atw.c revision 1.15 1 /* $NetBSD: atw.c,v 1.15 2004/01/10 07:41:18 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.15 2004/01/10 07:41:18 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/atwvar.h>
82 #include <dev/ic/smc93cx6var.h>
83
84 /* XXX TBD open questions
85 *
86 *
87 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
88 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
89 * handle this for me?
90 *
91 */
92 /* device attachment
93 *
94 * print TOFS[012]
95 *
96 * device initialization
97 *
98 * clear ATW_FRCTL_MAXPSP to disable max power saving
99 * set ATW_TXBR_ALCUPDATE to enable ALC
100 * set TOFS[012]? (hope not)
101 * disable rx/tx
102 * set ATW_PAR_SWR (software reset)
103 * wait for ATW_PAR_SWR clear
104 * disable interrupts
105 * ack status register
106 * enable interrupts
107 *
108 * rx/tx initialization
109 *
110 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111 * allocate and init descriptor rings
112 * write ATW_PAR_DSL (descriptor skip length)
113 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
114 * write ATW_NAR_SQ for one/both transmit descriptor rings
115 * write ATW_NAR_SQ for one/both transmit descriptor rings
116 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
117 *
118 * rx/tx end
119 *
120 * stop DMA
121 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
122 * flush tx w/ ATW_NAR_HF
123 *
124 * scan
125 *
126 * initialize rx/tx
127 *
128 * IBSS join/create
129 *
130 * set ATW_NAR_EA (is set by ASIC?)
131 *
132 * BSS join: (re)association response
133 *
134 * set ATW_FRCTL_AID
135 *
136 * optimizations ???
137 *
138 */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_rfio_enable_delay = 20 * 1000;
145 int atw_rfio_disable_delay = 2 * 1000;
146 int atw_writewep_delay = 5;
147 int atw_beacon_len_adjust = 4;
148 int atw_dwelltime = 200;
149
150 #ifdef ATW_DEBUG
151 int atw_xhdrctl = 0;
152 int atw_xrtylmt = ~0;
153 int atw_xservice = IEEE80211_PLCP_SERVICE;
154 int atw_xpaylen = 0;
155
156 int atw_debug = 0;
157
158 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
159 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
160 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
161 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
162 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
163 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
164 static void atw_print_regs(struct atw_softc *, const char *);
165 static void atw_rf3000_print(struct atw_softc *);
166 static void atw_si4126_print(struct atw_softc *);
167 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
168 #else
169 #define ATW_DPRINTF(x)
170 #define ATW_DPRINTF2(x)
171 #define ATW_DPRINTF3(x)
172 #define DPRINTF(sc, x) /* nothing */
173 #define DPRINTF2(sc, x) /* nothing */
174 #define DPRINTF3(sc, x) /* nothing */
175 #endif
176
177 #ifdef ATW_STATS
178 void atw_print_stats __P((struct atw_softc *));
179 #endif
180
181 void atw_start __P((struct ifnet *));
182 void atw_watchdog __P((struct ifnet *));
183 int atw_ioctl __P((struct ifnet *, u_long, caddr_t));
184 int atw_init __P((struct ifnet *));
185 void atw_stop __P((struct ifnet *, int));
186
187 void atw_reset __P((struct atw_softc *));
188 int atw_read_srom __P((struct atw_softc *));
189
190 void atw_shutdown __P((void *));
191
192 void atw_rxdrain __P((struct atw_softc *));
193 int atw_add_rxbuf __P((struct atw_softc *, int));
194 void atw_idle __P((struct atw_softc *, u_int32_t));
195
196 int atw_enable __P((struct atw_softc *));
197 void atw_disable __P((struct atw_softc *));
198 void atw_power __P((int, void *));
199
200 void atw_rxintr __P((struct atw_softc *));
201 void atw_txintr __P((struct atw_softc *));
202 void atw_linkintr __P((struct atw_softc *, u_int32_t));
203
204 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
205 static void atw_tsf(struct atw_softc *);
206 static void atw_start_beacon(struct atw_softc *, int);
207 static void atw_write_wep(struct atw_softc *);
208 static void atw_write_bssid(struct atw_softc *);
209 static void atw_write_bcn_thresh(struct atw_softc *);
210 static void atw_write_ssid(struct atw_softc *);
211 static void atw_write_sup_rates(struct atw_softc *);
212 static void atw_clear_sram(struct atw_softc *);
213 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
214 static int atw_media_change(struct ifnet *);
215 static void atw_media_status(struct ifnet *, struct ifmediareq *);
216 static void atw_filter_setup(struct atw_softc *);
217 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
218 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
219 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
220 struct ieee80211_node *, int, int, u_int32_t);
221 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
222 struct ieee80211_node *, int, int, u_int32_t);
223 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
224 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
225
226 static int atw_tune(struct atw_softc *);
227
228 static void atw_rfio_enable(struct atw_softc *, int);
229
230 /* RFMD RF3000 Baseband Processor */
231 static int atw_rf3000_init(struct atw_softc *);
232 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
233 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
234 #ifdef ATW_DEBUG
235 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
236 #endif /* ATW_DEBUG */
237
238 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
239 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
240 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
241 #ifdef ATW_DEBUG
242 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
243 #endif /* ATW_DEBUG */
244
245 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
246 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
247
248 const char *atw_tx_state[] = {
249 "STOPPED",
250 "RUNNING - FETCH",
251 "RUNNING - WAIT",
252 "RUNNING - READING",
253 "-- RESERVED1 --",
254 "-- RESERVED2 --",
255 "SUSPENDED",
256 "RUNNING - CLOSE"
257 };
258
259 const char *atw_rx_state[] = {
260 "STOPPED",
261 "RUNNING - FETCH",
262 "RUNNING - CHECK",
263 "RUNNING - WAIT",
264 "SUSPENDED",
265 "RUNNING - CLOSE",
266 "RUNNING - FLUSH",
267 "RUNNING - QUEUE"
268 };
269
270 int
271 atw_activate(struct device *self, enum devact act)
272 {
273 struct atw_softc *sc = (struct atw_softc *)self;
274 int rv = 0, s;
275
276 s = splnet();
277 switch (act) {
278 case DVACT_ACTIVATE:
279 rv = EOPNOTSUPP;
280 break;
281
282 case DVACT_DEACTIVATE:
283 if_deactivate(&sc->sc_ic.ic_if);
284 break;
285 }
286 splx(s);
287 return rv;
288 }
289
290 /*
291 * atw_enable:
292 *
293 * Enable the ADM8211 chip.
294 */
295 int
296 atw_enable(sc)
297 struct atw_softc *sc;
298 {
299
300 if (ATW_IS_ENABLED(sc) == 0) {
301 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
302 printf("%s: device enable failed\n",
303 sc->sc_dev.dv_xname);
304 return (EIO);
305 }
306 sc->sc_flags |= ATWF_ENABLED;
307 }
308 return (0);
309 }
310
311 /*
312 * atw_disable:
313 *
314 * Disable the ADM8211 chip.
315 */
316 void
317 atw_disable(sc)
318 struct atw_softc *sc;
319 {
320 if (!ATW_IS_ENABLED(sc))
321 return;
322 if (sc->sc_disable != NULL)
323 (*sc->sc_disable)(sc);
324 sc->sc_flags &= ~ATWF_ENABLED;
325 }
326
327 /* Returns -1 on failure. */
328 int
329 atw_read_srom(struct atw_softc *sc)
330 {
331 struct seeprom_descriptor sd;
332 u_int32_t reg;
333
334 (void)memset(&sd, 0, sizeof(sd));
335
336 reg = ATW_READ(sc, ATW_TEST0);
337
338 if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
339 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
340 return -1;
341 }
342
343 switch (reg & ATW_TEST0_EPTYP_MASK) {
344 case ATW_TEST0_EPTYP_93c66:
345 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
346 sc->sc_sromsz = 512;
347 sd.sd_chip = C56_66;
348 break;
349 case ATW_TEST0_EPTYP_93c46:
350 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
351 sc->sc_sromsz = 128;
352 sd.sd_chip = C46;
353 break;
354 default:
355 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
356 MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
357 return -1;
358 }
359
360 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
361
362 if (sc->sc_srom == NULL) {
363 printf("%s: unable to allocate SROM buffer\n",
364 sc->sc_dev.dv_xname);
365 return -1;
366 }
367
368 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
369
370 /* ADM8211 has a single 32-bit register for controlling the
371 * 93cx6 SROM. Bit SRS enables the serial port. There is no
372 * "ready" bit. The ADM8211 input/output sense is the reverse
373 * of read_seeprom's.
374 */
375 sd.sd_tag = sc->sc_st;
376 sd.sd_bsh = sc->sc_sh;
377 sd.sd_regsize = 4;
378 sd.sd_control_offset = ATW_SPR;
379 sd.sd_status_offset = ATW_SPR;
380 sd.sd_dataout_offset = ATW_SPR;
381 sd.sd_CK = ATW_SPR_SCLK;
382 sd.sd_CS = ATW_SPR_SCS;
383 sd.sd_DI = ATW_SPR_SDO;
384 sd.sd_DO = ATW_SPR_SDI;
385 sd.sd_MS = ATW_SPR_SRS;
386 sd.sd_RDY = 0;
387
388 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
389 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
390 free(sc->sc_srom, M_DEVBUF);
391 return -1;
392 }
393 #ifdef ATW_DEBUG
394 {
395 int i;
396 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
397 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
398 if (((i % 8) == 0) && (i != 0)) {
399 ATW_DPRINTF(("\n\t"));
400 }
401 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
402 }
403 ATW_DPRINTF(("\n"));
404 }
405 #endif /* ATW_DEBUG */
406 return 0;
407 }
408
409 #ifdef ATW_DEBUG
410 static void
411 atw_print_regs(struct atw_softc *sc, const char *where)
412 {
413 #define PRINTREG(sc, reg) \
414 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
415 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
416
417 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
418
419 PRINTREG(sc, ATW_PAR);
420 PRINTREG(sc, ATW_FRCTL);
421 PRINTREG(sc, ATW_TDR);
422 PRINTREG(sc, ATW_WTDP);
423 PRINTREG(sc, ATW_RDR);
424 PRINTREG(sc, ATW_WRDP);
425 PRINTREG(sc, ATW_RDB);
426 PRINTREG(sc, ATW_CSR3A);
427 PRINTREG(sc, ATW_TDBD);
428 PRINTREG(sc, ATW_TDBP);
429 PRINTREG(sc, ATW_STSR);
430 PRINTREG(sc, ATW_CSR5A);
431 PRINTREG(sc, ATW_NAR);
432 PRINTREG(sc, ATW_CSR6A);
433 PRINTREG(sc, ATW_IER);
434 PRINTREG(sc, ATW_CSR7A);
435 PRINTREG(sc, ATW_LPC);
436 PRINTREG(sc, ATW_TEST1);
437 PRINTREG(sc, ATW_SPR);
438 PRINTREG(sc, ATW_TEST0);
439 PRINTREG(sc, ATW_WCSR);
440 PRINTREG(sc, ATW_WPDR);
441 PRINTREG(sc, ATW_GPTMR);
442 PRINTREG(sc, ATW_GPIO);
443 PRINTREG(sc, ATW_BBPCTL);
444 PRINTREG(sc, ATW_SYNCTL);
445 PRINTREG(sc, ATW_PLCPHD);
446 PRINTREG(sc, ATW_MMIWADDR);
447 PRINTREG(sc, ATW_MMIRADDR1);
448 PRINTREG(sc, ATW_MMIRADDR2);
449 PRINTREG(sc, ATW_TXBR);
450 PRINTREG(sc, ATW_CSR15A);
451 PRINTREG(sc, ATW_ALCSTAT);
452 PRINTREG(sc, ATW_TOFS2);
453 PRINTREG(sc, ATW_CMDR);
454 PRINTREG(sc, ATW_PCIC);
455 PRINTREG(sc, ATW_PMCSR);
456 PRINTREG(sc, ATW_PAR0);
457 PRINTREG(sc, ATW_PAR1);
458 PRINTREG(sc, ATW_MAR0);
459 PRINTREG(sc, ATW_MAR1);
460 PRINTREG(sc, ATW_ATIMDA0);
461 PRINTREG(sc, ATW_ABDA1);
462 PRINTREG(sc, ATW_BSSID0);
463 PRINTREG(sc, ATW_TXLMT);
464 PRINTREG(sc, ATW_MIBCNT);
465 PRINTREG(sc, ATW_BCNT);
466 PRINTREG(sc, ATW_TSFTH);
467 PRINTREG(sc, ATW_TSC);
468 PRINTREG(sc, ATW_SYNRF);
469 PRINTREG(sc, ATW_BPLI);
470 PRINTREG(sc, ATW_CAP0);
471 PRINTREG(sc, ATW_CAP1);
472 PRINTREG(sc, ATW_RMD);
473 PRINTREG(sc, ATW_CFPP);
474 PRINTREG(sc, ATW_TOFS0);
475 PRINTREG(sc, ATW_TOFS1);
476 PRINTREG(sc, ATW_IFST);
477 PRINTREG(sc, ATW_RSPT);
478 PRINTREG(sc, ATW_TSFTL);
479 PRINTREG(sc, ATW_WEPCTL);
480 PRINTREG(sc, ATW_WESK);
481 PRINTREG(sc, ATW_WEPCNT);
482 PRINTREG(sc, ATW_MACTEST);
483 PRINTREG(sc, ATW_FER);
484 PRINTREG(sc, ATW_FEMR);
485 PRINTREG(sc, ATW_FPSR);
486 PRINTREG(sc, ATW_FFER);
487 #undef PRINTREG
488 }
489 #endif /* ATW_DEBUG */
490
491 /*
492 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
493 */
494 void
495 atw_attach(struct atw_softc *sc)
496 {
497 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
498 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
499 };
500 struct ieee80211com *ic = &sc->sc_ic;
501 struct ifnet *ifp = &ic->ic_if;
502 int country_code, error, i, nrate;
503 u_int32_t reg;
504 static const char *type_strings[] = {"Intersil (not supported)",
505 "RFMD", "Marvel (not supported)"};
506
507 sc->sc_txth = atw_txthresh_tab_lo;
508
509 SIMPLEQ_INIT(&sc->sc_txfreeq);
510 SIMPLEQ_INIT(&sc->sc_txdirtyq);
511
512 #ifdef ATW_DEBUG
513 atw_print_regs(sc, "atw_attach");
514 #endif /* ATW_DEBUG */
515
516 /*
517 * Allocate the control data structures, and create and load the
518 * DMA map for it.
519 */
520 if ((error = bus_dmamem_alloc(sc->sc_dmat,
521 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
522 1, &sc->sc_cdnseg, 0)) != 0) {
523 printf("%s: unable to allocate control data, error = %d\n",
524 sc->sc_dev.dv_xname, error);
525 goto fail_0;
526 }
527
528 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
529 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
530 BUS_DMA_COHERENT)) != 0) {
531 printf("%s: unable to map control data, error = %d\n",
532 sc->sc_dev.dv_xname, error);
533 goto fail_1;
534 }
535
536 if ((error = bus_dmamap_create(sc->sc_dmat,
537 sizeof(struct atw_control_data), 1,
538 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
539 printf("%s: unable to create control data DMA map, "
540 "error = %d\n", sc->sc_dev.dv_xname, error);
541 goto fail_2;
542 }
543
544 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
545 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
546 0)) != 0) {
547 printf("%s: unable to load control data DMA map, error = %d\n",
548 sc->sc_dev.dv_xname, error);
549 goto fail_3;
550 }
551
552 /*
553 * Create the transmit buffer DMA maps.
554 */
555 sc->sc_ntxsegs = ATW_NTXSEGS;
556 for (i = 0; i < ATW_TXQUEUELEN; i++) {
557 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
558 sc->sc_ntxsegs, MCLBYTES, 0, 0,
559 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
560 printf("%s: unable to create tx DMA map %d, "
561 "error = %d\n", sc->sc_dev.dv_xname, i, error);
562 goto fail_4;
563 }
564 }
565
566 /*
567 * Create the receive buffer DMA maps.
568 */
569 for (i = 0; i < ATW_NRXDESC; i++) {
570 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
571 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
572 printf("%s: unable to create rx DMA map %d, "
573 "error = %d\n", sc->sc_dev.dv_xname, i, error);
574 goto fail_5;
575 }
576 }
577 for (i = 0; i < ATW_NRXDESC; i++) {
578 sc->sc_rxsoft[i].rxs_mbuf = NULL;
579 }
580
581 /* Reset the chip to a known state. */
582 atw_reset(sc);
583
584 if (atw_read_srom(sc) == -1)
585 return;
586
587 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
588 ATW_SR_RFTYPE_MASK);
589
590 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
591 ATW_SR_BBPTYPE_MASK);
592
593 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
594 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
595 return;
596 }
597 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
598 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
599 return;
600 }
601
602 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
603 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
604
605 /* XXX There exists a Linux driver which seems to use RFType = 0 for
606 * MARVEL. My bug, or theirs?
607 */
608
609 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
610
611 switch (sc->sc_rftype) {
612 case ATW_RFTYPE_INTERSIL:
613 reg |= ATW_SYNCTL_CS1;
614 break;
615 case ATW_RFTYPE_RFMD:
616 reg |= ATW_SYNCTL_CS0;
617 break;
618 case ATW_RFTYPE_MARVEL:
619 break;
620 }
621
622 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
623 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
624
625 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
626
627 switch (sc->sc_bbptype) {
628 case ATW_RFTYPE_INTERSIL:
629 reg |= ATW_BBPCTL_TWI;
630 break;
631 case ATW_RFTYPE_RFMD:
632 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
633 ATW_BBPCTL_CCA_ACTLO;
634 break;
635 case ATW_RFTYPE_MARVEL:
636 break;
637 }
638
639 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
640 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
641
642 /*
643 * From this point forward, the attachment cannot fail. A failure
644 * before this point releases all resources that may have been
645 * allocated.
646 */
647 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
648
649 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
650 htole16(sc->sc_srom[ATW_SR_MAC00]),
651 htole16(sc->sc_srom[ATW_SR_MAC01]),
652 htole16(sc->sc_srom[ATW_SR_MAC10])));
653
654 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
655 ATW_SR_CTRY_MASK);
656
657 #define ADD_CHANNEL(_ic, _chan) do { \
658 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
659 _ic->ic_channels[_chan].ic_freq = \
660 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
661 } while (0)
662
663 /* Find available channels */
664 switch (country_code) {
665 case COUNTRY_MMK2: /* 1-14 */
666 ADD_CHANNEL(ic, 14);
667 /*FALLTHROUGH*/
668 case COUNTRY_ETSI: /* 1-13 */
669 for (i = 1; i <= 13; i++)
670 ADD_CHANNEL(ic, i);
671 break;
672 case COUNTRY_FCC: /* 1-11 */
673 case COUNTRY_IC: /* 1-11 */
674 for (i = 1; i <= 11; i++)
675 ADD_CHANNEL(ic, i);
676 break;
677 case COUNTRY_MMK: /* 14 */
678 ADD_CHANNEL(ic, 14);
679 break;
680 case COUNTRY_FRANCE: /* 10-13 */
681 for (i = 10; i <= 13; i++)
682 ADD_CHANNEL(ic, i);
683 break;
684 default: /* assume channels 10-11 */
685 case COUNTRY_SPAIN: /* 10-11 */
686 for (i = 10; i <= 11; i++)
687 ADD_CHANNEL(ic, i);
688 break;
689 }
690
691 /* Read the MAC address. */
692 reg = ATW_READ(sc, ATW_PAR0);
693 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
694 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
695 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
696 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
697 reg = ATW_READ(sc, ATW_PAR1);
698 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
699 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
700
701 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
702 printf(" could not get mac address, attach failed\n");
703 return;
704 }
705
706 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
707
708 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
709 ifp->if_softc = sc;
710 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
711 IFF_NOTRAILERS;
712 ifp->if_ioctl = atw_ioctl;
713 ifp->if_start = atw_start;
714 ifp->if_watchdog = atw_watchdog;
715 ifp->if_init = atw_init;
716 ifp->if_stop = atw_stop;
717 IFQ_SET_READY(&ifp->if_snd);
718
719 ic->ic_phytype = IEEE80211_T_DS;
720 ic->ic_opmode = IEEE80211_M_STA;
721 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
722 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
723
724 nrate = 0;
725 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
726 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
727 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
728 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
729 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
730
731 /*
732 * Call MI attach routines.
733 */
734
735 if_attach(ifp);
736 ieee80211_ifattach(ifp);
737
738 sc->sc_newstate = ic->ic_newstate;
739 ic->ic_newstate = atw_newstate;
740
741 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
742 ic->ic_recv_mgmt = atw_recv_mgmt;
743
744 sc->sc_node_free = ic->ic_node_free;
745 ic->ic_node_free = atw_node_free;
746
747 sc->sc_node_alloc = ic->ic_node_alloc;
748 ic->ic_node_alloc = atw_node_alloc;
749
750 /* possibly we should fill in our own sc_send_prresp, since
751 * the ADM8211 is probably sending probe responses in ad hoc
752 * mode.
753 */
754
755 /* complete initialization */
756 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
757 callout_init(&sc->sc_scan_ch);
758
759 #if NBPFILTER > 0
760 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
761 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
762 #endif
763
764 /*
765 * Make sure the interface is shutdown during reboot.
766 */
767 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
768 if (sc->sc_sdhook == NULL)
769 printf("%s: WARNING: unable to establish shutdown hook\n",
770 sc->sc_dev.dv_xname);
771
772 /*
773 * Add a suspend hook to make sure we come back up after a
774 * resume.
775 */
776 sc->sc_powerhook = powerhook_establish(atw_power, sc);
777 if (sc->sc_powerhook == NULL)
778 printf("%s: WARNING: unable to establish power hook\n",
779 sc->sc_dev.dv_xname);
780
781 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
782 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
783 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
784
785 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
786 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
787 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
788
789 return;
790
791 /*
792 * Free any resources we've allocated during the failed attach
793 * attempt. Do this in reverse order and fall through.
794 */
795 fail_5:
796 for (i = 0; i < ATW_NRXDESC; i++) {
797 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
798 continue;
799 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
800 }
801 fail_4:
802 for (i = 0; i < ATW_TXQUEUELEN; i++) {
803 if (sc->sc_txsoft[i].txs_dmamap == NULL)
804 continue;
805 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
806 }
807 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
808 fail_3:
809 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
810 fail_2:
811 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
812 sizeof(struct atw_control_data));
813 fail_1:
814 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
815 fail_0:
816 return;
817 }
818
819 static struct ieee80211_node *
820 atw_node_alloc(struct ieee80211com *ic)
821 {
822 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
823 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
824
825 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
826 return ni;
827 }
828
829 static void
830 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
831 {
832 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
833
834 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
835 ether_sprintf(ni->ni_bssid)));
836 (*sc->sc_node_free)(ic, ni);
837 }
838
839 /*
840 * atw_reset:
841 *
842 * Perform a soft reset on the ADM8211.
843 */
844 void
845 atw_reset(sc)
846 struct atw_softc *sc;
847 {
848 int i;
849
850 if (ATW_IS_ENABLED(sc) == 0)
851 return;
852
853 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
854
855 for (i = 0; i < 10000; i++) {
856 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
857 break;
858 DELAY(1);
859 }
860
861 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
862
863 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
864 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
865
866 /* Turn off maximum power saving. */
867 ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
868
869 /* Recall EEPROM. */
870 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
871
872 DELAY(10 * 1000);
873
874 /* A reset seems to affect the SRAM contents, so put them into
875 * a known state.
876 */
877 atw_clear_sram(sc);
878
879 memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
880
881 sc->sc_lost_bcn_thresh = 0;
882 }
883
884 static void
885 atw_clear_sram(sc)
886 struct atw_softc *sc;
887 {
888 #if 0
889 for (addr = 0; addr < 448; addr++) {
890 ATW_WRITE(sc, ATW_WEPCTL,
891 ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0 | addr);
892 DELAY(1000);
893 ATW_WRITE(sc, ATW_WESK, 0);
894 DELAY(1000); /* paranoia */
895 }
896 return;
897 #endif
898 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
899 /* XXX not for revision 0x20. */
900 atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
901 }
902
903 /* TBD atw_init
904 *
905 * set MAC based on ic->ic_bss->myaddr
906 * write WEP keys
907 * set TX rate
908 */
909
910 /*
911 * atw_init: [ ifnet interface function ]
912 *
913 * Initialize the interface. Must be called at splnet().
914 */
915 int
916 atw_init(ifp)
917 struct ifnet *ifp;
918 {
919 struct atw_softc *sc = ifp->if_softc;
920 struct ieee80211com *ic = &sc->sc_ic;
921 struct atw_txsoft *txs;
922 struct atw_rxsoft *rxs;
923 u_int32_t reg;
924 int i, error = 0;
925
926 if ((error = atw_enable(sc)) != 0)
927 goto out;
928
929 /*
930 * Cancel any pending I/O. This also resets.
931 */
932 atw_stop(ifp, 0);
933
934 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
935 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
936 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
937 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
938
939 /* Turn off APM??? (A binary-only driver does this.)
940 *
941 * Set Rx store-and-forward mode.
942 */
943 reg = ATW_READ(sc, ATW_CMDR);
944 reg &= ~ATW_CMDR_APM;
945 reg &= ~ATW_CMDR_DRT_MASK;
946 reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
947
948 ATW_WRITE(sc, ATW_CMDR, reg);
949
950 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
951 *
952 * XXX a binary-only driver sets a different service field than
953 * 0. why?
954 */
955 reg = ATW_READ(sc, ATW_PLCPHD);
956 reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
957 reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
958 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
959 ATW_WRITE(sc, ATW_PLCPHD, reg);
960
961 /* XXX this magic can probably be figured out from the RFMD docs */
962 reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
963 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
964 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
965 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
966 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
967 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
968 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
969 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
970 ATW_WRITE(sc, ATW_TOFS2, reg);
971
972 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
973 LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
974
975 /* XXX this resets an Intersil RF front-end? */
976 /* TBD condition on Intersil RFType? */
977 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
978 DELAY(10 * 1000);
979 ATW_WRITE(sc, ATW_SYNRF, 0);
980 DELAY(5 * 1000);
981
982 /* 16 TU max duration for contention-free period */
983 reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
984 ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
985
986 /* XXX I guess that the Cardbus clock is 22MHz?
987 * I am assuming that the role of ATW_TOFS0_USCNT is
988 * to divide the bus clock to get a 1MHz clock---the datasheet is not
989 * very clear on this point. It says in the datasheet that it is
990 * possible for the ADM8211 to accomodate bus speeds between 22MHz
991 * and 33MHz; maybe this is the way? I see a binary-only driver write
992 * these values. These values are also the power-on default.
993 */
994 ATW_WRITE(sc, ATW_TOFS0,
995 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
996 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
997
998 /* Initialize interframe spacing. EIFS=0x64 is used by a binary-only
999 * driver. Go figure.
1000 */
1001 reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1002 LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
1003 ATW_IFST_SIFS_MASK) |
1004 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1005 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1006
1007 ATW_WRITE(sc, ATW_IFST, reg);
1008
1009 /* XXX More magic. Might relate to ACK timing. */
1010 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1011 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1012
1013 /* Set up the MMI read/write addresses for the BBP.
1014 *
1015 * TBD find out the Marvel settings.
1016 */
1017 switch (sc->sc_bbptype) {
1018 case ATW_BBPTYPE_INTERSIL:
1019 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1020 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1021 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1022 break;
1023 case ATW_BBPTYPE_MARVEL:
1024 break;
1025 case ATW_BBPTYPE_RFMD:
1026 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1027 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1028 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1029 default:
1030 break;
1031 }
1032
1033 sc->sc_wepctl = 0;
1034 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1035
1036 if ((error = atw_rf3000_init(sc)) != 0)
1037 goto out;
1038
1039 /*
1040 * Initialize the PCI Access Register.
1041 */
1042 sc->sc_busmode = ATW_PAR_BAR; /* XXX what is this? */
1043
1044 /*
1045 * If we're allowed to do so, use Memory Read Line
1046 * and Memory Read Multiple.
1047 *
1048 * XXX Should we use Memory Write and Invalidate?
1049 */
1050 if (sc->sc_flags & ATWF_MRL)
1051 sc->sc_busmode |= ATW_PAR_MRLE;
1052 if (sc->sc_flags & ATWF_MRM)
1053 sc->sc_busmode |= ATW_PAR_MRME;
1054 if (sc->sc_flags & ATWF_MWI)
1055 sc->sc_busmode |= ATW_PAR_MWIE;
1056 if (sc->sc_maxburst == 0)
1057 sc->sc_maxburst = 8; /* ADM8211 default */
1058
1059 switch (sc->sc_cacheline) {
1060 default:
1061 /* Use burst length. */
1062 break;
1063 case 8:
1064 sc->sc_busmode |= ATW_PAR_CAL_8DW;
1065 break;
1066 case 16:
1067 sc->sc_busmode |= ATW_PAR_CAL_16DW;
1068 break;
1069 case 32:
1070 sc->sc_busmode |= ATW_PAR_CAL_32DW;
1071 break;
1072 }
1073 switch (sc->sc_maxburst) {
1074 case 1:
1075 sc->sc_busmode |= ATW_PAR_PBL_1DW;
1076 break;
1077 case 2:
1078 sc->sc_busmode |= ATW_PAR_PBL_2DW;
1079 break;
1080 case 4:
1081 sc->sc_busmode |= ATW_PAR_PBL_4DW;
1082 break;
1083 case 8:
1084 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1085 break;
1086 case 16:
1087 sc->sc_busmode |= ATW_PAR_PBL_16DW;
1088 break;
1089 case 32:
1090 sc->sc_busmode |= ATW_PAR_PBL_32DW;
1091 break;
1092 default:
1093 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1094 break;
1095 }
1096
1097 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1098 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1099 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1100
1101 /*
1102 * Initialize the OPMODE register. We don't write it until
1103 * we're ready to begin the transmit and receive processes.
1104 */
1105 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1106 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1107
1108 /*
1109 * Initialize the transmit descriptor ring.
1110 */
1111 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1112 for (i = 0; i < ATW_NTXDESC; i++) {
1113 /* no transmit chaining */
1114 sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1115 sc->sc_txdescs[i].at_buf2 =
1116 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1117 }
1118 /* use ring mode */
1119 sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1120 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1121 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1122 sc->sc_txfree = ATW_NTXDESC;
1123 sc->sc_txnext = 0;
1124
1125 /*
1126 * Initialize the transmit job descriptors.
1127 */
1128 SIMPLEQ_INIT(&sc->sc_txfreeq);
1129 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1130 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1131 txs = &sc->sc_txsoft[i];
1132 txs->txs_mbuf = NULL;
1133 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1134 }
1135
1136 /*
1137 * Initialize the receive descriptor and receive job
1138 * descriptor rings.
1139 */
1140 for (i = 0; i < ATW_NRXDESC; i++) {
1141 rxs = &sc->sc_rxsoft[i];
1142 if (rxs->rxs_mbuf == NULL) {
1143 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1144 printf("%s: unable to allocate or map rx "
1145 "buffer %d, error = %d\n",
1146 sc->sc_dev.dv_xname, i, error);
1147 /*
1148 * XXX Should attempt to run with fewer receive
1149 * XXX buffers instead of just failing.
1150 */
1151 atw_rxdrain(sc);
1152 goto out;
1153 }
1154 } else
1155 ATW_INIT_RXDESC(sc, i);
1156 }
1157 sc->sc_rxptr = 0;
1158
1159 /* disable all wake-up events */
1160 ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1161 ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1162 ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1163 ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1164
1165 /* ack all wake-up events */
1166 ATW_SET(sc, ATW_WCSR, 0);
1167
1168 /*
1169 * Initialize the interrupt mask and enable interrupts.
1170 */
1171 /* normal interrupts */
1172 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1173 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1174
1175 /* abnormal interrupts */
1176 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1177 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1178 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1179
1180 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1181 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1182 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1183 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1184 ATW_INTR_TRT;
1185
1186 sc->sc_linkint_mask &= sc->sc_inten;
1187 sc->sc_rxint_mask &= sc->sc_inten;
1188 sc->sc_txint_mask &= sc->sc_inten;
1189
1190 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1191 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1192 if (sc->sc_intr_ack != NULL)
1193 (*sc->sc_intr_ack)(sc);
1194
1195 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1196 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1197
1198 /*
1199 * Give the transmit and receive rings to the ADM8211.
1200 */
1201 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1202 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1203
1204 /* common 802.11 configuration */
1205 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1206 switch (ic->ic_opmode) {
1207 case IEEE80211_M_HOSTAP: /* XXX */
1208 case IEEE80211_M_STA:
1209 sc->sc_opmode &= ~ATW_NAR_EA;
1210 break;
1211 case IEEE80211_M_AHDEMO: /* XXX */
1212 case IEEE80211_M_IBSS:
1213 /* EA bit seems important for ad hoc reception. */
1214 sc->sc_opmode |= ATW_NAR_EA;
1215 ic->ic_flags |= IEEE80211_F_IBSSON;
1216 break;
1217 case IEEE80211_M_MONITOR: /* XXX */
1218 break;
1219 }
1220
1221 atw_start_beacon(sc, 0);
1222
1223 switch (ic->ic_opmode) {
1224 case IEEE80211_M_AHDEMO:
1225 case IEEE80211_M_HOSTAP:
1226 ic->ic_bss->ni_intval = ic->ic_lintval;
1227 ic->ic_bss->ni_rssi = 0;
1228 ic->ic_bss->ni_rstamp = 0;
1229 break;
1230 default: /* XXX */
1231 break;
1232 }
1233
1234 atw_write_ssid(sc);
1235 atw_write_sup_rates(sc);
1236 if (ic->ic_caps & IEEE80211_C_WEP)
1237 atw_write_wep(sc);
1238
1239 /*
1240 * Set the receive filter. This will start the transmit and
1241 * receive processes.
1242 */
1243 atw_filter_setup(sc);
1244
1245 /*
1246 * Start the receive process.
1247 */
1248 ATW_WRITE(sc, ATW_RDR, 0x1);
1249
1250 /*
1251 * Note that the interface is now running.
1252 */
1253 ifp->if_flags |= IFF_RUNNING;
1254 ifp->if_flags &= ~IFF_OACTIVE;
1255 ic->ic_state = IEEE80211_S_INIT;
1256
1257 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1258 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1259 else
1260 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1261 out:
1262 if (error) {
1263 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1264 ifp->if_timer = 0;
1265 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1266 }
1267 #ifdef ATW_DEBUG
1268 atw_print_regs(sc, "end of init");
1269 #endif /* ATW_DEBUG */
1270
1271 return (error);
1272 }
1273
1274 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1275 * 0: MAC control of RF3000/Si4126.
1276 *
1277 * Applies power, or selects RF front-end? Sets reset condition.
1278 *
1279 * TBD support non-RFMD BBP, non-SiLabs synth.
1280 */
1281 static void
1282 atw_rfio_enable(struct atw_softc *sc, int enable)
1283 {
1284 if (enable) {
1285 ATW_WRITE(sc, ATW_SYNRF,
1286 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1287 DELAY(atw_rfio_enable_delay);
1288 } else {
1289 ATW_WRITE(sc, ATW_SYNRF, 0);
1290 DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1291 }
1292 }
1293
1294 static int
1295 atw_tune(sc)
1296 struct atw_softc *sc;
1297 {
1298 int rc;
1299 u_int32_t reg;
1300 int chan;
1301 struct ieee80211com *ic = &sc->sc_ic;
1302
1303 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1304 if (chan == IEEE80211_CHAN_ANY)
1305 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1306
1307 if (chan == sc->sc_cur_chan)
1308 return 0;
1309
1310 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1311 sc->sc_cur_chan, chan));
1312
1313 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1314
1315 if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1316 (rc = atw_rf3000_tune(sc, chan)) != 0)
1317 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1318 chan);
1319
1320 reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1321 ATW_WRITE(sc, ATW_CAP0,
1322 reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1323
1324 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1325
1326 if (rc == 0)
1327 sc->sc_cur_chan = chan;
1328
1329 return rc;
1330 }
1331
1332 #ifdef ATW_DEBUG
1333 static void
1334 atw_si4126_print(sc)
1335 struct atw_softc *sc;
1336 {
1337 struct ifnet *ifp = &sc->sc_ic.ic_if;
1338 u_int addr, val;
1339
1340 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1341 return;
1342
1343 for (addr = 0; addr <= 8; addr++) {
1344 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1345 if (atw_si4126_read(sc, addr, &val) == 0) {
1346 printf("<unknown> (quitting print-out)\n");
1347 break;
1348 }
1349 printf("%05x\n", val);
1350 }
1351 }
1352 #endif /* ATW_DEBUG */
1353
1354 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1355 *
1356 * The RF/IF synthesizer produces two reference frequencies for
1357 * the RF2948B transceiver. The first frequency the RF2948B requires
1358 * is two times the so-called "intermediate frequency" (IF). Since
1359 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1360 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1361 * frequency required by the transceiver is the radio frequency
1362 * (RF). This is a superheterodyne transceiver; for f(chan) the
1363 * center frequency of the channel we are tuning, RF = f(chan) -
1364 * IF.
1365 *
1366 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1367 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1368 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1369 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1370 */
1371 static int
1372 atw_si4126_tune(sc, chan)
1373 struct atw_softc *sc;
1374 u_int8_t chan;
1375 {
1376 int rc = 0;
1377 u_int mhz;
1378 u_int R;
1379 u_int32_t reg;
1380 u_int16_t gain;
1381
1382 #ifdef ATW_DEBUG
1383 atw_si4126_print(sc);
1384 #endif /* ATW_DEBUG */
1385
1386 if (chan == 14)
1387 mhz = 2484;
1388 else
1389 mhz = 2412 + 5 * (chan - 1);
1390
1391 /* Tune IF to 748MHz to suit the IF LO input of the
1392 * RF2494B, which is 2 x IF. No need to set an IF divider
1393 * because an IF in 526MHz - 952MHz is allowed.
1394 *
1395 * XIN is 44.000MHz, so divide it by two to get allowable
1396 * range of 2-25MHz. SiLabs tells me that this is not
1397 * strictly necessary.
1398 */
1399
1400 R = 44;
1401
1402 atw_rfio_enable(sc, 1);
1403
1404 /* Power-up RF, IF synthesizers. */
1405 if ((rc = atw_si4126_write(sc, SI4126_POWER,
1406 SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1407 goto out;
1408
1409 /* If RF2 N > 2047, then set KP2 to 1. */
1410 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1411
1412 if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1413 goto out;
1414
1415 /* set LPWR, too? */
1416 if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1417 SI4126_MAIN_XINDIV2)) != 0)
1418 goto out;
1419
1420 /* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN. XIN = 44MHz.
1421 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1422 */
1423 if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1424 goto out;
1425
1426 if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1427 goto out;
1428
1429 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1430 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1431 * which has no RF1!
1432 */
1433 if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1434 goto out;
1435
1436 if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1437 goto out;
1438
1439 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1440 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1441 * Now let's multiply it to mhz. So mhz - IF = N.
1442 */
1443 if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1444 goto out;
1445
1446 if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1447 goto out;
1448
1449 /* wait 100us from power-up for RF, IF to settle */
1450 DELAY(100);
1451
1452 if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1453 /* XXX there is a binary driver which sends
1454 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1455 * that this enables the Si4126 by raising its PWDN#, but I
1456 * think that it actually sets the Prism RF front-end
1457 * to a special mode for channel 14.
1458 */
1459 reg = ATW_READ(sc, ATW_GPIO);
1460 reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1461 reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1462 ATW_WRITE(sc, ATW_GPIO, reg);
1463 }
1464
1465 #ifdef ATW_DEBUG
1466 atw_si4126_print(sc);
1467 #endif /* ATW_DEBUG */
1468
1469 out:
1470 atw_rfio_enable(sc, 0);
1471
1472 return rc;
1473 }
1474
1475 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1476 * diversity.
1477 *
1478 * Call this w/ Tx/Rx suspended.
1479 */
1480 static int
1481 atw_rf3000_init(sc)
1482 struct atw_softc *sc;
1483 {
1484 int rc = 0;
1485
1486 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1487
1488 atw_rfio_enable(sc, 1);
1489
1490 /* enable diversity */
1491 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1492
1493 if (rc != 0)
1494 goto out;
1495
1496 /* sensible setting from a binary-only driver */
1497 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1498 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1499
1500 if (rc != 0)
1501 goto out;
1502
1503 /* magic from a binary-only driver */
1504 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1505 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1506
1507 if (rc != 0)
1508 goto out;
1509
1510 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1511
1512 if (rc != 0)
1513 goto out;
1514
1515 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1516
1517 if (rc != 0)
1518 goto out;
1519
1520 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1521
1522 if (rc != 0)
1523 goto out;
1524
1525 /* CCA is acquisition sensitive */
1526 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1527 LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1528
1529 if (rc != 0)
1530 goto out;
1531
1532 out:
1533 atw_rfio_enable(sc, 0);
1534 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1535 return rc;
1536 }
1537
1538 #ifdef ATW_DEBUG
1539 static void
1540 atw_rf3000_print(sc)
1541 struct atw_softc *sc;
1542 {
1543 struct ifnet *ifp = &sc->sc_ic.ic_if;
1544 u_int addr, val;
1545
1546 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1547 return;
1548
1549 for (addr = 0x01; addr <= 0x15; addr++) {
1550 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1551 if (atw_rf3000_read(sc, addr, &val) != 0) {
1552 printf("<unknown> (quitting print-out)\n");
1553 break;
1554 }
1555 printf("%08x\n", val);
1556 }
1557 }
1558 #endif /* ATW_DEBUG */
1559
1560 /* Set the power settings on the BBP for channel `chan'. */
1561 static int
1562 atw_rf3000_tune(sc, chan)
1563 struct atw_softc *sc;
1564 u_int8_t chan;
1565 {
1566 int rc = 0;
1567 u_int32_t reg;
1568 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1569
1570 atw_rfio_enable(sc, 1);
1571
1572 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1573 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1574 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1575
1576 /* odd channels: LSB, even channels: MSB */
1577 if (chan % 2 == 1) {
1578 txpower &= 0xFF;
1579 lpf_cutoff &= 0xFF;
1580 lna_gs_thresh &= 0xFF;
1581 } else {
1582 txpower >>= 8;
1583 lpf_cutoff >>= 8;
1584 lna_gs_thresh >>= 8;
1585 }
1586
1587 #ifdef ATW_DEBUG
1588 atw_rf3000_print(sc);
1589 #endif /* ATW_DEBUG */
1590
1591 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1592 "lna_gs_thresh %02x\n",
1593 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1594
1595 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1596 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1597 goto out;
1598
1599 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1600 goto out;
1601
1602 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1603 goto out;
1604
1605 /* from a binary-only driver. */
1606 reg = ATW_READ(sc, ATW_PLCPHD);
1607 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1608 reg |= LSHIFT(txpower << 2, ATW_PLCPHD_SERVICE_MASK);
1609 ATW_WRITE(sc, ATW_PLCPHD, reg);
1610
1611 #ifdef ATW_DEBUG
1612 atw_rf3000_print(sc);
1613 #endif /* ATW_DEBUG */
1614
1615 out:
1616 atw_rfio_enable(sc, 0);
1617
1618 return rc;
1619 }
1620
1621 /* Write a register on the RF3000 baseband processor using the
1622 * registers provided by the ADM8211 for this purpose.
1623 *
1624 * Return 0 on success.
1625 */
1626 static int
1627 atw_rf3000_write(sc, addr, val)
1628 struct atw_softc *sc;
1629 u_int addr, val;
1630 {
1631 u_int32_t reg;
1632 int i;
1633
1634 for (i = 1000; --i >= 0; ) {
1635 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1636 break;
1637 DELAY(100);
1638 }
1639
1640 if (i < 0) {
1641 printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1642 return ETIMEDOUT;
1643 }
1644
1645 reg = sc->sc_bbpctl_wr |
1646 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1647 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1648
1649 ATW_WRITE(sc, ATW_BBPCTL, reg);
1650
1651 for (i = 1000; --i >= 0; ) {
1652 DELAY(100);
1653 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1654 break;
1655 }
1656
1657 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1658
1659 if (i < 0) {
1660 printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1661 return ETIMEDOUT;
1662 }
1663 return 0;
1664 }
1665
1666 /* Read a register on the RF3000 baseband processor using the registers
1667 * the ADM8211 provides for this purpose.
1668 *
1669 * The 7-bit register address is addr. Record the 8-bit data in the register
1670 * in *val.
1671 *
1672 * Return 0 on success.
1673 *
1674 * XXX This does not seem to work. The ADM8211 must require more or
1675 * different magic to read the chip than to write it. Possibly some
1676 * of the magic I have derived from a binary-only driver concerns
1677 * the "chip address" (see the RF3000 manual).
1678 */
1679 #ifdef ATW_DEBUG
1680 static int
1681 atw_rf3000_read(sc, addr, val)
1682 struct atw_softc *sc;
1683 u_int addr, *val;
1684 {
1685 u_int32_t reg;
1686 int i;
1687
1688 for (i = 1000; --i >= 0; ) {
1689 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1690 break;
1691 DELAY(100);
1692 }
1693
1694 if (i < 0) {
1695 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1696 sc->sc_dev.dv_xname);
1697 return ETIMEDOUT;
1698 }
1699
1700 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1701
1702 ATW_WRITE(sc, ATW_BBPCTL, reg);
1703
1704 for (i = 1000; --i >= 0; ) {
1705 DELAY(100);
1706 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1707 break;
1708 }
1709
1710 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1711
1712 if (i < 0) {
1713 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1714 sc->sc_dev.dv_xname, reg);
1715 return ETIMEDOUT;
1716 }
1717 if (val != NULL)
1718 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1719 return 0;
1720 }
1721 #endif /* ATW_DEBUG */
1722
1723 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1724 * provided by the ADM8211 for that purpose.
1725 *
1726 * val is 18 bits of data, and val is the 4-bit address of the register.
1727 *
1728 * Return 0 on success.
1729 */
1730 static int
1731 atw_si4126_write(sc, addr, val)
1732 struct atw_softc *sc;
1733 u_int addr, val;
1734 {
1735 u_int32_t reg;
1736 int i;
1737
1738 for (i = 1000; --i >= 0; ) {
1739 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1740 break;
1741 DELAY(100);
1742 }
1743
1744 if (i < 0) {
1745 printf("%s: start atw_si4126_write, SYNCTL busy\n",
1746 sc->sc_dev.dv_xname);
1747 return ETIMEDOUT;
1748 }
1749
1750 reg = sc->sc_synctl_wr |
1751 LSHIFT(((val & 0x3ffff) << 4) | (addr & 0xf), ATW_SYNCTL_DATA_MASK);
1752
1753 ATW_WRITE(sc, ATW_SYNCTL, reg);
1754
1755 for (i = 1000; --i >= 0; ) {
1756 DELAY(100);
1757 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1758 break;
1759 }
1760
1761 /* restore to acceptable starting condition */
1762 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1763
1764 if (i < 0) {
1765 printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1766 sc->sc_dev.dv_xname, reg);
1767 return ETIMEDOUT;
1768 }
1769 return 0;
1770 }
1771
1772 /* Read 18-bit data from the 4-bit address addr in Si4126
1773 * RF synthesizer and write the data to *val. Return 0 on success.
1774 *
1775 * XXX This does not seem to work. The ADM8211 must require more or
1776 * different magic to read the chip than to write it.
1777 */
1778 #ifdef ATW_DEBUG
1779 static int
1780 atw_si4126_read(sc, addr, val)
1781 struct atw_softc *sc;
1782 u_int addr;
1783 u_int *val;
1784 {
1785 u_int32_t reg;
1786 int i;
1787
1788 for (i = 1000; --i >= 0; ) {
1789 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1790 break;
1791 DELAY(100);
1792 }
1793
1794 if (i < 0) {
1795 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1796 sc->sc_dev.dv_xname);
1797 return ETIMEDOUT;
1798 }
1799
1800 reg = sc->sc_synctl_rd | LSHIFT(addr & 0xf, ATW_SYNCTL_DATA_MASK);
1801
1802 ATW_WRITE(sc, ATW_SYNCTL, reg);
1803
1804 for (i = 1000; --i >= 0; ) {
1805 DELAY(100);
1806 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1807 break;
1808 }
1809
1810 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1811
1812 if (i < 0) {
1813 printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1814 sc->sc_dev.dv_xname, reg);
1815 return ETIMEDOUT;
1816 }
1817 if (val != NULL)
1818 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1819 ATW_SYNCTL_DATA_MASK);
1820 return 0;
1821 }
1822 #endif /* ATW_DEBUG */
1823
1824 /* XXX is the endianness correct? test. */
1825 #define atw_calchash(addr) \
1826 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1827
1828 /*
1829 * atw_filter_setup:
1830 *
1831 * Set the ADM8211's receive filter.
1832 */
1833 static void
1834 atw_filter_setup(sc)
1835 struct atw_softc *sc;
1836 {
1837 struct ieee80211com *ic = &sc->sc_ic;
1838 struct ethercom *ec = &ic->ic_ec;
1839 struct ifnet *ifp = &sc->sc_ic.ic_if;
1840 int hash;
1841 u_int32_t hashes[2] = { 0, 0 };
1842 struct ether_multi *enm;
1843 struct ether_multistep step;
1844
1845 DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1846 sc->sc_dev.dv_xname, sc->sc_flags));
1847
1848 /*
1849 * If we're running, idle the receive engine. If we're NOT running,
1850 * we're being called from atw_init(), and our writing ATW_NAR will
1851 * start the transmit and receive processes in motion.
1852 */
1853 if (ifp->if_flags & IFF_RUNNING)
1854 atw_idle(sc, ATW_NAR_SR);
1855
1856 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1857
1858 ifp->if_flags &= ~IFF_ALLMULTI;
1859
1860 if (ifp->if_flags & IFF_PROMISC) {
1861 sc->sc_opmode |= ATW_NAR_PR;
1862 allmulti:
1863 ifp->if_flags |= IFF_ALLMULTI;
1864 goto setit;
1865 }
1866
1867 /*
1868 * Program the 64-bit multicast hash filter.
1869 */
1870 ETHER_FIRST_MULTI(step, ec, enm);
1871 while (enm != NULL) {
1872 /* XXX */
1873 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1874 ETHER_ADDR_LEN) != 0)
1875 goto allmulti;
1876
1877 hash = atw_calchash(enm->enm_addrlo);
1878 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1879 ETHER_NEXT_MULTI(step, enm);
1880 }
1881
1882 if (ifp->if_flags & IFF_BROADCAST) {
1883 hash = atw_calchash(etherbroadcastaddr);
1884 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1885 }
1886
1887 /* all bits set => hash is useless */
1888 if (~(hashes[0] & hashes[1]) == 0)
1889 goto allmulti;
1890
1891 setit:
1892 if (ifp->if_flags & IFF_ALLMULTI)
1893 sc->sc_opmode |= ATW_NAR_MM;
1894
1895 /* XXX in scan mode, do not filter packets. maybe this is
1896 * unnecessary.
1897 */
1898 if (ic->ic_state == IEEE80211_S_SCAN)
1899 sc->sc_opmode |= ATW_NAR_PR;
1900
1901 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1902 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1903 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1904 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1905 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1906
1907 DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1908 }
1909
1910 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1911 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1912 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1913 * no beacon with the preferred BSSID and SSID in the number of
1914 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1915 */
1916 static void
1917 atw_write_bssid(sc)
1918 struct atw_softc *sc;
1919 {
1920 struct ieee80211com *ic = &sc->sc_ic;
1921 u_int8_t *bssid;
1922
1923 bssid = ic->ic_bss->ni_bssid;
1924
1925 ATW_WRITE(sc, ATW_ABDA1,
1926 (ATW_READ(sc, ATW_ABDA1) &
1927 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1928 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1929 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1930
1931 ATW_WRITE(sc, ATW_BSSID0,
1932 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1933 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1934 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1935 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1936
1937 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1938 ether_sprintf(sc->sc_bssid)));
1939 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1940
1941 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1942 }
1943
1944 /* Tell the ADM8211 how many beacon intervals must pass without
1945 * receiving a beacon with the preferred BSSID & SSID set by
1946 * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
1947 * raised.
1948 */
1949 static void
1950 atw_write_bcn_thresh(sc)
1951 struct atw_softc *sc;
1952 {
1953 struct ieee80211com *ic = &sc->sc_ic;
1954 int lost_bcn_thresh;
1955
1956 /* Lose link after one second or 7 beacons, whichever comes
1957 * first, but do not lose link before 2 beacons are lost.
1958 *
1959 * In host AP mode, set the lost-beacon threshold to 0.
1960 */
1961 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1962 lost_bcn_thresh = 0;
1963 else
1964 lost_bcn_thresh = MAX(2,
1965 MIN(1000000/(IEEE80211_DUR_TU * ic->ic_bss->ni_intval), 7));
1966
1967 /* XXX resets wake-up status bits */
1968 ATW_WRITE(sc, ATW_WCSR,
1969 (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
1970 (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
1971
1972 DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
1973 sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
1974
1975 sc->sc_lost_bcn_thresh = lost_bcn_thresh;
1976
1977 DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
1978 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
1979 }
1980
1981 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1982 * 16-bit word.
1983 */
1984 static void
1985 atw_write_sram(sc, ofs, buf, buflen)
1986 struct atw_softc *sc;
1987 u_int ofs;
1988 u_int8_t *buf;
1989 u_int buflen;
1990 {
1991 u_int i;
1992 u_int8_t *ptr;
1993
1994 memcpy(&sc->sc_sram[ofs], buf, buflen);
1995
1996 if (ofs % 2 != 0) {
1997 ofs--;
1998 buflen++;
1999 }
2000
2001 if (buflen % 2 != 0)
2002 buflen++;
2003
2004 assert(buflen + ofs <= ATW_SRAM_SIZE);
2005
2006 ptr = &sc->sc_sram[ofs];
2007
2008 for (i = 0; i < buflen; i += 2) {
2009 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2010 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2011 DELAY(atw_writewep_delay);
2012
2013 ATW_WRITE(sc, ATW_WESK,
2014 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2015 DELAY(atw_writewep_delay);
2016 }
2017 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2018
2019 if (sc->sc_if.if_flags & IFF_DEBUG) {
2020 int n_octets = 0;
2021 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2022 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2023 for (i = 0; i < buflen; i++) {
2024 printf(" %02x", ptr[i]);
2025 if (++n_octets % 24 == 0)
2026 printf("\n");
2027 }
2028 if (n_octets % 24 != 0)
2029 printf("\n");
2030 }
2031 }
2032
2033 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2034 static void
2035 atw_write_wep(sc)
2036 struct atw_softc *sc;
2037 {
2038 struct ieee80211com *ic = &sc->sc_ic;
2039 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2040 u_int8_t buf[IEEE80211_WEP_NKID]
2041 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2042 u_int32_t reg;
2043 int i;
2044
2045 sc->sc_wepctl = 0;
2046 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2047
2048 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2049 return;
2050
2051 memset(&buf[0][0], 0, sizeof(buf));
2052
2053 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2054 if (ic->ic_nw_keys[i].wk_len > 5) {
2055 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2056 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2057 buf[i][1] = ATW_WEP_ENABLED;
2058 } else {
2059 buf[i][1] = 0;
2060 continue;
2061 }
2062 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2063 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2064 ic->ic_nw_keys[i].wk_len - 1);
2065 }
2066
2067 reg = ATW_READ(sc, ATW_MACTEST);
2068 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2069 reg &= ~ATW_MACTEST_KEYID_MASK;
2070 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2071 ATW_WRITE(sc, ATW_MACTEST, reg);
2072
2073 /* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2074 * throughout.)
2075 */
2076 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2077 if (sc->sc_if.if_flags & IFF_LINK2)
2078 sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2079
2080 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2081 sizeof(buf));
2082 }
2083
2084 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2085
2086 static void
2087 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2088 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2089 {
2090 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2091
2092 switch (subtype) {
2093 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2094 /* do nothing: hardware answers probe request */
2095 break;
2096 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2097 case IEEE80211_FC0_SUBTYPE_BEACON:
2098 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2099 break;
2100 default:
2101 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2102 break;
2103 }
2104 return;
2105 }
2106
2107 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2108 * of IBSSs with like SSID/channel but different BSSID. It joins the
2109 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2110 * convention. Possibly the ADMtek chip does this for us; I will have
2111 * to test to find out.
2112 *
2113 * XXX we should add the duration field of the received beacon to
2114 * the TSF time it contains before comparing it with the ADM8211's
2115 * TSF.
2116 */
2117 static void
2118 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2119 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2120 {
2121 struct atw_softc *sc;
2122 struct ieee80211_frame *wh;
2123 u_int64_t tsft, bcn_tsft;
2124 u_int32_t tsftl, tsfth;
2125 int do_print = 0;
2126
2127 sc = (struct atw_softc*)ic->ic_if.if_softc;
2128
2129 if (ic->ic_if.if_flags & IFF_DEBUG)
2130 do_print = (ic->ic_if.if_flags & IFF_LINK0)
2131 ? 1 : ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval);
2132
2133 wh = mtod(m0, struct ieee80211_frame *);
2134
2135 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2136
2137 if (ic->ic_state != IEEE80211_S_RUN) {
2138 if (do_print)
2139 printf("%s: atw_recv_beacon: not running\n",
2140 sc->sc_dev.dv_xname);
2141 return;
2142 }
2143
2144 if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2145 ic->ic_bss->ni_chan)) == NULL) {
2146 if (do_print)
2147 printf("%s: atw_recv_beacon: no node %s\n",
2148 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2149 return;
2150 }
2151
2152 if (ieee80211_match_bss(ic, ni) != 0) {
2153 if (do_print)
2154 printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2155 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2156 return;
2157 }
2158
2159 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2160 return;
2161
2162 if (do_print)
2163 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2164 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2165
2166 if (ic->ic_opmode != IEEE80211_M_IBSS)
2167 return;
2168
2169 /* If we read TSFTL right before rollover, we read a TSF timer
2170 * that is too high rather than too low. This prevents a spurious
2171 * synchronization down the line, however, our IBSS could suffer
2172 * from a creeping TSF....
2173 */
2174 tsftl = ATW_READ(sc, ATW_TSFTL);
2175 tsfth = ATW_READ(sc, ATW_TSFTH);
2176
2177 tsft = (u_int64_t)tsfth << 32 | tsftl;
2178 bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2179
2180 if (do_print)
2181 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2182 sc->sc_dev.dv_xname, tsft, bcn_tsft);
2183
2184 /* we are faster, let the other guy catch up */
2185 if (bcn_tsft < tsft)
2186 return;
2187
2188 if (do_print)
2189 printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2190 ether_sprintf(wh->i_addr2));
2191
2192 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2193
2194 #if 0
2195 atw_tsf(sc);
2196 #endif
2197
2198 /* negotiate rates with new IBSS */
2199 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2200 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2201 if (ni->ni_rates.rs_nrates == 0) {
2202 printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2203 ether_sprintf(ni->ni_bssid));
2204 return;
2205 }
2206
2207 if (do_print) {
2208 printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2209 ether_sprintf(ic->ic_bss->ni_bssid));
2210 printf("%s ", ether_sprintf(ni->ni_bssid));
2211 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2212 }
2213
2214 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2215
2216 atw_write_bssid(sc);
2217 atw_write_bcn_thresh(sc);
2218 atw_start_beacon(sc, 1);
2219 }
2220
2221 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2222 * In ad hoc mode, the SSID is written to the beacons sent by the
2223 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2224 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2225 * indications.
2226 */
2227 static void
2228 atw_write_ssid(sc)
2229 struct atw_softc *sc;
2230 {
2231 struct ieee80211com *ic = &sc->sc_ic;
2232 /* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2233 u_int8_t buf[1 /* length */ + IEEE80211_NWID_LEN +
2234 1 /* for a round number */];
2235
2236 memset(buf, 0, sizeof(buf));
2237 buf[0] = ic->ic_bss->ni_esslen;
2238 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2239
2240 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2241 }
2242
2243 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2244 * In ad hoc mode, the supported rates are written to beacons sent by the
2245 * ADM8211.
2246 */
2247 static void
2248 atw_write_sup_rates(sc)
2249 struct atw_softc *sc;
2250 {
2251 struct ieee80211com *ic = &sc->sc_ic;
2252 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2253 * supported rates
2254 */
2255 u_int8_t buf[1 /* length */ + IEEE80211_RATE_SIZE +
2256 1 /* for a round number */];
2257
2258 memset(buf, 0, sizeof(buf));
2259
2260 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2261
2262 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2263 ic->ic_bss->ni_rates.rs_nrates);
2264
2265 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2266 }
2267
2268 /* Start/stop sending beacons. */
2269 void
2270 atw_start_beacon(struct atw_softc *sc, int start)
2271 {
2272 struct ieee80211com *ic = &sc->sc_ic;
2273 u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2274
2275 if (ATW_IS_ENABLED(sc) == 0)
2276 return;
2277
2278 len = capinfo = 0;
2279
2280 /* start beacons */
2281 len = sizeof(struct ieee80211_frame) +
2282 8 /* timestamp */ + 2 /* beacon interval */ +
2283 2 /* capability info */ +
2284 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2285 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2286 3 /* DS parameters */ +
2287 IEEE80211_CRC_LEN;
2288
2289 reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2290
2291 reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2292
2293 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2294 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2295
2296 if (!start)
2297 return;
2298
2299 /* TBD use ni_capinfo */
2300
2301 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2302 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2303 if (ic->ic_flags & IEEE80211_F_WEPON)
2304 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2305
2306 switch (ic->ic_opmode) {
2307 case IEEE80211_M_IBSS:
2308 len += 4; /* IBSS parameters */
2309 capinfo |= IEEE80211_CAPINFO_IBSS;
2310 break;
2311 case IEEE80211_M_HOSTAP:
2312 /* XXX 6-byte minimum TIM */
2313 len += atw_beacon_len_adjust;
2314 capinfo |= IEEE80211_CAPINFO_ESS;
2315 break;
2316 default:
2317 return;
2318 }
2319
2320 reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2321 reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2322
2323 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2324 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2325
2326 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2327 sc->sc_dev.dv_xname, reg_bcnt));
2328
2329 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2330 sc->sc_dev.dv_xname, reg_cap1));
2331 }
2332
2333 /* First beacon was sent at time 0 microseconds, current time is
2334 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2335 * microseconds. Return the expected time in microseconds for the
2336 * beacon after next.
2337 */
2338 static __inline u_int64_t
2339 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2340 {
2341 return tsft + (tbtt - tsft % tbtt);
2342 }
2343
2344 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2345 * the ieee80211com.
2346 *
2347 * Predict the next target beacon transmission time (TBTT) and
2348 * write it to the ADM8211.
2349 */
2350 static void
2351 atw_tsf(struct atw_softc *sc)
2352 {
2353 #define TBTTOFS 20 /* TU */
2354
2355 struct ieee80211com *ic = &sc->sc_ic;
2356 u_int64_t tsft, tbtt;
2357
2358 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2359 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2360 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2361 tsft = ATW_READ(sc, ATW_TSFTH);
2362 tsft <<= 32;
2363 tsft |= ATW_READ(sc, ATW_TSFTL);
2364 *(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2365 } else
2366 tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2367
2368 tbtt = atw_predict_beacon(tsft,
2369 ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2370
2371 /* skip one more beacon so that the TBTT cannot pass before
2372 * we've programmed it, and also so that we can subtract a
2373 * few TU so that we wake a little before TBTT.
2374 */
2375 tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2376
2377 /* wake up a little early */
2378 tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2379
2380 DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2381 sc->sc_dev.dv_xname, tsft, tbtt));
2382
2383 ATW_WRITE(sc, ATW_TOFS1,
2384 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2385 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2386 LSHIFT(
2387 MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2388 ATW_TOFS1_TBTTPRE_MASK));
2389 #undef TBTTOFS
2390 }
2391
2392 static void
2393 atw_next_scan(void *arg)
2394 {
2395 struct atw_softc *sc = arg;
2396 struct ieee80211com *ic = &sc->sc_ic;
2397 struct ifnet *ifp = &ic->ic_if;
2398 int s;
2399
2400 /* don't call atw_start w/o network interrupts blocked */
2401 s = splnet();
2402 if (ic->ic_state == IEEE80211_S_SCAN)
2403 ieee80211_next_scan(ifp);
2404 splx(s);
2405 }
2406
2407 /* Synchronize the hardware state with the software state. */
2408 static int
2409 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2410 {
2411 struct ifnet *ifp = &ic->ic_if;
2412 struct atw_softc *sc = ifp->if_softc;
2413 enum ieee80211_state ostate;
2414 int error;
2415
2416 ostate = ic->ic_state;
2417
2418 if (nstate == IEEE80211_S_INIT) {
2419 callout_stop(&sc->sc_scan_ch);
2420 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2421 atw_start_beacon(sc, 0);
2422 return (*sc->sc_newstate)(ic, nstate, arg);
2423 }
2424
2425 if ((error = atw_tune(sc)) != 0)
2426 return error;
2427
2428 switch (nstate) {
2429 case IEEE80211_S_ASSOC:
2430 break;
2431 case IEEE80211_S_INIT:
2432 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2433 break;
2434 case IEEE80211_S_SCAN:
2435 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2436 atw_write_bssid(sc);
2437
2438 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2439 atw_next_scan, sc);
2440
2441 break;
2442 case IEEE80211_S_RUN:
2443 if (ic->ic_opmode == IEEE80211_M_STA)
2444 break;
2445 /*FALLTHROUGH*/
2446 case IEEE80211_S_AUTH:
2447 atw_write_bssid(sc);
2448 atw_write_bcn_thresh(sc);
2449 atw_write_ssid(sc);
2450 atw_write_sup_rates(sc);
2451
2452 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2453 ic->ic_opmode == IEEE80211_M_MONITOR)
2454 break;
2455
2456 /* set listen interval
2457 * XXX do software units agree w/ hardware?
2458 */
2459 ATW_WRITE(sc, ATW_BPLI,
2460 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2461 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2462 ATW_BPLI_LI_MASK));
2463
2464 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2465 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2466
2467 atw_tsf(sc);
2468 break;
2469 }
2470
2471 if (nstate != IEEE80211_S_SCAN)
2472 callout_stop(&sc->sc_scan_ch);
2473
2474 if (nstate == IEEE80211_S_RUN &&
2475 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2476 ic->ic_opmode == IEEE80211_M_IBSS))
2477 atw_start_beacon(sc, 1);
2478 else
2479 atw_start_beacon(sc, 0);
2480
2481 return (*sc->sc_newstate)(ic, nstate, arg);
2482 }
2483
2484 /*
2485 * atw_add_rxbuf:
2486 *
2487 * Add a receive buffer to the indicated descriptor.
2488 */
2489 int
2490 atw_add_rxbuf(sc, idx)
2491 struct atw_softc *sc;
2492 int idx;
2493 {
2494 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2495 struct mbuf *m;
2496 int error;
2497
2498 MGETHDR(m, M_DONTWAIT, MT_DATA);
2499 if (m == NULL)
2500 return (ENOBUFS);
2501
2502 MCLGET(m, M_DONTWAIT);
2503 if ((m->m_flags & M_EXT) == 0) {
2504 m_freem(m);
2505 return (ENOBUFS);
2506 }
2507
2508 if (rxs->rxs_mbuf != NULL)
2509 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2510
2511 rxs->rxs_mbuf = m;
2512
2513 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2514 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2515 BUS_DMA_READ|BUS_DMA_NOWAIT);
2516 if (error) {
2517 printf("%s: can't load rx DMA map %d, error = %d\n",
2518 sc->sc_dev.dv_xname, idx, error);
2519 panic("atw_add_rxbuf"); /* XXX */
2520 }
2521
2522 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2523 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2524
2525 ATW_INIT_RXDESC(sc, idx);
2526
2527 return (0);
2528 }
2529
2530 /*
2531 * atw_stop: [ ifnet interface function ]
2532 *
2533 * Stop transmission on the interface.
2534 */
2535 void
2536 atw_stop(ifp, disable)
2537 struct ifnet *ifp;
2538 int disable;
2539 {
2540 struct atw_softc *sc = ifp->if_softc;
2541 struct ieee80211com *ic = &sc->sc_ic;
2542 struct atw_txsoft *txs;
2543
2544 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2545
2546 /* Disable interrupts. */
2547 ATW_WRITE(sc, ATW_IER, 0);
2548
2549 /* Stop the transmit and receive processes. */
2550 sc->sc_opmode = 0;
2551 ATW_WRITE(sc, ATW_NAR, 0);
2552 ATW_WRITE(sc, ATW_TDBD, 0);
2553 ATW_WRITE(sc, ATW_TDBP, 0);
2554 ATW_WRITE(sc, ATW_RDB, 0);
2555
2556 /*
2557 * Release any queued transmit buffers.
2558 */
2559 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2560 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2561 if (txs->txs_mbuf != NULL) {
2562 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2563 m_freem(txs->txs_mbuf);
2564 txs->txs_mbuf = NULL;
2565 }
2566 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2567 }
2568
2569 if (disable) {
2570 atw_rxdrain(sc);
2571 atw_disable(sc);
2572 }
2573
2574 /*
2575 * Mark the interface down and cancel the watchdog timer.
2576 */
2577 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2578 ifp->if_timer = 0;
2579
2580 /* XXX */
2581 atw_reset(sc);
2582 }
2583
2584 /*
2585 * atw_rxdrain:
2586 *
2587 * Drain the receive queue.
2588 */
2589 void
2590 atw_rxdrain(sc)
2591 struct atw_softc *sc;
2592 {
2593 struct atw_rxsoft *rxs;
2594 int i;
2595
2596 for (i = 0; i < ATW_NRXDESC; i++) {
2597 rxs = &sc->sc_rxsoft[i];
2598 if (rxs->rxs_mbuf == NULL)
2599 continue;
2600 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2601 m_freem(rxs->rxs_mbuf);
2602 rxs->rxs_mbuf = NULL;
2603 }
2604 }
2605
2606 /*
2607 * atw_detach:
2608 *
2609 * Detach an ADM8211 interface.
2610 */
2611 int
2612 atw_detach(sc)
2613 struct atw_softc *sc;
2614 {
2615 struct ifnet *ifp = &sc->sc_ic.ic_if;
2616 struct atw_rxsoft *rxs;
2617 struct atw_txsoft *txs;
2618 int i;
2619
2620 /*
2621 * Succeed now if there isn't any work to do.
2622 */
2623 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2624 return (0);
2625
2626 ieee80211_ifdetach(ifp);
2627 if_detach(ifp);
2628
2629 for (i = 0; i < ATW_NRXDESC; i++) {
2630 rxs = &sc->sc_rxsoft[i];
2631 if (rxs->rxs_mbuf != NULL) {
2632 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2633 m_freem(rxs->rxs_mbuf);
2634 rxs->rxs_mbuf = NULL;
2635 }
2636 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2637 }
2638 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2639 txs = &sc->sc_txsoft[i];
2640 if (txs->txs_mbuf != NULL) {
2641 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2642 m_freem(txs->txs_mbuf);
2643 txs->txs_mbuf = NULL;
2644 }
2645 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2646 }
2647 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2648 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2649 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2650 sizeof(struct atw_control_data));
2651 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2652
2653 shutdownhook_disestablish(sc->sc_sdhook);
2654 powerhook_disestablish(sc->sc_powerhook);
2655
2656 if (sc->sc_srom)
2657 free(sc->sc_srom, M_DEVBUF);
2658
2659 return (0);
2660 }
2661
2662 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2663 void
2664 atw_shutdown(arg)
2665 void *arg;
2666 {
2667 struct atw_softc *sc = arg;
2668
2669 atw_stop(&sc->sc_ic.ic_if, 1);
2670 }
2671
2672 int
2673 atw_intr(arg)
2674 void *arg;
2675 {
2676 struct atw_softc *sc = arg;
2677 struct ifnet *ifp = &sc->sc_ic.ic_if;
2678 u_int32_t status, rxstatus, txstatus, linkstatus;
2679 int handled = 0, txthresh;
2680
2681 #ifdef DEBUG
2682 if (ATW_IS_ENABLED(sc) == 0)
2683 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2684 #endif
2685
2686 /*
2687 * If the interface isn't running, the interrupt couldn't
2688 * possibly have come from us.
2689 */
2690 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2691 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2692 return (0);
2693
2694 for (;;) {
2695 status = ATW_READ(sc, ATW_STSR);
2696
2697 if (status)
2698 ATW_WRITE(sc, ATW_STSR, status);
2699
2700 if (sc->sc_intr_ack != NULL)
2701 (*sc->sc_intr_ack)(sc);
2702
2703 #ifdef ATW_DEBUG
2704 #define PRINTINTR(flag) do { \
2705 if ((status & flag) != 0) { \
2706 printf("%s" #flag, delim); \
2707 delim = ","; \
2708 } \
2709 } while (0)
2710
2711 if (atw_debug > 1 && status) {
2712 const char *delim = "<";
2713
2714 printf("%s: reg[STSR] = %x",
2715 sc->sc_dev.dv_xname, status);
2716
2717 PRINTINTR(ATW_INTR_FBE);
2718 PRINTINTR(ATW_INTR_LINKOFF);
2719 PRINTINTR(ATW_INTR_LINKON);
2720 PRINTINTR(ATW_INTR_RCI);
2721 PRINTINTR(ATW_INTR_RDU);
2722 PRINTINTR(ATW_INTR_REIS);
2723 PRINTINTR(ATW_INTR_RPS);
2724 PRINTINTR(ATW_INTR_TCI);
2725 PRINTINTR(ATW_INTR_TDU);
2726 PRINTINTR(ATW_INTR_TLT);
2727 PRINTINTR(ATW_INTR_TPS);
2728 PRINTINTR(ATW_INTR_TRT);
2729 PRINTINTR(ATW_INTR_TUF);
2730 PRINTINTR(ATW_INTR_BCNTC);
2731 PRINTINTR(ATW_INTR_ATIME);
2732 PRINTINTR(ATW_INTR_TBTT);
2733 PRINTINTR(ATW_INTR_TSCZ);
2734 PRINTINTR(ATW_INTR_TSFTF);
2735 printf(">\n");
2736 }
2737 #undef PRINTINTR
2738 #endif /* ATW_DEBUG */
2739
2740 if ((status & sc->sc_inten) == 0)
2741 break;
2742
2743 handled = 1;
2744
2745 rxstatus = status & sc->sc_rxint_mask;
2746 txstatus = status & sc->sc_txint_mask;
2747 linkstatus = status & sc->sc_linkint_mask;
2748
2749 if (linkstatus) {
2750 atw_linkintr(sc, linkstatus);
2751 }
2752
2753 if (rxstatus) {
2754 /* Grab any new packets. */
2755 atw_rxintr(sc);
2756
2757 if (rxstatus & ATW_INTR_RDU) {
2758 printf("%s: receive ring overrun\n",
2759 sc->sc_dev.dv_xname);
2760 /* Get the receive process going again. */
2761 ATW_WRITE(sc, ATW_RDR, 0x1);
2762 break;
2763 }
2764 }
2765
2766 if (txstatus) {
2767 /* Sweep up transmit descriptors. */
2768 atw_txintr(sc);
2769
2770 if (txstatus & ATW_INTR_TLT)
2771 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2772 sc->sc_dev.dv_xname));
2773
2774 if (txstatus & ATW_INTR_TRT)
2775 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2776 sc->sc_dev.dv_xname));
2777
2778 /* If Tx under-run, increase our transmit threshold
2779 * if another is available.
2780 */
2781 txthresh = sc->sc_txthresh + 1;
2782 if ((txstatus & ATW_INTR_TUF) &&
2783 sc->sc_txth[txthresh].txth_name != NULL) {
2784 /* Idle the transmit process. */
2785 atw_idle(sc, ATW_NAR_ST);
2786
2787 sc->sc_txthresh = txthresh;
2788 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2789 sc->sc_opmode |=
2790 sc->sc_txth[txthresh].txth_opmode;
2791 printf("%s: transmit underrun; new "
2792 "threshold: %s\n", sc->sc_dev.dv_xname,
2793 sc->sc_txth[txthresh].txth_name);
2794
2795 /* Set the new threshold and restart
2796 * the transmit process.
2797 */
2798 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2799 /* XXX Log every Nth underrun from
2800 * XXX now on?
2801 */
2802 }
2803 }
2804
2805 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2806 if (status & ATW_INTR_TPS)
2807 printf("%s: transmit process stopped\n",
2808 sc->sc_dev.dv_xname);
2809 if (status & ATW_INTR_RPS)
2810 printf("%s: receive process stopped\n",
2811 sc->sc_dev.dv_xname);
2812 (void)atw_init(ifp);
2813 break;
2814 }
2815
2816 if (status & ATW_INTR_FBE) {
2817 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2818 (void)atw_init(ifp);
2819 break;
2820 }
2821
2822 /*
2823 * Not handled:
2824 *
2825 * Transmit buffer unavailable -- normal
2826 * condition, nothing to do, really.
2827 *
2828 * Early receive interrupt -- not available on
2829 * all chips, we just use RI. We also only
2830 * use single-segment receive DMA, so this
2831 * is mostly useless.
2832 *
2833 * TBD others
2834 */
2835 }
2836
2837 /* Try to get more packets going. */
2838 atw_start(ifp);
2839
2840 return (handled);
2841 }
2842
2843 /*
2844 * atw_idle:
2845 *
2846 * Cause the transmit and/or receive processes to go idle.
2847 *
2848 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2849 * process in STSR if I clear SR or ST after the process has already
2850 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2851 * do not seem to be too reliable. Perhaps I have the sense of the
2852 * Rx bits switched with the Tx bits?
2853 */
2854 void
2855 atw_idle(sc, bits)
2856 struct atw_softc *sc;
2857 u_int32_t bits;
2858 {
2859 u_int32_t ackmask = 0, opmode, stsr, test0;
2860 int i, s;
2861
2862 /* without this, somehow we run concurrently w/ interrupt handler */
2863 s = splnet();
2864
2865 opmode = sc->sc_opmode & ~bits;
2866
2867 if (bits & ATW_NAR_SR)
2868 ackmask |= ATW_INTR_RPS;
2869
2870 if (bits & ATW_NAR_ST) {
2871 ackmask |= ATW_INTR_TPS;
2872 /* set ATW_NAR_HF to flush TX FIFO. */
2873 opmode |= ATW_NAR_HF;
2874 }
2875
2876 ATW_WRITE(sc, ATW_NAR, opmode);
2877
2878 for (i = 0; i < 1000; i++) {
2879 stsr = ATW_READ(sc, ATW_STSR);
2880 if ((stsr & ackmask) == ackmask)
2881 break;
2882 DELAY(10);
2883 }
2884
2885 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2886
2887 if ((stsr & ackmask) == ackmask)
2888 goto out;
2889
2890 test0 = ATW_READ(sc, ATW_TEST0);
2891
2892 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2893 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2894 printf("%s: transmit process not idle [%s]\n",
2895 sc->sc_dev.dv_xname,
2896 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2897 printf("%s: bits %08x test0 %08x stsr %08x\n",
2898 sc->sc_dev.dv_xname, bits, test0, stsr);
2899 }
2900
2901 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2902 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2903 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2904 sc->sc_dev.dv_xname,
2905 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2906 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2907 sc->sc_dev.dv_xname, bits, test0, stsr));
2908 }
2909 out:
2910 splx(s);
2911 return;
2912 }
2913
2914 /*
2915 * atw_linkintr:
2916 *
2917 * Helper; handle link-status interrupts.
2918 */
2919 void
2920 atw_linkintr(sc, linkstatus)
2921 struct atw_softc *sc;
2922 u_int32_t linkstatus;
2923 {
2924 struct ieee80211com *ic = &sc->sc_ic;
2925
2926 if (ic->ic_state != IEEE80211_S_RUN)
2927 return;
2928
2929 if (linkstatus & ATW_INTR_LINKON) {
2930 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2931 sc->sc_rescan_timer = 0;
2932 } else if (linkstatus & ATW_INTR_LINKOFF) {
2933 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2934 switch (ic->ic_opmode) {
2935 case IEEE80211_M_IBSS:
2936 if (ic->ic_flags & IEEE80211_F_SIBSS)
2937 return;
2938 /*FALLTHROUGH*/
2939 case IEEE80211_M_STA:
2940 sc->sc_rescan_timer = 3;
2941 ic->ic_if.if_timer = 1;
2942 break;
2943 default:
2944 break;
2945 }
2946 }
2947 }
2948
2949 /*
2950 * atw_rxintr:
2951 *
2952 * Helper; handle receive interrupts.
2953 */
2954 void
2955 atw_rxintr(sc)
2956 struct atw_softc *sc;
2957 {
2958 static int rate_tbl[] = {2, 4, 11, 22, 44};
2959 struct ieee80211com *ic = &sc->sc_ic;
2960 struct ieee80211_node *ni;
2961 struct ieee80211_frame *wh;
2962 struct ifnet *ifp = &ic->ic_if;
2963 struct atw_rxsoft *rxs;
2964 struct mbuf *m;
2965 u_int32_t rxstat;
2966 int i, len, rate, rate0, rssi;
2967
2968 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2969 rxs = &sc->sc_rxsoft[i];
2970
2971 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2972
2973 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2974 rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2975 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2976
2977 if (rxstat & ATW_RXSTAT_OWN)
2978 break; /* We have processed all receive buffers. */
2979
2980 DPRINTF3(sc,
2981 ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2982 sc->sc_dev.dv_xname,
2983 sc->sc_rxdescs[i].ar_stat,
2984 sc->sc_rxdescs[i].ar_rssi,
2985 sc->sc_rxdescs[i].ar_buf1,
2986 sc->sc_rxdescs[i].ar_buf2));
2987
2988 /*
2989 * Make sure the packet fit in one buffer. This should
2990 * always be the case.
2991 */
2992 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2993 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2994 printf("%s: incoming packet spilled, resetting\n",
2995 sc->sc_dev.dv_xname);
2996 (void)atw_init(ifp);
2997 return;
2998 }
2999
3000 /*
3001 * If an error occurred, update stats, clear the status
3002 * word, and leave the packet buffer in place. It will
3003 * simply be reused the next time the ring comes around.
3004 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3005 * error.
3006 */
3007
3008 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3009 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3010 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3011 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3012 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3013 ATW_RXSTAT_ICVE)) != 0)) {
3014 #define PRINTERR(bit, str) \
3015 if (rxstat & (bit)) \
3016 printf("%s: receive error: %s\n", \
3017 sc->sc_dev.dv_xname, str)
3018 ifp->if_ierrors++;
3019 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3020 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3021 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3022 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3023 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3024 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3025 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3026 #undef PRINTERR
3027 ATW_INIT_RXDESC(sc, i);
3028 continue;
3029 }
3030
3031 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3032 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3033
3034 /*
3035 * No errors; receive the packet. Note the ADM8211
3036 * includes the CRC in promiscuous mode.
3037 */
3038 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3039
3040 /*
3041 * Allocate a new mbuf cluster. If that fails, we are
3042 * out of memory, and must drop the packet and recycle
3043 * the buffer that's already attached to this descriptor.
3044 */
3045 m = rxs->rxs_mbuf;
3046 if (atw_add_rxbuf(sc, i) != 0) {
3047 ifp->if_ierrors++;
3048 ATW_INIT_RXDESC(sc, i);
3049 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3050 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3051 continue;
3052 }
3053
3054 ifp->if_ipackets++;
3055 if (sc->sc_opmode & ATW_NAR_PR)
3056 m->m_flags |= M_HASFCS;
3057 m->m_pkthdr.rcvif = ifp;
3058 m->m_pkthdr.len = m->m_len = len;
3059
3060 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3061 rate = 0;
3062 else
3063 rate = rate_tbl[rate0];
3064
3065 #if NBPFILTER > 0
3066 /* Pass this up to any BPF listeners. */
3067 if (sc->sc_radiobpf != NULL) {
3068 struct mbuf mb;
3069
3070 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3071
3072 tap->ar_rate = rate;
3073 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3074 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3075
3076 /* TBD verify units are dB */
3077 tap->ar_antsignal = rssi;
3078 /* TBD tap->ar_flags */
3079
3080 M_COPY_PKTHDR(&mb, m);
3081 mb.m_data = (caddr_t)tap;
3082 mb.m_len = tap->ar_ihdr.it_len;
3083 mb.m_next = m;
3084 mb.m_pkthdr.len += mb.m_len;
3085 bpf_mtap(sc->sc_radiobpf, &mb);
3086 }
3087 #endif /* NPBFILTER > 0 */
3088
3089 wh = mtod(m, struct ieee80211_frame *);
3090 ni = ieee80211_find_rxnode(ic, wh);
3091 ieee80211_input(ifp, m, ni, rssi, 0);
3092 /*
3093 * The frame may have caused the node to be marked for
3094 * reclamation (e.g. in response to a DEAUTH message)
3095 * so use free_node here instead of unref_node.
3096 */
3097 if (ni == ic->ic_bss)
3098 ieee80211_unref_node(&ni);
3099 else
3100 ieee80211_free_node(ic, ni);
3101 }
3102
3103 /* Update the receive pointer. */
3104 sc->sc_rxptr = i;
3105 }
3106
3107 /*
3108 * atw_txintr:
3109 *
3110 * Helper; handle transmit interrupts.
3111 */
3112 void
3113 atw_txintr(sc)
3114 struct atw_softc *sc;
3115 {
3116 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3117 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3118 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3119 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3120
3121 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3122 struct ifnet *ifp = &sc->sc_ic.ic_if;
3123 struct atw_txsoft *txs;
3124 u_int32_t txstat;
3125
3126 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3127 sc->sc_dev.dv_xname, sc->sc_flags));
3128
3129 ifp->if_flags &= ~IFF_OACTIVE;
3130
3131 /*
3132 * Go through our Tx list and free mbufs for those
3133 * frames that have been transmitted.
3134 */
3135 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3136 ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3137 txs->txs_ndescs,
3138 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3139
3140 #ifdef ATW_DEBUG
3141 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3142 int i;
3143 printf(" txsoft %p transmit chain:\n", txs);
3144 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3145 printf(" descriptor %d:\n", i);
3146 printf(" at_status: 0x%08x\n",
3147 le32toh(sc->sc_txdescs[i].at_stat));
3148 printf(" at_flags: 0x%08x\n",
3149 le32toh(sc->sc_txdescs[i].at_flags));
3150 printf(" at_buf1: 0x%08x\n",
3151 le32toh(sc->sc_txdescs[i].at_buf1));
3152 printf(" at_buf2: 0x%08x\n",
3153 le32toh(sc->sc_txdescs[i].at_buf2));
3154 if (i == txs->txs_lastdesc)
3155 break;
3156 }
3157 }
3158 #endif
3159
3160 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3161 if (txstat & ATW_TXSTAT_OWN)
3162 break;
3163
3164 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3165
3166 sc->sc_txfree += txs->txs_ndescs;
3167
3168 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3169 0, txs->txs_dmamap->dm_mapsize,
3170 BUS_DMASYNC_POSTWRITE);
3171 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3172 m_freem(txs->txs_mbuf);
3173 txs->txs_mbuf = NULL;
3174
3175 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3176
3177 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3178 (txstat & TXSTAT_ERRMASK) != 0) {
3179 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3180 txstat_buf, sizeof(txstat_buf));
3181 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3182 txstat_buf,
3183 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3184 }
3185
3186 /*
3187 * Check for errors and collisions.
3188 */
3189 if (txstat & ATW_TXSTAT_TUF)
3190 sc->sc_stats.ts_tx_tuf++;
3191 if (txstat & ATW_TXSTAT_TLT)
3192 sc->sc_stats.ts_tx_tlt++;
3193 if (txstat & ATW_TXSTAT_TRT)
3194 sc->sc_stats.ts_tx_trt++;
3195 if (txstat & ATW_TXSTAT_TRO)
3196 sc->sc_stats.ts_tx_tro++;
3197 if (txstat & ATW_TXSTAT_SOFBR) {
3198 sc->sc_stats.ts_tx_sofbr++;
3199 }
3200
3201 if ((txstat & ATW_TXSTAT_ES) == 0)
3202 ifp->if_collisions +=
3203 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3204 else
3205 ifp->if_oerrors++;
3206
3207 ifp->if_opackets++;
3208 }
3209
3210 /*
3211 * If there are no more pending transmissions, cancel the watchdog
3212 * timer.
3213 */
3214 if (txs == NULL)
3215 sc->sc_tx_timer = 0;
3216 #undef TXSTAT_ERRMASK
3217 #undef TXSTAT_FMT
3218 }
3219
3220 /*
3221 * atw_watchdog: [ifnet interface function]
3222 *
3223 * Watchdog timer handler.
3224 */
3225 void
3226 atw_watchdog(ifp)
3227 struct ifnet *ifp;
3228 {
3229 struct atw_softc *sc = ifp->if_softc;
3230 struct ieee80211com *ic = &sc->sc_ic;
3231
3232 ifp->if_timer = 0;
3233 if (ATW_IS_ENABLED(sc) == 0)
3234 return;
3235
3236 if (sc->sc_rescan_timer) {
3237 if (--sc->sc_rescan_timer == 0)
3238 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3239 }
3240 if (sc->sc_tx_timer) {
3241 if (--sc->sc_tx_timer == 0 &&
3242 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3243 printf("%s: transmit timeout\n", ifp->if_xname);
3244 ifp->if_oerrors++;
3245 (void)atw_init(ifp);
3246 atw_start(ifp);
3247 }
3248 }
3249 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3250 ifp->if_timer = 1;
3251 ieee80211_watchdog(ifp);
3252 }
3253
3254 /* Compute the 802.11 Duration field and the PLCP Length fields for
3255 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3256 * Write the fields to the ADM8211 Tx header, frm.
3257 *
3258 * TBD use the fragmentation threshold to find the right duration for
3259 * the first & last fragments.
3260 *
3261 * TBD make certain of the duration fields applied by the ADM8211 to each
3262 * fragment. I think that the ADM8211 knows how to subtract the CTS
3263 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3264 * I also think that the ADM8211 does *some* arithmetic for us, because
3265 * otherwise I think we would have to set a first duration for CTS/first
3266 * fragment, a second duration for fragments between the first and the
3267 * last, and a third duration for the last fragment.
3268 *
3269 * TBD make certain that duration fields reflect addition of FCS/WEP
3270 * and correct duration arithmetic as necessary.
3271 */
3272 static void
3273 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3274 int len)
3275 {
3276 int remainder;
3277
3278 /* deal also with encrypted fragments */
3279 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3280 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3281 sc->sc_dev.dv_xname));
3282 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3283 IEEE80211_WEP_CRCLEN;
3284 }
3285
3286 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3287 * duration (XXX added by MAC?).
3288 */
3289 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3290 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3291
3292 if (rate <= 4)
3293 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3294 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3295 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3296 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3297 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3298 else
3299 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3300 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3301 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3302 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3303 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3304
3305 /* lengthen duration if long preamble */
3306 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3307 frm->atw_head_dur +=
3308 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3309 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3310 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3311 IEEE80211_DUR_DS_FAST_PLCPHDR);
3312
3313 if (remainder != 0)
3314 frm->atw_head_dur++;
3315
3316 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3317 (rate == 2 || rate == 4)) {
3318 /* derived from Linux: how could this be right? */
3319 frm->atw_head_plcplen = frm->atw_head_dur;
3320 } else {
3321 frm->atw_head_plcplen = (16 * len) / rate;
3322 remainder = (80 * len) % (rate * 5);
3323
3324 if (remainder != 0) {
3325 frm->atw_head_plcplen++;
3326
3327 /* XXX magic */
3328 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3329 rate == 22 && remainder <= 30)
3330 frm->atw_head_plcplen |= 0x8000;
3331 }
3332 }
3333 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3334 htole16(frm->atw_head_plcplen);
3335 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3336 }
3337
3338 #ifdef ATW_DEBUG
3339 static void
3340 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3341 {
3342 struct atw_softc *sc = ifp->if_softc;
3343 struct mbuf *m;
3344 int i, noctets = 0;
3345
3346 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3347 m0->m_pkthdr.len);
3348
3349 for (m = m0; m; m = m->m_next) {
3350 if (m->m_len == 0)
3351 continue;
3352 for (i = 0; i < m->m_len; i++) {
3353 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3354 if (++noctets % 24 == 0)
3355 printf("\n");
3356 }
3357 }
3358 printf("%s%s: %d bytes emitted\n",
3359 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3360 }
3361 #endif /* ATW_DEBUG */
3362
3363 /*
3364 * atw_start: [ifnet interface function]
3365 *
3366 * Start packet transmission on the interface.
3367 */
3368 void
3369 atw_start(ifp)
3370 struct ifnet *ifp;
3371 {
3372 struct atw_softc *sc = ifp->if_softc;
3373 struct ieee80211com *ic = &sc->sc_ic;
3374 struct ieee80211_node *ni;
3375 struct ieee80211_frame *wh;
3376 struct atw_frame *hh;
3377 struct mbuf *m0, *m;
3378 struct atw_txsoft *txs, *last_txs;
3379 struct atw_txdesc *txd;
3380 int do_encrypt, rate;
3381 bus_dmamap_t dmamap;
3382 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3383
3384 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3385 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3386
3387 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3388 return;
3389
3390 #if 0 /* TBD ??? */
3391 if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3392 return;
3393 #endif
3394
3395 /*
3396 * Remember the previous number of free descriptors and
3397 * the first descriptor we'll use.
3398 */
3399 ofree = sc->sc_txfree;
3400 firsttx = sc->sc_txnext;
3401
3402 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3403 sc->sc_dev.dv_xname, ofree, firsttx));
3404
3405 /*
3406 * Loop through the send queue, setting up transmit descriptors
3407 * until we drain the queue, or use up all available transmit
3408 * descriptors.
3409 */
3410 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3411 sc->sc_txfree != 0) {
3412
3413 do_encrypt = 0;
3414 /*
3415 * Grab a packet off the management queue, if it
3416 * is not empty. Otherwise, from the data queue.
3417 */
3418 IF_DEQUEUE(&ic->ic_mgtq, m0);
3419 if (m0 != NULL) {
3420 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3421 m0->m_pkthdr.rcvif = NULL;
3422 } else {
3423 IFQ_DEQUEUE(&ifp->if_snd, m0);
3424 if (m0 == NULL)
3425 break;
3426 #if NBPFILTER > 0
3427 if (ifp->if_bpf != NULL)
3428 bpf_mtap(ifp->if_bpf, m0);
3429 #endif /* NBPFILTER > 0 */
3430 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3431 ifp->if_oerrors++;
3432 break;
3433 }
3434 }
3435
3436 rate = MAX(ieee80211_get_rate(ic), 2);
3437
3438 #if NBPFILTER > 0
3439 /*
3440 * Pass the packet to any BPF listeners.
3441 */
3442 if (ic->ic_rawbpf != NULL)
3443 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3444
3445 if (sc->sc_radiobpf != NULL) {
3446 struct mbuf mb;
3447 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3448
3449 tap->at_rate = rate;
3450 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3451 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3452
3453 /* TBD tap->at_flags */
3454
3455 M_COPY_PKTHDR(&mb, m0);
3456 mb.m_data = (caddr_t)tap;
3457 mb.m_len = tap->at_ihdr.it_len;
3458 mb.m_next = m0;
3459 mb.m_pkthdr.len += mb.m_len;
3460 bpf_mtap(sc->sc_radiobpf, &mb);
3461 }
3462 #endif /* NBPFILTER > 0 */
3463
3464 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3465
3466 if (ni != NULL && ni != ic->ic_bss)
3467 ieee80211_free_node(ic, ni);
3468
3469 if (m0 == NULL) {
3470 ifp->if_oerrors++;
3471 break;
3472 }
3473
3474 /* just to make sure. */
3475 m0 = m_pullup(m0, sizeof(struct atw_frame));
3476
3477 if (m0 == NULL) {
3478 ifp->if_oerrors++;
3479 break;
3480 }
3481
3482 hh = mtod(m0, struct atw_frame *);
3483 wh = &hh->atw_ihdr;
3484
3485 do_encrypt = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
3486
3487 /* Copy everything we need from the 802.11 header:
3488 * Frame Control; address 1, address 3, or addresses
3489 * 3 and 4. NIC fills in BSSID, SA.
3490 */
3491 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3492 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3493 panic("%s: illegal WDS frame",
3494 sc->sc_dev.dv_xname);
3495 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3496 } else
3497 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3498
3499 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3500
3501 /* initialize remaining Tx parameters */
3502 memset(&hh->u, 0, sizeof(hh->u));
3503
3504 hh->atw_rate = rate * 5;
3505 /* XXX this could be incorrect if M_FCS. _encap should
3506 * probably strip FCS just in case it sticks around in
3507 * bridged packets.
3508 */
3509 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3510 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3511 sizeof(struct atw_frame));
3512
3513 #if 0
3514 /* this virtually guaranteed that WEP-encrypted frames
3515 * are fragmented. oops.
3516 */
3517 hh->atw_fragthr = htole16(m0->m_pkthdr.len -
3518 sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
3519 hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3520 #else
3521 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3522 #endif
3523
3524 hh->atw_rtylmt = 3;
3525 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3526 if (do_encrypt) {
3527 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3528 hh->atw_keyid = ic->ic_wep_txkey;
3529 }
3530
3531 /* TBD 4-addr frames */
3532 atw_frame_setdurs(sc, hh, rate,
3533 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3534 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3535
3536 /* never fragment multicast frames */
3537 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3538 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3539 } else if (sc->sc_flags & ATWF_RTSCTS) {
3540 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3541 }
3542
3543 #ifdef ATW_DEBUG
3544 /* experimental stuff */
3545 if (atw_xrtylmt != ~0)
3546 hh->atw_rtylmt = atw_xrtylmt;
3547 if (atw_xhdrctl != 0)
3548 hh->atw_hdrctl |= htole16(atw_xhdrctl);
3549 if (atw_xservice != IEEE80211_PLCP_SERVICE)
3550 hh->atw_service = atw_xservice;
3551 if (atw_xpaylen != 0)
3552 hh->atw_paylen = htole16(atw_xpaylen);
3553 hh->atw_fragnum = 0;
3554
3555 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3556 printf("%s: dst = %s, rate = 0x%02x, "
3557 "service = 0x%02x, paylen = 0x%04x\n",
3558 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3559 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3560
3561 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3562 "dur1 = 0x%04x, dur2 = 0x%04x, "
3563 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3564 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3565 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3566 hh->atw_tail_dur, hh->atw_head_dur);
3567
3568 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3569 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3570 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3571 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3572
3573 printf("%s: keyid = %d\n",
3574 sc->sc_dev.dv_xname, hh->atw_keyid);
3575
3576 atw_dump_pkt(ifp, m0);
3577 }
3578 #endif /* ATW_DEBUG */
3579
3580 dmamap = txs->txs_dmamap;
3581
3582 /*
3583 * Load the DMA map. Copy and try (once) again if the packet
3584 * didn't fit in the alloted number of segments.
3585 */
3586 for (first = 1;
3587 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3588 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3589 first = 0) {
3590 MGETHDR(m, M_DONTWAIT, MT_DATA);
3591 if (m == NULL) {
3592 printf("%s: unable to allocate Tx mbuf\n",
3593 sc->sc_dev.dv_xname);
3594 break;
3595 }
3596 if (m0->m_pkthdr.len > MHLEN) {
3597 MCLGET(m, M_DONTWAIT);
3598 if ((m->m_flags & M_EXT) == 0) {
3599 printf("%s: unable to allocate Tx "
3600 "cluster\n", sc->sc_dev.dv_xname);
3601 m_freem(m);
3602 break;
3603 }
3604 }
3605 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3606 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3607 m_freem(m0);
3608 m0 = m;
3609 m = NULL;
3610 }
3611 if (error != 0) {
3612 printf("%s: unable to load Tx buffer, "
3613 "error = %d\n", sc->sc_dev.dv_xname, error);
3614 m_freem(m0);
3615 break;
3616 }
3617
3618 /*
3619 * Ensure we have enough descriptors free to describe
3620 * the packet.
3621 */
3622 if (dmamap->dm_nsegs > sc->sc_txfree) {
3623 /*
3624 * Not enough free descriptors to transmit
3625 * this packet. Unload the DMA map and
3626 * drop the packet. Notify the upper layer
3627 * that there are no more slots left.
3628 *
3629 * XXX We could allocate an mbuf and copy, but
3630 * XXX it is worth it?
3631 */
3632 ifp->if_flags |= IFF_OACTIVE;
3633 bus_dmamap_unload(sc->sc_dmat, dmamap);
3634 m_freem(m0);
3635 break;
3636 }
3637
3638 /*
3639 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3640 */
3641
3642 /* Sync the DMA map. */
3643 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3644 BUS_DMASYNC_PREWRITE);
3645
3646 /* XXX arbitrary retry limit; 8 because I have seen it in
3647 * use already and maybe 0 means "no tries" !
3648 */
3649 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3650
3651 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3652 sc->sc_dev.dv_xname, rate * 5));
3653 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3654
3655 /*
3656 * Initialize the transmit descriptors.
3657 */
3658 for (nexttx = sc->sc_txnext, seg = 0;
3659 seg < dmamap->dm_nsegs;
3660 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3661 /*
3662 * If this is the first descriptor we're
3663 * enqueueing, don't set the OWN bit just
3664 * yet. That could cause a race condition.
3665 * We'll do it below.
3666 */
3667 txd = &sc->sc_txdescs[nexttx];
3668 txd->at_ctl = ctl |
3669 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3670
3671 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3672 txd->at_flags =
3673 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3674 ATW_TXFLAG_TBS1_MASK)) |
3675 ((nexttx == (ATW_NTXDESC - 1))
3676 ? htole32(ATW_TXFLAG_TER) : 0);
3677 lasttx = nexttx;
3678 }
3679
3680 KASSERT(lasttx != -1, ("bad lastx"));
3681 /* Set `first segment' and `last segment' appropriately. */
3682 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3683 htole32(ATW_TXFLAG_FS);
3684 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3685
3686 #ifdef ATW_DEBUG
3687 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3688 printf(" txsoft %p transmit chain:\n", txs);
3689 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3690 printf(" descriptor %d:\n", seg);
3691 printf(" at_ctl: 0x%08x\n",
3692 le32toh(sc->sc_txdescs[seg].at_ctl));
3693 printf(" at_flags: 0x%08x\n",
3694 le32toh(sc->sc_txdescs[seg].at_flags));
3695 printf(" at_buf1: 0x%08x\n",
3696 le32toh(sc->sc_txdescs[seg].at_buf1));
3697 printf(" at_buf2: 0x%08x\n",
3698 le32toh(sc->sc_txdescs[seg].at_buf2));
3699 if (seg == lasttx)
3700 break;
3701 }
3702 }
3703 #endif
3704
3705 /* Sync the descriptors we're using. */
3706 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3707 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3708
3709 /*
3710 * Store a pointer to the packet so we can free it later,
3711 * and remember what txdirty will be once the packet is
3712 * done.
3713 */
3714 txs->txs_mbuf = m0;
3715 txs->txs_firstdesc = sc->sc_txnext;
3716 txs->txs_lastdesc = lasttx;
3717 txs->txs_ndescs = dmamap->dm_nsegs;
3718
3719 /* Advance the tx pointer. */
3720 sc->sc_txfree -= dmamap->dm_nsegs;
3721 sc->sc_txnext = nexttx;
3722
3723 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3724 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3725
3726 last_txs = txs;
3727 }
3728
3729 if (txs == NULL || sc->sc_txfree == 0) {
3730 /* No more slots left; notify upper layer. */
3731 ifp->if_flags |= IFF_OACTIVE;
3732 }
3733
3734 if (sc->sc_txfree != ofree) {
3735 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3736 sc->sc_dev.dv_xname, lasttx, firsttx));
3737 /*
3738 * Cause a transmit interrupt to happen on the
3739 * last packet we enqueued.
3740 */
3741 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3742 ATW_CDTXSYNC(sc, lasttx, 1,
3743 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3744
3745 /*
3746 * The entire packet chain is set up. Give the
3747 * first descriptor to the chip now.
3748 */
3749 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3750 ATW_CDTXSYNC(sc, firsttx, 1,
3751 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3752
3753 /* Wake up the transmitter. */
3754 /* XXX USE AUTOPOLLING? */
3755 ATW_WRITE(sc, ATW_TDR, 0x1);
3756
3757 /* Set a watchdog timer in case the chip flakes out. */
3758 sc->sc_tx_timer = 5;
3759 ifp->if_timer = 1;
3760 }
3761 }
3762
3763 /*
3764 * atw_power:
3765 *
3766 * Power management (suspend/resume) hook.
3767 */
3768 void
3769 atw_power(why, arg)
3770 int why;
3771 void *arg;
3772 {
3773 struct atw_softc *sc = arg;
3774 struct ifnet *ifp = &sc->sc_ic.ic_if;
3775 int s;
3776
3777 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3778
3779 s = splnet();
3780 switch (why) {
3781 case PWR_STANDBY:
3782 /* XXX do nothing. */
3783 break;
3784 case PWR_SUSPEND:
3785 atw_stop(ifp, 0);
3786 if (sc->sc_power != NULL)
3787 (*sc->sc_power)(sc, why);
3788 break;
3789 case PWR_RESUME:
3790 if (ifp->if_flags & IFF_UP) {
3791 if (sc->sc_power != NULL)
3792 (*sc->sc_power)(sc, why);
3793 atw_init(ifp);
3794 }
3795 break;
3796 case PWR_SOFTSUSPEND:
3797 case PWR_SOFTSTANDBY:
3798 case PWR_SOFTRESUME:
3799 break;
3800 }
3801 splx(s);
3802 }
3803
3804 /*
3805 * atw_ioctl: [ifnet interface function]
3806 *
3807 * Handle control requests from the operator.
3808 */
3809 int
3810 atw_ioctl(ifp, cmd, data)
3811 struct ifnet *ifp;
3812 u_long cmd;
3813 caddr_t data;
3814 {
3815 struct atw_softc *sc = ifp->if_softc;
3816 struct ifreq *ifr = (struct ifreq *)data;
3817 int s, error = 0;
3818
3819 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3820 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3821 return ENXIO;
3822
3823 s = splnet();
3824
3825 switch (cmd) {
3826 case SIOCSIFFLAGS:
3827 if (ifp->if_flags & IFF_UP) {
3828 if (ATW_IS_ENABLED(sc)) {
3829 /*
3830 * To avoid rescanning another access point,
3831 * do not call atw_init() here. Instead,
3832 * only reflect media settings.
3833 */
3834 atw_filter_setup(sc);
3835 } else
3836 error = atw_init(ifp);
3837 } else if (ATW_IS_ENABLED(sc))
3838 atw_stop(ifp, 1);
3839 break;
3840 case SIOCADDMULTI:
3841 case SIOCDELMULTI:
3842 error = (cmd == SIOCADDMULTI) ?
3843 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3844 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3845 if (error == ENETRESET) {
3846 if (ATW_IS_ENABLED(sc))
3847 atw_filter_setup(sc); /* do not rescan */
3848 error = 0;
3849 }
3850 break;
3851 default:
3852 error = ieee80211_ioctl(ifp, cmd, data);
3853 if (error == ENETRESET) {
3854 if (ATW_IS_ENABLED(sc))
3855 error = atw_init(ifp);
3856 else
3857 error = 0;
3858 }
3859 break;
3860 }
3861
3862 /* Try to get more packets going. */
3863 if (ATW_IS_ENABLED(sc))
3864 atw_start(ifp);
3865
3866 splx(s);
3867 return (error);
3868 }
3869
3870 static int
3871 atw_media_change(struct ifnet *ifp)
3872 {
3873 int error;
3874
3875 error = ieee80211_media_change(ifp);
3876 if (error == ENETRESET) {
3877 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3878 (IFF_RUNNING|IFF_UP))
3879 atw_init(ifp); /* XXX lose error */
3880 error = 0;
3881 }
3882 return error;
3883 }
3884
3885 static void
3886 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3887 {
3888 struct atw_softc *sc = ifp->if_softc;
3889
3890 if (ATW_IS_ENABLED(sc) == 0) {
3891 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3892 imr->ifm_status = 0;
3893 return;
3894 }
3895 ieee80211_media_status(ifp, imr);
3896 }
3897