPLEQ_INIT(&sc->sc_txfreeq);
1324 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1325 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1326 txs = &sc->sc_txsoft[i];
1327 txs->txs_mbuf = NULL;
1328 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1329 }
1330
1331 /*
1332 * Initialize the receive descriptor and receive job
1333 * descriptor rings.
1334 */
1335 for (i = 0; i < ATW_NRXDESC; i++) {
1336 rxs = &sc->sc_rxsoft[i];
1337 if (rxs->rxs_mbuf == NULL) {
1338 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1339 printf("%s: unable to allocate or map rx "
1340 "buffer %d, error = %d\n",
1341 sc->sc_dev.dv_xname, i, error);
1342 /*
1343 * XXX Should attempt to run with fewer receive
1344 * XXX buffers instead of just failing.
1345 */
1346 atw_rxdrain(sc);
1347 goto out;
1348 }
1349 } else
1350 atw_init_rxdesc(sc, i);
1351 }
1352 sc->sc_rxptr = 0;
1353
1354 /*
1355 * Initialize the interrupt mask and enable interrupts.
1356 */
1357 /* normal interrupts */
1358 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1359 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1360
1361 /* abnormal interrupts */
1362 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1363 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1364 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1365
1366 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1367 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1368 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1369 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1370 ATW_INTR_TRT;
1371
1372 sc->sc_linkint_mask &= sc->sc_inten;
1373 sc->sc_rxint_mask &= sc->sc_inten;
1374 sc->sc_txint_mask &= sc->sc_inten;
1375
1376 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1377 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1378
1379 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1380 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1381
1382 /*
1383 * Give the transmit and receive rings to the ADM8211.
1384 */
1385 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1386 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1387
1388 sc->sc_txthresh = 0;
1389 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1390 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1391
1392 /* common 802.11 configuration */
1393 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1394 switch (ic->ic_opmode) {
1395 case IEEE80211_M_STA:
1396 break;
1397 case IEEE80211_M_AHDEMO: /* XXX */
1398 case IEEE80211_M_IBSS:
1399 ic->ic_flags |= IEEE80211_F_IBSSON;
1400 /*FALLTHROUGH*/
1401 case IEEE80211_M_HOSTAP: /* XXX */
1402 break;
1403 case IEEE80211_M_MONITOR: /* XXX */
1404 break;
1405 }
1406
1407 switch (ic->ic_opmode) {
1408 case IEEE80211_M_AHDEMO:
1409 case IEEE80211_M_HOSTAP:
1410 #ifndef IEEE80211_NO_HOSTAP
1411 ic->ic_bss->ni_intval = ic->ic_lintval;
1412 ic->ic_bss->ni_rssi = 0;
1413 ic->ic_bss->ni_rstamp = 0;
1414 #endif /* !IEEE80211_NO_HOSTAP */
1415 break;
1416 default: /* XXX */
1417 break;
1418 }
1419
1420 sc->sc_wepctl = 0;
1421
1422 atw_write_ssid(sc);
1423 atw_write_sup_rates(sc);
1424 atw_write_wep(sc);
1425
1426 ic->ic_state = IEEE80211_S_INIT;
1427
1428 /*
1429 * Set the receive filter. This will start the transmit and
1430 * receive processes.
1431 */
1432 atw_filter_setup(sc);
1433
1434 /*
1435 * Start the receive process.
1436 */
1437 ATW_WRITE(sc, ATW_RDR, 0x1);
1438
1439 /*
1440 * Note that the interface is now running.
1441 */
1442 ifp->if_flags |= IFF_RUNNING;
1443 ifp->if_flags &= ~IFF_OACTIVE;
1444
1445 /* send no beacons, yet. */
1446 atw_start_beacon(sc, 0);
1447
1448 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1449 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1450 else
1451 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1452 out:
1453 if (error) {
1454 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1455 sc->sc_tx_timer = 0;
1456 ifp->if_timer = 0;
1457 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1458 }
1459 #ifdef ATW_DEBUG
1460 atw_print_regs(sc, "end of init");
1461 #endif /* ATW_DEBUG */
1462
1463 return (error);
1464 }
1465
1466 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1467 * 0: MAC control of RF3000/Si4126.
1468 *
1469 * Applies power, or selects RF front-end? Sets reset condition.
1470 *
1471 * TBD support non-RFMD BBP, non-SiLabs synth.
1472 */
1473 static void
1474 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1475 {
1476 if (enable) {
1477 ATW_WRITE(sc, ATW_SYNRF,
1478 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1479 DELAY(atw_bbp_io_enable_delay);
1480 } else {
1481 ATW_WRITE(sc, ATW_SYNRF, 0);
1482 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1483 }
1484 }
1485
1486 static int
1487 atw_tune(struct atw_softc *sc)
1488 {
1489 int rc;
1490 u_int chan;
1491 struct ieee80211com *ic = &sc->sc_ic;
1492
1493 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1494 if (chan == IEEE80211_CHAN_ANY)
1495 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1496
1497 if (chan == sc->sc_cur_chan)
1498 return 0;
1499
1500 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1501 sc->sc_cur_chan, chan));
1502
1503 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1504
1505 atw_si4126_tune(sc, chan);
1506 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1507 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1508 chan);
1509
1510 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1511 DELAY(atw_nar_delay);
1512 ATW_WRITE(sc, ATW_RDR, 0x1);
1513
1514 if (rc == 0) {
1515 sc->sc_cur_chan = chan;
1516 sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1517 htole16(ic->ic_curchan->ic_freq);
1518 sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1519 htole16(ic->ic_curchan->ic_flags);
1520 }
1521
1522 return rc;
1523 }
1524
1525 #ifdef ATW_SYNDEBUG
1526 static void
1527 atw_si4126_print(struct atw_softc *sc)
1528 {
1529 struct ifnet *ifp = &sc->sc_if;
1530 u_int addr, val;
1531
1532 val = 0;
1533
1534 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1535 return;
1536
1537 for (addr = 0; addr <= 8; addr++) {
1538 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1539 if (atw_si4126_read(sc, addr, &val) == 0) {
1540 printf("<unknown> (quitting print-out)\n");
1541 break;
1542 }
1543 printf("%05x\n", val);
1544 }
1545 }
1546 #endif /* ATW_SYNDEBUG */
1547
1548 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1549 *
1550 * The RF/IF synthesizer produces two reference frequencies for
1551 * the RF2948B transceiver. The first frequency the RF2948B requires
1552 * is two times the so-called "intermediate frequency" (IF). Since
1553 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1554 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second
1555 * frequency required by the transceiver is the radio frequency
1556 * (RF). This is a superheterodyne transceiver; for f(chan) the
1557 * center frequency of the channel we are tuning, RF = f(chan) -
1558 * IF.
1559 *
1560 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1561 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1562 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1563 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1564 */
1565 static void
1566 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1567 {
1568 u_int mhz;
1569 u_int R;
1570 u_int32_t gpio;
1571 u_int16_t gain;
1572
1573 #ifdef ATW_SYNDEBUG
1574 atw_si4126_print(sc);
1575 #endif /* ATW_SYNDEBUG */
1576
1577 if (chan == 14)
1578 mhz = 2484;
1579 else
1580 mhz = 2412 + 5 * (chan - 1);
1581
1582 /* Tune IF to 748 MHz to suit the IF LO input of the
1583 * RF2494B, which is 2 x IF. No need to set an IF divider
1584 * because an IF in 526 MHz - 952 MHz is allowed.
1585 *
1586 * XIN is 44.000 MHz, so divide it by two to get allowable
1587 * range of 2-25 MHz. SiLabs tells me that this is not
1588 * strictly necessary.
1589 */
1590
1591 if (atw_xindiv2)
1592 R = 44;
1593 else
1594 R = 88;
1595
1596 /* Power-up RF, IF synthesizers. */
1597 atw_si4126_write(sc, SI4126_POWER,
1598 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1599
1600 /* set LPWR, too? */
1601 atw_si4126_write(sc, SI4126_MAIN,
1602 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1603
1604 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1605 * set KP2 to 1.
1606 *
1607 * REFDIF This is different from the reference driver, which
1608 * always sets SI4126_GAIN to 0.
1609 */
1610 gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1611
1612 atw_si4126_write(sc, SI4126_GAIN, gain);
1613
1614 /* XIN = 44 MHz.
1615 *
1616 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1617 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1618 *
1619 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1620 * so that 1496/88 * 44 MHz = 748 MHz.
1621 */
1622 atw_si4126_write(sc, SI4126_IFN, 1496);
1623
1624 atw_si4126_write(sc, SI4126_IFR, R);
1625
1626 #ifndef ATW_REFSLAVE
1627 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1628 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1629 * which has no RF1!
1630 */
1631 atw_si4126_write(sc, SI4126_RF1R, R);
1632
1633 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1634 #endif
1635
1636 /* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1637 * where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44.
1638 * Now let's multiply it to mhz. So mhz - IF = N.
1639 */
1640 atw_si4126_write(sc, SI4126_RF2R, R);
1641
1642 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1643
1644 /* wait 100us from power-up for RF, IF to settle */
1645 DELAY(100);
1646
1647 gpio = ATW_READ(sc, ATW_GPIO);
1648 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1649 gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1650
1651 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1652 /* Set a Prism RF front-end to a special mode for channel 14?
1653 *
1654 * Apparently the SMC2635W needs this, although I don't think
1655 * it has a Prism RF.
1656 */
1657 gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1658 }
1659 ATW_WRITE(sc, ATW_GPIO, gpio);
1660
1661 #ifdef ATW_SYNDEBUG
1662 atw_si4126_print(sc);
1663 #endif /* ATW_SYNDEBUG */
1664 }
1665
1666 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1667 * diversity.
1668 *
1669 * !!!
1670 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1671 * !!!
1672 */
1673 static int
1674 atw_rf3000_init(struct atw_softc *sc)
1675 {
1676 int rc = 0;
1677
1678 atw_bbp_io_enable(sc, 1);
1679
1680 /* CCA is acquisition sensitive */
1681 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1682 __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1683
1684 if (rc != 0)
1685 goto out;
1686
1687 /* enable diversity */
1688 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1689
1690 if (rc != 0)
1691 goto out;
1692
1693 /* sensible setting from a binary-only driver */
1694 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1695 __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1696
1697 if (rc != 0)
1698 goto out;
1699
1700 /* magic from a binary-only driver */
1701 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1702 __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1703
1704 if (rc != 0)
1705 goto out;
1706
1707 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1708
1709 if (rc != 0)
1710 goto out;
1711
1712 /* XXX Reference driver remarks that Abocom sets this to 50.
1713 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1714 * in the "reserved" area of register RF3000_OPTIONS1.
1715 */
1716 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1717
1718 if (rc != 0)
1719 goto out;
1720
1721 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1722
1723 if (rc != 0)
1724 goto out;
1725
1726 out:
1727 atw_bbp_io_enable(sc, 0);
1728 return rc;
1729 }
1730
1731 #ifdef ATW_BBPDEBUG
1732 static void
1733 atw_rf3000_print(struct atw_softc *sc)
1734 {
1735 struct ifnet *ifp = &sc->sc_if;
1736 u_int addr, val;
1737
1738 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1739 return;
1740
1741 for (addr = 0x01; addr <= 0x15; addr++) {
1742 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1743 if (atw_rf3000_read(sc, addr, &val) != 0) {
1744 printf("<unknown> (quitting print-out)\n");
1745 break;
1746 }
1747 printf("%08x\n", val);
1748 }
1749 }
1750 #endif /* ATW_BBPDEBUG */
1751
1752 /* Set the power settings on the BBP for channel `chan'. */
1753 static int
1754 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1755 {
1756 int rc = 0;
1757 u_int32_t reg;
1758 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1759
1760 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1761 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1762 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1763
1764 /* odd channels: LSB, even channels: MSB */
1765 if (chan % 2 == 1) {
1766 txpower &= 0xFF;
1767 lpf_cutoff &= 0xFF;
1768 lna_gs_thresh &= 0xFF;
1769 } else {
1770 txpower >>= 8;
1771 lpf_cutoff >>= 8;
1772 lna_gs_thresh >>= 8;
1773 }
1774
1775 #ifdef ATW_BBPDEBUG
1776 atw_rf3000_print(sc);
1777 #endif /* ATW_BBPDEBUG */
1778
1779 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1780 "lna_gs_thresh %02x\n",
1781 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1782
1783 atw_bbp_io_enable(sc, 1);
1784
1785 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1786 __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1787 goto out;
1788
1789 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1790 goto out;
1791
1792 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1793 goto out;
1794
1795 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1796
1797 if (rc != 0)
1798 goto out;
1799
1800 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1801
1802 if (rc != 0)
1803 goto out;
1804
1805 #ifdef ATW_BBPDEBUG
1806 atw_rf3000_print(sc);
1807 #endif /* ATW_BBPDEBUG */
1808
1809 out:
1810 atw_bbp_io_enable(sc, 0);
1811
1812 /* set beacon, rts, atim transmit power */
1813 reg = ATW_READ(sc, ATW_PLCPHD);
1814 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1815 reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1816 ATW_PLCPHD_SERVICE_MASK);
1817 ATW_WRITE(sc, ATW_PLCPHD, reg);
1818 DELAY(atw_plcphd_delay);
1819
1820 return rc;
1821 }
1822
1823 /* Write a register on the RF3000 baseband processor using the
1824 * registers provided by the ADM8211 for this purpose.
1825 *
1826 * Return 0 on success.
1827 */
1828 static int
1829 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1830 {
1831 u_int32_t reg;
1832 int i;
1833
1834 reg = sc->sc_bbpctl_wr |
1835 __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1836 __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1837
1838 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1839 ATW_WRITE(sc, ATW_BBPCTL, reg);
1840 DELAY(2 * atw_pseudo_milli);
1841 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1842 break;
1843 }
1844
1845 if (i < 0) {
1846 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1847 return ETIMEDOUT;
1848 }
1849 return 0;
1850 }
1851
1852 /* Read a register on the RF3000 baseband processor using the registers
1853 * the ADM8211 provides for this purpose.
1854 *
1855 * The 7-bit register address is addr. Record the 8-bit data in the register
1856 * in *val.
1857 *
1858 * Return 0 on success.
1859 *
1860 * XXX This does not seem to work. The ADM8211 must require more or
1861 * different magic to read the chip than to write it. Possibly some
1862 * of the magic I have derived from a binary-only driver concerns
1863 * the "chip address" (see the RF3000 manual).
1864 */
1865 #ifdef ATW_BBPDEBUG
1866 static int
1867 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1868 {
1869 u_int32_t reg;
1870 int i;
1871
1872 for (i = 1000; --i >= 0; ) {
1873 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1874 break;
1875 DELAY(100);
1876 }
1877
1878 if (i < 0) {
1879 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1880 sc->sc_dev.dv_xname);
1881 return ETIMEDOUT;
1882 }
1883
1884 reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1885
1886 ATW_WRITE(sc, ATW_BBPCTL, reg);
1887
1888 for (i = 1000; --i >= 0; ) {
1889 DELAY(100);
1890 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1891 break;
1892 }
1893
1894 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1895
1896 if (i < 0) {
1897 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1898 sc->sc_dev.dv_xname, reg);
1899 return ETIMEDOUT;
1900 }
1901 if (val != NULL)
1902 *val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1903 return 0;
1904 }
1905 #endif /* ATW_BBPDEBUG */
1906
1907 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1908 * provided by the ADM8211 for that purpose.
1909 *
1910 * val is 18 bits of data, and val is the 4-bit address of the register.
1911 *
1912 * Return 0 on success.
1913 */
1914 static void
1915 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1916 {
1917 uint32_t bits, mask, reg;
1918 const int nbits = 22;
1919
1920 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1921 KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1922
1923 bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1924 __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1925
1926 reg = ATW_SYNRF_SELSYN;
1927 /* reference driver: reset Si4126 serial bus to initial
1928 * conditions?
1929 */
1930 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1931 ATW_WRITE(sc, ATW_SYNRF, reg);
1932
1933 for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1934 if ((bits & mask) != 0)
1935 reg |= ATW_SYNRF_SYNDATA;
1936 else
1937 reg &= ~ATW_SYNRF_SYNDATA;
1938 ATW_WRITE(sc, ATW_SYNRF, reg);
1939 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1940 ATW_WRITE(sc, ATW_SYNRF, reg);
1941 }
1942 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1943 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1944 }
1945
1946 /* Read 18-bit data from the 4-bit address addr in Si4126
1947 * RF synthesizer and write the data to *val. Return 0 on success.
1948 *
1949 * XXX This does not seem to work. The ADM8211 must require more or
1950 * different magic to read the chip than to write it.
1951 */
1952 #ifdef ATW_SYNDEBUG
1953 static int
1954 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1955 {
1956 u_int32_t reg;
1957 int i;
1958
1959 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1960
1961 for (i = 1000; --i >= 0; ) {
1962 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1963 break;
1964 DELAY(100);
1965 }
1966
1967 if (i < 0) {
1968 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1969 sc->sc_dev.dv_xname);
1970 return ETIMEDOUT;
1971 }
1972
1973 reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1974
1975 ATW_WRITE(sc, ATW_SYNCTL, reg);
1976
1977 for (i = 1000; --i >= 0; ) {
1978 DELAY(100);
1979 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1980 break;
1981 }
1982
1983 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1984
1985 if (i < 0) {
1986 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1987 sc->sc_dev.dv_xname, reg);
1988 return ETIMEDOUT;
1989 }
1990 if (val != NULL)
1991 *val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1992 ATW_SYNCTL_DATA_MASK);
1993 return 0;
1994 }
1995 #endif /* ATW_SYNDEBUG */
1996
1997 /* XXX is the endianness correct? test. */
1998 #define atw_calchash(addr) \
1999 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
2000
2001 /*
2002 * atw_filter_setup:
2003 *
2004 * Set the ADM8211's receive filter.
2005 */
2006 static void
2007 atw_filter_setup(struct atw_softc *sc)
2008 {
2009 struct ieee80211com *ic = &sc->sc_ic;
2010 struct ethercom *ec = &sc->sc_ec;
2011 struct ifnet *ifp = &sc->sc_if;
2012 int hash;
2013 u_int32_t hashes[2];
2014 struct ether_multi *enm;
2015 struct ether_multistep step;
2016
2017 /* According to comments in tlp_al981_filter_setup
2018 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2019 * multicast filter to be set while it is running. Hopefully
2020 * the ADM8211 is not the same!
2021 */
2022 if ((ifp->if_flags & IFF_RUNNING) != 0)
2023 atw_idle(sc, ATW_NAR_SR);
2024
2025 sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
2026 ifp->if_flags &= ~IFF_ALLMULTI;
2027
2028 /* XXX in scan mode, do not filter packets. Maybe this is
2029 * unnecessary.
2030 */
2031 if (ic->ic_state == IEEE80211_S_SCAN ||
2032 (ifp->if_flags & IFF_PROMISC) != 0) {
2033 sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2034 goto allmulti;
2035 }
2036
2037 hashes[0] = hashes[1] = 0x0;
2038
2039 /*
2040 * Program the 64-bit multicast hash filter.
2041 */
2042 ETHER_FIRST_MULTI(step, ec, enm);
2043 while (enm != NULL) {
2044 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2045 ETHER_ADDR_LEN) != 0)
2046 goto allmulti;
2047
2048 hash = atw_calchash(enm->enm_addrlo);
2049 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2050 ETHER_NEXT_MULTI(step, enm);
2051 sc->sc_opmode |= ATW_NAR_MM;
2052 }
2053 ifp->if_flags &= ~IFF_ALLMULTI;
2054 goto setit;
2055
2056 allmulti:
2057 sc->sc_opmode |= ATW_NAR_MM;
2058 ifp->if_flags |= IFF_ALLMULTI;
2059 hashes[0] = hashes[1] = 0xffffffff;
2060
2061 setit:
2062 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2063 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2064 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2065 DELAY(atw_nar_delay);
2066 ATW_WRITE(sc, ATW_RDR, 0x1);
2067
2068 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2069 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2070 }
2071
2072 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2073 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2074 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2075 * no beacon with the preferred BSSID and SSID in the number of
2076 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2077 */
2078 static void
2079 atw_write_bssid(struct atw_softc *sc)
2080 {
2081 struct ieee80211com *ic = &sc->sc_ic;
2082 u_int8_t *bssid;
2083
2084 bssid = ic->ic_bss->ni_bssid;
2085
2086 ATW_WRITE(sc, ATW_BSSID0,
2087 __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2088 __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2089 __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2090 __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2091
2092 ATW_WRITE(sc, ATW_ABDA1,
2093 (ATW_READ(sc, ATW_ABDA1) &
2094 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2095 __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2096 __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2097
2098 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2099 ether_sprintf(sc->sc_bssid)));
2100 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2101
2102 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2103 }
2104
2105 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2106 * 16-bit word.
2107 */
2108 static void
2109 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2110 {
2111 u_int i;
2112 u_int8_t *ptr;
2113
2114 memcpy(&sc->sc_sram[ofs], buf, buflen);
2115
2116 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2117
2118 KASSERT(buflen + ofs <= sc->sc_sramlen);
2119
2120 ptr = &sc->sc_sram[ofs];
2121
2122 for (i = 0; i < buflen; i += 2) {
2123 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2124 __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2125 DELAY(atw_writewep_delay);
2126
2127 ATW_WRITE(sc, ATW_WESK,
2128 __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2129 DELAY(atw_writewep_delay);
2130 }
2131 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2132
2133 if (sc->sc_if.if_flags & IFF_DEBUG) {
2134 int n_octets = 0;
2135 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2136 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2137 for (i = 0; i < buflen; i++) {
2138 printf(" %02x", ptr[i]);
2139 if (++n_octets % 24 == 0)
2140 printf("\n");
2141 }
2142 if (n_octets % 24 != 0)
2143 printf("\n");
2144 }
2145 }
2146
2147 static int
2148 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2149 {
2150 struct atw_softc *sc = ic->ic_ifp->if_softc;
2151 u_int keyix = k->wk_keyix;
2152
2153 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2154
2155 if (keyix >= IEEE80211_WEP_NKID)
2156 return 0;
2157 if (k->wk_keylen != 0)
2158 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2159
2160 return 1;
2161 }
2162
2163 static int
2164 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2165 const u_int8_t mac[IEEE80211_ADDR_LEN])
2166 {
2167 struct atw_softc *sc = ic->ic_ifp->if_softc;
2168
2169 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2170
2171 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2172 return 0;
2173
2174 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2175
2176 return 1;
2177 }
2178
2179 static void
2180 atw_key_update_begin(struct ieee80211com *ic)
2181 {
2182 #ifdef ATW_DEBUG
2183 struct ifnet *ifp = ic->ic_ifp;
2184 struct atw_softc *sc = ifp->if_softc;
2185 #endif
2186
2187 DPRINTF(sc, ("%s:\n", __func__));
2188 }
2189
2190 static void
2191 atw_key_update_end(struct ieee80211com *ic)
2192 {
2193 struct ifnet *ifp = ic->ic_ifp;
2194 struct atw_softc *sc = ifp->if_softc;
2195
2196 DPRINTF(sc, ("%s:\n", __func__));
2197
2198 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2199 return;
2200 if (ATW_IS_ENABLED(sc) == 0)
2201 return;
2202 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2203 atw_write_wep(sc);
2204 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2205 DELAY(atw_nar_delay);
2206 ATW_WRITE(sc, ATW_RDR, 0x1);
2207 }
2208
2209 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2210 static void
2211 atw_write_wep(struct atw_softc *sc)
2212 {
2213 #if 0
2214 struct ieee80211com *ic = &sc->sc_ic;
2215 u_int32_t reg;
2216 int i;
2217 #endif
2218 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2219 u_int8_t buf[IEEE80211_WEP_NKID]
2220 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2221
2222 sc->sc_wepctl = 0;
2223 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2224
2225 memset(&buf[0][0], 0, sizeof(buf));
2226
2227 #if 0
2228 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2229 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2230 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2231 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2232 buf[i][1] = ATW_WEP_ENABLED;
2233 } else {
2234 buf[i][1] = 0;
2235 continue;
2236 }
2237 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2238 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2239 ic->ic_nw_keys[i].wk_keylen - 1);
2240 }
2241
2242 reg = ATW_READ(sc, ATW_MACTEST);
2243 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2244 reg &= ~ATW_MACTEST_KEYID_MASK;
2245 reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2246 ATW_WRITE(sc, ATW_MACTEST, reg);
2247
2248 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2249 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2250
2251 switch (sc->sc_rev) {
2252 case ATW_REVISION_AB:
2253 case ATW_REVISION_AF:
2254 /* Bypass WEP on Rx. */
2255 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2256 break;
2257 default:
2258 break;
2259 }
2260 #endif
2261
2262 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2263 sizeof(buf));
2264
2265 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2266 }
2267
2268 static void
2269 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2270 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2271 {
2272 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2273
2274 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2275 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2276 return;
2277
2278 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2279
2280 switch (subtype) {
2281 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2282 case IEEE80211_FC0_SUBTYPE_BEACON:
2283 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2284 ic->ic_state == IEEE80211_S_RUN) {
2285 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2286 (void)ieee80211_ibss_merge(ni);
2287 }
2288 break;
2289 default:
2290 break;
2291 }
2292 return;
2293 }
2294
2295 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2296 * In ad hoc mode, the SSID is written to the beacons sent by the
2297 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2298 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2299 * indications.
2300 */
2301 static void
2302 atw_write_ssid(struct atw_softc *sc)
2303 {
2304 struct ieee80211com *ic = &sc->sc_ic;
2305 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2306 * it only expects the element length, not its ID.
2307 */
2308 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2309
2310 memset(buf, 0, sizeof(buf));
2311 buf[0] = ic->ic_bss->ni_esslen;
2312 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2313
2314 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2315 roundup(1 + ic->ic_bss->ni_esslen, 2));
2316 }
2317
2318 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2319 * In ad hoc mode, the supported rates are written to beacons sent by the
2320 * ADM8211.
2321 */
2322 static void
2323 atw_write_sup_rates(struct atw_softc *sc)
2324 {
2325 struct ieee80211com *ic = &sc->sc_ic;
2326 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2327 * supported rates
2328 */
2329 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2330
2331 memset(buf, 0, sizeof(buf));
2332
2333 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2334
2335 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2336 ic->ic_bss->ni_rates.rs_nrates);
2337
2338 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2339 }
2340
2341 /* Start/stop sending beacons. */
2342 void
2343 atw_start_beacon(struct atw_softc *sc, int start)
2344 {
2345 struct ieee80211com *ic = &sc->sc_ic;
2346 uint16_t chan;
2347 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2348 size_t len;
2349
2350 if (ATW_IS_ENABLED(sc) == 0)
2351 return;
2352
2353 /* start beacons */
2354 len = sizeof(struct ieee80211_frame) +
2355 8 /* timestamp */ + 2 /* beacon interval */ +
2356 2 /* capability info */ +
2357 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2358 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2359 3 /* DS parameters */ +
2360 IEEE80211_CRC_LEN;
2361
2362 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2363 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2364 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2365
2366 ATW_WRITE(sc, ATW_BCNT, bcnt);
2367 ATW_WRITE(sc, ATW_CAP1, cap1);
2368
2369 if (!start)
2370 return;
2371
2372 /* TBD use ni_capinfo */
2373
2374 capinfo = 0;
2375 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2376 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2377 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2378 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2379
2380 switch (ic->ic_opmode) {
2381 case IEEE80211_M_IBSS:
2382 len += 4; /* IBSS parameters */
2383 capinfo |= IEEE80211_CAPINFO_IBSS;
2384 break;
2385 case IEEE80211_M_HOSTAP:
2386 /* XXX 6-byte minimum TIM */
2387 len += atw_beacon_len_adjust;
2388 capinfo |= IEEE80211_CAPINFO_ESS;
2389 break;
2390 default:
2391 return;
2392 }
2393
2394 /* set listen interval
2395 * XXX do software units agree w/ hardware?
2396 */
2397 bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2398 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2399
2400 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2401
2402 bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2403 cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2404 cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2405
2406 ATW_WRITE(sc, ATW_BCNT, bcnt);
2407 ATW_WRITE(sc, ATW_BPLI, bpli);
2408 ATW_WRITE(sc, ATW_CAP0, cap0);
2409 ATW_WRITE(sc, ATW_CAP1, cap1);
2410
2411 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2412 sc->sc_dev.dv_xname, bcnt));
2413
2414 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2415 sc->sc_dev.dv_xname, cap1));
2416 }
2417
2418 /* Return the 32 lsb of the last TSFT divisible by ival. */
2419 static inline uint32_t
2420 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2421 {
2422 /* Following the reference driver's lead, I compute
2423 *
2424 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2425 *
2426 * without using 64-bit arithmetic, using the following
2427 * relationship:
2428 *
2429 * (0x100000000 * H + L) % m
2430 * = ((0x100000000 % m) * H + L) % m
2431 * = (((0xffffffff + 1) % m) * H + L) % m
2432 * = ((0xffffffff % m + 1 % m) * H + L) % m
2433 * = ((0xffffffff % m + 1) * H + L) % m
2434 */
2435 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2436 }
2437
2438 static uint64_t
2439 atw_get_tsft(struct atw_softc *sc)
2440 {
2441 int i;
2442 uint32_t tsfth, tsftl;
2443 for (i = 0; i < 2; i++) {
2444 tsfth = ATW_READ(sc, ATW_TSFTH);
2445 tsftl = ATW_READ(sc, ATW_TSFTL);
2446 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2447 break;
2448 }
2449 return ((uint64_t)tsfth << 32) | tsftl;
2450 }
2451
2452 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2453 * the ieee80211com.
2454 *
2455 * Predict the next target beacon transmission time (TBTT) and
2456 * write it to the ADM8211.
2457 */
2458 static void
2459 atw_predict_beacon(struct atw_softc *sc)
2460 {
2461 #define TBTTOFS 20 /* TU */
2462
2463 struct ieee80211com *ic = &sc->sc_ic;
2464 uint64_t tsft;
2465 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2466 union {
2467 uint64_t word;
2468 uint8_t tstamp[8];
2469 } u;
2470
2471 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2472 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2473 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2474 tsft = atw_get_tsft(sc);
2475 u.word = htole64(tsft);
2476 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2477 sizeof(ic->ic_bss->ni_tstamp));
2478 } else
2479 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2480
2481 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2482
2483 tsftl = tsft & 0xFFFFFFFF;
2484 tsfth = tsft >> 32;
2485
2486 /* We sent/received the last beacon `past' microseconds
2487 * after the interval divided the TSF timer.
2488 */
2489 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2490
2491 /* Skip ten beacons so that the TBTT cannot pass before
2492 * we've programmed it. Ten is an arbitrary number.
2493 */
2494 tbtt = past_even + ival * 10;
2495
2496 ATW_WRITE(sc, ATW_TOFS1,
2497 __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2498 __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2499 __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2500 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2501 #undef TBTTOFS
2502 }
2503
2504 static void
2505 atw_next_scan(void *arg)
2506 {
2507 struct atw_softc *sc = arg;
2508 struct ieee80211com *ic = &sc->sc_ic;
2509 int s;
2510
2511 /* don't call atw_start w/o network interrupts blocked */
2512 s = splnet();
2513 if (ic->ic_state == IEEE80211_S_SCAN)
2514 ieee80211_next_scan(ic);
2515 splx(s);
2516 }
2517
2518 /* Synchronize the hardware state with the software state. */
2519 static int
2520 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2521 {
2522 struct ifnet *ifp = ic->ic_ifp;
2523 struct atw_softc *sc = ifp->if_softc;
2524 enum ieee80211_state ostate;
2525 int error = 0;
2526
2527 ostate = ic->ic_state;
2528 callout_stop(&sc->sc_scan_ch);
2529
2530 switch (nstate) {
2531 case IEEE80211_S_AUTH:
2532 case IEEE80211_S_ASSOC:
2533 atw_write_bssid(sc);
2534 error = atw_tune(sc);
2535 break;
2536 case IEEE80211_S_INIT:
2537 callout_stop(&sc->sc_scan_ch);
2538 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2539 atw_start_beacon(sc, 0);
2540 break;
2541 case IEEE80211_S_SCAN:
2542 error = atw_tune(sc);
2543 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2544 atw_next_scan, sc);
2545 break;
2546 case IEEE80211_S_RUN:
2547 error = atw_tune(sc);
2548 atw_write_bssid(sc);
2549 atw_write_ssid(sc);
2550 atw_write_sup_rates(sc);
2551
2552 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2553 ic->ic_opmode == IEEE80211_M_MONITOR)
2554 break;
2555
2556 /* set listen interval
2557 * XXX do software units agree w/ hardware?
2558 */
2559 ATW_WRITE(sc, ATW_BPLI,
2560 __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2561 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2562 ATW_BPLI_LI_MASK));
2563
2564 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", sc->sc_dev.dv_xname,
2565 ATW_READ(sc, ATW_BPLI)));
2566
2567 atw_predict_beacon(sc);
2568
2569 switch (ic->ic_opmode) {
2570 case IEEE80211_M_AHDEMO:
2571 case IEEE80211_M_HOSTAP:
2572 case IEEE80211_M_IBSS:
2573 atw_start_beacon(sc, 1);
2574 break;
2575 case IEEE80211_M_MONITOR:
2576 case IEEE80211_M_STA:
2577 break;
2578 }
2579
2580 break;
2581 }
2582 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2583 }
2584
2585 /*
2586 * atw_add_rxbuf:
2587 *
2588 * Add a receive buffer to the indicated descriptor.
2589 */
2590 int
2591 atw_add_rxbuf(struct atw_softc *sc, int idx)
2592 {
2593 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2594 struct mbuf *m;
2595 int error;
2596
2597 MGETHDR(m, M_DONTWAIT, MT_DATA);
2598 if (m == NULL)
2599 return (ENOBUFS);
2600
2601 MCLGET(m, M_DONTWAIT);
2602 if ((m->m_flags & M_EXT) == 0) {
2603 m_freem(m);
2604 return (ENOBUFS);
2605 }
2606
2607 if (rxs->rxs_mbuf != NULL)
2608 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2609
2610 rxs->rxs_mbuf = m;
2611
2612 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2613 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2614 BUS_DMA_READ|BUS_DMA_NOWAIT);
2615 if (error) {
2616 printf("%s: can't load rx DMA map %d, error = %d\n",
2617 sc->sc_dev.dv_xname, idx, error);
2618 panic("atw_add_rxbuf"); /* XXX */
2619 }
2620
2621 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2622 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2623
2624 atw_init_rxdesc(sc, idx);
2625
2626 return (0);
2627 }
2628
2629 /*
2630 * Release any queued transmit buffers.
2631 */
2632 void
2633 atw_txdrain(struct atw_softc *sc)
2634 {
2635 struct atw_txsoft *txs;
2636
2637 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2638 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2639 if (txs->txs_mbuf != NULL) {
2640 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2641 m_freem(txs->txs_mbuf);
2642 txs->txs_mbuf = NULL;
2643 }
2644 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2645 sc->sc_txfree += txs->txs_ndescs;
2646 }
2647
2648 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2649 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2650 sc->sc_txfree != ATW_NTXDESC));
2651 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2652 sc->sc_tx_timer = 0;
2653 }
2654
2655 /*
2656 * atw_stop: [ ifnet interface function ]
2657 *
2658 * Stop transmission on the interface.
2659 */
2660 void
2661 atw_stop(struct ifnet *ifp, int disable)
2662 {
2663 struct atw_softc *sc = ifp->if_softc;
2664 struct ieee80211com *ic = &sc->sc_ic;
2665
2666 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2667
2668 /* Disable interrupts. */
2669 ATW_WRITE(sc, ATW_IER, 0);
2670
2671 /* Stop the transmit and receive processes. */
2672 sc->sc_opmode = 0;
2673 ATW_WRITE(sc, ATW_NAR, 0);
2674 DELAY(atw_nar_delay);
2675 ATW_WRITE(sc, ATW_TDBD, 0);
2676 ATW_WRITE(sc, ATW_TDBP, 0);
2677 ATW_WRITE(sc, ATW_RDB, 0);
2678
2679 atw_txdrain(sc);
2680
2681 /*
2682 * Mark the interface down and cancel the watchdog timer.
2683 */
2684 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2685 sc->sc_tx_timer = 0;
2686 ifp->if_timer = 0;
2687
2688 if (disable) {
2689 atw_rxdrain(sc);
2690 atw_disable(sc);
2691 } else
2692 atw_reset(sc);
2693 }
2694
2695 /*
2696 * atw_rxdrain:
2697 *
2698 * Drain the receive queue.
2699 */
2700 void
2701 atw_rxdrain(struct atw_softc *sc)
2702 {
2703 struct atw_rxsoft *rxs;
2704 int i;
2705
2706 for (i = 0; i < ATW_NRXDESC; i++) {
2707 rxs = &sc->sc_rxsoft[i];
2708 if (rxs->rxs_mbuf == NULL)
2709 continue;
2710 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2711 m_freem(rxs->rxs_mbuf);
2712 rxs->rxs_mbuf = NULL;
2713 }
2714 }
2715
2716 /*
2717 * atw_detach:
2718 *
2719 * Detach an ADM8211 interface.
2720 */
2721 int
2722 atw_detach(struct atw_softc *sc)
2723 {
2724 struct ifnet *ifp = &sc->sc_if;
2725 struct atw_rxsoft *rxs;
2726 struct atw_txsoft *txs;
2727 int i;
2728
2729 /*
2730 * Succeed now if there isn't any work to do.
2731 */
2732 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2733 return (0);
2734
2735 pmf_device_deregister(&sc->sc_dev);
2736
2737 callout_stop(&sc->sc_scan_ch);
2738
2739 ieee80211_ifdetach(&sc->sc_ic);
2740 if_detach(ifp);
2741
2742 for (i = 0; i < ATW_NRXDESC; i++) {
2743 rxs = &sc->sc_rxsoft[i];
2744 if (rxs->rxs_mbuf != NULL) {
2745 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2746 m_freem(rxs->rxs_mbuf);
2747 rxs->rxs_mbuf = NULL;
2748 }
2749 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2750 }
2751 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2752 txs = &sc->sc_txsoft[i];
2753 if (txs->txs_mbuf != NULL) {
2754 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2755 m_freem(txs->txs_mbuf);
2756 txs->txs_mbuf = NULL;
2757 }
2758 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2759 }
2760 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2761 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2762 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2763 sizeof(struct atw_control_data));
2764 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2765
2766 if (sc->sc_srom)
2767 free(sc->sc_srom, M_DEVBUF);
2768
2769 atw_evcnt_detach(sc);
2770
2771 return (0);
2772 }
2773
2774 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2775 bool
2776 atw_shutdown(device_t self, int flags)
2777 {
2778 struct atw_softc *sc = device_private(self);
2779
2780 atw_stop(&sc->sc_if, 1);
2781 return true;
2782 }
2783
2784 int
2785 atw_intr(void *arg)
2786 {
2787 struct atw_softc *sc = arg;
2788 struct ifnet *ifp = &sc->sc_if;
2789 u_int32_t status, rxstatus, txstatus, linkstatus;
2790 int handled = 0, txthresh;
2791
2792 #ifdef DEBUG
2793 if (ATW_IS_ENABLED(sc) == 0)
2794 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2795 #endif
2796
2797 /*
2798 * If the interface isn't running, the interrupt couldn't
2799 * possibly have come from us.
2800 */
2801 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2802 !device_is_active(&sc->sc_dev))
2803 return (0);
2804
2805 for (;;) {
2806 status = ATW_READ(sc, ATW_STSR);
2807
2808 if (status)
2809 ATW_WRITE(sc, ATW_STSR, status);
2810
2811 #ifdef ATW_DEBUG
2812 #define PRINTINTR(flag) do { \
2813 if ((status & flag) != 0) { \
2814 printf("%s" #flag, delim); \
2815 delim = ","; \
2816 } \
2817 } while (0)
2818
2819 if (atw_debug > 1 && status) {
2820 const char *delim = "<";
2821
2822 printf("%s: reg[STSR] = %x",
2823 sc->sc_dev.dv_xname, status);
2824
2825 PRINTINTR(ATW_INTR_FBE);
2826 PRINTINTR(ATW_INTR_LINKOFF);
2827 PRINTINTR(ATW_INTR_LINKON);
2828 PRINTINTR(ATW_INTR_RCI);
2829 PRINTINTR(ATW_INTR_RDU);
2830 PRINTINTR(ATW_INTR_REIS);
2831 PRINTINTR(ATW_INTR_RPS);
2832 PRINTINTR(ATW_INTR_TCI);
2833 PRINTINTR(ATW_INTR_TDU);
2834 PRINTINTR(ATW_INTR_TLT);
2835 PRINTINTR(ATW_INTR_TPS);
2836 PRINTINTR(ATW_INTR_TRT);
2837 PRINTINTR(ATW_INTR_TUF);
2838 PRINTINTR(ATW_INTR_BCNTC);
2839 PRINTINTR(ATW_INTR_ATIME);
2840 PRINTINTR(ATW_INTR_TBTT);
2841 PRINTINTR(ATW_INTR_TSCZ);
2842 PRINTINTR(ATW_INTR_TSFTF);
2843 printf(">\n");
2844 }
2845 #undef PRINTINTR
2846 #endif /* ATW_DEBUG */
2847
2848 if ((status & sc->sc_inten) == 0)
2849 break;
2850
2851 handled = 1;
2852
2853 rxstatus = status & sc->sc_rxint_mask;
2854 txstatus = status & sc->sc_txint_mask;
2855 linkstatus = status & sc->sc_linkint_mask;
2856
2857 if (linkstatus) {
2858 atw_linkintr(sc, linkstatus);
2859 }
2860
2861 if (rxstatus) {
2862 /* Grab any new packets. */
2863 atw_rxintr(sc);
2864
2865 if (rxstatus & ATW_INTR_RDU) {
2866 printf("%s: receive ring overrun\n",
2867 sc->sc_dev.dv_xname);
2868 /* Get the receive process going again. */
2869 ATW_WRITE(sc, ATW_RDR, 0x1);
2870 break;
2871 }
2872 }
2873
2874 if (txstatus) {
2875 /* Sweep up transmit descriptors. */
2876 atw_txintr(sc);
2877
2878 if (txstatus & ATW_INTR_TLT) {
2879 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2880 sc->sc_dev.dv_xname));
2881 }
2882
2883 if (txstatus & ATW_INTR_TRT) {
2884 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2885 sc->sc_dev.dv_xname));
2886 }
2887
2888 /* If Tx under-run, increase our transmit threshold
2889 * if another is available.
2890 */
2891 txthresh = sc->sc_txthresh + 1;
2892 if ((txstatus & ATW_INTR_TUF) &&
2893 sc->sc_txth[txthresh].txth_name != NULL) {
2894 /* Idle the transmit process. */
2895 atw_idle(sc, ATW_NAR_ST);
2896
2897 sc->sc_txthresh = txthresh;
2898 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2899 sc->sc_opmode |=
2900 sc->sc_txth[txthresh].txth_opmode;
2901 printf("%s: transmit underrun; new "
2902 "threshold: %s\n", sc->sc_dev.dv_xname,
2903 sc->sc_txth[txthresh].txth_name);
2904
2905 /* Set the new threshold and restart
2906 * the transmit process.
2907 */
2908 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2909 DELAY(atw_nar_delay);
2910 ATW_WRITE(sc, ATW_RDR, 0x1);
2911 /* XXX Log every Nth underrun from
2912 * XXX now on?
2913 */
2914 }
2915 }
2916
2917 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2918 if (status & ATW_INTR_TPS)
2919 printf("%s: transmit process stopped\n",
2920 sc->sc_dev.dv_xname);
2921 if (status & ATW_INTR_RPS)
2922 printf("%s: receive process stopped\n",
2923 sc->sc_dev.dv_xname);
2924 (void)atw_init(ifp);
2925 break;
2926 }
2927
2928 if (status & ATW_INTR_FBE) {
2929 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2930 (void)atw_init(ifp);
2931 break;
2932 }
2933
2934 /*
2935 * Not handled:
2936 *
2937 * Transmit buffer unavailable -- normal
2938 * condition, nothing to do, really.
2939 *
2940 * Early receive interrupt -- not available on
2941 * all chips, we just use RI. We also only
2942 * use single-segment receive DMA, so this
2943 * is mostly useless.
2944 *
2945 * TBD others
2946 */
2947 }
2948
2949 /* Try to get more packets going. */
2950 atw_start(ifp);
2951
2952 return (handled);
2953 }
2954
2955 /*
2956 * atw_idle:
2957 *
2958 * Cause the transmit and/or receive processes to go idle.
2959 *
2960 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2961 * process in STSR if I clear SR or ST after the process has already
2962 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2963 * do not seem to be too reliable. Perhaps I have the sense of the
2964 * Rx bits switched with the Tx bits?
2965 */
2966 void
2967 atw_idle(struct atw_softc *sc, u_int32_t bits)
2968 {
2969 u_int32_t ackmask = 0, opmode, stsr, test0;
2970 int i, s;
2971
2972 s = splnet();
2973
2974 opmode = sc->sc_opmode & ~bits;
2975
2976 if (bits & ATW_NAR_SR)
2977 ackmask |= ATW_INTR_RPS;
2978
2979 if (bits & ATW_NAR_ST) {
2980 ackmask |= ATW_INTR_TPS;
2981 /* set ATW_NAR_HF to flush TX FIFO. */
2982 opmode |= ATW_NAR_HF;
2983 }
2984
2985 ATW_WRITE(sc, ATW_NAR, opmode);
2986 DELAY(atw_nar_delay);
2987
2988 for (i = 0; i < 1000; i++) {
2989 stsr = ATW_READ(sc, ATW_STSR);
2990 if ((stsr & ackmask) == ackmask)
2991 break;
2992 DELAY(10);
2993 }
2994
2995 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2996
2997 if ((stsr & ackmask) == ackmask)
2998 goto out;
2999
3000 test0 = ATW_READ(sc, ATW_TEST0);
3001
3002 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3003 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3004 printf("%s: transmit process not idle [%s]\n",
3005 sc->sc_dev.dv_xname,
3006 atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3007 printf("%s: bits %08x test0 %08x stsr %08x\n",
3008 sc->sc_dev.dv_xname, bits, test0, stsr);
3009 }
3010
3011 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3012 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3013 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3014 sc->sc_dev.dv_xname,
3015 atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3016 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3017 sc->sc_dev.dv_xname, bits, test0, stsr));
3018 }
3019 out:
3020 if ((bits & ATW_NAR_ST) != 0)
3021 atw_txdrain(sc);
3022 splx(s);
3023 return;
3024 }
3025
3026 /*
3027 * atw_linkintr:
3028 *
3029 * Helper; handle link-status interrupts.
3030 */
3031 void
3032 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3033 {
3034 struct ieee80211com *ic = &sc->sc_ic;
3035
3036 if (ic->ic_state != IEEE80211_S_RUN)
3037 return;
3038
3039 if (linkstatus & ATW_INTR_LINKON) {
3040 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3041 sc->sc_rescan_timer = 0;
3042 } else if (linkstatus & ATW_INTR_LINKOFF) {
3043 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3044 if (ic->ic_opmode != IEEE80211_M_STA)
3045 return;
3046 sc->sc_rescan_timer = 3;
3047 sc->sc_if.if_timer = 1;
3048 }
3049 }
3050
3051 static inline int
3052 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3053 {
3054 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3055 return 0;
3056 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3057 return 0;
3058 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3059 }
3060
3061 /*
3062 * atw_rxintr:
3063 *
3064 * Helper; handle receive interrupts.
3065 */
3066 void
3067 atw_rxintr(struct atw_softc *sc)
3068 {
3069 static int rate_tbl[] = {2, 4, 11, 22, 44};
3070 struct ieee80211com *ic = &sc->sc_ic;
3071 struct ieee80211_node *ni;
3072 struct ieee80211_frame_min *wh;
3073 struct ifnet *ifp = &sc->sc_if;
3074 struct atw_rxsoft *rxs;
3075 struct mbuf *m;
3076 u_int32_t rxstat;
3077 int i, len, rate, rate0;
3078 u_int32_t rssi, ctlrssi;
3079
3080 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3081 rxs = &sc->sc_rxsoft[i];
3082
3083 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3084
3085 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3086 ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3087 rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3088
3089 if (rxstat & ATW_RXSTAT_OWN)
3090 break; /* We have processed all receive buffers. */
3091
3092 DPRINTF3(sc,
3093 ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3094 sc->sc_dev.dv_xname,
3095 rxstat, ctlrssi,
3096 le32toh(sc->sc_rxdescs[i].ar_buf1),
3097 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3098
3099 /*
3100 * Make sure the packet fits in one buffer. This should
3101 * always be the case.
3102 */
3103 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3104 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3105 printf("%s: incoming packet spilled, resetting\n",
3106 sc->sc_dev.dv_xname);
3107 (void)atw_init(ifp);
3108 return;
3109 }
3110
3111 /*
3112 * If an error occurred, update stats, clear the status
3113 * word, and leave the packet buffer in place. It will
3114 * simply be reused the next time the ring comes around.
3115 */
3116 if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3117 #define PRINTERR(bit, str) \
3118 if (rxstat & (bit)) \
3119 printf("%s: receive error: %s\n", \
3120 sc->sc_dev.dv_xname, str)
3121 ifp->if_ierrors++;
3122 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3123 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3124 #if 0
3125 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3126 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3127 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3128 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3129 #endif
3130 #undef PRINTERR
3131 atw_init_rxdesc(sc, i);
3132 continue;
3133 }
3134
3135 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3136 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3137
3138 /*
3139 * No errors; receive the packet. Note the ADM8211
3140 * includes the CRC in promiscuous mode.
3141 */
3142 len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3143
3144 /*
3145 * Allocate a new mbuf cluster. If that fails, we are
3146 * out of memory, and must drop the packet and recycle
3147 * the buffer that's already attached to this descriptor.
3148 */
3149 m = rxs->rxs_mbuf;
3150 if (atw_add_rxbuf(sc, i) != 0) {
3151 ifp->if_ierrors++;
3152 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3153 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3154 atw_init_rxdesc(sc, i);
3155 continue;
3156 }
3157
3158 ifp->if_ipackets++;
3159 m->m_pkthdr.rcvif = ifp;
3160 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3161
3162 rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3163
3164 /* The RSSI comes straight from a register in the
3165 * baseband processor. I know that for the RF3000,
3166 * the RSSI register also contains the antenna-selection
3167 * bits. Mask those off.
3168 *
3169 * TBD Treat other basebands.
3170 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3171 */
3172 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3173 rssi = ctlrssi & RF3000_RSSI_MASK;
3174 else
3175 rssi = ctlrssi;
3176
3177 #if NBPFILTER > 0
3178 /* Pass this up to any BPF listeners. */
3179 if (sc->sc_radiobpf != NULL) {
3180 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3181
3182 tap->ar_rate = rate;
3183
3184 /* TBD verify units are dB */
3185 tap->ar_antsignal = (int)rssi;
3186 if (sc->sc_opmode & ATW_NAR_PR)
3187 tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3188 else
3189 tap->ar_flags = 0;
3190
3191 if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3192 tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3193
3194 bpf_mtap2(sc->sc_radiobpf, tap,
3195 sizeof(sc->sc_rxtapu), m);
3196 }
3197 #endif /* NBPFILTER > 0 */
3198
3199 sc->sc_recv_ev.ev_count++;
3200
3201 if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3202 if (rxstat & ATW_RXSTAT_CRC16E)
3203 sc->sc_crc16e_ev.ev_count++;
3204 if (rxstat & ATW_RXSTAT_CRC32E)
3205 sc->sc_crc32e_ev.ev_count++;
3206 if (rxstat & ATW_RXSTAT_ICVE)
3207 sc->sc_icve_ev.ev_count++;
3208 if (rxstat & ATW_RXSTAT_SFDE)
3209 sc->sc_sfde_ev.ev_count++;
3210 if (rxstat & ATW_RXSTAT_SIGE)
3211 sc->sc_sige_ev.ev_count++;
3212 ifp->if_ierrors++;
3213 m_freem(m);
3214 continue;
3215 }
3216
3217 if (sc->sc_opmode & ATW_NAR_PR)
3218 m_adj(m, -IEEE80211_CRC_LEN);
3219
3220 wh = mtod(m, struct ieee80211_frame_min *);
3221 ni = ieee80211_find_rxnode(ic, wh);
3222 #if 0
3223 if (atw_hw_decrypted(sc, wh)) {
3224 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3225 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3226 }
3227 #endif
3228 ieee80211_input(ic, m, ni, (int)rssi, 0);
3229 ieee80211_free_node(ni);
3230 }
3231
3232 /* Update the receive pointer. */
3233 sc->sc_rxptr = i;
3234 }
3235
3236 /*
3237 * atw_txintr:
3238 *
3239 * Helper; handle transmit interrupts.
3240 */
3241 void
3242 atw_txintr(struct atw_softc *sc)
3243 {
3244 static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3245 struct ifnet *ifp = &sc->sc_if;
3246 struct atw_txsoft *txs;
3247 u_int32_t txstat;
3248
3249 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3250 sc->sc_dev.dv_xname, sc->sc_flags));
3251
3252 /*
3253 * Go through our Tx list and free mbufs for those
3254 * frames that have been transmitted.
3255 */
3256 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3257 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3258 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3259
3260 #ifdef ATW_DEBUG
3261 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3262 int i;
3263 printf(" txsoft %p transmit chain:\n", txs);
3264 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3265 txs->txs_ndescs - 1,
3266 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3267 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3268 printf(" descriptor %d:\n", i);
3269 printf(" at_status: 0x%08x\n",
3270 le32toh(sc->sc_txdescs[i].at_stat));
3271 printf(" at_flags: 0x%08x\n",
3272 le32toh(sc->sc_txdescs[i].at_flags));
3273 printf(" at_buf1: 0x%08x\n",
3274 le32toh(sc->sc_txdescs[i].at_buf1));
3275 printf(" at_buf2: 0x%08x\n",
3276 le32toh(sc->sc_txdescs[i].at_buf2));
3277 if (i == txs->txs_lastdesc)
3278 break;
3279 }
3280 }
3281 #endif
3282
3283 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3284 if (txstat & ATW_TXSTAT_OWN)
3285 break;
3286
3287 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3288
3289 sc->sc_txfree += txs->txs_ndescs;
3290
3291 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3292 0, txs->txs_dmamap->dm_mapsize,
3293 BUS_DMASYNC_POSTWRITE);
3294 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3295 m_freem(txs->txs_mbuf);
3296 txs->txs_mbuf = NULL;
3297
3298 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3299
3300 KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3301 sc->sc_txfree == 0));
3302 ifp->if_flags &= ~IFF_OACTIVE;
3303
3304 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3305 (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3306 bitmask_snprintf(txstat & ATW_TXSTAT_ERRMASK,
3307 ATW_TXSTAT_FMT, txstat_buf, sizeof(txstat_buf));
3308 printf("%s: txstat %s %" __PRIuBITS "\n",
3309 sc->sc_dev.dv_xname, txstat_buf,
3310 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3311 }
3312
3313 /*
3314 * Check for errors and collisions.
3315 */
3316 if (txstat & ATW_TXSTAT_TUF)
3317 sc->sc_stats.ts_tx_tuf++;
3318 if (txstat & ATW_TXSTAT_TLT)
3319 sc->sc_stats.ts_tx_tlt++;
3320 if (txstat & ATW_TXSTAT_TRT)
3321 sc->sc_stats.ts_tx_trt++;
3322 if (txstat & ATW_TXSTAT_TRO)
3323 sc->sc_stats.ts_tx_tro++;
3324 if (txstat & ATW_TXSTAT_SOFBR) {
3325 sc->sc_stats.ts_tx_sofbr++;
3326 }
3327
3328 if ((txstat & ATW_TXSTAT_ES) == 0)
3329 ifp->if_collisions +=
3330 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3331 else
3332 ifp->if_oerrors++;
3333
3334 ifp->if_opackets++;
3335 }
3336
3337 /*
3338 * If there are no more pending transmissions, cancel the watchdog
3339 * timer.
3340 */
3341 if (txs == NULL) {
3342 KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3343 sc->sc_tx_timer = 0;
3344 }
3345 }
3346
3347 /*
3348 * atw_watchdog: [ifnet interface function]
3349 *
3350 * Watchdog timer handler.
3351 */
3352 void
3353 atw_watchdog(struct ifnet *ifp)
3354 {
3355 struct atw_softc *sc = ifp->if_softc;
3356 struct ieee80211com *ic = &sc->sc_ic;
3357
3358 ifp->if_timer = 0;
3359 if (ATW_IS_ENABLED(sc) == 0)
3360 return;
3361
3362 if (sc->sc_rescan_timer) {
3363 if (--sc->sc_rescan_timer == 0)
3364 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3365 }
3366 if (sc->sc_tx_timer) {
3367 if (--sc->sc_tx_timer == 0 &&
3368 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3369 printf("%s: transmit timeout\n", ifp->if_xname);
3370 ifp->if_oerrors++;
3371 (void)atw_init(ifp);
3372 atw_start(ifp);
3373 }
3374 }
3375 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3376 ifp->if_timer = 1;
3377 ieee80211_watchdog(ic);
3378 }
3379
3380 static void
3381 atw_evcnt_detach(struct atw_softc *sc)
3382 {
3383 evcnt_detach(&sc->sc_sige_ev);
3384 evcnt_detach(&sc->sc_sfde_ev);
3385 evcnt_detach(&sc->sc_icve_ev);
3386 evcnt_detach(&sc->sc_crc32e_ev);
3387 evcnt_detach(&sc->sc_crc16e_ev);
3388 evcnt_detach(&sc->sc_recv_ev);
3389 }
3390
3391 static void
3392 atw_evcnt_attach(struct atw_softc *sc)
3393 {
3394 evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3395 NULL, sc->sc_if.if_xname, "recv");
3396 evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3397 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3398 evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3399 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3400 evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3401 &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3402 evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3403 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3404 evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3405 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3406 }
3407
3408 #ifdef ATW_DEBUG
3409 static void
3410 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3411 {
3412 struct atw_softc *sc = ifp->if_softc;
3413 struct mbuf *m;
3414 int i, noctets = 0;
3415
3416 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3417 m0->m_pkthdr.len);
3418
3419 for (m = m0; m; m = m->m_next) {
3420 if (m->m_len == 0)
3421 continue;
3422 for (i = 0; i < m->m_len; i++) {
3423 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3424 if (++noctets % 24 == 0)
3425 printf("\n");
3426 }
3427 }
3428 printf("%s%s: %d bytes emitted\n",
3429 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3430 }
3431 #endif /* ATW_DEBUG */
3432
3433 /*
3434 * atw_start: [ifnet interface function]
3435 *
3436 * Start packet transmission on the interface.
3437 */
3438 void
3439 atw_start(struct ifnet *ifp)
3440 {
3441 struct atw_softc *sc = ifp->if_softc;
3442 struct ieee80211_key *k;
3443 struct ieee80211com *ic = &sc->sc_ic;
3444 struct ieee80211_node *ni;
3445 struct ieee80211_frame_min *whm;
3446 struct ieee80211_frame *wh;
3447 struct atw_frame *hh;
3448 struct mbuf *m0, *m;
3449 struct atw_txsoft *txs, *last_txs;
3450 struct atw_txdesc *txd;
3451 int npkt, rate;
3452 bus_dmamap_t dmamap;
3453 int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3454
3455 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3456 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3457
3458 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3459 return;
3460
3461 /*
3462 * Remember the previous number of free descriptors and
3463 * the first descriptor we'll use.
3464 */
3465 ofree = sc->sc_txfree;
3466 firsttx = lasttx = sc->sc_txnext;
3467
3468 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3469 sc->sc_dev.dv_xname, ofree, firsttx));
3470
3471 /*
3472 * Loop through the send queue, setting up transmit descriptors
3473 * until we drain the queue, or use up all available transmit
3474 * descriptors.
3475 */
3476 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3477 sc->sc_txfree != 0) {
3478
3479 /*
3480 * Grab a packet off the management queue, if it
3481 * is not empty. Otherwise, from the data queue.
3482 */
3483 IF_DEQUEUE(&ic->ic_mgtq, m0);
3484 if (m0 != NULL) {
3485 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3486 m0->m_pkthdr.rcvif = NULL;
3487 } else if (ic->ic_state != IEEE80211_S_RUN)
3488 break; /* send no data until associated */
3489 else {
3490 IFQ_DEQUEUE(&ifp->if_snd, m0);
3491 if (m0 == NULL)
3492 break;
3493 #if NBPFILTER > 0
3494 if (ifp->if_bpf != NULL)
3495 bpf_mtap(ifp->if_bpf, m0);
3496 #endif /* NBPFILTER > 0 */
3497 ni = ieee80211_find_txnode(ic,
3498 mtod(m0, struct ether_header *)->ether_dhost);
3499 if (ni == NULL) {
3500 ifp->if_oerrors++;
3501 break;
3502 }
3503 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3504 ieee80211_free_node(ni);
3505 ifp->if_oerrors++;
3506 break;
3507 }
3508 }
3509
3510 rate = MAX(ieee80211_get_rate(ni), 2);
3511
3512 whm = mtod(m0, struct ieee80211_frame_min *);
3513
3514 if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3515 k = NULL;
3516 else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3517 m_freem(m0);
3518 ieee80211_free_node(ni);
3519 ifp->if_oerrors++;
3520 break;
3521 }
3522
3523 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3524 ic->ic_flags, ic->ic_fragthreshold, rate,
3525 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3526 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3527 m_freem(m0);
3528 break;
3529 }
3530
3531 /* XXX Misleading if fragmentation is enabled. Better
3532 * to fragment in software?
3533 */
3534 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3535
3536 #if NBPFILTER > 0
3537 /*
3538 * Pass the packet to any BPF listeners.
3539 */
3540 if (ic->ic_rawbpf != NULL)
3541 bpf_mtap((void *)ic->ic_rawbpf, m0);
3542
3543 if (sc->sc_radiobpf != NULL) {
3544 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3545
3546 tap->at_rate = rate;
3547
3548 bpf_mtap2(sc->sc_radiobpf, tap,
3549 sizeof(sc->sc_txtapu), m0);
3550 }
3551 #endif /* NBPFILTER > 0 */
3552
3553 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3554
3555 if (ni != NULL)
3556 ieee80211_free_node(ni);
3557
3558 if (m0 == NULL) {
3559 ifp->if_oerrors++;
3560 break;
3561 }
3562
3563 /* just to make sure. */
3564 m0 = m_pullup(m0, sizeof(struct atw_frame));
3565
3566 if (m0 == NULL) {
3567 ifp->if_oerrors++;
3568 break;
3569 }
3570
3571 hh = mtod(m0, struct atw_frame *);
3572 wh = &hh->atw_ihdr;
3573
3574 /* Copy everything we need from the 802.11 header:
3575 * Frame Control; address 1, address 3, or addresses
3576 * 3 and 4. NIC fills in BSSID, SA.
3577 */
3578 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3579 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3580 panic("%s: illegal WDS frame",
3581 sc->sc_dev.dv_xname);
3582 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3583 } else
3584 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3585
3586 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3587
3588 /* initialize remaining Tx parameters */
3589 memset(&hh->u, 0, sizeof(hh->u));
3590
3591 hh->atw_rate = rate * 5;
3592 /* XXX this could be incorrect if M_FCS. _encap should
3593 * probably strip FCS just in case it sticks around in
3594 * bridged packets.
3595 */
3596 hh->atw_service = 0x00; /* XXX guess */
3597 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3598 sizeof(struct atw_frame));
3599
3600 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3601 hh->atw_rtylmt = 3;
3602 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3603 #if 0
3604 if (do_encrypt) {
3605 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3606 hh->atw_keyid = ic->ic_def_txkey;
3607 }
3608 #endif
3609
3610 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3611 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3612 if (txs->txs_d0.d_residue)
3613 hh->atw_head_plcplen |= htole16(0x8000);
3614 if (txs->txs_dn.d_residue)
3615 hh->atw_tail_plcplen |= htole16(0x8000);
3616 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3617 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3618
3619 /* never fragment multicast frames */
3620 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3621 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3622 } else if (sc->sc_flags & ATWF_RTSCTS) {
3623 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3624 }
3625
3626 #ifdef ATW_DEBUG
3627 hh->atw_fragnum = 0;
3628
3629 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3630 printf("%s: dst = %s, rate = 0x%02x, "
3631 "service = 0x%02x, paylen = 0x%04x\n",
3632 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3633 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3634
3635 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3636 "dur1 = 0x%04x, dur2 = 0x%04x, "
3637 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3638 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3639 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3640 hh->atw_tail_dur, hh->atw_head_dur);
3641
3642 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3643 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3644 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3645 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3646
3647 printf("%s: keyid = %d\n",
3648 sc->sc_dev.dv_xname, hh->atw_keyid);
3649
3650 atw_dump_pkt(ifp, m0);
3651 }
3652 #endif /* ATW_DEBUG */
3653
3654 dmamap = txs->txs_dmamap;
3655
3656 /*
3657 * Load the DMA map. Copy and try (once) again if the packet
3658 * didn't fit in the alloted number of segments.
3659 */
3660 for (first = 1;
3661 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3662 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3663 first = 0) {
3664 MGETHDR(m, M_DONTWAIT, MT_DATA);
3665 if (m == NULL) {
3666 printf("%s: unable to allocate Tx mbuf\n",
3667 sc->sc_dev.dv_xname);
3668 break;
3669 }
3670 if (m0->m_pkthdr.len > MHLEN) {
3671 MCLGET(m, M_DONTWAIT);
3672 if ((m->m_flags & M_EXT) == 0) {
3673 printf("%s: unable to allocate Tx "
3674 "cluster\n", sc->sc_dev.dv_xname);
3675 m_freem(m);
3676 break;
3677 }
3678 }
3679 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3680 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3681 m_freem(m0);
3682 m0 = m;
3683 m = NULL;
3684 }
3685 if (error != 0) {
3686 printf("%s: unable to load Tx buffer, "
3687 "error = %d\n", sc->sc_dev.dv_xname, error);
3688 m_freem(m0);
3689 break;
3690 }
3691
3692 /*
3693 * Ensure we have enough descriptors free to describe
3694 * the packet.
3695 */
3696 if (dmamap->dm_nsegs > sc->sc_txfree) {
3697 /*
3698 * Not enough free descriptors to transmit
3699 * this packet. Unload the DMA map and
3700 * drop the packet. Notify the upper layer
3701 * that there are no more slots left.
3702 *
3703 * XXX We could allocate an mbuf and copy, but
3704 * XXX it is worth it?
3705 */
3706 bus_dmamap_unload(sc->sc_dmat, dmamap);
3707 m_freem(m0);
3708 break;
3709 }
3710
3711 /*
3712 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3713 */
3714
3715 /* Sync the DMA map. */
3716 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3717 BUS_DMASYNC_PREWRITE);
3718
3719 /* XXX arbitrary retry limit; 8 because I have seen it in
3720 * use already and maybe 0 means "no tries" !
3721 */
3722 ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3723
3724 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3725 sc->sc_dev.dv_xname, rate * 5));
3726 ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3727
3728 /*
3729 * Initialize the transmit descriptors.
3730 */
3731 for (nexttx = sc->sc_txnext, seg = 0;
3732 seg < dmamap->dm_nsegs;
3733 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3734 /*
3735 * If this is the first descriptor we're
3736 * enqueueing, don't set the OWN bit just
3737 * yet. That could cause a race condition.
3738 * We'll do it below.
3739 */
3740 txd = &sc->sc_txdescs[nexttx];
3741 txd->at_ctl = ctl |
3742 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3743
3744 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3745 txd->at_flags =
3746 htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3747 ATW_TXFLAG_TBS1_MASK)) |
3748 ((nexttx == (ATW_NTXDESC - 1))
3749 ? htole32(ATW_TXFLAG_TER) : 0);
3750 lasttx = nexttx;
3751 }
3752
3753 /* Set `first segment' and `last segment' appropriately. */
3754 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3755 htole32(ATW_TXFLAG_FS);
3756 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3757
3758 #ifdef ATW_DEBUG
3759 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3760 printf(" txsoft %p transmit chain:\n", txs);
3761 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3762 printf(" descriptor %d:\n", seg);
3763 printf(" at_ctl: 0x%08x\n",
3764 le32toh(sc->sc_txdescs[seg].at_ctl));
3765 printf(" at_flags: 0x%08x\n",
3766 le32toh(sc->sc_txdescs[seg].at_flags));
3767 printf(" at_buf1: 0x%08x\n",
3768 le32toh(sc->sc_txdescs[seg].at_buf1));
3769 printf(" at_buf2: 0x%08x\n",
3770 le32toh(sc->sc_txdescs[seg].at_buf2));
3771 if (seg == lasttx)
3772 break;
3773 }
3774 }
3775 #endif
3776
3777 /* Sync the descriptors we're using. */
3778 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3779 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3780
3781 /*
3782 * Store a pointer to the packet so we can free it later,
3783 * and remember what txdirty will be once the packet is
3784 * done.
3785 */
3786 txs->txs_mbuf = m0;
3787 txs->txs_firstdesc = sc->sc_txnext;
3788 txs->txs_lastdesc = lasttx;
3789 txs->txs_ndescs = dmamap->dm_nsegs;
3790
3791 /* Advance the tx pointer. */
3792 sc->sc_txfree -= dmamap->dm_nsegs;
3793 sc->sc_txnext = nexttx;
3794
3795 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3796 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3797
3798 last_txs = txs;
3799 }
3800
3801 if (sc->sc_txfree != ofree) {
3802 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3803 sc->sc_dev.dv_xname, lasttx, firsttx));
3804 /*
3805 * Cause a transmit interrupt to happen on the
3806 * last packet we enqueued.
3807 */
3808 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3809 ATW_CDTXSYNC(sc, lasttx, 1,
3810 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3811
3812 /*
3813 * The entire packet chain is set up. Give the
3814 * first descriptor to the chip now.
3815 */
3816 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3817 ATW_CDTXSYNC(sc, firsttx, 1,
3818 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3819
3820 /* Wake up the transmitter. */
3821 ATW_WRITE(sc, ATW_TDR, 0x1);
3822
3823 if (txs == NULL || sc->sc_txfree == 0)
3824 ifp->if_flags |= IFF_OACTIVE;
3825
3826 /* Set a watchdog timer in case the chip flakes out. */
3827 sc->sc_tx_timer = 5;
3828 ifp->if_timer = 1;
3829 }
3830 }
3831
3832 /*
3833 * atw_ioctl: [ifnet interface function]
3834 *
3835 * Handle control requests from the operator.
3836 */
3837 int
3838 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3839 {
3840 struct atw_softc *sc = ifp->if_softc;
3841 int s, error = 0;
3842
3843 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3844 if (!device_is_active(&sc->sc_dev))
3845 return ENXIO;
3846
3847 s = splnet();
3848
3849 switch (cmd) {
3850 case SIOCSIFFLAGS:
3851 if (ifp->if_flags & IFF_UP) {
3852 if (ATW_IS_ENABLED(sc)) {
3853 /*
3854 * To avoid rescanning another access point,
3855 * do not call atw_init() here. Instead,
3856 * only reflect media settings.
3857 */
3858 atw_filter_setup(sc);
3859 } else
3860 error = atw_init(ifp);
3861 } else if (ATW_IS_ENABLED(sc))
3862 atw_stop(ifp, 1);
3863 break;
3864 case SIOCADDMULTI:
3865 case SIOCDELMULTI:
3866 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3867 if (ifp->if_flags & IFF_RUNNING)
3868 atw_filter_setup(sc); /* do not rescan */
3869 error = 0;
3870 }
3871 break;
3872 default:
3873 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3874 if (error == ENETRESET || error == ERESTART) {
3875 if (is_running(ifp))
3876 error = atw_init(ifp);
3877 else
3878 error = 0;
3879 }
3880 break;
3881 }
3882
3883 /* Try to get more packets going. */
3884 if (ATW_IS_ENABLED(sc))
3885 atw_start(ifp);
3886
3887 splx(s);
3888 return (error);
3889 }
3890
3891 static int
3892 atw_media_change(struct ifnet *ifp)
3893 {
3894 int error;
3895
3896 error = ieee80211_media_change(ifp);
3897 if (error == ENETRESET) {
3898 if (is_running(ifp))
3899 error = atw_init(ifp);
3900 else
3901 error = 0;
3902 }
3903 return error;
3904 }
3905