atw.c revision 1.137 1 /* $NetBSD: atw.c,v 1.137 2008/04/08 12:07:25 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.137 2008/04/08 12:07:25 cegger Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59 #include <lib/libkern/libkern.h>
60
61 #include <machine/endian.h>
62
63 #include <uvm/uvm_extern.h>
64
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_ether.h>
69
70 #include <net80211/ieee80211_netbsd.h>
71 #include <net80211/ieee80211_var.h>
72 #include <net80211/ieee80211_radiotap.h>
73
74 #if NBPFILTER > 0
75 #include <net/bpf.h>
76 #endif
77
78 #include <sys/bus.h>
79 #include <sys/intr.h>
80
81 #include <dev/ic/atwreg.h>
82 #include <dev/ic/rf3000reg.h>
83 #include <dev/ic/si4136reg.h>
84 #include <dev/ic/atwvar.h>
85 #include <dev/ic/smc93cx6var.h>
86
87 /* XXX TBD open questions
88 *
89 *
90 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
91 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
92 * handle this for me?
93 *
94 */
95 /* device attachment
96 *
97 * print TOFS[012]
98 *
99 * device initialization
100 *
101 * clear ATW_FRCTL_MAXPSP to disable max power saving
102 * set ATW_TXBR_ALCUPDATE to enable ALC
103 * set TOFS[012]? (hope not)
104 * disable rx/tx
105 * set ATW_PAR_SWR (software reset)
106 * wait for ATW_PAR_SWR clear
107 * disable interrupts
108 * ack status register
109 * enable interrupts
110 *
111 * rx/tx initialization
112 *
113 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
114 * allocate and init descriptor rings
115 * write ATW_PAR_DSL (descriptor skip length)
116 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * write ATW_NAR_SQ for one/both transmit descriptor rings
119 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
120 *
121 * rx/tx end
122 *
123 * stop DMA
124 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
125 * flush tx w/ ATW_NAR_HF
126 *
127 * scan
128 *
129 * initialize rx/tx
130 *
131 * BSS join: (re)association response
132 *
133 * set ATW_FRCTL_AID
134 *
135 * optimizations ???
136 *
137 */
138
139 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
140
141 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
142 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
143 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
144
145 int atw_pseudo_milli = 1;
146 int atw_magic_delay1 = 100 * 1000;
147 int atw_magic_delay2 = 100 * 1000;
148 /* more magic multi-millisecond delays (units: microseconds) */
149 int atw_nar_delay = 20 * 1000;
150 int atw_magic_delay4 = 10 * 1000;
151 int atw_rf_delay1 = 10 * 1000;
152 int atw_rf_delay2 = 5 * 1000;
153 int atw_plcphd_delay = 2 * 1000;
154 int atw_bbp_io_enable_delay = 20 * 1000;
155 int atw_bbp_io_disable_delay = 2 * 1000;
156 int atw_writewep_delay = 1000;
157 int atw_beacon_len_adjust = 4;
158 int atw_dwelltime = 200;
159 int atw_xindiv2 = 0;
160
161 #ifdef ATW_DEBUG
162 int atw_debug = 0;
163
164 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
165 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
166 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
167 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
168 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
169 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
170
171 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
172 static void atw_print_regs(struct atw_softc *, const char *);
173
174 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
175 # ifdef ATW_BBPDEBUG
176 static void atw_rf3000_print(struct atw_softc *);
177 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
178 # endif /* ATW_BBPDEBUG */
179
180 # ifdef ATW_SYNDEBUG
181 static void atw_si4126_print(struct atw_softc *);
182 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
183 # endif /* ATW_SYNDEBUG */
184
185 #else
186 #define ATW_DPRINTF(x)
187 #define ATW_DPRINTF2(x)
188 #define ATW_DPRINTF3(x)
189 #define DPRINTF(sc, x) /* nothing */
190 #define DPRINTF2(sc, x) /* nothing */
191 #define DPRINTF3(sc, x) /* nothing */
192 #endif
193
194 /* ifnet methods */
195 int atw_init(struct ifnet *);
196 int atw_ioctl(struct ifnet *, u_long, void *);
197 void atw_start(struct ifnet *);
198 void atw_stop(struct ifnet *, int);
199 void atw_watchdog(struct ifnet *);
200
201 /* Device attachment */
202 void atw_attach(struct atw_softc *);
203 int atw_detach(struct atw_softc *);
204 static void atw_evcnt_attach(struct atw_softc *);
205 static void atw_evcnt_detach(struct atw_softc *);
206
207 /* Rx/Tx process */
208 int atw_add_rxbuf(struct atw_softc *, int);
209 void atw_idle(struct atw_softc *, u_int32_t);
210 void atw_rxdrain(struct atw_softc *);
211 void atw_txdrain(struct atw_softc *);
212
213 /* Device (de)activation and power state */
214 void atw_disable(struct atw_softc *);
215 int atw_enable(struct atw_softc *);
216 void atw_reset(struct atw_softc *);
217
218 /* Interrupt handlers */
219 void atw_linkintr(struct atw_softc *, u_int32_t);
220 void atw_rxintr(struct atw_softc *);
221 void atw_txintr(struct atw_softc *);
222
223 /* 802.11 state machine */
224 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
225 static void atw_next_scan(void *);
226 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
227 struct ieee80211_node *, int, int, u_int32_t);
228 static int atw_tune(struct atw_softc *);
229
230 /* Device initialization */
231 static void atw_bbp_io_init(struct atw_softc *);
232 static void atw_cfp_init(struct atw_softc *);
233 static void atw_cmdr_init(struct atw_softc *);
234 static void atw_ifs_init(struct atw_softc *);
235 static void atw_nar_init(struct atw_softc *);
236 static void atw_response_times_init(struct atw_softc *);
237 static void atw_rf_reset(struct atw_softc *);
238 static void atw_test1_init(struct atw_softc *);
239 static void atw_tofs0_init(struct atw_softc *);
240 static void atw_tofs2_init(struct atw_softc *);
241 static void atw_txlmt_init(struct atw_softc *);
242 static void atw_wcsr_init(struct atw_softc *);
243
244 /* Key management */
245 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
246 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
247 const u_int8_t[IEEE80211_ADDR_LEN]);
248 static void atw_key_update_begin(struct ieee80211com *);
249 static void atw_key_update_end(struct ieee80211com *);
250
251 /* RAM/ROM utilities */
252 static void atw_clear_sram(struct atw_softc *);
253 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
254 static int atw_read_srom(struct atw_softc *);
255
256 /* BSS setup */
257 static void atw_predict_beacon(struct atw_softc *);
258 static void atw_start_beacon(struct atw_softc *, int);
259 static void atw_write_bssid(struct atw_softc *);
260 static void atw_write_ssid(struct atw_softc *);
261 static void atw_write_sup_rates(struct atw_softc *);
262 static void atw_write_wep(struct atw_softc *);
263
264 /* Media */
265 static int atw_media_change(struct ifnet *);
266
267 static void atw_filter_setup(struct atw_softc *);
268
269 /* 802.11 utilities */
270 static uint64_t atw_get_tsft(struct atw_softc *);
271 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
272 uint32_t);
273 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
274 static void atw_node_free(struct ieee80211_node *);
275
276 /*
277 * Tuner/transceiver/modem
278 */
279 static void atw_bbp_io_enable(struct atw_softc *, int);
280
281 /* RFMD RF3000 Baseband Processor */
282 static int atw_rf3000_init(struct atw_softc *);
283 static int atw_rf3000_tune(struct atw_softc *, u_int);
284 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
285
286 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
287 static void atw_si4126_tune(struct atw_softc *, u_int);
288 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
289
290 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
291 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
292
293 const char *atw_tx_state[] = {
294 "STOPPED",
295 "RUNNING - read descriptor",
296 "RUNNING - transmitting",
297 "RUNNING - filling fifo", /* XXX */
298 "SUSPENDED",
299 "RUNNING -- write descriptor",
300 "RUNNING -- write last descriptor",
301 "RUNNING - fifo full"
302 };
303
304 const char *atw_rx_state[] = {
305 "STOPPED",
306 "RUNNING - read descriptor",
307 "RUNNING - check this packet, pre-fetch next",
308 "RUNNING - wait for reception",
309 "SUSPENDED",
310 "RUNNING - write descriptor",
311 "RUNNING - flush fifo",
312 "RUNNING - fifo drain"
313 };
314
315 static inline int
316 is_running(struct ifnet *ifp)
317 {
318 return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
319 }
320
321 int
322 atw_activate(device_t self, enum devact act)
323 {
324 struct atw_softc *sc = device_private(self);
325 int rv = 0, s;
326
327 s = splnet();
328 switch (act) {
329 case DVACT_ACTIVATE:
330 rv = EOPNOTSUPP;
331 break;
332
333 case DVACT_DEACTIVATE:
334 if_deactivate(&sc->sc_if);
335 break;
336 }
337 splx(s);
338 return rv;
339 }
340
341 /*
342 * atw_enable:
343 *
344 * Enable the ADM8211 chip.
345 */
346 int
347 atw_enable(struct atw_softc *sc)
348 {
349
350 if (ATW_IS_ENABLED(sc) == 0) {
351 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
352 aprint_error_dev(&sc->sc_dev, "device enable failed\n");
353 return (EIO);
354 }
355 sc->sc_flags |= ATWF_ENABLED;
356 /* Power may have been removed, and WEP keys thus
357 * reset.
358 */
359 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
360 }
361 return (0);
362 }
363
364 /*
365 * atw_disable:
366 *
367 * Disable the ADM8211 chip.
368 */
369 void
370 atw_disable(struct atw_softc *sc)
371 {
372 if (!ATW_IS_ENABLED(sc))
373 return;
374 if (sc->sc_disable != NULL)
375 (*sc->sc_disable)(sc);
376 sc->sc_flags &= ~ATWF_ENABLED;
377 }
378
379 /* Returns -1 on failure. */
380 static int
381 atw_read_srom(struct atw_softc *sc)
382 {
383 struct seeprom_descriptor sd;
384 uint32_t test0, fail_bits;
385
386 (void)memset(&sd, 0, sizeof(sd));
387
388 test0 = ATW_READ(sc, ATW_TEST0);
389
390 switch (sc->sc_rev) {
391 case ATW_REVISION_BA:
392 case ATW_REVISION_CA:
393 fail_bits = ATW_TEST0_EPNE;
394 break;
395 default:
396 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
397 break;
398 }
399 if ((test0 & fail_bits) != 0) {
400 aprint_error_dev(&sc->sc_dev, "bad or missing/bad SROM\n");
401 return -1;
402 }
403
404 switch (test0 & ATW_TEST0_EPTYP_MASK) {
405 case ATW_TEST0_EPTYP_93c66:
406 ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(&sc->sc_dev)));
407 sc->sc_sromsz = 512;
408 sd.sd_chip = C56_66;
409 break;
410 case ATW_TEST0_EPTYP_93c46:
411 ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(&sc->sc_dev)));
412 sc->sc_sromsz = 128;
413 sd.sd_chip = C46;
414 break;
415 default:
416 printf("%s: unknown SROM type %" __PRIuBITS "\n",
417 device_xname(&sc->sc_dev),
418 __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
419 return -1;
420 }
421
422 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
423
424 if (sc->sc_srom == NULL) {
425 aprint_error_dev(&sc->sc_dev, "unable to allocate SROM buffer\n");
426 return -1;
427 }
428
429 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
430
431 /* ADM8211 has a single 32-bit register for controlling the
432 * 93cx6 SROM. Bit SRS enables the serial port. There is no
433 * "ready" bit. The ADM8211 input/output sense is the reverse
434 * of read_seeprom's.
435 */
436 sd.sd_tag = sc->sc_st;
437 sd.sd_bsh = sc->sc_sh;
438 sd.sd_regsize = 4;
439 sd.sd_control_offset = ATW_SPR;
440 sd.sd_status_offset = ATW_SPR;
441 sd.sd_dataout_offset = ATW_SPR;
442 sd.sd_CK = ATW_SPR_SCLK;
443 sd.sd_CS = ATW_SPR_SCS;
444 sd.sd_DI = ATW_SPR_SDO;
445 sd.sd_DO = ATW_SPR_SDI;
446 sd.sd_MS = ATW_SPR_SRS;
447 sd.sd_RDY = 0;
448
449 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
450 aprint_error_dev(&sc->sc_dev, "could not read SROM\n");
451 free(sc->sc_srom, M_DEVBUF);
452 return -1;
453 }
454 #ifdef ATW_DEBUG
455 {
456 int i;
457 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
458 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
459 if (((i % 8) == 0) && (i != 0)) {
460 ATW_DPRINTF(("\n\t"));
461 }
462 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
463 }
464 ATW_DPRINTF(("\n"));
465 }
466 #endif /* ATW_DEBUG */
467 return 0;
468 }
469
470 #ifdef ATW_DEBUG
471 static void
472 atw_print_regs(struct atw_softc *sc, const char *where)
473 {
474 #define PRINTREG(sc, reg) \
475 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
476 device_xname(&sc->sc_dev), reg, ATW_READ(sc, reg)))
477
478 ATW_DPRINTF2(("%s: %s\n", device_xname(&sc->sc_dev), where));
479
480 PRINTREG(sc, ATW_PAR);
481 PRINTREG(sc, ATW_FRCTL);
482 PRINTREG(sc, ATW_TDR);
483 PRINTREG(sc, ATW_WTDP);
484 PRINTREG(sc, ATW_RDR);
485 PRINTREG(sc, ATW_WRDP);
486 PRINTREG(sc, ATW_RDB);
487 PRINTREG(sc, ATW_CSR3A);
488 PRINTREG(sc, ATW_TDBD);
489 PRINTREG(sc, ATW_TDBP);
490 PRINTREG(sc, ATW_STSR);
491 PRINTREG(sc, ATW_CSR5A);
492 PRINTREG(sc, ATW_NAR);
493 PRINTREG(sc, ATW_CSR6A);
494 PRINTREG(sc, ATW_IER);
495 PRINTREG(sc, ATW_CSR7A);
496 PRINTREG(sc, ATW_LPC);
497 PRINTREG(sc, ATW_TEST1);
498 PRINTREG(sc, ATW_SPR);
499 PRINTREG(sc, ATW_TEST0);
500 PRINTREG(sc, ATW_WCSR);
501 PRINTREG(sc, ATW_WPDR);
502 PRINTREG(sc, ATW_GPTMR);
503 PRINTREG(sc, ATW_GPIO);
504 PRINTREG(sc, ATW_BBPCTL);
505 PRINTREG(sc, ATW_SYNCTL);
506 PRINTREG(sc, ATW_PLCPHD);
507 PRINTREG(sc, ATW_MMIWADDR);
508 PRINTREG(sc, ATW_MMIRADDR1);
509 PRINTREG(sc, ATW_MMIRADDR2);
510 PRINTREG(sc, ATW_TXBR);
511 PRINTREG(sc, ATW_CSR15A);
512 PRINTREG(sc, ATW_ALCSTAT);
513 PRINTREG(sc, ATW_TOFS2);
514 PRINTREG(sc, ATW_CMDR);
515 PRINTREG(sc, ATW_PCIC);
516 PRINTREG(sc, ATW_PMCSR);
517 PRINTREG(sc, ATW_PAR0);
518 PRINTREG(sc, ATW_PAR1);
519 PRINTREG(sc, ATW_MAR0);
520 PRINTREG(sc, ATW_MAR1);
521 PRINTREG(sc, ATW_ATIMDA0);
522 PRINTREG(sc, ATW_ABDA1);
523 PRINTREG(sc, ATW_BSSID0);
524 PRINTREG(sc, ATW_TXLMT);
525 PRINTREG(sc, ATW_MIBCNT);
526 PRINTREG(sc, ATW_BCNT);
527 PRINTREG(sc, ATW_TSFTH);
528 PRINTREG(sc, ATW_TSC);
529 PRINTREG(sc, ATW_SYNRF);
530 PRINTREG(sc, ATW_BPLI);
531 PRINTREG(sc, ATW_CAP0);
532 PRINTREG(sc, ATW_CAP1);
533 PRINTREG(sc, ATW_RMD);
534 PRINTREG(sc, ATW_CFPP);
535 PRINTREG(sc, ATW_TOFS0);
536 PRINTREG(sc, ATW_TOFS1);
537 PRINTREG(sc, ATW_IFST);
538 PRINTREG(sc, ATW_RSPT);
539 PRINTREG(sc, ATW_TSFTL);
540 PRINTREG(sc, ATW_WEPCTL);
541 PRINTREG(sc, ATW_WESK);
542 PRINTREG(sc, ATW_WEPCNT);
543 PRINTREG(sc, ATW_MACTEST);
544 PRINTREG(sc, ATW_FER);
545 PRINTREG(sc, ATW_FEMR);
546 PRINTREG(sc, ATW_FPSR);
547 PRINTREG(sc, ATW_FFER);
548 #undef PRINTREG
549 }
550 #endif /* ATW_DEBUG */
551
552 /*
553 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
554 */
555 void
556 atw_attach(struct atw_softc *sc)
557 {
558 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
559 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
560 };
561 struct ieee80211com *ic = &sc->sc_ic;
562 struct ifnet *ifp = &sc->sc_if;
563 int country_code, error, i, nrate, srom_major;
564 u_int32_t reg;
565 static const char *type_strings[] = {"Intersil (not supported)",
566 "RFMD", "Marvel (not supported)"};
567
568 sc->sc_txth = atw_txthresh_tab_lo;
569
570 SIMPLEQ_INIT(&sc->sc_txfreeq);
571 SIMPLEQ_INIT(&sc->sc_txdirtyq);
572
573 #ifdef ATW_DEBUG
574 atw_print_regs(sc, "atw_attach");
575 #endif /* ATW_DEBUG */
576
577 /*
578 * Allocate the control data structures, and create and load the
579 * DMA map for it.
580 */
581 if ((error = bus_dmamem_alloc(sc->sc_dmat,
582 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
583 1, &sc->sc_cdnseg, 0)) != 0) {
584 aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
585 error);
586 goto fail_0;
587 }
588
589 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
590 sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
591 BUS_DMA_COHERENT)) != 0) {
592 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
593 error);
594 goto fail_1;
595 }
596
597 if ((error = bus_dmamap_create(sc->sc_dmat,
598 sizeof(struct atw_control_data), 1,
599 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
600 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
601 "error = %d\n", error);
602 goto fail_2;
603 }
604
605 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
606 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
607 0)) != 0) {
608 aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
609 error);
610 goto fail_3;
611 }
612
613 /*
614 * Create the transmit buffer DMA maps.
615 */
616 sc->sc_ntxsegs = ATW_NTXSEGS;
617 for (i = 0; i < ATW_TXQUEUELEN; i++) {
618 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
619 sc->sc_ntxsegs, MCLBYTES, 0, 0,
620 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
621 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
622 "error = %d\n", i, error);
623 goto fail_4;
624 }
625 }
626
627 /*
628 * Create the receive buffer DMA maps.
629 */
630 for (i = 0; i < ATW_NRXDESC; i++) {
631 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
632 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
633 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
634 "error = %d\n", i, error);
635 goto fail_5;
636 }
637 }
638 for (i = 0; i < ATW_NRXDESC; i++) {
639 sc->sc_rxsoft[i].rxs_mbuf = NULL;
640 }
641
642 switch (sc->sc_rev) {
643 case ATW_REVISION_AB:
644 case ATW_REVISION_AF:
645 sc->sc_sramlen = ATW_SRAM_A_SIZE;
646 break;
647 case ATW_REVISION_BA:
648 case ATW_REVISION_CA:
649 sc->sc_sramlen = ATW_SRAM_B_SIZE;
650 break;
651 }
652
653 /* Reset the chip to a known state. */
654 atw_reset(sc);
655
656 if (atw_read_srom(sc) == -1)
657 return;
658
659 sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
660 ATW_SR_RFTYPE_MASK);
661
662 sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
663 ATW_SR_BBPTYPE_MASK);
664
665 if (sc->sc_rftype >= __arraycount(type_strings)) {
666 aprint_error_dev(&sc->sc_dev, "unknown RF\n");
667 return;
668 }
669 if (sc->sc_bbptype >= __arraycount(type_strings)) {
670 aprint_error_dev(&sc->sc_dev, "unknown BBP\n");
671 return;
672 }
673
674 printf("%s: %s RF, %s BBP", device_xname(&sc->sc_dev),
675 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
676
677 /* XXX There exists a Linux driver which seems to use RFType = 0 for
678 * MARVEL. My bug, or theirs?
679 */
680
681 reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
682
683 switch (sc->sc_rftype) {
684 case ATW_RFTYPE_INTERSIL:
685 reg |= ATW_SYNCTL_CS1;
686 break;
687 case ATW_RFTYPE_RFMD:
688 reg |= ATW_SYNCTL_CS0;
689 break;
690 case ATW_RFTYPE_MARVEL:
691 break;
692 }
693
694 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
695 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
696
697 reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
698
699 switch (sc->sc_bbptype) {
700 case ATW_BBPTYPE_INTERSIL:
701 reg |= ATW_BBPCTL_TWI;
702 break;
703 case ATW_BBPTYPE_RFMD:
704 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
705 ATW_BBPCTL_CCA_ACTLO;
706 break;
707 case ATW_BBPTYPE_MARVEL:
708 break;
709 case ATW_C_BBPTYPE_RFMD:
710 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
711 device_xname(&sc->sc_dev));
712 break;
713 }
714
715 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
716 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
717
718 /*
719 * From this point forward, the attachment cannot fail. A failure
720 * before this point releases all resources that may have been
721 * allocated.
722 */
723 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
724
725 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
726 htole16(sc->sc_srom[ATW_SR_MAC00]),
727 htole16(sc->sc_srom[ATW_SR_MAC01]),
728 htole16(sc->sc_srom[ATW_SR_MAC10])));
729
730 srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
731 ATW_SR_MAJOR_MASK);
732
733 if (srom_major < 2)
734 sc->sc_rf3000_options1 = 0;
735 else if (sc->sc_rev == ATW_REVISION_BA) {
736 sc->sc_rf3000_options1 =
737 __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
738 ATW_SR_CR28_MASK);
739 } else
740 sc->sc_rf3000_options1 = 0;
741
742 sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
743 ATW_SR_CR29_MASK);
744
745 country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
746 ATW_SR_CTRY_MASK);
747
748 #define ADD_CHANNEL(_ic, _chan) do { \
749 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
750 _ic->ic_channels[_chan].ic_freq = \
751 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
752 } while (0)
753
754 /* Find available channels */
755 switch (country_code) {
756 case COUNTRY_MMK2: /* 1-14 */
757 ADD_CHANNEL(ic, 14);
758 /*FALLTHROUGH*/
759 case COUNTRY_ETSI: /* 1-13 */
760 for (i = 1; i <= 13; i++)
761 ADD_CHANNEL(ic, i);
762 break;
763 case COUNTRY_FCC: /* 1-11 */
764 case COUNTRY_IC: /* 1-11 */
765 for (i = 1; i <= 11; i++)
766 ADD_CHANNEL(ic, i);
767 break;
768 case COUNTRY_MMK: /* 14 */
769 ADD_CHANNEL(ic, 14);
770 break;
771 case COUNTRY_FRANCE: /* 10-13 */
772 for (i = 10; i <= 13; i++)
773 ADD_CHANNEL(ic, i);
774 break;
775 default: /* assume channels 10-11 */
776 case COUNTRY_SPAIN: /* 10-11 */
777 for (i = 10; i <= 11; i++)
778 ADD_CHANNEL(ic, i);
779 break;
780 }
781
782 /* Read the MAC address. */
783 reg = ATW_READ(sc, ATW_PAR0);
784 ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
785 ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
786 ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
787 ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
788 reg = ATW_READ(sc, ATW_PAR1);
789 ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
790 ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
791
792 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
793 printf(" could not get mac address, attach failed\n");
794 return;
795 }
796
797 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
798
799 memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
800 ifp->if_softc = sc;
801 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
802 IFF_NOTRAILERS;
803 ifp->if_ioctl = atw_ioctl;
804 ifp->if_start = atw_start;
805 ifp->if_watchdog = atw_watchdog;
806 ifp->if_init = atw_init;
807 ifp->if_stop = atw_stop;
808 IFQ_SET_READY(&ifp->if_snd);
809
810 ic->ic_ifp = ifp;
811 ic->ic_phytype = IEEE80211_T_DS;
812 ic->ic_opmode = IEEE80211_M_STA;
813 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
814 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
815
816 nrate = 0;
817 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
818 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
819 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
820 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
821 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
822
823 /*
824 * Call MI attach routines.
825 */
826
827 if_attach(ifp);
828 ieee80211_ifattach(ic);
829
830 atw_evcnt_attach(sc);
831
832 sc->sc_newstate = ic->ic_newstate;
833 ic->ic_newstate = atw_newstate;
834
835 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
836 ic->ic_recv_mgmt = atw_recv_mgmt;
837
838 sc->sc_node_free = ic->ic_node_free;
839 ic->ic_node_free = atw_node_free;
840
841 sc->sc_node_alloc = ic->ic_node_alloc;
842 ic->ic_node_alloc = atw_node_alloc;
843
844 ic->ic_crypto.cs_key_delete = atw_key_delete;
845 ic->ic_crypto.cs_key_set = atw_key_set;
846 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
847 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
848
849 /* possibly we should fill in our own sc_send_prresp, since
850 * the ADM8211 is probably sending probe responses in ad hoc
851 * mode.
852 */
853
854 /* complete initialization */
855 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
856 callout_init(&sc->sc_scan_ch, 0);
857
858 #if NBPFILTER > 0
859 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
860 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
861 #endif
862
863 if (!pmf_device_register1(&sc->sc_dev, NULL, NULL, atw_shutdown)) {
864 aprint_error_dev(&sc->sc_dev,
865 "couldn't establish power handler\n");
866 } else
867 pmf_class_network_register(&sc->sc_dev, &sc->sc_if);
868
869 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
870 sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
871 sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
872
873 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
874 sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
875 sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
876
877 ieee80211_announce(ic);
878 return;
879
880 /*
881 * Free any resources we've allocated during the failed attach
882 * attempt. Do this in reverse order and fall through.
883 */
884 fail_5:
885 for (i = 0; i < ATW_NRXDESC; i++) {
886 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
887 continue;
888 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
889 }
890 fail_4:
891 for (i = 0; i < ATW_TXQUEUELEN; i++) {
892 if (sc->sc_txsoft[i].txs_dmamap == NULL)
893 continue;
894 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
895 }
896 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
897 fail_3:
898 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
899 fail_2:
900 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
901 sizeof(struct atw_control_data));
902 fail_1:
903 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
904 fail_0:
905 return;
906 }
907
908 static struct ieee80211_node *
909 atw_node_alloc(struct ieee80211_node_table *nt)
910 {
911 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
912 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
913
914 DPRINTF(sc, ("%s: alloc node %p\n", device_xname(&sc->sc_dev), ni));
915 return ni;
916 }
917
918 static void
919 atw_node_free(struct ieee80211_node *ni)
920 {
921 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
922
923 DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(&sc->sc_dev), ni,
924 ether_sprintf(ni->ni_bssid)));
925 (*sc->sc_node_free)(ni);
926 }
927
928
929 static void
930 atw_test1_reset(struct atw_softc *sc)
931 {
932 switch (sc->sc_rev) {
933 case ATW_REVISION_BA:
934 if (1 /* XXX condition on transceiver type */) {
935 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
936 }
937 break;
938 case ATW_REVISION_CA:
939 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
940 break;
941 default:
942 break;
943 }
944 }
945
946 /*
947 * atw_reset:
948 *
949 * Perform a soft reset on the ADM8211.
950 */
951 void
952 atw_reset(struct atw_softc *sc)
953 {
954 int i;
955 uint32_t lpc;
956
957 ATW_WRITE(sc, ATW_NAR, 0x0);
958 DELAY(atw_nar_delay);
959
960 /* Reference driver has a cryptic remark indicating that this might
961 * power-on the chip. I know that it turns off power-saving....
962 */
963 ATW_WRITE(sc, ATW_FRCTL, 0x0);
964
965 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
966
967 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
968 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
969 break;
970 DELAY(atw_pseudo_milli);
971 }
972
973 /* ... and then pause 100ms longer for good measure. */
974 DELAY(atw_magic_delay1);
975
976 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(&sc->sc_dev), i));
977
978 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
979 aprint_error_dev(&sc->sc_dev, "reset failed to complete\n");
980
981 /*
982 * Initialize the PCI Access Register.
983 */
984 sc->sc_busmode = ATW_PAR_PBL_8DW;
985
986 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
987 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(&sc->sc_dev),
988 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
989
990 atw_test1_reset(sc);
991
992 /* Turn off maximum power saving, etc. */
993 ATW_WRITE(sc, ATW_FRCTL, 0x0);
994
995 DELAY(atw_magic_delay2);
996
997 /* Recall EEPROM. */
998 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
999
1000 DELAY(atw_magic_delay4);
1001
1002 lpc = ATW_READ(sc, ATW_LPC);
1003
1004 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1005
1006 /* A reset seems to affect the SRAM contents, so put them into
1007 * a known state.
1008 */
1009 atw_clear_sram(sc);
1010
1011 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1012 }
1013
1014 static void
1015 atw_clear_sram(struct atw_softc *sc)
1016 {
1017 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1018 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1019 /* XXX not for revision 0x20. */
1020 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1021 }
1022
1023 /* TBD atw_init
1024 *
1025 * set MAC based on ic->ic_bss->myaddr
1026 * write WEP keys
1027 * set TX rate
1028 */
1029
1030 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1031 * without receiving a beacon with the preferred BSSID & SSID.
1032 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1033 */
1034 static void
1035 atw_wcsr_init(struct atw_softc *sc)
1036 {
1037 uint32_t wcsr;
1038
1039 wcsr = ATW_READ(sc, ATW_WCSR);
1040 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1041 wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1042 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1043
1044 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1045 device_xname(&sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1046 }
1047
1048 /* Turn off power management. Set Rx store-and-forward mode. */
1049 static void
1050 atw_cmdr_init(struct atw_softc *sc)
1051 {
1052 uint32_t cmdr;
1053 cmdr = ATW_READ(sc, ATW_CMDR);
1054 cmdr &= ~ATW_CMDR_APM;
1055 cmdr |= ATW_CMDR_RTE;
1056 cmdr &= ~ATW_CMDR_DRT_MASK;
1057 cmdr |= ATW_CMDR_DRT_SF;
1058
1059 ATW_WRITE(sc, ATW_CMDR, cmdr);
1060 }
1061
1062 static void
1063 atw_tofs2_init(struct atw_softc *sc)
1064 {
1065 uint32_t tofs2;
1066 /* XXX this magic can probably be figured out from the RFMD docs */
1067 #ifndef ATW_REFSLAVE
1068 tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1069 __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1070 __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1071 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1072 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1073 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1074 __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1075 __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1076 #else
1077 /* XXX new magic from reference driver source */
1078 tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1079 __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1080 __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */
1081 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1082 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1083 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1084 __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */
1085 __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */
1086 #endif
1087 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1088 }
1089
1090 static void
1091 atw_nar_init(struct atw_softc *sc)
1092 {
1093 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1094 }
1095
1096 static void
1097 atw_txlmt_init(struct atw_softc *sc)
1098 {
1099 ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1100 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1101 }
1102
1103 static void
1104 atw_test1_init(struct atw_softc *sc)
1105 {
1106 uint32_t test1;
1107
1108 test1 = ATW_READ(sc, ATW_TEST1);
1109 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1110 /* XXX magic 0x1 */
1111 test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1112 ATW_WRITE(sc, ATW_TEST1, test1);
1113 }
1114
1115 static void
1116 atw_rf_reset(struct atw_softc *sc)
1117 {
1118 /* XXX this resets an Intersil RF front-end? */
1119 /* TBD condition on Intersil RFType? */
1120 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1121 DELAY(atw_rf_delay1);
1122 ATW_WRITE(sc, ATW_SYNRF, 0);
1123 DELAY(atw_rf_delay2);
1124 }
1125
1126 /* Set 16 TU max duration for the contention-free period (CFP). */
1127 static void
1128 atw_cfp_init(struct atw_softc *sc)
1129 {
1130 uint32_t cfpp;
1131
1132 cfpp = ATW_READ(sc, ATW_CFPP);
1133 cfpp &= ~ATW_CFPP_CFPMD;
1134 cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1135 ATW_WRITE(sc, ATW_CFPP, cfpp);
1136 }
1137
1138 static void
1139 atw_tofs0_init(struct atw_softc *sc)
1140 {
1141 /* XXX I guess that the Cardbus clock is 22 MHz?
1142 * I am assuming that the role of ATW_TOFS0_USCNT is
1143 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1144 * very clear on this point. It says in the datasheet that it is
1145 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1146 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1147 * these values. These values are also the power-on default.
1148 */
1149 ATW_WRITE(sc, ATW_TOFS0,
1150 __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1151 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1152 }
1153
1154 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1155 static void
1156 atw_ifs_init(struct atw_softc *sc)
1157 {
1158 uint32_t ifst;
1159 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1160 * Go figure.
1161 */
1162 ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1163 __SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1164 ATW_IFST_SIFS_MASK) |
1165 __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1166 __SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1167
1168 ATW_WRITE(sc, ATW_IFST, ifst);
1169 }
1170
1171 static void
1172 atw_response_times_init(struct atw_softc *sc)
1173 {
1174 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1175 * indicate that the MAC expects at least SIFS + MIRT microseconds
1176 * to pass after it transmits a frame that requires a response;
1177 * it waits at most SIFS + MART microseconds for the response.
1178 * Surely this is not the ACK timeout?
1179 */
1180 ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1181 __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1182 }
1183
1184 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1185 * engines read and write baseband registers after Rx and before
1186 * Tx, respectively.
1187 */
1188 static void
1189 atw_bbp_io_init(struct atw_softc *sc)
1190 {
1191 uint32_t mmiraddr2;
1192
1193 /* XXX The reference driver does this, but is it *really*
1194 * necessary?
1195 */
1196 switch (sc->sc_rev) {
1197 case ATW_REVISION_AB:
1198 case ATW_REVISION_AF:
1199 mmiraddr2 = 0x0;
1200 break;
1201 default:
1202 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1203 mmiraddr2 &=
1204 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1205 break;
1206 }
1207
1208 switch (sc->sc_bbptype) {
1209 case ATW_BBPTYPE_INTERSIL:
1210 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1211 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1212 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1213 break;
1214 case ATW_BBPTYPE_MARVEL:
1215 /* TBD find out the Marvel settings. */
1216 break;
1217 case ATW_BBPTYPE_RFMD:
1218 default:
1219 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1220 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1221 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1222 break;
1223 }
1224 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1225 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1226 }
1227
1228 /*
1229 * atw_init: [ ifnet interface function ]
1230 *
1231 * Initialize the interface. Must be called at splnet().
1232 */
1233 int
1234 atw_init(struct ifnet *ifp)
1235 {
1236 struct atw_softc *sc = ifp->if_softc;
1237 struct ieee80211com *ic = &sc->sc_ic;
1238 struct atw_txsoft *txs;
1239 struct atw_rxsoft *rxs;
1240 int i, error = 0;
1241
1242 if ((error = atw_enable(sc)) != 0)
1243 goto out;
1244
1245 /*
1246 * Cancel any pending I/O. This also resets.
1247 */
1248 atw_stop(ifp, 0);
1249
1250 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1251 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1252 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1253
1254 atw_wcsr_init(sc);
1255
1256 atw_cmdr_init(sc);
1257
1258 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1259 *
1260 * XXX Set transmit power for ATIM, RTS, Beacon.
1261 */
1262 ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1263 __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1264
1265 atw_tofs2_init(sc);
1266
1267 atw_nar_init(sc);
1268
1269 atw_txlmt_init(sc);
1270
1271 atw_test1_init(sc);
1272
1273 atw_rf_reset(sc);
1274
1275 atw_cfp_init(sc);
1276
1277 atw_tofs0_init(sc);
1278
1279 atw_ifs_init(sc);
1280
1281 /* XXX Fall asleep after one second of inactivity.
1282 * XXX A frame may only dribble in for 65536us.
1283 */
1284 ATW_WRITE(sc, ATW_RMD,
1285 __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1286
1287 atw_response_times_init(sc);
1288
1289 atw_bbp_io_init(sc);
1290
1291 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1292
1293 if ((error = atw_rf3000_init(sc)) != 0)
1294 goto out;
1295
1296 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1297 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(&sc->sc_dev),
1298 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1299
1300 /*
1301 * Initialize the transmit descriptor ring.
1302 */
1303 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1304 for (i = 0; i < ATW_NTXDESC; i++) {
1305 sc->sc_txdescs[i].at_ctl = 0;
1306 /* no transmit chaining */
1307 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1308 sc->sc_txdescs[i].at_buf2 =
1309 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1310 }
1311 /* use ring mode */
1312 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1313 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1314 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1315 sc->sc_txfree = ATW_NTXDESC;
1316 sc->sc_txnext = 0;
1317
1318 /*
1319 * Initialize the transmit job descriptors.
1320 */
1321 SIMPLEQ_INIT(&sc->sc_txfreeq);
1322 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1323 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1324 txs = &sc->sc_txsoft[i];
1325 txs->txs_mbuf = NULL;
1326 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1327 }
1328
1329 /*
1330 * Initialize the receive descriptor and receive job
1331 * descriptor rings.
1332 */
1333 for (i = 0; i < ATW_NRXDESC; i++) {
1334 rxs = &sc->sc_rxsoft[i];
1335 if (rxs->rxs_mbuf == NULL) {
1336 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1337 aprint_error_dev(&sc->sc_dev, "unable to allocate or map rx "
1338 "buffer %d, error = %d\n",
1339 i, error);
1340 /*
1341 * XXX Should attempt to run with fewer receive
1342 * XXX buffers instead of just failing.
1343 */
1344 atw_rxdrain(sc);
1345 goto out;
1346 }
1347 } else
1348 atw_init_rxdesc(sc, i);
1349 }
1350 sc->sc_rxptr = 0;
1351
1352 /*
1353 * Initialize the interrupt mask and enable interrupts.
1354 */
1355 /* normal interrupts */
1356 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1357 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1358
1359 /* abnormal interrupts */
1360 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1361 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1362 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1363
1364 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1365 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1366 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1367 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1368 ATW_INTR_TRT;
1369
1370 sc->sc_linkint_mask &= sc->sc_inten;
1371 sc->sc_rxint_mask &= sc->sc_inten;
1372 sc->sc_txint_mask &= sc->sc_inten;
1373
1374 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1375 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1376
1377 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1378 device_xname(&sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1379
1380 /*
1381 * Give the transmit and receive rings to the ADM8211.
1382 */
1383 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1384 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1385
1386 sc->sc_txthresh = 0;
1387 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1388 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1389
1390 /* common 802.11 configuration */
1391 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1392 switch (ic->ic_opmode) {
1393 case IEEE80211_M_STA:
1394 break;
1395 case IEEE80211_M_AHDEMO: /* XXX */
1396 case IEEE80211_M_IBSS:
1397 ic->ic_flags |= IEEE80211_F_IBSSON;
1398 /*FALLTHROUGH*/
1399 case IEEE80211_M_HOSTAP: /* XXX */
1400 break;
1401 case IEEE80211_M_MONITOR: /* XXX */
1402 break;
1403 }
1404
1405 switch (ic->ic_opmode) {
1406 case IEEE80211_M_AHDEMO:
1407 case IEEE80211_M_HOSTAP:
1408 #ifndef IEEE80211_NO_HOSTAP
1409 ic->ic_bss->ni_intval = ic->ic_lintval;
1410 ic->ic_bss->ni_rssi = 0;
1411 ic->ic_bss->ni_rstamp = 0;
1412 #endif /* !IEEE80211_NO_HOSTAP */
1413 break;
1414 default: /* XXX */
1415 break;
1416 }
1417
1418 sc->sc_wepctl = 0;
1419
1420 atw_write_ssid(sc);
1421 atw_write_sup_rates(sc);
1422 atw_write_wep(sc);
1423
1424 ic->ic_state = IEEE80211_S_INIT;
1425
1426 /*
1427 * Set the receive filter. This will start the transmit and
1428 * receive processes.
1429 */
1430 atw_filter_setup(sc);
1431
1432 /*
1433 * Start the receive process.
1434 */
1435 ATW_WRITE(sc, ATW_RDR, 0x1);
1436
1437 /*
1438 * Note that the interface is now running.
1439 */
1440 ifp->if_flags |= IFF_RUNNING;
1441 ifp->if_flags &= ~IFF_OACTIVE;
1442
1443 /* send no beacons, yet. */
1444 atw_start_beacon(sc, 0);
1445
1446 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1447 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1448 else
1449 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1450 out:
1451 if (error) {
1452 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1453 sc->sc_tx_timer = 0;
1454 ifp->if_timer = 0;
1455 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1456 }
1457 #ifdef ATW_DEBUG
1458 atw_print_regs(sc, "end of init");
1459 #endif /* ATW_DEBUG */
1460
1461 return (error);
1462 }
1463
1464 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1465 * 0: MAC control of RF3000/Si4126.
1466 *
1467 * Applies power, or selects RF front-end? Sets reset condition.
1468 *
1469 * TBD support non-RFMD BBP, non-SiLabs synth.
1470 */
1471 static void
1472 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1473 {
1474 if (enable) {
1475 ATW_WRITE(sc, ATW_SYNRF,
1476 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1477 DELAY(atw_bbp_io_enable_delay);
1478 } else {
1479 ATW_WRITE(sc, ATW_SYNRF, 0);
1480 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1481 }
1482 }
1483
1484 static int
1485 atw_tune(struct atw_softc *sc)
1486 {
1487 int rc;
1488 u_int chan;
1489 struct ieee80211com *ic = &sc->sc_ic;
1490
1491 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1492 if (chan == IEEE80211_CHAN_ANY)
1493 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1494
1495 if (chan == sc->sc_cur_chan)
1496 return 0;
1497
1498 DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(&sc->sc_dev),
1499 sc->sc_cur_chan, chan));
1500
1501 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1502
1503 atw_si4126_tune(sc, chan);
1504 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1505 printf("%s: failed to tune channel %d\n", device_xname(&sc->sc_dev),
1506 chan);
1507
1508 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1509 DELAY(atw_nar_delay);
1510 ATW_WRITE(sc, ATW_RDR, 0x1);
1511
1512 if (rc == 0) {
1513 sc->sc_cur_chan = chan;
1514 sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1515 htole16(ic->ic_curchan->ic_freq);
1516 sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1517 htole16(ic->ic_curchan->ic_flags);
1518 }
1519
1520 return rc;
1521 }
1522
1523 #ifdef ATW_SYNDEBUG
1524 static void
1525 atw_si4126_print(struct atw_softc *sc)
1526 {
1527 struct ifnet *ifp = &sc->sc_if;
1528 u_int addr, val;
1529
1530 val = 0;
1531
1532 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1533 return;
1534
1535 for (addr = 0; addr <= 8; addr++) {
1536 printf("%s: synth[%d] = ", device_xname(&sc->sc_dev), addr);
1537 if (atw_si4126_read(sc, addr, &val) == 0) {
1538 printf("<unknown> (quitting print-out)\n");
1539 break;
1540 }
1541 printf("%05x\n", val);
1542 }
1543 }
1544 #endif /* ATW_SYNDEBUG */
1545
1546 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1547 *
1548 * The RF/IF synthesizer produces two reference frequencies for
1549 * the RF2948B transceiver. The first frequency the RF2948B requires
1550 * is two times the so-called "intermediate frequency" (IF). Since
1551 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1552 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second
1553 * frequency required by the transceiver is the radio frequency
1554 * (RF). This is a superheterodyne transceiver; for f(chan) the
1555 * center frequency of the channel we are tuning, RF = f(chan) -
1556 * IF.
1557 *
1558 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1559 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1560 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1561 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1562 */
1563 static void
1564 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1565 {
1566 u_int mhz;
1567 u_int R;
1568 u_int32_t gpio;
1569 u_int16_t gain;
1570
1571 #ifdef ATW_SYNDEBUG
1572 atw_si4126_print(sc);
1573 #endif /* ATW_SYNDEBUG */
1574
1575 if (chan == 14)
1576 mhz = 2484;
1577 else
1578 mhz = 2412 + 5 * (chan - 1);
1579
1580 /* Tune IF to 748 MHz to suit the IF LO input of the
1581 * RF2494B, which is 2 x IF. No need to set an IF divider
1582 * because an IF in 526 MHz - 952 MHz is allowed.
1583 *
1584 * XIN is 44.000 MHz, so divide it by two to get allowable
1585 * range of 2-25 MHz. SiLabs tells me that this is not
1586 * strictly necessary.
1587 */
1588
1589 if (atw_xindiv2)
1590 R = 44;
1591 else
1592 R = 88;
1593
1594 /* Power-up RF, IF synthesizers. */
1595 atw_si4126_write(sc, SI4126_POWER,
1596 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1597
1598 /* set LPWR, too? */
1599 atw_si4126_write(sc, SI4126_MAIN,
1600 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1601
1602 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1603 * set KP2 to 1.
1604 *
1605 * REFDIF This is different from the reference driver, which
1606 * always sets SI4126_GAIN to 0.
1607 */
1608 gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1609
1610 atw_si4126_write(sc, SI4126_GAIN, gain);
1611
1612 /* XIN = 44 MHz.
1613 *
1614 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1615 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1616 *
1617 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1618 * so that 1496/88 * 44 MHz = 748 MHz.
1619 */
1620 atw_si4126_write(sc, SI4126_IFN, 1496);
1621
1622 atw_si4126_write(sc, SI4126_IFR, R);
1623
1624 #ifndef ATW_REFSLAVE
1625 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1626 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1627 * which has no RF1!
1628 */
1629 atw_si4126_write(sc, SI4126_RF1R, R);
1630
1631 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1632 #endif
1633
1634 /* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1635 * where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44.
1636 * Now let's multiply it to mhz. So mhz - IF = N.
1637 */
1638 atw_si4126_write(sc, SI4126_RF2R, R);
1639
1640 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1641
1642 /* wait 100us from power-up for RF, IF to settle */
1643 DELAY(100);
1644
1645 gpio = ATW_READ(sc, ATW_GPIO);
1646 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1647 gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1648
1649 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1650 /* Set a Prism RF front-end to a special mode for channel 14?
1651 *
1652 * Apparently the SMC2635W needs this, although I don't think
1653 * it has a Prism RF.
1654 */
1655 gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1656 }
1657 ATW_WRITE(sc, ATW_GPIO, gpio);
1658
1659 #ifdef ATW_SYNDEBUG
1660 atw_si4126_print(sc);
1661 #endif /* ATW_SYNDEBUG */
1662 }
1663
1664 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1665 * diversity.
1666 *
1667 * !!!
1668 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1669 * !!!
1670 */
1671 static int
1672 atw_rf3000_init(struct atw_softc *sc)
1673 {
1674 int rc = 0;
1675
1676 atw_bbp_io_enable(sc, 1);
1677
1678 /* CCA is acquisition sensitive */
1679 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1680 __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1681
1682 if (rc != 0)
1683 goto out;
1684
1685 /* enable diversity */
1686 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1687
1688 if (rc != 0)
1689 goto out;
1690
1691 /* sensible setting from a binary-only driver */
1692 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1693 __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1694
1695 if (rc != 0)
1696 goto out;
1697
1698 /* magic from a binary-only driver */
1699 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1700 __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1701
1702 if (rc != 0)
1703 goto out;
1704
1705 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1706
1707 if (rc != 0)
1708 goto out;
1709
1710 /* XXX Reference driver remarks that Abocom sets this to 50.
1711 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1712 * in the "reserved" area of register RF3000_OPTIONS1.
1713 */
1714 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1715
1716 if (rc != 0)
1717 goto out;
1718
1719 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1720
1721 if (rc != 0)
1722 goto out;
1723
1724 out:
1725 atw_bbp_io_enable(sc, 0);
1726 return rc;
1727 }
1728
1729 #ifdef ATW_BBPDEBUG
1730 static void
1731 atw_rf3000_print(struct atw_softc *sc)
1732 {
1733 struct ifnet *ifp = &sc->sc_if;
1734 u_int addr, val;
1735
1736 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1737 return;
1738
1739 for (addr = 0x01; addr <= 0x15; addr++) {
1740 printf("%s: bbp[%d] = \n", device_xname(&sc->sc_dev), addr);
1741 if (atw_rf3000_read(sc, addr, &val) != 0) {
1742 printf("<unknown> (quitting print-out)\n");
1743 break;
1744 }
1745 printf("%08x\n", val);
1746 }
1747 }
1748 #endif /* ATW_BBPDEBUG */
1749
1750 /* Set the power settings on the BBP for channel `chan'. */
1751 static int
1752 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1753 {
1754 int rc = 0;
1755 u_int32_t reg;
1756 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1757
1758 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1759 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1760 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1761
1762 /* odd channels: LSB, even channels: MSB */
1763 if (chan % 2 == 1) {
1764 txpower &= 0xFF;
1765 lpf_cutoff &= 0xFF;
1766 lna_gs_thresh &= 0xFF;
1767 } else {
1768 txpower >>= 8;
1769 lpf_cutoff >>= 8;
1770 lna_gs_thresh >>= 8;
1771 }
1772
1773 #ifdef ATW_BBPDEBUG
1774 atw_rf3000_print(sc);
1775 #endif /* ATW_BBPDEBUG */
1776
1777 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1778 "lna_gs_thresh %02x\n",
1779 device_xname(&sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1780
1781 atw_bbp_io_enable(sc, 1);
1782
1783 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1784 __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1785 goto out;
1786
1787 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1788 goto out;
1789
1790 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1791 goto out;
1792
1793 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1794
1795 if (rc != 0)
1796 goto out;
1797
1798 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1799
1800 if (rc != 0)
1801 goto out;
1802
1803 #ifdef ATW_BBPDEBUG
1804 atw_rf3000_print(sc);
1805 #endif /* ATW_BBPDEBUG */
1806
1807 out:
1808 atw_bbp_io_enable(sc, 0);
1809
1810 /* set beacon, rts, atim transmit power */
1811 reg = ATW_READ(sc, ATW_PLCPHD);
1812 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1813 reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1814 ATW_PLCPHD_SERVICE_MASK);
1815 ATW_WRITE(sc, ATW_PLCPHD, reg);
1816 DELAY(atw_plcphd_delay);
1817
1818 return rc;
1819 }
1820
1821 /* Write a register on the RF3000 baseband processor using the
1822 * registers provided by the ADM8211 for this purpose.
1823 *
1824 * Return 0 on success.
1825 */
1826 static int
1827 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1828 {
1829 u_int32_t reg;
1830 int i;
1831
1832 reg = sc->sc_bbpctl_wr |
1833 __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1834 __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1835
1836 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1837 ATW_WRITE(sc, ATW_BBPCTL, reg);
1838 DELAY(2 * atw_pseudo_milli);
1839 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1840 break;
1841 }
1842
1843 if (i < 0) {
1844 printf("%s: BBPCTL still busy\n", device_xname(&sc->sc_dev));
1845 return ETIMEDOUT;
1846 }
1847 return 0;
1848 }
1849
1850 /* Read a register on the RF3000 baseband processor using the registers
1851 * the ADM8211 provides for this purpose.
1852 *
1853 * The 7-bit register address is addr. Record the 8-bit data in the register
1854 * in *val.
1855 *
1856 * Return 0 on success.
1857 *
1858 * XXX This does not seem to work. The ADM8211 must require more or
1859 * different magic to read the chip than to write it. Possibly some
1860 * of the magic I have derived from a binary-only driver concerns
1861 * the "chip address" (see the RF3000 manual).
1862 */
1863 #ifdef ATW_BBPDEBUG
1864 static int
1865 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1866 {
1867 u_int32_t reg;
1868 int i;
1869
1870 for (i = 1000; --i >= 0; ) {
1871 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1872 break;
1873 DELAY(100);
1874 }
1875
1876 if (i < 0) {
1877 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1878 device_xname(&sc->sc_dev));
1879 return ETIMEDOUT;
1880 }
1881
1882 reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1883
1884 ATW_WRITE(sc, ATW_BBPCTL, reg);
1885
1886 for (i = 1000; --i >= 0; ) {
1887 DELAY(100);
1888 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1889 break;
1890 }
1891
1892 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1893
1894 if (i < 0) {
1895 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1896 device_xname(&sc->sc_dev), reg);
1897 return ETIMEDOUT;
1898 }
1899 if (val != NULL)
1900 *val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1901 return 0;
1902 }
1903 #endif /* ATW_BBPDEBUG */
1904
1905 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1906 * provided by the ADM8211 for that purpose.
1907 *
1908 * val is 18 bits of data, and val is the 4-bit address of the register.
1909 *
1910 * Return 0 on success.
1911 */
1912 static void
1913 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1914 {
1915 uint32_t bits, mask, reg;
1916 const int nbits = 22;
1917
1918 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1919 KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1920
1921 bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1922 __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1923
1924 reg = ATW_SYNRF_SELSYN;
1925 /* reference driver: reset Si4126 serial bus to initial
1926 * conditions?
1927 */
1928 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1929 ATW_WRITE(sc, ATW_SYNRF, reg);
1930
1931 for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1932 if ((bits & mask) != 0)
1933 reg |= ATW_SYNRF_SYNDATA;
1934 else
1935 reg &= ~ATW_SYNRF_SYNDATA;
1936 ATW_WRITE(sc, ATW_SYNRF, reg);
1937 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1938 ATW_WRITE(sc, ATW_SYNRF, reg);
1939 }
1940 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1941 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1942 }
1943
1944 /* Read 18-bit data from the 4-bit address addr in Si4126
1945 * RF synthesizer and write the data to *val. Return 0 on success.
1946 *
1947 * XXX This does not seem to work. The ADM8211 must require more or
1948 * different magic to read the chip than to write it.
1949 */
1950 #ifdef ATW_SYNDEBUG
1951 static int
1952 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1953 {
1954 u_int32_t reg;
1955 int i;
1956
1957 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1958
1959 for (i = 1000; --i >= 0; ) {
1960 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1961 break;
1962 DELAY(100);
1963 }
1964
1965 if (i < 0) {
1966 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1967 device_xname(&sc->sc_dev));
1968 return ETIMEDOUT;
1969 }
1970
1971 reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1972
1973 ATW_WRITE(sc, ATW_SYNCTL, reg);
1974
1975 for (i = 1000; --i >= 0; ) {
1976 DELAY(100);
1977 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1978 break;
1979 }
1980
1981 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1982
1983 if (i < 0) {
1984 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1985 device_xname(&sc->sc_dev), reg);
1986 return ETIMEDOUT;
1987 }
1988 if (val != NULL)
1989 *val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1990 ATW_SYNCTL_DATA_MASK);
1991 return 0;
1992 }
1993 #endif /* ATW_SYNDEBUG */
1994
1995 /* XXX is the endianness correct? test. */
1996 #define atw_calchash(addr) \
1997 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1998
1999 /*
2000 * atw_filter_setup:
2001 *
2002 * Set the ADM8211's receive filter.
2003 */
2004 static void
2005 atw_filter_setup(struct atw_softc *sc)
2006 {
2007 struct ieee80211com *ic = &sc->sc_ic;
2008 struct ethercom *ec = &sc->sc_ec;
2009 struct ifnet *ifp = &sc->sc_if;
2010 int hash;
2011 u_int32_t hashes[2];
2012 struct ether_multi *enm;
2013 struct ether_multistep step;
2014
2015 /* According to comments in tlp_al981_filter_setup
2016 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2017 * multicast filter to be set while it is running. Hopefully
2018 * the ADM8211 is not the same!
2019 */
2020 if ((ifp->if_flags & IFF_RUNNING) != 0)
2021 atw_idle(sc, ATW_NAR_SR);
2022
2023 sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
2024 ifp->if_flags &= ~IFF_ALLMULTI;
2025
2026 /* XXX in scan mode, do not filter packets. Maybe this is
2027 * unnecessary.
2028 */
2029 if (ic->ic_state == IEEE80211_S_SCAN ||
2030 (ifp->if_flags & IFF_PROMISC) != 0) {
2031 sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2032 goto allmulti;
2033 }
2034
2035 hashes[0] = hashes[1] = 0x0;
2036
2037 /*
2038 * Program the 64-bit multicast hash filter.
2039 */
2040 ETHER_FIRST_MULTI(step, ec, enm);
2041 while (enm != NULL) {
2042 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2043 ETHER_ADDR_LEN) != 0)
2044 goto allmulti;
2045
2046 hash = atw_calchash(enm->enm_addrlo);
2047 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2048 ETHER_NEXT_MULTI(step, enm);
2049 sc->sc_opmode |= ATW_NAR_MM;
2050 }
2051 ifp->if_flags &= ~IFF_ALLMULTI;
2052 goto setit;
2053
2054 allmulti:
2055 sc->sc_opmode |= ATW_NAR_MM;
2056 ifp->if_flags |= IFF_ALLMULTI;
2057 hashes[0] = hashes[1] = 0xffffffff;
2058
2059 setit:
2060 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2061 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2062 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2063 DELAY(atw_nar_delay);
2064 ATW_WRITE(sc, ATW_RDR, 0x1);
2065
2066 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(&sc->sc_dev),
2067 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2068 }
2069
2070 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2071 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2072 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2073 * no beacon with the preferred BSSID and SSID in the number of
2074 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2075 */
2076 static void
2077 atw_write_bssid(struct atw_softc *sc)
2078 {
2079 struct ieee80211com *ic = &sc->sc_ic;
2080 u_int8_t *bssid;
2081
2082 bssid = ic->ic_bss->ni_bssid;
2083
2084 ATW_WRITE(sc, ATW_BSSID0,
2085 __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2086 __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2087 __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2088 __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2089
2090 ATW_WRITE(sc, ATW_ABDA1,
2091 (ATW_READ(sc, ATW_ABDA1) &
2092 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2093 __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2094 __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2095
2096 DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(&sc->sc_dev),
2097 ether_sprintf(sc->sc_bssid)));
2098 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2099
2100 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2101 }
2102
2103 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2104 * 16-bit word.
2105 */
2106 static void
2107 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2108 {
2109 u_int i;
2110 u_int8_t *ptr;
2111
2112 memcpy(&sc->sc_sram[ofs], buf, buflen);
2113
2114 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2115
2116 KASSERT(buflen + ofs <= sc->sc_sramlen);
2117
2118 ptr = &sc->sc_sram[ofs];
2119
2120 for (i = 0; i < buflen; i += 2) {
2121 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2122 __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2123 DELAY(atw_writewep_delay);
2124
2125 ATW_WRITE(sc, ATW_WESK,
2126 __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2127 DELAY(atw_writewep_delay);
2128 }
2129 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2130
2131 if (sc->sc_if.if_flags & IFF_DEBUG) {
2132 int n_octets = 0;
2133 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2134 device_xname(&sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2135 for (i = 0; i < buflen; i++) {
2136 printf(" %02x", ptr[i]);
2137 if (++n_octets % 24 == 0)
2138 printf("\n");
2139 }
2140 if (n_octets % 24 != 0)
2141 printf("\n");
2142 }
2143 }
2144
2145 static int
2146 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2147 {
2148 struct atw_softc *sc = ic->ic_ifp->if_softc;
2149 u_int keyix = k->wk_keyix;
2150
2151 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2152
2153 if (keyix >= IEEE80211_WEP_NKID)
2154 return 0;
2155 if (k->wk_keylen != 0)
2156 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2157
2158 return 1;
2159 }
2160
2161 static int
2162 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2163 const u_int8_t mac[IEEE80211_ADDR_LEN])
2164 {
2165 struct atw_softc *sc = ic->ic_ifp->if_softc;
2166
2167 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2168
2169 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2170 return 0;
2171
2172 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2173
2174 return 1;
2175 }
2176
2177 static void
2178 atw_key_update_begin(struct ieee80211com *ic)
2179 {
2180 #ifdef ATW_DEBUG
2181 struct ifnet *ifp = ic->ic_ifp;
2182 struct atw_softc *sc = ifp->if_softc;
2183 #endif
2184
2185 DPRINTF(sc, ("%s:\n", __func__));
2186 }
2187
2188 static void
2189 atw_key_update_end(struct ieee80211com *ic)
2190 {
2191 struct ifnet *ifp = ic->ic_ifp;
2192 struct atw_softc *sc = ifp->if_softc;
2193
2194 DPRINTF(sc, ("%s:\n", __func__));
2195
2196 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2197 return;
2198 if (ATW_IS_ENABLED(sc) == 0)
2199 return;
2200 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2201 atw_write_wep(sc);
2202 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2203 DELAY(atw_nar_delay);
2204 ATW_WRITE(sc, ATW_RDR, 0x1);
2205 }
2206
2207 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2208 static void
2209 atw_write_wep(struct atw_softc *sc)
2210 {
2211 #if 0
2212 struct ieee80211com *ic = &sc->sc_ic;
2213 u_int32_t reg;
2214 int i;
2215 #endif
2216 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2217 u_int8_t buf[IEEE80211_WEP_NKID]
2218 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2219
2220 sc->sc_wepctl = 0;
2221 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2222
2223 memset(&buf[0][0], 0, sizeof(buf));
2224
2225 #if 0
2226 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2227 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2228 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2229 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2230 buf[i][1] = ATW_WEP_ENABLED;
2231 } else {
2232 buf[i][1] = 0;
2233 continue;
2234 }
2235 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2236 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2237 ic->ic_nw_keys[i].wk_keylen - 1);
2238 }
2239
2240 reg = ATW_READ(sc, ATW_MACTEST);
2241 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2242 reg &= ~ATW_MACTEST_KEYID_MASK;
2243 reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2244 ATW_WRITE(sc, ATW_MACTEST, reg);
2245
2246 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2247 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2248
2249 switch (sc->sc_rev) {
2250 case ATW_REVISION_AB:
2251 case ATW_REVISION_AF:
2252 /* Bypass WEP on Rx. */
2253 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2254 break;
2255 default:
2256 break;
2257 }
2258 #endif
2259
2260 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2261 sizeof(buf));
2262
2263 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2264 }
2265
2266 static void
2267 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2268 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2269 {
2270 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2271
2272 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2273 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2274 return;
2275
2276 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2277
2278 switch (subtype) {
2279 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2280 case IEEE80211_FC0_SUBTYPE_BEACON:
2281 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2282 ic->ic_state == IEEE80211_S_RUN) {
2283 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2284 (void)ieee80211_ibss_merge(ni);
2285 }
2286 break;
2287 default:
2288 break;
2289 }
2290 return;
2291 }
2292
2293 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2294 * In ad hoc mode, the SSID is written to the beacons sent by the
2295 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2296 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2297 * indications.
2298 */
2299 static void
2300 atw_write_ssid(struct atw_softc *sc)
2301 {
2302 struct ieee80211com *ic = &sc->sc_ic;
2303 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2304 * it only expects the element length, not its ID.
2305 */
2306 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2307
2308 memset(buf, 0, sizeof(buf));
2309 buf[0] = ic->ic_bss->ni_esslen;
2310 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2311
2312 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2313 roundup(1 + ic->ic_bss->ni_esslen, 2));
2314 }
2315
2316 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2317 * In ad hoc mode, the supported rates are written to beacons sent by the
2318 * ADM8211.
2319 */
2320 static void
2321 atw_write_sup_rates(struct atw_softc *sc)
2322 {
2323 struct ieee80211com *ic = &sc->sc_ic;
2324 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2325 * supported rates
2326 */
2327 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2328
2329 memset(buf, 0, sizeof(buf));
2330
2331 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2332
2333 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2334 ic->ic_bss->ni_rates.rs_nrates);
2335
2336 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2337 }
2338
2339 /* Start/stop sending beacons. */
2340 void
2341 atw_start_beacon(struct atw_softc *sc, int start)
2342 {
2343 struct ieee80211com *ic = &sc->sc_ic;
2344 uint16_t chan;
2345 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2346 size_t len;
2347
2348 if (ATW_IS_ENABLED(sc) == 0)
2349 return;
2350
2351 /* start beacons */
2352 len = sizeof(struct ieee80211_frame) +
2353 8 /* timestamp */ + 2 /* beacon interval */ +
2354 2 /* capability info */ +
2355 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2356 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2357 3 /* DS parameters */ +
2358 IEEE80211_CRC_LEN;
2359
2360 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2361 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2362 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2363
2364 ATW_WRITE(sc, ATW_BCNT, bcnt);
2365 ATW_WRITE(sc, ATW_CAP1, cap1);
2366
2367 if (!start)
2368 return;
2369
2370 /* TBD use ni_capinfo */
2371
2372 capinfo = 0;
2373 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2374 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2375 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2376 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2377
2378 switch (ic->ic_opmode) {
2379 case IEEE80211_M_IBSS:
2380 len += 4; /* IBSS parameters */
2381 capinfo |= IEEE80211_CAPINFO_IBSS;
2382 break;
2383 case IEEE80211_M_HOSTAP:
2384 /* XXX 6-byte minimum TIM */
2385 len += atw_beacon_len_adjust;
2386 capinfo |= IEEE80211_CAPINFO_ESS;
2387 break;
2388 default:
2389 return;
2390 }
2391
2392 /* set listen interval
2393 * XXX do software units agree w/ hardware?
2394 */
2395 bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2396 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2397
2398 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2399
2400 bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2401 cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2402 cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2403
2404 ATW_WRITE(sc, ATW_BCNT, bcnt);
2405 ATW_WRITE(sc, ATW_BPLI, bpli);
2406 ATW_WRITE(sc, ATW_CAP0, cap0);
2407 ATW_WRITE(sc, ATW_CAP1, cap1);
2408
2409 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2410 device_xname(&sc->sc_dev), bcnt));
2411
2412 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2413 device_xname(&sc->sc_dev), cap1));
2414 }
2415
2416 /* Return the 32 lsb of the last TSFT divisible by ival. */
2417 static inline uint32_t
2418 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2419 {
2420 /* Following the reference driver's lead, I compute
2421 *
2422 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2423 *
2424 * without using 64-bit arithmetic, using the following
2425 * relationship:
2426 *
2427 * (0x100000000 * H + L) % m
2428 * = ((0x100000000 % m) * H + L) % m
2429 * = (((0xffffffff + 1) % m) * H + L) % m
2430 * = ((0xffffffff % m + 1 % m) * H + L) % m
2431 * = ((0xffffffff % m + 1) * H + L) % m
2432 */
2433 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2434 }
2435
2436 static uint64_t
2437 atw_get_tsft(struct atw_softc *sc)
2438 {
2439 int i;
2440 uint32_t tsfth, tsftl;
2441 for (i = 0; i < 2; i++) {
2442 tsfth = ATW_READ(sc, ATW_TSFTH);
2443 tsftl = ATW_READ(sc, ATW_TSFTL);
2444 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2445 break;
2446 }
2447 return ((uint64_t)tsfth << 32) | tsftl;
2448 }
2449
2450 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2451 * the ieee80211com.
2452 *
2453 * Predict the next target beacon transmission time (TBTT) and
2454 * write it to the ADM8211.
2455 */
2456 static void
2457 atw_predict_beacon(struct atw_softc *sc)
2458 {
2459 #define TBTTOFS 20 /* TU */
2460
2461 struct ieee80211com *ic = &sc->sc_ic;
2462 uint64_t tsft;
2463 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2464 union {
2465 uint64_t word;
2466 uint8_t tstamp[8];
2467 } u;
2468
2469 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2470 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2471 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2472 tsft = atw_get_tsft(sc);
2473 u.word = htole64(tsft);
2474 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2475 sizeof(ic->ic_bss->ni_tstamp));
2476 } else
2477 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2478
2479 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2480
2481 tsftl = tsft & 0xFFFFFFFF;
2482 tsfth = tsft >> 32;
2483
2484 /* We sent/received the last beacon `past' microseconds
2485 * after the interval divided the TSF timer.
2486 */
2487 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2488
2489 /* Skip ten beacons so that the TBTT cannot pass before
2490 * we've programmed it. Ten is an arbitrary number.
2491 */
2492 tbtt = past_even + ival * 10;
2493
2494 ATW_WRITE(sc, ATW_TOFS1,
2495 __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2496 __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2497 __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2498 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2499 #undef TBTTOFS
2500 }
2501
2502 static void
2503 atw_next_scan(void *arg)
2504 {
2505 struct atw_softc *sc = arg;
2506 struct ieee80211com *ic = &sc->sc_ic;
2507 int s;
2508
2509 /* don't call atw_start w/o network interrupts blocked */
2510 s = splnet();
2511 if (ic->ic_state == IEEE80211_S_SCAN)
2512 ieee80211_next_scan(ic);
2513 splx(s);
2514 }
2515
2516 /* Synchronize the hardware state with the software state. */
2517 static int
2518 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2519 {
2520 struct ifnet *ifp = ic->ic_ifp;
2521 struct atw_softc *sc = ifp->if_softc;
2522 enum ieee80211_state ostate;
2523 int error = 0;
2524
2525 ostate = ic->ic_state;
2526 callout_stop(&sc->sc_scan_ch);
2527
2528 switch (nstate) {
2529 case IEEE80211_S_AUTH:
2530 case IEEE80211_S_ASSOC:
2531 atw_write_bssid(sc);
2532 error = atw_tune(sc);
2533 break;
2534 case IEEE80211_S_INIT:
2535 callout_stop(&sc->sc_scan_ch);
2536 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2537 atw_start_beacon(sc, 0);
2538 break;
2539 case IEEE80211_S_SCAN:
2540 error = atw_tune(sc);
2541 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2542 atw_next_scan, sc);
2543 break;
2544 case IEEE80211_S_RUN:
2545 error = atw_tune(sc);
2546 atw_write_bssid(sc);
2547 atw_write_ssid(sc);
2548 atw_write_sup_rates(sc);
2549
2550 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2551 ic->ic_opmode == IEEE80211_M_MONITOR)
2552 break;
2553
2554 /* set listen interval
2555 * XXX do software units agree w/ hardware?
2556 */
2557 ATW_WRITE(sc, ATW_BPLI,
2558 __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2559 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2560 ATW_BPLI_LI_MASK));
2561
2562 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(&sc->sc_dev),
2563 ATW_READ(sc, ATW_BPLI)));
2564
2565 atw_predict_beacon(sc);
2566
2567 switch (ic->ic_opmode) {
2568 case IEEE80211_M_AHDEMO:
2569 case IEEE80211_M_HOSTAP:
2570 case IEEE80211_M_IBSS:
2571 atw_start_beacon(sc, 1);
2572 break;
2573 case IEEE80211_M_MONITOR:
2574 case IEEE80211_M_STA:
2575 break;
2576 }
2577
2578 break;
2579 }
2580 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2581 }
2582
2583 /*
2584 * atw_add_rxbuf:
2585 *
2586 * Add a receive buffer to the indicated descriptor.
2587 */
2588 int
2589 atw_add_rxbuf(struct atw_softc *sc, int idx)
2590 {
2591 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2592 struct mbuf *m;
2593 int error;
2594
2595 MGETHDR(m, M_DONTWAIT, MT_DATA);
2596 if (m == NULL)
2597 return (ENOBUFS);
2598
2599 MCLGET(m, M_DONTWAIT);
2600 if ((m->m_flags & M_EXT) == 0) {
2601 m_freem(m);
2602 return (ENOBUFS);
2603 }
2604
2605 if (rxs->rxs_mbuf != NULL)
2606 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2607
2608 rxs->rxs_mbuf = m;
2609
2610 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2611 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2612 BUS_DMA_READ|BUS_DMA_NOWAIT);
2613 if (error) {
2614 aprint_error_dev(&sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2615 idx, error);
2616 panic("atw_add_rxbuf"); /* XXX */
2617 }
2618
2619 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2620 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2621
2622 atw_init_rxdesc(sc, idx);
2623
2624 return (0);
2625 }
2626
2627 /*
2628 * Release any queued transmit buffers.
2629 */
2630 void
2631 atw_txdrain(struct atw_softc *sc)
2632 {
2633 struct atw_txsoft *txs;
2634
2635 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2636 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2637 if (txs->txs_mbuf != NULL) {
2638 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2639 m_freem(txs->txs_mbuf);
2640 txs->txs_mbuf = NULL;
2641 }
2642 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2643 sc->sc_txfree += txs->txs_ndescs;
2644 }
2645
2646 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2647 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2648 sc->sc_txfree != ATW_NTXDESC));
2649 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2650 sc->sc_tx_timer = 0;
2651 }
2652
2653 /*
2654 * atw_stop: [ ifnet interface function ]
2655 *
2656 * Stop transmission on the interface.
2657 */
2658 void
2659 atw_stop(struct ifnet *ifp, int disable)
2660 {
2661 struct atw_softc *sc = ifp->if_softc;
2662 struct ieee80211com *ic = &sc->sc_ic;
2663
2664 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2665
2666 /* Disable interrupts. */
2667 ATW_WRITE(sc, ATW_IER, 0);
2668
2669 /* Stop the transmit and receive processes. */
2670 sc->sc_opmode = 0;
2671 ATW_WRITE(sc, ATW_NAR, 0);
2672 DELAY(atw_nar_delay);
2673 ATW_WRITE(sc, ATW_TDBD, 0);
2674 ATW_WRITE(sc, ATW_TDBP, 0);
2675 ATW_WRITE(sc, ATW_RDB, 0);
2676
2677 atw_txdrain(sc);
2678
2679 /*
2680 * Mark the interface down and cancel the watchdog timer.
2681 */
2682 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2683 sc->sc_tx_timer = 0;
2684 ifp->if_timer = 0;
2685
2686 if (disable) {
2687 atw_rxdrain(sc);
2688 atw_disable(sc);
2689 } else
2690 atw_reset(sc);
2691 }
2692
2693 /*
2694 * atw_rxdrain:
2695 *
2696 * Drain the receive queue.
2697 */
2698 void
2699 atw_rxdrain(struct atw_softc *sc)
2700 {
2701 struct atw_rxsoft *rxs;
2702 int i;
2703
2704 for (i = 0; i < ATW_NRXDESC; i++) {
2705 rxs = &sc->sc_rxsoft[i];
2706 if (rxs->rxs_mbuf == NULL)
2707 continue;
2708 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2709 m_freem(rxs->rxs_mbuf);
2710 rxs->rxs_mbuf = NULL;
2711 }
2712 }
2713
2714 /*
2715 * atw_detach:
2716 *
2717 * Detach an ADM8211 interface.
2718 */
2719 int
2720 atw_detach(struct atw_softc *sc)
2721 {
2722 struct ifnet *ifp = &sc->sc_if;
2723 struct atw_rxsoft *rxs;
2724 struct atw_txsoft *txs;
2725 int i;
2726
2727 /*
2728 * Succeed now if there isn't any work to do.
2729 */
2730 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2731 return (0);
2732
2733 pmf_device_deregister(&sc->sc_dev);
2734
2735 callout_stop(&sc->sc_scan_ch);
2736
2737 ieee80211_ifdetach(&sc->sc_ic);
2738 if_detach(ifp);
2739
2740 for (i = 0; i < ATW_NRXDESC; i++) {
2741 rxs = &sc->sc_rxsoft[i];
2742 if (rxs->rxs_mbuf != NULL) {
2743 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2744 m_freem(rxs->rxs_mbuf);
2745 rxs->rxs_mbuf = NULL;
2746 }
2747 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2748 }
2749 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2750 txs = &sc->sc_txsoft[i];
2751 if (txs->txs_mbuf != NULL) {
2752 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2753 m_freem(txs->txs_mbuf);
2754 txs->txs_mbuf = NULL;
2755 }
2756 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2757 }
2758 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2759 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2760 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2761 sizeof(struct atw_control_data));
2762 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2763
2764 if (sc->sc_srom)
2765 free(sc->sc_srom, M_DEVBUF);
2766
2767 atw_evcnt_detach(sc);
2768
2769 return (0);
2770 }
2771
2772 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2773 bool
2774 atw_shutdown(device_t self, int flags)
2775 {
2776 struct atw_softc *sc = device_private(self);
2777
2778 atw_stop(&sc->sc_if, 1);
2779 return true;
2780 }
2781
2782 int
2783 atw_intr(void *arg)
2784 {
2785 struct atw_softc *sc = arg;
2786 struct ifnet *ifp = &sc->sc_if;
2787 u_int32_t status, rxstatus, txstatus, linkstatus;
2788 int handled = 0, txthresh;
2789
2790 #ifdef DEBUG
2791 if (ATW_IS_ENABLED(sc) == 0)
2792 panic("%s: atw_intr: not enabled", device_xname(&sc->sc_dev));
2793 #endif
2794
2795 /*
2796 * If the interface isn't running, the interrupt couldn't
2797 * possibly have come from us.
2798 */
2799 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2800 !device_is_active(&sc->sc_dev))
2801 return (0);
2802
2803 for (;;) {
2804 status = ATW_READ(sc, ATW_STSR);
2805
2806 if (status)
2807 ATW_WRITE(sc, ATW_STSR, status);
2808
2809 #ifdef ATW_DEBUG
2810 #define PRINTINTR(flag) do { \
2811 if ((status & flag) != 0) { \
2812 printf("%s" #flag, delim); \
2813 delim = ","; \
2814 } \
2815 } while (0)
2816
2817 if (atw_debug > 1 && status) {
2818 const char *delim = "<";
2819
2820 printf("%s: reg[STSR] = %x",
2821 device_xname(&sc->sc_dev), status);
2822
2823 PRINTINTR(ATW_INTR_FBE);
2824 PRINTINTR(ATW_INTR_LINKOFF);
2825 PRINTINTR(ATW_INTR_LINKON);
2826 PRINTINTR(ATW_INTR_RCI);
2827 PRINTINTR(ATW_INTR_RDU);
2828 PRINTINTR(ATW_INTR_REIS);
2829 PRINTINTR(ATW_INTR_RPS);
2830 PRINTINTR(ATW_INTR_TCI);
2831 PRINTINTR(ATW_INTR_TDU);
2832 PRINTINTR(ATW_INTR_TLT);
2833 PRINTINTR(ATW_INTR_TPS);
2834 PRINTINTR(ATW_INTR_TRT);
2835 PRINTINTR(ATW_INTR_TUF);
2836 PRINTINTR(ATW_INTR_BCNTC);
2837 PRINTINTR(ATW_INTR_ATIME);
2838 PRINTINTR(ATW_INTR_TBTT);
2839 PRINTINTR(ATW_INTR_TSCZ);
2840 PRINTINTR(ATW_INTR_TSFTF);
2841 printf(">\n");
2842 }
2843 #undef PRINTINTR
2844 #endif /* ATW_DEBUG */
2845
2846 if ((status & sc->sc_inten) == 0)
2847 break;
2848
2849 handled = 1;
2850
2851 rxstatus = status & sc->sc_rxint_mask;
2852 txstatus = status & sc->sc_txint_mask;
2853 linkstatus = status & sc->sc_linkint_mask;
2854
2855 if (linkstatus) {
2856 atw_linkintr(sc, linkstatus);
2857 }
2858
2859 if (rxstatus) {
2860 /* Grab any new packets. */
2861 atw_rxintr(sc);
2862
2863 if (rxstatus & ATW_INTR_RDU) {
2864 printf("%s: receive ring overrun\n",
2865 device_xname(&sc->sc_dev));
2866 /* Get the receive process going again. */
2867 ATW_WRITE(sc, ATW_RDR, 0x1);
2868 break;
2869 }
2870 }
2871
2872 if (txstatus) {
2873 /* Sweep up transmit descriptors. */
2874 atw_txintr(sc);
2875
2876 if (txstatus & ATW_INTR_TLT) {
2877 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2878 device-xname(&sc->sc_dev)));
2879 }
2880
2881 if (txstatus & ATW_INTR_TRT) {
2882 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2883 device_xname(&sc->sc_dev)));
2884 }
2885
2886 /* If Tx under-run, increase our transmit threshold
2887 * if another is available.
2888 */
2889 txthresh = sc->sc_txthresh + 1;
2890 if ((txstatus & ATW_INTR_TUF) &&
2891 sc->sc_txth[txthresh].txth_name != NULL) {
2892 /* Idle the transmit process. */
2893 atw_idle(sc, ATW_NAR_ST);
2894
2895 sc->sc_txthresh = txthresh;
2896 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2897 sc->sc_opmode |=
2898 sc->sc_txth[txthresh].txth_opmode;
2899 printf("%s: transmit underrun; new "
2900 "threshold: %s\n", device_xname(&sc->sc_dev),
2901 sc->sc_txth[txthresh].txth_name);
2902
2903 /* Set the new threshold and restart
2904 * the transmit process.
2905 */
2906 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2907 DELAY(atw_nar_delay);
2908 ATW_WRITE(sc, ATW_RDR, 0x1);
2909 /* XXX Log every Nth underrun from
2910 * XXX now on?
2911 */
2912 }
2913 }
2914
2915 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2916 if (status & ATW_INTR_TPS)
2917 printf("%s: transmit process stopped\n",
2918 device_xname(&sc->sc_dev));
2919 if (status & ATW_INTR_RPS)
2920 printf("%s: receive process stopped\n",
2921 device_xname(&sc->sc_dev));
2922 (void)atw_init(ifp);
2923 break;
2924 }
2925
2926 if (status & ATW_INTR_FBE) {
2927 aprint_error_dev(&sc->sc_dev, "fatal bus error\n");
2928 (void)atw_init(ifp);
2929 break;
2930 }
2931
2932 /*
2933 * Not handled:
2934 *
2935 * Transmit buffer unavailable -- normal
2936 * condition, nothing to do, really.
2937 *
2938 * Early receive interrupt -- not available on
2939 * all chips, we just use RI. We also only
2940 * use single-segment receive DMA, so this
2941 * is mostly useless.
2942 *
2943 * TBD others
2944 */
2945 }
2946
2947 /* Try to get more packets going. */
2948 atw_start(ifp);
2949
2950 return (handled);
2951 }
2952
2953 /*
2954 * atw_idle:
2955 *
2956 * Cause the transmit and/or receive processes to go idle.
2957 *
2958 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2959 * process in STSR if I clear SR or ST after the process has already
2960 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2961 * do not seem to be too reliable. Perhaps I have the sense of the
2962 * Rx bits switched with the Tx bits?
2963 */
2964 void
2965 atw_idle(struct atw_softc *sc, u_int32_t bits)
2966 {
2967 u_int32_t ackmask = 0, opmode, stsr, test0;
2968 int i, s;
2969
2970 s = splnet();
2971
2972 opmode = sc->sc_opmode & ~bits;
2973
2974 if (bits & ATW_NAR_SR)
2975 ackmask |= ATW_INTR_RPS;
2976
2977 if (bits & ATW_NAR_ST) {
2978 ackmask |= ATW_INTR_TPS;
2979 /* set ATW_NAR_HF to flush TX FIFO. */
2980 opmode |= ATW_NAR_HF;
2981 }
2982
2983 ATW_WRITE(sc, ATW_NAR, opmode);
2984 DELAY(atw_nar_delay);
2985
2986 for (i = 0; i < 1000; i++) {
2987 stsr = ATW_READ(sc, ATW_STSR);
2988 if ((stsr & ackmask) == ackmask)
2989 break;
2990 DELAY(10);
2991 }
2992
2993 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2994
2995 if ((stsr & ackmask) == ackmask)
2996 goto out;
2997
2998 test0 = ATW_READ(sc, ATW_TEST0);
2999
3000 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3001 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3002 printf("%s: transmit process not idle [%s]\n",
3003 device_xname(&sc->sc_dev),
3004 atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3005 printf("%s: bits %08x test0 %08x stsr %08x\n",
3006 device_xname(&sc->sc_dev), bits, test0, stsr);
3007 }
3008
3009 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3010 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3011 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3012 device_xname(&sc->sc_dev),
3013 atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3014 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3015 device_xname(&sc->sc_dev), bits, test0, stsr));
3016 }
3017 out:
3018 if ((bits & ATW_NAR_ST) != 0)
3019 atw_txdrain(sc);
3020 splx(s);
3021 return;
3022 }
3023
3024 /*
3025 * atw_linkintr:
3026 *
3027 * Helper; handle link-status interrupts.
3028 */
3029 void
3030 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3031 {
3032 struct ieee80211com *ic = &sc->sc_ic;
3033
3034 if (ic->ic_state != IEEE80211_S_RUN)
3035 return;
3036
3037 if (linkstatus & ATW_INTR_LINKON) {
3038 DPRINTF(sc, ("%s: link on\n", device_xname(&sc->sc_dev)));
3039 sc->sc_rescan_timer = 0;
3040 } else if (linkstatus & ATW_INTR_LINKOFF) {
3041 DPRINTF(sc, ("%s: link off\n", device_xname(&sc->sc_dev)));
3042 if (ic->ic_opmode != IEEE80211_M_STA)
3043 return;
3044 sc->sc_rescan_timer = 3;
3045 sc->sc_if.if_timer = 1;
3046 }
3047 }
3048
3049 static inline int
3050 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3051 {
3052 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3053 return 0;
3054 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3055 return 0;
3056 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3057 }
3058
3059 /*
3060 * atw_rxintr:
3061 *
3062 * Helper; handle receive interrupts.
3063 */
3064 void
3065 atw_rxintr(struct atw_softc *sc)
3066 {
3067 static int rate_tbl[] = {2, 4, 11, 22, 44};
3068 struct ieee80211com *ic = &sc->sc_ic;
3069 struct ieee80211_node *ni;
3070 struct ieee80211_frame_min *wh;
3071 struct ifnet *ifp = &sc->sc_if;
3072 struct atw_rxsoft *rxs;
3073 struct mbuf *m;
3074 u_int32_t rxstat;
3075 int i, len, rate, rate0;
3076 u_int32_t rssi, ctlrssi;
3077
3078 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3079 rxs = &sc->sc_rxsoft[i];
3080
3081 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3082
3083 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3084 ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3085 rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3086
3087 if (rxstat & ATW_RXSTAT_OWN)
3088 break; /* We have processed all receive buffers. */
3089
3090 DPRINTF3(sc,
3091 ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3092 device_xname(&sc->sc_dev),
3093 rxstat, ctlrssi,
3094 le32toh(sc->sc_rxdescs[i].ar_buf1),
3095 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3096
3097 /*
3098 * Make sure the packet fits in one buffer. This should
3099 * always be the case.
3100 */
3101 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3102 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3103 printf("%s: incoming packet spilled, resetting\n",
3104 device_xname(&sc->sc_dev));
3105 (void)atw_init(ifp);
3106 return;
3107 }
3108
3109 /*
3110 * If an error occurred, update stats, clear the status
3111 * word, and leave the packet buffer in place. It will
3112 * simply be reused the next time the ring comes around.
3113 */
3114 if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3115 #define PRINTERR(bit, str) \
3116 if (rxstat & (bit)) \
3117 aprint_error_dev(&sc->sc_dev, "receive error: %s\n", \
3118 str)
3119 ifp->if_ierrors++;
3120 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3121 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3122 #if 0
3123 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3124 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3125 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3126 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3127 #endif
3128 #undef PRINTERR
3129 atw_init_rxdesc(sc, i);
3130 continue;
3131 }
3132
3133 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3134 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3135
3136 /*
3137 * No errors; receive the packet. Note the ADM8211
3138 * includes the CRC in promiscuous mode.
3139 */
3140 len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3141
3142 /*
3143 * Allocate a new mbuf cluster. If that fails, we are
3144 * out of memory, and must drop the packet and recycle
3145 * the buffer that's already attached to this descriptor.
3146 */
3147 m = rxs->rxs_mbuf;
3148 if (atw_add_rxbuf(sc, i) != 0) {
3149 ifp->if_ierrors++;
3150 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3151 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3152 atw_init_rxdesc(sc, i);
3153 continue;
3154 }
3155
3156 ifp->if_ipackets++;
3157 m->m_pkthdr.rcvif = ifp;
3158 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3159
3160 rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3161
3162 /* The RSSI comes straight from a register in the
3163 * baseband processor. I know that for the RF3000,
3164 * the RSSI register also contains the antenna-selection
3165 * bits. Mask those off.
3166 *
3167 * TBD Treat other basebands.
3168 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3169 */
3170 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3171 rssi = ctlrssi & RF3000_RSSI_MASK;
3172 else
3173 rssi = ctlrssi;
3174
3175 #if NBPFILTER > 0
3176 /* Pass this up to any BPF listeners. */
3177 if (sc->sc_radiobpf != NULL) {
3178 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3179
3180 tap->ar_rate = rate;
3181
3182 /* TBD verify units are dB */
3183 tap->ar_antsignal = (int)rssi;
3184 if (sc->sc_opmode & ATW_NAR_PR)
3185 tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3186 else
3187 tap->ar_flags = 0;
3188
3189 if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3190 tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3191
3192 bpf_mtap2(sc->sc_radiobpf, tap,
3193 sizeof(sc->sc_rxtapu), m);
3194 }
3195 #endif /* NBPFILTER > 0 */
3196
3197 sc->sc_recv_ev.ev_count++;
3198
3199 if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3200 if (rxstat & ATW_RXSTAT_CRC16E)
3201 sc->sc_crc16e_ev.ev_count++;
3202 if (rxstat & ATW_RXSTAT_CRC32E)
3203 sc->sc_crc32e_ev.ev_count++;
3204 if (rxstat & ATW_RXSTAT_ICVE)
3205 sc->sc_icve_ev.ev_count++;
3206 if (rxstat & ATW_RXSTAT_SFDE)
3207 sc->sc_sfde_ev.ev_count++;
3208 if (rxstat & ATW_RXSTAT_SIGE)
3209 sc->sc_sige_ev.ev_count++;
3210 ifp->if_ierrors++;
3211 m_freem(m);
3212 continue;
3213 }
3214
3215 if (sc->sc_opmode & ATW_NAR_PR)
3216 m_adj(m, -IEEE80211_CRC_LEN);
3217
3218 wh = mtod(m, struct ieee80211_frame_min *);
3219 ni = ieee80211_find_rxnode(ic, wh);
3220 #if 0
3221 if (atw_hw_decrypted(sc, wh)) {
3222 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3223 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3224 }
3225 #endif
3226 ieee80211_input(ic, m, ni, (int)rssi, 0);
3227 ieee80211_free_node(ni);
3228 }
3229
3230 /* Update the receive pointer. */
3231 sc->sc_rxptr = i;
3232 }
3233
3234 /*
3235 * atw_txintr:
3236 *
3237 * Helper; handle transmit interrupts.
3238 */
3239 void
3240 atw_txintr(struct atw_softc *sc)
3241 {
3242 static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3243 struct ifnet *ifp = &sc->sc_if;
3244 struct atw_txsoft *txs;
3245 u_int32_t txstat;
3246
3247 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3248 device_xname(&sc->sc_dev), sc->sc_flags));
3249
3250 /*
3251 * Go through our Tx list and free mbufs for those
3252 * frames that have been transmitted.
3253 */
3254 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3255 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3256 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3257
3258 #ifdef ATW_DEBUG
3259 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3260 int i;
3261 printf(" txsoft %p transmit chain:\n", txs);
3262 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3263 txs->txs_ndescs - 1,
3264 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3265 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3266 printf(" descriptor %d:\n", i);
3267 printf(" at_status: 0x%08x\n",
3268 le32toh(sc->sc_txdescs[i].at_stat));
3269 printf(" at_flags: 0x%08x\n",
3270 le32toh(sc->sc_txdescs[i].at_flags));
3271 printf(" at_buf1: 0x%08x\n",
3272 le32toh(sc->sc_txdescs[i].at_buf1));
3273 printf(" at_buf2: 0x%08x\n",
3274 le32toh(sc->sc_txdescs[i].at_buf2));
3275 if (i == txs->txs_lastdesc)
3276 break;
3277 }
3278 }
3279 #endif
3280
3281 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3282 if (txstat & ATW_TXSTAT_OWN)
3283 break;
3284
3285 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3286
3287 sc->sc_txfree += txs->txs_ndescs;
3288
3289 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3290 0, txs->txs_dmamap->dm_mapsize,
3291 BUS_DMASYNC_POSTWRITE);
3292 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3293 m_freem(txs->txs_mbuf);
3294 txs->txs_mbuf = NULL;
3295
3296 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3297
3298 KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3299 sc->sc_txfree == 0));
3300 ifp->if_flags &= ~IFF_OACTIVE;
3301
3302 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3303 (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3304 bitmask_snprintf(txstat & ATW_TXSTAT_ERRMASK,
3305 ATW_TXSTAT_FMT, txstat_buf, sizeof(txstat_buf));
3306 printf("%s: txstat %s %" __PRIuBITS "\n",
3307 device_xname(&sc->sc_dev), txstat_buf,
3308 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3309 }
3310
3311 /*
3312 * Check for errors and collisions.
3313 */
3314 if (txstat & ATW_TXSTAT_TUF)
3315 sc->sc_stats.ts_tx_tuf++;
3316 if (txstat & ATW_TXSTAT_TLT)
3317 sc->sc_stats.ts_tx_tlt++;
3318 if (txstat & ATW_TXSTAT_TRT)
3319 sc->sc_stats.ts_tx_trt++;
3320 if (txstat & ATW_TXSTAT_TRO)
3321 sc->sc_stats.ts_tx_tro++;
3322 if (txstat & ATW_TXSTAT_SOFBR) {
3323 sc->sc_stats.ts_tx_sofbr++;
3324 }
3325
3326 if ((txstat & ATW_TXSTAT_ES) == 0)
3327 ifp->if_collisions +=
3328 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3329 else
3330 ifp->if_oerrors++;
3331
3332 ifp->if_opackets++;
3333 }
3334
3335 /*
3336 * If there are no more pending transmissions, cancel the watchdog
3337 * timer.
3338 */
3339 if (txs == NULL) {
3340 KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3341 sc->sc_tx_timer = 0;
3342 }
3343 }
3344
3345 /*
3346 * atw_watchdog: [ifnet interface function]
3347 *
3348 * Watchdog timer handler.
3349 */
3350 void
3351 atw_watchdog(struct ifnet *ifp)
3352 {
3353 struct atw_softc *sc = ifp->if_softc;
3354 struct ieee80211com *ic = &sc->sc_ic;
3355
3356 ifp->if_timer = 0;
3357 if (ATW_IS_ENABLED(sc) == 0)
3358 return;
3359
3360 if (sc->sc_rescan_timer) {
3361 if (--sc->sc_rescan_timer == 0)
3362 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3363 }
3364 if (sc->sc_tx_timer) {
3365 if (--sc->sc_tx_timer == 0 &&
3366 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3367 printf("%s: transmit timeout\n", ifp->if_xname);
3368 ifp->if_oerrors++;
3369 (void)atw_init(ifp);
3370 atw_start(ifp);
3371 }
3372 }
3373 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3374 ifp->if_timer = 1;
3375 ieee80211_watchdog(ic);
3376 }
3377
3378 static void
3379 atw_evcnt_detach(struct atw_softc *sc)
3380 {
3381 evcnt_detach(&sc->sc_sige_ev);
3382 evcnt_detach(&sc->sc_sfde_ev);
3383 evcnt_detach(&sc->sc_icve_ev);
3384 evcnt_detach(&sc->sc_crc32e_ev);
3385 evcnt_detach(&sc->sc_crc16e_ev);
3386 evcnt_detach(&sc->sc_recv_ev);
3387 }
3388
3389 static void
3390 atw_evcnt_attach(struct atw_softc *sc)
3391 {
3392 evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3393 NULL, sc->sc_if.if_xname, "recv");
3394 evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3395 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3396 evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3397 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3398 evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3399 &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3400 evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3401 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3402 evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3403 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3404 }
3405
3406 #ifdef ATW_DEBUG
3407 static void
3408 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3409 {
3410 struct atw_softc *sc = ifp->if_softc;
3411 struct mbuf *m;
3412 int i, noctets = 0;
3413
3414 printf("%s: %d-byte packet\n", device_xname(&sc->sc_dev),
3415 m0->m_pkthdr.len);
3416
3417 for (m = m0; m; m = m->m_next) {
3418 if (m->m_len == 0)
3419 continue;
3420 for (i = 0; i < m->m_len; i++) {
3421 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3422 if (++noctets % 24 == 0)
3423 printf("\n");
3424 }
3425 }
3426 printf("%s%s: %d bytes emitted\n",
3427 (noctets % 24 != 0) ? "\n" : "", device_xname(&sc->sc_dev), noctets);
3428 }
3429 #endif /* ATW_DEBUG */
3430
3431 /*
3432 * atw_start: [ifnet interface function]
3433 *
3434 * Start packet transmission on the interface.
3435 */
3436 void
3437 atw_start(struct ifnet *ifp)
3438 {
3439 struct atw_softc *sc = ifp->if_softc;
3440 struct ieee80211_key *k;
3441 struct ieee80211com *ic = &sc->sc_ic;
3442 struct ieee80211_node *ni;
3443 struct ieee80211_frame_min *whm;
3444 struct ieee80211_frame *wh;
3445 struct atw_frame *hh;
3446 struct mbuf *m0, *m;
3447 struct atw_txsoft *txs, *last_txs;
3448 struct atw_txdesc *txd;
3449 int npkt, rate;
3450 bus_dmamap_t dmamap;
3451 int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3452
3453 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3454 device_xname(&sc->sc_dev), sc->sc_flags, ifp->if_flags));
3455
3456 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3457 return;
3458
3459 /*
3460 * Remember the previous number of free descriptors and
3461 * the first descriptor we'll use.
3462 */
3463 ofree = sc->sc_txfree;
3464 firsttx = lasttx = sc->sc_txnext;
3465
3466 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3467 device_xname(&sc->sc_dev), ofree, firsttx));
3468
3469 /*
3470 * Loop through the send queue, setting up transmit descriptors
3471 * until we drain the queue, or use up all available transmit
3472 * descriptors.
3473 */
3474 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3475 sc->sc_txfree != 0) {
3476
3477 /*
3478 * Grab a packet off the management queue, if it
3479 * is not empty. Otherwise, from the data queue.
3480 */
3481 IF_DEQUEUE(&ic->ic_mgtq, m0);
3482 if (m0 != NULL) {
3483 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3484 m0->m_pkthdr.rcvif = NULL;
3485 } else if (ic->ic_state != IEEE80211_S_RUN)
3486 break; /* send no data until associated */
3487 else {
3488 IFQ_DEQUEUE(&ifp->if_snd, m0);
3489 if (m0 == NULL)
3490 break;
3491 #if NBPFILTER > 0
3492 if (ifp->if_bpf != NULL)
3493 bpf_mtap(ifp->if_bpf, m0);
3494 #endif /* NBPFILTER > 0 */
3495 ni = ieee80211_find_txnode(ic,
3496 mtod(m0, struct ether_header *)->ether_dhost);
3497 if (ni == NULL) {
3498 ifp->if_oerrors++;
3499 break;
3500 }
3501 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3502 ieee80211_free_node(ni);
3503 ifp->if_oerrors++;
3504 break;
3505 }
3506 }
3507
3508 rate = MAX(ieee80211_get_rate(ni), 2);
3509
3510 whm = mtod(m0, struct ieee80211_frame_min *);
3511
3512 if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3513 k = NULL;
3514 else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3515 m_freem(m0);
3516 ieee80211_free_node(ni);
3517 ifp->if_oerrors++;
3518 break;
3519 }
3520
3521 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3522 ic->ic_flags, ic->ic_fragthreshold, rate,
3523 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3524 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3525 m_freem(m0);
3526 break;
3527 }
3528
3529 /* XXX Misleading if fragmentation is enabled. Better
3530 * to fragment in software?
3531 */
3532 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3533
3534 #if NBPFILTER > 0
3535 /*
3536 * Pass the packet to any BPF listeners.
3537 */
3538 if (ic->ic_rawbpf != NULL)
3539 bpf_mtap((void *)ic->ic_rawbpf, m0);
3540
3541 if (sc->sc_radiobpf != NULL) {
3542 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3543
3544 tap->at_rate = rate;
3545
3546 bpf_mtap2(sc->sc_radiobpf, tap,
3547 sizeof(sc->sc_txtapu), m0);
3548 }
3549 #endif /* NBPFILTER > 0 */
3550
3551 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3552
3553 if (ni != NULL)
3554 ieee80211_free_node(ni);
3555
3556 if (m0 == NULL) {
3557 ifp->if_oerrors++;
3558 break;
3559 }
3560
3561 /* just to make sure. */
3562 m0 = m_pullup(m0, sizeof(struct atw_frame));
3563
3564 if (m0 == NULL) {
3565 ifp->if_oerrors++;
3566 break;
3567 }
3568
3569 hh = mtod(m0, struct atw_frame *);
3570 wh = &hh->atw_ihdr;
3571
3572 /* Copy everything we need from the 802.11 header:
3573 * Frame Control; address 1, address 3, or addresses
3574 * 3 and 4. NIC fills in BSSID, SA.
3575 */
3576 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3577 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3578 panic("%s: illegal WDS frame",
3579 device_xname(&sc->sc_dev));
3580 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3581 } else
3582 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3583
3584 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3585
3586 /* initialize remaining Tx parameters */
3587 memset(&hh->u, 0, sizeof(hh->u));
3588
3589 hh->atw_rate = rate * 5;
3590 /* XXX this could be incorrect if M_FCS. _encap should
3591 * probably strip FCS just in case it sticks around in
3592 * bridged packets.
3593 */
3594 hh->atw_service = 0x00; /* XXX guess */
3595 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3596 sizeof(struct atw_frame));
3597
3598 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3599 hh->atw_rtylmt = 3;
3600 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3601 #if 0
3602 if (do_encrypt) {
3603 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3604 hh->atw_keyid = ic->ic_def_txkey;
3605 }
3606 #endif
3607
3608 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3609 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3610 if (txs->txs_d0.d_residue)
3611 hh->atw_head_plcplen |= htole16(0x8000);
3612 if (txs->txs_dn.d_residue)
3613 hh->atw_tail_plcplen |= htole16(0x8000);
3614 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3615 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3616
3617 /* never fragment multicast frames */
3618 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3619 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3620 } else if (sc->sc_flags & ATWF_RTSCTS) {
3621 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3622 }
3623
3624 #ifdef ATW_DEBUG
3625 hh->atw_fragnum = 0;
3626
3627 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3628 printf("%s: dst = %s, rate = 0x%02x, "
3629 "service = 0x%02x, paylen = 0x%04x\n",
3630 device_xname(&sc->sc_dev), ether_sprintf(hh->atw_dst),
3631 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3632
3633 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3634 "dur1 = 0x%04x, dur2 = 0x%04x, "
3635 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3636 device_xname(&sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3637 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3638 hh->atw_tail_dur, hh->atw_head_dur);
3639
3640 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3641 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3642 device_xname(&sc->sc_dev), hh->atw_hdrctl,
3643 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3644
3645 printf("%s: keyid = %d\n",
3646 device_xname(&sc->sc_dev), hh->atw_keyid);
3647
3648 atw_dump_pkt(ifp, m0);
3649 }
3650 #endif /* ATW_DEBUG */
3651
3652 dmamap = txs->txs_dmamap;
3653
3654 /*
3655 * Load the DMA map. Copy and try (once) again if the packet
3656 * didn't fit in the alloted number of segments.
3657 */
3658 for (first = 1;
3659 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3660 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3661 first = 0) {
3662 MGETHDR(m, M_DONTWAIT, MT_DATA);
3663 if (m == NULL) {
3664 aprint_error_dev(&sc->sc_dev, "unable to allocate Tx mbuf\n");
3665 break;
3666 }
3667 if (m0->m_pkthdr.len > MHLEN) {
3668 MCLGET(m, M_DONTWAIT);
3669 if ((m->m_flags & M_EXT) == 0) {
3670 aprint_error_dev(&sc->sc_dev, "unable to allocate Tx "
3671 "cluster\n");
3672 m_freem(m);
3673 break;
3674 }
3675 }
3676 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3677 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3678 m_freem(m0);
3679 m0 = m;
3680 m = NULL;
3681 }
3682 if (error != 0) {
3683 aprint_error_dev(&sc->sc_dev, "unable to load Tx buffer, "
3684 "error = %d\n", error);
3685 m_freem(m0);
3686 break;
3687 }
3688
3689 /*
3690 * Ensure we have enough descriptors free to describe
3691 * the packet.
3692 */
3693 if (dmamap->dm_nsegs > sc->sc_txfree) {
3694 /*
3695 * Not enough free descriptors to transmit
3696 * this packet. Unload the DMA map and
3697 * drop the packet. Notify the upper layer
3698 * that there are no more slots left.
3699 *
3700 * XXX We could allocate an mbuf and copy, but
3701 * XXX it is worth it?
3702 */
3703 bus_dmamap_unload(sc->sc_dmat, dmamap);
3704 m_freem(m0);
3705 break;
3706 }
3707
3708 /*
3709 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3710 */
3711
3712 /* Sync the DMA map. */
3713 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3714 BUS_DMASYNC_PREWRITE);
3715
3716 /* XXX arbitrary retry limit; 8 because I have seen it in
3717 * use already and maybe 0 means "no tries" !
3718 */
3719 ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3720
3721 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3722 device_xname(&sc->sc_dev), rate * 5));
3723 ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3724
3725 /*
3726 * Initialize the transmit descriptors.
3727 */
3728 for (nexttx = sc->sc_txnext, seg = 0;
3729 seg < dmamap->dm_nsegs;
3730 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3731 /*
3732 * If this is the first descriptor we're
3733 * enqueueing, don't set the OWN bit just
3734 * yet. That could cause a race condition.
3735 * We'll do it below.
3736 */
3737 txd = &sc->sc_txdescs[nexttx];
3738 txd->at_ctl = ctl |
3739 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3740
3741 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3742 txd->at_flags =
3743 htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3744 ATW_TXFLAG_TBS1_MASK)) |
3745 ((nexttx == (ATW_NTXDESC - 1))
3746 ? htole32(ATW_TXFLAG_TER) : 0);
3747 lasttx = nexttx;
3748 }
3749
3750 /* Set `first segment' and `last segment' appropriately. */
3751 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3752 htole32(ATW_TXFLAG_FS);
3753 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3754
3755 #ifdef ATW_DEBUG
3756 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3757 printf(" txsoft %p transmit chain:\n", txs);
3758 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3759 printf(" descriptor %d:\n", seg);
3760 printf(" at_ctl: 0x%08x\n",
3761 le32toh(sc->sc_txdescs[seg].at_ctl));
3762 printf(" at_flags: 0x%08x\n",
3763 le32toh(sc->sc_txdescs[seg].at_flags));
3764 printf(" at_buf1: 0x%08x\n",
3765 le32toh(sc->sc_txdescs[seg].at_buf1));
3766 printf(" at_buf2: 0x%08x\n",
3767 le32toh(sc->sc_txdescs[seg].at_buf2));
3768 if (seg == lasttx)
3769 break;
3770 }
3771 }
3772 #endif
3773
3774 /* Sync the descriptors we're using. */
3775 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3776 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3777
3778 /*
3779 * Store a pointer to the packet so we can free it later,
3780 * and remember what txdirty will be once the packet is
3781 * done.
3782 */
3783 txs->txs_mbuf = m0;
3784 txs->txs_firstdesc = sc->sc_txnext;
3785 txs->txs_lastdesc = lasttx;
3786 txs->txs_ndescs = dmamap->dm_nsegs;
3787
3788 /* Advance the tx pointer. */
3789 sc->sc_txfree -= dmamap->dm_nsegs;
3790 sc->sc_txnext = nexttx;
3791
3792 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3793 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3794
3795 last_txs = txs;
3796 }
3797
3798 if (sc->sc_txfree != ofree) {
3799 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3800 device_xname(&sc->sc_dev), lasttx, firsttx));
3801 /*
3802 * Cause a transmit interrupt to happen on the
3803 * last packet we enqueued.
3804 */
3805 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3806 ATW_CDTXSYNC(sc, lasttx, 1,
3807 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3808
3809 /*
3810 * The entire packet chain is set up. Give the
3811 * first descriptor to the chip now.
3812 */
3813 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3814 ATW_CDTXSYNC(sc, firsttx, 1,
3815 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3816
3817 /* Wake up the transmitter. */
3818 ATW_WRITE(sc, ATW_TDR, 0x1);
3819
3820 if (txs == NULL || sc->sc_txfree == 0)
3821 ifp->if_flags |= IFF_OACTIVE;
3822
3823 /* Set a watchdog timer in case the chip flakes out. */
3824 sc->sc_tx_timer = 5;
3825 ifp->if_timer = 1;
3826 }
3827 }
3828
3829 /*
3830 * atw_ioctl: [ifnet interface function]
3831 *
3832 * Handle control requests from the operator.
3833 */
3834 int
3835 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3836 {
3837 struct atw_softc *sc = ifp->if_softc;
3838 int s, error = 0;
3839
3840 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3841 if (!device_is_active(&sc->sc_dev))
3842 return ENXIO;
3843
3844 s = splnet();
3845
3846 switch (cmd) {
3847 case SIOCSIFFLAGS:
3848 if (ifp->if_flags & IFF_UP) {
3849 if (ATW_IS_ENABLED(sc)) {
3850 /*
3851 * To avoid rescanning another access point,
3852 * do not call atw_init() here. Instead,
3853 * only reflect media settings.
3854 */
3855 atw_filter_setup(sc);
3856 } else
3857 error = atw_init(ifp);
3858 } else if (ATW_IS_ENABLED(sc))
3859 atw_stop(ifp, 1);
3860 break;
3861 case SIOCADDMULTI:
3862 case SIOCDELMULTI:
3863 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3864 if (ifp->if_flags & IFF_RUNNING)
3865 atw_filter_setup(sc); /* do not rescan */
3866 error = 0;
3867 }
3868 break;
3869 default:
3870 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3871 if (error == ENETRESET || error == ERESTART) {
3872 if (is_running(ifp))
3873 error = atw_init(ifp);
3874 else
3875 error = 0;
3876 }
3877 break;
3878 }
3879
3880 /* Try to get more packets going. */
3881 if (ATW_IS_ENABLED(sc))
3882 atw_start(ifp);
3883
3884 splx(s);
3885 return (error);
3886 }
3887
3888 static int
3889 atw_media_change(struct ifnet *ifp)
3890 {
3891 int error;
3892
3893 error = ieee80211_media_change(ifp);
3894 if (error == ENETRESET) {
3895 if (is_running(ifp))
3896 error = atw_init(ifp);
3897 else
3898 error = 0;
3899 }
3900 return error;
3901 }
3902