atw.c revision 1.156 1 /* $NetBSD: atw.c,v 1.156 2013/11/22 00:01:09 riz Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.156 2013/11/22 00:01:09 riz Exp $");
38
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/device.h>
50 #include <sys/kauth.h>
51 #include <sys/time.h>
52 #include <sys/proc.h>
53 #include <lib/libkern/libkern.h>
54
55 #include <machine/endian.h>
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #include <net80211/ieee80211_netbsd.h>
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <net/bpf.h>
67
68 #include <sys/bus.h>
69 #include <sys/intr.h>
70
71 #include <dev/ic/atwreg.h>
72 #include <dev/ic/rf3000reg.h>
73 #include <dev/ic/si4136reg.h>
74 #include <dev/ic/atwvar.h>
75 #include <dev/ic/smc93cx6var.h>
76
77 /* XXX TBD open questions
78 *
79 *
80 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
81 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
82 * handle this for me?
83 *
84 */
85 /* device attachment
86 *
87 * print TOFS[012]
88 *
89 * device initialization
90 *
91 * clear ATW_FRCTL_MAXPSP to disable max power saving
92 * set ATW_TXBR_ALCUPDATE to enable ALC
93 * set TOFS[012]? (hope not)
94 * disable rx/tx
95 * set ATW_PAR_SWR (software reset)
96 * wait for ATW_PAR_SWR clear
97 * disable interrupts
98 * ack status register
99 * enable interrupts
100 *
101 * rx/tx initialization
102 *
103 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
104 * allocate and init descriptor rings
105 * write ATW_PAR_DSL (descriptor skip length)
106 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
107 * write ATW_NAR_SQ for one/both transmit descriptor rings
108 * write ATW_NAR_SQ for one/both transmit descriptor rings
109 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
110 *
111 * rx/tx end
112 *
113 * stop DMA
114 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
115 * flush tx w/ ATW_NAR_HF
116 *
117 * scan
118 *
119 * initialize rx/tx
120 *
121 * BSS join: (re)association response
122 *
123 * set ATW_FRCTL_AID
124 *
125 * optimizations ???
126 *
127 */
128
129 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
130
131 int atw_pseudo_milli = 1;
132 int atw_magic_delay1 = 100 * 1000;
133 int atw_magic_delay2 = 100 * 1000;
134 /* more magic multi-millisecond delays (units: microseconds) */
135 int atw_nar_delay = 20 * 1000;
136 int atw_magic_delay4 = 10 * 1000;
137 int atw_rf_delay1 = 10 * 1000;
138 int atw_rf_delay2 = 5 * 1000;
139 int atw_plcphd_delay = 2 * 1000;
140 int atw_bbp_io_enable_delay = 20 * 1000;
141 int atw_bbp_io_disable_delay = 2 * 1000;
142 int atw_writewep_delay = 1000;
143 int atw_beacon_len_adjust = 4;
144 int atw_dwelltime = 200;
145 int atw_xindiv2 = 0;
146
147 #ifdef ATW_DEBUG
148 int atw_debug = 0;
149
150 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
151 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
152 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
153 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
154 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
155 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
156
157 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
158 static void atw_print_regs(struct atw_softc *, const char *);
159
160 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
161 # ifdef ATW_BBPDEBUG
162 static void atw_rf3000_print(struct atw_softc *);
163 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
164 # endif /* ATW_BBPDEBUG */
165
166 # ifdef ATW_SYNDEBUG
167 static void atw_si4126_print(struct atw_softc *);
168 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
169 # endif /* ATW_SYNDEBUG */
170 #define __atwdebugused /* empty */
171 #else
172 #define ATW_DPRINTF(x)
173 #define ATW_DPRINTF2(x)
174 #define ATW_DPRINTF3(x)
175 #define DPRINTF(sc, x) /* nothing */
176 #define DPRINTF2(sc, x) /* nothing */
177 #define DPRINTF3(sc, x) /* nothing */
178 #define __atwdebugused __unused
179 #endif
180
181 /* ifnet methods */
182 int atw_init(struct ifnet *);
183 int atw_ioctl(struct ifnet *, u_long, void *);
184 void atw_start(struct ifnet *);
185 void atw_stop(struct ifnet *, int);
186 void atw_watchdog(struct ifnet *);
187
188 /* Device attachment */
189 void atw_attach(struct atw_softc *);
190 int atw_detach(struct atw_softc *);
191 static void atw_evcnt_attach(struct atw_softc *);
192 static void atw_evcnt_detach(struct atw_softc *);
193
194 /* Rx/Tx process */
195 int atw_add_rxbuf(struct atw_softc *, int);
196 void atw_idle(struct atw_softc *, u_int32_t);
197 void atw_rxdrain(struct atw_softc *);
198 void atw_txdrain(struct atw_softc *);
199
200 /* Device (de)activation and power state */
201 void atw_reset(struct atw_softc *);
202
203 /* Interrupt handlers */
204 void atw_linkintr(struct atw_softc *, u_int32_t);
205 void atw_rxintr(struct atw_softc *);
206 void atw_txintr(struct atw_softc *, uint32_t);
207
208 /* 802.11 state machine */
209 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
210 static void atw_next_scan(void *);
211 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
212 struct ieee80211_node *, int, int, u_int32_t);
213 static int atw_tune(struct atw_softc *);
214
215 /* Device initialization */
216 static void atw_bbp_io_init(struct atw_softc *);
217 static void atw_cfp_init(struct atw_softc *);
218 static void atw_cmdr_init(struct atw_softc *);
219 static void atw_ifs_init(struct atw_softc *);
220 static void atw_nar_init(struct atw_softc *);
221 static void atw_response_times_init(struct atw_softc *);
222 static void atw_rf_reset(struct atw_softc *);
223 static void atw_test1_init(struct atw_softc *);
224 static void atw_tofs0_init(struct atw_softc *);
225 static void atw_tofs2_init(struct atw_softc *);
226 static void atw_txlmt_init(struct atw_softc *);
227 static void atw_wcsr_init(struct atw_softc *);
228
229 /* Key management */
230 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
231 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
232 const u_int8_t[IEEE80211_ADDR_LEN]);
233 static void atw_key_update_begin(struct ieee80211com *);
234 static void atw_key_update_end(struct ieee80211com *);
235
236 /* RAM/ROM utilities */
237 static void atw_clear_sram(struct atw_softc *);
238 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
239 static int atw_read_srom(struct atw_softc *);
240
241 /* BSS setup */
242 static void atw_predict_beacon(struct atw_softc *);
243 static void atw_start_beacon(struct atw_softc *, int);
244 static void atw_write_bssid(struct atw_softc *);
245 static void atw_write_ssid(struct atw_softc *);
246 static void atw_write_sup_rates(struct atw_softc *);
247 static void atw_write_wep(struct atw_softc *);
248
249 /* Media */
250 static int atw_media_change(struct ifnet *);
251
252 static void atw_filter_setup(struct atw_softc *);
253
254 /* 802.11 utilities */
255 static uint64_t atw_get_tsft(struct atw_softc *);
256 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
257 uint32_t);
258 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
259 static void atw_node_free(struct ieee80211_node *);
260
261 /*
262 * Tuner/transceiver/modem
263 */
264 static void atw_bbp_io_enable(struct atw_softc *, int);
265
266 /* RFMD RF3000 Baseband Processor */
267 static int atw_rf3000_init(struct atw_softc *);
268 static int atw_rf3000_tune(struct atw_softc *, u_int);
269 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
270
271 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
272 static void atw_si4126_tune(struct atw_softc *, u_int);
273 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
274
275 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
276 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
277
278 const char *atw_tx_state[] = {
279 "STOPPED",
280 "RUNNING - read descriptor",
281 "RUNNING - transmitting",
282 "RUNNING - filling fifo", /* XXX */
283 "SUSPENDED",
284 "RUNNING -- write descriptor",
285 "RUNNING -- write last descriptor",
286 "RUNNING - fifo full"
287 };
288
289 const char *atw_rx_state[] = {
290 "STOPPED",
291 "RUNNING - read descriptor",
292 "RUNNING - check this packet, pre-fetch next",
293 "RUNNING - wait for reception",
294 "SUSPENDED",
295 "RUNNING - write descriptor",
296 "RUNNING - flush fifo",
297 "RUNNING - fifo drain"
298 };
299
300 static inline int
301 is_running(struct ifnet *ifp)
302 {
303 return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
304 }
305
306 int
307 atw_activate(device_t self, enum devact act)
308 {
309 struct atw_softc *sc = device_private(self);
310
311 switch (act) {
312 case DVACT_DEACTIVATE:
313 if_deactivate(&sc->sc_if);
314 return 0;
315 default:
316 return EOPNOTSUPP;
317 }
318 }
319
320 bool
321 atw_suspend(device_t self, const pmf_qual_t *qual)
322 {
323 struct atw_softc *sc = device_private(self);
324
325 atw_rxdrain(sc);
326 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
327
328 return true;
329 }
330
331 /* Returns -1 on failure. */
332 static int
333 atw_read_srom(struct atw_softc *sc)
334 {
335 struct seeprom_descriptor sd;
336 uint32_t test0, fail_bits;
337
338 (void)memset(&sd, 0, sizeof(sd));
339
340 test0 = ATW_READ(sc, ATW_TEST0);
341
342 switch (sc->sc_rev) {
343 case ATW_REVISION_BA:
344 case ATW_REVISION_CA:
345 fail_bits = ATW_TEST0_EPNE;
346 break;
347 default:
348 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
349 break;
350 }
351 if ((test0 & fail_bits) != 0) {
352 aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
353 return -1;
354 }
355
356 switch (test0 & ATW_TEST0_EPTYP_MASK) {
357 case ATW_TEST0_EPTYP_93c66:
358 ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
359 sc->sc_sromsz = 512;
360 sd.sd_chip = C56_66;
361 break;
362 case ATW_TEST0_EPTYP_93c46:
363 ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
364 sc->sc_sromsz = 128;
365 sd.sd_chip = C46;
366 break;
367 default:
368 printf("%s: unknown SROM type %" __PRIuBITS "\n",
369 device_xname(sc->sc_dev),
370 __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
371 return -1;
372 }
373
374 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
375
376 if (sc->sc_srom == NULL) {
377 aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
378 return -1;
379 }
380
381 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
382
383 /* ADM8211 has a single 32-bit register for controlling the
384 * 93cx6 SROM. Bit SRS enables the serial port. There is no
385 * "ready" bit. The ADM8211 input/output sense is the reverse
386 * of read_seeprom's.
387 */
388 sd.sd_tag = sc->sc_st;
389 sd.sd_bsh = sc->sc_sh;
390 sd.sd_regsize = 4;
391 sd.sd_control_offset = ATW_SPR;
392 sd.sd_status_offset = ATW_SPR;
393 sd.sd_dataout_offset = ATW_SPR;
394 sd.sd_CK = ATW_SPR_SCLK;
395 sd.sd_CS = ATW_SPR_SCS;
396 sd.sd_DI = ATW_SPR_SDO;
397 sd.sd_DO = ATW_SPR_SDI;
398 sd.sd_MS = ATW_SPR_SRS;
399 sd.sd_RDY = 0;
400
401 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
402 aprint_error_dev(sc->sc_dev, "could not read SROM\n");
403 free(sc->sc_srom, M_DEVBUF);
404 return -1;
405 }
406 #ifdef ATW_DEBUG
407 {
408 int i;
409 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
410 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
411 if (((i % 8) == 0) && (i != 0)) {
412 ATW_DPRINTF(("\n\t"));
413 }
414 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
415 }
416 ATW_DPRINTF(("\n"));
417 }
418 #endif /* ATW_DEBUG */
419 return 0;
420 }
421
422 #ifdef ATW_DEBUG
423 static void
424 atw_print_regs(struct atw_softc *sc, const char *where)
425 {
426 #define PRINTREG(sc, reg) \
427 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
428 device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
429
430 ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
431
432 PRINTREG(sc, ATW_PAR);
433 PRINTREG(sc, ATW_FRCTL);
434 PRINTREG(sc, ATW_TDR);
435 PRINTREG(sc, ATW_WTDP);
436 PRINTREG(sc, ATW_RDR);
437 PRINTREG(sc, ATW_WRDP);
438 PRINTREG(sc, ATW_RDB);
439 PRINTREG(sc, ATW_CSR3A);
440 PRINTREG(sc, ATW_TDBD);
441 PRINTREG(sc, ATW_TDBP);
442 PRINTREG(sc, ATW_STSR);
443 PRINTREG(sc, ATW_CSR5A);
444 PRINTREG(sc, ATW_NAR);
445 PRINTREG(sc, ATW_CSR6A);
446 PRINTREG(sc, ATW_IER);
447 PRINTREG(sc, ATW_CSR7A);
448 PRINTREG(sc, ATW_LPC);
449 PRINTREG(sc, ATW_TEST1);
450 PRINTREG(sc, ATW_SPR);
451 PRINTREG(sc, ATW_TEST0);
452 PRINTREG(sc, ATW_WCSR);
453 PRINTREG(sc, ATW_WPDR);
454 PRINTREG(sc, ATW_GPTMR);
455 PRINTREG(sc, ATW_GPIO);
456 PRINTREG(sc, ATW_BBPCTL);
457 PRINTREG(sc, ATW_SYNCTL);
458 PRINTREG(sc, ATW_PLCPHD);
459 PRINTREG(sc, ATW_MMIWADDR);
460 PRINTREG(sc, ATW_MMIRADDR1);
461 PRINTREG(sc, ATW_MMIRADDR2);
462 PRINTREG(sc, ATW_TXBR);
463 PRINTREG(sc, ATW_CSR15A);
464 PRINTREG(sc, ATW_ALCSTAT);
465 PRINTREG(sc, ATW_TOFS2);
466 PRINTREG(sc, ATW_CMDR);
467 PRINTREG(sc, ATW_PCIC);
468 PRINTREG(sc, ATW_PMCSR);
469 PRINTREG(sc, ATW_PAR0);
470 PRINTREG(sc, ATW_PAR1);
471 PRINTREG(sc, ATW_MAR0);
472 PRINTREG(sc, ATW_MAR1);
473 PRINTREG(sc, ATW_ATIMDA0);
474 PRINTREG(sc, ATW_ABDA1);
475 PRINTREG(sc, ATW_BSSID0);
476 PRINTREG(sc, ATW_TXLMT);
477 PRINTREG(sc, ATW_MIBCNT);
478 PRINTREG(sc, ATW_BCNT);
479 PRINTREG(sc, ATW_TSFTH);
480 PRINTREG(sc, ATW_TSC);
481 PRINTREG(sc, ATW_SYNRF);
482 PRINTREG(sc, ATW_BPLI);
483 PRINTREG(sc, ATW_CAP0);
484 PRINTREG(sc, ATW_CAP1);
485 PRINTREG(sc, ATW_RMD);
486 PRINTREG(sc, ATW_CFPP);
487 PRINTREG(sc, ATW_TOFS0);
488 PRINTREG(sc, ATW_TOFS1);
489 PRINTREG(sc, ATW_IFST);
490 PRINTREG(sc, ATW_RSPT);
491 PRINTREG(sc, ATW_TSFTL);
492 PRINTREG(sc, ATW_WEPCTL);
493 PRINTREG(sc, ATW_WESK);
494 PRINTREG(sc, ATW_WEPCNT);
495 PRINTREG(sc, ATW_MACTEST);
496 PRINTREG(sc, ATW_FER);
497 PRINTREG(sc, ATW_FEMR);
498 PRINTREG(sc, ATW_FPSR);
499 PRINTREG(sc, ATW_FFER);
500 #undef PRINTREG
501 }
502 #endif /* ATW_DEBUG */
503
504 /*
505 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
506 */
507 void
508 atw_attach(struct atw_softc *sc)
509 {
510 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
511 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
512 };
513 struct ieee80211com *ic = &sc->sc_ic;
514 struct ifnet *ifp = &sc->sc_if;
515 int country_code, error, i, nrate, srom_major;
516 u_int32_t reg;
517 static const char *type_strings[] = {"Intersil (not supported)",
518 "RFMD", "Marvel (not supported)"};
519
520 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
521
522 sc->sc_txth = atw_txthresh_tab_lo;
523
524 SIMPLEQ_INIT(&sc->sc_txfreeq);
525 SIMPLEQ_INIT(&sc->sc_txdirtyq);
526
527 #ifdef ATW_DEBUG
528 atw_print_regs(sc, "atw_attach");
529 #endif /* ATW_DEBUG */
530
531 /*
532 * Allocate the control data structures, and create and load the
533 * DMA map for it.
534 */
535 if ((error = bus_dmamem_alloc(sc->sc_dmat,
536 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
537 1, &sc->sc_cdnseg, 0)) != 0) {
538 aprint_error_dev(sc->sc_dev,
539 "unable to allocate control data, error = %d\n",
540 error);
541 goto fail_0;
542 }
543
544 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
545 sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
546 BUS_DMA_COHERENT)) != 0) {
547 aprint_error_dev(sc->sc_dev,
548 "unable to map control data, error = %d\n",
549 error);
550 goto fail_1;
551 }
552
553 if ((error = bus_dmamap_create(sc->sc_dmat,
554 sizeof(struct atw_control_data), 1,
555 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
556 aprint_error_dev(sc->sc_dev,
557 "unable to create control data DMA map, error = %d\n",
558 error);
559 goto fail_2;
560 }
561
562 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
563 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
564 0)) != 0) {
565 aprint_error_dev(sc->sc_dev,
566 "unable to load control data DMA map, error = %d\n", error);
567 goto fail_3;
568 }
569
570 /*
571 * Create the transmit buffer DMA maps.
572 */
573 sc->sc_ntxsegs = ATW_NTXSEGS;
574 for (i = 0; i < ATW_TXQUEUELEN; i++) {
575 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
576 sc->sc_ntxsegs, MCLBYTES, 0, 0,
577 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
578 aprint_error_dev(sc->sc_dev,
579 "unable to create tx DMA map %d, error = %d\n", i,
580 error);
581 goto fail_4;
582 }
583 }
584
585 /*
586 * Create the receive buffer DMA maps.
587 */
588 for (i = 0; i < ATW_NRXDESC; i++) {
589 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
590 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
591 aprint_error_dev(sc->sc_dev,
592 "unable to create rx DMA map %d, error = %d\n", i,
593 error);
594 goto fail_5;
595 }
596 }
597 for (i = 0; i < ATW_NRXDESC; i++) {
598 sc->sc_rxsoft[i].rxs_mbuf = NULL;
599 }
600
601 switch (sc->sc_rev) {
602 case ATW_REVISION_AB:
603 case ATW_REVISION_AF:
604 sc->sc_sramlen = ATW_SRAM_A_SIZE;
605 break;
606 case ATW_REVISION_BA:
607 case ATW_REVISION_CA:
608 sc->sc_sramlen = ATW_SRAM_B_SIZE;
609 break;
610 }
611
612 /* Reset the chip to a known state. */
613 atw_reset(sc);
614
615 if (atw_read_srom(sc) == -1)
616 return;
617
618 sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
619 ATW_SR_RFTYPE_MASK);
620
621 sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
622 ATW_SR_BBPTYPE_MASK);
623
624 if (sc->sc_rftype >= __arraycount(type_strings)) {
625 aprint_error_dev(sc->sc_dev, "unknown RF\n");
626 return;
627 }
628 if (sc->sc_bbptype >= __arraycount(type_strings)) {
629 aprint_error_dev(sc->sc_dev, "unknown BBP\n");
630 return;
631 }
632
633 printf("%s: %s RF, %s BBP", device_xname(sc->sc_dev),
634 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
635
636 /* XXX There exists a Linux driver which seems to use RFType = 0 for
637 * MARVEL. My bug, or theirs?
638 */
639
640 reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
641
642 switch (sc->sc_rftype) {
643 case ATW_RFTYPE_INTERSIL:
644 reg |= ATW_SYNCTL_CS1;
645 break;
646 case ATW_RFTYPE_RFMD:
647 reg |= ATW_SYNCTL_CS0;
648 break;
649 case ATW_RFTYPE_MARVEL:
650 break;
651 }
652
653 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
654 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
655
656 reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
657
658 switch (sc->sc_bbptype) {
659 case ATW_BBPTYPE_INTERSIL:
660 reg |= ATW_BBPCTL_TWI;
661 break;
662 case ATW_BBPTYPE_RFMD:
663 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
664 ATW_BBPCTL_CCA_ACTLO;
665 break;
666 case ATW_BBPTYPE_MARVEL:
667 break;
668 case ATW_C_BBPTYPE_RFMD:
669 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
670 device_xname(sc->sc_dev));
671 break;
672 }
673
674 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
675 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
676
677 /*
678 * From this point forward, the attachment cannot fail. A failure
679 * before this point releases all resources that may have been
680 * allocated.
681 */
682 sc->sc_flags |= ATWF_ATTACHED;
683
684 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
685 htole16(sc->sc_srom[ATW_SR_MAC00]),
686 htole16(sc->sc_srom[ATW_SR_MAC01]),
687 htole16(sc->sc_srom[ATW_SR_MAC10])));
688
689 srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
690 ATW_SR_MAJOR_MASK);
691
692 if (srom_major < 2)
693 sc->sc_rf3000_options1 = 0;
694 else if (sc->sc_rev == ATW_REVISION_BA) {
695 sc->sc_rf3000_options1 =
696 __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
697 ATW_SR_CR28_MASK);
698 } else
699 sc->sc_rf3000_options1 = 0;
700
701 sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
702 ATW_SR_CR29_MASK);
703
704 country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
705 ATW_SR_CTRY_MASK);
706
707 #define ADD_CHANNEL(_ic, _chan) do { \
708 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
709 _ic->ic_channels[_chan].ic_freq = \
710 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
711 } while (0)
712
713 /* Find available channels */
714 switch (country_code) {
715 case COUNTRY_MMK2: /* 1-14 */
716 ADD_CHANNEL(ic, 14);
717 /*FALLTHROUGH*/
718 case COUNTRY_ETSI: /* 1-13 */
719 for (i = 1; i <= 13; i++)
720 ADD_CHANNEL(ic, i);
721 break;
722 case COUNTRY_FCC: /* 1-11 */
723 case COUNTRY_IC: /* 1-11 */
724 for (i = 1; i <= 11; i++)
725 ADD_CHANNEL(ic, i);
726 break;
727 case COUNTRY_MMK: /* 14 */
728 ADD_CHANNEL(ic, 14);
729 break;
730 case COUNTRY_FRANCE: /* 10-13 */
731 for (i = 10; i <= 13; i++)
732 ADD_CHANNEL(ic, i);
733 break;
734 default: /* assume channels 10-11 */
735 case COUNTRY_SPAIN: /* 10-11 */
736 for (i = 10; i <= 11; i++)
737 ADD_CHANNEL(ic, i);
738 break;
739 }
740
741 /* Read the MAC address. */
742 reg = ATW_READ(sc, ATW_PAR0);
743 ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
744 ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
745 ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
746 ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
747 reg = ATW_READ(sc, ATW_PAR1);
748 ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
749 ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
750
751 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
752 printf(" could not get mac address, attach failed\n");
753 return;
754 }
755
756 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
757
758 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
759 ifp->if_softc = sc;
760 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
761 IFF_NOTRAILERS;
762 ifp->if_ioctl = atw_ioctl;
763 ifp->if_start = atw_start;
764 ifp->if_watchdog = atw_watchdog;
765 ifp->if_init = atw_init;
766 ifp->if_stop = atw_stop;
767 IFQ_SET_READY(&ifp->if_snd);
768
769 ic->ic_ifp = ifp;
770 ic->ic_phytype = IEEE80211_T_DS;
771 ic->ic_opmode = IEEE80211_M_STA;
772 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
773 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
774
775 nrate = 0;
776 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
777 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
778 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
779 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
780 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
781
782 /*
783 * Call MI attach routines.
784 */
785
786 if_attach(ifp);
787 ieee80211_ifattach(ic);
788
789 atw_evcnt_attach(sc);
790
791 sc->sc_newstate = ic->ic_newstate;
792 ic->ic_newstate = atw_newstate;
793
794 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
795 ic->ic_recv_mgmt = atw_recv_mgmt;
796
797 sc->sc_node_free = ic->ic_node_free;
798 ic->ic_node_free = atw_node_free;
799
800 sc->sc_node_alloc = ic->ic_node_alloc;
801 ic->ic_node_alloc = atw_node_alloc;
802
803 ic->ic_crypto.cs_key_delete = atw_key_delete;
804 ic->ic_crypto.cs_key_set = atw_key_set;
805 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
806 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
807
808 /* possibly we should fill in our own sc_send_prresp, since
809 * the ADM8211 is probably sending probe responses in ad hoc
810 * mode.
811 */
812
813 /* complete initialization */
814 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
815 callout_init(&sc->sc_scan_ch, 0);
816
817 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
818 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
819
820 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
821 sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
822 sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
823
824 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
825 sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
826 sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
827
828 ieee80211_announce(ic);
829 return;
830
831 /*
832 * Free any resources we've allocated during the failed attach
833 * attempt. Do this in reverse order and fall through.
834 */
835 fail_5:
836 for (i = 0; i < ATW_NRXDESC; i++) {
837 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
838 continue;
839 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
840 }
841 fail_4:
842 for (i = 0; i < ATW_TXQUEUELEN; i++) {
843 if (sc->sc_txsoft[i].txs_dmamap == NULL)
844 continue;
845 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
846 }
847 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
848 fail_3:
849 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
850 fail_2:
851 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
852 sizeof(struct atw_control_data));
853 fail_1:
854 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
855 fail_0:
856 return;
857 }
858
859 static struct ieee80211_node *
860 atw_node_alloc(struct ieee80211_node_table *nt)
861 {
862 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
863 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
864
865 DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
866 return ni;
867 }
868
869 static void
870 atw_node_free(struct ieee80211_node *ni)
871 {
872 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
873
874 DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
875 ether_sprintf(ni->ni_bssid)));
876 (*sc->sc_node_free)(ni);
877 }
878
879
880 static void
881 atw_test1_reset(struct atw_softc *sc)
882 {
883 switch (sc->sc_rev) {
884 case ATW_REVISION_BA:
885 if (1 /* XXX condition on transceiver type */) {
886 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
887 }
888 break;
889 case ATW_REVISION_CA:
890 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
891 break;
892 default:
893 break;
894 }
895 }
896
897 /*
898 * atw_reset:
899 *
900 * Perform a soft reset on the ADM8211.
901 */
902 void
903 atw_reset(struct atw_softc *sc)
904 {
905 int i;
906 uint32_t lpc __atwdebugused;
907
908 ATW_WRITE(sc, ATW_NAR, 0x0);
909 DELAY(atw_nar_delay);
910
911 /* Reference driver has a cryptic remark indicating that this might
912 * power-on the chip. I know that it turns off power-saving....
913 */
914 ATW_WRITE(sc, ATW_FRCTL, 0x0);
915
916 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
917
918 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
919 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
920 break;
921 DELAY(atw_pseudo_milli);
922 }
923
924 /* ... and then pause 100ms longer for good measure. */
925 DELAY(atw_magic_delay1);
926
927 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
928
929 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
930 aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
931
932 /*
933 * Initialize the PCI Access Register.
934 */
935 sc->sc_busmode = ATW_PAR_PBL_8DW;
936
937 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
938 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
939 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
940
941 atw_test1_reset(sc);
942
943 /* Turn off maximum power saving, etc. */
944 ATW_WRITE(sc, ATW_FRCTL, 0x0);
945
946 DELAY(atw_magic_delay2);
947
948 /* Recall EEPROM. */
949 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
950
951 DELAY(atw_magic_delay4);
952
953 lpc = ATW_READ(sc, ATW_LPC);
954
955 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
956
957 /* A reset seems to affect the SRAM contents, so put them into
958 * a known state.
959 */
960 atw_clear_sram(sc);
961
962 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
963 }
964
965 static void
966 atw_clear_sram(struct atw_softc *sc)
967 {
968 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
969 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
970 /* XXX not for revision 0x20. */
971 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
972 }
973
974 /* TBD atw_init
975 *
976 * set MAC based on ic->ic_bss->myaddr
977 * write WEP keys
978 * set TX rate
979 */
980
981 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
982 * without receiving a beacon with the preferred BSSID & SSID.
983 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
984 */
985 static void
986 atw_wcsr_init(struct atw_softc *sc)
987 {
988 uint32_t wcsr;
989
990 wcsr = ATW_READ(sc, ATW_WCSR);
991 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
992 wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
993 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
994
995 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
996 device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
997 }
998
999 /* Turn off power management. Set Rx store-and-forward mode. */
1000 static void
1001 atw_cmdr_init(struct atw_softc *sc)
1002 {
1003 uint32_t cmdr;
1004 cmdr = ATW_READ(sc, ATW_CMDR);
1005 cmdr &= ~ATW_CMDR_APM;
1006 cmdr |= ATW_CMDR_RTE;
1007 cmdr &= ~ATW_CMDR_DRT_MASK;
1008 cmdr |= ATW_CMDR_DRT_SF;
1009
1010 ATW_WRITE(sc, ATW_CMDR, cmdr);
1011 }
1012
1013 static void
1014 atw_tofs2_init(struct atw_softc *sc)
1015 {
1016 uint32_t tofs2;
1017 /* XXX this magic can probably be figured out from the RFMD docs */
1018 #ifndef ATW_REFSLAVE
1019 tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1020 __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1021 __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1022 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1023 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1024 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1025 __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1026 __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1027 #else
1028 /* XXX new magic from reference driver source */
1029 tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1030 __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1031 __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */
1032 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1033 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1034 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1035 __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */
1036 __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */
1037 #endif
1038 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1039 }
1040
1041 static void
1042 atw_nar_init(struct atw_softc *sc)
1043 {
1044 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1045 }
1046
1047 static void
1048 atw_txlmt_init(struct atw_softc *sc)
1049 {
1050 ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1051 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1052 }
1053
1054 static void
1055 atw_test1_init(struct atw_softc *sc)
1056 {
1057 uint32_t test1;
1058
1059 test1 = ATW_READ(sc, ATW_TEST1);
1060 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1061 /* XXX magic 0x1 */
1062 test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1063 ATW_WRITE(sc, ATW_TEST1, test1);
1064 }
1065
1066 static void
1067 atw_rf_reset(struct atw_softc *sc)
1068 {
1069 /* XXX this resets an Intersil RF front-end? */
1070 /* TBD condition on Intersil RFType? */
1071 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1072 DELAY(atw_rf_delay1);
1073 ATW_WRITE(sc, ATW_SYNRF, 0);
1074 DELAY(atw_rf_delay2);
1075 }
1076
1077 /* Set 16 TU max duration for the contention-free period (CFP). */
1078 static void
1079 atw_cfp_init(struct atw_softc *sc)
1080 {
1081 uint32_t cfpp;
1082
1083 cfpp = ATW_READ(sc, ATW_CFPP);
1084 cfpp &= ~ATW_CFPP_CFPMD;
1085 cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1086 ATW_WRITE(sc, ATW_CFPP, cfpp);
1087 }
1088
1089 static void
1090 atw_tofs0_init(struct atw_softc *sc)
1091 {
1092 /* XXX I guess that the Cardbus clock is 22 MHz?
1093 * I am assuming that the role of ATW_TOFS0_USCNT is
1094 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1095 * very clear on this point. It says in the datasheet that it is
1096 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1097 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1098 * these values. These values are also the power-on default.
1099 */
1100 ATW_WRITE(sc, ATW_TOFS0,
1101 __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1102 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1103 }
1104
1105 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1106 static void
1107 atw_ifs_init(struct atw_softc *sc)
1108 {
1109 uint32_t ifst;
1110 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1111 * Go figure.
1112 */
1113 ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1114 __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1115 ATW_IFST_SIFS_MASK) |
1116 __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1117 __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1118
1119 ATW_WRITE(sc, ATW_IFST, ifst);
1120 }
1121
1122 static void
1123 atw_response_times_init(struct atw_softc *sc)
1124 {
1125 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1126 * indicate that the MAC expects at least SIFS + MIRT microseconds
1127 * to pass after it transmits a frame that requires a response;
1128 * it waits at most SIFS + MART microseconds for the response.
1129 * Surely this is not the ACK timeout?
1130 */
1131 ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1132 __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1133 }
1134
1135 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1136 * engines read and write baseband registers after Rx and before
1137 * Tx, respectively.
1138 */
1139 static void
1140 atw_bbp_io_init(struct atw_softc *sc)
1141 {
1142 uint32_t mmiraddr2;
1143
1144 /* XXX The reference driver does this, but is it *really*
1145 * necessary?
1146 */
1147 switch (sc->sc_rev) {
1148 case ATW_REVISION_AB:
1149 case ATW_REVISION_AF:
1150 mmiraddr2 = 0x0;
1151 break;
1152 default:
1153 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1154 mmiraddr2 &=
1155 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1156 break;
1157 }
1158
1159 switch (sc->sc_bbptype) {
1160 case ATW_BBPTYPE_INTERSIL:
1161 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1162 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1163 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1164 break;
1165 case ATW_BBPTYPE_MARVEL:
1166 /* TBD find out the Marvel settings. */
1167 break;
1168 case ATW_BBPTYPE_RFMD:
1169 default:
1170 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1171 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1172 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1173 break;
1174 }
1175 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1176 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1177 }
1178
1179 /*
1180 * atw_init: [ ifnet interface function ]
1181 *
1182 * Initialize the interface. Must be called at splnet().
1183 */
1184 int
1185 atw_init(struct ifnet *ifp)
1186 {
1187 struct atw_softc *sc = ifp->if_softc;
1188 struct ieee80211com *ic = &sc->sc_ic;
1189 struct atw_txsoft *txs;
1190 struct atw_rxsoft *rxs;
1191 int i, error = 0;
1192
1193 if (device_is_active(sc->sc_dev)) {
1194 /*
1195 * Cancel any pending I/O.
1196 */
1197 atw_stop(ifp, 0);
1198 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1199 !device_is_active(sc->sc_dev))
1200 return 0;
1201
1202 /*
1203 * Reset the chip to a known state.
1204 */
1205 atw_reset(sc);
1206
1207 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1208 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1209 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1210
1211 atw_wcsr_init(sc);
1212
1213 atw_cmdr_init(sc);
1214
1215 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1216 *
1217 * XXX Set transmit power for ATIM, RTS, Beacon.
1218 */
1219 ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1220 __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1221
1222 atw_tofs2_init(sc);
1223
1224 atw_nar_init(sc);
1225
1226 atw_txlmt_init(sc);
1227
1228 atw_test1_init(sc);
1229
1230 atw_rf_reset(sc);
1231
1232 atw_cfp_init(sc);
1233
1234 atw_tofs0_init(sc);
1235
1236 atw_ifs_init(sc);
1237
1238 /* XXX Fall asleep after one second of inactivity.
1239 * XXX A frame may only dribble in for 65536us.
1240 */
1241 ATW_WRITE(sc, ATW_RMD,
1242 __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1243
1244 atw_response_times_init(sc);
1245
1246 atw_bbp_io_init(sc);
1247
1248 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1249
1250 if ((error = atw_rf3000_init(sc)) != 0)
1251 goto out;
1252
1253 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1254 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1255 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1256
1257 /*
1258 * Initialize the transmit descriptor ring.
1259 */
1260 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1261 for (i = 0; i < ATW_NTXDESC; i++) {
1262 sc->sc_txdescs[i].at_ctl = 0;
1263 /* no transmit chaining */
1264 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1265 sc->sc_txdescs[i].at_buf2 =
1266 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1267 }
1268 /* use ring mode */
1269 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1270 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1271 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1272 sc->sc_txfree = ATW_NTXDESC;
1273 sc->sc_txnext = 0;
1274
1275 /*
1276 * Initialize the transmit job descriptors.
1277 */
1278 SIMPLEQ_INIT(&sc->sc_txfreeq);
1279 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1280 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1281 txs = &sc->sc_txsoft[i];
1282 txs->txs_mbuf = NULL;
1283 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1284 }
1285
1286 /*
1287 * Initialize the receive descriptor and receive job
1288 * descriptor rings.
1289 */
1290 for (i = 0; i < ATW_NRXDESC; i++) {
1291 rxs = &sc->sc_rxsoft[i];
1292 if (rxs->rxs_mbuf == NULL) {
1293 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1294 aprint_error_dev(sc->sc_dev,
1295 "unable to allocate or map rx buffer %d, "
1296 "error = %d\n", i, error);
1297 /*
1298 * XXX Should attempt to run with fewer receive
1299 * XXX buffers instead of just failing.
1300 */
1301 atw_rxdrain(sc);
1302 goto out;
1303 }
1304 } else
1305 atw_init_rxdesc(sc, i);
1306 }
1307 sc->sc_rxptr = 0;
1308
1309 /*
1310 * Initialize the interrupt mask and enable interrupts.
1311 */
1312 /* normal interrupts */
1313 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1314 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1315
1316 /* abnormal interrupts */
1317 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1318 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1319 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1320
1321 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1322 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1323 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1324 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1325 ATW_INTR_TRT;
1326
1327 sc->sc_linkint_mask &= sc->sc_inten;
1328 sc->sc_rxint_mask &= sc->sc_inten;
1329 sc->sc_txint_mask &= sc->sc_inten;
1330
1331 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1332 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1333
1334 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1335 device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1336
1337 /*
1338 * Give the transmit and receive rings to the ADM8211.
1339 */
1340 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1341 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1342
1343 sc->sc_txthresh = 0;
1344 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1345 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1346
1347 /* common 802.11 configuration */
1348 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1349 switch (ic->ic_opmode) {
1350 case IEEE80211_M_STA:
1351 break;
1352 case IEEE80211_M_AHDEMO: /* XXX */
1353 case IEEE80211_M_IBSS:
1354 ic->ic_flags |= IEEE80211_F_IBSSON;
1355 /*FALLTHROUGH*/
1356 case IEEE80211_M_HOSTAP: /* XXX */
1357 break;
1358 case IEEE80211_M_MONITOR: /* XXX */
1359 break;
1360 }
1361
1362 switch (ic->ic_opmode) {
1363 case IEEE80211_M_AHDEMO:
1364 case IEEE80211_M_HOSTAP:
1365 #ifndef IEEE80211_NO_HOSTAP
1366 ic->ic_bss->ni_intval = ic->ic_lintval;
1367 ic->ic_bss->ni_rssi = 0;
1368 ic->ic_bss->ni_rstamp = 0;
1369 #endif /* !IEEE80211_NO_HOSTAP */
1370 break;
1371 default: /* XXX */
1372 break;
1373 }
1374
1375 sc->sc_wepctl = 0;
1376
1377 atw_write_ssid(sc);
1378 atw_write_sup_rates(sc);
1379 atw_write_wep(sc);
1380
1381 ic->ic_state = IEEE80211_S_INIT;
1382
1383 /*
1384 * Set the receive filter. This will start the transmit and
1385 * receive processes.
1386 */
1387 atw_filter_setup(sc);
1388
1389 /*
1390 * Start the receive process.
1391 */
1392 ATW_WRITE(sc, ATW_RDR, 0x1);
1393
1394 /*
1395 * Note that the interface is now running.
1396 */
1397 ifp->if_flags |= IFF_RUNNING;
1398
1399 /* send no beacons, yet. */
1400 atw_start_beacon(sc, 0);
1401
1402 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1403 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1404 else
1405 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1406 out:
1407 if (error) {
1408 ifp->if_flags &= ~IFF_RUNNING;
1409 sc->sc_tx_timer = 0;
1410 ifp->if_timer = 0;
1411 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1412 }
1413 #ifdef ATW_DEBUG
1414 atw_print_regs(sc, "end of init");
1415 #endif /* ATW_DEBUG */
1416
1417 return (error);
1418 }
1419
1420 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1421 * 0: MAC control of RF3000/Si4126.
1422 *
1423 * Applies power, or selects RF front-end? Sets reset condition.
1424 *
1425 * TBD support non-RFMD BBP, non-SiLabs synth.
1426 */
1427 static void
1428 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1429 {
1430 if (enable) {
1431 ATW_WRITE(sc, ATW_SYNRF,
1432 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1433 DELAY(atw_bbp_io_enable_delay);
1434 } else {
1435 ATW_WRITE(sc, ATW_SYNRF, 0);
1436 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1437 }
1438 }
1439
1440 static int
1441 atw_tune(struct atw_softc *sc)
1442 {
1443 int rc;
1444 u_int chan;
1445 struct ieee80211com *ic = &sc->sc_ic;
1446
1447 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1448 if (chan == IEEE80211_CHAN_ANY)
1449 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1450
1451 if (chan == sc->sc_cur_chan)
1452 return 0;
1453
1454 DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1455 sc->sc_cur_chan, chan));
1456
1457 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1458
1459 atw_si4126_tune(sc, chan);
1460 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1461 printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1462 chan);
1463
1464 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1465 DELAY(atw_nar_delay);
1466 ATW_WRITE(sc, ATW_RDR, 0x1);
1467
1468 if (rc == 0) {
1469 sc->sc_cur_chan = chan;
1470 sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1471 htole16(ic->ic_curchan->ic_freq);
1472 sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1473 htole16(ic->ic_curchan->ic_flags);
1474 }
1475
1476 return rc;
1477 }
1478
1479 #ifdef ATW_SYNDEBUG
1480 static void
1481 atw_si4126_print(struct atw_softc *sc)
1482 {
1483 struct ifnet *ifp = &sc->sc_if;
1484 u_int addr, val;
1485
1486 val = 0;
1487
1488 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1489 return;
1490
1491 for (addr = 0; addr <= 8; addr++) {
1492 printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1493 if (atw_si4126_read(sc, addr, &val) == 0) {
1494 printf("<unknown> (quitting print-out)\n");
1495 break;
1496 }
1497 printf("%05x\n", val);
1498 }
1499 }
1500 #endif /* ATW_SYNDEBUG */
1501
1502 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1503 *
1504 * The RF/IF synthesizer produces two reference frequencies for
1505 * the RF2948B transceiver. The first frequency the RF2948B requires
1506 * is two times the so-called "intermediate frequency" (IF). Since
1507 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1508 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second
1509 * frequency required by the transceiver is the radio frequency
1510 * (RF). This is a superheterodyne transceiver; for f(chan) the
1511 * center frequency of the channel we are tuning, RF = f(chan) -
1512 * IF.
1513 *
1514 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1515 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1516 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1517 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1518 */
1519 static void
1520 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1521 {
1522 u_int mhz;
1523 u_int R;
1524 u_int32_t gpio;
1525 u_int16_t gain;
1526
1527 #ifdef ATW_SYNDEBUG
1528 atw_si4126_print(sc);
1529 #endif /* ATW_SYNDEBUG */
1530
1531 if (chan == 14)
1532 mhz = 2484;
1533 else
1534 mhz = 2412 + 5 * (chan - 1);
1535
1536 /* Tune IF to 748 MHz to suit the IF LO input of the
1537 * RF2494B, which is 2 x IF. No need to set an IF divider
1538 * because an IF in 526 MHz - 952 MHz is allowed.
1539 *
1540 * XIN is 44.000 MHz, so divide it by two to get allowable
1541 * range of 2-25 MHz. SiLabs tells me that this is not
1542 * strictly necessary.
1543 */
1544
1545 if (atw_xindiv2)
1546 R = 44;
1547 else
1548 R = 88;
1549
1550 /* Power-up RF, IF synthesizers. */
1551 atw_si4126_write(sc, SI4126_POWER,
1552 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1553
1554 /* set LPWR, too? */
1555 atw_si4126_write(sc, SI4126_MAIN,
1556 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1557
1558 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1559 * set KP2 to 1.
1560 *
1561 * REFDIF This is different from the reference driver, which
1562 * always sets SI4126_GAIN to 0.
1563 */
1564 gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1565
1566 atw_si4126_write(sc, SI4126_GAIN, gain);
1567
1568 /* XIN = 44 MHz.
1569 *
1570 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1571 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1572 *
1573 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1574 * so that 1496/88 * 44 MHz = 748 MHz.
1575 */
1576 atw_si4126_write(sc, SI4126_IFN, 1496);
1577
1578 atw_si4126_write(sc, SI4126_IFR, R);
1579
1580 #ifndef ATW_REFSLAVE
1581 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1582 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1583 * which has no RF1!
1584 */
1585 atw_si4126_write(sc, SI4126_RF1R, R);
1586
1587 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1588 #endif
1589
1590 /* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1591 * where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44.
1592 * Now let's multiply it to mhz. So mhz - IF = N.
1593 */
1594 atw_si4126_write(sc, SI4126_RF2R, R);
1595
1596 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1597
1598 /* wait 100us from power-up for RF, IF to settle */
1599 DELAY(100);
1600
1601 gpio = ATW_READ(sc, ATW_GPIO);
1602 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1603 gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1604
1605 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1606 /* Set a Prism RF front-end to a special mode for channel 14?
1607 *
1608 * Apparently the SMC2635W needs this, although I don't think
1609 * it has a Prism RF.
1610 */
1611 gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1612 }
1613 ATW_WRITE(sc, ATW_GPIO, gpio);
1614
1615 #ifdef ATW_SYNDEBUG
1616 atw_si4126_print(sc);
1617 #endif /* ATW_SYNDEBUG */
1618 }
1619
1620 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1621 * diversity.
1622 *
1623 * !!!
1624 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1625 * !!!
1626 */
1627 static int
1628 atw_rf3000_init(struct atw_softc *sc)
1629 {
1630 int rc = 0;
1631
1632 atw_bbp_io_enable(sc, 1);
1633
1634 /* CCA is acquisition sensitive */
1635 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1636 __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1637
1638 if (rc != 0)
1639 goto out;
1640
1641 /* enable diversity */
1642 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1643
1644 if (rc != 0)
1645 goto out;
1646
1647 /* sensible setting from a binary-only driver */
1648 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1649 __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1650
1651 if (rc != 0)
1652 goto out;
1653
1654 /* magic from a binary-only driver */
1655 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1656 __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1657
1658 if (rc != 0)
1659 goto out;
1660
1661 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1662
1663 if (rc != 0)
1664 goto out;
1665
1666 /* XXX Reference driver remarks that Abocom sets this to 50.
1667 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1668 * in the "reserved" area of register RF3000_OPTIONS1.
1669 */
1670 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1671
1672 if (rc != 0)
1673 goto out;
1674
1675 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1676
1677 if (rc != 0)
1678 goto out;
1679
1680 out:
1681 atw_bbp_io_enable(sc, 0);
1682 return rc;
1683 }
1684
1685 #ifdef ATW_BBPDEBUG
1686 static void
1687 atw_rf3000_print(struct atw_softc *sc)
1688 {
1689 struct ifnet *ifp = &sc->sc_if;
1690 u_int addr, val;
1691
1692 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1693 return;
1694
1695 for (addr = 0x01; addr <= 0x15; addr++) {
1696 printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1697 if (atw_rf3000_read(sc, addr, &val) != 0) {
1698 printf("<unknown> (quitting print-out)\n");
1699 break;
1700 }
1701 printf("%08x\n", val);
1702 }
1703 }
1704 #endif /* ATW_BBPDEBUG */
1705
1706 /* Set the power settings on the BBP for channel `chan'. */
1707 static int
1708 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1709 {
1710 int rc = 0;
1711 u_int32_t reg;
1712 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1713
1714 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1715 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1716 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1717
1718 /* odd channels: LSB, even channels: MSB */
1719 if (chan % 2 == 1) {
1720 txpower &= 0xFF;
1721 lpf_cutoff &= 0xFF;
1722 lna_gs_thresh &= 0xFF;
1723 } else {
1724 txpower >>= 8;
1725 lpf_cutoff >>= 8;
1726 lna_gs_thresh >>= 8;
1727 }
1728
1729 #ifdef ATW_BBPDEBUG
1730 atw_rf3000_print(sc);
1731 #endif /* ATW_BBPDEBUG */
1732
1733 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1734 "lna_gs_thresh %02x\n",
1735 device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1736
1737 atw_bbp_io_enable(sc, 1);
1738
1739 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1740 __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1741 goto out;
1742
1743 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1744 goto out;
1745
1746 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1747 goto out;
1748
1749 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1750
1751 if (rc != 0)
1752 goto out;
1753
1754 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1755
1756 if (rc != 0)
1757 goto out;
1758
1759 #ifdef ATW_BBPDEBUG
1760 atw_rf3000_print(sc);
1761 #endif /* ATW_BBPDEBUG */
1762
1763 out:
1764 atw_bbp_io_enable(sc, 0);
1765
1766 /* set beacon, rts, atim transmit power */
1767 reg = ATW_READ(sc, ATW_PLCPHD);
1768 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1769 reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1770 ATW_PLCPHD_SERVICE_MASK);
1771 ATW_WRITE(sc, ATW_PLCPHD, reg);
1772 DELAY(atw_plcphd_delay);
1773
1774 return rc;
1775 }
1776
1777 /* Write a register on the RF3000 baseband processor using the
1778 * registers provided by the ADM8211 for this purpose.
1779 *
1780 * Return 0 on success.
1781 */
1782 static int
1783 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1784 {
1785 u_int32_t reg;
1786 int i;
1787
1788 reg = sc->sc_bbpctl_wr |
1789 __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1790 __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1791
1792 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1793 ATW_WRITE(sc, ATW_BBPCTL, reg);
1794 DELAY(2 * atw_pseudo_milli);
1795 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1796 break;
1797 }
1798
1799 if (i < 0) {
1800 printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1801 return ETIMEDOUT;
1802 }
1803 return 0;
1804 }
1805
1806 /* Read a register on the RF3000 baseband processor using the registers
1807 * the ADM8211 provides for this purpose.
1808 *
1809 * The 7-bit register address is addr. Record the 8-bit data in the register
1810 * in *val.
1811 *
1812 * Return 0 on success.
1813 *
1814 * XXX This does not seem to work. The ADM8211 must require more or
1815 * different magic to read the chip than to write it. Possibly some
1816 * of the magic I have derived from a binary-only driver concerns
1817 * the "chip address" (see the RF3000 manual).
1818 */
1819 #ifdef ATW_BBPDEBUG
1820 static int
1821 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1822 {
1823 u_int32_t reg;
1824 int i;
1825
1826 for (i = 1000; --i >= 0; ) {
1827 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1828 break;
1829 DELAY(100);
1830 }
1831
1832 if (i < 0) {
1833 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1834 device_xname(sc->sc_dev));
1835 return ETIMEDOUT;
1836 }
1837
1838 reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1839
1840 ATW_WRITE(sc, ATW_BBPCTL, reg);
1841
1842 for (i = 1000; --i >= 0; ) {
1843 DELAY(100);
1844 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1845 break;
1846 }
1847
1848 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1849
1850 if (i < 0) {
1851 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1852 device_xname(sc->sc_dev), reg);
1853 return ETIMEDOUT;
1854 }
1855 if (val != NULL)
1856 *val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1857 return 0;
1858 }
1859 #endif /* ATW_BBPDEBUG */
1860
1861 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1862 * provided by the ADM8211 for that purpose.
1863 *
1864 * val is 18 bits of data, and val is the 4-bit address of the register.
1865 *
1866 * Return 0 on success.
1867 */
1868 static void
1869 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1870 {
1871 uint32_t bits, mask, reg;
1872 const int nbits = 22;
1873
1874 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1875 KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1876
1877 bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1878 __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1879
1880 reg = ATW_SYNRF_SELSYN;
1881 /* reference driver: reset Si4126 serial bus to initial
1882 * conditions?
1883 */
1884 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1885 ATW_WRITE(sc, ATW_SYNRF, reg);
1886
1887 for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1888 if ((bits & mask) != 0)
1889 reg |= ATW_SYNRF_SYNDATA;
1890 else
1891 reg &= ~ATW_SYNRF_SYNDATA;
1892 ATW_WRITE(sc, ATW_SYNRF, reg);
1893 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1894 ATW_WRITE(sc, ATW_SYNRF, reg);
1895 }
1896 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1897 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1898 }
1899
1900 /* Read 18-bit data from the 4-bit address addr in Si4126
1901 * RF synthesizer and write the data to *val. Return 0 on success.
1902 *
1903 * XXX This does not seem to work. The ADM8211 must require more or
1904 * different magic to read the chip than to write it.
1905 */
1906 #ifdef ATW_SYNDEBUG
1907 static int
1908 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1909 {
1910 u_int32_t reg;
1911 int i;
1912
1913 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1914
1915 for (i = 1000; --i >= 0; ) {
1916 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1917 break;
1918 DELAY(100);
1919 }
1920
1921 if (i < 0) {
1922 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1923 device_xname(sc->sc_dev));
1924 return ETIMEDOUT;
1925 }
1926
1927 reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1928
1929 ATW_WRITE(sc, ATW_SYNCTL, reg);
1930
1931 for (i = 1000; --i >= 0; ) {
1932 DELAY(100);
1933 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1934 break;
1935 }
1936
1937 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1938
1939 if (i < 0) {
1940 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1941 device_xname(sc->sc_dev), reg);
1942 return ETIMEDOUT;
1943 }
1944 if (val != NULL)
1945 *val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1946 ATW_SYNCTL_DATA_MASK);
1947 return 0;
1948 }
1949 #endif /* ATW_SYNDEBUG */
1950
1951 /* XXX is the endianness correct? test. */
1952 #define atw_calchash(addr) \
1953 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1954
1955 /*
1956 * atw_filter_setup:
1957 *
1958 * Set the ADM8211's receive filter.
1959 */
1960 static void
1961 atw_filter_setup(struct atw_softc *sc)
1962 {
1963 struct ieee80211com *ic = &sc->sc_ic;
1964 struct ethercom *ec = &sc->sc_ec;
1965 struct ifnet *ifp = &sc->sc_if;
1966 int hash;
1967 u_int32_t hashes[2];
1968 struct ether_multi *enm;
1969 struct ether_multistep step;
1970
1971 /* According to comments in tlp_al981_filter_setup
1972 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1973 * multicast filter to be set while it is running. Hopefully
1974 * the ADM8211 is not the same!
1975 */
1976 if ((ifp->if_flags & IFF_RUNNING) != 0)
1977 atw_idle(sc, ATW_NAR_SR);
1978
1979 sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
1980 ifp->if_flags &= ~IFF_ALLMULTI;
1981
1982 /* XXX in scan mode, do not filter packets. Maybe this is
1983 * unnecessary.
1984 */
1985 if (ic->ic_state == IEEE80211_S_SCAN ||
1986 (ifp->if_flags & IFF_PROMISC) != 0) {
1987 sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
1988 goto allmulti;
1989 }
1990
1991 hashes[0] = hashes[1] = 0x0;
1992
1993 /*
1994 * Program the 64-bit multicast hash filter.
1995 */
1996 ETHER_FIRST_MULTI(step, ec, enm);
1997 while (enm != NULL) {
1998 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1999 ETHER_ADDR_LEN) != 0)
2000 goto allmulti;
2001
2002 hash = atw_calchash(enm->enm_addrlo);
2003 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2004 ETHER_NEXT_MULTI(step, enm);
2005 sc->sc_opmode |= ATW_NAR_MM;
2006 }
2007 ifp->if_flags &= ~IFF_ALLMULTI;
2008 goto setit;
2009
2010 allmulti:
2011 sc->sc_opmode |= ATW_NAR_MM;
2012 ifp->if_flags |= IFF_ALLMULTI;
2013 hashes[0] = hashes[1] = 0xffffffff;
2014
2015 setit:
2016 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2017 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2018 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2019 DELAY(atw_nar_delay);
2020 ATW_WRITE(sc, ATW_RDR, 0x1);
2021
2022 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2023 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2024 }
2025
2026 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2027 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2028 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2029 * no beacon with the preferred BSSID and SSID in the number of
2030 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2031 */
2032 static void
2033 atw_write_bssid(struct atw_softc *sc)
2034 {
2035 struct ieee80211com *ic = &sc->sc_ic;
2036 u_int8_t *bssid;
2037
2038 bssid = ic->ic_bss->ni_bssid;
2039
2040 ATW_WRITE(sc, ATW_BSSID0,
2041 __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2042 __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2043 __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2044 __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2045
2046 ATW_WRITE(sc, ATW_ABDA1,
2047 (ATW_READ(sc, ATW_ABDA1) &
2048 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2049 __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2050 __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2051
2052 DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2053 ether_sprintf(sc->sc_bssid)));
2054 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2055
2056 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2057 }
2058
2059 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2060 * 16-bit word.
2061 */
2062 static void
2063 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2064 {
2065 u_int i;
2066 u_int8_t *ptr;
2067
2068 memcpy(&sc->sc_sram[ofs], buf, buflen);
2069
2070 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2071
2072 KASSERT(buflen + ofs <= sc->sc_sramlen);
2073
2074 ptr = &sc->sc_sram[ofs];
2075
2076 for (i = 0; i < buflen; i += 2) {
2077 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2078 __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2079 DELAY(atw_writewep_delay);
2080
2081 ATW_WRITE(sc, ATW_WESK,
2082 __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2083 DELAY(atw_writewep_delay);
2084 }
2085 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2086
2087 if (sc->sc_if.if_flags & IFF_DEBUG) {
2088 int n_octets = 0;
2089 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2090 device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2091 for (i = 0; i < buflen; i++) {
2092 printf(" %02x", ptr[i]);
2093 if (++n_octets % 24 == 0)
2094 printf("\n");
2095 }
2096 if (n_octets % 24 != 0)
2097 printf("\n");
2098 }
2099 }
2100
2101 static int
2102 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2103 {
2104 struct atw_softc *sc = ic->ic_ifp->if_softc;
2105 u_int keyix = k->wk_keyix;
2106
2107 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2108
2109 if (keyix >= IEEE80211_WEP_NKID)
2110 return 0;
2111 if (k->wk_keylen != 0)
2112 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2113
2114 return 1;
2115 }
2116
2117 static int
2118 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2119 const u_int8_t mac[IEEE80211_ADDR_LEN])
2120 {
2121 struct atw_softc *sc = ic->ic_ifp->if_softc;
2122
2123 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2124
2125 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2126 return 0;
2127
2128 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2129
2130 return 1;
2131 }
2132
2133 static void
2134 atw_key_update_begin(struct ieee80211com *ic)
2135 {
2136 #ifdef ATW_DEBUG
2137 struct ifnet *ifp = ic->ic_ifp;
2138 struct atw_softc *sc = ifp->if_softc;
2139 #endif
2140
2141 DPRINTF(sc, ("%s:\n", __func__));
2142 }
2143
2144 static void
2145 atw_key_update_end(struct ieee80211com *ic)
2146 {
2147 struct ifnet *ifp = ic->ic_ifp;
2148 struct atw_softc *sc = ifp->if_softc;
2149
2150 DPRINTF(sc, ("%s:\n", __func__));
2151
2152 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2153 return;
2154 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2155 return;
2156 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2157 atw_write_wep(sc);
2158 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2159 DELAY(atw_nar_delay);
2160 ATW_WRITE(sc, ATW_RDR, 0x1);
2161 }
2162
2163 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2164 static void
2165 atw_write_wep(struct atw_softc *sc)
2166 {
2167 #if 0
2168 struct ieee80211com *ic = &sc->sc_ic;
2169 u_int32_t reg;
2170 int i;
2171 #endif
2172 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2173 u_int8_t buf[IEEE80211_WEP_NKID]
2174 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2175
2176 sc->sc_wepctl = 0;
2177 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2178
2179 memset(&buf[0][0], 0, sizeof(buf));
2180
2181 #if 0
2182 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2183 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2184 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2185 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2186 buf[i][1] = ATW_WEP_ENABLED;
2187 } else {
2188 buf[i][1] = 0;
2189 continue;
2190 }
2191 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2192 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2193 ic->ic_nw_keys[i].wk_keylen - 1);
2194 }
2195
2196 reg = ATW_READ(sc, ATW_MACTEST);
2197 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2198 reg &= ~ATW_MACTEST_KEYID_MASK;
2199 reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2200 ATW_WRITE(sc, ATW_MACTEST, reg);
2201
2202 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2203 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2204
2205 switch (sc->sc_rev) {
2206 case ATW_REVISION_AB:
2207 case ATW_REVISION_AF:
2208 /* Bypass WEP on Rx. */
2209 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2210 break;
2211 default:
2212 break;
2213 }
2214 #endif
2215
2216 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2217 sizeof(buf));
2218
2219 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2220 }
2221
2222 static void
2223 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2224 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2225 {
2226 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2227
2228 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2229 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2230 return;
2231
2232 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2233
2234 switch (subtype) {
2235 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2236 case IEEE80211_FC0_SUBTYPE_BEACON:
2237 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2238 ic->ic_state == IEEE80211_S_RUN) {
2239 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2240 (void)ieee80211_ibss_merge(ni);
2241 }
2242 break;
2243 default:
2244 break;
2245 }
2246 return;
2247 }
2248
2249 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2250 * In ad hoc mode, the SSID is written to the beacons sent by the
2251 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2252 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2253 * indications.
2254 */
2255 static void
2256 atw_write_ssid(struct atw_softc *sc)
2257 {
2258 struct ieee80211com *ic = &sc->sc_ic;
2259 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2260 * it only expects the element length, not its ID.
2261 */
2262 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2263
2264 memset(buf, 0, sizeof(buf));
2265 buf[0] = ic->ic_bss->ni_esslen;
2266 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2267
2268 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2269 roundup(1 + ic->ic_bss->ni_esslen, 2));
2270 }
2271
2272 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2273 * In ad hoc mode, the supported rates are written to beacons sent by the
2274 * ADM8211.
2275 */
2276 static void
2277 atw_write_sup_rates(struct atw_softc *sc)
2278 {
2279 struct ieee80211com *ic = &sc->sc_ic;
2280 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2281 * supported rates
2282 */
2283 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2284
2285 memset(buf, 0, sizeof(buf));
2286
2287 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2288
2289 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2290 ic->ic_bss->ni_rates.rs_nrates);
2291
2292 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2293 }
2294
2295 /* Start/stop sending beacons. */
2296 void
2297 atw_start_beacon(struct atw_softc *sc, int start)
2298 {
2299 struct ieee80211com *ic = &sc->sc_ic;
2300 uint16_t chan;
2301 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2302 size_t len;
2303
2304 if (!device_is_active(sc->sc_dev))
2305 return;
2306
2307 /* start beacons */
2308 len = sizeof(struct ieee80211_frame) +
2309 8 /* timestamp */ + 2 /* beacon interval */ +
2310 2 /* capability info */ +
2311 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2312 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2313 3 /* DS parameters */ +
2314 IEEE80211_CRC_LEN;
2315
2316 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2317 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2318 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2319
2320 ATW_WRITE(sc, ATW_BCNT, bcnt);
2321 ATW_WRITE(sc, ATW_CAP1, cap1);
2322
2323 if (!start)
2324 return;
2325
2326 /* TBD use ni_capinfo */
2327
2328 capinfo = 0;
2329 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2330 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2331 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2332 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2333
2334 switch (ic->ic_opmode) {
2335 case IEEE80211_M_IBSS:
2336 len += 4; /* IBSS parameters */
2337 capinfo |= IEEE80211_CAPINFO_IBSS;
2338 break;
2339 case IEEE80211_M_HOSTAP:
2340 /* XXX 6-byte minimum TIM */
2341 len += atw_beacon_len_adjust;
2342 capinfo |= IEEE80211_CAPINFO_ESS;
2343 break;
2344 default:
2345 return;
2346 }
2347
2348 /* set listen interval
2349 * XXX do software units agree w/ hardware?
2350 */
2351 bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2352 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2353
2354 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2355
2356 bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2357 cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2358 cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2359
2360 ATW_WRITE(sc, ATW_BCNT, bcnt);
2361 ATW_WRITE(sc, ATW_BPLI, bpli);
2362 ATW_WRITE(sc, ATW_CAP0, cap0);
2363 ATW_WRITE(sc, ATW_CAP1, cap1);
2364
2365 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2366 device_xname(sc->sc_dev), bcnt));
2367
2368 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2369 device_xname(sc->sc_dev), cap1));
2370 }
2371
2372 /* Return the 32 lsb of the last TSFT divisible by ival. */
2373 static inline uint32_t
2374 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2375 {
2376 /* Following the reference driver's lead, I compute
2377 *
2378 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2379 *
2380 * without using 64-bit arithmetic, using the following
2381 * relationship:
2382 *
2383 * (0x100000000 * H + L) % m
2384 * = ((0x100000000 % m) * H + L) % m
2385 * = (((0xffffffff + 1) % m) * H + L) % m
2386 * = ((0xffffffff % m + 1 % m) * H + L) % m
2387 * = ((0xffffffff % m + 1) * H + L) % m
2388 */
2389 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2390 }
2391
2392 static uint64_t
2393 atw_get_tsft(struct atw_softc *sc)
2394 {
2395 int i;
2396 uint32_t tsfth, tsftl;
2397 for (i = 0; i < 2; i++) {
2398 tsfth = ATW_READ(sc, ATW_TSFTH);
2399 tsftl = ATW_READ(sc, ATW_TSFTL);
2400 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2401 break;
2402 }
2403 return ((uint64_t)tsfth << 32) | tsftl;
2404 }
2405
2406 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2407 * the ieee80211com.
2408 *
2409 * Predict the next target beacon transmission time (TBTT) and
2410 * write it to the ADM8211.
2411 */
2412 static void
2413 atw_predict_beacon(struct atw_softc *sc)
2414 {
2415 #define TBTTOFS 20 /* TU */
2416
2417 struct ieee80211com *ic = &sc->sc_ic;
2418 uint64_t tsft;
2419 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2420 union {
2421 uint64_t word;
2422 uint8_t tstamp[8];
2423 } u;
2424
2425 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2426 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2427 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2428 tsft = atw_get_tsft(sc);
2429 u.word = htole64(tsft);
2430 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2431 sizeof(ic->ic_bss->ni_tstamp));
2432 } else
2433 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2434
2435 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2436
2437 tsftl = tsft & 0xFFFFFFFF;
2438 tsfth = tsft >> 32;
2439
2440 /* We sent/received the last beacon `past' microseconds
2441 * after the interval divided the TSF timer.
2442 */
2443 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2444
2445 /* Skip ten beacons so that the TBTT cannot pass before
2446 * we've programmed it. Ten is an arbitrary number.
2447 */
2448 tbtt = past_even + ival * 10;
2449
2450 ATW_WRITE(sc, ATW_TOFS1,
2451 __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2452 __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2453 __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2454 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2455 #undef TBTTOFS
2456 }
2457
2458 static void
2459 atw_next_scan(void *arg)
2460 {
2461 struct atw_softc *sc = arg;
2462 struct ieee80211com *ic = &sc->sc_ic;
2463 int s;
2464
2465 /* don't call atw_start w/o network interrupts blocked */
2466 s = splnet();
2467 if (ic->ic_state == IEEE80211_S_SCAN)
2468 ieee80211_next_scan(ic);
2469 splx(s);
2470 }
2471
2472 /* Synchronize the hardware state with the software state. */
2473 static int
2474 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2475 {
2476 struct ifnet *ifp = ic->ic_ifp;
2477 struct atw_softc *sc = ifp->if_softc;
2478 int error = 0;
2479
2480 callout_stop(&sc->sc_scan_ch);
2481
2482 switch (nstate) {
2483 case IEEE80211_S_AUTH:
2484 case IEEE80211_S_ASSOC:
2485 atw_write_bssid(sc);
2486 error = atw_tune(sc);
2487 break;
2488 case IEEE80211_S_INIT:
2489 callout_stop(&sc->sc_scan_ch);
2490 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2491 atw_start_beacon(sc, 0);
2492 break;
2493 case IEEE80211_S_SCAN:
2494 error = atw_tune(sc);
2495 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2496 atw_next_scan, sc);
2497 break;
2498 case IEEE80211_S_RUN:
2499 error = atw_tune(sc);
2500 atw_write_bssid(sc);
2501 atw_write_ssid(sc);
2502 atw_write_sup_rates(sc);
2503
2504 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2505 ic->ic_opmode == IEEE80211_M_MONITOR)
2506 break;
2507
2508 /* set listen interval
2509 * XXX do software units agree w/ hardware?
2510 */
2511 ATW_WRITE(sc, ATW_BPLI,
2512 __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2513 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2514 ATW_BPLI_LI_MASK));
2515
2516 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2517 ATW_READ(sc, ATW_BPLI)));
2518
2519 atw_predict_beacon(sc);
2520
2521 switch (ic->ic_opmode) {
2522 case IEEE80211_M_AHDEMO:
2523 case IEEE80211_M_HOSTAP:
2524 case IEEE80211_M_IBSS:
2525 atw_start_beacon(sc, 1);
2526 break;
2527 case IEEE80211_M_MONITOR:
2528 case IEEE80211_M_STA:
2529 break;
2530 }
2531
2532 break;
2533 }
2534 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2535 }
2536
2537 /*
2538 * atw_add_rxbuf:
2539 *
2540 * Add a receive buffer to the indicated descriptor.
2541 */
2542 int
2543 atw_add_rxbuf(struct atw_softc *sc, int idx)
2544 {
2545 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2546 struct mbuf *m;
2547 int error;
2548
2549 MGETHDR(m, M_DONTWAIT, MT_DATA);
2550 if (m == NULL)
2551 return (ENOBUFS);
2552
2553 MCLGET(m, M_DONTWAIT);
2554 if ((m->m_flags & M_EXT) == 0) {
2555 m_freem(m);
2556 return (ENOBUFS);
2557 }
2558
2559 if (rxs->rxs_mbuf != NULL)
2560 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2561
2562 rxs->rxs_mbuf = m;
2563
2564 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2565 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2566 BUS_DMA_READ|BUS_DMA_NOWAIT);
2567 if (error) {
2568 aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2569 idx, error);
2570 panic("atw_add_rxbuf"); /* XXX */
2571 }
2572
2573 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2574 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2575
2576 atw_init_rxdesc(sc, idx);
2577
2578 return (0);
2579 }
2580
2581 /*
2582 * Release any queued transmit buffers.
2583 */
2584 void
2585 atw_txdrain(struct atw_softc *sc)
2586 {
2587 struct atw_txsoft *txs;
2588
2589 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2590 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2591 if (txs->txs_mbuf != NULL) {
2592 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2593 m_freem(txs->txs_mbuf);
2594 txs->txs_mbuf = NULL;
2595 }
2596 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2597 sc->sc_txfree += txs->txs_ndescs;
2598 }
2599
2600 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2601 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2602 sc->sc_txfree != ATW_NTXDESC));
2603 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2604 sc->sc_tx_timer = 0;
2605 }
2606
2607 /*
2608 * atw_stop: [ ifnet interface function ]
2609 *
2610 * Stop transmission on the interface.
2611 */
2612 void
2613 atw_stop(struct ifnet *ifp, int disable)
2614 {
2615 struct atw_softc *sc = ifp->if_softc;
2616 struct ieee80211com *ic = &sc->sc_ic;
2617
2618 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2619
2620 if (device_is_active(sc->sc_dev)) {
2621 /* Disable interrupts. */
2622 ATW_WRITE(sc, ATW_IER, 0);
2623
2624 /* Stop the transmit and receive processes. */
2625 ATW_WRITE(sc, ATW_NAR, 0);
2626 DELAY(atw_nar_delay);
2627 ATW_WRITE(sc, ATW_TDBD, 0);
2628 ATW_WRITE(sc, ATW_TDBP, 0);
2629 ATW_WRITE(sc, ATW_RDB, 0);
2630 }
2631
2632 sc->sc_opmode = 0;
2633
2634 atw_txdrain(sc);
2635
2636 /*
2637 * Mark the interface down and cancel the watchdog timer.
2638 */
2639 ifp->if_flags &= ~IFF_RUNNING;
2640 ifp->if_timer = 0;
2641
2642 if (disable)
2643 pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2644 }
2645
2646 /*
2647 * atw_rxdrain:
2648 *
2649 * Drain the receive queue.
2650 */
2651 void
2652 atw_rxdrain(struct atw_softc *sc)
2653 {
2654 struct atw_rxsoft *rxs;
2655 int i;
2656
2657 for (i = 0; i < ATW_NRXDESC; i++) {
2658 rxs = &sc->sc_rxsoft[i];
2659 if (rxs->rxs_mbuf == NULL)
2660 continue;
2661 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2662 m_freem(rxs->rxs_mbuf);
2663 rxs->rxs_mbuf = NULL;
2664 }
2665 }
2666
2667 /*
2668 * atw_detach:
2669 *
2670 * Detach an ADM8211 interface.
2671 */
2672 int
2673 atw_detach(struct atw_softc *sc)
2674 {
2675 struct ifnet *ifp = &sc->sc_if;
2676 struct atw_rxsoft *rxs;
2677 struct atw_txsoft *txs;
2678 int i;
2679
2680 /*
2681 * Succeed now if there isn't any work to do.
2682 */
2683 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2684 return (0);
2685
2686 pmf_device_deregister(sc->sc_dev);
2687
2688 callout_stop(&sc->sc_scan_ch);
2689
2690 ieee80211_ifdetach(&sc->sc_ic);
2691 if_detach(ifp);
2692
2693 for (i = 0; i < ATW_NRXDESC; i++) {
2694 rxs = &sc->sc_rxsoft[i];
2695 if (rxs->rxs_mbuf != NULL) {
2696 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2697 m_freem(rxs->rxs_mbuf);
2698 rxs->rxs_mbuf = NULL;
2699 }
2700 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2701 }
2702 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2703 txs = &sc->sc_txsoft[i];
2704 if (txs->txs_mbuf != NULL) {
2705 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2706 m_freem(txs->txs_mbuf);
2707 txs->txs_mbuf = NULL;
2708 }
2709 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2710 }
2711 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2712 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2713 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2714 sizeof(struct atw_control_data));
2715 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2716
2717 if (sc->sc_srom)
2718 free(sc->sc_srom, M_DEVBUF);
2719
2720 atw_evcnt_detach(sc);
2721
2722 return (0);
2723 }
2724
2725 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2726 bool
2727 atw_shutdown(device_t self, int flags)
2728 {
2729 struct atw_softc *sc = device_private(self);
2730
2731 atw_stop(&sc->sc_if, 1);
2732 return true;
2733 }
2734
2735 #if 0
2736 static void
2737 atw_workaround1(struct atw_softc *sc)
2738 {
2739 uint32_t test1;
2740
2741 test1 = ATW_READ(sc, ATW_TEST1);
2742
2743 sc->sc_misc_ev.ev_count++;
2744
2745 if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2746 sc->sc_rxpkt1in_ev.ev_count++;
2747 return;
2748 }
2749 if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2750 __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2751 sc->sc_rxamatch_ev.ev_count++;
2752 return;
2753 }
2754 sc->sc_workaround1_ev.ev_count++;
2755 (void)atw_init(&sc->sc_if);
2756 }
2757 #endif
2758
2759 int
2760 atw_intr(void *arg)
2761 {
2762 struct atw_softc *sc = arg;
2763 struct ifnet *ifp = &sc->sc_if;
2764 u_int32_t status, rxstatus, txstatus, linkstatus;
2765 int handled = 0, txthresh;
2766
2767 #ifdef DEBUG
2768 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2769 panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2770 #endif
2771
2772 /*
2773 * If the interface isn't running, the interrupt couldn't
2774 * possibly have come from us.
2775 */
2776 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2777 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2778 return (0);
2779
2780 for (;;) {
2781 status = ATW_READ(sc, ATW_STSR);
2782
2783 if (status)
2784 ATW_WRITE(sc, ATW_STSR, status);
2785
2786 #ifdef ATW_DEBUG
2787 #define PRINTINTR(flag) do { \
2788 if ((status & flag) != 0) { \
2789 printf("%s" #flag, delim); \
2790 delim = ","; \
2791 } \
2792 } while (0)
2793
2794 if (atw_debug > 1 && status) {
2795 const char *delim = "<";
2796
2797 printf("%s: reg[STSR] = %x",
2798 device_xname(sc->sc_dev), status);
2799
2800 PRINTINTR(ATW_INTR_FBE);
2801 PRINTINTR(ATW_INTR_LINKOFF);
2802 PRINTINTR(ATW_INTR_LINKON);
2803 PRINTINTR(ATW_INTR_RCI);
2804 PRINTINTR(ATW_INTR_RDU);
2805 PRINTINTR(ATW_INTR_REIS);
2806 PRINTINTR(ATW_INTR_RPS);
2807 PRINTINTR(ATW_INTR_TCI);
2808 PRINTINTR(ATW_INTR_TDU);
2809 PRINTINTR(ATW_INTR_TLT);
2810 PRINTINTR(ATW_INTR_TPS);
2811 PRINTINTR(ATW_INTR_TRT);
2812 PRINTINTR(ATW_INTR_TUF);
2813 PRINTINTR(ATW_INTR_BCNTC);
2814 PRINTINTR(ATW_INTR_ATIME);
2815 PRINTINTR(ATW_INTR_TBTT);
2816 PRINTINTR(ATW_INTR_TSCZ);
2817 PRINTINTR(ATW_INTR_TSFTF);
2818 printf(">\n");
2819 }
2820 #undef PRINTINTR
2821 #endif /* ATW_DEBUG */
2822
2823 if ((status & sc->sc_inten) == 0)
2824 break;
2825
2826 handled = 1;
2827
2828 rxstatus = status & sc->sc_rxint_mask;
2829 txstatus = status & sc->sc_txint_mask;
2830 linkstatus = status & sc->sc_linkint_mask;
2831
2832 if (linkstatus) {
2833 atw_linkintr(sc, linkstatus);
2834 }
2835
2836 if (rxstatus) {
2837 /* Grab any new packets. */
2838 atw_rxintr(sc);
2839
2840 if (rxstatus & ATW_INTR_RDU) {
2841 printf("%s: receive ring overrun\n",
2842 device_xname(sc->sc_dev));
2843 /* Get the receive process going again. */
2844 ATW_WRITE(sc, ATW_RDR, 0x1);
2845 }
2846 }
2847
2848 if (txstatus) {
2849 /* Sweep up transmit descriptors. */
2850 atw_txintr(sc, txstatus);
2851
2852 if (txstatus & ATW_INTR_TLT) {
2853 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2854 device_xname(sc->sc_dev)));
2855 (void)atw_init(&sc->sc_if);
2856 }
2857
2858 if (txstatus & ATW_INTR_TRT) {
2859 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2860 device_xname(sc->sc_dev)));
2861 }
2862
2863 /* If Tx under-run, increase our transmit threshold
2864 * if another is available.
2865 */
2866 txthresh = sc->sc_txthresh + 1;
2867 if ((txstatus & ATW_INTR_TUF) &&
2868 sc->sc_txth[txthresh].txth_name != NULL) {
2869 /* Idle the transmit process. */
2870 atw_idle(sc, ATW_NAR_ST);
2871
2872 sc->sc_txthresh = txthresh;
2873 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2874 sc->sc_opmode |=
2875 sc->sc_txth[txthresh].txth_opmode;
2876 printf("%s: transmit underrun; new "
2877 "threshold: %s\n", device_xname(sc->sc_dev),
2878 sc->sc_txth[txthresh].txth_name);
2879
2880 /* Set the new threshold and restart
2881 * the transmit process.
2882 */
2883 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2884 DELAY(atw_nar_delay);
2885 ATW_WRITE(sc, ATW_TDR, 0x1);
2886 /* XXX Log every Nth underrun from
2887 * XXX now on?
2888 */
2889 }
2890 }
2891
2892 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2893 if (status & ATW_INTR_TPS)
2894 printf("%s: transmit process stopped\n",
2895 device_xname(sc->sc_dev));
2896 if (status & ATW_INTR_RPS)
2897 printf("%s: receive process stopped\n",
2898 device_xname(sc->sc_dev));
2899 (void)atw_init(ifp);
2900 break;
2901 }
2902
2903 if (status & ATW_INTR_FBE) {
2904 aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2905 (void)atw_init(ifp);
2906 break;
2907 }
2908
2909 /*
2910 * Not handled:
2911 *
2912 * Transmit buffer unavailable -- normal
2913 * condition, nothing to do, really.
2914 *
2915 * Early receive interrupt -- not available on
2916 * all chips, we just use RI. We also only
2917 * use single-segment receive DMA, so this
2918 * is mostly useless.
2919 *
2920 * TBD others
2921 */
2922 }
2923
2924 /* Try to get more packets going. */
2925 atw_start(ifp);
2926
2927 return (handled);
2928 }
2929
2930 /*
2931 * atw_idle:
2932 *
2933 * Cause the transmit and/or receive processes to go idle.
2934 *
2935 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2936 * process in STSR if I clear SR or ST after the process has already
2937 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2938 * do not seem to be too reliable. Perhaps I have the sense of the
2939 * Rx bits switched with the Tx bits?
2940 */
2941 void
2942 atw_idle(struct atw_softc *sc, u_int32_t bits)
2943 {
2944 u_int32_t ackmask = 0, opmode, stsr, test0;
2945 int i, s;
2946
2947 s = splnet();
2948
2949 opmode = sc->sc_opmode & ~bits;
2950
2951 if (bits & ATW_NAR_SR)
2952 ackmask |= ATW_INTR_RPS;
2953
2954 if (bits & ATW_NAR_ST) {
2955 ackmask |= ATW_INTR_TPS;
2956 /* set ATW_NAR_HF to flush TX FIFO. */
2957 opmode |= ATW_NAR_HF;
2958 }
2959
2960 ATW_WRITE(sc, ATW_NAR, opmode);
2961 DELAY(atw_nar_delay);
2962
2963 for (i = 0; i < 1000; i++) {
2964 stsr = ATW_READ(sc, ATW_STSR);
2965 if ((stsr & ackmask) == ackmask)
2966 break;
2967 DELAY(10);
2968 }
2969
2970 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2971
2972 if ((stsr & ackmask) == ackmask)
2973 goto out;
2974
2975 test0 = ATW_READ(sc, ATW_TEST0);
2976
2977 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2978 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2979 printf("%s: transmit process not idle [%s]\n",
2980 device_xname(sc->sc_dev),
2981 atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
2982 printf("%s: bits %08x test0 %08x stsr %08x\n",
2983 device_xname(sc->sc_dev), bits, test0, stsr);
2984 }
2985
2986 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2987 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2988 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2989 device_xname(sc->sc_dev),
2990 atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
2991 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2992 device_xname(sc->sc_dev), bits, test0, stsr));
2993 }
2994 out:
2995 if ((bits & ATW_NAR_ST) != 0)
2996 atw_txdrain(sc);
2997 splx(s);
2998 return;
2999 }
3000
3001 /*
3002 * atw_linkintr:
3003 *
3004 * Helper; handle link-status interrupts.
3005 */
3006 void
3007 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3008 {
3009 struct ieee80211com *ic = &sc->sc_ic;
3010
3011 if (ic->ic_state != IEEE80211_S_RUN)
3012 return;
3013
3014 if (linkstatus & ATW_INTR_LINKON) {
3015 DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3016 sc->sc_rescan_timer = 0;
3017 } else if (linkstatus & ATW_INTR_LINKOFF) {
3018 DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3019 if (ic->ic_opmode != IEEE80211_M_STA)
3020 return;
3021 sc->sc_rescan_timer = 3;
3022 sc->sc_if.if_timer = 1;
3023 }
3024 }
3025
3026 #if 0
3027 static inline int
3028 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3029 {
3030 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3031 return 0;
3032 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3033 return 0;
3034 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3035 }
3036 #endif
3037
3038 /*
3039 * atw_rxintr:
3040 *
3041 * Helper; handle receive interrupts.
3042 */
3043 void
3044 atw_rxintr(struct atw_softc *sc)
3045 {
3046 static int rate_tbl[] = {2, 4, 11, 22, 44};
3047 struct ieee80211com *ic = &sc->sc_ic;
3048 struct ieee80211_node *ni;
3049 struct ieee80211_frame_min *wh;
3050 struct ifnet *ifp = &sc->sc_if;
3051 struct atw_rxsoft *rxs;
3052 struct mbuf *m;
3053 u_int32_t rxstat;
3054 int i, len, rate, rate0;
3055 u_int32_t rssi, ctlrssi;
3056
3057 for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3058 rxs = &sc->sc_rxsoft[i];
3059
3060 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3061
3062 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3063 ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3064 rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3065
3066 if (rxstat & ATW_RXSTAT_OWN) {
3067 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3068 break;
3069 }
3070
3071 sc->sc_rxptr = ATW_NEXTRX(i);
3072
3073 DPRINTF3(sc,
3074 ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3075 device_xname(sc->sc_dev),
3076 rxstat, ctlrssi,
3077 le32toh(sc->sc_rxdescs[i].ar_buf1),
3078 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3079
3080 /*
3081 * Make sure the packet fits in one buffer. This should
3082 * always be the case.
3083 */
3084 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3085 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3086 printf("%s: incoming packet spilled, resetting\n",
3087 device_xname(sc->sc_dev));
3088 (void)atw_init(ifp);
3089 return;
3090 }
3091
3092 /*
3093 * If an error occurred, update stats, clear the status
3094 * word, and leave the packet buffer in place. It will
3095 * simply be reused the next time the ring comes around.
3096 */
3097 if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3098 #define PRINTERR(bit, str) \
3099 if (rxstat & (bit)) \
3100 aprint_error_dev(sc->sc_dev, "receive error: %s\n", \
3101 str)
3102 ifp->if_ierrors++;
3103 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3104 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3105 #if 0
3106 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3107 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3108 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3109 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3110 #endif
3111 #undef PRINTERR
3112 atw_init_rxdesc(sc, i);
3113 continue;
3114 }
3115
3116 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3117 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3118
3119 /*
3120 * No errors; receive the packet. Note the ADM8211
3121 * includes the CRC in promiscuous mode.
3122 */
3123 len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3124
3125 /*
3126 * Allocate a new mbuf cluster. If that fails, we are
3127 * out of memory, and must drop the packet and recycle
3128 * the buffer that's already attached to this descriptor.
3129 */
3130 m = rxs->rxs_mbuf;
3131 if (atw_add_rxbuf(sc, i) != 0) {
3132 ifp->if_ierrors++;
3133 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3134 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3135 atw_init_rxdesc(sc, i);
3136 continue;
3137 }
3138
3139 ifp->if_ipackets++;
3140 m->m_pkthdr.rcvif = ifp;
3141 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3142
3143 rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3144
3145 /* The RSSI comes straight from a register in the
3146 * baseband processor. I know that for the RF3000,
3147 * the RSSI register also contains the antenna-selection
3148 * bits. Mask those off.
3149 *
3150 * TBD Treat other basebands.
3151 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3152 */
3153 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3154 rssi = ctlrssi & RF3000_RSSI_MASK;
3155 else
3156 rssi = ctlrssi;
3157
3158 /* Pass this up to any BPF listeners. */
3159 if (sc->sc_radiobpf != NULL) {
3160 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3161
3162 tap->ar_rate = rate;
3163
3164 /* TBD verify units are dB */
3165 tap->ar_antsignal = (int)rssi;
3166 if (sc->sc_opmode & ATW_NAR_PR)
3167 tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3168 else
3169 tap->ar_flags = 0;
3170
3171 if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3172 tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3173
3174 bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_rxtapu),
3175 m);
3176 }
3177
3178 sc->sc_recv_ev.ev_count++;
3179
3180 if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3181 if (rxstat & ATW_RXSTAT_CRC16E)
3182 sc->sc_crc16e_ev.ev_count++;
3183 if (rxstat & ATW_RXSTAT_CRC32E)
3184 sc->sc_crc32e_ev.ev_count++;
3185 if (rxstat & ATW_RXSTAT_ICVE)
3186 sc->sc_icve_ev.ev_count++;
3187 if (rxstat & ATW_RXSTAT_SFDE)
3188 sc->sc_sfde_ev.ev_count++;
3189 if (rxstat & ATW_RXSTAT_SIGE)
3190 sc->sc_sige_ev.ev_count++;
3191 ifp->if_ierrors++;
3192 m_freem(m);
3193 continue;
3194 }
3195
3196 if (sc->sc_opmode & ATW_NAR_PR)
3197 m_adj(m, -IEEE80211_CRC_LEN);
3198
3199 wh = mtod(m, struct ieee80211_frame_min *);
3200 ni = ieee80211_find_rxnode(ic, wh);
3201 #if 0
3202 if (atw_hw_decrypted(sc, wh)) {
3203 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3204 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3205 }
3206 #endif
3207 ieee80211_input(ic, m, ni, (int)rssi, 0);
3208 ieee80211_free_node(ni);
3209 }
3210 }
3211
3212 /*
3213 * atw_txintr:
3214 *
3215 * Helper; handle transmit interrupts.
3216 */
3217 void
3218 atw_txintr(struct atw_softc *sc, uint32_t status)
3219 {
3220 static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3221 struct ifnet *ifp = &sc->sc_if;
3222 struct atw_txsoft *txs;
3223 u_int32_t txstat;
3224
3225 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3226 device_xname(sc->sc_dev), sc->sc_flags));
3227
3228 /*
3229 * Go through our Tx list and free mbufs for those
3230 * frames that have been transmitted.
3231 */
3232 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3233 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3234 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3235
3236 #ifdef ATW_DEBUG
3237 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3238 int i;
3239 printf(" txsoft %p transmit chain:\n", txs);
3240 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3241 txs->txs_ndescs - 1,
3242 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3243 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3244 printf(" descriptor %d:\n", i);
3245 printf(" at_status: 0x%08x\n",
3246 le32toh(sc->sc_txdescs[i].at_stat));
3247 printf(" at_flags: 0x%08x\n",
3248 le32toh(sc->sc_txdescs[i].at_flags));
3249 printf(" at_buf1: 0x%08x\n",
3250 le32toh(sc->sc_txdescs[i].at_buf1));
3251 printf(" at_buf2: 0x%08x\n",
3252 le32toh(sc->sc_txdescs[i].at_buf2));
3253 if (i == txs->txs_lastdesc)
3254 break;
3255 }
3256 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3257 txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3258 }
3259 #endif
3260
3261 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3262 if (txstat & ATW_TXSTAT_OWN) {
3263 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3264 BUS_DMASYNC_PREREAD);
3265 break;
3266 }
3267
3268 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3269
3270 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3271 0, txs->txs_dmamap->dm_mapsize,
3272 BUS_DMASYNC_POSTWRITE);
3273 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3274 m_freem(txs->txs_mbuf);
3275 txs->txs_mbuf = NULL;
3276
3277 sc->sc_txfree += txs->txs_ndescs;
3278 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3279
3280 KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3281 sc->sc_tx_timer = 0;
3282 ifp->if_flags &= ~IFF_OACTIVE;
3283
3284 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3285 (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3286 snprintb(txstat_buf, sizeof(txstat_buf),
3287 ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3288 printf("%s: txstat %s %" __PRIuBITS "\n",
3289 device_xname(sc->sc_dev), txstat_buf,
3290 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3291 }
3292
3293 sc->sc_xmit_ev.ev_count++;
3294
3295 /*
3296 * Check for errors and collisions.
3297 */
3298 if (txstat & ATW_TXSTAT_TUF)
3299 sc->sc_tuf_ev.ev_count++;
3300 if (txstat & ATW_TXSTAT_TLT)
3301 sc->sc_tlt_ev.ev_count++;
3302 if (txstat & ATW_TXSTAT_TRT)
3303 sc->sc_trt_ev.ev_count++;
3304 if (txstat & ATW_TXSTAT_TRO)
3305 sc->sc_tro_ev.ev_count++;
3306 if (txstat & ATW_TXSTAT_SOFBR)
3307 sc->sc_sofbr_ev.ev_count++;
3308
3309 if ((txstat & ATW_TXSTAT_ES) == 0)
3310 ifp->if_collisions +=
3311 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3312 else
3313 ifp->if_oerrors++;
3314
3315 ifp->if_opackets++;
3316 }
3317
3318 KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3319 }
3320
3321 /*
3322 * atw_watchdog: [ifnet interface function]
3323 *
3324 * Watchdog timer handler.
3325 */
3326 void
3327 atw_watchdog(struct ifnet *ifp)
3328 {
3329 struct atw_softc *sc = ifp->if_softc;
3330 struct ieee80211com *ic = &sc->sc_ic;
3331
3332 ifp->if_timer = 0;
3333 if (!device_is_active(sc->sc_dev))
3334 return;
3335
3336 if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3337 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3338 if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3339 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3340 printf("%s: transmit timeout\n", ifp->if_xname);
3341 ifp->if_oerrors++;
3342 (void)atw_init(ifp);
3343 atw_start(ifp);
3344 }
3345 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3346 ifp->if_timer = 1;
3347 ieee80211_watchdog(ic);
3348 }
3349
3350 static void
3351 atw_evcnt_detach(struct atw_softc *sc)
3352 {
3353 evcnt_detach(&sc->sc_sige_ev);
3354 evcnt_detach(&sc->sc_sfde_ev);
3355 evcnt_detach(&sc->sc_icve_ev);
3356 evcnt_detach(&sc->sc_crc32e_ev);
3357 evcnt_detach(&sc->sc_crc16e_ev);
3358 evcnt_detach(&sc->sc_recv_ev);
3359
3360 evcnt_detach(&sc->sc_tuf_ev);
3361 evcnt_detach(&sc->sc_tro_ev);
3362 evcnt_detach(&sc->sc_trt_ev);
3363 evcnt_detach(&sc->sc_tlt_ev);
3364 evcnt_detach(&sc->sc_sofbr_ev);
3365 evcnt_detach(&sc->sc_xmit_ev);
3366
3367 evcnt_detach(&sc->sc_rxpkt1in_ev);
3368 evcnt_detach(&sc->sc_rxamatch_ev);
3369 evcnt_detach(&sc->sc_workaround1_ev);
3370 evcnt_detach(&sc->sc_misc_ev);
3371 }
3372
3373 static void
3374 atw_evcnt_attach(struct atw_softc *sc)
3375 {
3376 evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3377 NULL, sc->sc_if.if_xname, "recv");
3378 evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3379 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3380 evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3381 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3382 evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3383 &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3384 evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3385 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3386 evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3387 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3388
3389 evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3390 NULL, sc->sc_if.if_xname, "xmit");
3391 evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3392 &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3393 evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3394 &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3395 evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3396 &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3397 evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3398 &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3399 evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3400 &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3401
3402 evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3403 NULL, sc->sc_if.if_xname, "misc");
3404 evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3405 &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3406 evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3407 &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3408 evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3409 &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3410 }
3411
3412 #ifdef ATW_DEBUG
3413 static void
3414 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3415 {
3416 struct atw_softc *sc = ifp->if_softc;
3417 struct mbuf *m;
3418 int i, noctets = 0;
3419
3420 printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3421 m0->m_pkthdr.len);
3422
3423 for (m = m0; m; m = m->m_next) {
3424 if (m->m_len == 0)
3425 continue;
3426 for (i = 0; i < m->m_len; i++) {
3427 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3428 if (++noctets % 24 == 0)
3429 printf("\n");
3430 }
3431 }
3432 printf("%s%s: %d bytes emitted\n",
3433 (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3434 }
3435 #endif /* ATW_DEBUG */
3436
3437 /*
3438 * atw_start: [ifnet interface function]
3439 *
3440 * Start packet transmission on the interface.
3441 */
3442 void
3443 atw_start(struct ifnet *ifp)
3444 {
3445 struct atw_softc *sc = ifp->if_softc;
3446 struct ieee80211_key *k;
3447 struct ieee80211com *ic = &sc->sc_ic;
3448 struct ieee80211_node *ni;
3449 struct ieee80211_frame_min *whm;
3450 struct ieee80211_frame *wh;
3451 struct atw_frame *hh;
3452 uint16_t hdrctl;
3453 struct mbuf *m0, *m;
3454 struct atw_txsoft *txs;
3455 struct atw_txdesc *txd;
3456 int npkt, rate;
3457 bus_dmamap_t dmamap;
3458 int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3459
3460 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3461 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3462
3463 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3464 return;
3465
3466 /*
3467 * Remember the previous number of free descriptors and
3468 * the first descriptor we'll use.
3469 */
3470 ofree = sc->sc_txfree;
3471 firsttx = lasttx = sc->sc_txnext;
3472
3473 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3474 device_xname(sc->sc_dev), ofree, firsttx));
3475
3476 /*
3477 * Loop through the send queue, setting up transmit descriptors
3478 * until we drain the queue, or use up all available transmit
3479 * descriptors.
3480 */
3481 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3482 sc->sc_txfree != 0) {
3483
3484 hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3485
3486 /*
3487 * Grab a packet off the management queue, if it
3488 * is not empty. Otherwise, from the data queue.
3489 */
3490 IF_DEQUEUE(&ic->ic_mgtq, m0);
3491 if (m0 != NULL) {
3492 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3493 m0->m_pkthdr.rcvif = NULL;
3494 } else if (ic->ic_state != IEEE80211_S_RUN)
3495 break; /* send no data until associated */
3496 else {
3497 IFQ_DEQUEUE(&ifp->if_snd, m0);
3498 if (m0 == NULL)
3499 break;
3500 bpf_mtap(ifp, m0);
3501 ni = ieee80211_find_txnode(ic,
3502 mtod(m0, struct ether_header *)->ether_dhost);
3503 if (ni == NULL) {
3504 ifp->if_oerrors++;
3505 break;
3506 }
3507 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3508 ieee80211_free_node(ni);
3509 ifp->if_oerrors++;
3510 break;
3511 }
3512 }
3513
3514 rate = MAX(ieee80211_get_rate(ni), 2);
3515
3516 whm = mtod(m0, struct ieee80211_frame_min *);
3517
3518 if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3519 k = NULL;
3520 else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3521 m_freem(m0);
3522 ieee80211_free_node(ni);
3523 ifp->if_oerrors++;
3524 break;
3525 }
3526 #if 0
3527 if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3528 m0->m_pkthdr.len > ic->ic_fragthreshold)
3529 hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3530 #endif
3531
3532 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3533 hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3534
3535 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3536 ic->ic_flags, ic->ic_fragthreshold, rate,
3537 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3538 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3539 m_freem(m0);
3540 break;
3541 }
3542
3543 /* XXX Misleading if fragmentation is enabled. Better
3544 * to fragment in software?
3545 */
3546 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3547
3548 /*
3549 * Pass the packet to any BPF listeners.
3550 */
3551 bpf_mtap3(ic->ic_rawbpf, m0);
3552
3553 if (sc->sc_radiobpf != NULL) {
3554 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3555
3556 tap->at_rate = rate;
3557
3558 bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_txtapu),
3559 m0);
3560 }
3561
3562 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3563
3564 if (ni != NULL)
3565 ieee80211_free_node(ni);
3566
3567 if (m0 == NULL) {
3568 ifp->if_oerrors++;
3569 break;
3570 }
3571
3572 /* just to make sure. */
3573 m0 = m_pullup(m0, sizeof(struct atw_frame));
3574
3575 if (m0 == NULL) {
3576 ifp->if_oerrors++;
3577 break;
3578 }
3579
3580 hh = mtod(m0, struct atw_frame *);
3581 wh = &hh->atw_ihdr;
3582
3583 /* Copy everything we need from the 802.11 header:
3584 * Frame Control; address 1, address 3, or addresses
3585 * 3 and 4. NIC fills in BSSID, SA.
3586 */
3587 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3588 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3589 panic("%s: illegal WDS frame",
3590 device_xname(sc->sc_dev));
3591 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3592 } else
3593 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3594
3595 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3596
3597 /* initialize remaining Tx parameters */
3598 memset(&hh->u, 0, sizeof(hh->u));
3599
3600 hh->atw_rate = rate * 5;
3601 /* XXX this could be incorrect if M_FCS. _encap should
3602 * probably strip FCS just in case it sticks around in
3603 * bridged packets.
3604 */
3605 hh->atw_service = 0x00; /* XXX guess */
3606 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3607 sizeof(struct atw_frame));
3608
3609 /* never fragment multicast frames */
3610 if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3611 hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3612 else {
3613 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3614 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3615 hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3616 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3617 }
3618
3619 hh->atw_rtylmt = 3;
3620 #if 0
3621 if (do_encrypt) {
3622 hdrctl |= htole16(ATW_HDRCTL_WEP);
3623 hh->atw_keyid = ic->ic_def_txkey;
3624 }
3625 #endif
3626
3627 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3628 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3629 if (txs->txs_d0.d_residue)
3630 hh->atw_head_plcplen |= htole16(0x8000);
3631 if (txs->txs_dn.d_residue)
3632 hh->atw_tail_plcplen |= htole16(0x8000);
3633 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3634 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3635
3636 hh->atw_hdrctl = hdrctl;
3637 hh->atw_fragnum = npkt << 4;
3638 #ifdef ATW_DEBUG
3639
3640 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3641 printf("%s: dst = %s, rate = 0x%02x, "
3642 "service = 0x%02x, paylen = 0x%04x\n",
3643 device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3644 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3645
3646 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3647 "dur1 = 0x%04x, dur2 = 0x%04x, "
3648 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3649 device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3650 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3651 hh->atw_tail_dur, hh->atw_head_dur);
3652
3653 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3654 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3655 device_xname(sc->sc_dev), hh->atw_hdrctl,
3656 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3657
3658 printf("%s: keyid = %d\n",
3659 device_xname(sc->sc_dev), hh->atw_keyid);
3660
3661 atw_dump_pkt(ifp, m0);
3662 }
3663 #endif /* ATW_DEBUG */
3664
3665 dmamap = txs->txs_dmamap;
3666
3667 /*
3668 * Load the DMA map. Copy and try (once) again if the packet
3669 * didn't fit in the alloted number of segments.
3670 */
3671 for (first = 1;
3672 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3673 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3674 first = 0) {
3675 MGETHDR(m, M_DONTWAIT, MT_DATA);
3676 if (m == NULL) {
3677 aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3678 break;
3679 }
3680 if (m0->m_pkthdr.len > MHLEN) {
3681 MCLGET(m, M_DONTWAIT);
3682 if ((m->m_flags & M_EXT) == 0) {
3683 aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3684 "cluster\n");
3685 m_freem(m);
3686 break;
3687 }
3688 }
3689 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3690 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3691 m_freem(m0);
3692 m0 = m;
3693 m = NULL;
3694 }
3695 if (error != 0) {
3696 aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3697 "error = %d\n", error);
3698 m_freem(m0);
3699 break;
3700 }
3701
3702 /*
3703 * Ensure we have enough descriptors free to describe
3704 * the packet.
3705 */
3706 if (dmamap->dm_nsegs > sc->sc_txfree) {
3707 /*
3708 * Not enough free descriptors to transmit
3709 * this packet. Unload the DMA map and
3710 * drop the packet. Notify the upper layer
3711 * that there are no more slots left.
3712 *
3713 * XXX We could allocate an mbuf and copy, but
3714 * XXX it is worth it?
3715 */
3716 bus_dmamap_unload(sc->sc_dmat, dmamap);
3717 m_freem(m0);
3718 break;
3719 }
3720
3721 /*
3722 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3723 */
3724
3725 /* Sync the DMA map. */
3726 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3727 BUS_DMASYNC_PREWRITE);
3728
3729 /* XXX arbitrary retry limit; 8 because I have seen it in
3730 * use already and maybe 0 means "no tries" !
3731 */
3732 ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3733
3734 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3735 device_xname(sc->sc_dev), rate * 5));
3736 ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3737
3738 /*
3739 * Initialize the transmit descriptors.
3740 */
3741 for (nexttx = sc->sc_txnext, seg = 0;
3742 seg < dmamap->dm_nsegs;
3743 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3744 /*
3745 * If this is the first descriptor we're
3746 * enqueueing, don't set the OWN bit just
3747 * yet. That could cause a race condition.
3748 * We'll do it below.
3749 */
3750 txd = &sc->sc_txdescs[nexttx];
3751 txd->at_ctl = ctl |
3752 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3753
3754 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3755 txd->at_flags =
3756 htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3757 ATW_TXFLAG_TBS1_MASK)) |
3758 ((nexttx == (ATW_NTXDESC - 1))
3759 ? htole32(ATW_TXFLAG_TER) : 0);
3760 lasttx = nexttx;
3761 }
3762
3763 /* Set `first segment' and `last segment' appropriately. */
3764 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3765 htole32(ATW_TXFLAG_FS);
3766 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3767
3768 #ifdef ATW_DEBUG
3769 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3770 printf(" txsoft %p transmit chain:\n", txs);
3771 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3772 printf(" descriptor %d:\n", seg);
3773 printf(" at_ctl: 0x%08x\n",
3774 le32toh(sc->sc_txdescs[seg].at_ctl));
3775 printf(" at_flags: 0x%08x\n",
3776 le32toh(sc->sc_txdescs[seg].at_flags));
3777 printf(" at_buf1: 0x%08x\n",
3778 le32toh(sc->sc_txdescs[seg].at_buf1));
3779 printf(" at_buf2: 0x%08x\n",
3780 le32toh(sc->sc_txdescs[seg].at_buf2));
3781 if (seg == lasttx)
3782 break;
3783 }
3784 }
3785 #endif
3786
3787 /* Sync the descriptors we're using. */
3788 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3789 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3790
3791 /*
3792 * Store a pointer to the packet so we can free it later,
3793 * and remember what txdirty will be once the packet is
3794 * done.
3795 */
3796 txs->txs_mbuf = m0;
3797 txs->txs_firstdesc = sc->sc_txnext;
3798 txs->txs_lastdesc = lasttx;
3799 txs->txs_ndescs = dmamap->dm_nsegs;
3800
3801 /* Advance the tx pointer. */
3802 sc->sc_txfree -= dmamap->dm_nsegs;
3803 sc->sc_txnext = nexttx;
3804
3805 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3806 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3807 }
3808
3809 if (sc->sc_txfree != ofree) {
3810 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3811 device_xname(sc->sc_dev), lasttx, firsttx));
3812 /*
3813 * Cause a transmit interrupt to happen on the
3814 * last packet we enqueued.
3815 */
3816 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3817 ATW_CDTXSYNC(sc, lasttx, 1,
3818 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3819
3820 /*
3821 * The entire packet chain is set up. Give the
3822 * first descriptor to the chip now.
3823 */
3824 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3825 ATW_CDTXSYNC(sc, firsttx, 1,
3826 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3827
3828 /* Wake up the transmitter. */
3829 ATW_WRITE(sc, ATW_TDR, 0x1);
3830
3831 if (txs == NULL || sc->sc_txfree == 0)
3832 ifp->if_flags |= IFF_OACTIVE;
3833
3834 /* Set a watchdog timer in case the chip flakes out. */
3835 sc->sc_tx_timer = 5;
3836 ifp->if_timer = 1;
3837 }
3838 }
3839
3840 /*
3841 * atw_ioctl: [ifnet interface function]
3842 *
3843 * Handle control requests from the operator.
3844 */
3845 int
3846 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3847 {
3848 struct atw_softc *sc = ifp->if_softc;
3849 struct ieee80211req *ireq;
3850 int s, error = 0;
3851
3852 s = splnet();
3853
3854 switch (cmd) {
3855 case SIOCSIFFLAGS:
3856 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3857 break;
3858 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
3859 case IFF_UP|IFF_RUNNING:
3860 /*
3861 * To avoid rescanning another access point,
3862 * do not call atw_init() here. Instead,
3863 * only reflect media settings.
3864 */
3865 if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3866 atw_filter_setup(sc);
3867 break;
3868 case IFF_UP:
3869 error = atw_init(ifp);
3870 break;
3871 case IFF_RUNNING:
3872 atw_stop(ifp, 1);
3873 break;
3874 case 0:
3875 break;
3876 }
3877 break;
3878 case SIOCADDMULTI:
3879 case SIOCDELMULTI:
3880 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3881 if (ifp->if_flags & IFF_RUNNING)
3882 atw_filter_setup(sc); /* do not rescan */
3883 error = 0;
3884 }
3885 break;
3886 case SIOCS80211:
3887 ireq = data;
3888 if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3889 if ((error = kauth_authorize_network(curlwp->l_cred,
3890 KAUTH_NETWORK_INTERFACE,
3891 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3892 (void *)cmd, NULL)) != 0)
3893 break;
3894 if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3895 ireq->i_val <= IEEE80211_FRAG_MAX))
3896 error = EINVAL;
3897 else
3898 sc->sc_ic.ic_fragthreshold = ireq->i_val;
3899 break;
3900 }
3901 /*FALLTHROUGH*/
3902 default:
3903 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3904 if (error == ENETRESET || error == ERESTART) {
3905 if (is_running(ifp))
3906 error = atw_init(ifp);
3907 else
3908 error = 0;
3909 }
3910 break;
3911 }
3912
3913 /* Try to get more packets going. */
3914 if (device_is_active(sc->sc_dev))
3915 atw_start(ifp);
3916
3917 splx(s);
3918 return (error);
3919 }
3920
3921 static int
3922 atw_media_change(struct ifnet *ifp)
3923 {
3924 int error;
3925
3926 error = ieee80211_media_change(ifp);
3927 if (error == ENETRESET) {
3928 if (is_running(ifp))
3929 error = atw_init(ifp);
3930 else
3931 error = 0;
3932 }
3933 return error;
3934 }
3935