atw.c revision 1.141 1 /* $NetBSD: atw.c,v 1.141 2008/11/07 00:20:02 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.141 2008/11/07 00:20:02 dyoung Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/time.h>
52 #include <lib/libkern/libkern.h>
53
54 #include <machine/endian.h>
55
56 #include <uvm/uvm_extern.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #include <net80211/ieee80211_netbsd.h>
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70
71 #include <sys/bus.h>
72 #include <sys/intr.h>
73
74 #include <dev/ic/atwreg.h>
75 #include <dev/ic/rf3000reg.h>
76 #include <dev/ic/si4136reg.h>
77 #include <dev/ic/atwvar.h>
78 #include <dev/ic/smc93cx6var.h>
79
80 /* XXX TBD open questions
81 *
82 *
83 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
84 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
85 * handle this for me?
86 *
87 */
88 /* device attachment
89 *
90 * print TOFS[012]
91 *
92 * device initialization
93 *
94 * clear ATW_FRCTL_MAXPSP to disable max power saving
95 * set ATW_TXBR_ALCUPDATE to enable ALC
96 * set TOFS[012]? (hope not)
97 * disable rx/tx
98 * set ATW_PAR_SWR (software reset)
99 * wait for ATW_PAR_SWR clear
100 * disable interrupts
101 * ack status register
102 * enable interrupts
103 *
104 * rx/tx initialization
105 *
106 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
107 * allocate and init descriptor rings
108 * write ATW_PAR_DSL (descriptor skip length)
109 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
110 * write ATW_NAR_SQ for one/both transmit descriptor rings
111 * write ATW_NAR_SQ for one/both transmit descriptor rings
112 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 *
114 * rx/tx end
115 *
116 * stop DMA
117 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
118 * flush tx w/ ATW_NAR_HF
119 *
120 * scan
121 *
122 * initialize rx/tx
123 *
124 * BSS join: (re)association response
125 *
126 * set ATW_FRCTL_AID
127 *
128 * optimizations ???
129 *
130 */
131
132 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
133
134 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
135 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
136 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
137
138 int atw_pseudo_milli = 1;
139 int atw_magic_delay1 = 100 * 1000;
140 int atw_magic_delay2 = 100 * 1000;
141 /* more magic multi-millisecond delays (units: microseconds) */
142 int atw_nar_delay = 20 * 1000;
143 int atw_magic_delay4 = 10 * 1000;
144 int atw_rf_delay1 = 10 * 1000;
145 int atw_rf_delay2 = 5 * 1000;
146 int atw_plcphd_delay = 2 * 1000;
147 int atw_bbp_io_enable_delay = 20 * 1000;
148 int atw_bbp_io_disable_delay = 2 * 1000;
149 int atw_writewep_delay = 1000;
150 int atw_beacon_len_adjust = 4;
151 int atw_dwelltime = 200;
152 int atw_xindiv2 = 0;
153
154 #ifdef ATW_DEBUG
155 int atw_debug = 0;
156
157 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
158 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
159 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
160 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
161 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
162 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
163
164 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
165 static void atw_print_regs(struct atw_softc *, const char *);
166
167 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
168 # ifdef ATW_BBPDEBUG
169 static void atw_rf3000_print(struct atw_softc *);
170 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
171 # endif /* ATW_BBPDEBUG */
172
173 # ifdef ATW_SYNDEBUG
174 static void atw_si4126_print(struct atw_softc *);
175 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
176 # endif /* ATW_SYNDEBUG */
177
178 #else
179 #define ATW_DPRINTF(x)
180 #define ATW_DPRINTF2(x)
181 #define ATW_DPRINTF3(x)
182 #define DPRINTF(sc, x) /* nothing */
183 #define DPRINTF2(sc, x) /* nothing */
184 #define DPRINTF3(sc, x) /* nothing */
185 #endif
186
187 /* ifnet methods */
188 int atw_init(struct ifnet *);
189 int atw_ioctl(struct ifnet *, u_long, void *);
190 void atw_start(struct ifnet *);
191 void atw_stop(struct ifnet *, int);
192 void atw_watchdog(struct ifnet *);
193
194 /* Device attachment */
195 void atw_attach(struct atw_softc *);
196 int atw_detach(struct atw_softc *);
197 static void atw_evcnt_attach(struct atw_softc *);
198 static void atw_evcnt_detach(struct atw_softc *);
199
200 /* Rx/Tx process */
201 int atw_add_rxbuf(struct atw_softc *, int);
202 void atw_idle(struct atw_softc *, u_int32_t);
203 void atw_rxdrain(struct atw_softc *);
204 void atw_txdrain(struct atw_softc *);
205
206 /* Device (de)activation and power state */
207 void atw_disable(struct atw_softc *);
208 int atw_enable(struct atw_softc *);
209 void atw_reset(struct atw_softc *);
210
211 /* Interrupt handlers */
212 void atw_linkintr(struct atw_softc *, u_int32_t);
213 void atw_rxintr(struct atw_softc *);
214 void atw_txintr(struct atw_softc *);
215
216 /* 802.11 state machine */
217 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
218 static void atw_next_scan(void *);
219 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
220 struct ieee80211_node *, int, int, u_int32_t);
221 static int atw_tune(struct atw_softc *);
222
223 /* Device initialization */
224 static void atw_bbp_io_init(struct atw_softc *);
225 static void atw_cfp_init(struct atw_softc *);
226 static void atw_cmdr_init(struct atw_softc *);
227 static void atw_ifs_init(struct atw_softc *);
228 static void atw_nar_init(struct atw_softc *);
229 static void atw_response_times_init(struct atw_softc *);
230 static void atw_rf_reset(struct atw_softc *);
231 static void atw_test1_init(struct atw_softc *);
232 static void atw_tofs0_init(struct atw_softc *);
233 static void atw_tofs2_init(struct atw_softc *);
234 static void atw_txlmt_init(struct atw_softc *);
235 static void atw_wcsr_init(struct atw_softc *);
236
237 /* Key management */
238 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
239 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
240 const u_int8_t[IEEE80211_ADDR_LEN]);
241 static void atw_key_update_begin(struct ieee80211com *);
242 static void atw_key_update_end(struct ieee80211com *);
243
244 /* RAM/ROM utilities */
245 static void atw_clear_sram(struct atw_softc *);
246 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
247 static int atw_read_srom(struct atw_softc *);
248
249 /* BSS setup */
250 static void atw_predict_beacon(struct atw_softc *);
251 static void atw_start_beacon(struct atw_softc *, int);
252 static void atw_write_bssid(struct atw_softc *);
253 static void atw_write_ssid(struct atw_softc *);
254 static void atw_write_sup_rates(struct atw_softc *);
255 static void atw_write_wep(struct atw_softc *);
256
257 /* Media */
258 static int atw_media_change(struct ifnet *);
259
260 static void atw_filter_setup(struct atw_softc *);
261
262 /* 802.11 utilities */
263 static uint64_t atw_get_tsft(struct atw_softc *);
264 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
265 uint32_t);
266 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
267 static void atw_node_free(struct ieee80211_node *);
268
269 /*
270 * Tuner/transceiver/modem
271 */
272 static void atw_bbp_io_enable(struct atw_softc *, int);
273
274 /* RFMD RF3000 Baseband Processor */
275 static int atw_rf3000_init(struct atw_softc *);
276 static int atw_rf3000_tune(struct atw_softc *, u_int);
277 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
278
279 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
280 static void atw_si4126_tune(struct atw_softc *, u_int);
281 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
282
283 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
284 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
285
286 const char *atw_tx_state[] = {
287 "STOPPED",
288 "RUNNING - read descriptor",
289 "RUNNING - transmitting",
290 "RUNNING - filling fifo", /* XXX */
291 "SUSPENDED",
292 "RUNNING -- write descriptor",
293 "RUNNING -- write last descriptor",
294 "RUNNING - fifo full"
295 };
296
297 const char *atw_rx_state[] = {
298 "STOPPED",
299 "RUNNING - read descriptor",
300 "RUNNING - check this packet, pre-fetch next",
301 "RUNNING - wait for reception",
302 "SUSPENDED",
303 "RUNNING - write descriptor",
304 "RUNNING - flush fifo",
305 "RUNNING - fifo drain"
306 };
307
308 static inline int
309 is_running(struct ifnet *ifp)
310 {
311 return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
312 }
313
314 int
315 atw_activate(device_t self, enum devact act)
316 {
317 struct atw_softc *sc = device_private(self);
318 int rv = 0, s;
319
320 s = splnet();
321 switch (act) {
322 case DVACT_ACTIVATE:
323 rv = EOPNOTSUPP;
324 break;
325
326 case DVACT_DEACTIVATE:
327 if_deactivate(&sc->sc_if);
328 break;
329 }
330 splx(s);
331 return rv;
332 }
333
334 /*
335 * atw_enable:
336 *
337 * Enable the ADM8211 chip.
338 */
339 int
340 atw_enable(struct atw_softc *sc)
341 {
342
343 if (ATW_IS_ENABLED(sc) == 0) {
344 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
345 aprint_error_dev(sc->sc_dev, "device enable failed\n");
346 return (EIO);
347 }
348 sc->sc_flags |= ATWF_ENABLED;
349 /* Power may have been removed, and WEP keys thus
350 * reset.
351 */
352 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
353 }
354 return (0);
355 }
356
357 /*
358 * atw_disable:
359 *
360 * Disable the ADM8211 chip.
361 */
362 void
363 atw_disable(struct atw_softc *sc)
364 {
365 if (!ATW_IS_ENABLED(sc))
366 return;
367 if (sc->sc_disable != NULL)
368 (*sc->sc_disable)(sc);
369 sc->sc_flags &= ~ATWF_ENABLED;
370 }
371
372 /* Returns -1 on failure. */
373 static int
374 atw_read_srom(struct atw_softc *sc)
375 {
376 struct seeprom_descriptor sd;
377 uint32_t test0, fail_bits;
378
379 (void)memset(&sd, 0, sizeof(sd));
380
381 test0 = ATW_READ(sc, ATW_TEST0);
382
383 switch (sc->sc_rev) {
384 case ATW_REVISION_BA:
385 case ATW_REVISION_CA:
386 fail_bits = ATW_TEST0_EPNE;
387 break;
388 default:
389 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
390 break;
391 }
392 if ((test0 & fail_bits) != 0) {
393 aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
394 return -1;
395 }
396
397 switch (test0 & ATW_TEST0_EPTYP_MASK) {
398 case ATW_TEST0_EPTYP_93c66:
399 ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
400 sc->sc_sromsz = 512;
401 sd.sd_chip = C56_66;
402 break;
403 case ATW_TEST0_EPTYP_93c46:
404 ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
405 sc->sc_sromsz = 128;
406 sd.sd_chip = C46;
407 break;
408 default:
409 printf("%s: unknown SROM type %" __PRIuBITS "\n",
410 device_xname(sc->sc_dev),
411 __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
412 return -1;
413 }
414
415 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
416
417 if (sc->sc_srom == NULL) {
418 aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
419 return -1;
420 }
421
422 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
423
424 /* ADM8211 has a single 32-bit register for controlling the
425 * 93cx6 SROM. Bit SRS enables the serial port. There is no
426 * "ready" bit. The ADM8211 input/output sense is the reverse
427 * of read_seeprom's.
428 */
429 sd.sd_tag = sc->sc_st;
430 sd.sd_bsh = sc->sc_sh;
431 sd.sd_regsize = 4;
432 sd.sd_control_offset = ATW_SPR;
433 sd.sd_status_offset = ATW_SPR;
434 sd.sd_dataout_offset = ATW_SPR;
435 sd.sd_CK = ATW_SPR_SCLK;
436 sd.sd_CS = ATW_SPR_SCS;
437 sd.sd_DI = ATW_SPR_SDO;
438 sd.sd_DO = ATW_SPR_SDI;
439 sd.sd_MS = ATW_SPR_SRS;
440 sd.sd_RDY = 0;
441
442 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
443 aprint_error_dev(sc->sc_dev, "could not read SROM\n");
444 free(sc->sc_srom, M_DEVBUF);
445 return -1;
446 }
447 #ifdef ATW_DEBUG
448 {
449 int i;
450 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
451 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
452 if (((i % 8) == 0) && (i != 0)) {
453 ATW_DPRINTF(("\n\t"));
454 }
455 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
456 }
457 ATW_DPRINTF(("\n"));
458 }
459 #endif /* ATW_DEBUG */
460 return 0;
461 }
462
463 #ifdef ATW_DEBUG
464 static void
465 atw_print_regs(struct atw_softc *sc, const char *where)
466 {
467 #define PRINTREG(sc, reg) \
468 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
469 device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
470
471 ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
472
473 PRINTREG(sc, ATW_PAR);
474 PRINTREG(sc, ATW_FRCTL);
475 PRINTREG(sc, ATW_TDR);
476 PRINTREG(sc, ATW_WTDP);
477 PRINTREG(sc, ATW_RDR);
478 PRINTREG(sc, ATW_WRDP);
479 PRINTREG(sc, ATW_RDB);
480 PRINTREG(sc, ATW_CSR3A);
481 PRINTREG(sc, ATW_TDBD);
482 PRINTREG(sc, ATW_TDBP);
483 PRINTREG(sc, ATW_STSR);
484 PRINTREG(sc, ATW_CSR5A);
485 PRINTREG(sc, ATW_NAR);
486 PRINTREG(sc, ATW_CSR6A);
487 PRINTREG(sc, ATW_IER);
488 PRINTREG(sc, ATW_CSR7A);
489 PRINTREG(sc, ATW_LPC);
490 PRINTREG(sc, ATW_TEST1);
491 PRINTREG(sc, ATW_SPR);
492 PRINTREG(sc, ATW_TEST0);
493 PRINTREG(sc, ATW_WCSR);
494 PRINTREG(sc, ATW_WPDR);
495 PRINTREG(sc, ATW_GPTMR);
496 PRINTREG(sc, ATW_GPIO);
497 PRINTREG(sc, ATW_BBPCTL);
498 PRINTREG(sc, ATW_SYNCTL);
499 PRINTREG(sc, ATW_PLCPHD);
500 PRINTREG(sc, ATW_MMIWADDR);
501 PRINTREG(sc, ATW_MMIRADDR1);
502 PRINTREG(sc, ATW_MMIRADDR2);
503 PRINTREG(sc, ATW_TXBR);
504 PRINTREG(sc, ATW_CSR15A);
505 PRINTREG(sc, ATW_ALCSTAT);
506 PRINTREG(sc, ATW_TOFS2);
507 PRINTREG(sc, ATW_CMDR);
508 PRINTREG(sc, ATW_PCIC);
509 PRINTREG(sc, ATW_PMCSR);
510 PRINTREG(sc, ATW_PAR0);
511 PRINTREG(sc, ATW_PAR1);
512 PRINTREG(sc, ATW_MAR0);
513 PRINTREG(sc, ATW_MAR1);
514 PRINTREG(sc, ATW_ATIMDA0);
515 PRINTREG(sc, ATW_ABDA1);
516 PRINTREG(sc, ATW_BSSID0);
517 PRINTREG(sc, ATW_TXLMT);
518 PRINTREG(sc, ATW_MIBCNT);
519 PRINTREG(sc, ATW_BCNT);
520 PRINTREG(sc, ATW_TSFTH);
521 PRINTREG(sc, ATW_TSC);
522 PRINTREG(sc, ATW_SYNRF);
523 PRINTREG(sc, ATW_BPLI);
524 PRINTREG(sc, ATW_CAP0);
525 PRINTREG(sc, ATW_CAP1);
526 PRINTREG(sc, ATW_RMD);
527 PRINTREG(sc, ATW_CFPP);
528 PRINTREG(sc, ATW_TOFS0);
529 PRINTREG(sc, ATW_TOFS1);
530 PRINTREG(sc, ATW_IFST);
531 PRINTREG(sc, ATW_RSPT);
532 PRINTREG(sc, ATW_TSFTL);
533 PRINTREG(sc, ATW_WEPCTL);
534 PRINTREG(sc, ATW_WESK);
535 PRINTREG(sc, ATW_WEPCNT);
536 PRINTREG(sc, ATW_MACTEST);
537 PRINTREG(sc, ATW_FER);
538 PRINTREG(sc, ATW_FEMR);
539 PRINTREG(sc, ATW_FPSR);
540 PRINTREG(sc, ATW_FFER);
541 #undef PRINTREG
542 }
543 #endif /* ATW_DEBUG */
544
545 /*
546 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
547 */
548 void
549 atw_attach(struct atw_softc *sc)
550 {
551 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
552 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
553 };
554 struct ieee80211com *ic = &sc->sc_ic;
555 struct ifnet *ifp = &sc->sc_if;
556 int country_code, error, i, nrate, srom_major;
557 u_int32_t reg;
558 static const char *type_strings[] = {"Intersil (not supported)",
559 "RFMD", "Marvel (not supported)"};
560
561 sc->sc_txth = atw_txthresh_tab_lo;
562
563 SIMPLEQ_INIT(&sc->sc_txfreeq);
564 SIMPLEQ_INIT(&sc->sc_txdirtyq);
565
566 #ifdef ATW_DEBUG
567 atw_print_regs(sc, "atw_attach");
568 #endif /* ATW_DEBUG */
569
570 /*
571 * Allocate the control data structures, and create and load the
572 * DMA map for it.
573 */
574 if ((error = bus_dmamem_alloc(sc->sc_dmat,
575 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
576 1, &sc->sc_cdnseg, 0)) != 0) {
577 aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
578 error);
579 goto fail_0;
580 }
581
582 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
583 sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
584 BUS_DMA_COHERENT)) != 0) {
585 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
586 error);
587 goto fail_1;
588 }
589
590 if ((error = bus_dmamap_create(sc->sc_dmat,
591 sizeof(struct atw_control_data), 1,
592 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
593 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
594 "error = %d\n", error);
595 goto fail_2;
596 }
597
598 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
599 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
600 0)) != 0) {
601 aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
602 error);
603 goto fail_3;
604 }
605
606 /*
607 * Create the transmit buffer DMA maps.
608 */
609 sc->sc_ntxsegs = ATW_NTXSEGS;
610 for (i = 0; i < ATW_TXQUEUELEN; i++) {
611 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
612 sc->sc_ntxsegs, MCLBYTES, 0, 0,
613 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
614 aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
615 "error = %d\n", i, error);
616 goto fail_4;
617 }
618 }
619
620 /*
621 * Create the receive buffer DMA maps.
622 */
623 for (i = 0; i < ATW_NRXDESC; i++) {
624 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
625 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
626 aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
627 "error = %d\n", i, error);
628 goto fail_5;
629 }
630 }
631 for (i = 0; i < ATW_NRXDESC; i++) {
632 sc->sc_rxsoft[i].rxs_mbuf = NULL;
633 }
634
635 switch (sc->sc_rev) {
636 case ATW_REVISION_AB:
637 case ATW_REVISION_AF:
638 sc->sc_sramlen = ATW_SRAM_A_SIZE;
639 break;
640 case ATW_REVISION_BA:
641 case ATW_REVISION_CA:
642 sc->sc_sramlen = ATW_SRAM_B_SIZE;
643 break;
644 }
645
646 /* Reset the chip to a known state. */
647 atw_reset(sc);
648
649 if (atw_read_srom(sc) == -1)
650 return;
651
652 sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
653 ATW_SR_RFTYPE_MASK);
654
655 sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
656 ATW_SR_BBPTYPE_MASK);
657
658 if (sc->sc_rftype >= __arraycount(type_strings)) {
659 aprint_error_dev(sc->sc_dev, "unknown RF\n");
660 return;
661 }
662 if (sc->sc_bbptype >= __arraycount(type_strings)) {
663 aprint_error_dev(sc->sc_dev, "unknown BBP\n");
664 return;
665 }
666
667 printf("%s: %s RF, %s BBP", device_xname(sc->sc_dev),
668 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
669
670 /* XXX There exists a Linux driver which seems to use RFType = 0 for
671 * MARVEL. My bug, or theirs?
672 */
673
674 reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
675
676 switch (sc->sc_rftype) {
677 case ATW_RFTYPE_INTERSIL:
678 reg |= ATW_SYNCTL_CS1;
679 break;
680 case ATW_RFTYPE_RFMD:
681 reg |= ATW_SYNCTL_CS0;
682 break;
683 case ATW_RFTYPE_MARVEL:
684 break;
685 }
686
687 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
688 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
689
690 reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
691
692 switch (sc->sc_bbptype) {
693 case ATW_BBPTYPE_INTERSIL:
694 reg |= ATW_BBPCTL_TWI;
695 break;
696 case ATW_BBPTYPE_RFMD:
697 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
698 ATW_BBPCTL_CCA_ACTLO;
699 break;
700 case ATW_BBPTYPE_MARVEL:
701 break;
702 case ATW_C_BBPTYPE_RFMD:
703 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
704 device_xname(sc->sc_dev));
705 break;
706 }
707
708 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
709 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
710
711 /*
712 * From this point forward, the attachment cannot fail. A failure
713 * before this point releases all resources that may have been
714 * allocated.
715 */
716 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
717
718 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
719 htole16(sc->sc_srom[ATW_SR_MAC00]),
720 htole16(sc->sc_srom[ATW_SR_MAC01]),
721 htole16(sc->sc_srom[ATW_SR_MAC10])));
722
723 srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
724 ATW_SR_MAJOR_MASK);
725
726 if (srom_major < 2)
727 sc->sc_rf3000_options1 = 0;
728 else if (sc->sc_rev == ATW_REVISION_BA) {
729 sc->sc_rf3000_options1 =
730 __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
731 ATW_SR_CR28_MASK);
732 } else
733 sc->sc_rf3000_options1 = 0;
734
735 sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
736 ATW_SR_CR29_MASK);
737
738 country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
739 ATW_SR_CTRY_MASK);
740
741 #define ADD_CHANNEL(_ic, _chan) do { \
742 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
743 _ic->ic_channels[_chan].ic_freq = \
744 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
745 } while (0)
746
747 /* Find available channels */
748 switch (country_code) {
749 case COUNTRY_MMK2: /* 1-14 */
750 ADD_CHANNEL(ic, 14);
751 /*FALLTHROUGH*/
752 case COUNTRY_ETSI: /* 1-13 */
753 for (i = 1; i <= 13; i++)
754 ADD_CHANNEL(ic, i);
755 break;
756 case COUNTRY_FCC: /* 1-11 */
757 case COUNTRY_IC: /* 1-11 */
758 for (i = 1; i <= 11; i++)
759 ADD_CHANNEL(ic, i);
760 break;
761 case COUNTRY_MMK: /* 14 */
762 ADD_CHANNEL(ic, 14);
763 break;
764 case COUNTRY_FRANCE: /* 10-13 */
765 for (i = 10; i <= 13; i++)
766 ADD_CHANNEL(ic, i);
767 break;
768 default: /* assume channels 10-11 */
769 case COUNTRY_SPAIN: /* 10-11 */
770 for (i = 10; i <= 11; i++)
771 ADD_CHANNEL(ic, i);
772 break;
773 }
774
775 /* Read the MAC address. */
776 reg = ATW_READ(sc, ATW_PAR0);
777 ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
778 ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
779 ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
780 ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
781 reg = ATW_READ(sc, ATW_PAR1);
782 ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
783 ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
784
785 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
786 printf(" could not get mac address, attach failed\n");
787 return;
788 }
789
790 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
791
792 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
793 ifp->if_softc = sc;
794 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
795 IFF_NOTRAILERS;
796 ifp->if_ioctl = atw_ioctl;
797 ifp->if_start = atw_start;
798 ifp->if_watchdog = atw_watchdog;
799 ifp->if_init = atw_init;
800 ifp->if_stop = atw_stop;
801 IFQ_SET_READY(&ifp->if_snd);
802
803 ic->ic_ifp = ifp;
804 ic->ic_phytype = IEEE80211_T_DS;
805 ic->ic_opmode = IEEE80211_M_STA;
806 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
807 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
808
809 nrate = 0;
810 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
811 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
812 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
813 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
814 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
815
816 /*
817 * Call MI attach routines.
818 */
819
820 if_attach(ifp);
821 ieee80211_ifattach(ic);
822
823 atw_evcnt_attach(sc);
824
825 sc->sc_newstate = ic->ic_newstate;
826 ic->ic_newstate = atw_newstate;
827
828 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
829 ic->ic_recv_mgmt = atw_recv_mgmt;
830
831 sc->sc_node_free = ic->ic_node_free;
832 ic->ic_node_free = atw_node_free;
833
834 sc->sc_node_alloc = ic->ic_node_alloc;
835 ic->ic_node_alloc = atw_node_alloc;
836
837 ic->ic_crypto.cs_key_delete = atw_key_delete;
838 ic->ic_crypto.cs_key_set = atw_key_set;
839 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
840 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
841
842 /* possibly we should fill in our own sc_send_prresp, since
843 * the ADM8211 is probably sending probe responses in ad hoc
844 * mode.
845 */
846
847 /* complete initialization */
848 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
849 callout_init(&sc->sc_scan_ch, 0);
850
851 #if NBPFILTER > 0
852 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
853 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
854 #endif
855
856 if (!pmf_device_register1(sc->sc_dev, NULL, NULL, atw_shutdown)) {
857 aprint_error_dev(sc->sc_dev,
858 "couldn't establish power handler\n");
859 } else
860 pmf_class_network_register(sc->sc_dev, &sc->sc_if);
861
862 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
863 sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
864 sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
865
866 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
867 sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
868 sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
869
870 ieee80211_announce(ic);
871 return;
872
873 /*
874 * Free any resources we've allocated during the failed attach
875 * attempt. Do this in reverse order and fall through.
876 */
877 fail_5:
878 for (i = 0; i < ATW_NRXDESC; i++) {
879 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
880 continue;
881 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
882 }
883 fail_4:
884 for (i = 0; i < ATW_TXQUEUELEN; i++) {
885 if (sc->sc_txsoft[i].txs_dmamap == NULL)
886 continue;
887 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
888 }
889 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
890 fail_3:
891 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
892 fail_2:
893 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
894 sizeof(struct atw_control_data));
895 fail_1:
896 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
897 fail_0:
898 return;
899 }
900
901 static struct ieee80211_node *
902 atw_node_alloc(struct ieee80211_node_table *nt)
903 {
904 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
905 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
906
907 DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
908 return ni;
909 }
910
911 static void
912 atw_node_free(struct ieee80211_node *ni)
913 {
914 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
915
916 DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
917 ether_sprintf(ni->ni_bssid)));
918 (*sc->sc_node_free)(ni);
919 }
920
921
922 static void
923 atw_test1_reset(struct atw_softc *sc)
924 {
925 switch (sc->sc_rev) {
926 case ATW_REVISION_BA:
927 if (1 /* XXX condition on transceiver type */) {
928 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
929 }
930 break;
931 case ATW_REVISION_CA:
932 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
933 break;
934 default:
935 break;
936 }
937 }
938
939 /*
940 * atw_reset:
941 *
942 * Perform a soft reset on the ADM8211.
943 */
944 void
945 atw_reset(struct atw_softc *sc)
946 {
947 int i;
948 uint32_t lpc;
949
950 ATW_WRITE(sc, ATW_NAR, 0x0);
951 DELAY(atw_nar_delay);
952
953 /* Reference driver has a cryptic remark indicating that this might
954 * power-on the chip. I know that it turns off power-saving....
955 */
956 ATW_WRITE(sc, ATW_FRCTL, 0x0);
957
958 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
959
960 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
961 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
962 break;
963 DELAY(atw_pseudo_milli);
964 }
965
966 /* ... and then pause 100ms longer for good measure. */
967 DELAY(atw_magic_delay1);
968
969 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
970
971 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
972 aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
973
974 /*
975 * Initialize the PCI Access Register.
976 */
977 sc->sc_busmode = ATW_PAR_PBL_8DW;
978
979 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
980 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
981 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
982
983 atw_test1_reset(sc);
984
985 /* Turn off maximum power saving, etc. */
986 ATW_WRITE(sc, ATW_FRCTL, 0x0);
987
988 DELAY(atw_magic_delay2);
989
990 /* Recall EEPROM. */
991 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
992
993 DELAY(atw_magic_delay4);
994
995 lpc = ATW_READ(sc, ATW_LPC);
996
997 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
998
999 /* A reset seems to affect the SRAM contents, so put them into
1000 * a known state.
1001 */
1002 atw_clear_sram(sc);
1003
1004 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1005 }
1006
1007 static void
1008 atw_clear_sram(struct atw_softc *sc)
1009 {
1010 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1011 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1012 /* XXX not for revision 0x20. */
1013 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1014 }
1015
1016 /* TBD atw_init
1017 *
1018 * set MAC based on ic->ic_bss->myaddr
1019 * write WEP keys
1020 * set TX rate
1021 */
1022
1023 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1024 * without receiving a beacon with the preferred BSSID & SSID.
1025 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1026 */
1027 static void
1028 atw_wcsr_init(struct atw_softc *sc)
1029 {
1030 uint32_t wcsr;
1031
1032 wcsr = ATW_READ(sc, ATW_WCSR);
1033 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1034 wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1035 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1036
1037 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1038 device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1039 }
1040
1041 /* Turn off power management. Set Rx store-and-forward mode. */
1042 static void
1043 atw_cmdr_init(struct atw_softc *sc)
1044 {
1045 uint32_t cmdr;
1046 cmdr = ATW_READ(sc, ATW_CMDR);
1047 cmdr &= ~ATW_CMDR_APM;
1048 cmdr |= ATW_CMDR_RTE;
1049 cmdr &= ~ATW_CMDR_DRT_MASK;
1050 cmdr |= ATW_CMDR_DRT_SF;
1051
1052 ATW_WRITE(sc, ATW_CMDR, cmdr);
1053 }
1054
1055 static void
1056 atw_tofs2_init(struct atw_softc *sc)
1057 {
1058 uint32_t tofs2;
1059 /* XXX this magic can probably be figured out from the RFMD docs */
1060 #ifndef ATW_REFSLAVE
1061 tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1062 __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1063 __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1064 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1065 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1066 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1067 __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1068 __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1069 #else
1070 /* XXX new magic from reference driver source */
1071 tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1072 __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1073 __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */
1074 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1075 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1076 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1077 __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */
1078 __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */
1079 #endif
1080 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1081 }
1082
1083 static void
1084 atw_nar_init(struct atw_softc *sc)
1085 {
1086 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1087 }
1088
1089 static void
1090 atw_txlmt_init(struct atw_softc *sc)
1091 {
1092 ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1093 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1094 }
1095
1096 static void
1097 atw_test1_init(struct atw_softc *sc)
1098 {
1099 uint32_t test1;
1100
1101 test1 = ATW_READ(sc, ATW_TEST1);
1102 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1103 /* XXX magic 0x1 */
1104 test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1105 ATW_WRITE(sc, ATW_TEST1, test1);
1106 }
1107
1108 static void
1109 atw_rf_reset(struct atw_softc *sc)
1110 {
1111 /* XXX this resets an Intersil RF front-end? */
1112 /* TBD condition on Intersil RFType? */
1113 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1114 DELAY(atw_rf_delay1);
1115 ATW_WRITE(sc, ATW_SYNRF, 0);
1116 DELAY(atw_rf_delay2);
1117 }
1118
1119 /* Set 16 TU max duration for the contention-free period (CFP). */
1120 static void
1121 atw_cfp_init(struct atw_softc *sc)
1122 {
1123 uint32_t cfpp;
1124
1125 cfpp = ATW_READ(sc, ATW_CFPP);
1126 cfpp &= ~ATW_CFPP_CFPMD;
1127 cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1128 ATW_WRITE(sc, ATW_CFPP, cfpp);
1129 }
1130
1131 static void
1132 atw_tofs0_init(struct atw_softc *sc)
1133 {
1134 /* XXX I guess that the Cardbus clock is 22 MHz?
1135 * I am assuming that the role of ATW_TOFS0_USCNT is
1136 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1137 * very clear on this point. It says in the datasheet that it is
1138 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1139 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1140 * these values. These values are also the power-on default.
1141 */
1142 ATW_WRITE(sc, ATW_TOFS0,
1143 __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1144 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1145 }
1146
1147 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1148 static void
1149 atw_ifs_init(struct atw_softc *sc)
1150 {
1151 uint32_t ifst;
1152 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1153 * Go figure.
1154 */
1155 ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1156 __SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1157 ATW_IFST_SIFS_MASK) |
1158 __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1159 __SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1160
1161 ATW_WRITE(sc, ATW_IFST, ifst);
1162 }
1163
1164 static void
1165 atw_response_times_init(struct atw_softc *sc)
1166 {
1167 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1168 * indicate that the MAC expects at least SIFS + MIRT microseconds
1169 * to pass after it transmits a frame that requires a response;
1170 * it waits at most SIFS + MART microseconds for the response.
1171 * Surely this is not the ACK timeout?
1172 */
1173 ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1174 __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1175 }
1176
1177 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1178 * engines read and write baseband registers after Rx and before
1179 * Tx, respectively.
1180 */
1181 static void
1182 atw_bbp_io_init(struct atw_softc *sc)
1183 {
1184 uint32_t mmiraddr2;
1185
1186 /* XXX The reference driver does this, but is it *really*
1187 * necessary?
1188 */
1189 switch (sc->sc_rev) {
1190 case ATW_REVISION_AB:
1191 case ATW_REVISION_AF:
1192 mmiraddr2 = 0x0;
1193 break;
1194 default:
1195 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1196 mmiraddr2 &=
1197 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1198 break;
1199 }
1200
1201 switch (sc->sc_bbptype) {
1202 case ATW_BBPTYPE_INTERSIL:
1203 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1204 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1205 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1206 break;
1207 case ATW_BBPTYPE_MARVEL:
1208 /* TBD find out the Marvel settings. */
1209 break;
1210 case ATW_BBPTYPE_RFMD:
1211 default:
1212 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1213 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1214 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1215 break;
1216 }
1217 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1218 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1219 }
1220
1221 /*
1222 * atw_init: [ ifnet interface function ]
1223 *
1224 * Initialize the interface. Must be called at splnet().
1225 */
1226 int
1227 atw_init(struct ifnet *ifp)
1228 {
1229 struct atw_softc *sc = ifp->if_softc;
1230 struct ieee80211com *ic = &sc->sc_ic;
1231 struct atw_txsoft *txs;
1232 struct atw_rxsoft *rxs;
1233 int i, error = 0;
1234
1235 if ((error = atw_enable(sc)) != 0)
1236 goto out;
1237
1238 /*
1239 * Cancel any pending I/O. This also resets.
1240 */
1241 atw_stop(ifp, 0);
1242
1243 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1244 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1245 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1246
1247 atw_wcsr_init(sc);
1248
1249 atw_cmdr_init(sc);
1250
1251 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1252 *
1253 * XXX Set transmit power for ATIM, RTS, Beacon.
1254 */
1255 ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1256 __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1257
1258 atw_tofs2_init(sc);
1259
1260 atw_nar_init(sc);
1261
1262 atw_txlmt_init(sc);
1263
1264 atw_test1_init(sc);
1265
1266 atw_rf_reset(sc);
1267
1268 atw_cfp_init(sc);
1269
1270 atw_tofs0_init(sc);
1271
1272 atw_ifs_init(sc);
1273
1274 /* XXX Fall asleep after one second of inactivity.
1275 * XXX A frame may only dribble in for 65536us.
1276 */
1277 ATW_WRITE(sc, ATW_RMD,
1278 __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1279
1280 atw_response_times_init(sc);
1281
1282 atw_bbp_io_init(sc);
1283
1284 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1285
1286 if ((error = atw_rf3000_init(sc)) != 0)
1287 goto out;
1288
1289 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1290 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1291 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1292
1293 /*
1294 * Initialize the transmit descriptor ring.
1295 */
1296 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1297 for (i = 0; i < ATW_NTXDESC; i++) {
1298 sc->sc_txdescs[i].at_ctl = 0;
1299 /* no transmit chaining */
1300 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1301 sc->sc_txdescs[i].at_buf2 =
1302 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1303 }
1304 /* use ring mode */
1305 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1306 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1307 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1308 sc->sc_txfree = ATW_NTXDESC;
1309 sc->sc_txnext = 0;
1310
1311 /*
1312 * Initialize the transmit job descriptors.
1313 */
1314 SIMPLEQ_INIT(&sc->sc_txfreeq);
1315 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1316 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1317 txs = &sc->sc_txsoft[i];
1318 txs->txs_mbuf = NULL;
1319 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1320 }
1321
1322 /*
1323 * Initialize the receive descriptor and receive job
1324 * descriptor rings.
1325 */
1326 for (i = 0; i < ATW_NRXDESC; i++) {
1327 rxs = &sc->sc_rxsoft[i];
1328 if (rxs->rxs_mbuf == NULL) {
1329 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1330 aprint_error_dev(sc->sc_dev, "unable to allocate or map rx "
1331 "buffer %d, error = %d\n",
1332 i, error);
1333 /*
1334 * XXX Should attempt to run with fewer receive
1335 * XXX buffers instead of just failing.
1336 */
1337 atw_rxdrain(sc);
1338 goto out;
1339 }
1340 } else
1341 atw_init_rxdesc(sc, i);
1342 }
1343 sc->sc_rxptr = 0;
1344
1345 /*
1346 * Initialize the interrupt mask and enable interrupts.
1347 */
1348 /* normal interrupts */
1349 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1350 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1351
1352 /* abnormal interrupts */
1353 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1354 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1355 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1356
1357 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1358 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1359 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1360 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1361 ATW_INTR_TRT;
1362
1363 sc->sc_linkint_mask &= sc->sc_inten;
1364 sc->sc_rxint_mask &= sc->sc_inten;
1365 sc->sc_txint_mask &= sc->sc_inten;
1366
1367 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1368 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1369
1370 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1371 device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1372
1373 /*
1374 * Give the transmit and receive rings to the ADM8211.
1375 */
1376 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1377 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1378
1379 sc->sc_txthresh = 0;
1380 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1381 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1382
1383 /* common 802.11 configuration */
1384 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1385 switch (ic->ic_opmode) {
1386 case IEEE80211_M_STA:
1387 break;
1388 case IEEE80211_M_AHDEMO: /* XXX */
1389 case IEEE80211_M_IBSS:
1390 ic->ic_flags |= IEEE80211_F_IBSSON;
1391 /*FALLTHROUGH*/
1392 case IEEE80211_M_HOSTAP: /* XXX */
1393 break;
1394 case IEEE80211_M_MONITOR: /* XXX */
1395 break;
1396 }
1397
1398 switch (ic->ic_opmode) {
1399 case IEEE80211_M_AHDEMO:
1400 case IEEE80211_M_HOSTAP:
1401 #ifndef IEEE80211_NO_HOSTAP
1402 ic->ic_bss->ni_intval = ic->ic_lintval;
1403 ic->ic_bss->ni_rssi = 0;
1404 ic->ic_bss->ni_rstamp = 0;
1405 #endif /* !IEEE80211_NO_HOSTAP */
1406 break;
1407 default: /* XXX */
1408 break;
1409 }
1410
1411 sc->sc_wepctl = 0;
1412
1413 atw_write_ssid(sc);
1414 atw_write_sup_rates(sc);
1415 atw_write_wep(sc);
1416
1417 ic->ic_state = IEEE80211_S_INIT;
1418
1419 /*
1420 * Set the receive filter. This will start the transmit and
1421 * receive processes.
1422 */
1423 atw_filter_setup(sc);
1424
1425 /*
1426 * Start the receive process.
1427 */
1428 ATW_WRITE(sc, ATW_RDR, 0x1);
1429
1430 /*
1431 * Note that the interface is now running.
1432 */
1433 ifp->if_flags |= IFF_RUNNING;
1434 ifp->if_flags &= ~IFF_OACTIVE;
1435
1436 /* send no beacons, yet. */
1437 atw_start_beacon(sc, 0);
1438
1439 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1440 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1441 else
1442 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1443 out:
1444 if (error) {
1445 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1446 sc->sc_tx_timer = 0;
1447 ifp->if_timer = 0;
1448 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1449 }
1450 #ifdef ATW_DEBUG
1451 atw_print_regs(sc, "end of init");
1452 #endif /* ATW_DEBUG */
1453
1454 return (error);
1455 }
1456
1457 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1458 * 0: MAC control of RF3000/Si4126.
1459 *
1460 * Applies power, or selects RF front-end? Sets reset condition.
1461 *
1462 * TBD support non-RFMD BBP, non-SiLabs synth.
1463 */
1464 static void
1465 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1466 {
1467 if (enable) {
1468 ATW_WRITE(sc, ATW_SYNRF,
1469 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1470 DELAY(atw_bbp_io_enable_delay);
1471 } else {
1472 ATW_WRITE(sc, ATW_SYNRF, 0);
1473 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1474 }
1475 }
1476
1477 static int
1478 atw_tune(struct atw_softc *sc)
1479 {
1480 int rc;
1481 u_int chan;
1482 struct ieee80211com *ic = &sc->sc_ic;
1483
1484 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1485 if (chan == IEEE80211_CHAN_ANY)
1486 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1487
1488 if (chan == sc->sc_cur_chan)
1489 return 0;
1490
1491 DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1492 sc->sc_cur_chan, chan));
1493
1494 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1495
1496 atw_si4126_tune(sc, chan);
1497 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1498 printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1499 chan);
1500
1501 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1502 DELAY(atw_nar_delay);
1503 ATW_WRITE(sc, ATW_RDR, 0x1);
1504
1505 if (rc == 0) {
1506 sc->sc_cur_chan = chan;
1507 sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1508 htole16(ic->ic_curchan->ic_freq);
1509 sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1510 htole16(ic->ic_curchan->ic_flags);
1511 }
1512
1513 return rc;
1514 }
1515
1516 #ifdef ATW_SYNDEBUG
1517 static void
1518 atw_si4126_print(struct atw_softc *sc)
1519 {
1520 struct ifnet *ifp = &sc->sc_if;
1521 u_int addr, val;
1522
1523 val = 0;
1524
1525 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1526 return;
1527
1528 for (addr = 0; addr <= 8; addr++) {
1529 printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1530 if (atw_si4126_read(sc, addr, &val) == 0) {
1531 printf("<unknown> (quitting print-out)\n");
1532 break;
1533 }
1534 printf("%05x\n", val);
1535 }
1536 }
1537 #endif /* ATW_SYNDEBUG */
1538
1539 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1540 *
1541 * The RF/IF synthesizer produces two reference frequencies for
1542 * the RF2948B transceiver. The first frequency the RF2948B requires
1543 * is two times the so-called "intermediate frequency" (IF). Since
1544 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1545 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second
1546 * frequency required by the transceiver is the radio frequency
1547 * (RF). This is a superheterodyne transceiver; for f(chan) the
1548 * center frequency of the channel we are tuning, RF = f(chan) -
1549 * IF.
1550 *
1551 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1552 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1553 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1554 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1555 */
1556 static void
1557 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1558 {
1559 u_int mhz;
1560 u_int R;
1561 u_int32_t gpio;
1562 u_int16_t gain;
1563
1564 #ifdef ATW_SYNDEBUG
1565 atw_si4126_print(sc);
1566 #endif /* ATW_SYNDEBUG */
1567
1568 if (chan == 14)
1569 mhz = 2484;
1570 else
1571 mhz = 2412 + 5 * (chan - 1);
1572
1573 /* Tune IF to 748 MHz to suit the IF LO input of the
1574 * RF2494B, which is 2 x IF. No need to set an IF divider
1575 * because an IF in 526 MHz - 952 MHz is allowed.
1576 *
1577 * XIN is 44.000 MHz, so divide it by two to get allowable
1578 * range of 2-25 MHz. SiLabs tells me that this is not
1579 * strictly necessary.
1580 */
1581
1582 if (atw_xindiv2)
1583 R = 44;
1584 else
1585 R = 88;
1586
1587 /* Power-up RF, IF synthesizers. */
1588 atw_si4126_write(sc, SI4126_POWER,
1589 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1590
1591 /* set LPWR, too? */
1592 atw_si4126_write(sc, SI4126_MAIN,
1593 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1594
1595 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1596 * set KP2 to 1.
1597 *
1598 * REFDIF This is different from the reference driver, which
1599 * always sets SI4126_GAIN to 0.
1600 */
1601 gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1602
1603 atw_si4126_write(sc, SI4126_GAIN, gain);
1604
1605 /* XIN = 44 MHz.
1606 *
1607 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1608 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1609 *
1610 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1611 * so that 1496/88 * 44 MHz = 748 MHz.
1612 */
1613 atw_si4126_write(sc, SI4126_IFN, 1496);
1614
1615 atw_si4126_write(sc, SI4126_IFR, R);
1616
1617 #ifndef ATW_REFSLAVE
1618 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1619 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1620 * which has no RF1!
1621 */
1622 atw_si4126_write(sc, SI4126_RF1R, R);
1623
1624 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1625 #endif
1626
1627 /* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1628 * where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44.
1629 * Now let's multiply it to mhz. So mhz - IF = N.
1630 */
1631 atw_si4126_write(sc, SI4126_RF2R, R);
1632
1633 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1634
1635 /* wait 100us from power-up for RF, IF to settle */
1636 DELAY(100);
1637
1638 gpio = ATW_READ(sc, ATW_GPIO);
1639 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1640 gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1641
1642 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1643 /* Set a Prism RF front-end to a special mode for channel 14?
1644 *
1645 * Apparently the SMC2635W needs this, although I don't think
1646 * it has a Prism RF.
1647 */
1648 gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1649 }
1650 ATW_WRITE(sc, ATW_GPIO, gpio);
1651
1652 #ifdef ATW_SYNDEBUG
1653 atw_si4126_print(sc);
1654 #endif /* ATW_SYNDEBUG */
1655 }
1656
1657 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1658 * diversity.
1659 *
1660 * !!!
1661 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1662 * !!!
1663 */
1664 static int
1665 atw_rf3000_init(struct atw_softc *sc)
1666 {
1667 int rc = 0;
1668
1669 atw_bbp_io_enable(sc, 1);
1670
1671 /* CCA is acquisition sensitive */
1672 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1673 __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1674
1675 if (rc != 0)
1676 goto out;
1677
1678 /* enable diversity */
1679 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1680
1681 if (rc != 0)
1682 goto out;
1683
1684 /* sensible setting from a binary-only driver */
1685 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1686 __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1687
1688 if (rc != 0)
1689 goto out;
1690
1691 /* magic from a binary-only driver */
1692 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1693 __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1694
1695 if (rc != 0)
1696 goto out;
1697
1698 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1699
1700 if (rc != 0)
1701 goto out;
1702
1703 /* XXX Reference driver remarks that Abocom sets this to 50.
1704 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1705 * in the "reserved" area of register RF3000_OPTIONS1.
1706 */
1707 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1708
1709 if (rc != 0)
1710 goto out;
1711
1712 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1713
1714 if (rc != 0)
1715 goto out;
1716
1717 out:
1718 atw_bbp_io_enable(sc, 0);
1719 return rc;
1720 }
1721
1722 #ifdef ATW_BBPDEBUG
1723 static void
1724 atw_rf3000_print(struct atw_softc *sc)
1725 {
1726 struct ifnet *ifp = &sc->sc_if;
1727 u_int addr, val;
1728
1729 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1730 return;
1731
1732 for (addr = 0x01; addr <= 0x15; addr++) {
1733 printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1734 if (atw_rf3000_read(sc, addr, &val) != 0) {
1735 printf("<unknown> (quitting print-out)\n");
1736 break;
1737 }
1738 printf("%08x\n", val);
1739 }
1740 }
1741 #endif /* ATW_BBPDEBUG */
1742
1743 /* Set the power settings on the BBP for channel `chan'. */
1744 static int
1745 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1746 {
1747 int rc = 0;
1748 u_int32_t reg;
1749 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1750
1751 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1752 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1753 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1754
1755 /* odd channels: LSB, even channels: MSB */
1756 if (chan % 2 == 1) {
1757 txpower &= 0xFF;
1758 lpf_cutoff &= 0xFF;
1759 lna_gs_thresh &= 0xFF;
1760 } else {
1761 txpower >>= 8;
1762 lpf_cutoff >>= 8;
1763 lna_gs_thresh >>= 8;
1764 }
1765
1766 #ifdef ATW_BBPDEBUG
1767 atw_rf3000_print(sc);
1768 #endif /* ATW_BBPDEBUG */
1769
1770 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1771 "lna_gs_thresh %02x\n",
1772 device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1773
1774 atw_bbp_io_enable(sc, 1);
1775
1776 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1777 __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1778 goto out;
1779
1780 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1781 goto out;
1782
1783 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1784 goto out;
1785
1786 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1787
1788 if (rc != 0)
1789 goto out;
1790
1791 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1792
1793 if (rc != 0)
1794 goto out;
1795
1796 #ifdef ATW_BBPDEBUG
1797 atw_rf3000_print(sc);
1798 #endif /* ATW_BBPDEBUG */
1799
1800 out:
1801 atw_bbp_io_enable(sc, 0);
1802
1803 /* set beacon, rts, atim transmit power */
1804 reg = ATW_READ(sc, ATW_PLCPHD);
1805 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1806 reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1807 ATW_PLCPHD_SERVICE_MASK);
1808 ATW_WRITE(sc, ATW_PLCPHD, reg);
1809 DELAY(atw_plcphd_delay);
1810
1811 return rc;
1812 }
1813
1814 /* Write a register on the RF3000 baseband processor using the
1815 * registers provided by the ADM8211 for this purpose.
1816 *
1817 * Return 0 on success.
1818 */
1819 static int
1820 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1821 {
1822 u_int32_t reg;
1823 int i;
1824
1825 reg = sc->sc_bbpctl_wr |
1826 __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1827 __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1828
1829 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1830 ATW_WRITE(sc, ATW_BBPCTL, reg);
1831 DELAY(2 * atw_pseudo_milli);
1832 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1833 break;
1834 }
1835
1836 if (i < 0) {
1837 printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1838 return ETIMEDOUT;
1839 }
1840 return 0;
1841 }
1842
1843 /* Read a register on the RF3000 baseband processor using the registers
1844 * the ADM8211 provides for this purpose.
1845 *
1846 * The 7-bit register address is addr. Record the 8-bit data in the register
1847 * in *val.
1848 *
1849 * Return 0 on success.
1850 *
1851 * XXX This does not seem to work. The ADM8211 must require more or
1852 * different magic to read the chip than to write it. Possibly some
1853 * of the magic I have derived from a binary-only driver concerns
1854 * the "chip address" (see the RF3000 manual).
1855 */
1856 #ifdef ATW_BBPDEBUG
1857 static int
1858 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1859 {
1860 u_int32_t reg;
1861 int i;
1862
1863 for (i = 1000; --i >= 0; ) {
1864 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1865 break;
1866 DELAY(100);
1867 }
1868
1869 if (i < 0) {
1870 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1871 device_xname(sc->sc_dev));
1872 return ETIMEDOUT;
1873 }
1874
1875 reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1876
1877 ATW_WRITE(sc, ATW_BBPCTL, reg);
1878
1879 for (i = 1000; --i >= 0; ) {
1880 DELAY(100);
1881 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1882 break;
1883 }
1884
1885 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1886
1887 if (i < 0) {
1888 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1889 device_xname(sc->sc_dev), reg);
1890 return ETIMEDOUT;
1891 }
1892 if (val != NULL)
1893 *val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1894 return 0;
1895 }
1896 #endif /* ATW_BBPDEBUG */
1897
1898 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1899 * provided by the ADM8211 for that purpose.
1900 *
1901 * val is 18 bits of data, and val is the 4-bit address of the register.
1902 *
1903 * Return 0 on success.
1904 */
1905 static void
1906 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1907 {
1908 uint32_t bits, mask, reg;
1909 const int nbits = 22;
1910
1911 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1912 KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1913
1914 bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1915 __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1916
1917 reg = ATW_SYNRF_SELSYN;
1918 /* reference driver: reset Si4126 serial bus to initial
1919 * conditions?
1920 */
1921 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1922 ATW_WRITE(sc, ATW_SYNRF, reg);
1923
1924 for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1925 if ((bits & mask) != 0)
1926 reg |= ATW_SYNRF_SYNDATA;
1927 else
1928 reg &= ~ATW_SYNRF_SYNDATA;
1929 ATW_WRITE(sc, ATW_SYNRF, reg);
1930 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1931 ATW_WRITE(sc, ATW_SYNRF, reg);
1932 }
1933 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1934 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1935 }
1936
1937 /* Read 18-bit data from the 4-bit address addr in Si4126
1938 * RF synthesizer and write the data to *val. Return 0 on success.
1939 *
1940 * XXX This does not seem to work. The ADM8211 must require more or
1941 * different magic to read the chip than to write it.
1942 */
1943 #ifdef ATW_SYNDEBUG
1944 static int
1945 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1946 {
1947 u_int32_t reg;
1948 int i;
1949
1950 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1951
1952 for (i = 1000; --i >= 0; ) {
1953 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1954 break;
1955 DELAY(100);
1956 }
1957
1958 if (i < 0) {
1959 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1960 device_xname(sc->sc_dev));
1961 return ETIMEDOUT;
1962 }
1963
1964 reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1965
1966 ATW_WRITE(sc, ATW_SYNCTL, reg);
1967
1968 for (i = 1000; --i >= 0; ) {
1969 DELAY(100);
1970 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1971 break;
1972 }
1973
1974 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1975
1976 if (i < 0) {
1977 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1978 device_xname(sc->sc_dev), reg);
1979 return ETIMEDOUT;
1980 }
1981 if (val != NULL)
1982 *val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1983 ATW_SYNCTL_DATA_MASK);
1984 return 0;
1985 }
1986 #endif /* ATW_SYNDEBUG */
1987
1988 /* XXX is the endianness correct? test. */
1989 #define atw_calchash(addr) \
1990 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1991
1992 /*
1993 * atw_filter_setup:
1994 *
1995 * Set the ADM8211's receive filter.
1996 */
1997 static void
1998 atw_filter_setup(struct atw_softc *sc)
1999 {
2000 struct ieee80211com *ic = &sc->sc_ic;
2001 struct ethercom *ec = &sc->sc_ec;
2002 struct ifnet *ifp = &sc->sc_if;
2003 int hash;
2004 u_int32_t hashes[2];
2005 struct ether_multi *enm;
2006 struct ether_multistep step;
2007
2008 /* According to comments in tlp_al981_filter_setup
2009 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2010 * multicast filter to be set while it is running. Hopefully
2011 * the ADM8211 is not the same!
2012 */
2013 if ((ifp->if_flags & IFF_RUNNING) != 0)
2014 atw_idle(sc, ATW_NAR_SR);
2015
2016 sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
2017 ifp->if_flags &= ~IFF_ALLMULTI;
2018
2019 /* XXX in scan mode, do not filter packets. Maybe this is
2020 * unnecessary.
2021 */
2022 if (ic->ic_state == IEEE80211_S_SCAN ||
2023 (ifp->if_flags & IFF_PROMISC) != 0) {
2024 sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2025 goto allmulti;
2026 }
2027
2028 hashes[0] = hashes[1] = 0x0;
2029
2030 /*
2031 * Program the 64-bit multicast hash filter.
2032 */
2033 ETHER_FIRST_MULTI(step, ec, enm);
2034 while (enm != NULL) {
2035 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2036 ETHER_ADDR_LEN) != 0)
2037 goto allmulti;
2038
2039 hash = atw_calchash(enm->enm_addrlo);
2040 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2041 ETHER_NEXT_MULTI(step, enm);
2042 sc->sc_opmode |= ATW_NAR_MM;
2043 }
2044 ifp->if_flags &= ~IFF_ALLMULTI;
2045 goto setit;
2046
2047 allmulti:
2048 sc->sc_opmode |= ATW_NAR_MM;
2049 ifp->if_flags |= IFF_ALLMULTI;
2050 hashes[0] = hashes[1] = 0xffffffff;
2051
2052 setit:
2053 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2054 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2055 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2056 DELAY(atw_nar_delay);
2057 ATW_WRITE(sc, ATW_RDR, 0x1);
2058
2059 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2060 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2061 }
2062
2063 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2064 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2065 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2066 * no beacon with the preferred BSSID and SSID in the number of
2067 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2068 */
2069 static void
2070 atw_write_bssid(struct atw_softc *sc)
2071 {
2072 struct ieee80211com *ic = &sc->sc_ic;
2073 u_int8_t *bssid;
2074
2075 bssid = ic->ic_bss->ni_bssid;
2076
2077 ATW_WRITE(sc, ATW_BSSID0,
2078 __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2079 __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2080 __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2081 __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2082
2083 ATW_WRITE(sc, ATW_ABDA1,
2084 (ATW_READ(sc, ATW_ABDA1) &
2085 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2086 __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2087 __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2088
2089 DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2090 ether_sprintf(sc->sc_bssid)));
2091 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2092
2093 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2094 }
2095
2096 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2097 * 16-bit word.
2098 */
2099 static void
2100 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2101 {
2102 u_int i;
2103 u_int8_t *ptr;
2104
2105 memcpy(&sc->sc_sram[ofs], buf, buflen);
2106
2107 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2108
2109 KASSERT(buflen + ofs <= sc->sc_sramlen);
2110
2111 ptr = &sc->sc_sram[ofs];
2112
2113 for (i = 0; i < buflen; i += 2) {
2114 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2115 __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2116 DELAY(atw_writewep_delay);
2117
2118 ATW_WRITE(sc, ATW_WESK,
2119 __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2120 DELAY(atw_writewep_delay);
2121 }
2122 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2123
2124 if (sc->sc_if.if_flags & IFF_DEBUG) {
2125 int n_octets = 0;
2126 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2127 device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2128 for (i = 0; i < buflen; i++) {
2129 printf(" %02x", ptr[i]);
2130 if (++n_octets % 24 == 0)
2131 printf("\n");
2132 }
2133 if (n_octets % 24 != 0)
2134 printf("\n");
2135 }
2136 }
2137
2138 static int
2139 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2140 {
2141 struct atw_softc *sc = ic->ic_ifp->if_softc;
2142 u_int keyix = k->wk_keyix;
2143
2144 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2145
2146 if (keyix >= IEEE80211_WEP_NKID)
2147 return 0;
2148 if (k->wk_keylen != 0)
2149 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2150
2151 return 1;
2152 }
2153
2154 static int
2155 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2156 const u_int8_t mac[IEEE80211_ADDR_LEN])
2157 {
2158 struct atw_softc *sc = ic->ic_ifp->if_softc;
2159
2160 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2161
2162 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2163 return 0;
2164
2165 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2166
2167 return 1;
2168 }
2169
2170 static void
2171 atw_key_update_begin(struct ieee80211com *ic)
2172 {
2173 #ifdef ATW_DEBUG
2174 struct ifnet *ifp = ic->ic_ifp;
2175 struct atw_softc *sc = ifp->if_softc;
2176 #endif
2177
2178 DPRINTF(sc, ("%s:\n", __func__));
2179 }
2180
2181 static void
2182 atw_key_update_end(struct ieee80211com *ic)
2183 {
2184 struct ifnet *ifp = ic->ic_ifp;
2185 struct atw_softc *sc = ifp->if_softc;
2186
2187 DPRINTF(sc, ("%s:\n", __func__));
2188
2189 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2190 return;
2191 if (ATW_IS_ENABLED(sc) == 0)
2192 return;
2193 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2194 atw_write_wep(sc);
2195 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2196 DELAY(atw_nar_delay);
2197 ATW_WRITE(sc, ATW_RDR, 0x1);
2198 }
2199
2200 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2201 static void
2202 atw_write_wep(struct atw_softc *sc)
2203 {
2204 #if 0
2205 struct ieee80211com *ic = &sc->sc_ic;
2206 u_int32_t reg;
2207 int i;
2208 #endif
2209 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2210 u_int8_t buf[IEEE80211_WEP_NKID]
2211 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2212
2213 sc->sc_wepctl = 0;
2214 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2215
2216 memset(&buf[0][0], 0, sizeof(buf));
2217
2218 #if 0
2219 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2220 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2221 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2222 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2223 buf[i][1] = ATW_WEP_ENABLED;
2224 } else {
2225 buf[i][1] = 0;
2226 continue;
2227 }
2228 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2229 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2230 ic->ic_nw_keys[i].wk_keylen - 1);
2231 }
2232
2233 reg = ATW_READ(sc, ATW_MACTEST);
2234 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2235 reg &= ~ATW_MACTEST_KEYID_MASK;
2236 reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2237 ATW_WRITE(sc, ATW_MACTEST, reg);
2238
2239 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2240 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2241
2242 switch (sc->sc_rev) {
2243 case ATW_REVISION_AB:
2244 case ATW_REVISION_AF:
2245 /* Bypass WEP on Rx. */
2246 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2247 break;
2248 default:
2249 break;
2250 }
2251 #endif
2252
2253 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2254 sizeof(buf));
2255
2256 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2257 }
2258
2259 static void
2260 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2261 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2262 {
2263 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2264
2265 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2266 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2267 return;
2268
2269 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2270
2271 switch (subtype) {
2272 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2273 case IEEE80211_FC0_SUBTYPE_BEACON:
2274 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2275 ic->ic_state == IEEE80211_S_RUN) {
2276 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2277 (void)ieee80211_ibss_merge(ni);
2278 }
2279 break;
2280 default:
2281 break;
2282 }
2283 return;
2284 }
2285
2286 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2287 * In ad hoc mode, the SSID is written to the beacons sent by the
2288 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2289 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2290 * indications.
2291 */
2292 static void
2293 atw_write_ssid(struct atw_softc *sc)
2294 {
2295 struct ieee80211com *ic = &sc->sc_ic;
2296 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2297 * it only expects the element length, not its ID.
2298 */
2299 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2300
2301 memset(buf, 0, sizeof(buf));
2302 buf[0] = ic->ic_bss->ni_esslen;
2303 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2304
2305 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2306 roundup(1 + ic->ic_bss->ni_esslen, 2));
2307 }
2308
2309 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2310 * In ad hoc mode, the supported rates are written to beacons sent by the
2311 * ADM8211.
2312 */
2313 static void
2314 atw_write_sup_rates(struct atw_softc *sc)
2315 {
2316 struct ieee80211com *ic = &sc->sc_ic;
2317 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2318 * supported rates
2319 */
2320 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2321
2322 memset(buf, 0, sizeof(buf));
2323
2324 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2325
2326 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2327 ic->ic_bss->ni_rates.rs_nrates);
2328
2329 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2330 }
2331
2332 /* Start/stop sending beacons. */
2333 void
2334 atw_start_beacon(struct atw_softc *sc, int start)
2335 {
2336 struct ieee80211com *ic = &sc->sc_ic;
2337 uint16_t chan;
2338 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2339 size_t len;
2340
2341 if (ATW_IS_ENABLED(sc) == 0)
2342 return;
2343
2344 /* start beacons */
2345 len = sizeof(struct ieee80211_frame) +
2346 8 /* timestamp */ + 2 /* beacon interval */ +
2347 2 /* capability info */ +
2348 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2349 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2350 3 /* DS parameters */ +
2351 IEEE80211_CRC_LEN;
2352
2353 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2354 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2355 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2356
2357 ATW_WRITE(sc, ATW_BCNT, bcnt);
2358 ATW_WRITE(sc, ATW_CAP1, cap1);
2359
2360 if (!start)
2361 return;
2362
2363 /* TBD use ni_capinfo */
2364
2365 capinfo = 0;
2366 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2367 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2368 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2369 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2370
2371 switch (ic->ic_opmode) {
2372 case IEEE80211_M_IBSS:
2373 len += 4; /* IBSS parameters */
2374 capinfo |= IEEE80211_CAPINFO_IBSS;
2375 break;
2376 case IEEE80211_M_HOSTAP:
2377 /* XXX 6-byte minimum TIM */
2378 len += atw_beacon_len_adjust;
2379 capinfo |= IEEE80211_CAPINFO_ESS;
2380 break;
2381 default:
2382 return;
2383 }
2384
2385 /* set listen interval
2386 * XXX do software units agree w/ hardware?
2387 */
2388 bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2389 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2390
2391 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2392
2393 bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2394 cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2395 cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2396
2397 ATW_WRITE(sc, ATW_BCNT, bcnt);
2398 ATW_WRITE(sc, ATW_BPLI, bpli);
2399 ATW_WRITE(sc, ATW_CAP0, cap0);
2400 ATW_WRITE(sc, ATW_CAP1, cap1);
2401
2402 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2403 device_xname(sc->sc_dev), bcnt));
2404
2405 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2406 device_xname(sc->sc_dev), cap1));
2407 }
2408
2409 /* Return the 32 lsb of the last TSFT divisible by ival. */
2410 static inline uint32_t
2411 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2412 {
2413 /* Following the reference driver's lead, I compute
2414 *
2415 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2416 *
2417 * without using 64-bit arithmetic, using the following
2418 * relationship:
2419 *
2420 * (0x100000000 * H + L) % m
2421 * = ((0x100000000 % m) * H + L) % m
2422 * = (((0xffffffff + 1) % m) * H + L) % m
2423 * = ((0xffffffff % m + 1 % m) * H + L) % m
2424 * = ((0xffffffff % m + 1) * H + L) % m
2425 */
2426 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2427 }
2428
2429 static uint64_t
2430 atw_get_tsft(struct atw_softc *sc)
2431 {
2432 int i;
2433 uint32_t tsfth, tsftl;
2434 for (i = 0; i < 2; i++) {
2435 tsfth = ATW_READ(sc, ATW_TSFTH);
2436 tsftl = ATW_READ(sc, ATW_TSFTL);
2437 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2438 break;
2439 }
2440 return ((uint64_t)tsfth << 32) | tsftl;
2441 }
2442
2443 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2444 * the ieee80211com.
2445 *
2446 * Predict the next target beacon transmission time (TBTT) and
2447 * write it to the ADM8211.
2448 */
2449 static void
2450 atw_predict_beacon(struct atw_softc *sc)
2451 {
2452 #define TBTTOFS 20 /* TU */
2453
2454 struct ieee80211com *ic = &sc->sc_ic;
2455 uint64_t tsft;
2456 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2457 union {
2458 uint64_t word;
2459 uint8_t tstamp[8];
2460 } u;
2461
2462 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2463 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2464 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2465 tsft = atw_get_tsft(sc);
2466 u.word = htole64(tsft);
2467 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2468 sizeof(ic->ic_bss->ni_tstamp));
2469 } else
2470 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2471
2472 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2473
2474 tsftl = tsft & 0xFFFFFFFF;
2475 tsfth = tsft >> 32;
2476
2477 /* We sent/received the last beacon `past' microseconds
2478 * after the interval divided the TSF timer.
2479 */
2480 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2481
2482 /* Skip ten beacons so that the TBTT cannot pass before
2483 * we've programmed it. Ten is an arbitrary number.
2484 */
2485 tbtt = past_even + ival * 10;
2486
2487 ATW_WRITE(sc, ATW_TOFS1,
2488 __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2489 __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2490 __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2491 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2492 #undef TBTTOFS
2493 }
2494
2495 static void
2496 atw_next_scan(void *arg)
2497 {
2498 struct atw_softc *sc = arg;
2499 struct ieee80211com *ic = &sc->sc_ic;
2500 int s;
2501
2502 /* don't call atw_start w/o network interrupts blocked */
2503 s = splnet();
2504 if (ic->ic_state == IEEE80211_S_SCAN)
2505 ieee80211_next_scan(ic);
2506 splx(s);
2507 }
2508
2509 /* Synchronize the hardware state with the software state. */
2510 static int
2511 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2512 {
2513 struct ifnet *ifp = ic->ic_ifp;
2514 struct atw_softc *sc = ifp->if_softc;
2515 enum ieee80211_state ostate;
2516 int error = 0;
2517
2518 ostate = ic->ic_state;
2519 callout_stop(&sc->sc_scan_ch);
2520
2521 switch (nstate) {
2522 case IEEE80211_S_AUTH:
2523 case IEEE80211_S_ASSOC:
2524 atw_write_bssid(sc);
2525 error = atw_tune(sc);
2526 break;
2527 case IEEE80211_S_INIT:
2528 callout_stop(&sc->sc_scan_ch);
2529 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2530 atw_start_beacon(sc, 0);
2531 break;
2532 case IEEE80211_S_SCAN:
2533 error = atw_tune(sc);
2534 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2535 atw_next_scan, sc);
2536 break;
2537 case IEEE80211_S_RUN:
2538 error = atw_tune(sc);
2539 atw_write_bssid(sc);
2540 atw_write_ssid(sc);
2541 atw_write_sup_rates(sc);
2542
2543 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2544 ic->ic_opmode == IEEE80211_M_MONITOR)
2545 break;
2546
2547 /* set listen interval
2548 * XXX do software units agree w/ hardware?
2549 */
2550 ATW_WRITE(sc, ATW_BPLI,
2551 __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2552 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2553 ATW_BPLI_LI_MASK));
2554
2555 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2556 ATW_READ(sc, ATW_BPLI)));
2557
2558 atw_predict_beacon(sc);
2559
2560 switch (ic->ic_opmode) {
2561 case IEEE80211_M_AHDEMO:
2562 case IEEE80211_M_HOSTAP:
2563 case IEEE80211_M_IBSS:
2564 atw_start_beacon(sc, 1);
2565 break;
2566 case IEEE80211_M_MONITOR:
2567 case IEEE80211_M_STA:
2568 break;
2569 }
2570
2571 break;
2572 }
2573 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2574 }
2575
2576 /*
2577 * atw_add_rxbuf:
2578 *
2579 * Add a receive buffer to the indicated descriptor.
2580 */
2581 int
2582 atw_add_rxbuf(struct atw_softc *sc, int idx)
2583 {
2584 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2585 struct mbuf *m;
2586 int error;
2587
2588 MGETHDR(m, M_DONTWAIT, MT_DATA);
2589 if (m == NULL)
2590 return (ENOBUFS);
2591
2592 MCLGET(m, M_DONTWAIT);
2593 if ((m->m_flags & M_EXT) == 0) {
2594 m_freem(m);
2595 return (ENOBUFS);
2596 }
2597
2598 if (rxs->rxs_mbuf != NULL)
2599 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2600
2601 rxs->rxs_mbuf = m;
2602
2603 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2604 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2605 BUS_DMA_READ|BUS_DMA_NOWAIT);
2606 if (error) {
2607 aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2608 idx, error);
2609 panic("atw_add_rxbuf"); /* XXX */
2610 }
2611
2612 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2613 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2614
2615 atw_init_rxdesc(sc, idx);
2616
2617 return (0);
2618 }
2619
2620 /*
2621 * Release any queued transmit buffers.
2622 */
2623 void
2624 atw_txdrain(struct atw_softc *sc)
2625 {
2626 struct atw_txsoft *txs;
2627
2628 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2629 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2630 if (txs->txs_mbuf != NULL) {
2631 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2632 m_freem(txs->txs_mbuf);
2633 txs->txs_mbuf = NULL;
2634 }
2635 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2636 sc->sc_txfree += txs->txs_ndescs;
2637 }
2638
2639 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2640 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2641 sc->sc_txfree != ATW_NTXDESC));
2642 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2643 sc->sc_tx_timer = 0;
2644 }
2645
2646 /*
2647 * atw_stop: [ ifnet interface function ]
2648 *
2649 * Stop transmission on the interface.
2650 */
2651 void
2652 atw_stop(struct ifnet *ifp, int disable)
2653 {
2654 struct atw_softc *sc = ifp->if_softc;
2655 struct ieee80211com *ic = &sc->sc_ic;
2656
2657 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2658
2659 /* Disable interrupts. */
2660 ATW_WRITE(sc, ATW_IER, 0);
2661
2662 /* Stop the transmit and receive processes. */
2663 sc->sc_opmode = 0;
2664 ATW_WRITE(sc, ATW_NAR, 0);
2665 DELAY(atw_nar_delay);
2666 ATW_WRITE(sc, ATW_TDBD, 0);
2667 ATW_WRITE(sc, ATW_TDBP, 0);
2668 ATW_WRITE(sc, ATW_RDB, 0);
2669
2670 atw_txdrain(sc);
2671
2672 /*
2673 * Mark the interface down and cancel the watchdog timer.
2674 */
2675 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2676 sc->sc_tx_timer = 0;
2677 ifp->if_timer = 0;
2678
2679 if (disable) {
2680 atw_rxdrain(sc);
2681 atw_disable(sc);
2682 } else
2683 atw_reset(sc);
2684 }
2685
2686 /*
2687 * atw_rxdrain:
2688 *
2689 * Drain the receive queue.
2690 */
2691 void
2692 atw_rxdrain(struct atw_softc *sc)
2693 {
2694 struct atw_rxsoft *rxs;
2695 int i;
2696
2697 for (i = 0; i < ATW_NRXDESC; i++) {
2698 rxs = &sc->sc_rxsoft[i];
2699 if (rxs->rxs_mbuf == NULL)
2700 continue;
2701 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2702 m_freem(rxs->rxs_mbuf);
2703 rxs->rxs_mbuf = NULL;
2704 }
2705 }
2706
2707 /*
2708 * atw_detach:
2709 *
2710 * Detach an ADM8211 interface.
2711 */
2712 int
2713 atw_detach(struct atw_softc *sc)
2714 {
2715 struct ifnet *ifp = &sc->sc_if;
2716 struct atw_rxsoft *rxs;
2717 struct atw_txsoft *txs;
2718 int i;
2719
2720 /*
2721 * Succeed now if there isn't any work to do.
2722 */
2723 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2724 return (0);
2725
2726 pmf_device_deregister(sc->sc_dev);
2727
2728 callout_stop(&sc->sc_scan_ch);
2729
2730 ieee80211_ifdetach(&sc->sc_ic);
2731 if_detach(ifp);
2732
2733 for (i = 0; i < ATW_NRXDESC; i++) {
2734 rxs = &sc->sc_rxsoft[i];
2735 if (rxs->rxs_mbuf != NULL) {
2736 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2737 m_freem(rxs->rxs_mbuf);
2738 rxs->rxs_mbuf = NULL;
2739 }
2740 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2741 }
2742 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2743 txs = &sc->sc_txsoft[i];
2744 if (txs->txs_mbuf != NULL) {
2745 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2746 m_freem(txs->txs_mbuf);
2747 txs->txs_mbuf = NULL;
2748 }
2749 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2750 }
2751 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2752 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2753 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2754 sizeof(struct atw_control_data));
2755 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2756
2757 if (sc->sc_srom)
2758 free(sc->sc_srom, M_DEVBUF);
2759
2760 atw_evcnt_detach(sc);
2761
2762 return (0);
2763 }
2764
2765 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2766 bool
2767 atw_shutdown(device_t self, int flags)
2768 {
2769 struct atw_softc *sc = device_private(self);
2770
2771 atw_stop(&sc->sc_if, 1);
2772 return true;
2773 }
2774
2775 int
2776 atw_intr(void *arg)
2777 {
2778 struct atw_softc *sc = arg;
2779 struct ifnet *ifp = &sc->sc_if;
2780 u_int32_t status, rxstatus, txstatus, linkstatus;
2781 int handled = 0, txthresh;
2782
2783 #ifdef DEBUG
2784 if (ATW_IS_ENABLED(sc) == 0)
2785 panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2786 #endif
2787
2788 /*
2789 * If the interface isn't running, the interrupt couldn't
2790 * possibly have come from us.
2791 */
2792 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2793 !device_is_active(sc->sc_dev))
2794 return (0);
2795
2796 for (;;) {
2797 status = ATW_READ(sc, ATW_STSR);
2798
2799 if (status)
2800 ATW_WRITE(sc, ATW_STSR, status);
2801
2802 #ifdef ATW_DEBUG
2803 #define PRINTINTR(flag) do { \
2804 if ((status & flag) != 0) { \
2805 printf("%s" #flag, delim); \
2806 delim = ","; \
2807 } \
2808 } while (0)
2809
2810 if (atw_debug > 1 && status) {
2811 const char *delim = "<";
2812
2813 printf("%s: reg[STSR] = %x",
2814 device_xname(sc->sc_dev), status);
2815
2816 PRINTINTR(ATW_INTR_FBE);
2817 PRINTINTR(ATW_INTR_LINKOFF);
2818 PRINTINTR(ATW_INTR_LINKON);
2819 PRINTINTR(ATW_INTR_RCI);
2820 PRINTINTR(ATW_INTR_RDU);
2821 PRINTINTR(ATW_INTR_REIS);
2822 PRINTINTR(ATW_INTR_RPS);
2823 PRINTINTR(ATW_INTR_TCI);
2824 PRINTINTR(ATW_INTR_TDU);
2825 PRINTINTR(ATW_INTR_TLT);
2826 PRINTINTR(ATW_INTR_TPS);
2827 PRINTINTR(ATW_INTR_TRT);
2828 PRINTINTR(ATW_INTR_TUF);
2829 PRINTINTR(ATW_INTR_BCNTC);
2830 PRINTINTR(ATW_INTR_ATIME);
2831 PRINTINTR(ATW_INTR_TBTT);
2832 PRINTINTR(ATW_INTR_TSCZ);
2833 PRINTINTR(ATW_INTR_TSFTF);
2834 printf(">\n");
2835 }
2836 #undef PRINTINTR
2837 #endif /* ATW_DEBUG */
2838
2839 if ((status & sc->sc_inten) == 0)
2840 break;
2841
2842 handled = 1;
2843
2844 rxstatus = status & sc->sc_rxint_mask;
2845 txstatus = status & sc->sc_txint_mask;
2846 linkstatus = status & sc->sc_linkint_mask;
2847
2848 if (linkstatus) {
2849 atw_linkintr(sc, linkstatus);
2850 }
2851
2852 if (rxstatus) {
2853 /* Grab any new packets. */
2854 atw_rxintr(sc);
2855
2856 if (rxstatus & ATW_INTR_RDU) {
2857 printf("%s: receive ring overrun\n",
2858 device_xname(sc->sc_dev));
2859 /* Get the receive process going again. */
2860 ATW_WRITE(sc, ATW_RDR, 0x1);
2861 break;
2862 }
2863 }
2864
2865 if (txstatus) {
2866 /* Sweep up transmit descriptors. */
2867 atw_txintr(sc);
2868
2869 if (txstatus & ATW_INTR_TLT) {
2870 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2871 device_xname(sc->sc_dev)));
2872 }
2873
2874 if (txstatus & ATW_INTR_TRT) {
2875 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2876 device_xname(sc->sc_dev)));
2877 }
2878
2879 /* If Tx under-run, increase our transmit threshold
2880 * if another is available.
2881 */
2882 txthresh = sc->sc_txthresh + 1;
2883 if ((txstatus & ATW_INTR_TUF) &&
2884 sc->sc_txth[txthresh].txth_name != NULL) {
2885 /* Idle the transmit process. */
2886 atw_idle(sc, ATW_NAR_ST);
2887
2888 sc->sc_txthresh = txthresh;
2889 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2890 sc->sc_opmode |=
2891 sc->sc_txth[txthresh].txth_opmode;
2892 printf("%s: transmit underrun; new "
2893 "threshold: %s\n", device_xname(sc->sc_dev),
2894 sc->sc_txth[txthresh].txth_name);
2895
2896 /* Set the new threshold and restart
2897 * the transmit process.
2898 */
2899 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2900 DELAY(atw_nar_delay);
2901 ATW_WRITE(sc, ATW_RDR, 0x1);
2902 /* XXX Log every Nth underrun from
2903 * XXX now on?
2904 */
2905 }
2906 }
2907
2908 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2909 if (status & ATW_INTR_TPS)
2910 printf("%s: transmit process stopped\n",
2911 device_xname(sc->sc_dev));
2912 if (status & ATW_INTR_RPS)
2913 printf("%s: receive process stopped\n",
2914 device_xname(sc->sc_dev));
2915 (void)atw_init(ifp);
2916 break;
2917 }
2918
2919 if (status & ATW_INTR_FBE) {
2920 aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2921 (void)atw_init(ifp);
2922 break;
2923 }
2924
2925 /*
2926 * Not handled:
2927 *
2928 * Transmit buffer unavailable -- normal
2929 * condition, nothing to do, really.
2930 *
2931 * Early receive interrupt -- not available on
2932 * all chips, we just use RI. We also only
2933 * use single-segment receive DMA, so this
2934 * is mostly useless.
2935 *
2936 * TBD others
2937 */
2938 }
2939
2940 /* Try to get more packets going. */
2941 atw_start(ifp);
2942
2943 return (handled);
2944 }
2945
2946 /*
2947 * atw_idle:
2948 *
2949 * Cause the transmit and/or receive processes to go idle.
2950 *
2951 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2952 * process in STSR if I clear SR or ST after the process has already
2953 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2954 * do not seem to be too reliable. Perhaps I have the sense of the
2955 * Rx bits switched with the Tx bits?
2956 */
2957 void
2958 atw_idle(struct atw_softc *sc, u_int32_t bits)
2959 {
2960 u_int32_t ackmask = 0, opmode, stsr, test0;
2961 int i, s;
2962
2963 s = splnet();
2964
2965 opmode = sc->sc_opmode & ~bits;
2966
2967 if (bits & ATW_NAR_SR)
2968 ackmask |= ATW_INTR_RPS;
2969
2970 if (bits & ATW_NAR_ST) {
2971 ackmask |= ATW_INTR_TPS;
2972 /* set ATW_NAR_HF to flush TX FIFO. */
2973 opmode |= ATW_NAR_HF;
2974 }
2975
2976 ATW_WRITE(sc, ATW_NAR, opmode);
2977 DELAY(atw_nar_delay);
2978
2979 for (i = 0; i < 1000; i++) {
2980 stsr = ATW_READ(sc, ATW_STSR);
2981 if ((stsr & ackmask) == ackmask)
2982 break;
2983 DELAY(10);
2984 }
2985
2986 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2987
2988 if ((stsr & ackmask) == ackmask)
2989 goto out;
2990
2991 test0 = ATW_READ(sc, ATW_TEST0);
2992
2993 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2994 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2995 printf("%s: transmit process not idle [%s]\n",
2996 device_xname(sc->sc_dev),
2997 atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
2998 printf("%s: bits %08x test0 %08x stsr %08x\n",
2999 device_xname(sc->sc_dev), bits, test0, stsr);
3000 }
3001
3002 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3003 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3004 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3005 device_xname(sc->sc_dev),
3006 atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3007 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3008 device_xname(sc->sc_dev), bits, test0, stsr));
3009 }
3010 out:
3011 if ((bits & ATW_NAR_ST) != 0)
3012 atw_txdrain(sc);
3013 splx(s);
3014 return;
3015 }
3016
3017 /*
3018 * atw_linkintr:
3019 *
3020 * Helper; handle link-status interrupts.
3021 */
3022 void
3023 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3024 {
3025 struct ieee80211com *ic = &sc->sc_ic;
3026
3027 if (ic->ic_state != IEEE80211_S_RUN)
3028 return;
3029
3030 if (linkstatus & ATW_INTR_LINKON) {
3031 DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3032 sc->sc_rescan_timer = 0;
3033 } else if (linkstatus & ATW_INTR_LINKOFF) {
3034 DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3035 if (ic->ic_opmode != IEEE80211_M_STA)
3036 return;
3037 sc->sc_rescan_timer = 3;
3038 sc->sc_if.if_timer = 1;
3039 }
3040 }
3041
3042 static inline int
3043 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3044 {
3045 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3046 return 0;
3047 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3048 return 0;
3049 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3050 }
3051
3052 /*
3053 * atw_rxintr:
3054 *
3055 * Helper; handle receive interrupts.
3056 */
3057 void
3058 atw_rxintr(struct atw_softc *sc)
3059 {
3060 static int rate_tbl[] = {2, 4, 11, 22, 44};
3061 struct ieee80211com *ic = &sc->sc_ic;
3062 struct ieee80211_node *ni;
3063 struct ieee80211_frame_min *wh;
3064 struct ifnet *ifp = &sc->sc_if;
3065 struct atw_rxsoft *rxs;
3066 struct mbuf *m;
3067 u_int32_t rxstat;
3068 int i, len, rate, rate0;
3069 u_int32_t rssi, ctlrssi;
3070
3071 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3072 rxs = &sc->sc_rxsoft[i];
3073
3074 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3075
3076 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3077 ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3078 rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3079
3080 if (rxstat & ATW_RXSTAT_OWN)
3081 break; /* We have processed all receive buffers. */
3082
3083 DPRINTF3(sc,
3084 ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3085 device_xname(sc->sc_dev),
3086 rxstat, ctlrssi,
3087 le32toh(sc->sc_rxdescs[i].ar_buf1),
3088 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3089
3090 /*
3091 * Make sure the packet fits in one buffer. This should
3092 * always be the case.
3093 */
3094 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3095 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3096 printf("%s: incoming packet spilled, resetting\n",
3097 device_xname(sc->sc_dev));
3098 (void)atw_init(ifp);
3099 return;
3100 }
3101
3102 /*
3103 * If an error occurred, update stats, clear the status
3104 * word, and leave the packet buffer in place. It will
3105 * simply be reused the next time the ring comes around.
3106 */
3107 if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3108 #define PRINTERR(bit, str) \
3109 if (rxstat & (bit)) \
3110 aprint_error_dev(sc->sc_dev, "receive error: %s\n", \
3111 str)
3112 ifp->if_ierrors++;
3113 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3114 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3115 #if 0
3116 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3117 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3118 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3119 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3120 #endif
3121 #undef PRINTERR
3122 atw_init_rxdesc(sc, i);
3123 continue;
3124 }
3125
3126 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3127 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3128
3129 /*
3130 * No errors; receive the packet. Note the ADM8211
3131 * includes the CRC in promiscuous mode.
3132 */
3133 len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3134
3135 /*
3136 * Allocate a new mbuf cluster. If that fails, we are
3137 * out of memory, and must drop the packet and recycle
3138 * the buffer that's already attached to this descriptor.
3139 */
3140 m = rxs->rxs_mbuf;
3141 if (atw_add_rxbuf(sc, i) != 0) {
3142 ifp->if_ierrors++;
3143 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3144 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3145 atw_init_rxdesc(sc, i);
3146 continue;
3147 }
3148
3149 ifp->if_ipackets++;
3150 m->m_pkthdr.rcvif = ifp;
3151 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3152
3153 rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3154
3155 /* The RSSI comes straight from a register in the
3156 * baseband processor. I know that for the RF3000,
3157 * the RSSI register also contains the antenna-selection
3158 * bits. Mask those off.
3159 *
3160 * TBD Treat other basebands.
3161 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3162 */
3163 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3164 rssi = ctlrssi & RF3000_RSSI_MASK;
3165 else
3166 rssi = ctlrssi;
3167
3168 #if NBPFILTER > 0
3169 /* Pass this up to any BPF listeners. */
3170 if (sc->sc_radiobpf != NULL) {
3171 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3172
3173 tap->ar_rate = rate;
3174
3175 /* TBD verify units are dB */
3176 tap->ar_antsignal = (int)rssi;
3177 if (sc->sc_opmode & ATW_NAR_PR)
3178 tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3179 else
3180 tap->ar_flags = 0;
3181
3182 if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3183 tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3184
3185 bpf_mtap2(sc->sc_radiobpf, tap,
3186 sizeof(sc->sc_rxtapu), m);
3187 }
3188 #endif /* NBPFILTER > 0 */
3189
3190 sc->sc_recv_ev.ev_count++;
3191
3192 if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3193 if (rxstat & ATW_RXSTAT_CRC16E)
3194 sc->sc_crc16e_ev.ev_count++;
3195 if (rxstat & ATW_RXSTAT_CRC32E)
3196 sc->sc_crc32e_ev.ev_count++;
3197 if (rxstat & ATW_RXSTAT_ICVE)
3198 sc->sc_icve_ev.ev_count++;
3199 if (rxstat & ATW_RXSTAT_SFDE)
3200 sc->sc_sfde_ev.ev_count++;
3201 if (rxstat & ATW_RXSTAT_SIGE)
3202 sc->sc_sige_ev.ev_count++;
3203 ifp->if_ierrors++;
3204 m_freem(m);
3205 continue;
3206 }
3207
3208 if (sc->sc_opmode & ATW_NAR_PR)
3209 m_adj(m, -IEEE80211_CRC_LEN);
3210
3211 wh = mtod(m, struct ieee80211_frame_min *);
3212 ni = ieee80211_find_rxnode(ic, wh);
3213 #if 0
3214 if (atw_hw_decrypted(sc, wh)) {
3215 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3216 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3217 }
3218 #endif
3219 ieee80211_input(ic, m, ni, (int)rssi, 0);
3220 ieee80211_free_node(ni);
3221 }
3222
3223 /* Update the receive pointer. */
3224 sc->sc_rxptr = i;
3225 }
3226
3227 /*
3228 * atw_txintr:
3229 *
3230 * Helper; handle transmit interrupts.
3231 */
3232 void
3233 atw_txintr(struct atw_softc *sc)
3234 {
3235 static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3236 struct ifnet *ifp = &sc->sc_if;
3237 struct atw_txsoft *txs;
3238 u_int32_t txstat;
3239
3240 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3241 device_xname(sc->sc_dev), sc->sc_flags));
3242
3243 /*
3244 * Go through our Tx list and free mbufs for those
3245 * frames that have been transmitted.
3246 */
3247 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3248 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3249 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3250
3251 #ifdef ATW_DEBUG
3252 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3253 int i;
3254 printf(" txsoft %p transmit chain:\n", txs);
3255 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3256 txs->txs_ndescs - 1,
3257 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3258 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3259 printf(" descriptor %d:\n", i);
3260 printf(" at_status: 0x%08x\n",
3261 le32toh(sc->sc_txdescs[i].at_stat));
3262 printf(" at_flags: 0x%08x\n",
3263 le32toh(sc->sc_txdescs[i].at_flags));
3264 printf(" at_buf1: 0x%08x\n",
3265 le32toh(sc->sc_txdescs[i].at_buf1));
3266 printf(" at_buf2: 0x%08x\n",
3267 le32toh(sc->sc_txdescs[i].at_buf2));
3268 if (i == txs->txs_lastdesc)
3269 break;
3270 }
3271 }
3272 #endif
3273
3274 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3275 if (txstat & ATW_TXSTAT_OWN)
3276 break;
3277
3278 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3279
3280 sc->sc_txfree += txs->txs_ndescs;
3281
3282 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3283 0, txs->txs_dmamap->dm_mapsize,
3284 BUS_DMASYNC_POSTWRITE);
3285 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3286 m_freem(txs->txs_mbuf);
3287 txs->txs_mbuf = NULL;
3288
3289 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3290
3291 KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3292 sc->sc_txfree == 0));
3293 ifp->if_flags &= ~IFF_OACTIVE;
3294
3295 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3296 (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3297 bitmask_snprintf(txstat & ATW_TXSTAT_ERRMASK,
3298 ATW_TXSTAT_FMT, txstat_buf, sizeof(txstat_buf));
3299 printf("%s: txstat %s %" __PRIuBITS "\n",
3300 device_xname(sc->sc_dev), txstat_buf,
3301 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3302 }
3303
3304 /*
3305 * Check for errors and collisions.
3306 */
3307 if (txstat & ATW_TXSTAT_TUF)
3308 sc->sc_stats.ts_tx_tuf++;
3309 if (txstat & ATW_TXSTAT_TLT)
3310 sc->sc_stats.ts_tx_tlt++;
3311 if (txstat & ATW_TXSTAT_TRT)
3312 sc->sc_stats.ts_tx_trt++;
3313 if (txstat & ATW_TXSTAT_TRO)
3314 sc->sc_stats.ts_tx_tro++;
3315 if (txstat & ATW_TXSTAT_SOFBR) {
3316 sc->sc_stats.ts_tx_sofbr++;
3317 }
3318
3319 if ((txstat & ATW_TXSTAT_ES) == 0)
3320 ifp->if_collisions +=
3321 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3322 else
3323 ifp->if_oerrors++;
3324
3325 ifp->if_opackets++;
3326 }
3327
3328 /*
3329 * If there are no more pending transmissions, cancel the watchdog
3330 * timer.
3331 */
3332 if (txs == NULL) {
3333 KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3334 sc->sc_tx_timer = 0;
3335 }
3336 }
3337
3338 /*
3339 * atw_watchdog: [ifnet interface function]
3340 *
3341 * Watchdog timer handler.
3342 */
3343 void
3344 atw_watchdog(struct ifnet *ifp)
3345 {
3346 struct atw_softc *sc = ifp->if_softc;
3347 struct ieee80211com *ic = &sc->sc_ic;
3348
3349 ifp->if_timer = 0;
3350 if (ATW_IS_ENABLED(sc) == 0)
3351 return;
3352
3353 if (sc->sc_rescan_timer) {
3354 if (--sc->sc_rescan_timer == 0)
3355 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3356 }
3357 if (sc->sc_tx_timer) {
3358 if (--sc->sc_tx_timer == 0 &&
3359 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3360 printf("%s: transmit timeout\n", ifp->if_xname);
3361 ifp->if_oerrors++;
3362 (void)atw_init(ifp);
3363 atw_start(ifp);
3364 }
3365 }
3366 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3367 ifp->if_timer = 1;
3368 ieee80211_watchdog(ic);
3369 }
3370
3371 static void
3372 atw_evcnt_detach(struct atw_softc *sc)
3373 {
3374 evcnt_detach(&sc->sc_sige_ev);
3375 evcnt_detach(&sc->sc_sfde_ev);
3376 evcnt_detach(&sc->sc_icve_ev);
3377 evcnt_detach(&sc->sc_crc32e_ev);
3378 evcnt_detach(&sc->sc_crc16e_ev);
3379 evcnt_detach(&sc->sc_recv_ev);
3380 }
3381
3382 static void
3383 atw_evcnt_attach(struct atw_softc *sc)
3384 {
3385 evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3386 NULL, sc->sc_if.if_xname, "recv");
3387 evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3388 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3389 evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3390 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3391 evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3392 &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3393 evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3394 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3395 evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3396 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3397 }
3398
3399 #ifdef ATW_DEBUG
3400 static void
3401 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3402 {
3403 struct atw_softc *sc = ifp->if_softc;
3404 struct mbuf *m;
3405 int i, noctets = 0;
3406
3407 printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3408 m0->m_pkthdr.len);
3409
3410 for (m = m0; m; m = m->m_next) {
3411 if (m->m_len == 0)
3412 continue;
3413 for (i = 0; i < m->m_len; i++) {
3414 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3415 if (++noctets % 24 == 0)
3416 printf("\n");
3417 }
3418 }
3419 printf("%s%s: %d bytes emitted\n",
3420 (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3421 }
3422 #endif /* ATW_DEBUG */
3423
3424 /*
3425 * atw_start: [ifnet interface function]
3426 *
3427 * Start packet transmission on the interface.
3428 */
3429 void
3430 atw_start(struct ifnet *ifp)
3431 {
3432 struct atw_softc *sc = ifp->if_softc;
3433 struct ieee80211_key *k;
3434 struct ieee80211com *ic = &sc->sc_ic;
3435 struct ieee80211_node *ni;
3436 struct ieee80211_frame_min *whm;
3437 struct ieee80211_frame *wh;
3438 struct atw_frame *hh;
3439 struct mbuf *m0, *m;
3440 struct atw_txsoft *txs, *last_txs;
3441 struct atw_txdesc *txd;
3442 int npkt, rate;
3443 bus_dmamap_t dmamap;
3444 int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3445
3446 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3447 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3448
3449 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3450 return;
3451
3452 /*
3453 * Remember the previous number of free descriptors and
3454 * the first descriptor we'll use.
3455 */
3456 ofree = sc->sc_txfree;
3457 firsttx = lasttx = sc->sc_txnext;
3458
3459 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3460 device_xname(sc->sc_dev), ofree, firsttx));
3461
3462 /*
3463 * Loop through the send queue, setting up transmit descriptors
3464 * until we drain the queue, or use up all available transmit
3465 * descriptors.
3466 */
3467 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3468 sc->sc_txfree != 0) {
3469
3470 /*
3471 * Grab a packet off the management queue, if it
3472 * is not empty. Otherwise, from the data queue.
3473 */
3474 IF_DEQUEUE(&ic->ic_mgtq, m0);
3475 if (m0 != NULL) {
3476 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3477 m0->m_pkthdr.rcvif = NULL;
3478 } else if (ic->ic_state != IEEE80211_S_RUN)
3479 break; /* send no data until associated */
3480 else {
3481 IFQ_DEQUEUE(&ifp->if_snd, m0);
3482 if (m0 == NULL)
3483 break;
3484 #if NBPFILTER > 0
3485 if (ifp->if_bpf != NULL)
3486 bpf_mtap(ifp->if_bpf, m0);
3487 #endif /* NBPFILTER > 0 */
3488 ni = ieee80211_find_txnode(ic,
3489 mtod(m0, struct ether_header *)->ether_dhost);
3490 if (ni == NULL) {
3491 ifp->if_oerrors++;
3492 break;
3493 }
3494 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3495 ieee80211_free_node(ni);
3496 ifp->if_oerrors++;
3497 break;
3498 }
3499 }
3500
3501 rate = MAX(ieee80211_get_rate(ni), 2);
3502
3503 whm = mtod(m0, struct ieee80211_frame_min *);
3504
3505 if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3506 k = NULL;
3507 else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3508 m_freem(m0);
3509 ieee80211_free_node(ni);
3510 ifp->if_oerrors++;
3511 break;
3512 }
3513
3514 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3515 ic->ic_flags, ic->ic_fragthreshold, rate,
3516 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3517 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3518 m_freem(m0);
3519 break;
3520 }
3521
3522 /* XXX Misleading if fragmentation is enabled. Better
3523 * to fragment in software?
3524 */
3525 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3526
3527 #if NBPFILTER > 0
3528 /*
3529 * Pass the packet to any BPF listeners.
3530 */
3531 if (ic->ic_rawbpf != NULL)
3532 bpf_mtap((void *)ic->ic_rawbpf, m0);
3533
3534 if (sc->sc_radiobpf != NULL) {
3535 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3536
3537 tap->at_rate = rate;
3538
3539 bpf_mtap2(sc->sc_radiobpf, tap,
3540 sizeof(sc->sc_txtapu), m0);
3541 }
3542 #endif /* NBPFILTER > 0 */
3543
3544 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3545
3546 if (ni != NULL)
3547 ieee80211_free_node(ni);
3548
3549 if (m0 == NULL) {
3550 ifp->if_oerrors++;
3551 break;
3552 }
3553
3554 /* just to make sure. */
3555 m0 = m_pullup(m0, sizeof(struct atw_frame));
3556
3557 if (m0 == NULL) {
3558 ifp->if_oerrors++;
3559 break;
3560 }
3561
3562 hh = mtod(m0, struct atw_frame *);
3563 wh = &hh->atw_ihdr;
3564
3565 /* Copy everything we need from the 802.11 header:
3566 * Frame Control; address 1, address 3, or addresses
3567 * 3 and 4. NIC fills in BSSID, SA.
3568 */
3569 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3570 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3571 panic("%s: illegal WDS frame",
3572 device_xname(sc->sc_dev));
3573 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3574 } else
3575 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3576
3577 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3578
3579 /* initialize remaining Tx parameters */
3580 memset(&hh->u, 0, sizeof(hh->u));
3581
3582 hh->atw_rate = rate * 5;
3583 /* XXX this could be incorrect if M_FCS. _encap should
3584 * probably strip FCS just in case it sticks around in
3585 * bridged packets.
3586 */
3587 hh->atw_service = 0x00; /* XXX guess */
3588 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3589 sizeof(struct atw_frame));
3590
3591 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3592 hh->atw_rtylmt = 3;
3593 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3594 #if 0
3595 if (do_encrypt) {
3596 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3597 hh->atw_keyid = ic->ic_def_txkey;
3598 }
3599 #endif
3600
3601 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3602 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3603 if (txs->txs_d0.d_residue)
3604 hh->atw_head_plcplen |= htole16(0x8000);
3605 if (txs->txs_dn.d_residue)
3606 hh->atw_tail_plcplen |= htole16(0x8000);
3607 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3608 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3609
3610 /* never fragment multicast frames */
3611 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3612 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3613 } else if (sc->sc_flags & ATWF_RTSCTS) {
3614 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3615 }
3616
3617 #ifdef ATW_DEBUG
3618 hh->atw_fragnum = 0;
3619
3620 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3621 printf("%s: dst = %s, rate = 0x%02x, "
3622 "service = 0x%02x, paylen = 0x%04x\n",
3623 device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3624 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3625
3626 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3627 "dur1 = 0x%04x, dur2 = 0x%04x, "
3628 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3629 device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3630 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3631 hh->atw_tail_dur, hh->atw_head_dur);
3632
3633 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3634 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3635 device_xname(sc->sc_dev), hh->atw_hdrctl,
3636 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3637
3638 printf("%s: keyid = %d\n",
3639 device_xname(sc->sc_dev), hh->atw_keyid);
3640
3641 atw_dump_pkt(ifp, m0);
3642 }
3643 #endif /* ATW_DEBUG */
3644
3645 dmamap = txs->txs_dmamap;
3646
3647 /*
3648 * Load the DMA map. Copy and try (once) again if the packet
3649 * didn't fit in the alloted number of segments.
3650 */
3651 for (first = 1;
3652 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3653 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3654 first = 0) {
3655 MGETHDR(m, M_DONTWAIT, MT_DATA);
3656 if (m == NULL) {
3657 aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3658 break;
3659 }
3660 if (m0->m_pkthdr.len > MHLEN) {
3661 MCLGET(m, M_DONTWAIT);
3662 if ((m->m_flags & M_EXT) == 0) {
3663 aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3664 "cluster\n");
3665 m_freem(m);
3666 break;
3667 }
3668 }
3669 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3670 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3671 m_freem(m0);
3672 m0 = m;
3673 m = NULL;
3674 }
3675 if (error != 0) {
3676 aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3677 "error = %d\n", error);
3678 m_freem(m0);
3679 break;
3680 }
3681
3682 /*
3683 * Ensure we have enough descriptors free to describe
3684 * the packet.
3685 */
3686 if (dmamap->dm_nsegs > sc->sc_txfree) {
3687 /*
3688 * Not enough free descriptors to transmit
3689 * this packet. Unload the DMA map and
3690 * drop the packet. Notify the upper layer
3691 * that there are no more slots left.
3692 *
3693 * XXX We could allocate an mbuf and copy, but
3694 * XXX it is worth it?
3695 */
3696 bus_dmamap_unload(sc->sc_dmat, dmamap);
3697 m_freem(m0);
3698 break;
3699 }
3700
3701 /*
3702 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3703 */
3704
3705 /* Sync the DMA map. */
3706 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3707 BUS_DMASYNC_PREWRITE);
3708
3709 /* XXX arbitrary retry limit; 8 because I have seen it in
3710 * use already and maybe 0 means "no tries" !
3711 */
3712 ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3713
3714 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3715 device_xname(sc->sc_dev), rate * 5));
3716 ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3717
3718 /*
3719 * Initialize the transmit descriptors.
3720 */
3721 for (nexttx = sc->sc_txnext, seg = 0;
3722 seg < dmamap->dm_nsegs;
3723 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3724 /*
3725 * If this is the first descriptor we're
3726 * enqueueing, don't set the OWN bit just
3727 * yet. That could cause a race condition.
3728 * We'll do it below.
3729 */
3730 txd = &sc->sc_txdescs[nexttx];
3731 txd->at_ctl = ctl |
3732 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3733
3734 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3735 txd->at_flags =
3736 htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3737 ATW_TXFLAG_TBS1_MASK)) |
3738 ((nexttx == (ATW_NTXDESC - 1))
3739 ? htole32(ATW_TXFLAG_TER) : 0);
3740 lasttx = nexttx;
3741 }
3742
3743 /* Set `first segment' and `last segment' appropriately. */
3744 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3745 htole32(ATW_TXFLAG_FS);
3746 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3747
3748 #ifdef ATW_DEBUG
3749 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3750 printf(" txsoft %p transmit chain:\n", txs);
3751 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3752 printf(" descriptor %d:\n", seg);
3753 printf(" at_ctl: 0x%08x\n",
3754 le32toh(sc->sc_txdescs[seg].at_ctl));
3755 printf(" at_flags: 0x%08x\n",
3756 le32toh(sc->sc_txdescs[seg].at_flags));
3757 printf(" at_buf1: 0x%08x\n",
3758 le32toh(sc->sc_txdescs[seg].at_buf1));
3759 printf(" at_buf2: 0x%08x\n",
3760 le32toh(sc->sc_txdescs[seg].at_buf2));
3761 if (seg == lasttx)
3762 break;
3763 }
3764 }
3765 #endif
3766
3767 /* Sync the descriptors we're using. */
3768 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3769 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3770
3771 /*
3772 * Store a pointer to the packet so we can free it later,
3773 * and remember what txdirty will be once the packet is
3774 * done.
3775 */
3776 txs->txs_mbuf = m0;
3777 txs->txs_firstdesc = sc->sc_txnext;
3778 txs->txs_lastdesc = lasttx;
3779 txs->txs_ndescs = dmamap->dm_nsegs;
3780
3781 /* Advance the tx pointer. */
3782 sc->sc_txfree -= dmamap->dm_nsegs;
3783 sc->sc_txnext = nexttx;
3784
3785 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3786 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3787
3788 last_txs = txs;
3789 }
3790
3791 if (sc->sc_txfree != ofree) {
3792 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3793 device_xname(sc->sc_dev), lasttx, firsttx));
3794 /*
3795 * Cause a transmit interrupt to happen on the
3796 * last packet we enqueued.
3797 */
3798 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3799 ATW_CDTXSYNC(sc, lasttx, 1,
3800 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3801
3802 /*
3803 * The entire packet chain is set up. Give the
3804 * first descriptor to the chip now.
3805 */
3806 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3807 ATW_CDTXSYNC(sc, firsttx, 1,
3808 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3809
3810 /* Wake up the transmitter. */
3811 ATW_WRITE(sc, ATW_TDR, 0x1);
3812
3813 if (txs == NULL || sc->sc_txfree == 0)
3814 ifp->if_flags |= IFF_OACTIVE;
3815
3816 /* Set a watchdog timer in case the chip flakes out. */
3817 sc->sc_tx_timer = 5;
3818 ifp->if_timer = 1;
3819 }
3820 }
3821
3822 /*
3823 * atw_ioctl: [ifnet interface function]
3824 *
3825 * Handle control requests from the operator.
3826 */
3827 int
3828 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3829 {
3830 struct atw_softc *sc = ifp->if_softc;
3831 int s, error = 0;
3832
3833 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3834 if (!device_is_active(sc->sc_dev))
3835 return ENXIO;
3836
3837 s = splnet();
3838
3839 switch (cmd) {
3840 case SIOCSIFFLAGS:
3841 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3842 break;
3843 if (ifp->if_flags & IFF_UP) {
3844 if (ATW_IS_ENABLED(sc)) {
3845 /*
3846 * To avoid rescanning another access point,
3847 * do not call atw_init() here. Instead,
3848 * only reflect media settings.
3849 */
3850 atw_filter_setup(sc);
3851 } else
3852 error = atw_init(ifp);
3853 } else if (ATW_IS_ENABLED(sc))
3854 atw_stop(ifp, 1);
3855 break;
3856 case SIOCADDMULTI:
3857 case SIOCDELMULTI:
3858 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3859 if (ifp->if_flags & IFF_RUNNING)
3860 atw_filter_setup(sc); /* do not rescan */
3861 error = 0;
3862 }
3863 break;
3864 default:
3865 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3866 if (error == ENETRESET || error == ERESTART) {
3867 if (is_running(ifp))
3868 error = atw_init(ifp);
3869 else
3870 error = 0;
3871 }
3872 break;
3873 }
3874
3875 /* Try to get more packets going. */
3876 if (ATW_IS_ENABLED(sc))
3877 atw_start(ifp);
3878
3879 splx(s);
3880 return (error);
3881 }
3882
3883 static int
3884 atw_media_change(struct ifnet *ifp)
3885 {
3886 int error;
3887
3888 error = ieee80211_media_change(ifp);
3889 if (error == ENETRESET) {
3890 if (is_running(ifp))
3891 error = atw_init(ifp);
3892 else
3893 error = 0;
3894 }
3895 return error;
3896 }
3897