atw.c revision 1.142.2.1 1 /* $NetBSD: atw.c,v 1.142.2.1 2009/07/23 23:31:47 jym Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.142.2.1 2009/07/23 23:31:47 jym Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/time.h>
52 #include <lib/libkern/libkern.h>
53
54 #include <machine/endian.h>
55
56 #include <uvm/uvm_extern.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #include <net80211/ieee80211_netbsd.h>
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70
71 #include <sys/bus.h>
72 #include <sys/intr.h>
73
74 #include <dev/ic/atwreg.h>
75 #include <dev/ic/rf3000reg.h>
76 #include <dev/ic/si4136reg.h>
77 #include <dev/ic/atwvar.h>
78 #include <dev/ic/smc93cx6var.h>
79
80 /* XXX TBD open questions
81 *
82 *
83 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
84 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
85 * handle this for me?
86 *
87 */
88 /* device attachment
89 *
90 * print TOFS[012]
91 *
92 * device initialization
93 *
94 * clear ATW_FRCTL_MAXPSP to disable max power saving
95 * set ATW_TXBR_ALCUPDATE to enable ALC
96 * set TOFS[012]? (hope not)
97 * disable rx/tx
98 * set ATW_PAR_SWR (software reset)
99 * wait for ATW_PAR_SWR clear
100 * disable interrupts
101 * ack status register
102 * enable interrupts
103 *
104 * rx/tx initialization
105 *
106 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
107 * allocate and init descriptor rings
108 * write ATW_PAR_DSL (descriptor skip length)
109 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
110 * write ATW_NAR_SQ for one/both transmit descriptor rings
111 * write ATW_NAR_SQ for one/both transmit descriptor rings
112 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 *
114 * rx/tx end
115 *
116 * stop DMA
117 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
118 * flush tx w/ ATW_NAR_HF
119 *
120 * scan
121 *
122 * initialize rx/tx
123 *
124 * BSS join: (re)association response
125 *
126 * set ATW_FRCTL_AID
127 *
128 * optimizations ???
129 *
130 */
131
132 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
133
134 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
135 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
136 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
137
138 int atw_pseudo_milli = 1;
139 int atw_magic_delay1 = 100 * 1000;
140 int atw_magic_delay2 = 100 * 1000;
141 /* more magic multi-millisecond delays (units: microseconds) */
142 int atw_nar_delay = 20 * 1000;
143 int atw_magic_delay4 = 10 * 1000;
144 int atw_rf_delay1 = 10 * 1000;
145 int atw_rf_delay2 = 5 * 1000;
146 int atw_plcphd_delay = 2 * 1000;
147 int atw_bbp_io_enable_delay = 20 * 1000;
148 int atw_bbp_io_disable_delay = 2 * 1000;
149 int atw_writewep_delay = 1000;
150 int atw_beacon_len_adjust = 4;
151 int atw_dwelltime = 200;
152 int atw_xindiv2 = 0;
153
154 #ifdef ATW_DEBUG
155 int atw_debug = 0;
156
157 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
158 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
159 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
160 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
161 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
162 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
163
164 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
165 static void atw_print_regs(struct atw_softc *, const char *);
166
167 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
168 # ifdef ATW_BBPDEBUG
169 static void atw_rf3000_print(struct atw_softc *);
170 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
171 # endif /* ATW_BBPDEBUG */
172
173 # ifdef ATW_SYNDEBUG
174 static void atw_si4126_print(struct atw_softc *);
175 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
176 # endif /* ATW_SYNDEBUG */
177
178 #else
179 #define ATW_DPRINTF(x)
180 #define ATW_DPRINTF2(x)
181 #define ATW_DPRINTF3(x)
182 #define DPRINTF(sc, x) /* nothing */
183 #define DPRINTF2(sc, x) /* nothing */
184 #define DPRINTF3(sc, x) /* nothing */
185 #endif
186
187 /* ifnet methods */
188 int atw_init(struct ifnet *);
189 int atw_ioctl(struct ifnet *, u_long, void *);
190 void atw_start(struct ifnet *);
191 void atw_stop(struct ifnet *, int);
192 void atw_watchdog(struct ifnet *);
193
194 /* Device attachment */
195 void atw_attach(struct atw_softc *);
196 int atw_detach(struct atw_softc *);
197 static void atw_evcnt_attach(struct atw_softc *);
198 static void atw_evcnt_detach(struct atw_softc *);
199
200 /* Rx/Tx process */
201 int atw_add_rxbuf(struct atw_softc *, int);
202 void atw_idle(struct atw_softc *, u_int32_t);
203 void atw_rxdrain(struct atw_softc *);
204 void atw_txdrain(struct atw_softc *);
205
206 /* Device (de)activation and power state */
207 void atw_disable(struct atw_softc *);
208 int atw_enable(struct atw_softc *);
209 void atw_reset(struct atw_softc *);
210
211 /* Interrupt handlers */
212 void atw_linkintr(struct atw_softc *, u_int32_t);
213 void atw_rxintr(struct atw_softc *);
214 void atw_txintr(struct atw_softc *);
215
216 /* 802.11 state machine */
217 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
218 static void atw_next_scan(void *);
219 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
220 struct ieee80211_node *, int, int, u_int32_t);
221 static int atw_tune(struct atw_softc *);
222
223 /* Device initialization */
224 static void atw_bbp_io_init(struct atw_softc *);
225 static void atw_cfp_init(struct atw_softc *);
226 static void atw_cmdr_init(struct atw_softc *);
227 static void atw_ifs_init(struct atw_softc *);
228 static void atw_nar_init(struct atw_softc *);
229 static void atw_response_times_init(struct atw_softc *);
230 static void atw_rf_reset(struct atw_softc *);
231 static void atw_test1_init(struct atw_softc *);
232 static void atw_tofs0_init(struct atw_softc *);
233 static void atw_tofs2_init(struct atw_softc *);
234 static void atw_txlmt_init(struct atw_softc *);
235 static void atw_wcsr_init(struct atw_softc *);
236
237 /* Key management */
238 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
239 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
240 const u_int8_t[IEEE80211_ADDR_LEN]);
241 static void atw_key_update_begin(struct ieee80211com *);
242 static void atw_key_update_end(struct ieee80211com *);
243
244 /* RAM/ROM utilities */
245 static void atw_clear_sram(struct atw_softc *);
246 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
247 static int atw_read_srom(struct atw_softc *);
248
249 /* BSS setup */
250 static void atw_predict_beacon(struct atw_softc *);
251 static void atw_start_beacon(struct atw_softc *, int);
252 static void atw_write_bssid(struct atw_softc *);
253 static void atw_write_ssid(struct atw_softc *);
254 static void atw_write_sup_rates(struct atw_softc *);
255 static void atw_write_wep(struct atw_softc *);
256
257 /* Media */
258 static int atw_media_change(struct ifnet *);
259
260 static void atw_filter_setup(struct atw_softc *);
261
262 /* 802.11 utilities */
263 static uint64_t atw_get_tsft(struct atw_softc *);
264 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
265 uint32_t);
266 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
267 static void atw_node_free(struct ieee80211_node *);
268
269 /*
270 * Tuner/transceiver/modem
271 */
272 static void atw_bbp_io_enable(struct atw_softc *, int);
273
274 /* RFMD RF3000 Baseband Processor */
275 static int atw_rf3000_init(struct atw_softc *);
276 static int atw_rf3000_tune(struct atw_softc *, u_int);
277 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
278
279 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
280 static void atw_si4126_tune(struct atw_softc *, u_int);
281 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
282
283 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
284 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
285
286 const char *atw_tx_state[] = {
287 "STOPPED",
288 "RUNNING - read descriptor",
289 "RUNNING - transmitting",
290 "RUNNING - filling fifo", /* XXX */
291 "SUSPENDED",
292 "RUNNING -- write descriptor",
293 "RUNNING -- write last descriptor",
294 "RUNNING - fifo full"
295 };
296
297 const char *atw_rx_state[] = {
298 "STOPPED",
299 "RUNNING - read descriptor",
300 "RUNNING - check this packet, pre-fetch next",
301 "RUNNING - wait for reception",
302 "SUSPENDED",
303 "RUNNING - write descriptor",
304 "RUNNING - flush fifo",
305 "RUNNING - fifo drain"
306 };
307
308 static inline int
309 is_running(struct ifnet *ifp)
310 {
311 return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
312 }
313
314 int
315 atw_activate(device_t self, enum devact act)
316 {
317 struct atw_softc *sc = device_private(self);
318 int rv = 0, s;
319
320 s = splnet();
321 switch (act) {
322 case DVACT_ACTIVATE:
323 rv = EOPNOTSUPP;
324 break;
325
326 case DVACT_DEACTIVATE:
327 if_deactivate(&sc->sc_if);
328 break;
329 }
330 splx(s);
331 return rv;
332 }
333
334 /*
335 * atw_enable:
336 *
337 * Enable the ADM8211 chip.
338 */
339 int
340 atw_enable(struct atw_softc *sc)
341 {
342
343 if (ATW_IS_ENABLED(sc) == 0) {
344 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
345 aprint_error_dev(sc->sc_dev, "device enable failed\n");
346 return (EIO);
347 }
348 sc->sc_flags |= ATWF_ENABLED;
349 /* Power may have been removed, and WEP keys thus
350 * reset.
351 */
352 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
353 }
354 return (0);
355 }
356
357 /*
358 * atw_disable:
359 *
360 * Disable the ADM8211 chip.
361 */
362 void
363 atw_disable(struct atw_softc *sc)
364 {
365 if (!ATW_IS_ENABLED(sc))
366 return;
367 if (sc->sc_disable != NULL)
368 (*sc->sc_disable)(sc);
369 sc->sc_flags &= ~ATWF_ENABLED;
370 }
371
372 /* Returns -1 on failure. */
373 static int
374 atw_read_srom(struct atw_softc *sc)
375 {
376 struct seeprom_descriptor sd;
377 uint32_t test0, fail_bits;
378
379 (void)memset(&sd, 0, sizeof(sd));
380
381 test0 = ATW_READ(sc, ATW_TEST0);
382
383 switch (sc->sc_rev) {
384 case ATW_REVISION_BA:
385 case ATW_REVISION_CA:
386 fail_bits = ATW_TEST0_EPNE;
387 break;
388 default:
389 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
390 break;
391 }
392 if ((test0 & fail_bits) != 0) {
393 aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
394 return -1;
395 }
396
397 switch (test0 & ATW_TEST0_EPTYP_MASK) {
398 case ATW_TEST0_EPTYP_93c66:
399 ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
400 sc->sc_sromsz = 512;
401 sd.sd_chip = C56_66;
402 break;
403 case ATW_TEST0_EPTYP_93c46:
404 ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
405 sc->sc_sromsz = 128;
406 sd.sd_chip = C46;
407 break;
408 default:
409 printf("%s: unknown SROM type %" __PRIuBITS "\n",
410 device_xname(sc->sc_dev),
411 __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
412 return -1;
413 }
414
415 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
416
417 if (sc->sc_srom == NULL) {
418 aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
419 return -1;
420 }
421
422 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
423
424 /* ADM8211 has a single 32-bit register for controlling the
425 * 93cx6 SROM. Bit SRS enables the serial port. There is no
426 * "ready" bit. The ADM8211 input/output sense is the reverse
427 * of read_seeprom's.
428 */
429 sd.sd_tag = sc->sc_st;
430 sd.sd_bsh = sc->sc_sh;
431 sd.sd_regsize = 4;
432 sd.sd_control_offset = ATW_SPR;
433 sd.sd_status_offset = ATW_SPR;
434 sd.sd_dataout_offset = ATW_SPR;
435 sd.sd_CK = ATW_SPR_SCLK;
436 sd.sd_CS = ATW_SPR_SCS;
437 sd.sd_DI = ATW_SPR_SDO;
438 sd.sd_DO = ATW_SPR_SDI;
439 sd.sd_MS = ATW_SPR_SRS;
440 sd.sd_RDY = 0;
441
442 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
443 aprint_error_dev(sc->sc_dev, "could not read SROM\n");
444 free(sc->sc_srom, M_DEVBUF);
445 return -1;
446 }
447 #ifdef ATW_DEBUG
448 {
449 int i;
450 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
451 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
452 if (((i % 8) == 0) && (i != 0)) {
453 ATW_DPRINTF(("\n\t"));
454 }
455 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
456 }
457 ATW_DPRINTF(("\n"));
458 }
459 #endif /* ATW_DEBUG */
460 return 0;
461 }
462
463 #ifdef ATW_DEBUG
464 static void
465 atw_print_regs(struct atw_softc *sc, const char *where)
466 {
467 #define PRINTREG(sc, reg) \
468 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
469 device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
470
471 ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
472
473 PRINTREG(sc, ATW_PAR);
474 PRINTREG(sc, ATW_FRCTL);
475 PRINTREG(sc, ATW_TDR);
476 PRINTREG(sc, ATW_WTDP);
477 PRINTREG(sc, ATW_RDR);
478 PRINTREG(sc, ATW_WRDP);
479 PRINTREG(sc, ATW_RDB);
480 PRINTREG(sc, ATW_CSR3A);
481 PRINTREG(sc, ATW_TDBD);
482 PRINTREG(sc, ATW_TDBP);
483 PRINTREG(sc, ATW_STSR);
484 PRINTREG(sc, ATW_CSR5A);
485 PRINTREG(sc, ATW_NAR);
486 PRINTREG(sc, ATW_CSR6A);
487 PRINTREG(sc, ATW_IER);
488 PRINTREG(sc, ATW_CSR7A);
489 PRINTREG(sc, ATW_LPC);
490 PRINTREG(sc, ATW_TEST1);
491 PRINTREG(sc, ATW_SPR);
492 PRINTREG(sc, ATW_TEST0);
493 PRINTREG(sc, ATW_WCSR);
494 PRINTREG(sc, ATW_WPDR);
495 PRINTREG(sc, ATW_GPTMR);
496 PRINTREG(sc, ATW_GPIO);
497 PRINTREG(sc, ATW_BBPCTL);
498 PRINTREG(sc, ATW_SYNCTL);
499 PRINTREG(sc, ATW_PLCPHD);
500 PRINTREG(sc, ATW_MMIWADDR);
501 PRINTREG(sc, ATW_MMIRADDR1);
502 PRINTREG(sc, ATW_MMIRADDR2);
503 PRINTREG(sc, ATW_TXBR);
504 PRINTREG(sc, ATW_CSR15A);
505 PRINTREG(sc, ATW_ALCSTAT);
506 PRINTREG(sc, ATW_TOFS2);
507 PRINTREG(sc, ATW_CMDR);
508 PRINTREG(sc, ATW_PCIC);
509 PRINTREG(sc, ATW_PMCSR);
510 PRINTREG(sc, ATW_PAR0);
511 PRINTREG(sc, ATW_PAR1);
512 PRINTREG(sc, ATW_MAR0);
513 PRINTREG(sc, ATW_MAR1);
514 PRINTREG(sc, ATW_ATIMDA0);
515 PRINTREG(sc, ATW_ABDA1);
516 PRINTREG(sc, ATW_BSSID0);
517 PRINTREG(sc, ATW_TXLMT);
518 PRINTREG(sc, ATW_MIBCNT);
519 PRINTREG(sc, ATW_BCNT);
520 PRINTREG(sc, ATW_TSFTH);
521 PRINTREG(sc, ATW_TSC);
522 PRINTREG(sc, ATW_SYNRF);
523 PRINTREG(sc, ATW_BPLI);
524 PRINTREG(sc, ATW_CAP0);
525 PRINTREG(sc, ATW_CAP1);
526 PRINTREG(sc, ATW_RMD);
527 PRINTREG(sc, ATW_CFPP);
528 PRINTREG(sc, ATW_TOFS0);
529 PRINTREG(sc, ATW_TOFS1);
530 PRINTREG(sc, ATW_IFST);
531 PRINTREG(sc, ATW_RSPT);
532 PRINTREG(sc, ATW_TSFTL);
533 PRINTREG(sc, ATW_WEPCTL);
534 PRINTREG(sc, ATW_WESK);
535 PRINTREG(sc, ATW_WEPCNT);
536 PRINTREG(sc, ATW_MACTEST);
537 PRINTREG(sc, ATW_FER);
538 PRINTREG(sc, ATW_FEMR);
539 PRINTREG(sc, ATW_FPSR);
540 PRINTREG(sc, ATW_FFER);
541 #undef PRINTREG
542 }
543 #endif /* ATW_DEBUG */
544
545 /*
546 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
547 */
548 void
549 atw_attach(struct atw_softc *sc)
550 {
551 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
552 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
553 };
554 struct ieee80211com *ic = &sc->sc_ic;
555 struct ifnet *ifp = &sc->sc_if;
556 int country_code, error, i, nrate, srom_major;
557 u_int32_t reg;
558 static const char *type_strings[] = {"Intersil (not supported)",
559 "RFMD", "Marvel (not supported)"};
560
561 sc->sc_txth = atw_txthresh_tab_lo;
562
563 SIMPLEQ_INIT(&sc->sc_txfreeq);
564 SIMPLEQ_INIT(&sc->sc_txdirtyq);
565
566 #ifdef ATW_DEBUG
567 atw_print_regs(sc, "atw_attach");
568 #endif /* ATW_DEBUG */
569
570 /*
571 * Allocate the control data structures, and create and load the
572 * DMA map for it.
573 */
574 if ((error = bus_dmamem_alloc(sc->sc_dmat,
575 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
576 1, &sc->sc_cdnseg, 0)) != 0) {
577 aprint_error_dev(sc->sc_dev,
578 "unable to allocate control data, error = %d\n",
579 error);
580 goto fail_0;
581 }
582
583 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
584 sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
585 BUS_DMA_COHERENT)) != 0) {
586 aprint_error_dev(sc->sc_dev,
587 "unable to map control data, error = %d\n",
588 error);
589 goto fail_1;
590 }
591
592 if ((error = bus_dmamap_create(sc->sc_dmat,
593 sizeof(struct atw_control_data), 1,
594 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
595 aprint_error_dev(sc->sc_dev,
596 "unable to create control data DMA map, error = %d\n",
597 error);
598 goto fail_2;
599 }
600
601 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
602 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
603 0)) != 0) {
604 aprint_error_dev(sc->sc_dev,
605 "unable to load control data DMA map, error = %d\n", error);
606 goto fail_3;
607 }
608
609 /*
610 * Create the transmit buffer DMA maps.
611 */
612 sc->sc_ntxsegs = ATW_NTXSEGS;
613 for (i = 0; i < ATW_TXQUEUELEN; i++) {
614 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
615 sc->sc_ntxsegs, MCLBYTES, 0, 0,
616 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
617 aprint_error_dev(sc->sc_dev,
618 "unable to create tx DMA map %d, error = %d\n", i,
619 error);
620 goto fail_4;
621 }
622 }
623
624 /*
625 * Create the receive buffer DMA maps.
626 */
627 for (i = 0; i < ATW_NRXDESC; i++) {
628 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
629 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
630 aprint_error_dev(sc->sc_dev,
631 "unable to create rx DMA map %d, error = %d\n", i,
632 error);
633 goto fail_5;
634 }
635 }
636 for (i = 0; i < ATW_NRXDESC; i++) {
637 sc->sc_rxsoft[i].rxs_mbuf = NULL;
638 }
639
640 switch (sc->sc_rev) {
641 case ATW_REVISION_AB:
642 case ATW_REVISION_AF:
643 sc->sc_sramlen = ATW_SRAM_A_SIZE;
644 break;
645 case ATW_REVISION_BA:
646 case ATW_REVISION_CA:
647 sc->sc_sramlen = ATW_SRAM_B_SIZE;
648 break;
649 }
650
651 /* Reset the chip to a known state. */
652 atw_reset(sc);
653
654 if (atw_read_srom(sc) == -1)
655 return;
656
657 sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
658 ATW_SR_RFTYPE_MASK);
659
660 sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
661 ATW_SR_BBPTYPE_MASK);
662
663 if (sc->sc_rftype >= __arraycount(type_strings)) {
664 aprint_error_dev(sc->sc_dev, "unknown RF\n");
665 return;
666 }
667 if (sc->sc_bbptype >= __arraycount(type_strings)) {
668 aprint_error_dev(sc->sc_dev, "unknown BBP\n");
669 return;
670 }
671
672 printf("%s: %s RF, %s BBP", device_xname(sc->sc_dev),
673 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
674
675 /* XXX There exists a Linux driver which seems to use RFType = 0 for
676 * MARVEL. My bug, or theirs?
677 */
678
679 reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
680
681 switch (sc->sc_rftype) {
682 case ATW_RFTYPE_INTERSIL:
683 reg |= ATW_SYNCTL_CS1;
684 break;
685 case ATW_RFTYPE_RFMD:
686 reg |= ATW_SYNCTL_CS0;
687 break;
688 case ATW_RFTYPE_MARVEL:
689 break;
690 }
691
692 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
693 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
694
695 reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
696
697 switch (sc->sc_bbptype) {
698 case ATW_BBPTYPE_INTERSIL:
699 reg |= ATW_BBPCTL_TWI;
700 break;
701 case ATW_BBPTYPE_RFMD:
702 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
703 ATW_BBPCTL_CCA_ACTLO;
704 break;
705 case ATW_BBPTYPE_MARVEL:
706 break;
707 case ATW_C_BBPTYPE_RFMD:
708 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
709 device_xname(sc->sc_dev));
710 break;
711 }
712
713 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
714 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
715
716 /*
717 * From this point forward, the attachment cannot fail. A failure
718 * before this point releases all resources that may have been
719 * allocated.
720 */
721 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
722
723 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
724 htole16(sc->sc_srom[ATW_SR_MAC00]),
725 htole16(sc->sc_srom[ATW_SR_MAC01]),
726 htole16(sc->sc_srom[ATW_SR_MAC10])));
727
728 srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
729 ATW_SR_MAJOR_MASK);
730
731 if (srom_major < 2)
732 sc->sc_rf3000_options1 = 0;
733 else if (sc->sc_rev == ATW_REVISION_BA) {
734 sc->sc_rf3000_options1 =
735 __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
736 ATW_SR_CR28_MASK);
737 } else
738 sc->sc_rf3000_options1 = 0;
739
740 sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
741 ATW_SR_CR29_MASK);
742
743 country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
744 ATW_SR_CTRY_MASK);
745
746 #define ADD_CHANNEL(_ic, _chan) do { \
747 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
748 _ic->ic_channels[_chan].ic_freq = \
749 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
750 } while (0)
751
752 /* Find available channels */
753 switch (country_code) {
754 case COUNTRY_MMK2: /* 1-14 */
755 ADD_CHANNEL(ic, 14);
756 /*FALLTHROUGH*/
757 case COUNTRY_ETSI: /* 1-13 */
758 for (i = 1; i <= 13; i++)
759 ADD_CHANNEL(ic, i);
760 break;
761 case COUNTRY_FCC: /* 1-11 */
762 case COUNTRY_IC: /* 1-11 */
763 for (i = 1; i <= 11; i++)
764 ADD_CHANNEL(ic, i);
765 break;
766 case COUNTRY_MMK: /* 14 */
767 ADD_CHANNEL(ic, 14);
768 break;
769 case COUNTRY_FRANCE: /* 10-13 */
770 for (i = 10; i <= 13; i++)
771 ADD_CHANNEL(ic, i);
772 break;
773 default: /* assume channels 10-11 */
774 case COUNTRY_SPAIN: /* 10-11 */
775 for (i = 10; i <= 11; i++)
776 ADD_CHANNEL(ic, i);
777 break;
778 }
779
780 /* Read the MAC address. */
781 reg = ATW_READ(sc, ATW_PAR0);
782 ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
783 ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
784 ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
785 ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
786 reg = ATW_READ(sc, ATW_PAR1);
787 ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
788 ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
789
790 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
791 printf(" could not get mac address, attach failed\n");
792 return;
793 }
794
795 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
796
797 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
798 ifp->if_softc = sc;
799 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
800 IFF_NOTRAILERS;
801 ifp->if_ioctl = atw_ioctl;
802 ifp->if_start = atw_start;
803 ifp->if_watchdog = atw_watchdog;
804 ifp->if_init = atw_init;
805 ifp->if_stop = atw_stop;
806 IFQ_SET_READY(&ifp->if_snd);
807
808 ic->ic_ifp = ifp;
809 ic->ic_phytype = IEEE80211_T_DS;
810 ic->ic_opmode = IEEE80211_M_STA;
811 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
812 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
813
814 nrate = 0;
815 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
816 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
817 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
818 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
819 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
820
821 /*
822 * Call MI attach routines.
823 */
824
825 if_attach(ifp);
826 ieee80211_ifattach(ic);
827
828 atw_evcnt_attach(sc);
829
830 sc->sc_newstate = ic->ic_newstate;
831 ic->ic_newstate = atw_newstate;
832
833 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
834 ic->ic_recv_mgmt = atw_recv_mgmt;
835
836 sc->sc_node_free = ic->ic_node_free;
837 ic->ic_node_free = atw_node_free;
838
839 sc->sc_node_alloc = ic->ic_node_alloc;
840 ic->ic_node_alloc = atw_node_alloc;
841
842 ic->ic_crypto.cs_key_delete = atw_key_delete;
843 ic->ic_crypto.cs_key_set = atw_key_set;
844 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
845 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
846
847 /* possibly we should fill in our own sc_send_prresp, since
848 * the ADM8211 is probably sending probe responses in ad hoc
849 * mode.
850 */
851
852 /* complete initialization */
853 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
854 callout_init(&sc->sc_scan_ch, 0);
855
856 #if NBPFILTER > 0
857 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
858 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
859 #endif
860
861 if (!pmf_device_register1(sc->sc_dev, NULL, NULL, atw_shutdown)) {
862 aprint_error_dev(sc->sc_dev,
863 "couldn't establish power handler\n");
864 } else
865 pmf_class_network_register(sc->sc_dev, &sc->sc_if);
866
867 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
868 sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
869 sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
870
871 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
872 sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
873 sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
874
875 ieee80211_announce(ic);
876 return;
877
878 /*
879 * Free any resources we've allocated during the failed attach
880 * attempt. Do this in reverse order and fall through.
881 */
882 fail_5:
883 for (i = 0; i < ATW_NRXDESC; i++) {
884 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
885 continue;
886 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
887 }
888 fail_4:
889 for (i = 0; i < ATW_TXQUEUELEN; i++) {
890 if (sc->sc_txsoft[i].txs_dmamap == NULL)
891 continue;
892 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
893 }
894 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
895 fail_3:
896 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
897 fail_2:
898 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
899 sizeof(struct atw_control_data));
900 fail_1:
901 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
902 fail_0:
903 return;
904 }
905
906 static struct ieee80211_node *
907 atw_node_alloc(struct ieee80211_node_table *nt)
908 {
909 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
910 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
911
912 DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
913 return ni;
914 }
915
916 static void
917 atw_node_free(struct ieee80211_node *ni)
918 {
919 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
920
921 DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
922 ether_sprintf(ni->ni_bssid)));
923 (*sc->sc_node_free)(ni);
924 }
925
926
927 static void
928 atw_test1_reset(struct atw_softc *sc)
929 {
930 switch (sc->sc_rev) {
931 case ATW_REVISION_BA:
932 if (1 /* XXX condition on transceiver type */) {
933 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
934 }
935 break;
936 case ATW_REVISION_CA:
937 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
938 break;
939 default:
940 break;
941 }
942 }
943
944 /*
945 * atw_reset:
946 *
947 * Perform a soft reset on the ADM8211.
948 */
949 void
950 atw_reset(struct atw_softc *sc)
951 {
952 int i;
953 uint32_t lpc;
954
955 ATW_WRITE(sc, ATW_NAR, 0x0);
956 DELAY(atw_nar_delay);
957
958 /* Reference driver has a cryptic remark indicating that this might
959 * power-on the chip. I know that it turns off power-saving....
960 */
961 ATW_WRITE(sc, ATW_FRCTL, 0x0);
962
963 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
964
965 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
966 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
967 break;
968 DELAY(atw_pseudo_milli);
969 }
970
971 /* ... and then pause 100ms longer for good measure. */
972 DELAY(atw_magic_delay1);
973
974 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
975
976 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
977 aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
978
979 /*
980 * Initialize the PCI Access Register.
981 */
982 sc->sc_busmode = ATW_PAR_PBL_8DW;
983
984 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
985 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
986 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
987
988 atw_test1_reset(sc);
989
990 /* Turn off maximum power saving, etc. */
991 ATW_WRITE(sc, ATW_FRCTL, 0x0);
992
993 DELAY(atw_magic_delay2);
994
995 /* Recall EEPROM. */
996 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
997
998 DELAY(atw_magic_delay4);
999
1000 lpc = ATW_READ(sc, ATW_LPC);
1001
1002 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1003
1004 /* A reset seems to affect the SRAM contents, so put them into
1005 * a known state.
1006 */
1007 atw_clear_sram(sc);
1008
1009 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1010 }
1011
1012 static void
1013 atw_clear_sram(struct atw_softc *sc)
1014 {
1015 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1016 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1017 /* XXX not for revision 0x20. */
1018 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1019 }
1020
1021 /* TBD atw_init
1022 *
1023 * set MAC based on ic->ic_bss->myaddr
1024 * write WEP keys
1025 * set TX rate
1026 */
1027
1028 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1029 * without receiving a beacon with the preferred BSSID & SSID.
1030 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1031 */
1032 static void
1033 atw_wcsr_init(struct atw_softc *sc)
1034 {
1035 uint32_t wcsr;
1036
1037 wcsr = ATW_READ(sc, ATW_WCSR);
1038 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1039 wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1040 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1041
1042 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1043 device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1044 }
1045
1046 /* Turn off power management. Set Rx store-and-forward mode. */
1047 static void
1048 atw_cmdr_init(struct atw_softc *sc)
1049 {
1050 uint32_t cmdr;
1051 cmdr = ATW_READ(sc, ATW_CMDR);
1052 cmdr &= ~ATW_CMDR_APM;
1053 cmdr |= ATW_CMDR_RTE;
1054 cmdr &= ~ATW_CMDR_DRT_MASK;
1055 cmdr |= ATW_CMDR_DRT_SF;
1056
1057 ATW_WRITE(sc, ATW_CMDR, cmdr);
1058 }
1059
1060 static void
1061 atw_tofs2_init(struct atw_softc *sc)
1062 {
1063 uint32_t tofs2;
1064 /* XXX this magic can probably be figured out from the RFMD docs */
1065 #ifndef ATW_REFSLAVE
1066 tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1067 __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1068 __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1069 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1070 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1071 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1072 __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1073 __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1074 #else
1075 /* XXX new magic from reference driver source */
1076 tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1077 __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1078 __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */
1079 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1080 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1081 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1082 __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */
1083 __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */
1084 #endif
1085 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1086 }
1087
1088 static void
1089 atw_nar_init(struct atw_softc *sc)
1090 {
1091 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1092 }
1093
1094 static void
1095 atw_txlmt_init(struct atw_softc *sc)
1096 {
1097 ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1098 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1099 }
1100
1101 static void
1102 atw_test1_init(struct atw_softc *sc)
1103 {
1104 uint32_t test1;
1105
1106 test1 = ATW_READ(sc, ATW_TEST1);
1107 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1108 /* XXX magic 0x1 */
1109 test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1110 ATW_WRITE(sc, ATW_TEST1, test1);
1111 }
1112
1113 static void
1114 atw_rf_reset(struct atw_softc *sc)
1115 {
1116 /* XXX this resets an Intersil RF front-end? */
1117 /* TBD condition on Intersil RFType? */
1118 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1119 DELAY(atw_rf_delay1);
1120 ATW_WRITE(sc, ATW_SYNRF, 0);
1121 DELAY(atw_rf_delay2);
1122 }
1123
1124 /* Set 16 TU max duration for the contention-free period (CFP). */
1125 static void
1126 atw_cfp_init(struct atw_softc *sc)
1127 {
1128 uint32_t cfpp;
1129
1130 cfpp = ATW_READ(sc, ATW_CFPP);
1131 cfpp &= ~ATW_CFPP_CFPMD;
1132 cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1133 ATW_WRITE(sc, ATW_CFPP, cfpp);
1134 }
1135
1136 static void
1137 atw_tofs0_init(struct atw_softc *sc)
1138 {
1139 /* XXX I guess that the Cardbus clock is 22 MHz?
1140 * I am assuming that the role of ATW_TOFS0_USCNT is
1141 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1142 * very clear on this point. It says in the datasheet that it is
1143 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1144 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1145 * these values. These values are also the power-on default.
1146 */
1147 ATW_WRITE(sc, ATW_TOFS0,
1148 __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1149 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1150 }
1151
1152 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1153 static void
1154 atw_ifs_init(struct atw_softc *sc)
1155 {
1156 uint32_t ifst;
1157 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1158 * Go figure.
1159 */
1160 ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1161 __SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1162 ATW_IFST_SIFS_MASK) |
1163 __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1164 __SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1165
1166 ATW_WRITE(sc, ATW_IFST, ifst);
1167 }
1168
1169 static void
1170 atw_response_times_init(struct atw_softc *sc)
1171 {
1172 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1173 * indicate that the MAC expects at least SIFS + MIRT microseconds
1174 * to pass after it transmits a frame that requires a response;
1175 * it waits at most SIFS + MART microseconds for the response.
1176 * Surely this is not the ACK timeout?
1177 */
1178 ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1179 __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1180 }
1181
1182 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1183 * engines read and write baseband registers after Rx and before
1184 * Tx, respectively.
1185 */
1186 static void
1187 atw_bbp_io_init(struct atw_softc *sc)
1188 {
1189 uint32_t mmiraddr2;
1190
1191 /* XXX The reference driver does this, but is it *really*
1192 * necessary?
1193 */
1194 switch (sc->sc_rev) {
1195 case ATW_REVISION_AB:
1196 case ATW_REVISION_AF:
1197 mmiraddr2 = 0x0;
1198 break;
1199 default:
1200 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1201 mmiraddr2 &=
1202 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1203 break;
1204 }
1205
1206 switch (sc->sc_bbptype) {
1207 case ATW_BBPTYPE_INTERSIL:
1208 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1209 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1210 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1211 break;
1212 case ATW_BBPTYPE_MARVEL:
1213 /* TBD find out the Marvel settings. */
1214 break;
1215 case ATW_BBPTYPE_RFMD:
1216 default:
1217 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1218 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1219 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1220 break;
1221 }
1222 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1223 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1224 }
1225
1226 /*
1227 * atw_init: [ ifnet interface function ]
1228 *
1229 * Initialize the interface. Must be called at splnet().
1230 */
1231 int
1232 atw_init(struct ifnet *ifp)
1233 {
1234 struct atw_softc *sc = ifp->if_softc;
1235 struct ieee80211com *ic = &sc->sc_ic;
1236 struct atw_txsoft *txs;
1237 struct atw_rxsoft *rxs;
1238 int i, error = 0;
1239
1240 if ((error = atw_enable(sc)) != 0)
1241 goto out;
1242
1243 /*
1244 * Cancel any pending I/O. This also resets.
1245 */
1246 atw_stop(ifp, 0);
1247
1248 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1249 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1250 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1251
1252 atw_wcsr_init(sc);
1253
1254 atw_cmdr_init(sc);
1255
1256 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1257 *
1258 * XXX Set transmit power for ATIM, RTS, Beacon.
1259 */
1260 ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1261 __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1262
1263 atw_tofs2_init(sc);
1264
1265 atw_nar_init(sc);
1266
1267 atw_txlmt_init(sc);
1268
1269 atw_test1_init(sc);
1270
1271 atw_rf_reset(sc);
1272
1273 atw_cfp_init(sc);
1274
1275 atw_tofs0_init(sc);
1276
1277 atw_ifs_init(sc);
1278
1279 /* XXX Fall asleep after one second of inactivity.
1280 * XXX A frame may only dribble in for 65536us.
1281 */
1282 ATW_WRITE(sc, ATW_RMD,
1283 __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1284
1285 atw_response_times_init(sc);
1286
1287 atw_bbp_io_init(sc);
1288
1289 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1290
1291 if ((error = atw_rf3000_init(sc)) != 0)
1292 goto out;
1293
1294 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1295 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1296 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1297
1298 /*
1299 * Initialize the transmit descriptor ring.
1300 */
1301 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1302 for (i = 0; i < ATW_NTXDESC; i++) {
1303 sc->sc_txdescs[i].at_ctl = 0;
1304 /* no transmit chaining */
1305 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1306 sc->sc_txdescs[i].at_buf2 =
1307 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1308 }
1309 /* use ring mode */
1310 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1311 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1312 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1313 sc->sc_txfree = ATW_NTXDESC;
1314 sc->sc_txnext = 0;
1315
1316 /*
1317 * Initialize the transmit job descriptors.
1318 */
1319 SIMPLEQ_INIT(&sc->sc_txfreeq);
1320 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1321 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1322 txs = &sc->sc_txsoft[i];
1323 txs->txs_mbuf = NULL;
1324 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1325 }
1326
1327 /*
1328 * Initialize the receive descriptor and receive job
1329 * descriptor rings.
1330 */
1331 for (i = 0; i < ATW_NRXDESC; i++) {
1332 rxs = &sc->sc_rxsoft[i];
1333 if (rxs->rxs_mbuf == NULL) {
1334 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1335 aprint_error_dev(sc->sc_dev, "unable to allocate or map rx "
1336 "buffer %d, error = %d\n",
1337 i, error);
1338 /*
1339 * XXX Should attempt to run with fewer receive
1340 * XXX buffers instead of just failing.
1341 */
1342 atw_rxdrain(sc);
1343 goto out;
1344 }
1345 } else
1346 atw_init_rxdesc(sc, i);
1347 }
1348 sc->sc_rxptr = 0;
1349
1350 /*
1351 * Initialize the interrupt mask and enable interrupts.
1352 */
1353 /* normal interrupts */
1354 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1355 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1356
1357 /* abnormal interrupts */
1358 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1359 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1360 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1361
1362 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1363 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1364 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1365 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1366 ATW_INTR_TRT;
1367
1368 sc->sc_linkint_mask &= sc->sc_inten;
1369 sc->sc_rxint_mask &= sc->sc_inten;
1370 sc->sc_txint_mask &= sc->sc_inten;
1371
1372 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1373 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1374
1375 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1376 device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1377
1378 /*
1379 * Give the transmit and receive rings to the ADM8211.
1380 */
1381 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1382 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1383
1384 sc->sc_txthresh = 0;
1385 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1386 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1387
1388 /* common 802.11 configuration */
1389 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1390 switch (ic->ic_opmode) {
1391 case IEEE80211_M_STA:
1392 break;
1393 case IEEE80211_M_AHDEMO: /* XXX */
1394 case IEEE80211_M_IBSS:
1395 ic->ic_flags |= IEEE80211_F_IBSSON;
1396 /*FALLTHROUGH*/
1397 case IEEE80211_M_HOSTAP: /* XXX */
1398 break;
1399 case IEEE80211_M_MONITOR: /* XXX */
1400 break;
1401 }
1402
1403 switch (ic->ic_opmode) {
1404 case IEEE80211_M_AHDEMO:
1405 case IEEE80211_M_HOSTAP:
1406 #ifndef IEEE80211_NO_HOSTAP
1407 ic->ic_bss->ni_intval = ic->ic_lintval;
1408 ic->ic_bss->ni_rssi = 0;
1409 ic->ic_bss->ni_rstamp = 0;
1410 #endif /* !IEEE80211_NO_HOSTAP */
1411 break;
1412 default: /* XXX */
1413 break;
1414 }
1415
1416 sc->sc_wepctl = 0;
1417
1418 atw_write_ssid(sc);
1419 atw_write_sup_rates(sc);
1420 atw_write_wep(sc);
1421
1422 ic->ic_state = IEEE80211_S_INIT;
1423
1424 /*
1425 * Set the receive filter. This will start the transmit and
1426 * receive processes.
1427 */
1428 atw_filter_setup(sc);
1429
1430 /*
1431 * Start the receive process.
1432 */
1433 ATW_WRITE(sc, ATW_RDR, 0x1);
1434
1435 /*
1436 * Note that the interface is now running.
1437 */
1438 ifp->if_flags |= IFF_RUNNING;
1439 ifp->if_flags &= ~IFF_OACTIVE;
1440
1441 /* send no beacons, yet. */
1442 atw_start_beacon(sc, 0);
1443
1444 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1445 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1446 else
1447 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1448 out:
1449 if (error) {
1450 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1451 sc->sc_tx_timer = 0;
1452 ifp->if_timer = 0;
1453 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1454 }
1455 #ifdef ATW_DEBUG
1456 atw_print_regs(sc, "end of init");
1457 #endif /* ATW_DEBUG */
1458
1459 return (error);
1460 }
1461
1462 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1463 * 0: MAC control of RF3000/Si4126.
1464 *
1465 * Applies power, or selects RF front-end? Sets reset condition.
1466 *
1467 * TBD support non-RFMD BBP, non-SiLabs synth.
1468 */
1469 static void
1470 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1471 {
1472 if (enable) {
1473 ATW_WRITE(sc, ATW_SYNRF,
1474 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1475 DELAY(atw_bbp_io_enable_delay);
1476 } else {
1477 ATW_WRITE(sc, ATW_SYNRF, 0);
1478 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1479 }
1480 }
1481
1482 static int
1483 atw_tune(struct atw_softc *sc)
1484 {
1485 int rc;
1486 u_int chan;
1487 struct ieee80211com *ic = &sc->sc_ic;
1488
1489 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1490 if (chan == IEEE80211_CHAN_ANY)
1491 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1492
1493 if (chan == sc->sc_cur_chan)
1494 return 0;
1495
1496 DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1497 sc->sc_cur_chan, chan));
1498
1499 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1500
1501 atw_si4126_tune(sc, chan);
1502 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1503 printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1504 chan);
1505
1506 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1507 DELAY(atw_nar_delay);
1508 ATW_WRITE(sc, ATW_RDR, 0x1);
1509
1510 if (rc == 0) {
1511 sc->sc_cur_chan = chan;
1512 sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1513 htole16(ic->ic_curchan->ic_freq);
1514 sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1515 htole16(ic->ic_curchan->ic_flags);
1516 }
1517
1518 return rc;
1519 }
1520
1521 #ifdef ATW_SYNDEBUG
1522 static void
1523 atw_si4126_print(struct atw_softc *sc)
1524 {
1525 struct ifnet *ifp = &sc->sc_if;
1526 u_int addr, val;
1527
1528 val = 0;
1529
1530 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1531 return;
1532
1533 for (addr = 0; addr <= 8; addr++) {
1534 printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1535 if (atw_si4126_read(sc, addr, &val) == 0) {
1536 printf("<unknown> (quitting print-out)\n");
1537 break;
1538 }
1539 printf("%05x\n", val);
1540 }
1541 }
1542 #endif /* ATW_SYNDEBUG */
1543
1544 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1545 *
1546 * The RF/IF synthesizer produces two reference frequencies for
1547 * the RF2948B transceiver. The first frequency the RF2948B requires
1548 * is two times the so-called "intermediate frequency" (IF). Since
1549 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1550 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second
1551 * frequency required by the transceiver is the radio frequency
1552 * (RF). This is a superheterodyne transceiver; for f(chan) the
1553 * center frequency of the channel we are tuning, RF = f(chan) -
1554 * IF.
1555 *
1556 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1557 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1558 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1559 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1560 */
1561 static void
1562 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1563 {
1564 u_int mhz;
1565 u_int R;
1566 u_int32_t gpio;
1567 u_int16_t gain;
1568
1569 #ifdef ATW_SYNDEBUG
1570 atw_si4126_print(sc);
1571 #endif /* ATW_SYNDEBUG */
1572
1573 if (chan == 14)
1574 mhz = 2484;
1575 else
1576 mhz = 2412 + 5 * (chan - 1);
1577
1578 /* Tune IF to 748 MHz to suit the IF LO input of the
1579 * RF2494B, which is 2 x IF. No need to set an IF divider
1580 * because an IF in 526 MHz - 952 MHz is allowed.
1581 *
1582 * XIN is 44.000 MHz, so divide it by two to get allowable
1583 * range of 2-25 MHz. SiLabs tells me that this is not
1584 * strictly necessary.
1585 */
1586
1587 if (atw_xindiv2)
1588 R = 44;
1589 else
1590 R = 88;
1591
1592 /* Power-up RF, IF synthesizers. */
1593 atw_si4126_write(sc, SI4126_POWER,
1594 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1595
1596 /* set LPWR, too? */
1597 atw_si4126_write(sc, SI4126_MAIN,
1598 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1599
1600 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1601 * set KP2 to 1.
1602 *
1603 * REFDIF This is different from the reference driver, which
1604 * always sets SI4126_GAIN to 0.
1605 */
1606 gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1607
1608 atw_si4126_write(sc, SI4126_GAIN, gain);
1609
1610 /* XIN = 44 MHz.
1611 *
1612 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1613 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1614 *
1615 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1616 * so that 1496/88 * 44 MHz = 748 MHz.
1617 */
1618 atw_si4126_write(sc, SI4126_IFN, 1496);
1619
1620 atw_si4126_write(sc, SI4126_IFR, R);
1621
1622 #ifndef ATW_REFSLAVE
1623 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1624 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1625 * which has no RF1!
1626 */
1627 atw_si4126_write(sc, SI4126_RF1R, R);
1628
1629 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1630 #endif
1631
1632 /* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1633 * where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44.
1634 * Now let's multiply it to mhz. So mhz - IF = N.
1635 */
1636 atw_si4126_write(sc, SI4126_RF2R, R);
1637
1638 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1639
1640 /* wait 100us from power-up for RF, IF to settle */
1641 DELAY(100);
1642
1643 gpio = ATW_READ(sc, ATW_GPIO);
1644 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1645 gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1646
1647 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1648 /* Set a Prism RF front-end to a special mode for channel 14?
1649 *
1650 * Apparently the SMC2635W needs this, although I don't think
1651 * it has a Prism RF.
1652 */
1653 gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1654 }
1655 ATW_WRITE(sc, ATW_GPIO, gpio);
1656
1657 #ifdef ATW_SYNDEBUG
1658 atw_si4126_print(sc);
1659 #endif /* ATW_SYNDEBUG */
1660 }
1661
1662 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1663 * diversity.
1664 *
1665 * !!!
1666 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1667 * !!!
1668 */
1669 static int
1670 atw_rf3000_init(struct atw_softc *sc)
1671 {
1672 int rc = 0;
1673
1674 atw_bbp_io_enable(sc, 1);
1675
1676 /* CCA is acquisition sensitive */
1677 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1678 __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1679
1680 if (rc != 0)
1681 goto out;
1682
1683 /* enable diversity */
1684 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1685
1686 if (rc != 0)
1687 goto out;
1688
1689 /* sensible setting from a binary-only driver */
1690 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1691 __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1692
1693 if (rc != 0)
1694 goto out;
1695
1696 /* magic from a binary-only driver */
1697 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1698 __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1699
1700 if (rc != 0)
1701 goto out;
1702
1703 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1704
1705 if (rc != 0)
1706 goto out;
1707
1708 /* XXX Reference driver remarks that Abocom sets this to 50.
1709 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1710 * in the "reserved" area of register RF3000_OPTIONS1.
1711 */
1712 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1713
1714 if (rc != 0)
1715 goto out;
1716
1717 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1718
1719 if (rc != 0)
1720 goto out;
1721
1722 out:
1723 atw_bbp_io_enable(sc, 0);
1724 return rc;
1725 }
1726
1727 #ifdef ATW_BBPDEBUG
1728 static void
1729 atw_rf3000_print(struct atw_softc *sc)
1730 {
1731 struct ifnet *ifp = &sc->sc_if;
1732 u_int addr, val;
1733
1734 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1735 return;
1736
1737 for (addr = 0x01; addr <= 0x15; addr++) {
1738 printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1739 if (atw_rf3000_read(sc, addr, &val) != 0) {
1740 printf("<unknown> (quitting print-out)\n");
1741 break;
1742 }
1743 printf("%08x\n", val);
1744 }
1745 }
1746 #endif /* ATW_BBPDEBUG */
1747
1748 /* Set the power settings on the BBP for channel `chan'. */
1749 static int
1750 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1751 {
1752 int rc = 0;
1753 u_int32_t reg;
1754 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1755
1756 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1757 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1758 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1759
1760 /* odd channels: LSB, even channels: MSB */
1761 if (chan % 2 == 1) {
1762 txpower &= 0xFF;
1763 lpf_cutoff &= 0xFF;
1764 lna_gs_thresh &= 0xFF;
1765 } else {
1766 txpower >>= 8;
1767 lpf_cutoff >>= 8;
1768 lna_gs_thresh >>= 8;
1769 }
1770
1771 #ifdef ATW_BBPDEBUG
1772 atw_rf3000_print(sc);
1773 #endif /* ATW_BBPDEBUG */
1774
1775 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1776 "lna_gs_thresh %02x\n",
1777 device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1778
1779 atw_bbp_io_enable(sc, 1);
1780
1781 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1782 __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1783 goto out;
1784
1785 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1786 goto out;
1787
1788 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1789 goto out;
1790
1791 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1792
1793 if (rc != 0)
1794 goto out;
1795
1796 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1797
1798 if (rc != 0)
1799 goto out;
1800
1801 #ifdef ATW_BBPDEBUG
1802 atw_rf3000_print(sc);
1803 #endif /* ATW_BBPDEBUG */
1804
1805 out:
1806 atw_bbp_io_enable(sc, 0);
1807
1808 /* set beacon, rts, atim transmit power */
1809 reg = ATW_READ(sc, ATW_PLCPHD);
1810 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1811 reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1812 ATW_PLCPHD_SERVICE_MASK);
1813 ATW_WRITE(sc, ATW_PLCPHD, reg);
1814 DELAY(atw_plcphd_delay);
1815
1816 return rc;
1817 }
1818
1819 /* Write a register on the RF3000 baseband processor using the
1820 * registers provided by the ADM8211 for this purpose.
1821 *
1822 * Return 0 on success.
1823 */
1824 static int
1825 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1826 {
1827 u_int32_t reg;
1828 int i;
1829
1830 reg = sc->sc_bbpctl_wr |
1831 __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1832 __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1833
1834 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1835 ATW_WRITE(sc, ATW_BBPCTL, reg);
1836 DELAY(2 * atw_pseudo_milli);
1837 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1838 break;
1839 }
1840
1841 if (i < 0) {
1842 printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1843 return ETIMEDOUT;
1844 }
1845 return 0;
1846 }
1847
1848 /* Read a register on the RF3000 baseband processor using the registers
1849 * the ADM8211 provides for this purpose.
1850 *
1851 * The 7-bit register address is addr. Record the 8-bit data in the register
1852 * in *val.
1853 *
1854 * Return 0 on success.
1855 *
1856 * XXX This does not seem to work. The ADM8211 must require more or
1857 * different magic to read the chip than to write it. Possibly some
1858 * of the magic I have derived from a binary-only driver concerns
1859 * the "chip address" (see the RF3000 manual).
1860 */
1861 #ifdef ATW_BBPDEBUG
1862 static int
1863 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1864 {
1865 u_int32_t reg;
1866 int i;
1867
1868 for (i = 1000; --i >= 0; ) {
1869 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1870 break;
1871 DELAY(100);
1872 }
1873
1874 if (i < 0) {
1875 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1876 device_xname(sc->sc_dev));
1877 return ETIMEDOUT;
1878 }
1879
1880 reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1881
1882 ATW_WRITE(sc, ATW_BBPCTL, reg);
1883
1884 for (i = 1000; --i >= 0; ) {
1885 DELAY(100);
1886 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1887 break;
1888 }
1889
1890 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1891
1892 if (i < 0) {
1893 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1894 device_xname(sc->sc_dev), reg);
1895 return ETIMEDOUT;
1896 }
1897 if (val != NULL)
1898 *val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1899 return 0;
1900 }
1901 #endif /* ATW_BBPDEBUG */
1902
1903 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1904 * provided by the ADM8211 for that purpose.
1905 *
1906 * val is 18 bits of data, and val is the 4-bit address of the register.
1907 *
1908 * Return 0 on success.
1909 */
1910 static void
1911 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1912 {
1913 uint32_t bits, mask, reg;
1914 const int nbits = 22;
1915
1916 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1917 KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1918
1919 bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1920 __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1921
1922 reg = ATW_SYNRF_SELSYN;
1923 /* reference driver: reset Si4126 serial bus to initial
1924 * conditions?
1925 */
1926 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1927 ATW_WRITE(sc, ATW_SYNRF, reg);
1928
1929 for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1930 if ((bits & mask) != 0)
1931 reg |= ATW_SYNRF_SYNDATA;
1932 else
1933 reg &= ~ATW_SYNRF_SYNDATA;
1934 ATW_WRITE(sc, ATW_SYNRF, reg);
1935 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1936 ATW_WRITE(sc, ATW_SYNRF, reg);
1937 }
1938 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1939 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1940 }
1941
1942 /* Read 18-bit data from the 4-bit address addr in Si4126
1943 * RF synthesizer and write the data to *val. Return 0 on success.
1944 *
1945 * XXX This does not seem to work. The ADM8211 must require more or
1946 * different magic to read the chip than to write it.
1947 */
1948 #ifdef ATW_SYNDEBUG
1949 static int
1950 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1951 {
1952 u_int32_t reg;
1953 int i;
1954
1955 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1956
1957 for (i = 1000; --i >= 0; ) {
1958 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1959 break;
1960 DELAY(100);
1961 }
1962
1963 if (i < 0) {
1964 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1965 device_xname(sc->sc_dev));
1966 return ETIMEDOUT;
1967 }
1968
1969 reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1970
1971 ATW_WRITE(sc, ATW_SYNCTL, reg);
1972
1973 for (i = 1000; --i >= 0; ) {
1974 DELAY(100);
1975 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1976 break;
1977 }
1978
1979 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1980
1981 if (i < 0) {
1982 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1983 device_xname(sc->sc_dev), reg);
1984 return ETIMEDOUT;
1985 }
1986 if (val != NULL)
1987 *val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1988 ATW_SYNCTL_DATA_MASK);
1989 return 0;
1990 }
1991 #endif /* ATW_SYNDEBUG */
1992
1993 /* XXX is the endianness correct? test. */
1994 #define atw_calchash(addr) \
1995 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1996
1997 /*
1998 * atw_filter_setup:
1999 *
2000 * Set the ADM8211's receive filter.
2001 */
2002 static void
2003 atw_filter_setup(struct atw_softc *sc)
2004 {
2005 struct ieee80211com *ic = &sc->sc_ic;
2006 struct ethercom *ec = &sc->sc_ec;
2007 struct ifnet *ifp = &sc->sc_if;
2008 int hash;
2009 u_int32_t hashes[2];
2010 struct ether_multi *enm;
2011 struct ether_multistep step;
2012
2013 /* According to comments in tlp_al981_filter_setup
2014 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2015 * multicast filter to be set while it is running. Hopefully
2016 * the ADM8211 is not the same!
2017 */
2018 if ((ifp->if_flags & IFF_RUNNING) != 0)
2019 atw_idle(sc, ATW_NAR_SR);
2020
2021 sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
2022 ifp->if_flags &= ~IFF_ALLMULTI;
2023
2024 /* XXX in scan mode, do not filter packets. Maybe this is
2025 * unnecessary.
2026 */
2027 if (ic->ic_state == IEEE80211_S_SCAN ||
2028 (ifp->if_flags & IFF_PROMISC) != 0) {
2029 sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2030 goto allmulti;
2031 }
2032
2033 hashes[0] = hashes[1] = 0x0;
2034
2035 /*
2036 * Program the 64-bit multicast hash filter.
2037 */
2038 ETHER_FIRST_MULTI(step, ec, enm);
2039 while (enm != NULL) {
2040 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2041 ETHER_ADDR_LEN) != 0)
2042 goto allmulti;
2043
2044 hash = atw_calchash(enm->enm_addrlo);
2045 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2046 ETHER_NEXT_MULTI(step, enm);
2047 sc->sc_opmode |= ATW_NAR_MM;
2048 }
2049 ifp->if_flags &= ~IFF_ALLMULTI;
2050 goto setit;
2051
2052 allmulti:
2053 sc->sc_opmode |= ATW_NAR_MM;
2054 ifp->if_flags |= IFF_ALLMULTI;
2055 hashes[0] = hashes[1] = 0xffffffff;
2056
2057 setit:
2058 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2059 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2060 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2061 DELAY(atw_nar_delay);
2062 ATW_WRITE(sc, ATW_RDR, 0x1);
2063
2064 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2065 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2066 }
2067
2068 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2069 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2070 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2071 * no beacon with the preferred BSSID and SSID in the number of
2072 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2073 */
2074 static void
2075 atw_write_bssid(struct atw_softc *sc)
2076 {
2077 struct ieee80211com *ic = &sc->sc_ic;
2078 u_int8_t *bssid;
2079
2080 bssid = ic->ic_bss->ni_bssid;
2081
2082 ATW_WRITE(sc, ATW_BSSID0,
2083 __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2084 __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2085 __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2086 __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2087
2088 ATW_WRITE(sc, ATW_ABDA1,
2089 (ATW_READ(sc, ATW_ABDA1) &
2090 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2091 __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2092 __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2093
2094 DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2095 ether_sprintf(sc->sc_bssid)));
2096 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2097
2098 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2099 }
2100
2101 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2102 * 16-bit word.
2103 */
2104 static void
2105 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2106 {
2107 u_int i;
2108 u_int8_t *ptr;
2109
2110 memcpy(&sc->sc_sram[ofs], buf, buflen);
2111
2112 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2113
2114 KASSERT(buflen + ofs <= sc->sc_sramlen);
2115
2116 ptr = &sc->sc_sram[ofs];
2117
2118 for (i = 0; i < buflen; i += 2) {
2119 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2120 __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2121 DELAY(atw_writewep_delay);
2122
2123 ATW_WRITE(sc, ATW_WESK,
2124 __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2125 DELAY(atw_writewep_delay);
2126 }
2127 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2128
2129 if (sc->sc_if.if_flags & IFF_DEBUG) {
2130 int n_octets = 0;
2131 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2132 device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2133 for (i = 0; i < buflen; i++) {
2134 printf(" %02x", ptr[i]);
2135 if (++n_octets % 24 == 0)
2136 printf("\n");
2137 }
2138 if (n_octets % 24 != 0)
2139 printf("\n");
2140 }
2141 }
2142
2143 static int
2144 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2145 {
2146 struct atw_softc *sc = ic->ic_ifp->if_softc;
2147 u_int keyix = k->wk_keyix;
2148
2149 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2150
2151 if (keyix >= IEEE80211_WEP_NKID)
2152 return 0;
2153 if (k->wk_keylen != 0)
2154 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2155
2156 return 1;
2157 }
2158
2159 static int
2160 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2161 const u_int8_t mac[IEEE80211_ADDR_LEN])
2162 {
2163 struct atw_softc *sc = ic->ic_ifp->if_softc;
2164
2165 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2166
2167 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2168 return 0;
2169
2170 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2171
2172 return 1;
2173 }
2174
2175 static void
2176 atw_key_update_begin(struct ieee80211com *ic)
2177 {
2178 #ifdef ATW_DEBUG
2179 struct ifnet *ifp = ic->ic_ifp;
2180 struct atw_softc *sc = ifp->if_softc;
2181 #endif
2182
2183 DPRINTF(sc, ("%s:\n", __func__));
2184 }
2185
2186 static void
2187 atw_key_update_end(struct ieee80211com *ic)
2188 {
2189 struct ifnet *ifp = ic->ic_ifp;
2190 struct atw_softc *sc = ifp->if_softc;
2191
2192 DPRINTF(sc, ("%s:\n", __func__));
2193
2194 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2195 return;
2196 if (ATW_IS_ENABLED(sc) == 0)
2197 return;
2198 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2199 atw_write_wep(sc);
2200 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2201 DELAY(atw_nar_delay);
2202 ATW_WRITE(sc, ATW_RDR, 0x1);
2203 }
2204
2205 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2206 static void
2207 atw_write_wep(struct atw_softc *sc)
2208 {
2209 #if 0
2210 struct ieee80211com *ic = &sc->sc_ic;
2211 u_int32_t reg;
2212 int i;
2213 #endif
2214 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2215 u_int8_t buf[IEEE80211_WEP_NKID]
2216 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2217
2218 sc->sc_wepctl = 0;
2219 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2220
2221 memset(&buf[0][0], 0, sizeof(buf));
2222
2223 #if 0
2224 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2225 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2226 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2227 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2228 buf[i][1] = ATW_WEP_ENABLED;
2229 } else {
2230 buf[i][1] = 0;
2231 continue;
2232 }
2233 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2234 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2235 ic->ic_nw_keys[i].wk_keylen - 1);
2236 }
2237
2238 reg = ATW_READ(sc, ATW_MACTEST);
2239 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2240 reg &= ~ATW_MACTEST_KEYID_MASK;
2241 reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2242 ATW_WRITE(sc, ATW_MACTEST, reg);
2243
2244 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2245 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2246
2247 switch (sc->sc_rev) {
2248 case ATW_REVISION_AB:
2249 case ATW_REVISION_AF:
2250 /* Bypass WEP on Rx. */
2251 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2252 break;
2253 default:
2254 break;
2255 }
2256 #endif
2257
2258 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2259 sizeof(buf));
2260
2261 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2262 }
2263
2264 static void
2265 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2266 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2267 {
2268 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2269
2270 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2271 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2272 return;
2273
2274 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2275
2276 switch (subtype) {
2277 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2278 case IEEE80211_FC0_SUBTYPE_BEACON:
2279 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2280 ic->ic_state == IEEE80211_S_RUN) {
2281 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2282 (void)ieee80211_ibss_merge(ni);
2283 }
2284 break;
2285 default:
2286 break;
2287 }
2288 return;
2289 }
2290
2291 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2292 * In ad hoc mode, the SSID is written to the beacons sent by the
2293 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2294 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2295 * indications.
2296 */
2297 static void
2298 atw_write_ssid(struct atw_softc *sc)
2299 {
2300 struct ieee80211com *ic = &sc->sc_ic;
2301 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2302 * it only expects the element length, not its ID.
2303 */
2304 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2305
2306 memset(buf, 0, sizeof(buf));
2307 buf[0] = ic->ic_bss->ni_esslen;
2308 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2309
2310 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2311 roundup(1 + ic->ic_bss->ni_esslen, 2));
2312 }
2313
2314 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2315 * In ad hoc mode, the supported rates are written to beacons sent by the
2316 * ADM8211.
2317 */
2318 static void
2319 atw_write_sup_rates(struct atw_softc *sc)
2320 {
2321 struct ieee80211com *ic = &sc->sc_ic;
2322 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2323 * supported rates
2324 */
2325 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2326
2327 memset(buf, 0, sizeof(buf));
2328
2329 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2330
2331 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2332 ic->ic_bss->ni_rates.rs_nrates);
2333
2334 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2335 }
2336
2337 /* Start/stop sending beacons. */
2338 void
2339 atw_start_beacon(struct atw_softc *sc, int start)
2340 {
2341 struct ieee80211com *ic = &sc->sc_ic;
2342 uint16_t chan;
2343 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2344 size_t len;
2345
2346 if (ATW_IS_ENABLED(sc) == 0)
2347 return;
2348
2349 /* start beacons */
2350 len = sizeof(struct ieee80211_frame) +
2351 8 /* timestamp */ + 2 /* beacon interval */ +
2352 2 /* capability info */ +
2353 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2354 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2355 3 /* DS parameters */ +
2356 IEEE80211_CRC_LEN;
2357
2358 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2359 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2360 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2361
2362 ATW_WRITE(sc, ATW_BCNT, bcnt);
2363 ATW_WRITE(sc, ATW_CAP1, cap1);
2364
2365 if (!start)
2366 return;
2367
2368 /* TBD use ni_capinfo */
2369
2370 capinfo = 0;
2371 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2372 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2373 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2374 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2375
2376 switch (ic->ic_opmode) {
2377 case IEEE80211_M_IBSS:
2378 len += 4; /* IBSS parameters */
2379 capinfo |= IEEE80211_CAPINFO_IBSS;
2380 break;
2381 case IEEE80211_M_HOSTAP:
2382 /* XXX 6-byte minimum TIM */
2383 len += atw_beacon_len_adjust;
2384 capinfo |= IEEE80211_CAPINFO_ESS;
2385 break;
2386 default:
2387 return;
2388 }
2389
2390 /* set listen interval
2391 * XXX do software units agree w/ hardware?
2392 */
2393 bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2394 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2395
2396 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2397
2398 bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2399 cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2400 cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2401
2402 ATW_WRITE(sc, ATW_BCNT, bcnt);
2403 ATW_WRITE(sc, ATW_BPLI, bpli);
2404 ATW_WRITE(sc, ATW_CAP0, cap0);
2405 ATW_WRITE(sc, ATW_CAP1, cap1);
2406
2407 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2408 device_xname(sc->sc_dev), bcnt));
2409
2410 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2411 device_xname(sc->sc_dev), cap1));
2412 }
2413
2414 /* Return the 32 lsb of the last TSFT divisible by ival. */
2415 static inline uint32_t
2416 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2417 {
2418 /* Following the reference driver's lead, I compute
2419 *
2420 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2421 *
2422 * without using 64-bit arithmetic, using the following
2423 * relationship:
2424 *
2425 * (0x100000000 * H + L) % m
2426 * = ((0x100000000 % m) * H + L) % m
2427 * = (((0xffffffff + 1) % m) * H + L) % m
2428 * = ((0xffffffff % m + 1 % m) * H + L) % m
2429 * = ((0xffffffff % m + 1) * H + L) % m
2430 */
2431 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2432 }
2433
2434 static uint64_t
2435 atw_get_tsft(struct atw_softc *sc)
2436 {
2437 int i;
2438 uint32_t tsfth, tsftl;
2439 for (i = 0; i < 2; i++) {
2440 tsfth = ATW_READ(sc, ATW_TSFTH);
2441 tsftl = ATW_READ(sc, ATW_TSFTL);
2442 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2443 break;
2444 }
2445 return ((uint64_t)tsfth << 32) | tsftl;
2446 }
2447
2448 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2449 * the ieee80211com.
2450 *
2451 * Predict the next target beacon transmission time (TBTT) and
2452 * write it to the ADM8211.
2453 */
2454 static void
2455 atw_predict_beacon(struct atw_softc *sc)
2456 {
2457 #define TBTTOFS 20 /* TU */
2458
2459 struct ieee80211com *ic = &sc->sc_ic;
2460 uint64_t tsft;
2461 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2462 union {
2463 uint64_t word;
2464 uint8_t tstamp[8];
2465 } u;
2466
2467 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2468 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2469 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2470 tsft = atw_get_tsft(sc);
2471 u.word = htole64(tsft);
2472 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2473 sizeof(ic->ic_bss->ni_tstamp));
2474 } else
2475 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2476
2477 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2478
2479 tsftl = tsft & 0xFFFFFFFF;
2480 tsfth = tsft >> 32;
2481
2482 /* We sent/received the last beacon `past' microseconds
2483 * after the interval divided the TSF timer.
2484 */
2485 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2486
2487 /* Skip ten beacons so that the TBTT cannot pass before
2488 * we've programmed it. Ten is an arbitrary number.
2489 */
2490 tbtt = past_even + ival * 10;
2491
2492 ATW_WRITE(sc, ATW_TOFS1,
2493 __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2494 __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2495 __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2496 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2497 #undef TBTTOFS
2498 }
2499
2500 static void
2501 atw_next_scan(void *arg)
2502 {
2503 struct atw_softc *sc = arg;
2504 struct ieee80211com *ic = &sc->sc_ic;
2505 int s;
2506
2507 /* don't call atw_start w/o network interrupts blocked */
2508 s = splnet();
2509 if (ic->ic_state == IEEE80211_S_SCAN)
2510 ieee80211_next_scan(ic);
2511 splx(s);
2512 }
2513
2514 /* Synchronize the hardware state with the software state. */
2515 static int
2516 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2517 {
2518 struct ifnet *ifp = ic->ic_ifp;
2519 struct atw_softc *sc = ifp->if_softc;
2520 enum ieee80211_state ostate;
2521 int error = 0;
2522
2523 ostate = ic->ic_state;
2524 callout_stop(&sc->sc_scan_ch);
2525
2526 switch (nstate) {
2527 case IEEE80211_S_AUTH:
2528 case IEEE80211_S_ASSOC:
2529 atw_write_bssid(sc);
2530 error = atw_tune(sc);
2531 break;
2532 case IEEE80211_S_INIT:
2533 callout_stop(&sc->sc_scan_ch);
2534 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2535 atw_start_beacon(sc, 0);
2536 break;
2537 case IEEE80211_S_SCAN:
2538 error = atw_tune(sc);
2539 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2540 atw_next_scan, sc);
2541 break;
2542 case IEEE80211_S_RUN:
2543 error = atw_tune(sc);
2544 atw_write_bssid(sc);
2545 atw_write_ssid(sc);
2546 atw_write_sup_rates(sc);
2547
2548 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2549 ic->ic_opmode == IEEE80211_M_MONITOR)
2550 break;
2551
2552 /* set listen interval
2553 * XXX do software units agree w/ hardware?
2554 */
2555 ATW_WRITE(sc, ATW_BPLI,
2556 __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2557 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2558 ATW_BPLI_LI_MASK));
2559
2560 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2561 ATW_READ(sc, ATW_BPLI)));
2562
2563 atw_predict_beacon(sc);
2564
2565 switch (ic->ic_opmode) {
2566 case IEEE80211_M_AHDEMO:
2567 case IEEE80211_M_HOSTAP:
2568 case IEEE80211_M_IBSS:
2569 atw_start_beacon(sc, 1);
2570 break;
2571 case IEEE80211_M_MONITOR:
2572 case IEEE80211_M_STA:
2573 break;
2574 }
2575
2576 break;
2577 }
2578 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2579 }
2580
2581 /*
2582 * atw_add_rxbuf:
2583 *
2584 * Add a receive buffer to the indicated descriptor.
2585 */
2586 int
2587 atw_add_rxbuf(struct atw_softc *sc, int idx)
2588 {
2589 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2590 struct mbuf *m;
2591 int error;
2592
2593 MGETHDR(m, M_DONTWAIT, MT_DATA);
2594 if (m == NULL)
2595 return (ENOBUFS);
2596
2597 MCLGET(m, M_DONTWAIT);
2598 if ((m->m_flags & M_EXT) == 0) {
2599 m_freem(m);
2600 return (ENOBUFS);
2601 }
2602
2603 if (rxs->rxs_mbuf != NULL)
2604 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2605
2606 rxs->rxs_mbuf = m;
2607
2608 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2609 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2610 BUS_DMA_READ|BUS_DMA_NOWAIT);
2611 if (error) {
2612 aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2613 idx, error);
2614 panic("atw_add_rxbuf"); /* XXX */
2615 }
2616
2617 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2618 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2619
2620 atw_init_rxdesc(sc, idx);
2621
2622 return (0);
2623 }
2624
2625 /*
2626 * Release any queued transmit buffers.
2627 */
2628 void
2629 atw_txdrain(struct atw_softc *sc)
2630 {
2631 struct atw_txsoft *txs;
2632
2633 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2634 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2635 if (txs->txs_mbuf != NULL) {
2636 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2637 m_freem(txs->txs_mbuf);
2638 txs->txs_mbuf = NULL;
2639 }
2640 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2641 sc->sc_txfree += txs->txs_ndescs;
2642 }
2643
2644 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2645 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2646 sc->sc_txfree != ATW_NTXDESC));
2647 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2648 sc->sc_tx_timer = 0;
2649 }
2650
2651 /*
2652 * atw_stop: [ ifnet interface function ]
2653 *
2654 * Stop transmission on the interface.
2655 */
2656 void
2657 atw_stop(struct ifnet *ifp, int disable)
2658 {
2659 struct atw_softc *sc = ifp->if_softc;
2660 struct ieee80211com *ic = &sc->sc_ic;
2661
2662 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2663
2664 /* Disable interrupts. */
2665 ATW_WRITE(sc, ATW_IER, 0);
2666
2667 /* Stop the transmit and receive processes. */
2668 sc->sc_opmode = 0;
2669 ATW_WRITE(sc, ATW_NAR, 0);
2670 DELAY(atw_nar_delay);
2671 ATW_WRITE(sc, ATW_TDBD, 0);
2672 ATW_WRITE(sc, ATW_TDBP, 0);
2673 ATW_WRITE(sc, ATW_RDB, 0);
2674
2675 atw_txdrain(sc);
2676
2677 /*
2678 * Mark the interface down and cancel the watchdog timer.
2679 */
2680 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2681 sc->sc_tx_timer = 0;
2682 ifp->if_timer = 0;
2683
2684 if (disable) {
2685 atw_rxdrain(sc);
2686 atw_disable(sc);
2687 } else
2688 atw_reset(sc);
2689 }
2690
2691 /*
2692 * atw_rxdrain:
2693 *
2694 * Drain the receive queue.
2695 */
2696 void
2697 atw_rxdrain(struct atw_softc *sc)
2698 {
2699 struct atw_rxsoft *rxs;
2700 int i;
2701
2702 for (i = 0; i < ATW_NRXDESC; i++) {
2703 rxs = &sc->sc_rxsoft[i];
2704 if (rxs->rxs_mbuf == NULL)
2705 continue;
2706 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2707 m_freem(rxs->rxs_mbuf);
2708 rxs->rxs_mbuf = NULL;
2709 }
2710 }
2711
2712 /*
2713 * atw_detach:
2714 *
2715 * Detach an ADM8211 interface.
2716 */
2717 int
2718 atw_detach(struct atw_softc *sc)
2719 {
2720 struct ifnet *ifp = &sc->sc_if;
2721 struct atw_rxsoft *rxs;
2722 struct atw_txsoft *txs;
2723 int i;
2724
2725 /*
2726 * Succeed now if there isn't any work to do.
2727 */
2728 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2729 return (0);
2730
2731 pmf_device_deregister(sc->sc_dev);
2732
2733 callout_stop(&sc->sc_scan_ch);
2734
2735 ieee80211_ifdetach(&sc->sc_ic);
2736 if_detach(ifp);
2737
2738 for (i = 0; i < ATW_NRXDESC; i++) {
2739 rxs = &sc->sc_rxsoft[i];
2740 if (rxs->rxs_mbuf != NULL) {
2741 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2742 m_freem(rxs->rxs_mbuf);
2743 rxs->rxs_mbuf = NULL;
2744 }
2745 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2746 }
2747 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2748 txs = &sc->sc_txsoft[i];
2749 if (txs->txs_mbuf != NULL) {
2750 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2751 m_freem(txs->txs_mbuf);
2752 txs->txs_mbuf = NULL;
2753 }
2754 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2755 }
2756 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2757 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2758 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2759 sizeof(struct atw_control_data));
2760 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2761
2762 if (sc->sc_srom)
2763 free(sc->sc_srom, M_DEVBUF);
2764
2765 atw_evcnt_detach(sc);
2766
2767 return (0);
2768 }
2769
2770 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2771 bool
2772 atw_shutdown(device_t self, int flags)
2773 {
2774 struct atw_softc *sc = device_private(self);
2775
2776 atw_stop(&sc->sc_if, 1);
2777 return true;
2778 }
2779
2780 int
2781 atw_intr(void *arg)
2782 {
2783 struct atw_softc *sc = arg;
2784 struct ifnet *ifp = &sc->sc_if;
2785 u_int32_t status, rxstatus, txstatus, linkstatus;
2786 int handled = 0, txthresh;
2787
2788 #ifdef DEBUG
2789 if (ATW_IS_ENABLED(sc) == 0)
2790 panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2791 #endif
2792
2793 /*
2794 * If the interface isn't running, the interrupt couldn't
2795 * possibly have come from us.
2796 */
2797 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2798 !device_is_active(sc->sc_dev))
2799 return (0);
2800
2801 for (;;) {
2802 status = ATW_READ(sc, ATW_STSR);
2803
2804 if (status)
2805 ATW_WRITE(sc, ATW_STSR, status);
2806
2807 #ifdef ATW_DEBUG
2808 #define PRINTINTR(flag) do { \
2809 if ((status & flag) != 0) { \
2810 printf("%s" #flag, delim); \
2811 delim = ","; \
2812 } \
2813 } while (0)
2814
2815 if (atw_debug > 1 && status) {
2816 const char *delim = "<";
2817
2818 printf("%s: reg[STSR] = %x",
2819 device_xname(sc->sc_dev), status);
2820
2821 PRINTINTR(ATW_INTR_FBE);
2822 PRINTINTR(ATW_INTR_LINKOFF);
2823 PRINTINTR(ATW_INTR_LINKON);
2824 PRINTINTR(ATW_INTR_RCI);
2825 PRINTINTR(ATW_INTR_RDU);
2826 PRINTINTR(ATW_INTR_REIS);
2827 PRINTINTR(ATW_INTR_RPS);
2828 PRINTINTR(ATW_INTR_TCI);
2829 PRINTINTR(ATW_INTR_TDU);
2830 PRINTINTR(ATW_INTR_TLT);
2831 PRINTINTR(ATW_INTR_TPS);
2832 PRINTINTR(ATW_INTR_TRT);
2833 PRINTINTR(ATW_INTR_TUF);
2834 PRINTINTR(ATW_INTR_BCNTC);
2835 PRINTINTR(ATW_INTR_ATIME);
2836 PRINTINTR(ATW_INTR_TBTT);
2837 PRINTINTR(ATW_INTR_TSCZ);
2838 PRINTINTR(ATW_INTR_TSFTF);
2839 printf(">\n");
2840 }
2841 #undef PRINTINTR
2842 #endif /* ATW_DEBUG */
2843
2844 if ((status & sc->sc_inten) == 0)
2845 break;
2846
2847 handled = 1;
2848
2849 rxstatus = status & sc->sc_rxint_mask;
2850 txstatus = status & sc->sc_txint_mask;
2851 linkstatus = status & sc->sc_linkint_mask;
2852
2853 if (linkstatus) {
2854 atw_linkintr(sc, linkstatus);
2855 }
2856
2857 if (rxstatus) {
2858 /* Grab any new packets. */
2859 atw_rxintr(sc);
2860
2861 if (rxstatus & ATW_INTR_RDU) {
2862 printf("%s: receive ring overrun\n",
2863 device_xname(sc->sc_dev));
2864 /* Get the receive process going again. */
2865 ATW_WRITE(sc, ATW_RDR, 0x1);
2866 break;
2867 }
2868 }
2869
2870 if (txstatus) {
2871 /* Sweep up transmit descriptors. */
2872 atw_txintr(sc);
2873
2874 if (txstatus & ATW_INTR_TLT) {
2875 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2876 device_xname(sc->sc_dev)));
2877 }
2878
2879 if (txstatus & ATW_INTR_TRT) {
2880 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2881 device_xname(sc->sc_dev)));
2882 }
2883
2884 /* If Tx under-run, increase our transmit threshold
2885 * if another is available.
2886 */
2887 txthresh = sc->sc_txthresh + 1;
2888 if ((txstatus & ATW_INTR_TUF) &&
2889 sc->sc_txth[txthresh].txth_name != NULL) {
2890 /* Idle the transmit process. */
2891 atw_idle(sc, ATW_NAR_ST);
2892
2893 sc->sc_txthresh = txthresh;
2894 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2895 sc->sc_opmode |=
2896 sc->sc_txth[txthresh].txth_opmode;
2897 printf("%s: transmit underrun; new "
2898 "threshold: %s\n", device_xname(sc->sc_dev),
2899 sc->sc_txth[txthresh].txth_name);
2900
2901 /* Set the new threshold and restart
2902 * the transmit process.
2903 */
2904 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2905 DELAY(atw_nar_delay);
2906 ATW_WRITE(sc, ATW_RDR, 0x1);
2907 /* XXX Log every Nth underrun from
2908 * XXX now on?
2909 */
2910 }
2911 }
2912
2913 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2914 if (status & ATW_INTR_TPS)
2915 printf("%s: transmit process stopped\n",
2916 device_xname(sc->sc_dev));
2917 if (status & ATW_INTR_RPS)
2918 printf("%s: receive process stopped\n",
2919 device_xname(sc->sc_dev));
2920 (void)atw_init(ifp);
2921 break;
2922 }
2923
2924 if (status & ATW_INTR_FBE) {
2925 aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2926 (void)atw_init(ifp);
2927 break;
2928 }
2929
2930 /*
2931 * Not handled:
2932 *
2933 * Transmit buffer unavailable -- normal
2934 * condition, nothing to do, really.
2935 *
2936 * Early receive interrupt -- not available on
2937 * all chips, we just use RI. We also only
2938 * use single-segment receive DMA, so this
2939 * is mostly useless.
2940 *
2941 * TBD others
2942 */
2943 }
2944
2945 /* Try to get more packets going. */
2946 atw_start(ifp);
2947
2948 return (handled);
2949 }
2950
2951 /*
2952 * atw_idle:
2953 *
2954 * Cause the transmit and/or receive processes to go idle.
2955 *
2956 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2957 * process in STSR if I clear SR or ST after the process has already
2958 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2959 * do not seem to be too reliable. Perhaps I have the sense of the
2960 * Rx bits switched with the Tx bits?
2961 */
2962 void
2963 atw_idle(struct atw_softc *sc, u_int32_t bits)
2964 {
2965 u_int32_t ackmask = 0, opmode, stsr, test0;
2966 int i, s;
2967
2968 s = splnet();
2969
2970 opmode = sc->sc_opmode & ~bits;
2971
2972 if (bits & ATW_NAR_SR)
2973 ackmask |= ATW_INTR_RPS;
2974
2975 if (bits & ATW_NAR_ST) {
2976 ackmask |= ATW_INTR_TPS;
2977 /* set ATW_NAR_HF to flush TX FIFO. */
2978 opmode |= ATW_NAR_HF;
2979 }
2980
2981 ATW_WRITE(sc, ATW_NAR, opmode);
2982 DELAY(atw_nar_delay);
2983
2984 for (i = 0; i < 1000; i++) {
2985 stsr = ATW_READ(sc, ATW_STSR);
2986 if ((stsr & ackmask) == ackmask)
2987 break;
2988 DELAY(10);
2989 }
2990
2991 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2992
2993 if ((stsr & ackmask) == ackmask)
2994 goto out;
2995
2996 test0 = ATW_READ(sc, ATW_TEST0);
2997
2998 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2999 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3000 printf("%s: transmit process not idle [%s]\n",
3001 device_xname(sc->sc_dev),
3002 atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3003 printf("%s: bits %08x test0 %08x stsr %08x\n",
3004 device_xname(sc->sc_dev), bits, test0, stsr);
3005 }
3006
3007 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3008 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3009 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3010 device_xname(sc->sc_dev),
3011 atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3012 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3013 device_xname(sc->sc_dev), bits, test0, stsr));
3014 }
3015 out:
3016 if ((bits & ATW_NAR_ST) != 0)
3017 atw_txdrain(sc);
3018 splx(s);
3019 return;
3020 }
3021
3022 /*
3023 * atw_linkintr:
3024 *
3025 * Helper; handle link-status interrupts.
3026 */
3027 void
3028 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3029 {
3030 struct ieee80211com *ic = &sc->sc_ic;
3031
3032 if (ic->ic_state != IEEE80211_S_RUN)
3033 return;
3034
3035 if (linkstatus & ATW_INTR_LINKON) {
3036 DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3037 sc->sc_rescan_timer = 0;
3038 } else if (linkstatus & ATW_INTR_LINKOFF) {
3039 DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3040 if (ic->ic_opmode != IEEE80211_M_STA)
3041 return;
3042 sc->sc_rescan_timer = 3;
3043 sc->sc_if.if_timer = 1;
3044 }
3045 }
3046
3047 static inline int
3048 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3049 {
3050 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3051 return 0;
3052 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3053 return 0;
3054 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3055 }
3056
3057 /*
3058 * atw_rxintr:
3059 *
3060 * Helper; handle receive interrupts.
3061 */
3062 void
3063 atw_rxintr(struct atw_softc *sc)
3064 {
3065 static int rate_tbl[] = {2, 4, 11, 22, 44};
3066 struct ieee80211com *ic = &sc->sc_ic;
3067 struct ieee80211_node *ni;
3068 struct ieee80211_frame_min *wh;
3069 struct ifnet *ifp = &sc->sc_if;
3070 struct atw_rxsoft *rxs;
3071 struct mbuf *m;
3072 u_int32_t rxstat;
3073 int i, len, rate, rate0;
3074 u_int32_t rssi, ctlrssi;
3075
3076 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3077 rxs = &sc->sc_rxsoft[i];
3078
3079 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3080
3081 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3082 ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3083 rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3084
3085 if (rxstat & ATW_RXSTAT_OWN)
3086 break; /* We have processed all receive buffers. */
3087
3088 DPRINTF3(sc,
3089 ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3090 device_xname(sc->sc_dev),
3091 rxstat, ctlrssi,
3092 le32toh(sc->sc_rxdescs[i].ar_buf1),
3093 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3094
3095 /*
3096 * Make sure the packet fits in one buffer. This should
3097 * always be the case.
3098 */
3099 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3100 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3101 printf("%s: incoming packet spilled, resetting\n",
3102 device_xname(sc->sc_dev));
3103 (void)atw_init(ifp);
3104 return;
3105 }
3106
3107 /*
3108 * If an error occurred, update stats, clear the status
3109 * word, and leave the packet buffer in place. It will
3110 * simply be reused the next time the ring comes around.
3111 */
3112 if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3113 #define PRINTERR(bit, str) \
3114 if (rxstat & (bit)) \
3115 aprint_error_dev(sc->sc_dev, "receive error: %s\n", \
3116 str)
3117 ifp->if_ierrors++;
3118 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3119 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3120 #if 0
3121 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3122 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3123 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3124 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3125 #endif
3126 #undef PRINTERR
3127 atw_init_rxdesc(sc, i);
3128 continue;
3129 }
3130
3131 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3132 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3133
3134 /*
3135 * No errors; receive the packet. Note the ADM8211
3136 * includes the CRC in promiscuous mode.
3137 */
3138 len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3139
3140 /*
3141 * Allocate a new mbuf cluster. If that fails, we are
3142 * out of memory, and must drop the packet and recycle
3143 * the buffer that's already attached to this descriptor.
3144 */
3145 m = rxs->rxs_mbuf;
3146 if (atw_add_rxbuf(sc, i) != 0) {
3147 ifp->if_ierrors++;
3148 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3149 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3150 atw_init_rxdesc(sc, i);
3151 continue;
3152 }
3153
3154 ifp->if_ipackets++;
3155 m->m_pkthdr.rcvif = ifp;
3156 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3157
3158 rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3159
3160 /* The RSSI comes straight from a register in the
3161 * baseband processor. I know that for the RF3000,
3162 * the RSSI register also contains the antenna-selection
3163 * bits. Mask those off.
3164 *
3165 * TBD Treat other basebands.
3166 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3167 */
3168 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3169 rssi = ctlrssi & RF3000_RSSI_MASK;
3170 else
3171 rssi = ctlrssi;
3172
3173 #if NBPFILTER > 0
3174 /* Pass this up to any BPF listeners. */
3175 if (sc->sc_radiobpf != NULL) {
3176 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3177
3178 tap->ar_rate = rate;
3179
3180 /* TBD verify units are dB */
3181 tap->ar_antsignal = (int)rssi;
3182 if (sc->sc_opmode & ATW_NAR_PR)
3183 tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3184 else
3185 tap->ar_flags = 0;
3186
3187 if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3188 tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3189
3190 bpf_mtap2(sc->sc_radiobpf, tap,
3191 sizeof(sc->sc_rxtapu), m);
3192 }
3193 #endif /* NBPFILTER > 0 */
3194
3195 sc->sc_recv_ev.ev_count++;
3196
3197 if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3198 if (rxstat & ATW_RXSTAT_CRC16E)
3199 sc->sc_crc16e_ev.ev_count++;
3200 if (rxstat & ATW_RXSTAT_CRC32E)
3201 sc->sc_crc32e_ev.ev_count++;
3202 if (rxstat & ATW_RXSTAT_ICVE)
3203 sc->sc_icve_ev.ev_count++;
3204 if (rxstat & ATW_RXSTAT_SFDE)
3205 sc->sc_sfde_ev.ev_count++;
3206 if (rxstat & ATW_RXSTAT_SIGE)
3207 sc->sc_sige_ev.ev_count++;
3208 ifp->if_ierrors++;
3209 m_freem(m);
3210 continue;
3211 }
3212
3213 if (sc->sc_opmode & ATW_NAR_PR)
3214 m_adj(m, -IEEE80211_CRC_LEN);
3215
3216 wh = mtod(m, struct ieee80211_frame_min *);
3217 ni = ieee80211_find_rxnode(ic, wh);
3218 #if 0
3219 if (atw_hw_decrypted(sc, wh)) {
3220 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3221 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3222 }
3223 #endif
3224 ieee80211_input(ic, m, ni, (int)rssi, 0);
3225 ieee80211_free_node(ni);
3226 }
3227
3228 /* Update the receive pointer. */
3229 sc->sc_rxptr = i;
3230 }
3231
3232 /*
3233 * atw_txintr:
3234 *
3235 * Helper; handle transmit interrupts.
3236 */
3237 void
3238 atw_txintr(struct atw_softc *sc)
3239 {
3240 static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3241 struct ifnet *ifp = &sc->sc_if;
3242 struct atw_txsoft *txs;
3243 u_int32_t txstat;
3244
3245 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3246 device_xname(sc->sc_dev), sc->sc_flags));
3247
3248 /*
3249 * Go through our Tx list and free mbufs for those
3250 * frames that have been transmitted.
3251 */
3252 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3253 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3254 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3255
3256 #ifdef ATW_DEBUG
3257 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3258 int i;
3259 printf(" txsoft %p transmit chain:\n", txs);
3260 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3261 txs->txs_ndescs - 1,
3262 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3263 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3264 printf(" descriptor %d:\n", i);
3265 printf(" at_status: 0x%08x\n",
3266 le32toh(sc->sc_txdescs[i].at_stat));
3267 printf(" at_flags: 0x%08x\n",
3268 le32toh(sc->sc_txdescs[i].at_flags));
3269 printf(" at_buf1: 0x%08x\n",
3270 le32toh(sc->sc_txdescs[i].at_buf1));
3271 printf(" at_buf2: 0x%08x\n",
3272 le32toh(sc->sc_txdescs[i].at_buf2));
3273 if (i == txs->txs_lastdesc)
3274 break;
3275 }
3276 }
3277 #endif
3278
3279 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3280 if (txstat & ATW_TXSTAT_OWN)
3281 break;
3282
3283 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3284
3285 sc->sc_txfree += txs->txs_ndescs;
3286
3287 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3288 0, txs->txs_dmamap->dm_mapsize,
3289 BUS_DMASYNC_POSTWRITE);
3290 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3291 m_freem(txs->txs_mbuf);
3292 txs->txs_mbuf = NULL;
3293
3294 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3295
3296 KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3297 sc->sc_txfree == 0));
3298 ifp->if_flags &= ~IFF_OACTIVE;
3299
3300 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3301 (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3302 snprintb(txstat_buf, sizeof(txstat_buf),
3303 ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3304 printf("%s: txstat %s %" __PRIuBITS "\n",
3305 device_xname(sc->sc_dev), txstat_buf,
3306 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3307 }
3308
3309 /*
3310 * Check for errors and collisions.
3311 */
3312 if (txstat & ATW_TXSTAT_TUF)
3313 sc->sc_stats.ts_tx_tuf++;
3314 if (txstat & ATW_TXSTAT_TLT)
3315 sc->sc_stats.ts_tx_tlt++;
3316 if (txstat & ATW_TXSTAT_TRT)
3317 sc->sc_stats.ts_tx_trt++;
3318 if (txstat & ATW_TXSTAT_TRO)
3319 sc->sc_stats.ts_tx_tro++;
3320 if (txstat & ATW_TXSTAT_SOFBR) {
3321 sc->sc_stats.ts_tx_sofbr++;
3322 }
3323
3324 if ((txstat & ATW_TXSTAT_ES) == 0)
3325 ifp->if_collisions +=
3326 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3327 else
3328 ifp->if_oerrors++;
3329
3330 ifp->if_opackets++;
3331 }
3332
3333 /*
3334 * If there are no more pending transmissions, cancel the watchdog
3335 * timer.
3336 */
3337 if (txs == NULL) {
3338 KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3339 sc->sc_tx_timer = 0;
3340 }
3341 }
3342
3343 /*
3344 * atw_watchdog: [ifnet interface function]
3345 *
3346 * Watchdog timer handler.
3347 */
3348 void
3349 atw_watchdog(struct ifnet *ifp)
3350 {
3351 struct atw_softc *sc = ifp->if_softc;
3352 struct ieee80211com *ic = &sc->sc_ic;
3353
3354 ifp->if_timer = 0;
3355 if (ATW_IS_ENABLED(sc) == 0)
3356 return;
3357
3358 if (sc->sc_rescan_timer) {
3359 if (--sc->sc_rescan_timer == 0)
3360 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3361 }
3362 if (sc->sc_tx_timer) {
3363 if (--sc->sc_tx_timer == 0 &&
3364 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3365 printf("%s: transmit timeout\n", ifp->if_xname);
3366 ifp->if_oerrors++;
3367 (void)atw_init(ifp);
3368 atw_start(ifp);
3369 }
3370 }
3371 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3372 ifp->if_timer = 1;
3373 ieee80211_watchdog(ic);
3374 }
3375
3376 static void
3377 atw_evcnt_detach(struct atw_softc *sc)
3378 {
3379 evcnt_detach(&sc->sc_sige_ev);
3380 evcnt_detach(&sc->sc_sfde_ev);
3381 evcnt_detach(&sc->sc_icve_ev);
3382 evcnt_detach(&sc->sc_crc32e_ev);
3383 evcnt_detach(&sc->sc_crc16e_ev);
3384 evcnt_detach(&sc->sc_recv_ev);
3385 }
3386
3387 static void
3388 atw_evcnt_attach(struct atw_softc *sc)
3389 {
3390 evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3391 NULL, sc->sc_if.if_xname, "recv");
3392 evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3393 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3394 evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3395 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3396 evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3397 &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3398 evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3399 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3400 evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3401 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3402 }
3403
3404 #ifdef ATW_DEBUG
3405 static void
3406 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3407 {
3408 struct atw_softc *sc = ifp->if_softc;
3409 struct mbuf *m;
3410 int i, noctets = 0;
3411
3412 printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3413 m0->m_pkthdr.len);
3414
3415 for (m = m0; m; m = m->m_next) {
3416 if (m->m_len == 0)
3417 continue;
3418 for (i = 0; i < m->m_len; i++) {
3419 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3420 if (++noctets % 24 == 0)
3421 printf("\n");
3422 }
3423 }
3424 printf("%s%s: %d bytes emitted\n",
3425 (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3426 }
3427 #endif /* ATW_DEBUG */
3428
3429 /*
3430 * atw_start: [ifnet interface function]
3431 *
3432 * Start packet transmission on the interface.
3433 */
3434 void
3435 atw_start(struct ifnet *ifp)
3436 {
3437 struct atw_softc *sc = ifp->if_softc;
3438 struct ieee80211_key *k;
3439 struct ieee80211com *ic = &sc->sc_ic;
3440 struct ieee80211_node *ni;
3441 struct ieee80211_frame_min *whm;
3442 struct ieee80211_frame *wh;
3443 struct atw_frame *hh;
3444 struct mbuf *m0, *m;
3445 struct atw_txsoft *txs, *last_txs;
3446 struct atw_txdesc *txd;
3447 int npkt, rate;
3448 bus_dmamap_t dmamap;
3449 int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3450
3451 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3452 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3453
3454 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3455 return;
3456
3457 /*
3458 * Remember the previous number of free descriptors and
3459 * the first descriptor we'll use.
3460 */
3461 ofree = sc->sc_txfree;
3462 firsttx = lasttx = sc->sc_txnext;
3463
3464 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3465 device_xname(sc->sc_dev), ofree, firsttx));
3466
3467 /*
3468 * Loop through the send queue, setting up transmit descriptors
3469 * until we drain the queue, or use up all available transmit
3470 * descriptors.
3471 */
3472 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3473 sc->sc_txfree != 0) {
3474
3475 /*
3476 * Grab a packet off the management queue, if it
3477 * is not empty. Otherwise, from the data queue.
3478 */
3479 IF_DEQUEUE(&ic->ic_mgtq, m0);
3480 if (m0 != NULL) {
3481 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3482 m0->m_pkthdr.rcvif = NULL;
3483 } else if (ic->ic_state != IEEE80211_S_RUN)
3484 break; /* send no data until associated */
3485 else {
3486 IFQ_DEQUEUE(&ifp->if_snd, m0);
3487 if (m0 == NULL)
3488 break;
3489 #if NBPFILTER > 0
3490 if (ifp->if_bpf != NULL)
3491 bpf_mtap(ifp->if_bpf, m0);
3492 #endif /* NBPFILTER > 0 */
3493 ni = ieee80211_find_txnode(ic,
3494 mtod(m0, struct ether_header *)->ether_dhost);
3495 if (ni == NULL) {
3496 ifp->if_oerrors++;
3497 break;
3498 }
3499 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3500 ieee80211_free_node(ni);
3501 ifp->if_oerrors++;
3502 break;
3503 }
3504 }
3505
3506 rate = MAX(ieee80211_get_rate(ni), 2);
3507
3508 whm = mtod(m0, struct ieee80211_frame_min *);
3509
3510 if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3511 k = NULL;
3512 else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3513 m_freem(m0);
3514 ieee80211_free_node(ni);
3515 ifp->if_oerrors++;
3516 break;
3517 }
3518
3519 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3520 ic->ic_flags, ic->ic_fragthreshold, rate,
3521 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3522 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3523 m_freem(m0);
3524 break;
3525 }
3526
3527 /* XXX Misleading if fragmentation is enabled. Better
3528 * to fragment in software?
3529 */
3530 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3531
3532 #if NBPFILTER > 0
3533 /*
3534 * Pass the packet to any BPF listeners.
3535 */
3536 if (ic->ic_rawbpf != NULL)
3537 bpf_mtap((void *)ic->ic_rawbpf, m0);
3538
3539 if (sc->sc_radiobpf != NULL) {
3540 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3541
3542 tap->at_rate = rate;
3543
3544 bpf_mtap2(sc->sc_radiobpf, tap,
3545 sizeof(sc->sc_txtapu), m0);
3546 }
3547 #endif /* NBPFILTER > 0 */
3548
3549 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3550
3551 if (ni != NULL)
3552 ieee80211_free_node(ni);
3553
3554 if (m0 == NULL) {
3555 ifp->if_oerrors++;
3556 break;
3557 }
3558
3559 /* just to make sure. */
3560 m0 = m_pullup(m0, sizeof(struct atw_frame));
3561
3562 if (m0 == NULL) {
3563 ifp->if_oerrors++;
3564 break;
3565 }
3566
3567 hh = mtod(m0, struct atw_frame *);
3568 wh = &hh->atw_ihdr;
3569
3570 /* Copy everything we need from the 802.11 header:
3571 * Frame Control; address 1, address 3, or addresses
3572 * 3 and 4. NIC fills in BSSID, SA.
3573 */
3574 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3575 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3576 panic("%s: illegal WDS frame",
3577 device_xname(sc->sc_dev));
3578 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3579 } else
3580 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3581
3582 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3583
3584 /* initialize remaining Tx parameters */
3585 memset(&hh->u, 0, sizeof(hh->u));
3586
3587 hh->atw_rate = rate * 5;
3588 /* XXX this could be incorrect if M_FCS. _encap should
3589 * probably strip FCS just in case it sticks around in
3590 * bridged packets.
3591 */
3592 hh->atw_service = 0x00; /* XXX guess */
3593 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3594 sizeof(struct atw_frame));
3595
3596 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3597 hh->atw_rtylmt = 3;
3598 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3599 #if 0
3600 if (do_encrypt) {
3601 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3602 hh->atw_keyid = ic->ic_def_txkey;
3603 }
3604 #endif
3605
3606 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3607 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3608 if (txs->txs_d0.d_residue)
3609 hh->atw_head_plcplen |= htole16(0x8000);
3610 if (txs->txs_dn.d_residue)
3611 hh->atw_tail_plcplen |= htole16(0x8000);
3612 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3613 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3614
3615 /* never fragment multicast frames */
3616 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3617 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3618 } else if (sc->sc_flags & ATWF_RTSCTS) {
3619 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3620 }
3621
3622 #ifdef ATW_DEBUG
3623 hh->atw_fragnum = 0;
3624
3625 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3626 printf("%s: dst = %s, rate = 0x%02x, "
3627 "service = 0x%02x, paylen = 0x%04x\n",
3628 device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3629 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3630
3631 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3632 "dur1 = 0x%04x, dur2 = 0x%04x, "
3633 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3634 device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3635 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3636 hh->atw_tail_dur, hh->atw_head_dur);
3637
3638 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3639 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3640 device_xname(sc->sc_dev), hh->atw_hdrctl,
3641 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3642
3643 printf("%s: keyid = %d\n",
3644 device_xname(sc->sc_dev), hh->atw_keyid);
3645
3646 atw_dump_pkt(ifp, m0);
3647 }
3648 #endif /* ATW_DEBUG */
3649
3650 dmamap = txs->txs_dmamap;
3651
3652 /*
3653 * Load the DMA map. Copy and try (once) again if the packet
3654 * didn't fit in the alloted number of segments.
3655 */
3656 for (first = 1;
3657 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3658 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3659 first = 0) {
3660 MGETHDR(m, M_DONTWAIT, MT_DATA);
3661 if (m == NULL) {
3662 aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3663 break;
3664 }
3665 if (m0->m_pkthdr.len > MHLEN) {
3666 MCLGET(m, M_DONTWAIT);
3667 if ((m->m_flags & M_EXT) == 0) {
3668 aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3669 "cluster\n");
3670 m_freem(m);
3671 break;
3672 }
3673 }
3674 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3675 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3676 m_freem(m0);
3677 m0 = m;
3678 m = NULL;
3679 }
3680 if (error != 0) {
3681 aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3682 "error = %d\n", error);
3683 m_freem(m0);
3684 break;
3685 }
3686
3687 /*
3688 * Ensure we have enough descriptors free to describe
3689 * the packet.
3690 */
3691 if (dmamap->dm_nsegs > sc->sc_txfree) {
3692 /*
3693 * Not enough free descriptors to transmit
3694 * this packet. Unload the DMA map and
3695 * drop the packet. Notify the upper layer
3696 * that there are no more slots left.
3697 *
3698 * XXX We could allocate an mbuf and copy, but
3699 * XXX it is worth it?
3700 */
3701 bus_dmamap_unload(sc->sc_dmat, dmamap);
3702 m_freem(m0);
3703 break;
3704 }
3705
3706 /*
3707 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3708 */
3709
3710 /* Sync the DMA map. */
3711 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3712 BUS_DMASYNC_PREWRITE);
3713
3714 /* XXX arbitrary retry limit; 8 because I have seen it in
3715 * use already and maybe 0 means "no tries" !
3716 */
3717 ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3718
3719 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3720 device_xname(sc->sc_dev), rate * 5));
3721 ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3722
3723 /*
3724 * Initialize the transmit descriptors.
3725 */
3726 for (nexttx = sc->sc_txnext, seg = 0;
3727 seg < dmamap->dm_nsegs;
3728 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3729 /*
3730 * If this is the first descriptor we're
3731 * enqueueing, don't set the OWN bit just
3732 * yet. That could cause a race condition.
3733 * We'll do it below.
3734 */
3735 txd = &sc->sc_txdescs[nexttx];
3736 txd->at_ctl = ctl |
3737 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3738
3739 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3740 txd->at_flags =
3741 htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3742 ATW_TXFLAG_TBS1_MASK)) |
3743 ((nexttx == (ATW_NTXDESC - 1))
3744 ? htole32(ATW_TXFLAG_TER) : 0);
3745 lasttx = nexttx;
3746 }
3747
3748 /* Set `first segment' and `last segment' appropriately. */
3749 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3750 htole32(ATW_TXFLAG_FS);
3751 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3752
3753 #ifdef ATW_DEBUG
3754 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3755 printf(" txsoft %p transmit chain:\n", txs);
3756 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3757 printf(" descriptor %d:\n", seg);
3758 printf(" at_ctl: 0x%08x\n",
3759 le32toh(sc->sc_txdescs[seg].at_ctl));
3760 printf(" at_flags: 0x%08x\n",
3761 le32toh(sc->sc_txdescs[seg].at_flags));
3762 printf(" at_buf1: 0x%08x\n",
3763 le32toh(sc->sc_txdescs[seg].at_buf1));
3764 printf(" at_buf2: 0x%08x\n",
3765 le32toh(sc->sc_txdescs[seg].at_buf2));
3766 if (seg == lasttx)
3767 break;
3768 }
3769 }
3770 #endif
3771
3772 /* Sync the descriptors we're using. */
3773 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3774 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3775
3776 /*
3777 * Store a pointer to the packet so we can free it later,
3778 * and remember what txdirty will be once the packet is
3779 * done.
3780 */
3781 txs->txs_mbuf = m0;
3782 txs->txs_firstdesc = sc->sc_txnext;
3783 txs->txs_lastdesc = lasttx;
3784 txs->txs_ndescs = dmamap->dm_nsegs;
3785
3786 /* Advance the tx pointer. */
3787 sc->sc_txfree -= dmamap->dm_nsegs;
3788 sc->sc_txnext = nexttx;
3789
3790 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3791 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3792
3793 last_txs = txs;
3794 }
3795
3796 if (sc->sc_txfree != ofree) {
3797 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3798 device_xname(sc->sc_dev), lasttx, firsttx));
3799 /*
3800 * Cause a transmit interrupt to happen on the
3801 * last packet we enqueued.
3802 */
3803 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3804 ATW_CDTXSYNC(sc, lasttx, 1,
3805 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3806
3807 /*
3808 * The entire packet chain is set up. Give the
3809 * first descriptor to the chip now.
3810 */
3811 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3812 ATW_CDTXSYNC(sc, firsttx, 1,
3813 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3814
3815 /* Wake up the transmitter. */
3816 ATW_WRITE(sc, ATW_TDR, 0x1);
3817
3818 if (txs == NULL || sc->sc_txfree == 0)
3819 ifp->if_flags |= IFF_OACTIVE;
3820
3821 /* Set a watchdog timer in case the chip flakes out. */
3822 sc->sc_tx_timer = 5;
3823 ifp->if_timer = 1;
3824 }
3825 }
3826
3827 /*
3828 * atw_ioctl: [ifnet interface function]
3829 *
3830 * Handle control requests from the operator.
3831 */
3832 int
3833 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3834 {
3835 struct atw_softc *sc = ifp->if_softc;
3836 int s, error = 0;
3837
3838 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3839 if (!device_is_active(sc->sc_dev))
3840 return ENXIO;
3841
3842 s = splnet();
3843
3844 switch (cmd) {
3845 case SIOCSIFFLAGS:
3846 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3847 break;
3848 if (ifp->if_flags & IFF_UP) {
3849 if (ATW_IS_ENABLED(sc)) {
3850 /*
3851 * To avoid rescanning another access point,
3852 * do not call atw_init() here. Instead,
3853 * only reflect media settings.
3854 */
3855 atw_filter_setup(sc);
3856 } else
3857 error = atw_init(ifp);
3858 } else if (ATW_IS_ENABLED(sc))
3859 atw_stop(ifp, 1);
3860 break;
3861 case SIOCADDMULTI:
3862 case SIOCDELMULTI:
3863 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3864 if (ifp->if_flags & IFF_RUNNING)
3865 atw_filter_setup(sc); /* do not rescan */
3866 error = 0;
3867 }
3868 break;
3869 default:
3870 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3871 if (error == ENETRESET || error == ERESTART) {
3872 if (is_running(ifp))
3873 error = atw_init(ifp);
3874 else
3875 error = 0;
3876 }
3877 break;
3878 }
3879
3880 /* Try to get more packets going. */
3881 if (ATW_IS_ENABLED(sc))
3882 atw_start(ifp);
3883
3884 splx(s);
3885 return (error);
3886 }
3887
3888 static int
3889 atw_media_change(struct ifnet *ifp)
3890 {
3891 int error;
3892
3893 error = ieee80211_media_change(ifp);
3894 if (error == ENETRESET) {
3895 if (is_running(ifp))
3896 error = atw_init(ifp);
3897 else
3898 error = 0;
3899 }
3900 return error;
3901 }
3902