atw.c revision 1.145 1 /* $NetBSD: atw.c,v 1.145 2009/09/13 22:07:34 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.145 2009/09/13 22:07:34 dyoung Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/kauth.h>
52 #include <sys/time.h>
53 #include <lib/libkern/libkern.h>
54
55 #include <machine/endian.h>
56
57 #include <uvm/uvm_extern.h>
58
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63
64 #include <net80211/ieee80211_netbsd.h>
65 #include <net80211/ieee80211_var.h>
66 #include <net80211/ieee80211_radiotap.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <sys/bus.h>
73 #include <sys/intr.h>
74
75 #include <dev/ic/atwreg.h>
76 #include <dev/ic/rf3000reg.h>
77 #include <dev/ic/si4136reg.h>
78 #include <dev/ic/atwvar.h>
79 #include <dev/ic/smc93cx6var.h>
80
81 /* XXX TBD open questions
82 *
83 *
84 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
85 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
86 * handle this for me?
87 *
88 */
89 /* device attachment
90 *
91 * print TOFS[012]
92 *
93 * device initialization
94 *
95 * clear ATW_FRCTL_MAXPSP to disable max power saving
96 * set ATW_TXBR_ALCUPDATE to enable ALC
97 * set TOFS[012]? (hope not)
98 * disable rx/tx
99 * set ATW_PAR_SWR (software reset)
100 * wait for ATW_PAR_SWR clear
101 * disable interrupts
102 * ack status register
103 * enable interrupts
104 *
105 * rx/tx initialization
106 *
107 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
108 * allocate and init descriptor rings
109 * write ATW_PAR_DSL (descriptor skip length)
110 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
111 * write ATW_NAR_SQ for one/both transmit descriptor rings
112 * write ATW_NAR_SQ for one/both transmit descriptor rings
113 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
114 *
115 * rx/tx end
116 *
117 * stop DMA
118 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 * flush tx w/ ATW_NAR_HF
120 *
121 * scan
122 *
123 * initialize rx/tx
124 *
125 * BSS join: (re)association response
126 *
127 * set ATW_FRCTL_AID
128 *
129 * optimizations ???
130 *
131 */
132
133 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
134
135 int atw_pseudo_milli = 1;
136 int atw_magic_delay1 = 100 * 1000;
137 int atw_magic_delay2 = 100 * 1000;
138 /* more magic multi-millisecond delays (units: microseconds) */
139 int atw_nar_delay = 20 * 1000;
140 int atw_magic_delay4 = 10 * 1000;
141 int atw_rf_delay1 = 10 * 1000;
142 int atw_rf_delay2 = 5 * 1000;
143 int atw_plcphd_delay = 2 * 1000;
144 int atw_bbp_io_enable_delay = 20 * 1000;
145 int atw_bbp_io_disable_delay = 2 * 1000;
146 int atw_writewep_delay = 1000;
147 int atw_beacon_len_adjust = 4;
148 int atw_dwelltime = 200;
149 int atw_xindiv2 = 0;
150
151 #ifdef ATW_DEBUG
152 int atw_debug = 0;
153
154 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
155 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
156 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
157 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
158 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
159 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
160
161 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
162 static void atw_print_regs(struct atw_softc *, const char *);
163
164 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
165 # ifdef ATW_BBPDEBUG
166 static void atw_rf3000_print(struct atw_softc *);
167 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
168 # endif /* ATW_BBPDEBUG */
169
170 # ifdef ATW_SYNDEBUG
171 static void atw_si4126_print(struct atw_softc *);
172 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
173 # endif /* ATW_SYNDEBUG */
174
175 #else
176 #define ATW_DPRINTF(x)
177 #define ATW_DPRINTF2(x)
178 #define ATW_DPRINTF3(x)
179 #define DPRINTF(sc, x) /* nothing */
180 #define DPRINTF2(sc, x) /* nothing */
181 #define DPRINTF3(sc, x) /* nothing */
182 #endif
183
184 /* ifnet methods */
185 int atw_init(struct ifnet *);
186 int atw_ioctl(struct ifnet *, u_long, void *);
187 void atw_start(struct ifnet *);
188 void atw_stop(struct ifnet *, int);
189 void atw_watchdog(struct ifnet *);
190
191 /* Device attachment */
192 void atw_attach(struct atw_softc *);
193 int atw_detach(struct atw_softc *);
194 static void atw_evcnt_attach(struct atw_softc *);
195 static void atw_evcnt_detach(struct atw_softc *);
196
197 /* Rx/Tx process */
198 int atw_add_rxbuf(struct atw_softc *, int);
199 void atw_idle(struct atw_softc *, u_int32_t);
200 void atw_rxdrain(struct atw_softc *);
201 void atw_txdrain(struct atw_softc *);
202
203 /* Device (de)activation and power state */
204 void atw_disable(struct atw_softc *);
205 int atw_enable(struct atw_softc *);
206 void atw_reset(struct atw_softc *);
207
208 /* Interrupt handlers */
209 void atw_linkintr(struct atw_softc *, u_int32_t);
210 void atw_rxintr(struct atw_softc *);
211 void atw_txintr(struct atw_softc *, uint32_t);
212
213 /* 802.11 state machine */
214 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
215 static void atw_next_scan(void *);
216 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
217 struct ieee80211_node *, int, int, u_int32_t);
218 static int atw_tune(struct atw_softc *);
219
220 /* Device initialization */
221 static void atw_bbp_io_init(struct atw_softc *);
222 static void atw_cfp_init(struct atw_softc *);
223 static void atw_cmdr_init(struct atw_softc *);
224 static void atw_ifs_init(struct atw_softc *);
225 static void atw_nar_init(struct atw_softc *);
226 static void atw_response_times_init(struct atw_softc *);
227 static void atw_rf_reset(struct atw_softc *);
228 static void atw_test1_init(struct atw_softc *);
229 static void atw_tofs0_init(struct atw_softc *);
230 static void atw_tofs2_init(struct atw_softc *);
231 static void atw_txlmt_init(struct atw_softc *);
232 static void atw_wcsr_init(struct atw_softc *);
233
234 /* Key management */
235 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
236 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
237 const u_int8_t[IEEE80211_ADDR_LEN]);
238 static void atw_key_update_begin(struct ieee80211com *);
239 static void atw_key_update_end(struct ieee80211com *);
240
241 /* RAM/ROM utilities */
242 static void atw_clear_sram(struct atw_softc *);
243 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
244 static int atw_read_srom(struct atw_softc *);
245
246 /* BSS setup */
247 static void atw_predict_beacon(struct atw_softc *);
248 static void atw_start_beacon(struct atw_softc *, int);
249 static void atw_write_bssid(struct atw_softc *);
250 static void atw_write_ssid(struct atw_softc *);
251 static void atw_write_sup_rates(struct atw_softc *);
252 static void atw_write_wep(struct atw_softc *);
253
254 /* Media */
255 static int atw_media_change(struct ifnet *);
256
257 static void atw_filter_setup(struct atw_softc *);
258
259 /* 802.11 utilities */
260 static uint64_t atw_get_tsft(struct atw_softc *);
261 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
262 uint32_t);
263 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
264 static void atw_node_free(struct ieee80211_node *);
265
266 /*
267 * Tuner/transceiver/modem
268 */
269 static void atw_bbp_io_enable(struct atw_softc *, int);
270
271 /* RFMD RF3000 Baseband Processor */
272 static int atw_rf3000_init(struct atw_softc *);
273 static int atw_rf3000_tune(struct atw_softc *, u_int);
274 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
275
276 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
277 static void atw_si4126_tune(struct atw_softc *, u_int);
278 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
279
280 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
281 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
282
283 const char *atw_tx_state[] = {
284 "STOPPED",
285 "RUNNING - read descriptor",
286 "RUNNING - transmitting",
287 "RUNNING - filling fifo", /* XXX */
288 "SUSPENDED",
289 "RUNNING -- write descriptor",
290 "RUNNING -- write last descriptor",
291 "RUNNING - fifo full"
292 };
293
294 const char *atw_rx_state[] = {
295 "STOPPED",
296 "RUNNING - read descriptor",
297 "RUNNING - check this packet, pre-fetch next",
298 "RUNNING - wait for reception",
299 "SUSPENDED",
300 "RUNNING - write descriptor",
301 "RUNNING - flush fifo",
302 "RUNNING - fifo drain"
303 };
304
305 static inline int
306 is_running(struct ifnet *ifp)
307 {
308 return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
309 }
310
311 int
312 atw_activate(device_t self, enum devact act)
313 {
314 struct atw_softc *sc = device_private(self);
315 int rv = 0, s;
316
317 s = splnet();
318 switch (act) {
319 case DVACT_ACTIVATE:
320 rv = EOPNOTSUPP;
321 break;
322
323 case DVACT_DEACTIVATE:
324 if_deactivate(&sc->sc_if);
325 break;
326 }
327 splx(s);
328 return rv;
329 }
330
331 /*
332 * atw_enable:
333 *
334 * Enable the ADM8211 chip.
335 */
336 int
337 atw_enable(struct atw_softc *sc)
338 {
339
340 if (ATW_IS_ENABLED(sc) == 0) {
341 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
342 aprint_error_dev(sc->sc_dev, "device enable failed\n");
343 return (EIO);
344 }
345 sc->sc_flags |= ATWF_ENABLED;
346 /* Power may have been removed, and WEP keys thus
347 * reset.
348 */
349 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
350 }
351 return (0);
352 }
353
354 /*
355 * atw_disable:
356 *
357 * Disable the ADM8211 chip.
358 */
359 void
360 atw_disable(struct atw_softc *sc)
361 {
362 if (!ATW_IS_ENABLED(sc))
363 return;
364 if (sc->sc_disable != NULL)
365 (*sc->sc_disable)(sc);
366 sc->sc_flags &= ~ATWF_ENABLED;
367 }
368
369 /* Returns -1 on failure. */
370 static int
371 atw_read_srom(struct atw_softc *sc)
372 {
373 struct seeprom_descriptor sd;
374 uint32_t test0, fail_bits;
375
376 (void)memset(&sd, 0, sizeof(sd));
377
378 test0 = ATW_READ(sc, ATW_TEST0);
379
380 switch (sc->sc_rev) {
381 case ATW_REVISION_BA:
382 case ATW_REVISION_CA:
383 fail_bits = ATW_TEST0_EPNE;
384 break;
385 default:
386 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
387 break;
388 }
389 if ((test0 & fail_bits) != 0) {
390 aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
391 return -1;
392 }
393
394 switch (test0 & ATW_TEST0_EPTYP_MASK) {
395 case ATW_TEST0_EPTYP_93c66:
396 ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
397 sc->sc_sromsz = 512;
398 sd.sd_chip = C56_66;
399 break;
400 case ATW_TEST0_EPTYP_93c46:
401 ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
402 sc->sc_sromsz = 128;
403 sd.sd_chip = C46;
404 break;
405 default:
406 printf("%s: unknown SROM type %" __PRIuBITS "\n",
407 device_xname(sc->sc_dev),
408 __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
409 return -1;
410 }
411
412 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
413
414 if (sc->sc_srom == NULL) {
415 aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
416 return -1;
417 }
418
419 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
420
421 /* ADM8211 has a single 32-bit register for controlling the
422 * 93cx6 SROM. Bit SRS enables the serial port. There is no
423 * "ready" bit. The ADM8211 input/output sense is the reverse
424 * of read_seeprom's.
425 */
426 sd.sd_tag = sc->sc_st;
427 sd.sd_bsh = sc->sc_sh;
428 sd.sd_regsize = 4;
429 sd.sd_control_offset = ATW_SPR;
430 sd.sd_status_offset = ATW_SPR;
431 sd.sd_dataout_offset = ATW_SPR;
432 sd.sd_CK = ATW_SPR_SCLK;
433 sd.sd_CS = ATW_SPR_SCS;
434 sd.sd_DI = ATW_SPR_SDO;
435 sd.sd_DO = ATW_SPR_SDI;
436 sd.sd_MS = ATW_SPR_SRS;
437 sd.sd_RDY = 0;
438
439 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
440 aprint_error_dev(sc->sc_dev, "could not read SROM\n");
441 free(sc->sc_srom, M_DEVBUF);
442 return -1;
443 }
444 #ifdef ATW_DEBUG
445 {
446 int i;
447 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
448 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
449 if (((i % 8) == 0) && (i != 0)) {
450 ATW_DPRINTF(("\n\t"));
451 }
452 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
453 }
454 ATW_DPRINTF(("\n"));
455 }
456 #endif /* ATW_DEBUG */
457 return 0;
458 }
459
460 #ifdef ATW_DEBUG
461 static void
462 atw_print_regs(struct atw_softc *sc, const char *where)
463 {
464 #define PRINTREG(sc, reg) \
465 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
466 device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
467
468 ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
469
470 PRINTREG(sc, ATW_PAR);
471 PRINTREG(sc, ATW_FRCTL);
472 PRINTREG(sc, ATW_TDR);
473 PRINTREG(sc, ATW_WTDP);
474 PRINTREG(sc, ATW_RDR);
475 PRINTREG(sc, ATW_WRDP);
476 PRINTREG(sc, ATW_RDB);
477 PRINTREG(sc, ATW_CSR3A);
478 PRINTREG(sc, ATW_TDBD);
479 PRINTREG(sc, ATW_TDBP);
480 PRINTREG(sc, ATW_STSR);
481 PRINTREG(sc, ATW_CSR5A);
482 PRINTREG(sc, ATW_NAR);
483 PRINTREG(sc, ATW_CSR6A);
484 PRINTREG(sc, ATW_IER);
485 PRINTREG(sc, ATW_CSR7A);
486 PRINTREG(sc, ATW_LPC);
487 PRINTREG(sc, ATW_TEST1);
488 PRINTREG(sc, ATW_SPR);
489 PRINTREG(sc, ATW_TEST0);
490 PRINTREG(sc, ATW_WCSR);
491 PRINTREG(sc, ATW_WPDR);
492 PRINTREG(sc, ATW_GPTMR);
493 PRINTREG(sc, ATW_GPIO);
494 PRINTREG(sc, ATW_BBPCTL);
495 PRINTREG(sc, ATW_SYNCTL);
496 PRINTREG(sc, ATW_PLCPHD);
497 PRINTREG(sc, ATW_MMIWADDR);
498 PRINTREG(sc, ATW_MMIRADDR1);
499 PRINTREG(sc, ATW_MMIRADDR2);
500 PRINTREG(sc, ATW_TXBR);
501 PRINTREG(sc, ATW_CSR15A);
502 PRINTREG(sc, ATW_ALCSTAT);
503 PRINTREG(sc, ATW_TOFS2);
504 PRINTREG(sc, ATW_CMDR);
505 PRINTREG(sc, ATW_PCIC);
506 PRINTREG(sc, ATW_PMCSR);
507 PRINTREG(sc, ATW_PAR0);
508 PRINTREG(sc, ATW_PAR1);
509 PRINTREG(sc, ATW_MAR0);
510 PRINTREG(sc, ATW_MAR1);
511 PRINTREG(sc, ATW_ATIMDA0);
512 PRINTREG(sc, ATW_ABDA1);
513 PRINTREG(sc, ATW_BSSID0);
514 PRINTREG(sc, ATW_TXLMT);
515 PRINTREG(sc, ATW_MIBCNT);
516 PRINTREG(sc, ATW_BCNT);
517 PRINTREG(sc, ATW_TSFTH);
518 PRINTREG(sc, ATW_TSC);
519 PRINTREG(sc, ATW_SYNRF);
520 PRINTREG(sc, ATW_BPLI);
521 PRINTREG(sc, ATW_CAP0);
522 PRINTREG(sc, ATW_CAP1);
523 PRINTREG(sc, ATW_RMD);
524 PRINTREG(sc, ATW_CFPP);
525 PRINTREG(sc, ATW_TOFS0);
526 PRINTREG(sc, ATW_TOFS1);
527 PRINTREG(sc, ATW_IFST);
528 PRINTREG(sc, ATW_RSPT);
529 PRINTREG(sc, ATW_TSFTL);
530 PRINTREG(sc, ATW_WEPCTL);
531 PRINTREG(sc, ATW_WESK);
532 PRINTREG(sc, ATW_WEPCNT);
533 PRINTREG(sc, ATW_MACTEST);
534 PRINTREG(sc, ATW_FER);
535 PRINTREG(sc, ATW_FEMR);
536 PRINTREG(sc, ATW_FPSR);
537 PRINTREG(sc, ATW_FFER);
538 #undef PRINTREG
539 }
540 #endif /* ATW_DEBUG */
541
542 /*
543 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
544 */
545 void
546 atw_attach(struct atw_softc *sc)
547 {
548 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
549 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
550 };
551 struct ieee80211com *ic = &sc->sc_ic;
552 struct ifnet *ifp = &sc->sc_if;
553 int country_code, error, i, nrate, srom_major;
554 u_int32_t reg;
555 static const char *type_strings[] = {"Intersil (not supported)",
556 "RFMD", "Marvel (not supported)"};
557
558 sc->sc_txth = atw_txthresh_tab_lo;
559
560 SIMPLEQ_INIT(&sc->sc_txfreeq);
561 SIMPLEQ_INIT(&sc->sc_txdirtyq);
562
563 #ifdef ATW_DEBUG
564 atw_print_regs(sc, "atw_attach");
565 #endif /* ATW_DEBUG */
566
567 /*
568 * Allocate the control data structures, and create and load the
569 * DMA map for it.
570 */
571 if ((error = bus_dmamem_alloc(sc->sc_dmat,
572 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
573 1, &sc->sc_cdnseg, 0)) != 0) {
574 aprint_error_dev(sc->sc_dev,
575 "unable to allocate control data, error = %d\n",
576 error);
577 goto fail_0;
578 }
579
580 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
581 sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
582 BUS_DMA_COHERENT)) != 0) {
583 aprint_error_dev(sc->sc_dev,
584 "unable to map control data, error = %d\n",
585 error);
586 goto fail_1;
587 }
588
589 if ((error = bus_dmamap_create(sc->sc_dmat,
590 sizeof(struct atw_control_data), 1,
591 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
592 aprint_error_dev(sc->sc_dev,
593 "unable to create control data DMA map, error = %d\n",
594 error);
595 goto fail_2;
596 }
597
598 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
599 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
600 0)) != 0) {
601 aprint_error_dev(sc->sc_dev,
602 "unable to load control data DMA map, error = %d\n", error);
603 goto fail_3;
604 }
605
606 /*
607 * Create the transmit buffer DMA maps.
608 */
609 sc->sc_ntxsegs = ATW_NTXSEGS;
610 for (i = 0; i < ATW_TXQUEUELEN; i++) {
611 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
612 sc->sc_ntxsegs, MCLBYTES, 0, 0,
613 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
614 aprint_error_dev(sc->sc_dev,
615 "unable to create tx DMA map %d, error = %d\n", i,
616 error);
617 goto fail_4;
618 }
619 }
620
621 /*
622 * Create the receive buffer DMA maps.
623 */
624 for (i = 0; i < ATW_NRXDESC; i++) {
625 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
626 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
627 aprint_error_dev(sc->sc_dev,
628 "unable to create rx DMA map %d, error = %d\n", i,
629 error);
630 goto fail_5;
631 }
632 }
633 for (i = 0; i < ATW_NRXDESC; i++) {
634 sc->sc_rxsoft[i].rxs_mbuf = NULL;
635 }
636
637 switch (sc->sc_rev) {
638 case ATW_REVISION_AB:
639 case ATW_REVISION_AF:
640 sc->sc_sramlen = ATW_SRAM_A_SIZE;
641 break;
642 case ATW_REVISION_BA:
643 case ATW_REVISION_CA:
644 sc->sc_sramlen = ATW_SRAM_B_SIZE;
645 break;
646 }
647
648 /* Reset the chip to a known state. */
649 atw_reset(sc);
650
651 if (atw_read_srom(sc) == -1)
652 return;
653
654 sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
655 ATW_SR_RFTYPE_MASK);
656
657 sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
658 ATW_SR_BBPTYPE_MASK);
659
660 if (sc->sc_rftype >= __arraycount(type_strings)) {
661 aprint_error_dev(sc->sc_dev, "unknown RF\n");
662 return;
663 }
664 if (sc->sc_bbptype >= __arraycount(type_strings)) {
665 aprint_error_dev(sc->sc_dev, "unknown BBP\n");
666 return;
667 }
668
669 printf("%s: %s RF, %s BBP", device_xname(sc->sc_dev),
670 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
671
672 /* XXX There exists a Linux driver which seems to use RFType = 0 for
673 * MARVEL. My bug, or theirs?
674 */
675
676 reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
677
678 switch (sc->sc_rftype) {
679 case ATW_RFTYPE_INTERSIL:
680 reg |= ATW_SYNCTL_CS1;
681 break;
682 case ATW_RFTYPE_RFMD:
683 reg |= ATW_SYNCTL_CS0;
684 break;
685 case ATW_RFTYPE_MARVEL:
686 break;
687 }
688
689 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
690 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
691
692 reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
693
694 switch (sc->sc_bbptype) {
695 case ATW_BBPTYPE_INTERSIL:
696 reg |= ATW_BBPCTL_TWI;
697 break;
698 case ATW_BBPTYPE_RFMD:
699 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
700 ATW_BBPCTL_CCA_ACTLO;
701 break;
702 case ATW_BBPTYPE_MARVEL:
703 break;
704 case ATW_C_BBPTYPE_RFMD:
705 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
706 device_xname(sc->sc_dev));
707 break;
708 }
709
710 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
711 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
712
713 /*
714 * From this point forward, the attachment cannot fail. A failure
715 * before this point releases all resources that may have been
716 * allocated.
717 */
718 sc->sc_flags |= ATWF_ATTACHED;
719
720 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
721 htole16(sc->sc_srom[ATW_SR_MAC00]),
722 htole16(sc->sc_srom[ATW_SR_MAC01]),
723 htole16(sc->sc_srom[ATW_SR_MAC10])));
724
725 srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
726 ATW_SR_MAJOR_MASK);
727
728 if (srom_major < 2)
729 sc->sc_rf3000_options1 = 0;
730 else if (sc->sc_rev == ATW_REVISION_BA) {
731 sc->sc_rf3000_options1 =
732 __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
733 ATW_SR_CR28_MASK);
734 } else
735 sc->sc_rf3000_options1 = 0;
736
737 sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
738 ATW_SR_CR29_MASK);
739
740 country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
741 ATW_SR_CTRY_MASK);
742
743 #define ADD_CHANNEL(_ic, _chan) do { \
744 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
745 _ic->ic_channels[_chan].ic_freq = \
746 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
747 } while (0)
748
749 /* Find available channels */
750 switch (country_code) {
751 case COUNTRY_MMK2: /* 1-14 */
752 ADD_CHANNEL(ic, 14);
753 /*FALLTHROUGH*/
754 case COUNTRY_ETSI: /* 1-13 */
755 for (i = 1; i <= 13; i++)
756 ADD_CHANNEL(ic, i);
757 break;
758 case COUNTRY_FCC: /* 1-11 */
759 case COUNTRY_IC: /* 1-11 */
760 for (i = 1; i <= 11; i++)
761 ADD_CHANNEL(ic, i);
762 break;
763 case COUNTRY_MMK: /* 14 */
764 ADD_CHANNEL(ic, 14);
765 break;
766 case COUNTRY_FRANCE: /* 10-13 */
767 for (i = 10; i <= 13; i++)
768 ADD_CHANNEL(ic, i);
769 break;
770 default: /* assume channels 10-11 */
771 case COUNTRY_SPAIN: /* 10-11 */
772 for (i = 10; i <= 11; i++)
773 ADD_CHANNEL(ic, i);
774 break;
775 }
776
777 /* Read the MAC address. */
778 reg = ATW_READ(sc, ATW_PAR0);
779 ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
780 ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
781 ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
782 ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
783 reg = ATW_READ(sc, ATW_PAR1);
784 ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
785 ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
786
787 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
788 printf(" could not get mac address, attach failed\n");
789 return;
790 }
791
792 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
793
794 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
795 ifp->if_softc = sc;
796 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
797 IFF_NOTRAILERS;
798 ifp->if_ioctl = atw_ioctl;
799 ifp->if_start = atw_start;
800 ifp->if_watchdog = atw_watchdog;
801 ifp->if_init = atw_init;
802 ifp->if_stop = atw_stop;
803 IFQ_SET_READY(&ifp->if_snd);
804
805 ic->ic_ifp = ifp;
806 ic->ic_phytype = IEEE80211_T_DS;
807 ic->ic_opmode = IEEE80211_M_STA;
808 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
809 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
810
811 nrate = 0;
812 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
813 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
814 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
815 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
816 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
817
818 /*
819 * Call MI attach routines.
820 */
821
822 if_attach(ifp);
823 ieee80211_ifattach(ic);
824
825 atw_evcnt_attach(sc);
826
827 sc->sc_newstate = ic->ic_newstate;
828 ic->ic_newstate = atw_newstate;
829
830 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
831 ic->ic_recv_mgmt = atw_recv_mgmt;
832
833 sc->sc_node_free = ic->ic_node_free;
834 ic->ic_node_free = atw_node_free;
835
836 sc->sc_node_alloc = ic->ic_node_alloc;
837 ic->ic_node_alloc = atw_node_alloc;
838
839 ic->ic_crypto.cs_key_delete = atw_key_delete;
840 ic->ic_crypto.cs_key_set = atw_key_set;
841 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
842 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
843
844 /* possibly we should fill in our own sc_send_prresp, since
845 * the ADM8211 is probably sending probe responses in ad hoc
846 * mode.
847 */
848
849 /* complete initialization */
850 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
851 callout_init(&sc->sc_scan_ch, 0);
852
853 #if NBPFILTER > 0
854 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
855 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
856 #endif
857
858 if (pmf_device_register1(sc->sc_dev, NULL, NULL, atw_shutdown))
859 pmf_class_network_register(sc->sc_dev, &sc->sc_if);
860 else
861 aprint_error_dev(sc->sc_dev,
862 "couldn't establish power handler\n");
863
864 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
865 sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
866 sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
867
868 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
869 sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
870 sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
871
872 ieee80211_announce(ic);
873 return;
874
875 /*
876 * Free any resources we've allocated during the failed attach
877 * attempt. Do this in reverse order and fall through.
878 */
879 fail_5:
880 for (i = 0; i < ATW_NRXDESC; i++) {
881 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
882 continue;
883 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
884 }
885 fail_4:
886 for (i = 0; i < ATW_TXQUEUELEN; i++) {
887 if (sc->sc_txsoft[i].txs_dmamap == NULL)
888 continue;
889 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
890 }
891 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
892 fail_3:
893 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
894 fail_2:
895 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
896 sizeof(struct atw_control_data));
897 fail_1:
898 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
899 fail_0:
900 return;
901 }
902
903 static struct ieee80211_node *
904 atw_node_alloc(struct ieee80211_node_table *nt)
905 {
906 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
907 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
908
909 DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
910 return ni;
911 }
912
913 static void
914 atw_node_free(struct ieee80211_node *ni)
915 {
916 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
917
918 DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
919 ether_sprintf(ni->ni_bssid)));
920 (*sc->sc_node_free)(ni);
921 }
922
923
924 static void
925 atw_test1_reset(struct atw_softc *sc)
926 {
927 switch (sc->sc_rev) {
928 case ATW_REVISION_BA:
929 if (1 /* XXX condition on transceiver type */) {
930 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
931 }
932 break;
933 case ATW_REVISION_CA:
934 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
935 break;
936 default:
937 break;
938 }
939 }
940
941 /*
942 * atw_reset:
943 *
944 * Perform a soft reset on the ADM8211.
945 */
946 void
947 atw_reset(struct atw_softc *sc)
948 {
949 int i;
950 uint32_t lpc;
951
952 ATW_WRITE(sc, ATW_NAR, 0x0);
953 DELAY(atw_nar_delay);
954
955 /* Reference driver has a cryptic remark indicating that this might
956 * power-on the chip. I know that it turns off power-saving....
957 */
958 ATW_WRITE(sc, ATW_FRCTL, 0x0);
959
960 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
961
962 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
963 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
964 break;
965 DELAY(atw_pseudo_milli);
966 }
967
968 /* ... and then pause 100ms longer for good measure. */
969 DELAY(atw_magic_delay1);
970
971 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
972
973 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
974 aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
975
976 /*
977 * Initialize the PCI Access Register.
978 */
979 sc->sc_busmode = ATW_PAR_PBL_8DW;
980
981 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
982 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
983 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
984
985 atw_test1_reset(sc);
986
987 /* Turn off maximum power saving, etc. */
988 ATW_WRITE(sc, ATW_FRCTL, 0x0);
989
990 DELAY(atw_magic_delay2);
991
992 /* Recall EEPROM. */
993 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
994
995 DELAY(atw_magic_delay4);
996
997 lpc = ATW_READ(sc, ATW_LPC);
998
999 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1000
1001 /* A reset seems to affect the SRAM contents, so put them into
1002 * a known state.
1003 */
1004 atw_clear_sram(sc);
1005
1006 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1007 }
1008
1009 static void
1010 atw_clear_sram(struct atw_softc *sc)
1011 {
1012 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1013 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1014 /* XXX not for revision 0x20. */
1015 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1016 }
1017
1018 /* TBD atw_init
1019 *
1020 * set MAC based on ic->ic_bss->myaddr
1021 * write WEP keys
1022 * set TX rate
1023 */
1024
1025 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1026 * without receiving a beacon with the preferred BSSID & SSID.
1027 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1028 */
1029 static void
1030 atw_wcsr_init(struct atw_softc *sc)
1031 {
1032 uint32_t wcsr;
1033
1034 wcsr = ATW_READ(sc, ATW_WCSR);
1035 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1036 wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1037 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1038
1039 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1040 device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1041 }
1042
1043 /* Turn off power management. Set Rx store-and-forward mode. */
1044 static void
1045 atw_cmdr_init(struct atw_softc *sc)
1046 {
1047 uint32_t cmdr;
1048 cmdr = ATW_READ(sc, ATW_CMDR);
1049 cmdr &= ~ATW_CMDR_APM;
1050 cmdr |= ATW_CMDR_RTE;
1051 cmdr &= ~ATW_CMDR_DRT_MASK;
1052 cmdr |= ATW_CMDR_DRT_SF;
1053
1054 ATW_WRITE(sc, ATW_CMDR, cmdr);
1055 }
1056
1057 static void
1058 atw_tofs2_init(struct atw_softc *sc)
1059 {
1060 uint32_t tofs2;
1061 /* XXX this magic can probably be figured out from the RFMD docs */
1062 #ifndef ATW_REFSLAVE
1063 tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1064 __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1065 __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1066 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1067 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1068 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1069 __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1070 __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1071 #else
1072 /* XXX new magic from reference driver source */
1073 tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1074 __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1075 __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */
1076 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1077 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1078 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1079 __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */
1080 __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */
1081 #endif
1082 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1083 }
1084
1085 static void
1086 atw_nar_init(struct atw_softc *sc)
1087 {
1088 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1089 }
1090
1091 static void
1092 atw_txlmt_init(struct atw_softc *sc)
1093 {
1094 ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1095 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1096 }
1097
1098 static void
1099 atw_test1_init(struct atw_softc *sc)
1100 {
1101 uint32_t test1;
1102
1103 test1 = ATW_READ(sc, ATW_TEST1);
1104 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1105 /* XXX magic 0x1 */
1106 test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1107 ATW_WRITE(sc, ATW_TEST1, test1);
1108 }
1109
1110 static void
1111 atw_rf_reset(struct atw_softc *sc)
1112 {
1113 /* XXX this resets an Intersil RF front-end? */
1114 /* TBD condition on Intersil RFType? */
1115 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1116 DELAY(atw_rf_delay1);
1117 ATW_WRITE(sc, ATW_SYNRF, 0);
1118 DELAY(atw_rf_delay2);
1119 }
1120
1121 /* Set 16 TU max duration for the contention-free period (CFP). */
1122 static void
1123 atw_cfp_init(struct atw_softc *sc)
1124 {
1125 uint32_t cfpp;
1126
1127 cfpp = ATW_READ(sc, ATW_CFPP);
1128 cfpp &= ~ATW_CFPP_CFPMD;
1129 cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1130 ATW_WRITE(sc, ATW_CFPP, cfpp);
1131 }
1132
1133 static void
1134 atw_tofs0_init(struct atw_softc *sc)
1135 {
1136 /* XXX I guess that the Cardbus clock is 22 MHz?
1137 * I am assuming that the role of ATW_TOFS0_USCNT is
1138 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1139 * very clear on this point. It says in the datasheet that it is
1140 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1141 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1142 * these values. These values are also the power-on default.
1143 */
1144 ATW_WRITE(sc, ATW_TOFS0,
1145 __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1146 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1147 }
1148
1149 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1150 static void
1151 atw_ifs_init(struct atw_softc *sc)
1152 {
1153 uint32_t ifst;
1154 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1155 * Go figure.
1156 */
1157 ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1158 __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1159 ATW_IFST_SIFS_MASK) |
1160 __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1161 __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1162
1163 ATW_WRITE(sc, ATW_IFST, ifst);
1164 }
1165
1166 static void
1167 atw_response_times_init(struct atw_softc *sc)
1168 {
1169 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1170 * indicate that the MAC expects at least SIFS + MIRT microseconds
1171 * to pass after it transmits a frame that requires a response;
1172 * it waits at most SIFS + MART microseconds for the response.
1173 * Surely this is not the ACK timeout?
1174 */
1175 ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1176 __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1177 }
1178
1179 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1180 * engines read and write baseband registers after Rx and before
1181 * Tx, respectively.
1182 */
1183 static void
1184 atw_bbp_io_init(struct atw_softc *sc)
1185 {
1186 uint32_t mmiraddr2;
1187
1188 /* XXX The reference driver does this, but is it *really*
1189 * necessary?
1190 */
1191 switch (sc->sc_rev) {
1192 case ATW_REVISION_AB:
1193 case ATW_REVISION_AF:
1194 mmiraddr2 = 0x0;
1195 break;
1196 default:
1197 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1198 mmiraddr2 &=
1199 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1200 break;
1201 }
1202
1203 switch (sc->sc_bbptype) {
1204 case ATW_BBPTYPE_INTERSIL:
1205 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1206 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1207 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1208 break;
1209 case ATW_BBPTYPE_MARVEL:
1210 /* TBD find out the Marvel settings. */
1211 break;
1212 case ATW_BBPTYPE_RFMD:
1213 default:
1214 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1215 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1216 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1217 break;
1218 }
1219 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1220 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1221 }
1222
1223 /*
1224 * atw_init: [ ifnet interface function ]
1225 *
1226 * Initialize the interface. Must be called at splnet().
1227 */
1228 int
1229 atw_init(struct ifnet *ifp)
1230 {
1231 struct atw_softc *sc = ifp->if_softc;
1232 struct ieee80211com *ic = &sc->sc_ic;
1233 struct atw_txsoft *txs;
1234 struct atw_rxsoft *rxs;
1235 int i, error = 0;
1236
1237 if ((error = atw_enable(sc)) != 0)
1238 goto out;
1239
1240 /*
1241 * Cancel any pending I/O. This also resets.
1242 */
1243 atw_stop(ifp, 0);
1244
1245 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1246 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1247 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1248
1249 atw_wcsr_init(sc);
1250
1251 atw_cmdr_init(sc);
1252
1253 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1254 *
1255 * XXX Set transmit power for ATIM, RTS, Beacon.
1256 */
1257 ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1258 __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1259
1260 atw_tofs2_init(sc);
1261
1262 atw_nar_init(sc);
1263
1264 atw_txlmt_init(sc);
1265
1266 atw_test1_init(sc);
1267
1268 atw_rf_reset(sc);
1269
1270 atw_cfp_init(sc);
1271
1272 atw_tofs0_init(sc);
1273
1274 atw_ifs_init(sc);
1275
1276 /* XXX Fall asleep after one second of inactivity.
1277 * XXX A frame may only dribble in for 65536us.
1278 */
1279 ATW_WRITE(sc, ATW_RMD,
1280 __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1281
1282 atw_response_times_init(sc);
1283
1284 atw_bbp_io_init(sc);
1285
1286 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1287
1288 if ((error = atw_rf3000_init(sc)) != 0)
1289 goto out;
1290
1291 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1292 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1293 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1294
1295 /*
1296 * Initialize the transmit descriptor ring.
1297 */
1298 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1299 for (i = 0; i < ATW_NTXDESC; i++) {
1300 sc->sc_txdescs[i].at_ctl = 0;
1301 /* no transmit chaining */
1302 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1303 sc->sc_txdescs[i].at_buf2 =
1304 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1305 }
1306 /* use ring mode */
1307 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1308 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1309 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1310 sc->sc_txfree = ATW_NTXDESC;
1311 sc->sc_txnext = 0;
1312
1313 /*
1314 * Initialize the transmit job descriptors.
1315 */
1316 SIMPLEQ_INIT(&sc->sc_txfreeq);
1317 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1318 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1319 txs = &sc->sc_txsoft[i];
1320 txs->txs_mbuf = NULL;
1321 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1322 }
1323
1324 /*
1325 * Initialize the receive descriptor and receive job
1326 * descriptor rings.
1327 */
1328 for (i = 0; i < ATW_NRXDESC; i++) {
1329 rxs = &sc->sc_rxsoft[i];
1330 if (rxs->rxs_mbuf == NULL) {
1331 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1332 aprint_error_dev(sc->sc_dev, "unable to allocate or map rx "
1333 "buffer %d, error = %d\n",
1334 i, error);
1335 /*
1336 * XXX Should attempt to run with fewer receive
1337 * XXX buffers instead of just failing.
1338 */
1339 atw_rxdrain(sc);
1340 goto out;
1341 }
1342 } else
1343 atw_init_rxdesc(sc, i);
1344 }
1345 sc->sc_rxptr = 0;
1346
1347 /*
1348 * Initialize the interrupt mask and enable interrupts.
1349 */
1350 /* normal interrupts */
1351 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1352 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1353
1354 /* abnormal interrupts */
1355 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1356 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1357 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1358
1359 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1360 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1361 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1362 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1363 ATW_INTR_TRT;
1364
1365 sc->sc_linkint_mask &= sc->sc_inten;
1366 sc->sc_rxint_mask &= sc->sc_inten;
1367 sc->sc_txint_mask &= sc->sc_inten;
1368
1369 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1370 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1371
1372 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1373 device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1374
1375 /*
1376 * Give the transmit and receive rings to the ADM8211.
1377 */
1378 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1379 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1380
1381 sc->sc_txthresh = 0;
1382 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1383 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1384
1385 /* common 802.11 configuration */
1386 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1387 switch (ic->ic_opmode) {
1388 case IEEE80211_M_STA:
1389 break;
1390 case IEEE80211_M_AHDEMO: /* XXX */
1391 case IEEE80211_M_IBSS:
1392 ic->ic_flags |= IEEE80211_F_IBSSON;
1393 /*FALLTHROUGH*/
1394 case IEEE80211_M_HOSTAP: /* XXX */
1395 break;
1396 case IEEE80211_M_MONITOR: /* XXX */
1397 break;
1398 }
1399
1400 switch (ic->ic_opmode) {
1401 case IEEE80211_M_AHDEMO:
1402 case IEEE80211_M_HOSTAP:
1403 #ifndef IEEE80211_NO_HOSTAP
1404 ic->ic_bss->ni_intval = ic->ic_lintval;
1405 ic->ic_bss->ni_rssi = 0;
1406 ic->ic_bss->ni_rstamp = 0;
1407 #endif /* !IEEE80211_NO_HOSTAP */
1408 break;
1409 default: /* XXX */
1410 break;
1411 }
1412
1413 sc->sc_wepctl = 0;
1414
1415 atw_write_ssid(sc);
1416 atw_write_sup_rates(sc);
1417 atw_write_wep(sc);
1418
1419 ic->ic_state = IEEE80211_S_INIT;
1420
1421 /*
1422 * Set the receive filter. This will start the transmit and
1423 * receive processes.
1424 */
1425 atw_filter_setup(sc);
1426
1427 /*
1428 * Start the receive process.
1429 */
1430 ATW_WRITE(sc, ATW_RDR, 0x1);
1431
1432 /*
1433 * Note that the interface is now running.
1434 */
1435 ifp->if_flags |= IFF_RUNNING;
1436
1437 /* send no beacons, yet. */
1438 atw_start_beacon(sc, 0);
1439
1440 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1441 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1442 else
1443 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1444 out:
1445 if (error) {
1446 ifp->if_flags &= ~IFF_RUNNING;
1447 sc->sc_tx_timer = 0;
1448 ifp->if_timer = 0;
1449 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1450 }
1451 #ifdef ATW_DEBUG
1452 atw_print_regs(sc, "end of init");
1453 #endif /* ATW_DEBUG */
1454
1455 return (error);
1456 }
1457
1458 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1459 * 0: MAC control of RF3000/Si4126.
1460 *
1461 * Applies power, or selects RF front-end? Sets reset condition.
1462 *
1463 * TBD support non-RFMD BBP, non-SiLabs synth.
1464 */
1465 static void
1466 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1467 {
1468 if (enable) {
1469 ATW_WRITE(sc, ATW_SYNRF,
1470 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1471 DELAY(atw_bbp_io_enable_delay);
1472 } else {
1473 ATW_WRITE(sc, ATW_SYNRF, 0);
1474 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1475 }
1476 }
1477
1478 static int
1479 atw_tune(struct atw_softc *sc)
1480 {
1481 int rc;
1482 u_int chan;
1483 struct ieee80211com *ic = &sc->sc_ic;
1484
1485 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1486 if (chan == IEEE80211_CHAN_ANY)
1487 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1488
1489 if (chan == sc->sc_cur_chan)
1490 return 0;
1491
1492 DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1493 sc->sc_cur_chan, chan));
1494
1495 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1496
1497 atw_si4126_tune(sc, chan);
1498 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1499 printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1500 chan);
1501
1502 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1503 DELAY(atw_nar_delay);
1504 ATW_WRITE(sc, ATW_RDR, 0x1);
1505
1506 if (rc == 0) {
1507 sc->sc_cur_chan = chan;
1508 sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1509 htole16(ic->ic_curchan->ic_freq);
1510 sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1511 htole16(ic->ic_curchan->ic_flags);
1512 }
1513
1514 return rc;
1515 }
1516
1517 #ifdef ATW_SYNDEBUG
1518 static void
1519 atw_si4126_print(struct atw_softc *sc)
1520 {
1521 struct ifnet *ifp = &sc->sc_if;
1522 u_int addr, val;
1523
1524 val = 0;
1525
1526 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1527 return;
1528
1529 for (addr = 0; addr <= 8; addr++) {
1530 printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1531 if (atw_si4126_read(sc, addr, &val) == 0) {
1532 printf("<unknown> (quitting print-out)\n");
1533 break;
1534 }
1535 printf("%05x\n", val);
1536 }
1537 }
1538 #endif /* ATW_SYNDEBUG */
1539
1540 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1541 *
1542 * The RF/IF synthesizer produces two reference frequencies for
1543 * the RF2948B transceiver. The first frequency the RF2948B requires
1544 * is two times the so-called "intermediate frequency" (IF). Since
1545 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1546 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second
1547 * frequency required by the transceiver is the radio frequency
1548 * (RF). This is a superheterodyne transceiver; for f(chan) the
1549 * center frequency of the channel we are tuning, RF = f(chan) -
1550 * IF.
1551 *
1552 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1553 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1554 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1555 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1556 */
1557 static void
1558 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1559 {
1560 u_int mhz;
1561 u_int R;
1562 u_int32_t gpio;
1563 u_int16_t gain;
1564
1565 #ifdef ATW_SYNDEBUG
1566 atw_si4126_print(sc);
1567 #endif /* ATW_SYNDEBUG */
1568
1569 if (chan == 14)
1570 mhz = 2484;
1571 else
1572 mhz = 2412 + 5 * (chan - 1);
1573
1574 /* Tune IF to 748 MHz to suit the IF LO input of the
1575 * RF2494B, which is 2 x IF. No need to set an IF divider
1576 * because an IF in 526 MHz - 952 MHz is allowed.
1577 *
1578 * XIN is 44.000 MHz, so divide it by two to get allowable
1579 * range of 2-25 MHz. SiLabs tells me that this is not
1580 * strictly necessary.
1581 */
1582
1583 if (atw_xindiv2)
1584 R = 44;
1585 else
1586 R = 88;
1587
1588 /* Power-up RF, IF synthesizers. */
1589 atw_si4126_write(sc, SI4126_POWER,
1590 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1591
1592 /* set LPWR, too? */
1593 atw_si4126_write(sc, SI4126_MAIN,
1594 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1595
1596 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1597 * set KP2 to 1.
1598 *
1599 * REFDIF This is different from the reference driver, which
1600 * always sets SI4126_GAIN to 0.
1601 */
1602 gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1603
1604 atw_si4126_write(sc, SI4126_GAIN, gain);
1605
1606 /* XIN = 44 MHz.
1607 *
1608 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1609 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1610 *
1611 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1612 * so that 1496/88 * 44 MHz = 748 MHz.
1613 */
1614 atw_si4126_write(sc, SI4126_IFN, 1496);
1615
1616 atw_si4126_write(sc, SI4126_IFR, R);
1617
1618 #ifndef ATW_REFSLAVE
1619 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1620 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1621 * which has no RF1!
1622 */
1623 atw_si4126_write(sc, SI4126_RF1R, R);
1624
1625 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1626 #endif
1627
1628 /* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1629 * where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44.
1630 * Now let's multiply it to mhz. So mhz - IF = N.
1631 */
1632 atw_si4126_write(sc, SI4126_RF2R, R);
1633
1634 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1635
1636 /* wait 100us from power-up for RF, IF to settle */
1637 DELAY(100);
1638
1639 gpio = ATW_READ(sc, ATW_GPIO);
1640 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1641 gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1642
1643 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1644 /* Set a Prism RF front-end to a special mode for channel 14?
1645 *
1646 * Apparently the SMC2635W needs this, although I don't think
1647 * it has a Prism RF.
1648 */
1649 gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1650 }
1651 ATW_WRITE(sc, ATW_GPIO, gpio);
1652
1653 #ifdef ATW_SYNDEBUG
1654 atw_si4126_print(sc);
1655 #endif /* ATW_SYNDEBUG */
1656 }
1657
1658 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1659 * diversity.
1660 *
1661 * !!!
1662 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1663 * !!!
1664 */
1665 static int
1666 atw_rf3000_init(struct atw_softc *sc)
1667 {
1668 int rc = 0;
1669
1670 atw_bbp_io_enable(sc, 1);
1671
1672 /* CCA is acquisition sensitive */
1673 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1674 __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1675
1676 if (rc != 0)
1677 goto out;
1678
1679 /* enable diversity */
1680 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1681
1682 if (rc != 0)
1683 goto out;
1684
1685 /* sensible setting from a binary-only driver */
1686 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1687 __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1688
1689 if (rc != 0)
1690 goto out;
1691
1692 /* magic from a binary-only driver */
1693 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1694 __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1695
1696 if (rc != 0)
1697 goto out;
1698
1699 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1700
1701 if (rc != 0)
1702 goto out;
1703
1704 /* XXX Reference driver remarks that Abocom sets this to 50.
1705 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1706 * in the "reserved" area of register RF3000_OPTIONS1.
1707 */
1708 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1709
1710 if (rc != 0)
1711 goto out;
1712
1713 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1714
1715 if (rc != 0)
1716 goto out;
1717
1718 out:
1719 atw_bbp_io_enable(sc, 0);
1720 return rc;
1721 }
1722
1723 #ifdef ATW_BBPDEBUG
1724 static void
1725 atw_rf3000_print(struct atw_softc *sc)
1726 {
1727 struct ifnet *ifp = &sc->sc_if;
1728 u_int addr, val;
1729
1730 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1731 return;
1732
1733 for (addr = 0x01; addr <= 0x15; addr++) {
1734 printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1735 if (atw_rf3000_read(sc, addr, &val) != 0) {
1736 printf("<unknown> (quitting print-out)\n");
1737 break;
1738 }
1739 printf("%08x\n", val);
1740 }
1741 }
1742 #endif /* ATW_BBPDEBUG */
1743
1744 /* Set the power settings on the BBP for channel `chan'. */
1745 static int
1746 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1747 {
1748 int rc = 0;
1749 u_int32_t reg;
1750 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1751
1752 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1753 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1754 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1755
1756 /* odd channels: LSB, even channels: MSB */
1757 if (chan % 2 == 1) {
1758 txpower &= 0xFF;
1759 lpf_cutoff &= 0xFF;
1760 lna_gs_thresh &= 0xFF;
1761 } else {
1762 txpower >>= 8;
1763 lpf_cutoff >>= 8;
1764 lna_gs_thresh >>= 8;
1765 }
1766
1767 #ifdef ATW_BBPDEBUG
1768 atw_rf3000_print(sc);
1769 #endif /* ATW_BBPDEBUG */
1770
1771 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1772 "lna_gs_thresh %02x\n",
1773 device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1774
1775 atw_bbp_io_enable(sc, 1);
1776
1777 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1778 __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1779 goto out;
1780
1781 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1782 goto out;
1783
1784 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1785 goto out;
1786
1787 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1788
1789 if (rc != 0)
1790 goto out;
1791
1792 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1793
1794 if (rc != 0)
1795 goto out;
1796
1797 #ifdef ATW_BBPDEBUG
1798 atw_rf3000_print(sc);
1799 #endif /* ATW_BBPDEBUG */
1800
1801 out:
1802 atw_bbp_io_enable(sc, 0);
1803
1804 /* set beacon, rts, atim transmit power */
1805 reg = ATW_READ(sc, ATW_PLCPHD);
1806 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1807 reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1808 ATW_PLCPHD_SERVICE_MASK);
1809 ATW_WRITE(sc, ATW_PLCPHD, reg);
1810 DELAY(atw_plcphd_delay);
1811
1812 return rc;
1813 }
1814
1815 /* Write a register on the RF3000 baseband processor using the
1816 * registers provided by the ADM8211 for this purpose.
1817 *
1818 * Return 0 on success.
1819 */
1820 static int
1821 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1822 {
1823 u_int32_t reg;
1824 int i;
1825
1826 reg = sc->sc_bbpctl_wr |
1827 __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1828 __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1829
1830 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1831 ATW_WRITE(sc, ATW_BBPCTL, reg);
1832 DELAY(2 * atw_pseudo_milli);
1833 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1834 break;
1835 }
1836
1837 if (i < 0) {
1838 printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1839 return ETIMEDOUT;
1840 }
1841 return 0;
1842 }
1843
1844 /* Read a register on the RF3000 baseband processor using the registers
1845 * the ADM8211 provides for this purpose.
1846 *
1847 * The 7-bit register address is addr. Record the 8-bit data in the register
1848 * in *val.
1849 *
1850 * Return 0 on success.
1851 *
1852 * XXX This does not seem to work. The ADM8211 must require more or
1853 * different magic to read the chip than to write it. Possibly some
1854 * of the magic I have derived from a binary-only driver concerns
1855 * the "chip address" (see the RF3000 manual).
1856 */
1857 #ifdef ATW_BBPDEBUG
1858 static int
1859 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1860 {
1861 u_int32_t reg;
1862 int i;
1863
1864 for (i = 1000; --i >= 0; ) {
1865 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1866 break;
1867 DELAY(100);
1868 }
1869
1870 if (i < 0) {
1871 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1872 device_xname(sc->sc_dev));
1873 return ETIMEDOUT;
1874 }
1875
1876 reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1877
1878 ATW_WRITE(sc, ATW_BBPCTL, reg);
1879
1880 for (i = 1000; --i >= 0; ) {
1881 DELAY(100);
1882 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1883 break;
1884 }
1885
1886 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1887
1888 if (i < 0) {
1889 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1890 device_xname(sc->sc_dev), reg);
1891 return ETIMEDOUT;
1892 }
1893 if (val != NULL)
1894 *val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1895 return 0;
1896 }
1897 #endif /* ATW_BBPDEBUG */
1898
1899 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1900 * provided by the ADM8211 for that purpose.
1901 *
1902 * val is 18 bits of data, and val is the 4-bit address of the register.
1903 *
1904 * Return 0 on success.
1905 */
1906 static void
1907 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1908 {
1909 uint32_t bits, mask, reg;
1910 const int nbits = 22;
1911
1912 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1913 KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1914
1915 bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1916 __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1917
1918 reg = ATW_SYNRF_SELSYN;
1919 /* reference driver: reset Si4126 serial bus to initial
1920 * conditions?
1921 */
1922 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1923 ATW_WRITE(sc, ATW_SYNRF, reg);
1924
1925 for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1926 if ((bits & mask) != 0)
1927 reg |= ATW_SYNRF_SYNDATA;
1928 else
1929 reg &= ~ATW_SYNRF_SYNDATA;
1930 ATW_WRITE(sc, ATW_SYNRF, reg);
1931 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1932 ATW_WRITE(sc, ATW_SYNRF, reg);
1933 }
1934 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1935 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1936 }
1937
1938 /* Read 18-bit data from the 4-bit address addr in Si4126
1939 * RF synthesizer and write the data to *val. Return 0 on success.
1940 *
1941 * XXX This does not seem to work. The ADM8211 must require more or
1942 * different magic to read the chip than to write it.
1943 */
1944 #ifdef ATW_SYNDEBUG
1945 static int
1946 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1947 {
1948 u_int32_t reg;
1949 int i;
1950
1951 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1952
1953 for (i = 1000; --i >= 0; ) {
1954 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1955 break;
1956 DELAY(100);
1957 }
1958
1959 if (i < 0) {
1960 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1961 device_xname(sc->sc_dev));
1962 return ETIMEDOUT;
1963 }
1964
1965 reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1966
1967 ATW_WRITE(sc, ATW_SYNCTL, reg);
1968
1969 for (i = 1000; --i >= 0; ) {
1970 DELAY(100);
1971 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1972 break;
1973 }
1974
1975 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1976
1977 if (i < 0) {
1978 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1979 device_xname(sc->sc_dev), reg);
1980 return ETIMEDOUT;
1981 }
1982 if (val != NULL)
1983 *val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1984 ATW_SYNCTL_DATA_MASK);
1985 return 0;
1986 }
1987 #endif /* ATW_SYNDEBUG */
1988
1989 /* XXX is the endianness correct? test. */
1990 #define atw_calchash(addr) \
1991 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1992
1993 /*
1994 * atw_filter_setup:
1995 *
1996 * Set the ADM8211's receive filter.
1997 */
1998 static void
1999 atw_filter_setup(struct atw_softc *sc)
2000 {
2001 struct ieee80211com *ic = &sc->sc_ic;
2002 struct ethercom *ec = &sc->sc_ec;
2003 struct ifnet *ifp = &sc->sc_if;
2004 int hash;
2005 u_int32_t hashes[2];
2006 struct ether_multi *enm;
2007 struct ether_multistep step;
2008
2009 /* According to comments in tlp_al981_filter_setup
2010 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2011 * multicast filter to be set while it is running. Hopefully
2012 * the ADM8211 is not the same!
2013 */
2014 if ((ifp->if_flags & IFF_RUNNING) != 0)
2015 atw_idle(sc, ATW_NAR_SR);
2016
2017 sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
2018 ifp->if_flags &= ~IFF_ALLMULTI;
2019
2020 /* XXX in scan mode, do not filter packets. Maybe this is
2021 * unnecessary.
2022 */
2023 if (ic->ic_state == IEEE80211_S_SCAN ||
2024 (ifp->if_flags & IFF_PROMISC) != 0) {
2025 sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2026 goto allmulti;
2027 }
2028
2029 hashes[0] = hashes[1] = 0x0;
2030
2031 /*
2032 * Program the 64-bit multicast hash filter.
2033 */
2034 ETHER_FIRST_MULTI(step, ec, enm);
2035 while (enm != NULL) {
2036 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2037 ETHER_ADDR_LEN) != 0)
2038 goto allmulti;
2039
2040 hash = atw_calchash(enm->enm_addrlo);
2041 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2042 ETHER_NEXT_MULTI(step, enm);
2043 sc->sc_opmode |= ATW_NAR_MM;
2044 }
2045 ifp->if_flags &= ~IFF_ALLMULTI;
2046 goto setit;
2047
2048 allmulti:
2049 sc->sc_opmode |= ATW_NAR_MM;
2050 ifp->if_flags |= IFF_ALLMULTI;
2051 hashes[0] = hashes[1] = 0xffffffff;
2052
2053 setit:
2054 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2055 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2056 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2057 DELAY(atw_nar_delay);
2058 ATW_WRITE(sc, ATW_RDR, 0x1);
2059
2060 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2061 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2062 }
2063
2064 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2065 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2066 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2067 * no beacon with the preferred BSSID and SSID in the number of
2068 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2069 */
2070 static void
2071 atw_write_bssid(struct atw_softc *sc)
2072 {
2073 struct ieee80211com *ic = &sc->sc_ic;
2074 u_int8_t *bssid;
2075
2076 bssid = ic->ic_bss->ni_bssid;
2077
2078 ATW_WRITE(sc, ATW_BSSID0,
2079 __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2080 __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2081 __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2082 __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2083
2084 ATW_WRITE(sc, ATW_ABDA1,
2085 (ATW_READ(sc, ATW_ABDA1) &
2086 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2087 __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2088 __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2089
2090 DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2091 ether_sprintf(sc->sc_bssid)));
2092 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2093
2094 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2095 }
2096
2097 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2098 * 16-bit word.
2099 */
2100 static void
2101 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2102 {
2103 u_int i;
2104 u_int8_t *ptr;
2105
2106 memcpy(&sc->sc_sram[ofs], buf, buflen);
2107
2108 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2109
2110 KASSERT(buflen + ofs <= sc->sc_sramlen);
2111
2112 ptr = &sc->sc_sram[ofs];
2113
2114 for (i = 0; i < buflen; i += 2) {
2115 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2116 __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2117 DELAY(atw_writewep_delay);
2118
2119 ATW_WRITE(sc, ATW_WESK,
2120 __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2121 DELAY(atw_writewep_delay);
2122 }
2123 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2124
2125 if (sc->sc_if.if_flags & IFF_DEBUG) {
2126 int n_octets = 0;
2127 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2128 device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2129 for (i = 0; i < buflen; i++) {
2130 printf(" %02x", ptr[i]);
2131 if (++n_octets % 24 == 0)
2132 printf("\n");
2133 }
2134 if (n_octets % 24 != 0)
2135 printf("\n");
2136 }
2137 }
2138
2139 static int
2140 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2141 {
2142 struct atw_softc *sc = ic->ic_ifp->if_softc;
2143 u_int keyix = k->wk_keyix;
2144
2145 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2146
2147 if (keyix >= IEEE80211_WEP_NKID)
2148 return 0;
2149 if (k->wk_keylen != 0)
2150 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2151
2152 return 1;
2153 }
2154
2155 static int
2156 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2157 const u_int8_t mac[IEEE80211_ADDR_LEN])
2158 {
2159 struct atw_softc *sc = ic->ic_ifp->if_softc;
2160
2161 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2162
2163 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2164 return 0;
2165
2166 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2167
2168 return 1;
2169 }
2170
2171 static void
2172 atw_key_update_begin(struct ieee80211com *ic)
2173 {
2174 #ifdef ATW_DEBUG
2175 struct ifnet *ifp = ic->ic_ifp;
2176 struct atw_softc *sc = ifp->if_softc;
2177 #endif
2178
2179 DPRINTF(sc, ("%s:\n", __func__));
2180 }
2181
2182 static void
2183 atw_key_update_end(struct ieee80211com *ic)
2184 {
2185 struct ifnet *ifp = ic->ic_ifp;
2186 struct atw_softc *sc = ifp->if_softc;
2187
2188 DPRINTF(sc, ("%s:\n", __func__));
2189
2190 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2191 return;
2192 if (ATW_IS_ENABLED(sc) == 0)
2193 return;
2194 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2195 atw_write_wep(sc);
2196 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2197 DELAY(atw_nar_delay);
2198 ATW_WRITE(sc, ATW_RDR, 0x1);
2199 }
2200
2201 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2202 static void
2203 atw_write_wep(struct atw_softc *sc)
2204 {
2205 #if 0
2206 struct ieee80211com *ic = &sc->sc_ic;
2207 u_int32_t reg;
2208 int i;
2209 #endif
2210 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2211 u_int8_t buf[IEEE80211_WEP_NKID]
2212 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2213
2214 sc->sc_wepctl = 0;
2215 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2216
2217 memset(&buf[0][0], 0, sizeof(buf));
2218
2219 #if 0
2220 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2221 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2222 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2223 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2224 buf[i][1] = ATW_WEP_ENABLED;
2225 } else {
2226 buf[i][1] = 0;
2227 continue;
2228 }
2229 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2230 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2231 ic->ic_nw_keys[i].wk_keylen - 1);
2232 }
2233
2234 reg = ATW_READ(sc, ATW_MACTEST);
2235 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2236 reg &= ~ATW_MACTEST_KEYID_MASK;
2237 reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2238 ATW_WRITE(sc, ATW_MACTEST, reg);
2239
2240 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2241 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2242
2243 switch (sc->sc_rev) {
2244 case ATW_REVISION_AB:
2245 case ATW_REVISION_AF:
2246 /* Bypass WEP on Rx. */
2247 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2248 break;
2249 default:
2250 break;
2251 }
2252 #endif
2253
2254 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2255 sizeof(buf));
2256
2257 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2258 }
2259
2260 static void
2261 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2262 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2263 {
2264 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2265
2266 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2267 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2268 return;
2269
2270 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2271
2272 switch (subtype) {
2273 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2274 case IEEE80211_FC0_SUBTYPE_BEACON:
2275 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2276 ic->ic_state == IEEE80211_S_RUN) {
2277 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2278 (void)ieee80211_ibss_merge(ni);
2279 }
2280 break;
2281 default:
2282 break;
2283 }
2284 return;
2285 }
2286
2287 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2288 * In ad hoc mode, the SSID is written to the beacons sent by the
2289 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2290 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2291 * indications.
2292 */
2293 static void
2294 atw_write_ssid(struct atw_softc *sc)
2295 {
2296 struct ieee80211com *ic = &sc->sc_ic;
2297 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2298 * it only expects the element length, not its ID.
2299 */
2300 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2301
2302 memset(buf, 0, sizeof(buf));
2303 buf[0] = ic->ic_bss->ni_esslen;
2304 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2305
2306 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2307 roundup(1 + ic->ic_bss->ni_esslen, 2));
2308 }
2309
2310 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2311 * In ad hoc mode, the supported rates are written to beacons sent by the
2312 * ADM8211.
2313 */
2314 static void
2315 atw_write_sup_rates(struct atw_softc *sc)
2316 {
2317 struct ieee80211com *ic = &sc->sc_ic;
2318 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2319 * supported rates
2320 */
2321 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2322
2323 memset(buf, 0, sizeof(buf));
2324
2325 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2326
2327 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2328 ic->ic_bss->ni_rates.rs_nrates);
2329
2330 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2331 }
2332
2333 /* Start/stop sending beacons. */
2334 void
2335 atw_start_beacon(struct atw_softc *sc, int start)
2336 {
2337 struct ieee80211com *ic = &sc->sc_ic;
2338 uint16_t chan;
2339 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2340 size_t len;
2341
2342 if (ATW_IS_ENABLED(sc) == 0)
2343 return;
2344
2345 /* start beacons */
2346 len = sizeof(struct ieee80211_frame) +
2347 8 /* timestamp */ + 2 /* beacon interval */ +
2348 2 /* capability info */ +
2349 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2350 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2351 3 /* DS parameters */ +
2352 IEEE80211_CRC_LEN;
2353
2354 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2355 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2356 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2357
2358 ATW_WRITE(sc, ATW_BCNT, bcnt);
2359 ATW_WRITE(sc, ATW_CAP1, cap1);
2360
2361 if (!start)
2362 return;
2363
2364 /* TBD use ni_capinfo */
2365
2366 capinfo = 0;
2367 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2368 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2369 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2370 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2371
2372 switch (ic->ic_opmode) {
2373 case IEEE80211_M_IBSS:
2374 len += 4; /* IBSS parameters */
2375 capinfo |= IEEE80211_CAPINFO_IBSS;
2376 break;
2377 case IEEE80211_M_HOSTAP:
2378 /* XXX 6-byte minimum TIM */
2379 len += atw_beacon_len_adjust;
2380 capinfo |= IEEE80211_CAPINFO_ESS;
2381 break;
2382 default:
2383 return;
2384 }
2385
2386 /* set listen interval
2387 * XXX do software units agree w/ hardware?
2388 */
2389 bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2390 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2391
2392 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2393
2394 bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2395 cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2396 cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2397
2398 ATW_WRITE(sc, ATW_BCNT, bcnt);
2399 ATW_WRITE(sc, ATW_BPLI, bpli);
2400 ATW_WRITE(sc, ATW_CAP0, cap0);
2401 ATW_WRITE(sc, ATW_CAP1, cap1);
2402
2403 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2404 device_xname(sc->sc_dev), bcnt));
2405
2406 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2407 device_xname(sc->sc_dev), cap1));
2408 }
2409
2410 /* Return the 32 lsb of the last TSFT divisible by ival. */
2411 static inline uint32_t
2412 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2413 {
2414 /* Following the reference driver's lead, I compute
2415 *
2416 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2417 *
2418 * without using 64-bit arithmetic, using the following
2419 * relationship:
2420 *
2421 * (0x100000000 * H + L) % m
2422 * = ((0x100000000 % m) * H + L) % m
2423 * = (((0xffffffff + 1) % m) * H + L) % m
2424 * = ((0xffffffff % m + 1 % m) * H + L) % m
2425 * = ((0xffffffff % m + 1) * H + L) % m
2426 */
2427 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2428 }
2429
2430 static uint64_t
2431 atw_get_tsft(struct atw_softc *sc)
2432 {
2433 int i;
2434 uint32_t tsfth, tsftl;
2435 for (i = 0; i < 2; i++) {
2436 tsfth = ATW_READ(sc, ATW_TSFTH);
2437 tsftl = ATW_READ(sc, ATW_TSFTL);
2438 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2439 break;
2440 }
2441 return ((uint64_t)tsfth << 32) | tsftl;
2442 }
2443
2444 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2445 * the ieee80211com.
2446 *
2447 * Predict the next target beacon transmission time (TBTT) and
2448 * write it to the ADM8211.
2449 */
2450 static void
2451 atw_predict_beacon(struct atw_softc *sc)
2452 {
2453 #define TBTTOFS 20 /* TU */
2454
2455 struct ieee80211com *ic = &sc->sc_ic;
2456 uint64_t tsft;
2457 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2458 union {
2459 uint64_t word;
2460 uint8_t tstamp[8];
2461 } u;
2462
2463 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2464 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2465 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2466 tsft = atw_get_tsft(sc);
2467 u.word = htole64(tsft);
2468 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2469 sizeof(ic->ic_bss->ni_tstamp));
2470 } else
2471 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2472
2473 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2474
2475 tsftl = tsft & 0xFFFFFFFF;
2476 tsfth = tsft >> 32;
2477
2478 /* We sent/received the last beacon `past' microseconds
2479 * after the interval divided the TSF timer.
2480 */
2481 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2482
2483 /* Skip ten beacons so that the TBTT cannot pass before
2484 * we've programmed it. Ten is an arbitrary number.
2485 */
2486 tbtt = past_even + ival * 10;
2487
2488 ATW_WRITE(sc, ATW_TOFS1,
2489 __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2490 __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2491 __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2492 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2493 #undef TBTTOFS
2494 }
2495
2496 static void
2497 atw_next_scan(void *arg)
2498 {
2499 struct atw_softc *sc = arg;
2500 struct ieee80211com *ic = &sc->sc_ic;
2501 int s;
2502
2503 /* don't call atw_start w/o network interrupts blocked */
2504 s = splnet();
2505 if (ic->ic_state == IEEE80211_S_SCAN)
2506 ieee80211_next_scan(ic);
2507 splx(s);
2508 }
2509
2510 /* Synchronize the hardware state with the software state. */
2511 static int
2512 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2513 {
2514 struct ifnet *ifp = ic->ic_ifp;
2515 struct atw_softc *sc = ifp->if_softc;
2516 enum ieee80211_state ostate;
2517 int error = 0;
2518
2519 ostate = ic->ic_state;
2520 callout_stop(&sc->sc_scan_ch);
2521
2522 switch (nstate) {
2523 case IEEE80211_S_AUTH:
2524 case IEEE80211_S_ASSOC:
2525 atw_write_bssid(sc);
2526 error = atw_tune(sc);
2527 break;
2528 case IEEE80211_S_INIT:
2529 callout_stop(&sc->sc_scan_ch);
2530 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2531 atw_start_beacon(sc, 0);
2532 break;
2533 case IEEE80211_S_SCAN:
2534 error = atw_tune(sc);
2535 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2536 atw_next_scan, sc);
2537 break;
2538 case IEEE80211_S_RUN:
2539 error = atw_tune(sc);
2540 atw_write_bssid(sc);
2541 atw_write_ssid(sc);
2542 atw_write_sup_rates(sc);
2543
2544 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2545 ic->ic_opmode == IEEE80211_M_MONITOR)
2546 break;
2547
2548 /* set listen interval
2549 * XXX do software units agree w/ hardware?
2550 */
2551 ATW_WRITE(sc, ATW_BPLI,
2552 __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2553 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2554 ATW_BPLI_LI_MASK));
2555
2556 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2557 ATW_READ(sc, ATW_BPLI)));
2558
2559 atw_predict_beacon(sc);
2560
2561 switch (ic->ic_opmode) {
2562 case IEEE80211_M_AHDEMO:
2563 case IEEE80211_M_HOSTAP:
2564 case IEEE80211_M_IBSS:
2565 atw_start_beacon(sc, 1);
2566 break;
2567 case IEEE80211_M_MONITOR:
2568 case IEEE80211_M_STA:
2569 break;
2570 }
2571
2572 break;
2573 }
2574 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2575 }
2576
2577 /*
2578 * atw_add_rxbuf:
2579 *
2580 * Add a receive buffer to the indicated descriptor.
2581 */
2582 int
2583 atw_add_rxbuf(struct atw_softc *sc, int idx)
2584 {
2585 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2586 struct mbuf *m;
2587 int error;
2588
2589 MGETHDR(m, M_DONTWAIT, MT_DATA);
2590 if (m == NULL)
2591 return (ENOBUFS);
2592
2593 MCLGET(m, M_DONTWAIT);
2594 if ((m->m_flags & M_EXT) == 0) {
2595 m_freem(m);
2596 return (ENOBUFS);
2597 }
2598
2599 if (rxs->rxs_mbuf != NULL)
2600 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2601
2602 rxs->rxs_mbuf = m;
2603
2604 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2605 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2606 BUS_DMA_READ|BUS_DMA_NOWAIT);
2607 if (error) {
2608 aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2609 idx, error);
2610 panic("atw_add_rxbuf"); /* XXX */
2611 }
2612
2613 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2614 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2615
2616 atw_init_rxdesc(sc, idx);
2617
2618 return (0);
2619 }
2620
2621 /*
2622 * Release any queued transmit buffers.
2623 */
2624 void
2625 atw_txdrain(struct atw_softc *sc)
2626 {
2627 struct atw_txsoft *txs;
2628
2629 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2630 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2631 if (txs->txs_mbuf != NULL) {
2632 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2633 m_freem(txs->txs_mbuf);
2634 txs->txs_mbuf = NULL;
2635 }
2636 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2637 sc->sc_txfree += txs->txs_ndescs;
2638 }
2639
2640 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2641 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2642 sc->sc_txfree != ATW_NTXDESC));
2643 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2644 sc->sc_tx_timer = 0;
2645 }
2646
2647 /*
2648 * atw_stop: [ ifnet interface function ]
2649 *
2650 * Stop transmission on the interface.
2651 */
2652 void
2653 atw_stop(struct ifnet *ifp, int disable)
2654 {
2655 struct atw_softc *sc = ifp->if_softc;
2656 struct ieee80211com *ic = &sc->sc_ic;
2657
2658 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2659
2660 /* Disable interrupts. */
2661 ATW_WRITE(sc, ATW_IER, 0);
2662
2663 /* Stop the transmit and receive processes. */
2664 sc->sc_opmode = 0;
2665 ATW_WRITE(sc, ATW_NAR, 0);
2666 DELAY(atw_nar_delay);
2667 ATW_WRITE(sc, ATW_TDBD, 0);
2668 ATW_WRITE(sc, ATW_TDBP, 0);
2669 ATW_WRITE(sc, ATW_RDB, 0);
2670
2671 atw_txdrain(sc);
2672
2673 /*
2674 * Mark the interface down and cancel the watchdog timer.
2675 */
2676 ifp->if_flags &= ~IFF_RUNNING;
2677 ifp->if_timer = 0;
2678
2679 if (disable) {
2680 atw_rxdrain(sc);
2681 atw_disable(sc);
2682 } else
2683 atw_reset(sc);
2684 }
2685
2686 /*
2687 * atw_rxdrain:
2688 *
2689 * Drain the receive queue.
2690 */
2691 void
2692 atw_rxdrain(struct atw_softc *sc)
2693 {
2694 struct atw_rxsoft *rxs;
2695 int i;
2696
2697 for (i = 0; i < ATW_NRXDESC; i++) {
2698 rxs = &sc->sc_rxsoft[i];
2699 if (rxs->rxs_mbuf == NULL)
2700 continue;
2701 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2702 m_freem(rxs->rxs_mbuf);
2703 rxs->rxs_mbuf = NULL;
2704 }
2705 }
2706
2707 /*
2708 * atw_detach:
2709 *
2710 * Detach an ADM8211 interface.
2711 */
2712 int
2713 atw_detach(struct atw_softc *sc)
2714 {
2715 struct ifnet *ifp = &sc->sc_if;
2716 struct atw_rxsoft *rxs;
2717 struct atw_txsoft *txs;
2718 int i;
2719
2720 /*
2721 * Succeed now if there isn't any work to do.
2722 */
2723 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2724 return (0);
2725
2726 pmf_device_deregister(sc->sc_dev);
2727
2728 callout_stop(&sc->sc_scan_ch);
2729
2730 ieee80211_ifdetach(&sc->sc_ic);
2731 if_detach(ifp);
2732
2733 for (i = 0; i < ATW_NRXDESC; i++) {
2734 rxs = &sc->sc_rxsoft[i];
2735 if (rxs->rxs_mbuf != NULL) {
2736 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2737 m_freem(rxs->rxs_mbuf);
2738 rxs->rxs_mbuf = NULL;
2739 }
2740 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2741 }
2742 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2743 txs = &sc->sc_txsoft[i];
2744 if (txs->txs_mbuf != NULL) {
2745 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2746 m_freem(txs->txs_mbuf);
2747 txs->txs_mbuf = NULL;
2748 }
2749 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2750 }
2751 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2752 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2753 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2754 sizeof(struct atw_control_data));
2755 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2756
2757 if (sc->sc_srom)
2758 free(sc->sc_srom, M_DEVBUF);
2759
2760 atw_evcnt_detach(sc);
2761
2762 return (0);
2763 }
2764
2765 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2766 bool
2767 atw_shutdown(device_t self, int flags)
2768 {
2769 struct atw_softc *sc = device_private(self);
2770
2771 atw_stop(&sc->sc_if, 1);
2772 return true;
2773 }
2774
2775 #if 0
2776 static void
2777 atw_workaround1(struct atw_softc *sc)
2778 {
2779 uint32_t test1;
2780
2781 test1 = ATW_READ(sc, ATW_TEST1);
2782
2783 sc->sc_misc_ev.ev_count++;
2784
2785 if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2786 sc->sc_rxpkt1in_ev.ev_count++;
2787 return;
2788 }
2789 if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2790 __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2791 sc->sc_rxamatch_ev.ev_count++;
2792 return;
2793 }
2794 sc->sc_workaround1_ev.ev_count++;
2795 (void)atw_init(&sc->sc_if);
2796 }
2797 #endif
2798
2799 int
2800 atw_intr(void *arg)
2801 {
2802 struct atw_softc *sc = arg;
2803 struct ifnet *ifp = &sc->sc_if;
2804 u_int32_t status, rxstatus, txstatus, linkstatus;
2805 int handled = 0, txthresh;
2806
2807 #ifdef DEBUG
2808 if (ATW_IS_ENABLED(sc) == 0)
2809 panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2810 #endif
2811
2812 /*
2813 * If the interface isn't running, the interrupt couldn't
2814 * possibly have come from us.
2815 */
2816 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2817 !device_is_active(sc->sc_dev))
2818 return (0);
2819
2820 for (;;) {
2821 status = ATW_READ(sc, ATW_STSR);
2822
2823 if (status)
2824 ATW_WRITE(sc, ATW_STSR, status);
2825
2826 #ifdef ATW_DEBUG
2827 #define PRINTINTR(flag) do { \
2828 if ((status & flag) != 0) { \
2829 printf("%s" #flag, delim); \
2830 delim = ","; \
2831 } \
2832 } while (0)
2833
2834 if (atw_debug > 1 && status) {
2835 const char *delim = "<";
2836
2837 printf("%s: reg[STSR] = %x",
2838 device_xname(sc->sc_dev), status);
2839
2840 PRINTINTR(ATW_INTR_FBE);
2841 PRINTINTR(ATW_INTR_LINKOFF);
2842 PRINTINTR(ATW_INTR_LINKON);
2843 PRINTINTR(ATW_INTR_RCI);
2844 PRINTINTR(ATW_INTR_RDU);
2845 PRINTINTR(ATW_INTR_REIS);
2846 PRINTINTR(ATW_INTR_RPS);
2847 PRINTINTR(ATW_INTR_TCI);
2848 PRINTINTR(ATW_INTR_TDU);
2849 PRINTINTR(ATW_INTR_TLT);
2850 PRINTINTR(ATW_INTR_TPS);
2851 PRINTINTR(ATW_INTR_TRT);
2852 PRINTINTR(ATW_INTR_TUF);
2853 PRINTINTR(ATW_INTR_BCNTC);
2854 PRINTINTR(ATW_INTR_ATIME);
2855 PRINTINTR(ATW_INTR_TBTT);
2856 PRINTINTR(ATW_INTR_TSCZ);
2857 PRINTINTR(ATW_INTR_TSFTF);
2858 printf(">\n");
2859 }
2860 #undef PRINTINTR
2861 #endif /* ATW_DEBUG */
2862
2863 if ((status & sc->sc_inten) == 0)
2864 break;
2865
2866 handled = 1;
2867
2868 rxstatus = status & sc->sc_rxint_mask;
2869 txstatus = status & sc->sc_txint_mask;
2870 linkstatus = status & sc->sc_linkint_mask;
2871
2872 if (linkstatus) {
2873 atw_linkintr(sc, linkstatus);
2874 }
2875
2876 if (rxstatus) {
2877 /* Grab any new packets. */
2878 atw_rxintr(sc);
2879
2880 if (rxstatus & ATW_INTR_RDU) {
2881 printf("%s: receive ring overrun\n",
2882 device_xname(sc->sc_dev));
2883 /* Get the receive process going again. */
2884 ATW_WRITE(sc, ATW_RDR, 0x1);
2885 }
2886 }
2887
2888 if (txstatus) {
2889 /* Sweep up transmit descriptors. */
2890 atw_txintr(sc, txstatus);
2891
2892 if (txstatus & ATW_INTR_TLT) {
2893 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2894 device_xname(sc->sc_dev)));
2895 (void)atw_init(&sc->sc_if);
2896 }
2897
2898 if (txstatus & ATW_INTR_TRT) {
2899 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2900 device_xname(sc->sc_dev)));
2901 }
2902
2903 /* If Tx under-run, increase our transmit threshold
2904 * if another is available.
2905 */
2906 txthresh = sc->sc_txthresh + 1;
2907 if ((txstatus & ATW_INTR_TUF) &&
2908 sc->sc_txth[txthresh].txth_name != NULL) {
2909 /* Idle the transmit process. */
2910 atw_idle(sc, ATW_NAR_ST);
2911
2912 sc->sc_txthresh = txthresh;
2913 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2914 sc->sc_opmode |=
2915 sc->sc_txth[txthresh].txth_opmode;
2916 printf("%s: transmit underrun; new "
2917 "threshold: %s\n", device_xname(sc->sc_dev),
2918 sc->sc_txth[txthresh].txth_name);
2919
2920 /* Set the new threshold and restart
2921 * the transmit process.
2922 */
2923 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2924 DELAY(atw_nar_delay);
2925 ATW_WRITE(sc, ATW_TDR, 0x1);
2926 /* XXX Log every Nth underrun from
2927 * XXX now on?
2928 */
2929 }
2930 }
2931
2932 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2933 if (status & ATW_INTR_TPS)
2934 printf("%s: transmit process stopped\n",
2935 device_xname(sc->sc_dev));
2936 if (status & ATW_INTR_RPS)
2937 printf("%s: receive process stopped\n",
2938 device_xname(sc->sc_dev));
2939 (void)atw_init(ifp);
2940 break;
2941 }
2942
2943 if (status & ATW_INTR_FBE) {
2944 aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2945 (void)atw_init(ifp);
2946 break;
2947 }
2948
2949 /*
2950 * Not handled:
2951 *
2952 * Transmit buffer unavailable -- normal
2953 * condition, nothing to do, really.
2954 *
2955 * Early receive interrupt -- not available on
2956 * all chips, we just use RI. We also only
2957 * use single-segment receive DMA, so this
2958 * is mostly useless.
2959 *
2960 * TBD others
2961 */
2962 }
2963
2964 /* Try to get more packets going. */
2965 atw_start(ifp);
2966
2967 return (handled);
2968 }
2969
2970 /*
2971 * atw_idle:
2972 *
2973 * Cause the transmit and/or receive processes to go idle.
2974 *
2975 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2976 * process in STSR if I clear SR or ST after the process has already
2977 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2978 * do not seem to be too reliable. Perhaps I have the sense of the
2979 * Rx bits switched with the Tx bits?
2980 */
2981 void
2982 atw_idle(struct atw_softc *sc, u_int32_t bits)
2983 {
2984 u_int32_t ackmask = 0, opmode, stsr, test0;
2985 int i, s;
2986
2987 s = splnet();
2988
2989 opmode = sc->sc_opmode & ~bits;
2990
2991 if (bits & ATW_NAR_SR)
2992 ackmask |= ATW_INTR_RPS;
2993
2994 if (bits & ATW_NAR_ST) {
2995 ackmask |= ATW_INTR_TPS;
2996 /* set ATW_NAR_HF to flush TX FIFO. */
2997 opmode |= ATW_NAR_HF;
2998 }
2999
3000 ATW_WRITE(sc, ATW_NAR, opmode);
3001 DELAY(atw_nar_delay);
3002
3003 for (i = 0; i < 1000; i++) {
3004 stsr = ATW_READ(sc, ATW_STSR);
3005 if ((stsr & ackmask) == ackmask)
3006 break;
3007 DELAY(10);
3008 }
3009
3010 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3011
3012 if ((stsr & ackmask) == ackmask)
3013 goto out;
3014
3015 test0 = ATW_READ(sc, ATW_TEST0);
3016
3017 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3018 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3019 printf("%s: transmit process not idle [%s]\n",
3020 device_xname(sc->sc_dev),
3021 atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3022 printf("%s: bits %08x test0 %08x stsr %08x\n",
3023 device_xname(sc->sc_dev), bits, test0, stsr);
3024 }
3025
3026 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3027 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3028 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3029 device_xname(sc->sc_dev),
3030 atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3031 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3032 device_xname(sc->sc_dev), bits, test0, stsr));
3033 }
3034 out:
3035 if ((bits & ATW_NAR_ST) != 0)
3036 atw_txdrain(sc);
3037 splx(s);
3038 return;
3039 }
3040
3041 /*
3042 * atw_linkintr:
3043 *
3044 * Helper; handle link-status interrupts.
3045 */
3046 void
3047 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3048 {
3049 struct ieee80211com *ic = &sc->sc_ic;
3050
3051 if (ic->ic_state != IEEE80211_S_RUN)
3052 return;
3053
3054 if (linkstatus & ATW_INTR_LINKON) {
3055 DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3056 sc->sc_rescan_timer = 0;
3057 } else if (linkstatus & ATW_INTR_LINKOFF) {
3058 DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3059 if (ic->ic_opmode != IEEE80211_M_STA)
3060 return;
3061 sc->sc_rescan_timer = 3;
3062 sc->sc_if.if_timer = 1;
3063 }
3064 }
3065
3066 static inline int
3067 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3068 {
3069 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3070 return 0;
3071 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3072 return 0;
3073 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3074 }
3075
3076 /*
3077 * atw_rxintr:
3078 *
3079 * Helper; handle receive interrupts.
3080 */
3081 void
3082 atw_rxintr(struct atw_softc *sc)
3083 {
3084 static int rate_tbl[] = {2, 4, 11, 22, 44};
3085 struct ieee80211com *ic = &sc->sc_ic;
3086 struct ieee80211_node *ni;
3087 struct ieee80211_frame_min *wh;
3088 struct ifnet *ifp = &sc->sc_if;
3089 struct atw_rxsoft *rxs;
3090 struct mbuf *m;
3091 u_int32_t rxstat;
3092 int i, len, rate, rate0;
3093 u_int32_t rssi, ctlrssi;
3094
3095 for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3096 rxs = &sc->sc_rxsoft[i];
3097
3098 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3099
3100 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3101 ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3102 rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3103
3104 if (rxstat & ATW_RXSTAT_OWN) {
3105 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3106 break;
3107 }
3108
3109 sc->sc_rxptr = ATW_NEXTRX(i);
3110
3111 DPRINTF3(sc,
3112 ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3113 device_xname(sc->sc_dev),
3114 rxstat, ctlrssi,
3115 le32toh(sc->sc_rxdescs[i].ar_buf1),
3116 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3117
3118 /*
3119 * Make sure the packet fits in one buffer. This should
3120 * always be the case.
3121 */
3122 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3123 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3124 printf("%s: incoming packet spilled, resetting\n",
3125 device_xname(sc->sc_dev));
3126 (void)atw_init(ifp);
3127 return;
3128 }
3129
3130 /*
3131 * If an error occurred, update stats, clear the status
3132 * word, and leave the packet buffer in place. It will
3133 * simply be reused the next time the ring comes around.
3134 */
3135 if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3136 #define PRINTERR(bit, str) \
3137 if (rxstat & (bit)) \
3138 aprint_error_dev(sc->sc_dev, "receive error: %s\n", \
3139 str)
3140 ifp->if_ierrors++;
3141 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3142 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3143 #if 0
3144 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3145 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3146 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3147 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3148 #endif
3149 #undef PRINTERR
3150 atw_init_rxdesc(sc, i);
3151 continue;
3152 }
3153
3154 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3155 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3156
3157 /*
3158 * No errors; receive the packet. Note the ADM8211
3159 * includes the CRC in promiscuous mode.
3160 */
3161 len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3162
3163 /*
3164 * Allocate a new mbuf cluster. If that fails, we are
3165 * out of memory, and must drop the packet and recycle
3166 * the buffer that's already attached to this descriptor.
3167 */
3168 m = rxs->rxs_mbuf;
3169 if (atw_add_rxbuf(sc, i) != 0) {
3170 ifp->if_ierrors++;
3171 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3172 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3173 atw_init_rxdesc(sc, i);
3174 continue;
3175 }
3176
3177 ifp->if_ipackets++;
3178 m->m_pkthdr.rcvif = ifp;
3179 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3180
3181 rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3182
3183 /* The RSSI comes straight from a register in the
3184 * baseband processor. I know that for the RF3000,
3185 * the RSSI register also contains the antenna-selection
3186 * bits. Mask those off.
3187 *
3188 * TBD Treat other basebands.
3189 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3190 */
3191 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3192 rssi = ctlrssi & RF3000_RSSI_MASK;
3193 else
3194 rssi = ctlrssi;
3195
3196 #if NBPFILTER > 0
3197 /* Pass this up to any BPF listeners. */
3198 if (sc->sc_radiobpf != NULL) {
3199 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3200
3201 tap->ar_rate = rate;
3202
3203 /* TBD verify units are dB */
3204 tap->ar_antsignal = (int)rssi;
3205 if (sc->sc_opmode & ATW_NAR_PR)
3206 tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3207 else
3208 tap->ar_flags = 0;
3209
3210 if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3211 tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3212
3213 bpf_mtap2(sc->sc_radiobpf, tap,
3214 sizeof(sc->sc_rxtapu), m);
3215 }
3216 #endif /* NBPFILTER > 0 */
3217
3218 sc->sc_recv_ev.ev_count++;
3219
3220 if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3221 if (rxstat & ATW_RXSTAT_CRC16E)
3222 sc->sc_crc16e_ev.ev_count++;
3223 if (rxstat & ATW_RXSTAT_CRC32E)
3224 sc->sc_crc32e_ev.ev_count++;
3225 if (rxstat & ATW_RXSTAT_ICVE)
3226 sc->sc_icve_ev.ev_count++;
3227 if (rxstat & ATW_RXSTAT_SFDE)
3228 sc->sc_sfde_ev.ev_count++;
3229 if (rxstat & ATW_RXSTAT_SIGE)
3230 sc->sc_sige_ev.ev_count++;
3231 ifp->if_ierrors++;
3232 m_freem(m);
3233 continue;
3234 }
3235
3236 if (sc->sc_opmode & ATW_NAR_PR)
3237 m_adj(m, -IEEE80211_CRC_LEN);
3238
3239 wh = mtod(m, struct ieee80211_frame_min *);
3240 ni = ieee80211_find_rxnode(ic, wh);
3241 #if 0
3242 if (atw_hw_decrypted(sc, wh)) {
3243 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3244 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3245 }
3246 #endif
3247 ieee80211_input(ic, m, ni, (int)rssi, 0);
3248 ieee80211_free_node(ni);
3249 }
3250 }
3251
3252 /*
3253 * atw_txintr:
3254 *
3255 * Helper; handle transmit interrupts.
3256 */
3257 void
3258 atw_txintr(struct atw_softc *sc, uint32_t status)
3259 {
3260 static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3261 struct ifnet *ifp = &sc->sc_if;
3262 struct atw_txsoft *txs;
3263 u_int32_t txstat;
3264
3265 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3266 device_xname(sc->sc_dev), sc->sc_flags));
3267
3268 /*
3269 * Go through our Tx list and free mbufs for those
3270 * frames that have been transmitted.
3271 */
3272 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3273 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3274 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3275
3276 #ifdef ATW_DEBUG
3277 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3278 int i;
3279 printf(" txsoft %p transmit chain:\n", txs);
3280 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3281 txs->txs_ndescs - 1,
3282 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3283 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3284 printf(" descriptor %d:\n", i);
3285 printf(" at_status: 0x%08x\n",
3286 le32toh(sc->sc_txdescs[i].at_stat));
3287 printf(" at_flags: 0x%08x\n",
3288 le32toh(sc->sc_txdescs[i].at_flags));
3289 printf(" at_buf1: 0x%08x\n",
3290 le32toh(sc->sc_txdescs[i].at_buf1));
3291 printf(" at_buf2: 0x%08x\n",
3292 le32toh(sc->sc_txdescs[i].at_buf2));
3293 if (i == txs->txs_lastdesc)
3294 break;
3295 }
3296 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3297 txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3298 }
3299 #endif
3300
3301 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3302 if (txstat & ATW_TXSTAT_OWN) {
3303 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3304 BUS_DMASYNC_PREREAD);
3305 break;
3306 }
3307
3308 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3309
3310 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3311 0, txs->txs_dmamap->dm_mapsize,
3312 BUS_DMASYNC_POSTWRITE);
3313 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3314 m_freem(txs->txs_mbuf);
3315 txs->txs_mbuf = NULL;
3316
3317 sc->sc_txfree += txs->txs_ndescs;
3318 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3319
3320 KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3321 sc->sc_tx_timer = 0;
3322 ifp->if_flags &= ~IFF_OACTIVE;
3323
3324 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3325 (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3326 snprintb(txstat_buf, sizeof(txstat_buf),
3327 ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3328 printf("%s: txstat %s %" __PRIuBITS "\n",
3329 device_xname(sc->sc_dev), txstat_buf,
3330 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3331 }
3332
3333 sc->sc_xmit_ev.ev_count++;
3334
3335 /*
3336 * Check for errors and collisions.
3337 */
3338 if (txstat & ATW_TXSTAT_TUF)
3339 sc->sc_tuf_ev.ev_count++;
3340 if (txstat & ATW_TXSTAT_TLT)
3341 sc->sc_tlt_ev.ev_count++;
3342 if (txstat & ATW_TXSTAT_TRT)
3343 sc->sc_trt_ev.ev_count++;
3344 if (txstat & ATW_TXSTAT_TRO)
3345 sc->sc_tro_ev.ev_count++;
3346 if (txstat & ATW_TXSTAT_SOFBR)
3347 sc->sc_sofbr_ev.ev_count++;
3348
3349 if ((txstat & ATW_TXSTAT_ES) == 0)
3350 ifp->if_collisions +=
3351 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3352 else
3353 ifp->if_oerrors++;
3354
3355 ifp->if_opackets++;
3356 }
3357
3358 KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3359 }
3360
3361 /*
3362 * atw_watchdog: [ifnet interface function]
3363 *
3364 * Watchdog timer handler.
3365 */
3366 void
3367 atw_watchdog(struct ifnet *ifp)
3368 {
3369 struct atw_softc *sc = ifp->if_softc;
3370 struct ieee80211com *ic = &sc->sc_ic;
3371
3372 ifp->if_timer = 0;
3373 if (ATW_IS_ENABLED(sc) == 0)
3374 return;
3375
3376 if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3377 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3378 if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3379 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3380 printf("%s: transmit timeout\n", ifp->if_xname);
3381 ifp->if_oerrors++;
3382 (void)atw_init(ifp);
3383 atw_start(ifp);
3384 }
3385 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3386 ifp->if_timer = 1;
3387 ieee80211_watchdog(ic);
3388 }
3389
3390 static void
3391 atw_evcnt_detach(struct atw_softc *sc)
3392 {
3393 evcnt_detach(&sc->sc_sige_ev);
3394 evcnt_detach(&sc->sc_sfde_ev);
3395 evcnt_detach(&sc->sc_icve_ev);
3396 evcnt_detach(&sc->sc_crc32e_ev);
3397 evcnt_detach(&sc->sc_crc16e_ev);
3398 evcnt_detach(&sc->sc_recv_ev);
3399
3400 evcnt_detach(&sc->sc_tuf_ev);
3401 evcnt_detach(&sc->sc_tro_ev);
3402 evcnt_detach(&sc->sc_trt_ev);
3403 evcnt_detach(&sc->sc_tlt_ev);
3404 evcnt_detach(&sc->sc_sofbr_ev);
3405 evcnt_detach(&sc->sc_xmit_ev);
3406
3407 evcnt_detach(&sc->sc_rxpkt1in_ev);
3408 evcnt_detach(&sc->sc_rxamatch_ev);
3409 evcnt_detach(&sc->sc_workaround1_ev);
3410 evcnt_detach(&sc->sc_misc_ev);
3411 }
3412
3413 static void
3414 atw_evcnt_attach(struct atw_softc *sc)
3415 {
3416 evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3417 NULL, sc->sc_if.if_xname, "recv");
3418 evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3419 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3420 evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3421 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3422 evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3423 &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3424 evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3425 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3426 evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3427 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3428
3429 evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3430 NULL, sc->sc_if.if_xname, "xmit");
3431 evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3432 &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3433 evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3434 &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3435 evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3436 &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3437 evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3438 &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3439 evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3440 &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3441
3442 evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3443 NULL, sc->sc_if.if_xname, "misc");
3444 evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3445 &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3446 evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3447 &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3448 evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3449 &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3450 }
3451
3452 #ifdef ATW_DEBUG
3453 static void
3454 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3455 {
3456 struct atw_softc *sc = ifp->if_softc;
3457 struct mbuf *m;
3458 int i, noctets = 0;
3459
3460 printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3461 m0->m_pkthdr.len);
3462
3463 for (m = m0; m; m = m->m_next) {
3464 if (m->m_len == 0)
3465 continue;
3466 for (i = 0; i < m->m_len; i++) {
3467 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3468 if (++noctets % 24 == 0)
3469 printf("\n");
3470 }
3471 }
3472 printf("%s%s: %d bytes emitted\n",
3473 (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3474 }
3475 #endif /* ATW_DEBUG */
3476
3477 /*
3478 * atw_start: [ifnet interface function]
3479 *
3480 * Start packet transmission on the interface.
3481 */
3482 void
3483 atw_start(struct ifnet *ifp)
3484 {
3485 struct atw_softc *sc = ifp->if_softc;
3486 struct ieee80211_key *k;
3487 struct ieee80211com *ic = &sc->sc_ic;
3488 struct ieee80211_node *ni;
3489 struct ieee80211_frame_min *whm;
3490 struct ieee80211_frame *wh;
3491 struct atw_frame *hh;
3492 uint16_t hdrctl;
3493 struct mbuf *m0, *m;
3494 struct atw_txsoft *txs, *last_txs;
3495 struct atw_txdesc *txd;
3496 int npkt, rate;
3497 bus_dmamap_t dmamap;
3498 int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3499
3500 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3501 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3502
3503 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3504 return;
3505
3506 /*
3507 * Remember the previous number of free descriptors and
3508 * the first descriptor we'll use.
3509 */
3510 ofree = sc->sc_txfree;
3511 firsttx = lasttx = sc->sc_txnext;
3512
3513 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3514 device_xname(sc->sc_dev), ofree, firsttx));
3515
3516 /*
3517 * Loop through the send queue, setting up transmit descriptors
3518 * until we drain the queue, or use up all available transmit
3519 * descriptors.
3520 */
3521 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3522 sc->sc_txfree != 0) {
3523
3524 hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3525
3526 /*
3527 * Grab a packet off the management queue, if it
3528 * is not empty. Otherwise, from the data queue.
3529 */
3530 IF_DEQUEUE(&ic->ic_mgtq, m0);
3531 if (m0 != NULL) {
3532 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3533 m0->m_pkthdr.rcvif = NULL;
3534 } else if (ic->ic_state != IEEE80211_S_RUN)
3535 break; /* send no data until associated */
3536 else {
3537 IFQ_DEQUEUE(&ifp->if_snd, m0);
3538 if (m0 == NULL)
3539 break;
3540 #if NBPFILTER > 0
3541 if (ifp->if_bpf != NULL)
3542 bpf_mtap(ifp->if_bpf, m0);
3543 #endif /* NBPFILTER > 0 */
3544 ni = ieee80211_find_txnode(ic,
3545 mtod(m0, struct ether_header *)->ether_dhost);
3546 if (ni == NULL) {
3547 ifp->if_oerrors++;
3548 break;
3549 }
3550 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3551 ieee80211_free_node(ni);
3552 ifp->if_oerrors++;
3553 break;
3554 }
3555 }
3556
3557 rate = MAX(ieee80211_get_rate(ni), 2);
3558
3559 whm = mtod(m0, struct ieee80211_frame_min *);
3560
3561 if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3562 k = NULL;
3563 else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3564 m_freem(m0);
3565 ieee80211_free_node(ni);
3566 ifp->if_oerrors++;
3567 break;
3568 }
3569 #if 0
3570 if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3571 m0->m_pkthdr.len > ic->ic_fragthreshold)
3572 hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3573 #endif
3574
3575 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3576 hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3577
3578 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3579 ic->ic_flags, ic->ic_fragthreshold, rate,
3580 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3581 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3582 m_freem(m0);
3583 break;
3584 }
3585
3586 /* XXX Misleading if fragmentation is enabled. Better
3587 * to fragment in software?
3588 */
3589 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3590
3591 #if NBPFILTER > 0
3592 /*
3593 * Pass the packet to any BPF listeners.
3594 */
3595 if (ic->ic_rawbpf != NULL)
3596 bpf_mtap((void *)ic->ic_rawbpf, m0);
3597
3598 if (sc->sc_radiobpf != NULL) {
3599 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3600
3601 tap->at_rate = rate;
3602
3603 bpf_mtap2(sc->sc_radiobpf, tap,
3604 sizeof(sc->sc_txtapu), m0);
3605 }
3606 #endif /* NBPFILTER > 0 */
3607
3608 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3609
3610 if (ni != NULL)
3611 ieee80211_free_node(ni);
3612
3613 if (m0 == NULL) {
3614 ifp->if_oerrors++;
3615 break;
3616 }
3617
3618 /* just to make sure. */
3619 m0 = m_pullup(m0, sizeof(struct atw_frame));
3620
3621 if (m0 == NULL) {
3622 ifp->if_oerrors++;
3623 break;
3624 }
3625
3626 hh = mtod(m0, struct atw_frame *);
3627 wh = &hh->atw_ihdr;
3628
3629 /* Copy everything we need from the 802.11 header:
3630 * Frame Control; address 1, address 3, or addresses
3631 * 3 and 4. NIC fills in BSSID, SA.
3632 */
3633 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3634 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3635 panic("%s: illegal WDS frame",
3636 device_xname(sc->sc_dev));
3637 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3638 } else
3639 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3640
3641 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3642
3643 /* initialize remaining Tx parameters */
3644 memset(&hh->u, 0, sizeof(hh->u));
3645
3646 hh->atw_rate = rate * 5;
3647 /* XXX this could be incorrect if M_FCS. _encap should
3648 * probably strip FCS just in case it sticks around in
3649 * bridged packets.
3650 */
3651 hh->atw_service = 0x00; /* XXX guess */
3652 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3653 sizeof(struct atw_frame));
3654
3655 /* never fragment multicast frames */
3656 if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3657 hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3658 else {
3659 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3660 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3661 hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3662 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3663 }
3664
3665 hh->atw_rtylmt = 3;
3666 #if 0
3667 if (do_encrypt) {
3668 hdrctl |= htole16(ATW_HDRCTL_WEP);
3669 hh->atw_keyid = ic->ic_def_txkey;
3670 }
3671 #endif
3672
3673 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3674 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3675 if (txs->txs_d0.d_residue)
3676 hh->atw_head_plcplen |= htole16(0x8000);
3677 if (txs->txs_dn.d_residue)
3678 hh->atw_tail_plcplen |= htole16(0x8000);
3679 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3680 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3681
3682 hh->atw_hdrctl = hdrctl;
3683 hh->atw_fragnum = npkt << 4;
3684 #ifdef ATW_DEBUG
3685
3686 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3687 printf("%s: dst = %s, rate = 0x%02x, "
3688 "service = 0x%02x, paylen = 0x%04x\n",
3689 device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3690 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3691
3692 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3693 "dur1 = 0x%04x, dur2 = 0x%04x, "
3694 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3695 device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3696 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3697 hh->atw_tail_dur, hh->atw_head_dur);
3698
3699 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3700 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3701 device_xname(sc->sc_dev), hh->atw_hdrctl,
3702 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3703
3704 printf("%s: keyid = %d\n",
3705 device_xname(sc->sc_dev), hh->atw_keyid);
3706
3707 atw_dump_pkt(ifp, m0);
3708 }
3709 #endif /* ATW_DEBUG */
3710
3711 dmamap = txs->txs_dmamap;
3712
3713 /*
3714 * Load the DMA map. Copy and try (once) again if the packet
3715 * didn't fit in the alloted number of segments.
3716 */
3717 for (first = 1;
3718 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3719 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3720 first = 0) {
3721 MGETHDR(m, M_DONTWAIT, MT_DATA);
3722 if (m == NULL) {
3723 aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3724 break;
3725 }
3726 if (m0->m_pkthdr.len > MHLEN) {
3727 MCLGET(m, M_DONTWAIT);
3728 if ((m->m_flags & M_EXT) == 0) {
3729 aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3730 "cluster\n");
3731 m_freem(m);
3732 break;
3733 }
3734 }
3735 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3736 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3737 m_freem(m0);
3738 m0 = m;
3739 m = NULL;
3740 }
3741 if (error != 0) {
3742 aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3743 "error = %d\n", error);
3744 m_freem(m0);
3745 break;
3746 }
3747
3748 /*
3749 * Ensure we have enough descriptors free to describe
3750 * the packet.
3751 */
3752 if (dmamap->dm_nsegs > sc->sc_txfree) {
3753 /*
3754 * Not enough free descriptors to transmit
3755 * this packet. Unload the DMA map and
3756 * drop the packet. Notify the upper layer
3757 * that there are no more slots left.
3758 *
3759 * XXX We could allocate an mbuf and copy, but
3760 * XXX it is worth it?
3761 */
3762 bus_dmamap_unload(sc->sc_dmat, dmamap);
3763 m_freem(m0);
3764 break;
3765 }
3766
3767 /*
3768 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3769 */
3770
3771 /* Sync the DMA map. */
3772 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3773 BUS_DMASYNC_PREWRITE);
3774
3775 /* XXX arbitrary retry limit; 8 because I have seen it in
3776 * use already and maybe 0 means "no tries" !
3777 */
3778 ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3779
3780 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3781 device_xname(sc->sc_dev), rate * 5));
3782 ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3783
3784 /*
3785 * Initialize the transmit descriptors.
3786 */
3787 for (nexttx = sc->sc_txnext, seg = 0;
3788 seg < dmamap->dm_nsegs;
3789 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3790 /*
3791 * If this is the first descriptor we're
3792 * enqueueing, don't set the OWN bit just
3793 * yet. That could cause a race condition.
3794 * We'll do it below.
3795 */
3796 txd = &sc->sc_txdescs[nexttx];
3797 txd->at_ctl = ctl |
3798 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3799
3800 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3801 txd->at_flags =
3802 htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3803 ATW_TXFLAG_TBS1_MASK)) |
3804 ((nexttx == (ATW_NTXDESC - 1))
3805 ? htole32(ATW_TXFLAG_TER) : 0);
3806 lasttx = nexttx;
3807 }
3808
3809 /* Set `first segment' and `last segment' appropriately. */
3810 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3811 htole32(ATW_TXFLAG_FS);
3812 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3813
3814 #ifdef ATW_DEBUG
3815 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3816 printf(" txsoft %p transmit chain:\n", txs);
3817 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3818 printf(" descriptor %d:\n", seg);
3819 printf(" at_ctl: 0x%08x\n",
3820 le32toh(sc->sc_txdescs[seg].at_ctl));
3821 printf(" at_flags: 0x%08x\n",
3822 le32toh(sc->sc_txdescs[seg].at_flags));
3823 printf(" at_buf1: 0x%08x\n",
3824 le32toh(sc->sc_txdescs[seg].at_buf1));
3825 printf(" at_buf2: 0x%08x\n",
3826 le32toh(sc->sc_txdescs[seg].at_buf2));
3827 if (seg == lasttx)
3828 break;
3829 }
3830 }
3831 #endif
3832
3833 /* Sync the descriptors we're using. */
3834 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3835 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3836
3837 /*
3838 * Store a pointer to the packet so we can free it later,
3839 * and remember what txdirty will be once the packet is
3840 * done.
3841 */
3842 txs->txs_mbuf = m0;
3843 txs->txs_firstdesc = sc->sc_txnext;
3844 txs->txs_lastdesc = lasttx;
3845 txs->txs_ndescs = dmamap->dm_nsegs;
3846
3847 /* Advance the tx pointer. */
3848 sc->sc_txfree -= dmamap->dm_nsegs;
3849 sc->sc_txnext = nexttx;
3850
3851 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3852 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3853
3854 last_txs = txs;
3855 }
3856
3857 if (sc->sc_txfree != ofree) {
3858 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3859 device_xname(sc->sc_dev), lasttx, firsttx));
3860 /*
3861 * Cause a transmit interrupt to happen on the
3862 * last packet we enqueued.
3863 */
3864 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3865 ATW_CDTXSYNC(sc, lasttx, 1,
3866 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3867
3868 /*
3869 * The entire packet chain is set up. Give the
3870 * first descriptor to the chip now.
3871 */
3872 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3873 ATW_CDTXSYNC(sc, firsttx, 1,
3874 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3875
3876 /* Wake up the transmitter. */
3877 ATW_WRITE(sc, ATW_TDR, 0x1);
3878
3879 if (txs == NULL || sc->sc_txfree == 0)
3880 ifp->if_flags |= IFF_OACTIVE;
3881
3882 /* Set a watchdog timer in case the chip flakes out. */
3883 sc->sc_tx_timer = 5;
3884 ifp->if_timer = 1;
3885 }
3886 }
3887
3888 /*
3889 * atw_ioctl: [ifnet interface function]
3890 *
3891 * Handle control requests from the operator.
3892 */
3893 int
3894 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3895 {
3896 struct atw_softc *sc = ifp->if_softc;
3897 struct ieee80211req *ireq;
3898 int s, error = 0;
3899
3900 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3901 if (!device_is_active(sc->sc_dev))
3902 return ENXIO;
3903
3904 s = splnet();
3905
3906 switch (cmd) {
3907 case SIOCSIFFLAGS:
3908 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3909 break;
3910 if (ifp->if_flags & IFF_UP) {
3911 if (ATW_IS_ENABLED(sc)) {
3912 /*
3913 * To avoid rescanning another access point,
3914 * do not call atw_init() here. Instead,
3915 * only reflect media settings.
3916 */
3917 atw_filter_setup(sc);
3918 } else
3919 error = atw_init(ifp);
3920 } else if (ATW_IS_ENABLED(sc))
3921 atw_stop(ifp, 1);
3922 break;
3923 case SIOCADDMULTI:
3924 case SIOCDELMULTI:
3925 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3926 if (ifp->if_flags & IFF_RUNNING)
3927 atw_filter_setup(sc); /* do not rescan */
3928 error = 0;
3929 }
3930 break;
3931 case SIOCS80211:
3932 ireq = data;
3933 if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3934 if ((error = kauth_authorize_network(curlwp->l_cred,
3935 KAUTH_NETWORK_INTERFACE,
3936 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3937 (void *)cmd, NULL) != 0))
3938 break;
3939 if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3940 ireq->i_val <= IEEE80211_FRAG_MAX))
3941 error = EINVAL;
3942 else
3943 sc->sc_ic.ic_fragthreshold = ireq->i_val;
3944 break;
3945 }
3946 /*FALLTHROUGH*/
3947 default:
3948 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3949 if (error == ENETRESET || error == ERESTART) {
3950 if (is_running(ifp))
3951 error = atw_init(ifp);
3952 else
3953 error = 0;
3954 }
3955 break;
3956 }
3957
3958 /* Try to get more packets going. */
3959 if (ATW_IS_ENABLED(sc))
3960 atw_start(ifp);
3961
3962 splx(s);
3963 return (error);
3964 }
3965
3966 static int
3967 atw_media_change(struct ifnet *ifp)
3968 {
3969 int error;
3970
3971 error = ieee80211_media_change(ifp);
3972 if (error == ENETRESET) {
3973 if (is_running(ifp))
3974 error = atw_init(ifp);
3975 else
3976 error = 0;
3977 }
3978 return error;
3979 }
3980