atw.c revision 1.162.2.1 1 /* $NetBSD: atw.c,v 1.162.2.1 2018/05/02 07:20:06 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.162.2.1 2018/05/02 07:20:06 pgoyette Exp $");
38
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/device.h>
50 #include <sys/kauth.h>
51 #include <sys/time.h>
52 #include <sys/proc.h>
53 #include <sys/atomic.h>
54 #include <lib/libkern/libkern.h>
55
56 #include <machine/endian.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #include <net80211/ieee80211_netbsd.h>
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66
67 #include <net/bpf.h>
68
69 #include <sys/bus.h>
70 #include <sys/intr.h>
71
72 #include <dev/ic/atwreg.h>
73 #include <dev/ic/rf3000reg.h>
74 #include <dev/ic/si4136reg.h>
75 #include <dev/ic/atwvar.h>
76 #include <dev/ic/smc93cx6var.h>
77
78 /* XXX TBD open questions
79 *
80 *
81 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
82 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
83 * handle this for me?
84 *
85 */
86 /* device attachment
87 *
88 * print TOFS[012]
89 *
90 * device initialization
91 *
92 * clear ATW_FRCTL_MAXPSP to disable max power saving
93 * set ATW_TXBR_ALCUPDATE to enable ALC
94 * set TOFS[012]? (hope not)
95 * disable rx/tx
96 * set ATW_PAR_SWR (software reset)
97 * wait for ATW_PAR_SWR clear
98 * disable interrupts
99 * ack status register
100 * enable interrupts
101 *
102 * rx/tx initialization
103 *
104 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
105 * allocate and init descriptor rings
106 * write ATW_PAR_DSL (descriptor skip length)
107 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
108 * write ATW_NAR_SQ for one/both transmit descriptor rings
109 * write ATW_NAR_SQ for one/both transmit descriptor rings
110 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111 *
112 * rx/tx end
113 *
114 * stop DMA
115 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
116 * flush tx w/ ATW_NAR_HF
117 *
118 * scan
119 *
120 * initialize rx/tx
121 *
122 * BSS join: (re)association response
123 *
124 * set ATW_FRCTL_AID
125 *
126 * optimizations ???
127 *
128 */
129
130 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
131
132 int atw_pseudo_milli = 1;
133 int atw_magic_delay1 = 100 * 1000;
134 int atw_magic_delay2 = 100 * 1000;
135 /* more magic multi-millisecond delays (units: microseconds) */
136 int atw_nar_delay = 20 * 1000;
137 int atw_magic_delay4 = 10 * 1000;
138 int atw_rf_delay1 = 10 * 1000;
139 int atw_rf_delay2 = 5 * 1000;
140 int atw_plcphd_delay = 2 * 1000;
141 int atw_bbp_io_enable_delay = 20 * 1000;
142 int atw_bbp_io_disable_delay = 2 * 1000;
143 int atw_writewep_delay = 1000;
144 int atw_beacon_len_adjust = 4;
145 int atw_dwelltime = 200;
146 int atw_xindiv2 = 0;
147
148 #ifdef ATW_DEBUG
149 int atw_debug = 0;
150
151 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
152 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
153 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
154 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
155 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157
158 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
159 static void atw_print_regs(struct atw_softc *, const char *);
160
161 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162 # ifdef ATW_BBPDEBUG
163 static void atw_rf3000_print(struct atw_softc *);
164 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
165 # endif /* ATW_BBPDEBUG */
166
167 # ifdef ATW_SYNDEBUG
168 static void atw_si4126_print(struct atw_softc *);
169 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
170 # endif /* ATW_SYNDEBUG */
171 #define __atwdebugused /* empty */
172 #else
173 #define ATW_DPRINTF(x)
174 #define ATW_DPRINTF2(x)
175 #define ATW_DPRINTF3(x)
176 #define DPRINTF(sc, x) /* nothing */
177 #define DPRINTF2(sc, x) /* nothing */
178 #define DPRINTF3(sc, x) /* nothing */
179 #define __atwdebugused __unused
180 #endif
181
182 /* ifnet methods */
183 int atw_init(struct ifnet *);
184 int atw_ioctl(struct ifnet *, u_long, void *);
185 void atw_start(struct ifnet *);
186 void atw_stop(struct ifnet *, int);
187 void atw_watchdog(struct ifnet *);
188
189 /* Device attachment */
190 void atw_attach(struct atw_softc *);
191 int atw_detach(struct atw_softc *);
192 static void atw_evcnt_attach(struct atw_softc *);
193 static void atw_evcnt_detach(struct atw_softc *);
194
195 /* Rx/Tx process */
196 int atw_add_rxbuf(struct atw_softc *, int);
197 void atw_idle(struct atw_softc *, u_int32_t);
198 void atw_rxdrain(struct atw_softc *);
199 void atw_txdrain(struct atw_softc *);
200
201 /* Device (de)activation and power state */
202 void atw_reset(struct atw_softc *);
203
204 /* Interrupt handlers */
205 void atw_softintr(void *);
206 void atw_linkintr(struct atw_softc *, u_int32_t);
207 void atw_rxintr(struct atw_softc *);
208 void atw_txintr(struct atw_softc *, uint32_t);
209
210 /* 802.11 state machine */
211 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
212 static void atw_next_scan(void *);
213 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
214 struct ieee80211_node *, int, int, u_int32_t);
215 static int atw_tune(struct atw_softc *);
216
217 /* Device initialization */
218 static void atw_bbp_io_init(struct atw_softc *);
219 static void atw_cfp_init(struct atw_softc *);
220 static void atw_cmdr_init(struct atw_softc *);
221 static void atw_ifs_init(struct atw_softc *);
222 static void atw_nar_init(struct atw_softc *);
223 static void atw_response_times_init(struct atw_softc *);
224 static void atw_rf_reset(struct atw_softc *);
225 static void atw_test1_init(struct atw_softc *);
226 static void atw_tofs0_init(struct atw_softc *);
227 static void atw_tofs2_init(struct atw_softc *);
228 static void atw_txlmt_init(struct atw_softc *);
229 static void atw_wcsr_init(struct atw_softc *);
230
231 /* Key management */
232 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
233 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
234 const u_int8_t[IEEE80211_ADDR_LEN]);
235 static void atw_key_update_begin(struct ieee80211com *);
236 static void atw_key_update_end(struct ieee80211com *);
237
238 /* RAM/ROM utilities */
239 static void atw_clear_sram(struct atw_softc *);
240 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
241 static int atw_read_srom(struct atw_softc *);
242
243 /* BSS setup */
244 static void atw_predict_beacon(struct atw_softc *);
245 static void atw_start_beacon(struct atw_softc *, int);
246 static void atw_write_bssid(struct atw_softc *);
247 static void atw_write_ssid(struct atw_softc *);
248 static void atw_write_sup_rates(struct atw_softc *);
249 static void atw_write_wep(struct atw_softc *);
250
251 /* Media */
252 static int atw_media_change(struct ifnet *);
253
254 static void atw_filter_setup(struct atw_softc *);
255
256 /* 802.11 utilities */
257 static uint64_t atw_get_tsft(struct atw_softc *);
258 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
259 uint32_t);
260 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
261 static void atw_node_free(struct ieee80211_node *);
262
263 /*
264 * Tuner/transceiver/modem
265 */
266 static void atw_bbp_io_enable(struct atw_softc *, int);
267
268 /* RFMD RF3000 Baseband Processor */
269 static int atw_rf3000_init(struct atw_softc *);
270 static int atw_rf3000_tune(struct atw_softc *, u_int);
271 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
272
273 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
274 static void atw_si4126_tune(struct atw_softc *, u_int);
275 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
276
277 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
278 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
279
280 const char *atw_tx_state[] = {
281 "STOPPED",
282 "RUNNING - read descriptor",
283 "RUNNING - transmitting",
284 "RUNNING - filling fifo", /* XXX */
285 "SUSPENDED",
286 "RUNNING -- write descriptor",
287 "RUNNING -- write last descriptor",
288 "RUNNING - fifo full"
289 };
290
291 const char *atw_rx_state[] = {
292 "STOPPED",
293 "RUNNING - read descriptor",
294 "RUNNING - check this packet, pre-fetch next",
295 "RUNNING - wait for reception",
296 "SUSPENDED",
297 "RUNNING - write descriptor",
298 "RUNNING - flush fifo",
299 "RUNNING - fifo drain"
300 };
301
302 static inline int
303 is_running(struct ifnet *ifp)
304 {
305 return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
306 }
307
308 int
309 atw_activate(device_t self, enum devact act)
310 {
311 struct atw_softc *sc = device_private(self);
312
313 switch (act) {
314 case DVACT_DEACTIVATE:
315 if_deactivate(&sc->sc_if);
316 return 0;
317 default:
318 return EOPNOTSUPP;
319 }
320 }
321
322 bool
323 atw_suspend(device_t self, const pmf_qual_t *qual)
324 {
325 struct atw_softc *sc = device_private(self);
326
327 atw_rxdrain(sc);
328 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
329
330 return true;
331 }
332
333 /* Returns -1 on failure. */
334 static int
335 atw_read_srom(struct atw_softc *sc)
336 {
337 struct seeprom_descriptor sd;
338 uint32_t test0, fail_bits;
339
340 (void)memset(&sd, 0, sizeof(sd));
341
342 test0 = ATW_READ(sc, ATW_TEST0);
343
344 switch (sc->sc_rev) {
345 case ATW_REVISION_BA:
346 case ATW_REVISION_CA:
347 fail_bits = ATW_TEST0_EPNE;
348 break;
349 default:
350 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
351 break;
352 }
353 if ((test0 & fail_bits) != 0) {
354 aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
355 return -1;
356 }
357
358 switch (test0 & ATW_TEST0_EPTYP_MASK) {
359 case ATW_TEST0_EPTYP_93c66:
360 ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
361 sc->sc_sromsz = 512;
362 sd.sd_chip = C56_66;
363 break;
364 case ATW_TEST0_EPTYP_93c46:
365 ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
366 sc->sc_sromsz = 128;
367 sd.sd_chip = C46;
368 break;
369 default:
370 printf("%s: unknown SROM type %" __PRIuBITS "\n",
371 device_xname(sc->sc_dev),
372 __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
373 return -1;
374 }
375
376 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
377
378 if (sc->sc_srom == NULL) {
379 aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
380 return -1;
381 }
382
383 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
384
385 /* ADM8211 has a single 32-bit register for controlling the
386 * 93cx6 SROM. Bit SRS enables the serial port. There is no
387 * "ready" bit. The ADM8211 input/output sense is the reverse
388 * of read_seeprom's.
389 */
390 sd.sd_tag = sc->sc_st;
391 sd.sd_bsh = sc->sc_sh;
392 sd.sd_regsize = 4;
393 sd.sd_control_offset = ATW_SPR;
394 sd.sd_status_offset = ATW_SPR;
395 sd.sd_dataout_offset = ATW_SPR;
396 sd.sd_CK = ATW_SPR_SCLK;
397 sd.sd_CS = ATW_SPR_SCS;
398 sd.sd_DI = ATW_SPR_SDO;
399 sd.sd_DO = ATW_SPR_SDI;
400 sd.sd_MS = ATW_SPR_SRS;
401 sd.sd_RDY = 0;
402
403 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
404 aprint_error_dev(sc->sc_dev, "could not read SROM\n");
405 free(sc->sc_srom, M_DEVBUF);
406 return -1;
407 }
408 #ifdef ATW_DEBUG
409 {
410 int i;
411 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
412 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
413 if (((i % 8) == 0) && (i != 0)) {
414 ATW_DPRINTF(("\n\t"));
415 }
416 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
417 }
418 ATW_DPRINTF(("\n"));
419 }
420 #endif /* ATW_DEBUG */
421 return 0;
422 }
423
424 #ifdef ATW_DEBUG
425 static void
426 atw_print_regs(struct atw_softc *sc, const char *where)
427 {
428 #define PRINTREG(sc, reg) \
429 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
430 device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
431
432 ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
433
434 PRINTREG(sc, ATW_PAR);
435 PRINTREG(sc, ATW_FRCTL);
436 PRINTREG(sc, ATW_TDR);
437 PRINTREG(sc, ATW_WTDP);
438 PRINTREG(sc, ATW_RDR);
439 PRINTREG(sc, ATW_WRDP);
440 PRINTREG(sc, ATW_RDB);
441 PRINTREG(sc, ATW_CSR3A);
442 PRINTREG(sc, ATW_TDBD);
443 PRINTREG(sc, ATW_TDBP);
444 PRINTREG(sc, ATW_STSR);
445 PRINTREG(sc, ATW_CSR5A);
446 PRINTREG(sc, ATW_NAR);
447 PRINTREG(sc, ATW_CSR6A);
448 PRINTREG(sc, ATW_IER);
449 PRINTREG(sc, ATW_CSR7A);
450 PRINTREG(sc, ATW_LPC);
451 PRINTREG(sc, ATW_TEST1);
452 PRINTREG(sc, ATW_SPR);
453 PRINTREG(sc, ATW_TEST0);
454 PRINTREG(sc, ATW_WCSR);
455 PRINTREG(sc, ATW_WPDR);
456 PRINTREG(sc, ATW_GPTMR);
457 PRINTREG(sc, ATW_GPIO);
458 PRINTREG(sc, ATW_BBPCTL);
459 PRINTREG(sc, ATW_SYNCTL);
460 PRINTREG(sc, ATW_PLCPHD);
461 PRINTREG(sc, ATW_MMIWADDR);
462 PRINTREG(sc, ATW_MMIRADDR1);
463 PRINTREG(sc, ATW_MMIRADDR2);
464 PRINTREG(sc, ATW_TXBR);
465 PRINTREG(sc, ATW_CSR15A);
466 PRINTREG(sc, ATW_ALCSTAT);
467 PRINTREG(sc, ATW_TOFS2);
468 PRINTREG(sc, ATW_CMDR);
469 PRINTREG(sc, ATW_PCIC);
470 PRINTREG(sc, ATW_PMCSR);
471 PRINTREG(sc, ATW_PAR0);
472 PRINTREG(sc, ATW_PAR1);
473 PRINTREG(sc, ATW_MAR0);
474 PRINTREG(sc, ATW_MAR1);
475 PRINTREG(sc, ATW_ATIMDA0);
476 PRINTREG(sc, ATW_ABDA1);
477 PRINTREG(sc, ATW_BSSID0);
478 PRINTREG(sc, ATW_TXLMT);
479 PRINTREG(sc, ATW_MIBCNT);
480 PRINTREG(sc, ATW_BCNT);
481 PRINTREG(sc, ATW_TSFTH);
482 PRINTREG(sc, ATW_TSC);
483 PRINTREG(sc, ATW_SYNRF);
484 PRINTREG(sc, ATW_BPLI);
485 PRINTREG(sc, ATW_CAP0);
486 PRINTREG(sc, ATW_CAP1);
487 PRINTREG(sc, ATW_RMD);
488 PRINTREG(sc, ATW_CFPP);
489 PRINTREG(sc, ATW_TOFS0);
490 PRINTREG(sc, ATW_TOFS1);
491 PRINTREG(sc, ATW_IFST);
492 PRINTREG(sc, ATW_RSPT);
493 PRINTREG(sc, ATW_TSFTL);
494 PRINTREG(sc, ATW_WEPCTL);
495 PRINTREG(sc, ATW_WESK);
496 PRINTREG(sc, ATW_WEPCNT);
497 PRINTREG(sc, ATW_MACTEST);
498 PRINTREG(sc, ATW_FER);
499 PRINTREG(sc, ATW_FEMR);
500 PRINTREG(sc, ATW_FPSR);
501 PRINTREG(sc, ATW_FFER);
502 #undef PRINTREG
503 }
504 #endif /* ATW_DEBUG */
505
506 /*
507 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
508 */
509 void
510 atw_attach(struct atw_softc *sc)
511 {
512 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
513 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
514 };
515 struct ieee80211com *ic = &sc->sc_ic;
516 struct ifnet *ifp = &sc->sc_if;
517 int country_code, error, i, srom_major;
518 u_int32_t reg;
519 static const char *type_strings[] = {"Intersil (not supported)",
520 "RFMD", "Marvel (not supported)"};
521
522 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
523
524 sc->sc_soft_ih = softint_establish(SOFTINT_NET, atw_softintr, sc);
525 if (sc->sc_soft_ih == NULL) {
526 aprint_error_dev(sc->sc_dev, "unable to establish softint\n");
527 goto fail_0;
528 }
529
530 sc->sc_txth = atw_txthresh_tab_lo;
531
532 SIMPLEQ_INIT(&sc->sc_txfreeq);
533 SIMPLEQ_INIT(&sc->sc_txdirtyq);
534
535 #ifdef ATW_DEBUG
536 atw_print_regs(sc, "atw_attach");
537 #endif /* ATW_DEBUG */
538
539 /*
540 * Allocate the control data structures, and create and load the
541 * DMA map for it.
542 */
543 if ((error = bus_dmamem_alloc(sc->sc_dmat,
544 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
545 1, &sc->sc_cdnseg, 0)) != 0) {
546 aprint_error_dev(sc->sc_dev,
547 "unable to allocate control data, error = %d\n",
548 error);
549 goto fail_0;
550 }
551
552 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
553 sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
554 BUS_DMA_COHERENT)) != 0) {
555 aprint_error_dev(sc->sc_dev,
556 "unable to map control data, error = %d\n",
557 error);
558 goto fail_1;
559 }
560
561 if ((error = bus_dmamap_create(sc->sc_dmat,
562 sizeof(struct atw_control_data), 1,
563 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
564 aprint_error_dev(sc->sc_dev,
565 "unable to create control data DMA map, error = %d\n",
566 error);
567 goto fail_2;
568 }
569
570 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
571 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
572 0)) != 0) {
573 aprint_error_dev(sc->sc_dev,
574 "unable to load control data DMA map, error = %d\n", error);
575 goto fail_3;
576 }
577
578 /*
579 * Create the transmit buffer DMA maps.
580 */
581 sc->sc_ntxsegs = ATW_NTXSEGS;
582 for (i = 0; i < ATW_TXQUEUELEN; i++) {
583 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
584 sc->sc_ntxsegs, MCLBYTES, 0, 0,
585 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
586 aprint_error_dev(sc->sc_dev,
587 "unable to create tx DMA map %d, error = %d\n", i,
588 error);
589 goto fail_4;
590 }
591 }
592
593 /*
594 * Create the receive buffer DMA maps.
595 */
596 for (i = 0; i < ATW_NRXDESC; i++) {
597 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
598 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
599 aprint_error_dev(sc->sc_dev,
600 "unable to create rx DMA map %d, error = %d\n", i,
601 error);
602 goto fail_5;
603 }
604 }
605 for (i = 0; i < ATW_NRXDESC; i++) {
606 sc->sc_rxsoft[i].rxs_mbuf = NULL;
607 }
608
609 switch (sc->sc_rev) {
610 case ATW_REVISION_AB:
611 case ATW_REVISION_AF:
612 sc->sc_sramlen = ATW_SRAM_A_SIZE;
613 break;
614 case ATW_REVISION_BA:
615 case ATW_REVISION_CA:
616 sc->sc_sramlen = ATW_SRAM_B_SIZE;
617 break;
618 }
619
620 /* Reset the chip to a known state. */
621 atw_reset(sc);
622
623 if (atw_read_srom(sc) == -1)
624 goto fail_5;
625
626 sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
627 ATW_SR_RFTYPE_MASK);
628
629 sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
630 ATW_SR_BBPTYPE_MASK);
631
632 if (sc->sc_rftype >= __arraycount(type_strings)) {
633 aprint_error_dev(sc->sc_dev, "unknown RF\n");
634 goto fail_5;
635 }
636 if (sc->sc_bbptype >= __arraycount(type_strings)) {
637 aprint_error_dev(sc->sc_dev, "unknown BBP\n");
638 goto fail_5;
639 }
640
641 aprint_normal_dev(sc->sc_dev, "%s RF, %s BBP",
642 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
643
644 /* XXX There exists a Linux driver which seems to use RFType = 0 for
645 * MARVEL. My bug, or theirs?
646 */
647
648 reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
649
650 switch (sc->sc_rftype) {
651 case ATW_RFTYPE_INTERSIL:
652 reg |= ATW_SYNCTL_CS1;
653 break;
654 case ATW_RFTYPE_RFMD:
655 reg |= ATW_SYNCTL_CS0;
656 break;
657 case ATW_RFTYPE_MARVEL:
658 break;
659 }
660
661 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
662 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
663
664 reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
665
666 switch (sc->sc_bbptype) {
667 case ATW_BBPTYPE_INTERSIL:
668 reg |= ATW_BBPCTL_TWI;
669 break;
670 case ATW_BBPTYPE_RFMD:
671 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
672 ATW_BBPCTL_CCA_ACTLO;
673 break;
674 case ATW_BBPTYPE_MARVEL:
675 break;
676 case ATW_C_BBPTYPE_RFMD:
677 aprint_error_dev(sc->sc_dev,
678 "ADM8211C MAC/RFMD BBP not supported yet.\n");
679 break;
680 }
681
682 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
683 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
684
685 /*
686 * From this point forward, the attachment cannot fail. A failure
687 * before this point releases all resources that may have been
688 * allocated.
689 */
690 sc->sc_flags |= ATWF_ATTACHED;
691
692 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
693 htole16(sc->sc_srom[ATW_SR_MAC00]),
694 htole16(sc->sc_srom[ATW_SR_MAC01]),
695 htole16(sc->sc_srom[ATW_SR_MAC10])));
696
697 srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
698 ATW_SR_MAJOR_MASK);
699
700 if (srom_major < 2)
701 sc->sc_rf3000_options1 = 0;
702 else if (sc->sc_rev == ATW_REVISION_BA) {
703 sc->sc_rf3000_options1 =
704 __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
705 ATW_SR_CR28_MASK);
706 } else
707 sc->sc_rf3000_options1 = 0;
708
709 sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
710 ATW_SR_CR29_MASK);
711
712 country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
713 ATW_SR_CTRY_MASK);
714
715 #define ADD_CHANNEL(_ic, _chan) do { \
716 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
717 _ic->ic_channels[_chan].ic_freq = \
718 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
719 } while (0)
720
721 /* Find available channels */
722 switch (country_code) {
723 case COUNTRY_MMK2: /* 1-14 */
724 ADD_CHANNEL(ic, 14);
725 /*FALLTHROUGH*/
726 case COUNTRY_ETSI: /* 1-13 */
727 for (i = 1; i <= 13; i++)
728 ADD_CHANNEL(ic, i);
729 break;
730 case COUNTRY_FCC: /* 1-11 */
731 case COUNTRY_IC: /* 1-11 */
732 for (i = 1; i <= 11; i++)
733 ADD_CHANNEL(ic, i);
734 break;
735 case COUNTRY_MMK: /* 14 */
736 ADD_CHANNEL(ic, 14);
737 break;
738 case COUNTRY_FRANCE: /* 10-13 */
739 for (i = 10; i <= 13; i++)
740 ADD_CHANNEL(ic, i);
741 break;
742 default: /* assume channels 10-11 */
743 case COUNTRY_SPAIN: /* 10-11 */
744 for (i = 10; i <= 11; i++)
745 ADD_CHANNEL(ic, i);
746 break;
747 }
748
749 /* Read the MAC address. */
750 reg = ATW_READ(sc, ATW_PAR0);
751 ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
752 ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
753 ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
754 ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
755 reg = ATW_READ(sc, ATW_PAR1);
756 ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
757 ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
758
759 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
760 aprint_error_dev(sc->sc_dev,
761 "could not get mac address, attach failed\n");
762 goto fail_5;
763 }
764
765 aprint_normal(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
766
767 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
768 ifp->if_softc = sc;
769 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
770 IFF_NOTRAILERS;
771 ifp->if_ioctl = atw_ioctl;
772 ifp->if_start = atw_start;
773 ifp->if_watchdog = atw_watchdog;
774 ifp->if_init = atw_init;
775 ifp->if_stop = atw_stop;
776 IFQ_SET_READY(&ifp->if_snd);
777
778 ic->ic_ifp = ifp;
779 ic->ic_phytype = IEEE80211_T_DS;
780 ic->ic_opmode = IEEE80211_M_STA;
781 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
782 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
783
784 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
785
786 /*
787 * Call MI attach routines.
788 */
789
790 error = if_initialize(ifp);
791 if (error != 0) {
792 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
793 error);
794 goto fail_5;
795 }
796 ieee80211_ifattach(ic);
797 /* Use common softint-based if_input */
798 ifp->if_percpuq = if_percpuq_create(ifp);
799 if_register(ifp);
800
801 atw_evcnt_attach(sc);
802
803 sc->sc_newstate = ic->ic_newstate;
804 ic->ic_newstate = atw_newstate;
805
806 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
807 ic->ic_recv_mgmt = atw_recv_mgmt;
808
809 sc->sc_node_free = ic->ic_node_free;
810 ic->ic_node_free = atw_node_free;
811
812 sc->sc_node_alloc = ic->ic_node_alloc;
813 ic->ic_node_alloc = atw_node_alloc;
814
815 ic->ic_crypto.cs_key_delete = atw_key_delete;
816 ic->ic_crypto.cs_key_set = atw_key_set;
817 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
818 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
819
820 /* possibly we should fill in our own sc_send_prresp, since
821 * the ADM8211 is probably sending probe responses in ad hoc
822 * mode.
823 */
824
825 /* complete initialization */
826 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
827 callout_init(&sc->sc_scan_ch, 0);
828
829 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
830 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
831
832 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
833 sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
834 sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
835
836 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
837 sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
838 sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
839
840 ieee80211_announce(ic);
841 return;
842
843 /*
844 * Free any resources we've allocated during the failed attach
845 * attempt. Do this in reverse order and fall through.
846 */
847 fail_5:
848 for (i = 0; i < ATW_NRXDESC; i++) {
849 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
850 continue;
851 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
852 }
853 fail_4:
854 for (i = 0; i < ATW_TXQUEUELEN; i++) {
855 if (sc->sc_txsoft[i].txs_dmamap == NULL)
856 continue;
857 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
858 }
859 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
860 fail_3:
861 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
862 fail_2:
863 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
864 sizeof(struct atw_control_data));
865 fail_1:
866 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
867 fail_0:
868 if (sc->sc_soft_ih != NULL) {
869 softint_disestablish(sc->sc_soft_ih);
870 sc->sc_soft_ih = NULL;
871 }
872 }
873
874 static struct ieee80211_node *
875 atw_node_alloc(struct ieee80211_node_table *nt)
876 {
877 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
878 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
879
880 DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
881 return ni;
882 }
883
884 static void
885 atw_node_free(struct ieee80211_node *ni)
886 {
887 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
888
889 DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
890 ether_sprintf(ni->ni_bssid)));
891 (*sc->sc_node_free)(ni);
892 }
893
894
895 static void
896 atw_test1_reset(struct atw_softc *sc)
897 {
898 switch (sc->sc_rev) {
899 case ATW_REVISION_BA:
900 if (1 /* XXX condition on transceiver type */) {
901 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
902 }
903 break;
904 case ATW_REVISION_CA:
905 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
906 break;
907 default:
908 break;
909 }
910 }
911
912 /*
913 * atw_reset:
914 *
915 * Perform a soft reset on the ADM8211.
916 */
917 void
918 atw_reset(struct atw_softc *sc)
919 {
920 int i;
921 uint32_t lpc __atwdebugused;
922
923 ATW_WRITE(sc, ATW_NAR, 0x0);
924 DELAY(atw_nar_delay);
925
926 /* Reference driver has a cryptic remark indicating that this might
927 * power-on the chip. I know that it turns off power-saving....
928 */
929 ATW_WRITE(sc, ATW_FRCTL, 0x0);
930
931 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
932
933 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
934 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
935 break;
936 DELAY(atw_pseudo_milli);
937 }
938
939 /* ... and then pause 100ms longer for good measure. */
940 DELAY(atw_magic_delay1);
941
942 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
943
944 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
945 aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
946
947 /*
948 * Initialize the PCI Access Register.
949 */
950 sc->sc_busmode = ATW_PAR_PBL_8DW;
951
952 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
953 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
954 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
955
956 atw_test1_reset(sc);
957
958 /* Turn off maximum power saving, etc. */
959 ATW_WRITE(sc, ATW_FRCTL, 0x0);
960
961 DELAY(atw_magic_delay2);
962
963 /* Recall EEPROM. */
964 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
965
966 DELAY(atw_magic_delay4);
967
968 lpc = ATW_READ(sc, ATW_LPC);
969
970 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
971
972 /* A reset seems to affect the SRAM contents, so put them into
973 * a known state.
974 */
975 atw_clear_sram(sc);
976
977 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
978 }
979
980 static void
981 atw_clear_sram(struct atw_softc *sc)
982 {
983 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
984 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
985 /* XXX not for revision 0x20. */
986 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
987 }
988
989 /* TBD atw_init
990 *
991 * set MAC based on ic->ic_bss->myaddr
992 * write WEP keys
993 * set TX rate
994 */
995
996 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
997 * without receiving a beacon with the preferred BSSID & SSID.
998 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
999 */
1000 static void
1001 atw_wcsr_init(struct atw_softc *sc)
1002 {
1003 uint32_t wcsr;
1004
1005 wcsr = ATW_READ(sc, ATW_WCSR);
1006 wcsr &= ~ATW_WCSR_BLN_MASK;
1007 wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1008 /* We always want to wake up on link loss or TSFT out of range */
1009 wcsr |= ATW_WCSR_LSOE|ATW_WCSR_TSFTWE;
1010 ATW_WRITE(sc, ATW_WCSR, wcsr);
1011
1012 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1013 device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1014 }
1015
1016 /* Turn off power management. Set Rx store-and-forward mode. */
1017 static void
1018 atw_cmdr_init(struct atw_softc *sc)
1019 {
1020 uint32_t cmdr;
1021 cmdr = ATW_READ(sc, ATW_CMDR);
1022 cmdr &= ~ATW_CMDR_APM;
1023 cmdr |= ATW_CMDR_RTE;
1024 cmdr &= ~ATW_CMDR_DRT_MASK;
1025 cmdr |= ATW_CMDR_DRT_SF;
1026
1027 ATW_WRITE(sc, ATW_CMDR, cmdr);
1028 }
1029
1030 static void
1031 atw_tofs2_init(struct atw_softc *sc)
1032 {
1033 uint32_t tofs2;
1034 /* XXX this magic can probably be figured out from the RFMD docs */
1035 #ifndef ATW_REFSLAVE
1036 tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1037 __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1038 __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1039 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1040 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1041 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1042 __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1043 __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1044 #else
1045 /* XXX new magic from reference driver source */
1046 tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1047 __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1048 __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */
1049 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1050 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1051 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1052 __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */
1053 __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */
1054 #endif
1055 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1056 }
1057
1058 static void
1059 atw_nar_init(struct atw_softc *sc)
1060 {
1061 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1062 }
1063
1064 static void
1065 atw_txlmt_init(struct atw_softc *sc)
1066 {
1067 ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1068 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1069 }
1070
1071 static void
1072 atw_test1_init(struct atw_softc *sc)
1073 {
1074 uint32_t test1;
1075
1076 test1 = ATW_READ(sc, ATW_TEST1);
1077 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1078 /* XXX magic 0x1 */
1079 test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1080 ATW_WRITE(sc, ATW_TEST1, test1);
1081 }
1082
1083 static void
1084 atw_rf_reset(struct atw_softc *sc)
1085 {
1086 /* XXX this resets an Intersil RF front-end? */
1087 /* TBD condition on Intersil RFType? */
1088 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1089 DELAY(atw_rf_delay1);
1090 ATW_WRITE(sc, ATW_SYNRF, 0);
1091 DELAY(atw_rf_delay2);
1092 }
1093
1094 /* Set 16 TU max duration for the contention-free period (CFP). */
1095 static void
1096 atw_cfp_init(struct atw_softc *sc)
1097 {
1098 uint32_t cfpp;
1099
1100 cfpp = ATW_READ(sc, ATW_CFPP);
1101 cfpp &= ~ATW_CFPP_CFPMD;
1102 cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1103 ATW_WRITE(sc, ATW_CFPP, cfpp);
1104 }
1105
1106 static void
1107 atw_tofs0_init(struct atw_softc *sc)
1108 {
1109 /* XXX I guess that the Cardbus clock is 22 MHz?
1110 * I am assuming that the role of ATW_TOFS0_USCNT is
1111 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1112 * very clear on this point. It says in the datasheet that it is
1113 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1114 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1115 * these values. These values are also the power-on default.
1116 */
1117 ATW_WRITE(sc, ATW_TOFS0,
1118 __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1119 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1120 }
1121
1122 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1123 static void
1124 atw_ifs_init(struct atw_softc *sc)
1125 {
1126 uint32_t ifst;
1127 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1128 * Go figure.
1129 */
1130 ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1131 __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1132 ATW_IFST_SIFS_MASK) |
1133 __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1134 __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1135
1136 ATW_WRITE(sc, ATW_IFST, ifst);
1137 }
1138
1139 static void
1140 atw_response_times_init(struct atw_softc *sc)
1141 {
1142 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1143 * indicate that the MAC expects at least SIFS + MIRT microseconds
1144 * to pass after it transmits a frame that requires a response;
1145 * it waits at most SIFS + MART microseconds for the response.
1146 * Surely this is not the ACK timeout?
1147 */
1148 ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1149 __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1150 }
1151
1152 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1153 * engines read and write baseband registers after Rx and before
1154 * Tx, respectively.
1155 */
1156 static void
1157 atw_bbp_io_init(struct atw_softc *sc)
1158 {
1159 uint32_t mmiraddr2;
1160
1161 /* XXX The reference driver does this, but is it *really*
1162 * necessary?
1163 */
1164 switch (sc->sc_rev) {
1165 case ATW_REVISION_AB:
1166 case ATW_REVISION_AF:
1167 mmiraddr2 = 0x0;
1168 break;
1169 default:
1170 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1171 mmiraddr2 &=
1172 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1173 break;
1174 }
1175
1176 switch (sc->sc_bbptype) {
1177 case ATW_BBPTYPE_INTERSIL:
1178 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1179 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1180 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1181 break;
1182 case ATW_BBPTYPE_MARVEL:
1183 /* TBD find out the Marvel settings. */
1184 break;
1185 case ATW_BBPTYPE_RFMD:
1186 default:
1187 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1188 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1189 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1190 break;
1191 }
1192 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1193 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1194 }
1195
1196 /*
1197 * atw_init: [ ifnet interface function ]
1198 *
1199 * Initialize the interface. Must be called at splnet().
1200 */
1201 int
1202 atw_init(struct ifnet *ifp)
1203 {
1204 struct atw_softc *sc = ifp->if_softc;
1205 struct ieee80211com *ic = &sc->sc_ic;
1206 struct atw_txsoft *txs;
1207 struct atw_rxsoft *rxs;
1208 int i, error = 0;
1209
1210 if (device_is_active(sc->sc_dev)) {
1211 /*
1212 * Cancel any pending I/O.
1213 */
1214 atw_stop(ifp, 0);
1215 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1216 !device_is_active(sc->sc_dev))
1217 return 0;
1218
1219 /*
1220 * Reset the chip to a known state.
1221 */
1222 atw_reset(sc);
1223
1224 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1225 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1226 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1227
1228 atw_wcsr_init(sc);
1229
1230 atw_cmdr_init(sc);
1231
1232 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1233 *
1234 * XXX Set transmit power for ATIM, RTS, Beacon.
1235 */
1236 ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1237 __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1238
1239 atw_tofs2_init(sc);
1240
1241 atw_nar_init(sc);
1242
1243 atw_txlmt_init(sc);
1244
1245 atw_test1_init(sc);
1246
1247 atw_rf_reset(sc);
1248
1249 atw_cfp_init(sc);
1250
1251 atw_tofs0_init(sc);
1252
1253 atw_ifs_init(sc);
1254
1255 /* XXX Fall asleep after one second of inactivity.
1256 * XXX A frame may only dribble in for 65536us.
1257 */
1258 ATW_WRITE(sc, ATW_RMD,
1259 __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1260
1261 atw_response_times_init(sc);
1262
1263 atw_bbp_io_init(sc);
1264
1265 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1266
1267 if ((error = atw_rf3000_init(sc)) != 0)
1268 goto out;
1269
1270 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1271 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1272 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1273
1274 /*
1275 * Initialize the transmit descriptor ring.
1276 */
1277 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1278 for (i = 0; i < ATW_NTXDESC; i++) {
1279 sc->sc_txdescs[i].at_ctl = 0;
1280 /* no transmit chaining */
1281 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1282 sc->sc_txdescs[i].at_buf2 =
1283 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1284 }
1285 /* use ring mode */
1286 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1287 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1288 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1289 sc->sc_txfree = ATW_NTXDESC;
1290 sc->sc_txnext = 0;
1291
1292 /*
1293 * Initialize the transmit job descriptors.
1294 */
1295 SIMPLEQ_INIT(&sc->sc_txfreeq);
1296 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1297 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1298 txs = &sc->sc_txsoft[i];
1299 txs->txs_mbuf = NULL;
1300 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1301 }
1302
1303 /*
1304 * Initialize the receive descriptor and receive job
1305 * descriptor rings.
1306 */
1307 for (i = 0; i < ATW_NRXDESC; i++) {
1308 rxs = &sc->sc_rxsoft[i];
1309 if (rxs->rxs_mbuf == NULL) {
1310 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1311 aprint_error_dev(sc->sc_dev,
1312 "unable to allocate or map rx buffer %d, "
1313 "error = %d\n", i, error);
1314 /*
1315 * XXX Should attempt to run with fewer receive
1316 * XXX buffers instead of just failing.
1317 */
1318 atw_rxdrain(sc);
1319 goto out;
1320 }
1321 } else
1322 atw_init_rxdesc(sc, i);
1323 }
1324 sc->sc_rxptr = 0;
1325
1326 /*
1327 * Initialize the interrupt mask and enable interrupts.
1328 */
1329 /* normal interrupts */
1330 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1331 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1332
1333 /* abnormal interrupts */
1334 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1335 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1336 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1337
1338 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1339 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1340 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1341 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1342 ATW_INTR_TRT;
1343
1344 sc->sc_linkint_mask &= sc->sc_inten;
1345 sc->sc_rxint_mask &= sc->sc_inten;
1346 sc->sc_txint_mask &= sc->sc_inten;
1347
1348 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1349 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1350
1351 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1352 device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1353
1354 /*
1355 * Give the transmit and receive rings to the ADM8211.
1356 */
1357 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1358 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1359
1360 sc->sc_txthresh = 0;
1361 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1362 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1363
1364 /* common 802.11 configuration */
1365 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1366 switch (ic->ic_opmode) {
1367 case IEEE80211_M_STA:
1368 break;
1369 case IEEE80211_M_AHDEMO: /* XXX */
1370 case IEEE80211_M_IBSS:
1371 ic->ic_flags |= IEEE80211_F_IBSSON;
1372 /*FALLTHROUGH*/
1373 case IEEE80211_M_HOSTAP: /* XXX */
1374 break;
1375 case IEEE80211_M_MONITOR: /* XXX */
1376 break;
1377 }
1378
1379 switch (ic->ic_opmode) {
1380 case IEEE80211_M_AHDEMO:
1381 case IEEE80211_M_HOSTAP:
1382 #ifndef IEEE80211_NO_HOSTAP
1383 ic->ic_bss->ni_intval = ic->ic_lintval;
1384 ic->ic_bss->ni_rssi = 0;
1385 ic->ic_bss->ni_rstamp = 0;
1386 #endif /* !IEEE80211_NO_HOSTAP */
1387 break;
1388 default: /* XXX */
1389 break;
1390 }
1391
1392 sc->sc_wepctl = 0;
1393
1394 atw_write_ssid(sc);
1395 atw_write_sup_rates(sc);
1396 atw_write_wep(sc);
1397
1398 ic->ic_state = IEEE80211_S_INIT;
1399
1400 /*
1401 * Set the receive filter. This will start the transmit and
1402 * receive processes.
1403 */
1404 atw_filter_setup(sc);
1405
1406 /*
1407 * Start the receive process.
1408 */
1409 ATW_WRITE(sc, ATW_RDR, 0x1);
1410
1411 /*
1412 * Note that the interface is now running.
1413 */
1414 ifp->if_flags |= IFF_RUNNING;
1415
1416 /* send no beacons, yet. */
1417 atw_start_beacon(sc, 0);
1418
1419 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1420 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1421 else
1422 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1423 out:
1424 if (error) {
1425 ifp->if_flags &= ~IFF_RUNNING;
1426 sc->sc_tx_timer = 0;
1427 ifp->if_timer = 0;
1428 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1429 }
1430 #ifdef ATW_DEBUG
1431 atw_print_regs(sc, "end of init");
1432 #endif /* ATW_DEBUG */
1433
1434 return (error);
1435 }
1436
1437 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1438 * 0: MAC control of RF3000/Si4126.
1439 *
1440 * Applies power, or selects RF front-end? Sets reset condition.
1441 *
1442 * TBD support non-RFMD BBP, non-SiLabs synth.
1443 */
1444 static void
1445 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1446 {
1447 if (enable) {
1448 ATW_WRITE(sc, ATW_SYNRF,
1449 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1450 DELAY(atw_bbp_io_enable_delay);
1451 } else {
1452 ATW_WRITE(sc, ATW_SYNRF, 0);
1453 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1454 }
1455 }
1456
1457 static int
1458 atw_tune(struct atw_softc *sc)
1459 {
1460 int rc;
1461 u_int chan;
1462 struct ieee80211com *ic = &sc->sc_ic;
1463
1464 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1465 if (chan == IEEE80211_CHAN_ANY)
1466 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1467
1468 if (chan == sc->sc_cur_chan)
1469 return 0;
1470
1471 DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1472 sc->sc_cur_chan, chan));
1473
1474 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1475
1476 atw_si4126_tune(sc, chan);
1477 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1478 printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1479 chan);
1480
1481 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1482 DELAY(atw_nar_delay);
1483 ATW_WRITE(sc, ATW_RDR, 0x1);
1484
1485 if (rc == 0) {
1486 sc->sc_cur_chan = chan;
1487 sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1488 htole16(ic->ic_curchan->ic_freq);
1489 sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1490 htole16(ic->ic_curchan->ic_flags);
1491 }
1492
1493 return rc;
1494 }
1495
1496 #ifdef ATW_SYNDEBUG
1497 static void
1498 atw_si4126_print(struct atw_softc *sc)
1499 {
1500 struct ifnet *ifp = &sc->sc_if;
1501 u_int addr, val;
1502
1503 val = 0;
1504
1505 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1506 return;
1507
1508 for (addr = 0; addr <= 8; addr++) {
1509 printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1510 if (atw_si4126_read(sc, addr, &val) == 0) {
1511 printf("<unknown> (quitting print-out)\n");
1512 break;
1513 }
1514 printf("%05x\n", val);
1515 }
1516 }
1517 #endif /* ATW_SYNDEBUG */
1518
1519 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1520 *
1521 * The RF/IF synthesizer produces two reference frequencies for
1522 * the RF2948B transceiver. The first frequency the RF2948B requires
1523 * is two times the so-called "intermediate frequency" (IF). Since
1524 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1525 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second
1526 * frequency required by the transceiver is the radio frequency
1527 * (RF). This is a superheterodyne transceiver; for f(chan) the
1528 * center frequency of the channel we are tuning, RF = f(chan) -
1529 * IF.
1530 *
1531 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1532 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1533 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1534 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1535 */
1536 static void
1537 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1538 {
1539 u_int mhz;
1540 u_int R;
1541 u_int32_t gpio;
1542 u_int16_t gain;
1543
1544 #ifdef ATW_SYNDEBUG
1545 atw_si4126_print(sc);
1546 #endif /* ATW_SYNDEBUG */
1547
1548 if (chan == 14)
1549 mhz = 2484;
1550 else
1551 mhz = 2412 + 5 * (chan - 1);
1552
1553 /* Tune IF to 748 MHz to suit the IF LO input of the
1554 * RF2494B, which is 2 x IF. No need to set an IF divider
1555 * because an IF in 526 MHz - 952 MHz is allowed.
1556 *
1557 * XIN is 44.000 MHz, so divide it by two to get allowable
1558 * range of 2-25 MHz. SiLabs tells me that this is not
1559 * strictly necessary.
1560 */
1561
1562 if (atw_xindiv2)
1563 R = 44;
1564 else
1565 R = 88;
1566
1567 /* Power-up RF, IF synthesizers. */
1568 atw_si4126_write(sc, SI4126_POWER,
1569 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1570
1571 /* set LPWR, too? */
1572 atw_si4126_write(sc, SI4126_MAIN,
1573 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1574
1575 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1576 * set KP2 to 1.
1577 *
1578 * REFDIF This is different from the reference driver, which
1579 * always sets SI4126_GAIN to 0.
1580 */
1581 gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1582
1583 atw_si4126_write(sc, SI4126_GAIN, gain);
1584
1585 /* XIN = 44 MHz.
1586 *
1587 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1588 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1589 *
1590 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1591 * so that 1496/88 * 44 MHz = 748 MHz.
1592 */
1593 atw_si4126_write(sc, SI4126_IFN, 1496);
1594
1595 atw_si4126_write(sc, SI4126_IFR, R);
1596
1597 #ifndef ATW_REFSLAVE
1598 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1599 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1600 * which has no RF1!
1601 */
1602 atw_si4126_write(sc, SI4126_RF1R, R);
1603
1604 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1605 #endif
1606
1607 /* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1608 * where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44.
1609 * Now let's multiply it to mhz. So mhz - IF = N.
1610 */
1611 atw_si4126_write(sc, SI4126_RF2R, R);
1612
1613 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1614
1615 /* wait 100us from power-up for RF, IF to settle */
1616 DELAY(100);
1617
1618 gpio = ATW_READ(sc, ATW_GPIO);
1619 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1620 gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1621
1622 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1623 /* Set a Prism RF front-end to a special mode for channel 14?
1624 *
1625 * Apparently the SMC2635W needs this, although I don't think
1626 * it has a Prism RF.
1627 */
1628 gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1629 }
1630 ATW_WRITE(sc, ATW_GPIO, gpio);
1631
1632 #ifdef ATW_SYNDEBUG
1633 atw_si4126_print(sc);
1634 #endif /* ATW_SYNDEBUG */
1635 }
1636
1637 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1638 * diversity.
1639 *
1640 * !!!
1641 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1642 * !!!
1643 */
1644 static int
1645 atw_rf3000_init(struct atw_softc *sc)
1646 {
1647 int rc = 0;
1648
1649 atw_bbp_io_enable(sc, 1);
1650
1651 /* CCA is acquisition sensitive */
1652 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1653 __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1654
1655 if (rc != 0)
1656 goto out;
1657
1658 /* enable diversity */
1659 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1660
1661 if (rc != 0)
1662 goto out;
1663
1664 /* sensible setting from a binary-only driver */
1665 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1666 __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1667
1668 if (rc != 0)
1669 goto out;
1670
1671 /* magic from a binary-only driver */
1672 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1673 __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1674
1675 if (rc != 0)
1676 goto out;
1677
1678 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1679
1680 if (rc != 0)
1681 goto out;
1682
1683 /* XXX Reference driver remarks that Abocom sets this to 50.
1684 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1685 * in the "reserved" area of register RF3000_OPTIONS1.
1686 */
1687 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1688
1689 if (rc != 0)
1690 goto out;
1691
1692 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1693
1694 if (rc != 0)
1695 goto out;
1696
1697 out:
1698 atw_bbp_io_enable(sc, 0);
1699 return rc;
1700 }
1701
1702 #ifdef ATW_BBPDEBUG
1703 static void
1704 atw_rf3000_print(struct atw_softc *sc)
1705 {
1706 struct ifnet *ifp = &sc->sc_if;
1707 u_int addr, val;
1708
1709 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1710 return;
1711
1712 for (addr = 0x01; addr <= 0x15; addr++) {
1713 printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1714 if (atw_rf3000_read(sc, addr, &val) != 0) {
1715 printf("<unknown> (quitting print-out)\n");
1716 break;
1717 }
1718 printf("%08x\n", val);
1719 }
1720 }
1721 #endif /* ATW_BBPDEBUG */
1722
1723 /* Set the power settings on the BBP for channel `chan'. */
1724 static int
1725 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1726 {
1727 int rc = 0;
1728 u_int32_t reg;
1729 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1730
1731 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1732 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1733 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1734
1735 /* odd channels: LSB, even channels: MSB */
1736 if (chan % 2 == 1) {
1737 txpower &= 0xFF;
1738 lpf_cutoff &= 0xFF;
1739 lna_gs_thresh &= 0xFF;
1740 } else {
1741 txpower >>= 8;
1742 lpf_cutoff >>= 8;
1743 lna_gs_thresh >>= 8;
1744 }
1745
1746 #ifdef ATW_BBPDEBUG
1747 atw_rf3000_print(sc);
1748 #endif /* ATW_BBPDEBUG */
1749
1750 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1751 "lna_gs_thresh %02x\n",
1752 device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1753
1754 atw_bbp_io_enable(sc, 1);
1755
1756 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1757 __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1758 goto out;
1759
1760 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1761 goto out;
1762
1763 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1764 goto out;
1765
1766 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1767
1768 if (rc != 0)
1769 goto out;
1770
1771 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1772
1773 if (rc != 0)
1774 goto out;
1775
1776 #ifdef ATW_BBPDEBUG
1777 atw_rf3000_print(sc);
1778 #endif /* ATW_BBPDEBUG */
1779
1780 out:
1781 atw_bbp_io_enable(sc, 0);
1782
1783 /* set beacon, rts, atim transmit power */
1784 reg = ATW_READ(sc, ATW_PLCPHD);
1785 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1786 reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1787 ATW_PLCPHD_SERVICE_MASK);
1788 ATW_WRITE(sc, ATW_PLCPHD, reg);
1789 DELAY(atw_plcphd_delay);
1790
1791 return rc;
1792 }
1793
1794 /* Write a register on the RF3000 baseband processor using the
1795 * registers provided by the ADM8211 for this purpose.
1796 *
1797 * Return 0 on success.
1798 */
1799 static int
1800 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1801 {
1802 u_int32_t reg;
1803 int i;
1804
1805 reg = sc->sc_bbpctl_wr |
1806 __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1807 __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1808
1809 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1810 ATW_WRITE(sc, ATW_BBPCTL, reg);
1811 DELAY(2 * atw_pseudo_milli);
1812 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1813 break;
1814 }
1815
1816 if (i < 0) {
1817 printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1818 return ETIMEDOUT;
1819 }
1820 return 0;
1821 }
1822
1823 /* Read a register on the RF3000 baseband processor using the registers
1824 * the ADM8211 provides for this purpose.
1825 *
1826 * The 7-bit register address is addr. Record the 8-bit data in the register
1827 * in *val.
1828 *
1829 * Return 0 on success.
1830 *
1831 * XXX This does not seem to work. The ADM8211 must require more or
1832 * different magic to read the chip than to write it. Possibly some
1833 * of the magic I have derived from a binary-only driver concerns
1834 * the "chip address" (see the RF3000 manual).
1835 */
1836 #ifdef ATW_BBPDEBUG
1837 static int
1838 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1839 {
1840 u_int32_t reg;
1841 int i;
1842
1843 for (i = 1000; --i >= 0; ) {
1844 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1845 break;
1846 DELAY(100);
1847 }
1848
1849 if (i < 0) {
1850 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1851 device_xname(sc->sc_dev));
1852 return ETIMEDOUT;
1853 }
1854
1855 reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1856
1857 ATW_WRITE(sc, ATW_BBPCTL, reg);
1858
1859 for (i = 1000; --i >= 0; ) {
1860 DELAY(100);
1861 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1862 break;
1863 }
1864
1865 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1866
1867 if (i < 0) {
1868 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1869 device_xname(sc->sc_dev), reg);
1870 return ETIMEDOUT;
1871 }
1872 if (val != NULL)
1873 *val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1874 return 0;
1875 }
1876 #endif /* ATW_BBPDEBUG */
1877
1878 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1879 * provided by the ADM8211 for that purpose.
1880 *
1881 * val is 18 bits of data, and val is the 4-bit address of the register.
1882 *
1883 * Return 0 on success.
1884 */
1885 static void
1886 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1887 {
1888 uint32_t bits, mask, reg;
1889 const int nbits = 22;
1890
1891 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1892 KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1893
1894 bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1895 __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1896
1897 reg = ATW_SYNRF_SELSYN;
1898 /* reference driver: reset Si4126 serial bus to initial
1899 * conditions?
1900 */
1901 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1902 ATW_WRITE(sc, ATW_SYNRF, reg);
1903
1904 for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1905 if ((bits & mask) != 0)
1906 reg |= ATW_SYNRF_SYNDATA;
1907 else
1908 reg &= ~ATW_SYNRF_SYNDATA;
1909 ATW_WRITE(sc, ATW_SYNRF, reg);
1910 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1911 ATW_WRITE(sc, ATW_SYNRF, reg);
1912 }
1913 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1914 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1915 }
1916
1917 /* Read 18-bit data from the 4-bit address addr in Si4126
1918 * RF synthesizer and write the data to *val. Return 0 on success.
1919 *
1920 * XXX This does not seem to work. The ADM8211 must require more or
1921 * different magic to read the chip than to write it.
1922 */
1923 #ifdef ATW_SYNDEBUG
1924 static int
1925 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1926 {
1927 u_int32_t reg;
1928 int i;
1929
1930 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1931
1932 for (i = 1000; --i >= 0; ) {
1933 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1934 break;
1935 DELAY(100);
1936 }
1937
1938 if (i < 0) {
1939 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1940 device_xname(sc->sc_dev));
1941 return ETIMEDOUT;
1942 }
1943
1944 reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1945
1946 ATW_WRITE(sc, ATW_SYNCTL, reg);
1947
1948 for (i = 1000; --i >= 0; ) {
1949 DELAY(100);
1950 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1951 break;
1952 }
1953
1954 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1955
1956 if (i < 0) {
1957 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1958 device_xname(sc->sc_dev), reg);
1959 return ETIMEDOUT;
1960 }
1961 if (val != NULL)
1962 *val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1963 ATW_SYNCTL_DATA_MASK);
1964 return 0;
1965 }
1966 #endif /* ATW_SYNDEBUG */
1967
1968 /* XXX is the endianness correct? test. */
1969 #define atw_calchash(addr) \
1970 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1971
1972 /*
1973 * atw_filter_setup:
1974 *
1975 * Set the ADM8211's receive filter.
1976 */
1977 static void
1978 atw_filter_setup(struct atw_softc *sc)
1979 {
1980 struct ieee80211com *ic = &sc->sc_ic;
1981 struct ethercom *ec = &sc->sc_ec;
1982 struct ifnet *ifp = &sc->sc_if;
1983 int hash;
1984 u_int32_t hashes[2];
1985 struct ether_multi *enm;
1986 struct ether_multistep step;
1987
1988 /* According to comments in tlp_al981_filter_setup
1989 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1990 * multicast filter to be set while it is running. Hopefully
1991 * the ADM8211 is not the same!
1992 */
1993 if ((ifp->if_flags & IFF_RUNNING) != 0)
1994 atw_idle(sc, ATW_NAR_SR);
1995
1996 sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
1997 ifp->if_flags &= ~IFF_ALLMULTI;
1998
1999 /* XXX in scan mode, do not filter packets. Maybe this is
2000 * unnecessary.
2001 */
2002 if (ic->ic_state == IEEE80211_S_SCAN ||
2003 (ifp->if_flags & IFF_PROMISC) != 0) {
2004 sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2005 goto allmulti;
2006 }
2007
2008 hashes[0] = hashes[1] = 0x0;
2009
2010 /*
2011 * Program the 64-bit multicast hash filter.
2012 */
2013 ETHER_FIRST_MULTI(step, ec, enm);
2014 while (enm != NULL) {
2015 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2016 ETHER_ADDR_LEN) != 0)
2017 goto allmulti;
2018
2019 hash = atw_calchash(enm->enm_addrlo);
2020 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2021 ETHER_NEXT_MULTI(step, enm);
2022 sc->sc_opmode |= ATW_NAR_MM;
2023 }
2024 ifp->if_flags &= ~IFF_ALLMULTI;
2025 goto setit;
2026
2027 allmulti:
2028 sc->sc_opmode |= ATW_NAR_MM;
2029 ifp->if_flags |= IFF_ALLMULTI;
2030 hashes[0] = hashes[1] = 0xffffffff;
2031
2032 setit:
2033 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2034 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2035 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2036 DELAY(atw_nar_delay);
2037 ATW_WRITE(sc, ATW_RDR, 0x1);
2038
2039 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2040 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2041 }
2042
2043 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2044 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2045 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2046 * no beacon with the preferred BSSID and SSID in the number of
2047 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2048 */
2049 static void
2050 atw_write_bssid(struct atw_softc *sc)
2051 {
2052 struct ieee80211com *ic = &sc->sc_ic;
2053 u_int8_t *bssid;
2054
2055 bssid = ic->ic_bss->ni_bssid;
2056
2057 ATW_WRITE(sc, ATW_BSSID0,
2058 __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2059 __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2060 __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2061 __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2062
2063 ATW_WRITE(sc, ATW_ABDA1,
2064 (ATW_READ(sc, ATW_ABDA1) &
2065 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2066 __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2067 __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2068
2069 DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2070 ether_sprintf(sc->sc_bssid)));
2071 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2072
2073 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2074 }
2075
2076 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2077 * 16-bit word.
2078 */
2079 static void
2080 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2081 {
2082 u_int i;
2083 u_int8_t *ptr;
2084
2085 memcpy(&sc->sc_sram[ofs], buf, buflen);
2086
2087 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2088
2089 KASSERT(buflen + ofs <= sc->sc_sramlen);
2090
2091 ptr = &sc->sc_sram[ofs];
2092
2093 for (i = 0; i < buflen; i += 2) {
2094 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2095 __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2096 DELAY(atw_writewep_delay);
2097
2098 ATW_WRITE(sc, ATW_WESK,
2099 __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2100 DELAY(atw_writewep_delay);
2101 }
2102 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2103
2104 if (sc->sc_if.if_flags & IFF_DEBUG) {
2105 int n_octets = 0;
2106 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2107 device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2108 for (i = 0; i < buflen; i++) {
2109 printf(" %02x", ptr[i]);
2110 if (++n_octets % 24 == 0)
2111 printf("\n");
2112 }
2113 if (n_octets % 24 != 0)
2114 printf("\n");
2115 }
2116 }
2117
2118 static int
2119 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2120 {
2121 struct atw_softc *sc = ic->ic_ifp->if_softc;
2122 u_int keyix = k->wk_keyix;
2123
2124 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2125
2126 if (keyix >= IEEE80211_WEP_NKID)
2127 return 0;
2128 if (k->wk_keylen != 0)
2129 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2130
2131 return 1;
2132 }
2133
2134 static int
2135 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2136 const u_int8_t mac[IEEE80211_ADDR_LEN])
2137 {
2138 struct atw_softc *sc = ic->ic_ifp->if_softc;
2139
2140 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2141
2142 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2143 return 0;
2144
2145 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2146
2147 return 1;
2148 }
2149
2150 static void
2151 atw_key_update_begin(struct ieee80211com *ic)
2152 {
2153 #ifdef ATW_DEBUG
2154 struct ifnet *ifp = ic->ic_ifp;
2155 struct atw_softc *sc = ifp->if_softc;
2156 #endif
2157
2158 DPRINTF(sc, ("%s:\n", __func__));
2159 }
2160
2161 static void
2162 atw_key_update_end(struct ieee80211com *ic)
2163 {
2164 struct ifnet *ifp = ic->ic_ifp;
2165 struct atw_softc *sc = ifp->if_softc;
2166
2167 DPRINTF(sc, ("%s:\n", __func__));
2168
2169 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2170 return;
2171 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2172 return;
2173 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2174 atw_write_wep(sc);
2175 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2176 DELAY(atw_nar_delay);
2177 ATW_WRITE(sc, ATW_RDR, 0x1);
2178 }
2179
2180 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2181 static void
2182 atw_write_wep(struct atw_softc *sc)
2183 {
2184 #if 0
2185 struct ieee80211com *ic = &sc->sc_ic;
2186 u_int32_t reg;
2187 int i;
2188 #endif
2189 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2190 u_int8_t buf[IEEE80211_WEP_NKID]
2191 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2192
2193 sc->sc_wepctl = 0;
2194 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2195
2196 memset(&buf[0][0], 0, sizeof(buf));
2197
2198 #if 0
2199 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2200 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2201 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2202 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2203 buf[i][1] = ATW_WEP_ENABLED;
2204 } else {
2205 buf[i][1] = 0;
2206 continue;
2207 }
2208 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2209 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2210 ic->ic_nw_keys[i].wk_keylen - 1);
2211 }
2212
2213 reg = ATW_READ(sc, ATW_MACTEST);
2214 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2215 reg &= ~ATW_MACTEST_KEYID_MASK;
2216 reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2217 ATW_WRITE(sc, ATW_MACTEST, reg);
2218
2219 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2220 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2221
2222 switch (sc->sc_rev) {
2223 case ATW_REVISION_AB:
2224 case ATW_REVISION_AF:
2225 /* Bypass WEP on Rx. */
2226 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2227 break;
2228 default:
2229 break;
2230 }
2231 #endif
2232
2233 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2234 sizeof(buf));
2235
2236 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2237 }
2238
2239 static void
2240 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2241 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2242 {
2243 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2244
2245 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2246 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2247 return;
2248
2249 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2250
2251 switch (subtype) {
2252 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2253 case IEEE80211_FC0_SUBTYPE_BEACON:
2254 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2255 ic->ic_state == IEEE80211_S_RUN) {
2256 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2257 (void)ieee80211_ibss_merge(ni);
2258 }
2259 break;
2260 default:
2261 break;
2262 }
2263 return;
2264 }
2265
2266 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2267 * In ad hoc mode, the SSID is written to the beacons sent by the
2268 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2269 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2270 * indications.
2271 */
2272 static void
2273 atw_write_ssid(struct atw_softc *sc)
2274 {
2275 struct ieee80211com *ic = &sc->sc_ic;
2276 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2277 * it only expects the element length, not its ID.
2278 */
2279 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2280
2281 memset(buf, 0, sizeof(buf));
2282 buf[0] = ic->ic_bss->ni_esslen;
2283 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2284
2285 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2286 roundup(1 + ic->ic_bss->ni_esslen, 2));
2287 }
2288
2289 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2290 * In ad hoc mode, the supported rates are written to beacons sent by the
2291 * ADM8211.
2292 */
2293 static void
2294 atw_write_sup_rates(struct atw_softc *sc)
2295 {
2296 struct ieee80211com *ic = &sc->sc_ic;
2297 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2298 * supported rates
2299 */
2300 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2301
2302 memset(buf, 0, sizeof(buf));
2303
2304 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2305
2306 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2307 ic->ic_bss->ni_rates.rs_nrates);
2308
2309 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2310 }
2311
2312 /* Start/stop sending beacons. */
2313 void
2314 atw_start_beacon(struct atw_softc *sc, int start)
2315 {
2316 struct ieee80211com *ic = &sc->sc_ic;
2317 uint16_t chan;
2318 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2319 size_t len;
2320
2321 if (!device_is_active(sc->sc_dev))
2322 return;
2323
2324 /* start beacons */
2325 len = sizeof(struct ieee80211_frame) +
2326 8 /* timestamp */ + 2 /* beacon interval */ +
2327 2 /* capability info */ +
2328 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2329 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2330 3 /* DS parameters */ +
2331 IEEE80211_CRC_LEN;
2332
2333 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2334 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2335 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2336
2337 ATW_WRITE(sc, ATW_BCNT, bcnt);
2338 ATW_WRITE(sc, ATW_CAP1, cap1);
2339
2340 if (!start)
2341 return;
2342
2343 /* TBD use ni_capinfo */
2344
2345 capinfo = 0;
2346 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2347 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2348 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2349 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2350
2351 switch (ic->ic_opmode) {
2352 case IEEE80211_M_IBSS:
2353 len += 4; /* IBSS parameters */
2354 capinfo |= IEEE80211_CAPINFO_IBSS;
2355 break;
2356 case IEEE80211_M_HOSTAP:
2357 /* XXX 6-byte minimum TIM */
2358 len += atw_beacon_len_adjust;
2359 capinfo |= IEEE80211_CAPINFO_ESS;
2360 break;
2361 default:
2362 return;
2363 }
2364
2365 /* set listen interval
2366 * XXX do software units agree w/ hardware?
2367 */
2368 bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2369 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2370
2371 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2372
2373 bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2374 cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2375 cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2376
2377 ATW_WRITE(sc, ATW_BCNT, bcnt);
2378 ATW_WRITE(sc, ATW_BPLI, bpli);
2379 ATW_WRITE(sc, ATW_CAP0, cap0);
2380 ATW_WRITE(sc, ATW_CAP1, cap1);
2381
2382 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2383 device_xname(sc->sc_dev), bcnt));
2384
2385 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2386 device_xname(sc->sc_dev), cap1));
2387 }
2388
2389 /* Return the 32 lsb of the last TSFT divisible by ival. */
2390 static inline uint32_t
2391 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2392 {
2393 /* Following the reference driver's lead, I compute
2394 *
2395 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2396 *
2397 * without using 64-bit arithmetic, using the following
2398 * relationship:
2399 *
2400 * (0x100000000 * H + L) % m
2401 * = ((0x100000000 % m) * H + L) % m
2402 * = (((0xffffffff + 1) % m) * H + L) % m
2403 * = ((0xffffffff % m + 1 % m) * H + L) % m
2404 * = ((0xffffffff % m + 1) * H + L) % m
2405 */
2406 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2407 }
2408
2409 static uint64_t
2410 atw_get_tsft(struct atw_softc *sc)
2411 {
2412 int i;
2413 uint32_t tsfth, tsftl;
2414 for (i = 0; i < 2; i++) {
2415 tsfth = ATW_READ(sc, ATW_TSFTH);
2416 tsftl = ATW_READ(sc, ATW_TSFTL);
2417 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2418 break;
2419 }
2420 return ((uint64_t)tsfth << 32) | tsftl;
2421 }
2422
2423 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2424 * the ieee80211com.
2425 *
2426 * Predict the next target beacon transmission time (TBTT) and
2427 * write it to the ADM8211.
2428 */
2429 static void
2430 atw_predict_beacon(struct atw_softc *sc)
2431 {
2432 #define TBTTOFS 20 /* TU */
2433
2434 struct ieee80211com *ic = &sc->sc_ic;
2435 uint64_t tsft;
2436 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2437 union {
2438 uint64_t word;
2439 uint8_t tstamp[8];
2440 } u;
2441
2442 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2443 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2444 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2445 tsft = atw_get_tsft(sc);
2446 u.word = htole64(tsft);
2447 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2448 sizeof(ic->ic_bss->ni_tstamp));
2449 } else
2450 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2451
2452 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2453
2454 tsftl = tsft & 0xFFFFFFFF;
2455 tsfth = tsft >> 32;
2456
2457 /* We sent/received the last beacon `past' microseconds
2458 * after the interval divided the TSF timer.
2459 */
2460 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2461
2462 /* Skip ten beacons so that the TBTT cannot pass before
2463 * we've programmed it. Ten is an arbitrary number.
2464 */
2465 tbtt = past_even + ival * 10;
2466
2467 ATW_WRITE(sc, ATW_TOFS1,
2468 __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2469 __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2470 __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2471 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2472 #undef TBTTOFS
2473 }
2474
2475 static void
2476 atw_next_scan(void *arg)
2477 {
2478 struct atw_softc *sc = arg;
2479 struct ieee80211com *ic = &sc->sc_ic;
2480 int s;
2481
2482 /* don't call atw_start w/o network interrupts blocked */
2483 s = splnet();
2484 if (ic->ic_state == IEEE80211_S_SCAN)
2485 ieee80211_next_scan(ic);
2486 splx(s);
2487 }
2488
2489 /* Synchronize the hardware state with the software state. */
2490 static int
2491 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2492 {
2493 struct ifnet *ifp = ic->ic_ifp;
2494 struct atw_softc *sc = ifp->if_softc;
2495 int error = 0;
2496
2497 callout_stop(&sc->sc_scan_ch);
2498
2499 switch (nstate) {
2500 case IEEE80211_S_AUTH:
2501 case IEEE80211_S_ASSOC:
2502 atw_write_bssid(sc);
2503 error = atw_tune(sc);
2504 break;
2505 case IEEE80211_S_INIT:
2506 callout_stop(&sc->sc_scan_ch);
2507 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2508 atw_start_beacon(sc, 0);
2509 break;
2510 case IEEE80211_S_SCAN:
2511 error = atw_tune(sc);
2512 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2513 atw_next_scan, sc);
2514 break;
2515 case IEEE80211_S_RUN:
2516 error = atw_tune(sc);
2517 atw_write_bssid(sc);
2518 atw_write_ssid(sc);
2519 atw_write_sup_rates(sc);
2520
2521 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2522 ic->ic_opmode == IEEE80211_M_MONITOR)
2523 break;
2524
2525 /* set listen interval
2526 * XXX do software units agree w/ hardware?
2527 */
2528 ATW_WRITE(sc, ATW_BPLI,
2529 __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2530 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2531 ATW_BPLI_LI_MASK));
2532
2533 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2534 ATW_READ(sc, ATW_BPLI)));
2535
2536 atw_predict_beacon(sc);
2537
2538 switch (ic->ic_opmode) {
2539 case IEEE80211_M_AHDEMO:
2540 case IEEE80211_M_HOSTAP:
2541 case IEEE80211_M_IBSS:
2542 atw_start_beacon(sc, 1);
2543 break;
2544 case IEEE80211_M_MONITOR:
2545 case IEEE80211_M_STA:
2546 break;
2547 }
2548
2549 break;
2550 }
2551 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2552 }
2553
2554 /*
2555 * atw_add_rxbuf:
2556 *
2557 * Add a receive buffer to the indicated descriptor.
2558 */
2559 int
2560 atw_add_rxbuf(struct atw_softc *sc, int idx)
2561 {
2562 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2563 struct mbuf *m;
2564 int error;
2565
2566 MGETHDR(m, M_DONTWAIT, MT_DATA);
2567 if (m == NULL)
2568 return (ENOBUFS);
2569
2570 MCLGET(m, M_DONTWAIT);
2571 if ((m->m_flags & M_EXT) == 0) {
2572 m_freem(m);
2573 return (ENOBUFS);
2574 }
2575
2576 if (rxs->rxs_mbuf != NULL)
2577 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2578
2579 rxs->rxs_mbuf = m;
2580
2581 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2582 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2583 BUS_DMA_READ|BUS_DMA_NOWAIT);
2584 if (error) {
2585 aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2586 idx, error);
2587 panic("atw_add_rxbuf"); /* XXX */
2588 }
2589
2590 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2591 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2592
2593 atw_init_rxdesc(sc, idx);
2594
2595 return (0);
2596 }
2597
2598 /*
2599 * Release any queued transmit buffers.
2600 */
2601 void
2602 atw_txdrain(struct atw_softc *sc)
2603 {
2604 struct atw_txsoft *txs;
2605
2606 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2607 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2608 if (txs->txs_mbuf != NULL) {
2609 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2610 m_freem(txs->txs_mbuf);
2611 txs->txs_mbuf = NULL;
2612 }
2613 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2614 sc->sc_txfree += txs->txs_ndescs;
2615 }
2616
2617 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2618 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2619 sc->sc_txfree != ATW_NTXDESC));
2620 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2621 sc->sc_tx_timer = 0;
2622 }
2623
2624 /*
2625 * atw_stop: [ ifnet interface function ]
2626 *
2627 * Stop transmission on the interface.
2628 */
2629 void
2630 atw_stop(struct ifnet *ifp, int disable)
2631 {
2632 struct atw_softc *sc = ifp->if_softc;
2633 struct ieee80211com *ic = &sc->sc_ic;
2634
2635 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2636
2637 if (device_is_active(sc->sc_dev)) {
2638 /* Disable interrupts. */
2639 ATW_WRITE(sc, ATW_IER, 0);
2640
2641 /* Stop the transmit and receive processes. */
2642 ATW_WRITE(sc, ATW_NAR, 0);
2643 DELAY(atw_nar_delay);
2644 ATW_WRITE(sc, ATW_TDBD, 0);
2645 ATW_WRITE(sc, ATW_TDBP, 0);
2646 ATW_WRITE(sc, ATW_RDB, 0);
2647 }
2648
2649 sc->sc_opmode = 0;
2650
2651 atw_txdrain(sc);
2652
2653 /*
2654 * Mark the interface down and cancel the watchdog timer.
2655 */
2656 ifp->if_flags &= ~IFF_RUNNING;
2657 ifp->if_timer = 0;
2658
2659 if (disable)
2660 pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2661 }
2662
2663 /*
2664 * atw_rxdrain:
2665 *
2666 * Drain the receive queue.
2667 */
2668 void
2669 atw_rxdrain(struct atw_softc *sc)
2670 {
2671 struct atw_rxsoft *rxs;
2672 int i;
2673
2674 for (i = 0; i < ATW_NRXDESC; i++) {
2675 rxs = &sc->sc_rxsoft[i];
2676 if (rxs->rxs_mbuf == NULL)
2677 continue;
2678 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2679 m_freem(rxs->rxs_mbuf);
2680 rxs->rxs_mbuf = NULL;
2681 }
2682 }
2683
2684 /*
2685 * atw_detach:
2686 *
2687 * Detach an ADM8211 interface.
2688 */
2689 int
2690 atw_detach(struct atw_softc *sc)
2691 {
2692 struct ifnet *ifp = &sc->sc_if;
2693 struct atw_rxsoft *rxs;
2694 struct atw_txsoft *txs;
2695 int i;
2696
2697 /*
2698 * Succeed now if there isn't any work to do.
2699 */
2700 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2701 return (0);
2702
2703 pmf_device_deregister(sc->sc_dev);
2704
2705 callout_stop(&sc->sc_scan_ch);
2706
2707 ieee80211_ifdetach(&sc->sc_ic);
2708 if_detach(ifp);
2709
2710 for (i = 0; i < ATW_NRXDESC; i++) {
2711 rxs = &sc->sc_rxsoft[i];
2712 if (rxs->rxs_mbuf != NULL) {
2713 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2714 m_freem(rxs->rxs_mbuf);
2715 rxs->rxs_mbuf = NULL;
2716 }
2717 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2718 }
2719 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2720 txs = &sc->sc_txsoft[i];
2721 if (txs->txs_mbuf != NULL) {
2722 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2723 m_freem(txs->txs_mbuf);
2724 txs->txs_mbuf = NULL;
2725 }
2726 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2727 }
2728 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2729 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2730 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2731 sizeof(struct atw_control_data));
2732 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2733
2734 if (sc->sc_srom)
2735 free(sc->sc_srom, M_DEVBUF);
2736
2737 atw_evcnt_detach(sc);
2738
2739 if (sc->sc_soft_ih != NULL) {
2740 softint_disestablish(sc->sc_soft_ih);
2741 sc->sc_soft_ih = NULL;
2742 }
2743
2744 return (0);
2745 }
2746
2747 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2748 bool
2749 atw_shutdown(device_t self, int flags)
2750 {
2751 struct atw_softc *sc = device_private(self);
2752
2753 atw_stop(&sc->sc_if, 1);
2754 return true;
2755 }
2756
2757 #if 0
2758 static void
2759 atw_workaround1(struct atw_softc *sc)
2760 {
2761 uint32_t test1;
2762
2763 test1 = ATW_READ(sc, ATW_TEST1);
2764
2765 sc->sc_misc_ev.ev_count++;
2766
2767 if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2768 sc->sc_rxpkt1in_ev.ev_count++;
2769 return;
2770 }
2771 if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2772 __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2773 sc->sc_rxamatch_ev.ev_count++;
2774 return;
2775 }
2776 sc->sc_workaround1_ev.ev_count++;
2777 (void)atw_init(&sc->sc_if);
2778 }
2779 #endif
2780
2781 int
2782 atw_intr(void *arg)
2783 {
2784 struct atw_softc *sc = arg;
2785 struct ifnet *ifp = &sc->sc_if;
2786 uint32_t status;
2787
2788 #ifdef DEBUG
2789 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2790 panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2791 #endif
2792
2793 /*
2794 * If the interface isn't running, the interrupt couldn't
2795 * possibly have come from us.
2796 */
2797 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2798 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2799 return (0);
2800
2801 status = ATW_READ(sc, ATW_STSR);
2802 if (status == 0)
2803 return 0;
2804
2805 if ((status & sc->sc_inten) == 0) {
2806 ATW_WRITE(sc, ATW_STSR, status);
2807 return 0;
2808 }
2809
2810 /* Disable interrupts */
2811 ATW_WRITE(sc, ATW_IER, 0);
2812
2813 softint_schedule(sc->sc_soft_ih);
2814 return 1;
2815 }
2816
2817 void
2818 atw_softintr(void *arg)
2819 {
2820 struct atw_softc *sc = arg;
2821 struct ifnet *ifp = &sc->sc_if;
2822 uint32_t status, rxstatus, txstatus, linkstatus;
2823 int txthresh, s;
2824
2825 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2826 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2827 return;
2828
2829 for (;;) {
2830 status = ATW_READ(sc, ATW_STSR);
2831
2832 if (status)
2833 ATW_WRITE(sc, ATW_STSR, status);
2834
2835 #ifdef ATW_DEBUG
2836 #define PRINTINTR(flag) do { \
2837 if ((status & flag) != 0) { \
2838 printf("%s" #flag, delim); \
2839 delim = ","; \
2840 } \
2841 } while (0)
2842
2843 if (atw_debug > 1 && status) {
2844 const char *delim = "<";
2845
2846 printf("%s: reg[STSR] = %x",
2847 device_xname(sc->sc_dev), status);
2848
2849 PRINTINTR(ATW_INTR_FBE);
2850 PRINTINTR(ATW_INTR_LINKOFF);
2851 PRINTINTR(ATW_INTR_LINKON);
2852 PRINTINTR(ATW_INTR_RCI);
2853 PRINTINTR(ATW_INTR_RDU);
2854 PRINTINTR(ATW_INTR_REIS);
2855 PRINTINTR(ATW_INTR_RPS);
2856 PRINTINTR(ATW_INTR_TCI);
2857 PRINTINTR(ATW_INTR_TDU);
2858 PRINTINTR(ATW_INTR_TLT);
2859 PRINTINTR(ATW_INTR_TPS);
2860 PRINTINTR(ATW_INTR_TRT);
2861 PRINTINTR(ATW_INTR_TUF);
2862 PRINTINTR(ATW_INTR_BCNTC);
2863 PRINTINTR(ATW_INTR_ATIME);
2864 PRINTINTR(ATW_INTR_TBTT);
2865 PRINTINTR(ATW_INTR_TSCZ);
2866 PRINTINTR(ATW_INTR_TSFTF);
2867 printf(">\n");
2868 }
2869 #undef PRINTINTR
2870 #endif /* ATW_DEBUG */
2871
2872 if ((status & sc->sc_inten) == 0)
2873 break;
2874
2875 rxstatus = status & sc->sc_rxint_mask;
2876 txstatus = status & sc->sc_txint_mask;
2877 linkstatus = status & sc->sc_linkint_mask;
2878
2879 if (linkstatus) {
2880 atw_linkintr(sc, linkstatus);
2881 }
2882
2883 if (rxstatus) {
2884 /* Grab any new packets. */
2885 atw_rxintr(sc);
2886
2887 if (rxstatus & ATW_INTR_RDU) {
2888 printf("%s: receive ring overrun\n",
2889 device_xname(sc->sc_dev));
2890 /* Get the receive process going again. */
2891 ATW_WRITE(sc, ATW_RDR, 0x1);
2892 }
2893 }
2894
2895 if (txstatus) {
2896 /* Sweep up transmit descriptors. */
2897 atw_txintr(sc, txstatus);
2898
2899 if (txstatus & ATW_INTR_TLT) {
2900 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2901 device_xname(sc->sc_dev)));
2902 (void)atw_init(&sc->sc_if);
2903 }
2904
2905 if (txstatus & ATW_INTR_TRT) {
2906 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2907 device_xname(sc->sc_dev)));
2908 }
2909
2910 /* If Tx under-run, increase our transmit threshold
2911 * if another is available.
2912 */
2913 txthresh = sc->sc_txthresh + 1;
2914 if ((txstatus & ATW_INTR_TUF) &&
2915 sc->sc_txth[txthresh].txth_name != NULL) {
2916 /* Idle the transmit process. */
2917 atw_idle(sc, ATW_NAR_ST);
2918
2919 sc->sc_txthresh = txthresh;
2920 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2921 sc->sc_opmode |=
2922 sc->sc_txth[txthresh].txth_opmode;
2923 printf("%s: transmit underrun; new "
2924 "threshold: %s\n", device_xname(sc->sc_dev),
2925 sc->sc_txth[txthresh].txth_name);
2926
2927 /* Set the new threshold and restart
2928 * the transmit process.
2929 */
2930 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2931 DELAY(atw_nar_delay);
2932 ATW_WRITE(sc, ATW_TDR, 0x1);
2933 /* XXX Log every Nth underrun from
2934 * XXX now on?
2935 */
2936 }
2937 }
2938
2939 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2940 if (status & ATW_INTR_TPS)
2941 printf("%s: transmit process stopped\n",
2942 device_xname(sc->sc_dev));
2943 if (status & ATW_INTR_RPS)
2944 printf("%s: receive process stopped\n",
2945 device_xname(sc->sc_dev));
2946 s = splnet();
2947 (void)atw_init(ifp);
2948 splx(s);
2949 break;
2950 }
2951
2952 if (status & ATW_INTR_FBE) {
2953 aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2954 s = splnet();
2955 (void)atw_init(ifp);
2956 splx(s);
2957 break;
2958 }
2959
2960 /*
2961 * Not handled:
2962 *
2963 * Transmit buffer unavailable -- normal
2964 * condition, nothing to do, really.
2965 *
2966 * Early receive interrupt -- not available on
2967 * all chips, we just use RI. We also only
2968 * use single-segment receive DMA, so this
2969 * is mostly useless.
2970 *
2971 * TBD others
2972 */
2973 }
2974
2975 /* Try to get more packets going. */
2976 s = splnet();
2977 atw_start(ifp);
2978 splx(s);
2979
2980 /* Enable interrupts */
2981 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
2982 }
2983
2984 /*
2985 * atw_idle:
2986 *
2987 * Cause the transmit and/or receive processes to go idle.
2988 *
2989 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2990 * process in STSR if I clear SR or ST after the process has already
2991 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2992 * do not seem to be too reliable. Perhaps I have the sense of the
2993 * Rx bits switched with the Tx bits?
2994 */
2995 void
2996 atw_idle(struct atw_softc *sc, u_int32_t bits)
2997 {
2998 u_int32_t ackmask = 0, opmode, stsr, test0;
2999 int i, s;
3000
3001 s = splnet();
3002
3003 opmode = sc->sc_opmode & ~bits;
3004
3005 if (bits & ATW_NAR_SR)
3006 ackmask |= ATW_INTR_RPS;
3007
3008 if (bits & ATW_NAR_ST) {
3009 ackmask |= ATW_INTR_TPS;
3010 /* set ATW_NAR_HF to flush TX FIFO. */
3011 opmode |= ATW_NAR_HF;
3012 }
3013
3014 ATW_WRITE(sc, ATW_NAR, opmode);
3015 DELAY(atw_nar_delay);
3016
3017 for (i = 0; i < 1000; i++) {
3018 stsr = ATW_READ(sc, ATW_STSR);
3019 if ((stsr & ackmask) == ackmask)
3020 break;
3021 DELAY(10);
3022 }
3023
3024 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3025
3026 if ((stsr & ackmask) == ackmask)
3027 goto out;
3028
3029 test0 = ATW_READ(sc, ATW_TEST0);
3030
3031 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3032 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3033 printf("%s: transmit process not idle [%s]\n",
3034 device_xname(sc->sc_dev),
3035 atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3036 printf("%s: bits %08x test0 %08x stsr %08x\n",
3037 device_xname(sc->sc_dev), bits, test0, stsr);
3038 }
3039
3040 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3041 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3042 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3043 device_xname(sc->sc_dev),
3044 atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3045 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3046 device_xname(sc->sc_dev), bits, test0, stsr));
3047 }
3048 out:
3049 if ((bits & ATW_NAR_ST) != 0)
3050 atw_txdrain(sc);
3051 splx(s);
3052 return;
3053 }
3054
3055 /*
3056 * atw_linkintr:
3057 *
3058 * Helper; handle link-status interrupts.
3059 */
3060 void
3061 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3062 {
3063 struct ieee80211com *ic = &sc->sc_ic;
3064
3065 if (ic->ic_state != IEEE80211_S_RUN)
3066 return;
3067
3068 if (linkstatus & ATW_INTR_LINKON) {
3069 DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3070 sc->sc_rescan_timer = 0;
3071 } else if (linkstatus & ATW_INTR_LINKOFF) {
3072 DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3073 if (ic->ic_opmode != IEEE80211_M_STA)
3074 return;
3075 sc->sc_rescan_timer = 3;
3076 sc->sc_if.if_timer = 1;
3077 }
3078 }
3079
3080 #if 0
3081 static inline int
3082 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3083 {
3084 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3085 return 0;
3086 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3087 return 0;
3088 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3089 }
3090 #endif
3091
3092 /*
3093 * atw_rxintr:
3094 *
3095 * Helper; handle receive interrupts.
3096 */
3097 void
3098 atw_rxintr(struct atw_softc *sc)
3099 {
3100 static int rate_tbl[] = {2, 4, 11, 22, 44};
3101 struct ieee80211com *ic = &sc->sc_ic;
3102 struct ieee80211_node *ni;
3103 struct ieee80211_frame_min *wh;
3104 struct ifnet *ifp = &sc->sc_if;
3105 struct atw_rxsoft *rxs;
3106 struct mbuf *m;
3107 u_int32_t rxstat;
3108 int i, s, len, rate, rate0;
3109 u_int32_t rssi, ctlrssi;
3110
3111 for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3112 rxs = &sc->sc_rxsoft[i];
3113
3114 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3115
3116 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3117 ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3118 rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3119
3120 if (rxstat & ATW_RXSTAT_OWN) {
3121 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3122 break;
3123 }
3124
3125 sc->sc_rxptr = ATW_NEXTRX(i);
3126
3127 DPRINTF3(sc,
3128 ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3129 device_xname(sc->sc_dev),
3130 rxstat, ctlrssi,
3131 le32toh(sc->sc_rxdescs[i].ar_buf1),
3132 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3133
3134 /*
3135 * Make sure the packet fits in one buffer. This should
3136 * always be the case.
3137 */
3138 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3139 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3140 printf("%s: incoming packet spilled, resetting\n",
3141 device_xname(sc->sc_dev));
3142 (void)atw_init(ifp);
3143 return;
3144 }
3145
3146 /*
3147 * If an error occurred, update stats, clear the status
3148 * word, and leave the packet buffer in place. It will
3149 * simply be reused the next time the ring comes around.
3150 */
3151 if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3152 #define PRINTERR(bit, str) \
3153 if (rxstat & (bit)) \
3154 aprint_error_dev(sc->sc_dev, "receive error: %s\n", \
3155 str)
3156 ifp->if_ierrors++;
3157 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3158 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3159 #if 0
3160 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3161 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3162 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3163 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3164 #endif
3165 #undef PRINTERR
3166 atw_init_rxdesc(sc, i);
3167 continue;
3168 }
3169
3170 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3171 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3172
3173 /*
3174 * No errors; receive the packet. Note the ADM8211
3175 * includes the CRC in promiscuous mode.
3176 */
3177 len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3178
3179 /*
3180 * Allocate a new mbuf cluster. If that fails, we are
3181 * out of memory, and must drop the packet and recycle
3182 * the buffer that's already attached to this descriptor.
3183 */
3184 m = rxs->rxs_mbuf;
3185 if (atw_add_rxbuf(sc, i) != 0) {
3186 ifp->if_ierrors++;
3187 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3188 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3189 atw_init_rxdesc(sc, i);
3190 continue;
3191 }
3192
3193 ifp->if_ipackets++;
3194 m_set_rcvif(m, ifp);
3195 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3196
3197 rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3198
3199 /* The RSSI comes straight from a register in the
3200 * baseband processor. I know that for the RF3000,
3201 * the RSSI register also contains the antenna-selection
3202 * bits. Mask those off.
3203 *
3204 * TBD Treat other basebands.
3205 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3206 */
3207 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3208 rssi = ctlrssi & RF3000_RSSI_MASK;
3209 else
3210 rssi = ctlrssi;
3211
3212 s = splnet();
3213
3214 /* Pass this up to any BPF listeners. */
3215 if (sc->sc_radiobpf != NULL) {
3216 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3217
3218 tap->ar_rate = rate;
3219
3220 /* TBD verify units are dB */
3221 tap->ar_antsignal = (int)rssi;
3222 if (sc->sc_opmode & ATW_NAR_PR)
3223 tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3224 else
3225 tap->ar_flags = 0;
3226
3227 if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3228 tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3229
3230 bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_rxtapu),
3231 m);
3232 }
3233
3234 sc->sc_recv_ev.ev_count++;
3235
3236 if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3237 if (rxstat & ATW_RXSTAT_CRC16E)
3238 sc->sc_crc16e_ev.ev_count++;
3239 if (rxstat & ATW_RXSTAT_CRC32E)
3240 sc->sc_crc32e_ev.ev_count++;
3241 if (rxstat & ATW_RXSTAT_ICVE)
3242 sc->sc_icve_ev.ev_count++;
3243 if (rxstat & ATW_RXSTAT_SFDE)
3244 sc->sc_sfde_ev.ev_count++;
3245 if (rxstat & ATW_RXSTAT_SIGE)
3246 sc->sc_sige_ev.ev_count++;
3247 ifp->if_ierrors++;
3248 m_freem(m);
3249 splx(s);
3250 continue;
3251 }
3252
3253 if (sc->sc_opmode & ATW_NAR_PR)
3254 m_adj(m, -IEEE80211_CRC_LEN);
3255
3256 wh = mtod(m, struct ieee80211_frame_min *);
3257 ni = ieee80211_find_rxnode(ic, wh);
3258 #if 0
3259 if (atw_hw_decrypted(sc, wh)) {
3260 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3261 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3262 }
3263 #endif
3264 ieee80211_input(ic, m, ni, (int)rssi, 0);
3265 ieee80211_free_node(ni);
3266 splx(s);
3267 }
3268 }
3269
3270 /*
3271 * atw_txintr:
3272 *
3273 * Helper; handle transmit interrupts.
3274 */
3275 void
3276 atw_txintr(struct atw_softc *sc, uint32_t status)
3277 {
3278 static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3279 struct ifnet *ifp = &sc->sc_if;
3280 struct atw_txsoft *txs;
3281 u_int32_t txstat;
3282 int s;
3283
3284 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3285 device_xname(sc->sc_dev), sc->sc_flags));
3286
3287 s = splnet();
3288
3289 /*
3290 * Go through our Tx list and free mbufs for those
3291 * frames that have been transmitted.
3292 */
3293 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3294 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3295 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3296
3297 #ifdef ATW_DEBUG
3298 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3299 int i;
3300 printf(" txsoft %p transmit chain:\n", txs);
3301 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3302 txs->txs_ndescs - 1,
3303 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3304 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3305 printf(" descriptor %d:\n", i);
3306 printf(" at_status: 0x%08x\n",
3307 le32toh(sc->sc_txdescs[i].at_stat));
3308 printf(" at_flags: 0x%08x\n",
3309 le32toh(sc->sc_txdescs[i].at_flags));
3310 printf(" at_buf1: 0x%08x\n",
3311 le32toh(sc->sc_txdescs[i].at_buf1));
3312 printf(" at_buf2: 0x%08x\n",
3313 le32toh(sc->sc_txdescs[i].at_buf2));
3314 if (i == txs->txs_lastdesc)
3315 break;
3316 }
3317 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3318 txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3319 }
3320 #endif
3321
3322 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3323 if (txstat & ATW_TXSTAT_OWN) {
3324 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3325 BUS_DMASYNC_PREREAD);
3326 break;
3327 }
3328
3329 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3330
3331 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3332 0, txs->txs_dmamap->dm_mapsize,
3333 BUS_DMASYNC_POSTWRITE);
3334 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3335 m_freem(txs->txs_mbuf);
3336 txs->txs_mbuf = NULL;
3337
3338 sc->sc_txfree += txs->txs_ndescs;
3339 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3340
3341 KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3342 sc->sc_tx_timer = 0;
3343 ifp->if_flags &= ~IFF_OACTIVE;
3344
3345 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3346 (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3347 snprintb(txstat_buf, sizeof(txstat_buf),
3348 ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3349 printf("%s: txstat %s %" __PRIuBITS "\n",
3350 device_xname(sc->sc_dev), txstat_buf,
3351 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3352 }
3353
3354 sc->sc_xmit_ev.ev_count++;
3355
3356 /*
3357 * Check for errors and collisions.
3358 */
3359 if (txstat & ATW_TXSTAT_TUF)
3360 sc->sc_tuf_ev.ev_count++;
3361 if (txstat & ATW_TXSTAT_TLT)
3362 sc->sc_tlt_ev.ev_count++;
3363 if (txstat & ATW_TXSTAT_TRT)
3364 sc->sc_trt_ev.ev_count++;
3365 if (txstat & ATW_TXSTAT_TRO)
3366 sc->sc_tro_ev.ev_count++;
3367 if (txstat & ATW_TXSTAT_SOFBR)
3368 sc->sc_sofbr_ev.ev_count++;
3369
3370 if ((txstat & ATW_TXSTAT_ES) == 0)
3371 ifp->if_collisions +=
3372 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3373 else
3374 ifp->if_oerrors++;
3375
3376 ifp->if_opackets++;
3377 }
3378
3379 KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3380
3381 splx(s);
3382 }
3383
3384 /*
3385 * atw_watchdog: [ifnet interface function]
3386 *
3387 * Watchdog timer handler.
3388 */
3389 void
3390 atw_watchdog(struct ifnet *ifp)
3391 {
3392 struct atw_softc *sc = ifp->if_softc;
3393 struct ieee80211com *ic = &sc->sc_ic;
3394
3395 ifp->if_timer = 0;
3396 if (!device_is_active(sc->sc_dev))
3397 return;
3398
3399 if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3400 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3401 if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3402 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3403 printf("%s: transmit timeout\n", ifp->if_xname);
3404 ifp->if_oerrors++;
3405 (void)atw_init(ifp);
3406 atw_start(ifp);
3407 }
3408 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3409 ifp->if_timer = 1;
3410 ieee80211_watchdog(ic);
3411 }
3412
3413 static void
3414 atw_evcnt_detach(struct atw_softc *sc)
3415 {
3416 evcnt_detach(&sc->sc_sige_ev);
3417 evcnt_detach(&sc->sc_sfde_ev);
3418 evcnt_detach(&sc->sc_icve_ev);
3419 evcnt_detach(&sc->sc_crc32e_ev);
3420 evcnt_detach(&sc->sc_crc16e_ev);
3421 evcnt_detach(&sc->sc_recv_ev);
3422
3423 evcnt_detach(&sc->sc_tuf_ev);
3424 evcnt_detach(&sc->sc_tro_ev);
3425 evcnt_detach(&sc->sc_trt_ev);
3426 evcnt_detach(&sc->sc_tlt_ev);
3427 evcnt_detach(&sc->sc_sofbr_ev);
3428 evcnt_detach(&sc->sc_xmit_ev);
3429
3430 evcnt_detach(&sc->sc_rxpkt1in_ev);
3431 evcnt_detach(&sc->sc_rxamatch_ev);
3432 evcnt_detach(&sc->sc_workaround1_ev);
3433 evcnt_detach(&sc->sc_misc_ev);
3434 }
3435
3436 static void
3437 atw_evcnt_attach(struct atw_softc *sc)
3438 {
3439 evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3440 NULL, sc->sc_if.if_xname, "recv");
3441 evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3442 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3443 evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3444 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3445 evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3446 &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3447 evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3448 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3449 evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3450 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3451
3452 evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3453 NULL, sc->sc_if.if_xname, "xmit");
3454 evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3455 &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3456 evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3457 &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3458 evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3459 &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3460 evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3461 &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3462 evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3463 &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3464
3465 evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3466 NULL, sc->sc_if.if_xname, "misc");
3467 evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3468 &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3469 evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3470 &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3471 evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3472 &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3473 }
3474
3475 #ifdef ATW_DEBUG
3476 static void
3477 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3478 {
3479 struct atw_softc *sc = ifp->if_softc;
3480 struct mbuf *m;
3481 int i, noctets = 0;
3482
3483 printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3484 m0->m_pkthdr.len);
3485
3486 for (m = m0; m; m = m->m_next) {
3487 if (m->m_len == 0)
3488 continue;
3489 for (i = 0; i < m->m_len; i++) {
3490 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3491 if (++noctets % 24 == 0)
3492 printf("\n");
3493 }
3494 }
3495 printf("%s%s: %d bytes emitted\n",
3496 (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3497 }
3498 #endif /* ATW_DEBUG */
3499
3500 /*
3501 * atw_start: [ifnet interface function]
3502 *
3503 * Start packet transmission on the interface.
3504 */
3505 void
3506 atw_start(struct ifnet *ifp)
3507 {
3508 struct atw_softc *sc = ifp->if_softc;
3509 struct ieee80211_key *k;
3510 struct ieee80211com *ic = &sc->sc_ic;
3511 struct ieee80211_node *ni;
3512 struct ieee80211_frame_min *whm;
3513 struct ieee80211_frame *wh;
3514 struct atw_frame *hh;
3515 uint16_t hdrctl;
3516 struct mbuf *m0, *m;
3517 struct atw_txsoft *txs;
3518 struct atw_txdesc *txd;
3519 int npkt, rate;
3520 bus_dmamap_t dmamap;
3521 int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3522
3523 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3524 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3525
3526 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3527 return;
3528
3529 /*
3530 * Remember the previous number of free descriptors and
3531 * the first descriptor we'll use.
3532 */
3533 ofree = sc->sc_txfree;
3534 firsttx = lasttx = sc->sc_txnext;
3535
3536 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3537 device_xname(sc->sc_dev), ofree, firsttx));
3538
3539 /*
3540 * Loop through the send queue, setting up transmit descriptors
3541 * until we drain the queue, or use up all available transmit
3542 * descriptors.
3543 */
3544 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3545 sc->sc_txfree != 0) {
3546
3547 hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3548
3549 /*
3550 * Grab a packet off the management queue, if it
3551 * is not empty. Otherwise, from the data queue.
3552 */
3553 IF_DEQUEUE(&ic->ic_mgtq, m0);
3554 if (m0 != NULL) {
3555 ni = M_GETCTX(m0, struct ieee80211_node *);
3556 M_CLEARCTX(m0);
3557 } else if (ic->ic_state != IEEE80211_S_RUN)
3558 break; /* send no data until associated */
3559 else {
3560 IFQ_DEQUEUE(&ifp->if_snd, m0);
3561 if (m0 == NULL)
3562 break;
3563 bpf_mtap(ifp, m0);
3564 ni = ieee80211_find_txnode(ic,
3565 mtod(m0, struct ether_header *)->ether_dhost);
3566 if (ni == NULL) {
3567 ifp->if_oerrors++;
3568 break;
3569 }
3570 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3571 ieee80211_free_node(ni);
3572 ifp->if_oerrors++;
3573 break;
3574 }
3575 }
3576
3577 rate = MAX(ieee80211_get_rate(ni), 2);
3578
3579 whm = mtod(m0, struct ieee80211_frame_min *);
3580
3581 if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3582 k = NULL;
3583 else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3584 m_freem(m0);
3585 ieee80211_free_node(ni);
3586 ifp->if_oerrors++;
3587 break;
3588 }
3589 #if 0
3590 if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3591 m0->m_pkthdr.len > ic->ic_fragthreshold)
3592 hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3593 #endif
3594
3595 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3596 hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3597
3598 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3599 ic->ic_flags, ic->ic_fragthreshold, rate,
3600 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3601 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3602 m_freem(m0);
3603 break;
3604 }
3605
3606 /* XXX Misleading if fragmentation is enabled. Better
3607 * to fragment in software?
3608 */
3609 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3610
3611 /*
3612 * Pass the packet to any BPF listeners.
3613 */
3614 bpf_mtap3(ic->ic_rawbpf, m0);
3615
3616 if (sc->sc_radiobpf != NULL) {
3617 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3618
3619 tap->at_rate = rate;
3620
3621 bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_txtapu),
3622 m0);
3623 }
3624
3625 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3626
3627 if (ni != NULL)
3628 ieee80211_free_node(ni);
3629
3630 if (m0 == NULL) {
3631 ifp->if_oerrors++;
3632 break;
3633 }
3634
3635 /* just to make sure. */
3636 m0 = m_pullup(m0, sizeof(struct atw_frame));
3637
3638 if (m0 == NULL) {
3639 ifp->if_oerrors++;
3640 break;
3641 }
3642
3643 hh = mtod(m0, struct atw_frame *);
3644 wh = &hh->atw_ihdr;
3645
3646 /* Copy everything we need from the 802.11 header:
3647 * Frame Control; address 1, address 3, or addresses
3648 * 3 and 4. NIC fills in BSSID, SA.
3649 */
3650 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3651 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3652 panic("%s: illegal WDS frame",
3653 device_xname(sc->sc_dev));
3654 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3655 } else
3656 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3657
3658 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3659
3660 /* initialize remaining Tx parameters */
3661 memset(&hh->u, 0, sizeof(hh->u));
3662
3663 hh->atw_rate = rate * 5;
3664 /* XXX this could be incorrect if M_FCS. _encap should
3665 * probably strip FCS just in case it sticks around in
3666 * bridged packets.
3667 */
3668 hh->atw_service = 0x00; /* XXX guess */
3669 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3670 sizeof(struct atw_frame));
3671
3672 /* never fragment multicast frames */
3673 if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3674 hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3675 else {
3676 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3677 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3678 hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3679 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3680 }
3681
3682 hh->atw_rtylmt = 3;
3683 #if 0
3684 if (do_encrypt) {
3685 hdrctl |= htole16(ATW_HDRCTL_WEP);
3686 hh->atw_keyid = ic->ic_def_txkey;
3687 }
3688 #endif
3689
3690 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3691 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3692 if (txs->txs_d0.d_residue)
3693 hh->atw_head_plcplen |= htole16(0x8000);
3694 if (txs->txs_dn.d_residue)
3695 hh->atw_tail_plcplen |= htole16(0x8000);
3696 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3697 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3698
3699 hh->atw_hdrctl = hdrctl;
3700 hh->atw_fragnum = npkt << 4;
3701 #ifdef ATW_DEBUG
3702
3703 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3704 printf("%s: dst = %s, rate = 0x%02x, "
3705 "service = 0x%02x, paylen = 0x%04x\n",
3706 device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3707 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3708
3709 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3710 "dur1 = 0x%04x, dur2 = 0x%04x, "
3711 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3712 device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3713 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3714 hh->atw_tail_dur, hh->atw_head_dur);
3715
3716 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3717 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3718 device_xname(sc->sc_dev), hh->atw_hdrctl,
3719 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3720
3721 printf("%s: keyid = %d\n",
3722 device_xname(sc->sc_dev), hh->atw_keyid);
3723
3724 atw_dump_pkt(ifp, m0);
3725 }
3726 #endif /* ATW_DEBUG */
3727
3728 dmamap = txs->txs_dmamap;
3729
3730 /*
3731 * Load the DMA map. Copy and try (once) again if the packet
3732 * didn't fit in the alloted number of segments.
3733 */
3734 for (first = 1;
3735 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3736 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3737 first = 0) {
3738 MGETHDR(m, M_DONTWAIT, MT_DATA);
3739 if (m == NULL) {
3740 aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3741 break;
3742 }
3743 if (m0->m_pkthdr.len > MHLEN) {
3744 MCLGET(m, M_DONTWAIT);
3745 if ((m->m_flags & M_EXT) == 0) {
3746 aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3747 "cluster\n");
3748 m_freem(m);
3749 break;
3750 }
3751 }
3752 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3753 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3754 m_freem(m0);
3755 m0 = m;
3756 m = NULL;
3757 }
3758 if (error != 0) {
3759 aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3760 "error = %d\n", error);
3761 m_freem(m0);
3762 break;
3763 }
3764
3765 /*
3766 * Ensure we have enough descriptors free to describe
3767 * the packet.
3768 */
3769 if (dmamap->dm_nsegs > sc->sc_txfree) {
3770 /*
3771 * Not enough free descriptors to transmit
3772 * this packet. Unload the DMA map and
3773 * drop the packet. Notify the upper layer
3774 * that there are no more slots left.
3775 *
3776 * XXX We could allocate an mbuf and copy, but
3777 * XXX it is worth it?
3778 */
3779 bus_dmamap_unload(sc->sc_dmat, dmamap);
3780 m_freem(m0);
3781 break;
3782 }
3783
3784 /*
3785 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3786 */
3787
3788 /* Sync the DMA map. */
3789 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3790 BUS_DMASYNC_PREWRITE);
3791
3792 /* XXX arbitrary retry limit; 8 because I have seen it in
3793 * use already and maybe 0 means "no tries" !
3794 */
3795 ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3796
3797 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3798 device_xname(sc->sc_dev), rate * 5));
3799 ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3800
3801 /*
3802 * Initialize the transmit descriptors.
3803 */
3804 for (nexttx = sc->sc_txnext, seg = 0;
3805 seg < dmamap->dm_nsegs;
3806 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3807 /*
3808 * If this is the first descriptor we're
3809 * enqueueing, don't set the OWN bit just
3810 * yet. That could cause a race condition.
3811 * We'll do it below.
3812 */
3813 txd = &sc->sc_txdescs[nexttx];
3814 txd->at_ctl = ctl |
3815 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3816
3817 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3818 txd->at_flags =
3819 htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3820 ATW_TXFLAG_TBS1_MASK)) |
3821 ((nexttx == (ATW_NTXDESC - 1))
3822 ? htole32(ATW_TXFLAG_TER) : 0);
3823 lasttx = nexttx;
3824 }
3825
3826 /* Set `first segment' and `last segment' appropriately. */
3827 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3828 htole32(ATW_TXFLAG_FS);
3829 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3830
3831 #ifdef ATW_DEBUG
3832 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3833 printf(" txsoft %p transmit chain:\n", txs);
3834 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3835 printf(" descriptor %d:\n", seg);
3836 printf(" at_ctl: 0x%08x\n",
3837 le32toh(sc->sc_txdescs[seg].at_ctl));
3838 printf(" at_flags: 0x%08x\n",
3839 le32toh(sc->sc_txdescs[seg].at_flags));
3840 printf(" at_buf1: 0x%08x\n",
3841 le32toh(sc->sc_txdescs[seg].at_buf1));
3842 printf(" at_buf2: 0x%08x\n",
3843 le32toh(sc->sc_txdescs[seg].at_buf2));
3844 if (seg == lasttx)
3845 break;
3846 }
3847 }
3848 #endif
3849
3850 /* Sync the descriptors we're using. */
3851 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3852 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3853
3854 /*
3855 * Store a pointer to the packet so we can free it later,
3856 * and remember what txdirty will be once the packet is
3857 * done.
3858 */
3859 txs->txs_mbuf = m0;
3860 txs->txs_firstdesc = sc->sc_txnext;
3861 txs->txs_lastdesc = lasttx;
3862 txs->txs_ndescs = dmamap->dm_nsegs;
3863
3864 /* Advance the tx pointer. */
3865 sc->sc_txfree -= dmamap->dm_nsegs;
3866 sc->sc_txnext = nexttx;
3867
3868 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3869 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3870 }
3871
3872 if (sc->sc_txfree != ofree) {
3873 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3874 device_xname(sc->sc_dev), lasttx, firsttx));
3875 /*
3876 * Cause a transmit interrupt to happen on the
3877 * last packet we enqueued.
3878 */
3879 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3880 ATW_CDTXSYNC(sc, lasttx, 1,
3881 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3882
3883 /*
3884 * The entire packet chain is set up. Give the
3885 * first descriptor to the chip now.
3886 */
3887 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3888 ATW_CDTXSYNC(sc, firsttx, 1,
3889 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3890
3891 /* Wake up the transmitter. */
3892 ATW_WRITE(sc, ATW_TDR, 0x1);
3893
3894 if (txs == NULL || sc->sc_txfree == 0)
3895 ifp->if_flags |= IFF_OACTIVE;
3896
3897 /* Set a watchdog timer in case the chip flakes out. */
3898 sc->sc_tx_timer = 5;
3899 ifp->if_timer = 1;
3900 }
3901 }
3902
3903 /*
3904 * atw_ioctl: [ifnet interface function]
3905 *
3906 * Handle control requests from the operator.
3907 */
3908 int
3909 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3910 {
3911 struct atw_softc *sc = ifp->if_softc;
3912 struct ieee80211req *ireq;
3913 int s, error = 0;
3914
3915 s = splnet();
3916
3917 switch (cmd) {
3918 case SIOCSIFFLAGS:
3919 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3920 break;
3921 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
3922 case IFF_UP|IFF_RUNNING:
3923 /*
3924 * To avoid rescanning another access point,
3925 * do not call atw_init() here. Instead,
3926 * only reflect media settings.
3927 */
3928 if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3929 atw_filter_setup(sc);
3930 break;
3931 case IFF_UP:
3932 error = atw_init(ifp);
3933 break;
3934 case IFF_RUNNING:
3935 atw_stop(ifp, 1);
3936 break;
3937 case 0:
3938 break;
3939 }
3940 break;
3941 case SIOCADDMULTI:
3942 case SIOCDELMULTI:
3943 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3944 if (ifp->if_flags & IFF_RUNNING)
3945 atw_filter_setup(sc); /* do not rescan */
3946 error = 0;
3947 }
3948 break;
3949 case SIOCS80211:
3950 ireq = data;
3951 if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3952 if ((error = kauth_authorize_network(curlwp->l_cred,
3953 KAUTH_NETWORK_INTERFACE,
3954 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3955 (void *)cmd, NULL)) != 0)
3956 break;
3957 if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3958 ireq->i_val <= IEEE80211_FRAG_MAX))
3959 error = EINVAL;
3960 else
3961 sc->sc_ic.ic_fragthreshold = ireq->i_val;
3962 break;
3963 }
3964 /*FALLTHROUGH*/
3965 default:
3966 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3967 if (error == ENETRESET || error == ERESTART) {
3968 if (is_running(ifp))
3969 error = atw_init(ifp);
3970 else
3971 error = 0;
3972 }
3973 break;
3974 }
3975
3976 /* Try to get more packets going. */
3977 if (device_is_active(sc->sc_dev))
3978 atw_start(ifp);
3979
3980 splx(s);
3981 return (error);
3982 }
3983
3984 static int
3985 atw_media_change(struct ifnet *ifp)
3986 {
3987 int error;
3988
3989 error = ieee80211_media_change(ifp);
3990 if (error == ENETRESET) {
3991 if (is_running(ifp))
3992 error = atw_init(ifp);
3993 else
3994 error = 0;
3995 }
3996 return error;
3997 }
3998