atw.c revision 1.165 1 /* $NetBSD: atw.c,v 1.165 2019/02/05 06:17:02 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.165 2019/02/05 06:17:02 msaitoh Exp $");
38
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/device.h>
50 #include <sys/kauth.h>
51 #include <sys/time.h>
52 #include <sys/proc.h>
53 #include <sys/atomic.h>
54 #include <lib/libkern/libkern.h>
55
56 #include <machine/endian.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #include <net80211/ieee80211_netbsd.h>
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66
67 #include <net/bpf.h>
68
69 #include <sys/bus.h>
70 #include <sys/intr.h>
71
72 #include <dev/ic/atwreg.h>
73 #include <dev/ic/rf3000reg.h>
74 #include <dev/ic/si4136reg.h>
75 #include <dev/ic/atwvar.h>
76 #include <dev/ic/smc93cx6var.h>
77
78 /* XXX TBD open questions
79 *
80 *
81 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
82 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
83 * handle this for me?
84 *
85 */
86 /* device attachment
87 *
88 * print TOFS[012]
89 *
90 * device initialization
91 *
92 * clear ATW_FRCTL_MAXPSP to disable max power saving
93 * set ATW_TXBR_ALCUPDATE to enable ALC
94 * set TOFS[012]? (hope not)
95 * disable rx/tx
96 * set ATW_PAR_SWR (software reset)
97 * wait for ATW_PAR_SWR clear
98 * disable interrupts
99 * ack status register
100 * enable interrupts
101 *
102 * rx/tx initialization
103 *
104 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
105 * allocate and init descriptor rings
106 * write ATW_PAR_DSL (descriptor skip length)
107 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
108 * write ATW_NAR_SQ for one/both transmit descriptor rings
109 * write ATW_NAR_SQ for one/both transmit descriptor rings
110 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111 *
112 * rx/tx end
113 *
114 * stop DMA
115 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
116 * flush tx w/ ATW_NAR_HF
117 *
118 * scan
119 *
120 * initialize rx/tx
121 *
122 * BSS join: (re)association response
123 *
124 * set ATW_FRCTL_AID
125 *
126 * optimizations ???
127 *
128 */
129
130 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
131
132 int atw_pseudo_milli = 1;
133 int atw_magic_delay1 = 100 * 1000;
134 int atw_magic_delay2 = 100 * 1000;
135 /* more magic multi-millisecond delays (units: microseconds) */
136 int atw_nar_delay = 20 * 1000;
137 int atw_magic_delay4 = 10 * 1000;
138 int atw_rf_delay1 = 10 * 1000;
139 int atw_rf_delay2 = 5 * 1000;
140 int atw_plcphd_delay = 2 * 1000;
141 int atw_bbp_io_enable_delay = 20 * 1000;
142 int atw_bbp_io_disable_delay = 2 * 1000;
143 int atw_writewep_delay = 1000;
144 int atw_beacon_len_adjust = 4;
145 int atw_dwelltime = 200;
146 int atw_xindiv2 = 0;
147
148 #ifdef ATW_DEBUG
149 int atw_debug = 0;
150
151 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
152 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
153 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
154 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
155 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157
158 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
159 static void atw_print_regs(struct atw_softc *, const char *);
160
161 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162 # ifdef ATW_BBPDEBUG
163 static void atw_rf3000_print(struct atw_softc *);
164 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
165 # endif /* ATW_BBPDEBUG */
166
167 # ifdef ATW_SYNDEBUG
168 static void atw_si4126_print(struct atw_softc *);
169 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
170 # endif /* ATW_SYNDEBUG */
171 #define __atwdebugused /* empty */
172 #else
173 #define ATW_DPRINTF(x)
174 #define ATW_DPRINTF2(x)
175 #define ATW_DPRINTF3(x)
176 #define DPRINTF(sc, x) /* nothing */
177 #define DPRINTF2(sc, x) /* nothing */
178 #define DPRINTF3(sc, x) /* nothing */
179 #define __atwdebugused __unused
180 #endif
181
182 /* ifnet methods */
183 int atw_init(struct ifnet *);
184 int atw_ioctl(struct ifnet *, u_long, void *);
185 void atw_start(struct ifnet *);
186 void atw_stop(struct ifnet *, int);
187 void atw_watchdog(struct ifnet *);
188
189 /* Device attachment */
190 void atw_attach(struct atw_softc *);
191 int atw_detach(struct atw_softc *);
192 static void atw_evcnt_attach(struct atw_softc *);
193 static void atw_evcnt_detach(struct atw_softc *);
194
195 /* Rx/Tx process */
196 int atw_add_rxbuf(struct atw_softc *, int);
197 void atw_idle(struct atw_softc *, u_int32_t);
198 void atw_rxdrain(struct atw_softc *);
199 void atw_txdrain(struct atw_softc *);
200
201 /* Device (de)activation and power state */
202 void atw_reset(struct atw_softc *);
203
204 /* Interrupt handlers */
205 void atw_softintr(void *);
206 void atw_linkintr(struct atw_softc *, u_int32_t);
207 void atw_rxintr(struct atw_softc *);
208 void atw_txintr(struct atw_softc *, uint32_t);
209
210 /* 802.11 state machine */
211 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
212 static void atw_next_scan(void *);
213 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
214 struct ieee80211_node *, int, int, u_int32_t);
215 static int atw_tune(struct atw_softc *);
216
217 /* Device initialization */
218 static void atw_bbp_io_init(struct atw_softc *);
219 static void atw_cfp_init(struct atw_softc *);
220 static void atw_cmdr_init(struct atw_softc *);
221 static void atw_ifs_init(struct atw_softc *);
222 static void atw_nar_init(struct atw_softc *);
223 static void atw_response_times_init(struct atw_softc *);
224 static void atw_rf_reset(struct atw_softc *);
225 static void atw_test1_init(struct atw_softc *);
226 static void atw_tofs0_init(struct atw_softc *);
227 static void atw_tofs2_init(struct atw_softc *);
228 static void atw_txlmt_init(struct atw_softc *);
229 static void atw_wcsr_init(struct atw_softc *);
230
231 /* Key management */
232 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
233 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
234 const u_int8_t[IEEE80211_ADDR_LEN]);
235 static void atw_key_update_begin(struct ieee80211com *);
236 static void atw_key_update_end(struct ieee80211com *);
237
238 /* RAM/ROM utilities */
239 static void atw_clear_sram(struct atw_softc *);
240 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
241 static int atw_read_srom(struct atw_softc *);
242
243 /* BSS setup */
244 static void atw_predict_beacon(struct atw_softc *);
245 static void atw_start_beacon(struct atw_softc *, int);
246 static void atw_write_bssid(struct atw_softc *);
247 static void atw_write_ssid(struct atw_softc *);
248 static void atw_write_sup_rates(struct atw_softc *);
249 static void atw_write_wep(struct atw_softc *);
250
251 /* Media */
252 static int atw_media_change(struct ifnet *);
253
254 static void atw_filter_setup(struct atw_softc *);
255
256 /* 802.11 utilities */
257 static uint64_t atw_get_tsft(struct atw_softc *);
258 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
259 uint32_t);
260 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
261 static void atw_node_free(struct ieee80211_node *);
262
263 /*
264 * Tuner/transceiver/modem
265 */
266 static void atw_bbp_io_enable(struct atw_softc *, int);
267
268 /* RFMD RF3000 Baseband Processor */
269 static int atw_rf3000_init(struct atw_softc *);
270 static int atw_rf3000_tune(struct atw_softc *, u_int);
271 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
272
273 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
274 static void atw_si4126_tune(struct atw_softc *, u_int);
275 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
276
277 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
278 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
279
280 const char *atw_tx_state[] = {
281 "STOPPED",
282 "RUNNING - read descriptor",
283 "RUNNING - transmitting",
284 "RUNNING - filling fifo", /* XXX */
285 "SUSPENDED",
286 "RUNNING -- write descriptor",
287 "RUNNING -- write last descriptor",
288 "RUNNING - fifo full"
289 };
290
291 const char *atw_rx_state[] = {
292 "STOPPED",
293 "RUNNING - read descriptor",
294 "RUNNING - check this packet, pre-fetch next",
295 "RUNNING - wait for reception",
296 "SUSPENDED",
297 "RUNNING - write descriptor",
298 "RUNNING - flush fifo",
299 "RUNNING - fifo drain"
300 };
301
302 static inline int
303 is_running(struct ifnet *ifp)
304 {
305 return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
306 }
307
308 int
309 atw_activate(device_t self, enum devact act)
310 {
311 struct atw_softc *sc = device_private(self);
312
313 switch (act) {
314 case DVACT_DEACTIVATE:
315 if_deactivate(&sc->sc_if);
316 return 0;
317 default:
318 return EOPNOTSUPP;
319 }
320 }
321
322 bool
323 atw_suspend(device_t self, const pmf_qual_t *qual)
324 {
325 struct atw_softc *sc = device_private(self);
326
327 atw_rxdrain(sc);
328 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
329
330 return true;
331 }
332
333 /* Returns -1 on failure. */
334 static int
335 atw_read_srom(struct atw_softc *sc)
336 {
337 struct seeprom_descriptor sd;
338 uint32_t test0, fail_bits;
339
340 (void)memset(&sd, 0, sizeof(sd));
341
342 test0 = ATW_READ(sc, ATW_TEST0);
343
344 switch (sc->sc_rev) {
345 case ATW_REVISION_BA:
346 case ATW_REVISION_CA:
347 fail_bits = ATW_TEST0_EPNE;
348 break;
349 default:
350 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
351 break;
352 }
353 if ((test0 & fail_bits) != 0) {
354 aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
355 return -1;
356 }
357
358 switch (test0 & ATW_TEST0_EPTYP_MASK) {
359 case ATW_TEST0_EPTYP_93c66:
360 ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
361 sc->sc_sromsz = 512;
362 sd.sd_chip = C56_66;
363 break;
364 case ATW_TEST0_EPTYP_93c46:
365 ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
366 sc->sc_sromsz = 128;
367 sd.sd_chip = C46;
368 break;
369 default:
370 printf("%s: unknown SROM type %" __PRIuBITS "\n",
371 device_xname(sc->sc_dev),
372 __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
373 return -1;
374 }
375
376 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
377
378 if (sc->sc_srom == NULL) {
379 aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
380 return -1;
381 }
382
383 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
384
385 /* ADM8211 has a single 32-bit register for controlling the
386 * 93cx6 SROM. Bit SRS enables the serial port. There is no
387 * "ready" bit. The ADM8211 input/output sense is the reverse
388 * of read_seeprom's.
389 */
390 sd.sd_tag = sc->sc_st;
391 sd.sd_bsh = sc->sc_sh;
392 sd.sd_regsize = 4;
393 sd.sd_control_offset = ATW_SPR;
394 sd.sd_status_offset = ATW_SPR;
395 sd.sd_dataout_offset = ATW_SPR;
396 sd.sd_CK = ATW_SPR_SCLK;
397 sd.sd_CS = ATW_SPR_SCS;
398 sd.sd_DI = ATW_SPR_SDO;
399 sd.sd_DO = ATW_SPR_SDI;
400 sd.sd_MS = ATW_SPR_SRS;
401 sd.sd_RDY = 0;
402
403 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
404 aprint_error_dev(sc->sc_dev, "could not read SROM\n");
405 free(sc->sc_srom, M_DEVBUF);
406 return -1;
407 }
408 #ifdef ATW_DEBUG
409 {
410 int i;
411 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
412 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
413 if (((i % 8) == 0) && (i != 0)) {
414 ATW_DPRINTF(("\n\t"));
415 }
416 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
417 }
418 ATW_DPRINTF(("\n"));
419 }
420 #endif /* ATW_DEBUG */
421 return 0;
422 }
423
424 #ifdef ATW_DEBUG
425 static void
426 atw_print_regs(struct atw_softc *sc, const char *where)
427 {
428 #define PRINTREG(sc, reg) \
429 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
430 device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
431
432 ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
433
434 PRINTREG(sc, ATW_PAR);
435 PRINTREG(sc, ATW_FRCTL);
436 PRINTREG(sc, ATW_TDR);
437 PRINTREG(sc, ATW_WTDP);
438 PRINTREG(sc, ATW_RDR);
439 PRINTREG(sc, ATW_WRDP);
440 PRINTREG(sc, ATW_RDB);
441 PRINTREG(sc, ATW_CSR3A);
442 PRINTREG(sc, ATW_TDBD);
443 PRINTREG(sc, ATW_TDBP);
444 PRINTREG(sc, ATW_STSR);
445 PRINTREG(sc, ATW_CSR5A);
446 PRINTREG(sc, ATW_NAR);
447 PRINTREG(sc, ATW_CSR6A);
448 PRINTREG(sc, ATW_IER);
449 PRINTREG(sc, ATW_CSR7A);
450 PRINTREG(sc, ATW_LPC);
451 PRINTREG(sc, ATW_TEST1);
452 PRINTREG(sc, ATW_SPR);
453 PRINTREG(sc, ATW_TEST0);
454 PRINTREG(sc, ATW_WCSR);
455 PRINTREG(sc, ATW_WPDR);
456 PRINTREG(sc, ATW_GPTMR);
457 PRINTREG(sc, ATW_GPIO);
458 PRINTREG(sc, ATW_BBPCTL);
459 PRINTREG(sc, ATW_SYNCTL);
460 PRINTREG(sc, ATW_PLCPHD);
461 PRINTREG(sc, ATW_MMIWADDR);
462 PRINTREG(sc, ATW_MMIRADDR1);
463 PRINTREG(sc, ATW_MMIRADDR2);
464 PRINTREG(sc, ATW_TXBR);
465 PRINTREG(sc, ATW_CSR15A);
466 PRINTREG(sc, ATW_ALCSTAT);
467 PRINTREG(sc, ATW_TOFS2);
468 PRINTREG(sc, ATW_CMDR);
469 PRINTREG(sc, ATW_PCIC);
470 PRINTREG(sc, ATW_PMCSR);
471 PRINTREG(sc, ATW_PAR0);
472 PRINTREG(sc, ATW_PAR1);
473 PRINTREG(sc, ATW_MAR0);
474 PRINTREG(sc, ATW_MAR1);
475 PRINTREG(sc, ATW_ATIMDA0);
476 PRINTREG(sc, ATW_ABDA1);
477 PRINTREG(sc, ATW_BSSID0);
478 PRINTREG(sc, ATW_TXLMT);
479 PRINTREG(sc, ATW_MIBCNT);
480 PRINTREG(sc, ATW_BCNT);
481 PRINTREG(sc, ATW_TSFTH);
482 PRINTREG(sc, ATW_TSC);
483 PRINTREG(sc, ATW_SYNRF);
484 PRINTREG(sc, ATW_BPLI);
485 PRINTREG(sc, ATW_CAP0);
486 PRINTREG(sc, ATW_CAP1);
487 PRINTREG(sc, ATW_RMD);
488 PRINTREG(sc, ATW_CFPP);
489 PRINTREG(sc, ATW_TOFS0);
490 PRINTREG(sc, ATW_TOFS1);
491 PRINTREG(sc, ATW_IFST);
492 PRINTREG(sc, ATW_RSPT);
493 PRINTREG(sc, ATW_TSFTL);
494 PRINTREG(sc, ATW_WEPCTL);
495 PRINTREG(sc, ATW_WESK);
496 PRINTREG(sc, ATW_WEPCNT);
497 PRINTREG(sc, ATW_MACTEST);
498 PRINTREG(sc, ATW_FER);
499 PRINTREG(sc, ATW_FEMR);
500 PRINTREG(sc, ATW_FPSR);
501 PRINTREG(sc, ATW_FFER);
502 #undef PRINTREG
503 }
504 #endif /* ATW_DEBUG */
505
506 /*
507 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
508 */
509 void
510 atw_attach(struct atw_softc *sc)
511 {
512 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
513 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
514 };
515 struct ieee80211com *ic = &sc->sc_ic;
516 struct ifnet *ifp = &sc->sc_if;
517 int country_code, error, i, srom_major;
518 u_int32_t reg;
519 static const char *type_strings[] = {"Intersil (not supported)",
520 "RFMD", "Marvel (not supported)"};
521
522 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
523
524 sc->sc_soft_ih = softint_establish(SOFTINT_NET, atw_softintr, sc);
525 if (sc->sc_soft_ih == NULL) {
526 aprint_error_dev(sc->sc_dev, "unable to establish softint\n");
527 goto fail_0;
528 }
529
530 sc->sc_txth = atw_txthresh_tab_lo;
531
532 SIMPLEQ_INIT(&sc->sc_txfreeq);
533 SIMPLEQ_INIT(&sc->sc_txdirtyq);
534
535 #ifdef ATW_DEBUG
536 atw_print_regs(sc, "atw_attach");
537 #endif /* ATW_DEBUG */
538
539 /*
540 * Allocate the control data structures, and create and load the
541 * DMA map for it.
542 */
543 if ((error = bus_dmamem_alloc(sc->sc_dmat,
544 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
545 1, &sc->sc_cdnseg, 0)) != 0) {
546 aprint_error_dev(sc->sc_dev,
547 "unable to allocate control data, error = %d\n",
548 error);
549 goto fail_0;
550 }
551
552 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
553 sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
554 BUS_DMA_COHERENT)) != 0) {
555 aprint_error_dev(sc->sc_dev,
556 "unable to map control data, error = %d\n",
557 error);
558 goto fail_1;
559 }
560
561 if ((error = bus_dmamap_create(sc->sc_dmat,
562 sizeof(struct atw_control_data), 1,
563 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
564 aprint_error_dev(sc->sc_dev,
565 "unable to create control data DMA map, error = %d\n",
566 error);
567 goto fail_2;
568 }
569
570 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
571 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
572 0)) != 0) {
573 aprint_error_dev(sc->sc_dev,
574 "unable to load control data DMA map, error = %d\n", error);
575 goto fail_3;
576 }
577
578 /*
579 * Create the transmit buffer DMA maps.
580 */
581 sc->sc_ntxsegs = ATW_NTXSEGS;
582 for (i = 0; i < ATW_TXQUEUELEN; i++) {
583 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
584 sc->sc_ntxsegs, MCLBYTES, 0, 0,
585 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
586 aprint_error_dev(sc->sc_dev,
587 "unable to create tx DMA map %d, error = %d\n", i,
588 error);
589 goto fail_4;
590 }
591 }
592
593 /*
594 * Create the receive buffer DMA maps.
595 */
596 for (i = 0; i < ATW_NRXDESC; i++) {
597 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
598 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
599 aprint_error_dev(sc->sc_dev,
600 "unable to create rx DMA map %d, error = %d\n", i,
601 error);
602 goto fail_5;
603 }
604 }
605 for (i = 0; i < ATW_NRXDESC; i++) {
606 sc->sc_rxsoft[i].rxs_mbuf = NULL;
607 }
608
609 switch (sc->sc_rev) {
610 case ATW_REVISION_AB:
611 case ATW_REVISION_AF:
612 sc->sc_sramlen = ATW_SRAM_A_SIZE;
613 break;
614 case ATW_REVISION_BA:
615 case ATW_REVISION_CA:
616 sc->sc_sramlen = ATW_SRAM_B_SIZE;
617 break;
618 }
619
620 /* Reset the chip to a known state. */
621 atw_reset(sc);
622
623 if (atw_read_srom(sc) == -1)
624 goto fail_5;
625
626 sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
627 ATW_SR_RFTYPE_MASK);
628
629 sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
630 ATW_SR_BBPTYPE_MASK);
631
632 if (sc->sc_rftype >= __arraycount(type_strings)) {
633 aprint_error_dev(sc->sc_dev, "unknown RF\n");
634 goto fail_5;
635 }
636 if (sc->sc_bbptype >= __arraycount(type_strings)) {
637 aprint_error_dev(sc->sc_dev, "unknown BBP\n");
638 goto fail_5;
639 }
640
641 aprint_normal_dev(sc->sc_dev, "%s RF, %s BBP",
642 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
643
644 /* XXX There exists a Linux driver which seems to use RFType = 0 for
645 * MARVEL. My bug, or theirs?
646 */
647
648 reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
649
650 switch (sc->sc_rftype) {
651 case ATW_RFTYPE_INTERSIL:
652 reg |= ATW_SYNCTL_CS1;
653 break;
654 case ATW_RFTYPE_RFMD:
655 reg |= ATW_SYNCTL_CS0;
656 break;
657 case ATW_RFTYPE_MARVEL:
658 break;
659 }
660
661 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
662 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
663
664 reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
665
666 switch (sc->sc_bbptype) {
667 case ATW_BBPTYPE_INTERSIL:
668 reg |= ATW_BBPCTL_TWI;
669 break;
670 case ATW_BBPTYPE_RFMD:
671 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
672 ATW_BBPCTL_CCA_ACTLO;
673 break;
674 case ATW_BBPTYPE_MARVEL:
675 break;
676 case ATW_C_BBPTYPE_RFMD:
677 aprint_error_dev(sc->sc_dev,
678 "ADM8211C MAC/RFMD BBP not supported yet.\n");
679 break;
680 }
681
682 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
683 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
684
685 /*
686 * From this point forward, the attachment cannot fail. A failure
687 * before this point releases all resources that may have been
688 * allocated.
689 */
690 sc->sc_flags |= ATWF_ATTACHED;
691
692 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
693 htole16(sc->sc_srom[ATW_SR_MAC00]),
694 htole16(sc->sc_srom[ATW_SR_MAC01]),
695 htole16(sc->sc_srom[ATW_SR_MAC10])));
696
697 srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
698 ATW_SR_MAJOR_MASK);
699
700 if (srom_major < 2)
701 sc->sc_rf3000_options1 = 0;
702 else if (sc->sc_rev == ATW_REVISION_BA) {
703 sc->sc_rf3000_options1 =
704 __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
705 ATW_SR_CR28_MASK);
706 } else
707 sc->sc_rf3000_options1 = 0;
708
709 sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
710 ATW_SR_CR29_MASK);
711
712 country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
713 ATW_SR_CTRY_MASK);
714
715 #define ADD_CHANNEL(_ic, _chan) do { \
716 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
717 _ic->ic_channels[_chan].ic_freq = \
718 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
719 } while (0)
720
721 /* Find available channels */
722 switch (country_code) {
723 case COUNTRY_MMK2: /* 1-14 */
724 ADD_CHANNEL(ic, 14);
725 /*FALLTHROUGH*/
726 case COUNTRY_ETSI: /* 1-13 */
727 for (i = 1; i <= 13; i++)
728 ADD_CHANNEL(ic, i);
729 break;
730 case COUNTRY_FCC: /* 1-11 */
731 case COUNTRY_IC: /* 1-11 */
732 for (i = 1; i <= 11; i++)
733 ADD_CHANNEL(ic, i);
734 break;
735 case COUNTRY_MMK: /* 14 */
736 ADD_CHANNEL(ic, 14);
737 break;
738 case COUNTRY_FRANCE: /* 10-13 */
739 for (i = 10; i <= 13; i++)
740 ADD_CHANNEL(ic, i);
741 break;
742 default: /* assume channels 10-11 */
743 case COUNTRY_SPAIN: /* 10-11 */
744 for (i = 10; i <= 11; i++)
745 ADD_CHANNEL(ic, i);
746 break;
747 }
748
749 /* Read the MAC address. */
750 reg = ATW_READ(sc, ATW_PAR0);
751 ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
752 ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
753 ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
754 ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
755 reg = ATW_READ(sc, ATW_PAR1);
756 ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
757 ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
758
759 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
760 aprint_error_dev(sc->sc_dev,
761 "could not get mac address, attach failed\n");
762 goto fail_5;
763 }
764
765 aprint_normal(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
766
767 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
768 ifp->if_softc = sc;
769 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
770 ifp->if_ioctl = atw_ioctl;
771 ifp->if_start = atw_start;
772 ifp->if_watchdog = atw_watchdog;
773 ifp->if_init = atw_init;
774 ifp->if_stop = atw_stop;
775 IFQ_SET_READY(&ifp->if_snd);
776
777 ic->ic_ifp = ifp;
778 ic->ic_phytype = IEEE80211_T_DS;
779 ic->ic_opmode = IEEE80211_M_STA;
780 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
781 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
782
783 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
784
785 /*
786 * Call MI attach routines.
787 */
788
789 error = if_initialize(ifp);
790 if (error != 0) {
791 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
792 error);
793 goto fail_5;
794 }
795 ieee80211_ifattach(ic);
796 /* Use common softint-based if_input */
797 ifp->if_percpuq = if_percpuq_create(ifp);
798 if_register(ifp);
799
800 atw_evcnt_attach(sc);
801
802 sc->sc_newstate = ic->ic_newstate;
803 ic->ic_newstate = atw_newstate;
804
805 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
806 ic->ic_recv_mgmt = atw_recv_mgmt;
807
808 sc->sc_node_free = ic->ic_node_free;
809 ic->ic_node_free = atw_node_free;
810
811 sc->sc_node_alloc = ic->ic_node_alloc;
812 ic->ic_node_alloc = atw_node_alloc;
813
814 ic->ic_crypto.cs_key_delete = atw_key_delete;
815 ic->ic_crypto.cs_key_set = atw_key_set;
816 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
817 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
818
819 /* possibly we should fill in our own sc_send_prresp, since
820 * the ADM8211 is probably sending probe responses in ad hoc
821 * mode.
822 */
823
824 /* complete initialization */
825 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
826 callout_init(&sc->sc_scan_ch, 0);
827
828 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
829 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
830
831 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
832 sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
833 sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
834
835 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
836 sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
837 sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
838
839 ieee80211_announce(ic);
840 return;
841
842 /*
843 * Free any resources we've allocated during the failed attach
844 * attempt. Do this in reverse order and fall through.
845 */
846 fail_5:
847 for (i = 0; i < ATW_NRXDESC; i++) {
848 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
849 continue;
850 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
851 }
852 fail_4:
853 for (i = 0; i < ATW_TXQUEUELEN; i++) {
854 if (sc->sc_txsoft[i].txs_dmamap == NULL)
855 continue;
856 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
857 }
858 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
859 fail_3:
860 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
861 fail_2:
862 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
863 sizeof(struct atw_control_data));
864 fail_1:
865 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
866 fail_0:
867 if (sc->sc_soft_ih != NULL) {
868 softint_disestablish(sc->sc_soft_ih);
869 sc->sc_soft_ih = NULL;
870 }
871 }
872
873 static struct ieee80211_node *
874 atw_node_alloc(struct ieee80211_node_table *nt)
875 {
876 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
877 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
878
879 DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
880 return ni;
881 }
882
883 static void
884 atw_node_free(struct ieee80211_node *ni)
885 {
886 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
887
888 DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
889 ether_sprintf(ni->ni_bssid)));
890 (*sc->sc_node_free)(ni);
891 }
892
893
894 static void
895 atw_test1_reset(struct atw_softc *sc)
896 {
897 switch (sc->sc_rev) {
898 case ATW_REVISION_BA:
899 if (1 /* XXX condition on transceiver type */) {
900 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
901 }
902 break;
903 case ATW_REVISION_CA:
904 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
905 break;
906 default:
907 break;
908 }
909 }
910
911 /*
912 * atw_reset:
913 *
914 * Perform a soft reset on the ADM8211.
915 */
916 void
917 atw_reset(struct atw_softc *sc)
918 {
919 int i;
920 uint32_t lpc __atwdebugused;
921
922 ATW_WRITE(sc, ATW_NAR, 0x0);
923 DELAY(atw_nar_delay);
924
925 /* Reference driver has a cryptic remark indicating that this might
926 * power-on the chip. I know that it turns off power-saving....
927 */
928 ATW_WRITE(sc, ATW_FRCTL, 0x0);
929
930 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
931
932 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
933 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
934 break;
935 DELAY(atw_pseudo_milli);
936 }
937
938 /* ... and then pause 100ms longer for good measure. */
939 DELAY(atw_magic_delay1);
940
941 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
942
943 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
944 aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
945
946 /*
947 * Initialize the PCI Access Register.
948 */
949 sc->sc_busmode = ATW_PAR_PBL_8DW;
950
951 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
952 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
953 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
954
955 atw_test1_reset(sc);
956
957 /* Turn off maximum power saving, etc. */
958 ATW_WRITE(sc, ATW_FRCTL, 0x0);
959
960 DELAY(atw_magic_delay2);
961
962 /* Recall EEPROM. */
963 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
964
965 DELAY(atw_magic_delay4);
966
967 lpc = ATW_READ(sc, ATW_LPC);
968
969 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
970
971 /* A reset seems to affect the SRAM contents, so put them into
972 * a known state.
973 */
974 atw_clear_sram(sc);
975
976 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
977 }
978
979 static void
980 atw_clear_sram(struct atw_softc *sc)
981 {
982 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
983 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
984 /* XXX not for revision 0x20. */
985 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
986 }
987
988 /* TBD atw_init
989 *
990 * set MAC based on ic->ic_bss->myaddr
991 * write WEP keys
992 * set TX rate
993 */
994
995 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
996 * without receiving a beacon with the preferred BSSID & SSID.
997 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
998 */
999 static void
1000 atw_wcsr_init(struct atw_softc *sc)
1001 {
1002 uint32_t wcsr;
1003
1004 wcsr = ATW_READ(sc, ATW_WCSR);
1005 wcsr &= ~ATW_WCSR_BLN_MASK;
1006 wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1007 /* We always want to wake up on link loss or TSFT out of range */
1008 wcsr |= ATW_WCSR_LSOE|ATW_WCSR_TSFTWE;
1009 ATW_WRITE(sc, ATW_WCSR, wcsr);
1010
1011 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1012 device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1013 }
1014
1015 /* Turn off power management. Set Rx store-and-forward mode. */
1016 static void
1017 atw_cmdr_init(struct atw_softc *sc)
1018 {
1019 uint32_t cmdr;
1020 cmdr = ATW_READ(sc, ATW_CMDR);
1021 cmdr &= ~ATW_CMDR_APM;
1022 cmdr |= ATW_CMDR_RTE;
1023 cmdr &= ~ATW_CMDR_DRT_MASK;
1024 cmdr |= ATW_CMDR_DRT_SF;
1025
1026 ATW_WRITE(sc, ATW_CMDR, cmdr);
1027 }
1028
1029 static void
1030 atw_tofs2_init(struct atw_softc *sc)
1031 {
1032 uint32_t tofs2;
1033 /* XXX this magic can probably be figured out from the RFMD docs */
1034 #ifndef ATW_REFSLAVE
1035 tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1036 __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1037 __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1038 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1039 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1040 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1041 __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1042 __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1043 #else
1044 /* XXX new magic from reference driver source */
1045 tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1046 __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1047 __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */
1048 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1049 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1050 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1051 __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */
1052 __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */
1053 #endif
1054 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1055 }
1056
1057 static void
1058 atw_nar_init(struct atw_softc *sc)
1059 {
1060 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1061 }
1062
1063 static void
1064 atw_txlmt_init(struct atw_softc *sc)
1065 {
1066 ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1067 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1068 }
1069
1070 static void
1071 atw_test1_init(struct atw_softc *sc)
1072 {
1073 uint32_t test1;
1074
1075 test1 = ATW_READ(sc, ATW_TEST1);
1076 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1077 /* XXX magic 0x1 */
1078 test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1079 ATW_WRITE(sc, ATW_TEST1, test1);
1080 }
1081
1082 static void
1083 atw_rf_reset(struct atw_softc *sc)
1084 {
1085 /* XXX this resets an Intersil RF front-end? */
1086 /* TBD condition on Intersil RFType? */
1087 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1088 DELAY(atw_rf_delay1);
1089 ATW_WRITE(sc, ATW_SYNRF, 0);
1090 DELAY(atw_rf_delay2);
1091 }
1092
1093 /* Set 16 TU max duration for the contention-free period (CFP). */
1094 static void
1095 atw_cfp_init(struct atw_softc *sc)
1096 {
1097 uint32_t cfpp;
1098
1099 cfpp = ATW_READ(sc, ATW_CFPP);
1100 cfpp &= ~ATW_CFPP_CFPMD;
1101 cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1102 ATW_WRITE(sc, ATW_CFPP, cfpp);
1103 }
1104
1105 static void
1106 atw_tofs0_init(struct atw_softc *sc)
1107 {
1108 /* XXX I guess that the Cardbus clock is 22 MHz?
1109 * I am assuming that the role of ATW_TOFS0_USCNT is
1110 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1111 * very clear on this point. It says in the datasheet that it is
1112 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1113 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1114 * these values. These values are also the power-on default.
1115 */
1116 ATW_WRITE(sc, ATW_TOFS0,
1117 __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1118 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1119 }
1120
1121 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1122 static void
1123 atw_ifs_init(struct atw_softc *sc)
1124 {
1125 uint32_t ifst;
1126 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1127 * Go figure.
1128 */
1129 ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1130 __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1131 ATW_IFST_SIFS_MASK) |
1132 __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1133 __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1134
1135 ATW_WRITE(sc, ATW_IFST, ifst);
1136 }
1137
1138 static void
1139 atw_response_times_init(struct atw_softc *sc)
1140 {
1141 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1142 * indicate that the MAC expects at least SIFS + MIRT microseconds
1143 * to pass after it transmits a frame that requires a response;
1144 * it waits at most SIFS + MART microseconds for the response.
1145 * Surely this is not the ACK timeout?
1146 */
1147 ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1148 __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1149 }
1150
1151 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1152 * engines read and write baseband registers after Rx and before
1153 * Tx, respectively.
1154 */
1155 static void
1156 atw_bbp_io_init(struct atw_softc *sc)
1157 {
1158 uint32_t mmiraddr2;
1159
1160 /* XXX The reference driver does this, but is it *really*
1161 * necessary?
1162 */
1163 switch (sc->sc_rev) {
1164 case ATW_REVISION_AB:
1165 case ATW_REVISION_AF:
1166 mmiraddr2 = 0x0;
1167 break;
1168 default:
1169 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1170 mmiraddr2 &=
1171 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1172 break;
1173 }
1174
1175 switch (sc->sc_bbptype) {
1176 case ATW_BBPTYPE_INTERSIL:
1177 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1178 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1179 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1180 break;
1181 case ATW_BBPTYPE_MARVEL:
1182 /* TBD find out the Marvel settings. */
1183 break;
1184 case ATW_BBPTYPE_RFMD:
1185 default:
1186 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1187 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1188 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1189 break;
1190 }
1191 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1192 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1193 }
1194
1195 /*
1196 * atw_init: [ ifnet interface function ]
1197 *
1198 * Initialize the interface. Must be called at splnet().
1199 */
1200 int
1201 atw_init(struct ifnet *ifp)
1202 {
1203 struct atw_softc *sc = ifp->if_softc;
1204 struct ieee80211com *ic = &sc->sc_ic;
1205 struct atw_txsoft *txs;
1206 struct atw_rxsoft *rxs;
1207 int i, error = 0;
1208
1209 if (device_is_active(sc->sc_dev)) {
1210 /*
1211 * Cancel any pending I/O.
1212 */
1213 atw_stop(ifp, 0);
1214 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1215 !device_is_active(sc->sc_dev))
1216 return 0;
1217
1218 /*
1219 * Reset the chip to a known state.
1220 */
1221 atw_reset(sc);
1222
1223 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1224 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1225 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1226
1227 atw_wcsr_init(sc);
1228
1229 atw_cmdr_init(sc);
1230
1231 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1232 *
1233 * XXX Set transmit power for ATIM, RTS, Beacon.
1234 */
1235 ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1236 __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1237
1238 atw_tofs2_init(sc);
1239
1240 atw_nar_init(sc);
1241
1242 atw_txlmt_init(sc);
1243
1244 atw_test1_init(sc);
1245
1246 atw_rf_reset(sc);
1247
1248 atw_cfp_init(sc);
1249
1250 atw_tofs0_init(sc);
1251
1252 atw_ifs_init(sc);
1253
1254 /* XXX Fall asleep after one second of inactivity.
1255 * XXX A frame may only dribble in for 65536us.
1256 */
1257 ATW_WRITE(sc, ATW_RMD,
1258 __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1259
1260 atw_response_times_init(sc);
1261
1262 atw_bbp_io_init(sc);
1263
1264 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1265
1266 if ((error = atw_rf3000_init(sc)) != 0)
1267 goto out;
1268
1269 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1270 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1271 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1272
1273 /*
1274 * Initialize the transmit descriptor ring.
1275 */
1276 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1277 for (i = 0; i < ATW_NTXDESC; i++) {
1278 sc->sc_txdescs[i].at_ctl = 0;
1279 /* no transmit chaining */
1280 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1281 sc->sc_txdescs[i].at_buf2 =
1282 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1283 }
1284 /* use ring mode */
1285 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1286 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1287 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1288 sc->sc_txfree = ATW_NTXDESC;
1289 sc->sc_txnext = 0;
1290
1291 /*
1292 * Initialize the transmit job descriptors.
1293 */
1294 SIMPLEQ_INIT(&sc->sc_txfreeq);
1295 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1296 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1297 txs = &sc->sc_txsoft[i];
1298 txs->txs_mbuf = NULL;
1299 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1300 }
1301
1302 /*
1303 * Initialize the receive descriptor and receive job
1304 * descriptor rings.
1305 */
1306 for (i = 0; i < ATW_NRXDESC; i++) {
1307 rxs = &sc->sc_rxsoft[i];
1308 if (rxs->rxs_mbuf == NULL) {
1309 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1310 aprint_error_dev(sc->sc_dev,
1311 "unable to allocate or map rx buffer %d, "
1312 "error = %d\n", i, error);
1313 /*
1314 * XXX Should attempt to run with fewer receive
1315 * XXX buffers instead of just failing.
1316 */
1317 atw_rxdrain(sc);
1318 goto out;
1319 }
1320 } else
1321 atw_init_rxdesc(sc, i);
1322 }
1323 sc->sc_rxptr = 0;
1324
1325 /*
1326 * Initialize the interrupt mask and enable interrupts.
1327 */
1328 /* normal interrupts */
1329 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1330 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1331
1332 /* abnormal interrupts */
1333 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1334 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1335 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1336
1337 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1338 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1339 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1340 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1341 ATW_INTR_TRT;
1342
1343 sc->sc_linkint_mask &= sc->sc_inten;
1344 sc->sc_rxint_mask &= sc->sc_inten;
1345 sc->sc_txint_mask &= sc->sc_inten;
1346
1347 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1348 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1349
1350 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1351 device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1352
1353 /*
1354 * Give the transmit and receive rings to the ADM8211.
1355 */
1356 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1357 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1358
1359 sc->sc_txthresh = 0;
1360 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1361 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1362
1363 /* common 802.11 configuration */
1364 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1365 switch (ic->ic_opmode) {
1366 case IEEE80211_M_STA:
1367 break;
1368 case IEEE80211_M_AHDEMO: /* XXX */
1369 case IEEE80211_M_IBSS:
1370 ic->ic_flags |= IEEE80211_F_IBSSON;
1371 /*FALLTHROUGH*/
1372 case IEEE80211_M_HOSTAP: /* XXX */
1373 break;
1374 case IEEE80211_M_MONITOR: /* XXX */
1375 break;
1376 }
1377
1378 switch (ic->ic_opmode) {
1379 case IEEE80211_M_AHDEMO:
1380 case IEEE80211_M_HOSTAP:
1381 #ifndef IEEE80211_NO_HOSTAP
1382 ic->ic_bss->ni_intval = ic->ic_lintval;
1383 ic->ic_bss->ni_rssi = 0;
1384 ic->ic_bss->ni_rstamp = 0;
1385 #endif /* !IEEE80211_NO_HOSTAP */
1386 break;
1387 default: /* XXX */
1388 break;
1389 }
1390
1391 sc->sc_wepctl = 0;
1392
1393 atw_write_ssid(sc);
1394 atw_write_sup_rates(sc);
1395 atw_write_wep(sc);
1396
1397 ic->ic_state = IEEE80211_S_INIT;
1398
1399 /*
1400 * Set the receive filter. This will start the transmit and
1401 * receive processes.
1402 */
1403 atw_filter_setup(sc);
1404
1405 /*
1406 * Start the receive process.
1407 */
1408 ATW_WRITE(sc, ATW_RDR, 0x1);
1409
1410 /*
1411 * Note that the interface is now running.
1412 */
1413 ifp->if_flags |= IFF_RUNNING;
1414
1415 /* send no beacons, yet. */
1416 atw_start_beacon(sc, 0);
1417
1418 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1419 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1420 else
1421 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1422 out:
1423 if (error) {
1424 ifp->if_flags &= ~IFF_RUNNING;
1425 sc->sc_tx_timer = 0;
1426 ifp->if_timer = 0;
1427 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1428 }
1429 #ifdef ATW_DEBUG
1430 atw_print_regs(sc, "end of init");
1431 #endif /* ATW_DEBUG */
1432
1433 return (error);
1434 }
1435
1436 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1437 * 0: MAC control of RF3000/Si4126.
1438 *
1439 * Applies power, or selects RF front-end? Sets reset condition.
1440 *
1441 * TBD support non-RFMD BBP, non-SiLabs synth.
1442 */
1443 static void
1444 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1445 {
1446 if (enable) {
1447 ATW_WRITE(sc, ATW_SYNRF,
1448 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1449 DELAY(atw_bbp_io_enable_delay);
1450 } else {
1451 ATW_WRITE(sc, ATW_SYNRF, 0);
1452 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1453 }
1454 }
1455
1456 static int
1457 atw_tune(struct atw_softc *sc)
1458 {
1459 int rc;
1460 u_int chan;
1461 struct ieee80211com *ic = &sc->sc_ic;
1462
1463 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1464 if (chan == IEEE80211_CHAN_ANY)
1465 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1466
1467 if (chan == sc->sc_cur_chan)
1468 return 0;
1469
1470 DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1471 sc->sc_cur_chan, chan));
1472
1473 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1474
1475 atw_si4126_tune(sc, chan);
1476 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1477 printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1478 chan);
1479
1480 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1481 DELAY(atw_nar_delay);
1482 ATW_WRITE(sc, ATW_RDR, 0x1);
1483
1484 if (rc == 0) {
1485 sc->sc_cur_chan = chan;
1486 sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1487 htole16(ic->ic_curchan->ic_freq);
1488 sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1489 htole16(ic->ic_curchan->ic_flags);
1490 }
1491
1492 return rc;
1493 }
1494
1495 #ifdef ATW_SYNDEBUG
1496 static void
1497 atw_si4126_print(struct atw_softc *sc)
1498 {
1499 struct ifnet *ifp = &sc->sc_if;
1500 u_int addr, val;
1501
1502 val = 0;
1503
1504 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1505 return;
1506
1507 for (addr = 0; addr <= 8; addr++) {
1508 printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1509 if (atw_si4126_read(sc, addr, &val) == 0) {
1510 printf("<unknown> (quitting print-out)\n");
1511 break;
1512 }
1513 printf("%05x\n", val);
1514 }
1515 }
1516 #endif /* ATW_SYNDEBUG */
1517
1518 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1519 *
1520 * The RF/IF synthesizer produces two reference frequencies for
1521 * the RF2948B transceiver. The first frequency the RF2948B requires
1522 * is two times the so-called "intermediate frequency" (IF). Since
1523 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1524 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second
1525 * frequency required by the transceiver is the radio frequency
1526 * (RF). This is a superheterodyne transceiver; for f(chan) the
1527 * center frequency of the channel we are tuning, RF = f(chan) -
1528 * IF.
1529 *
1530 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1531 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1532 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1533 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1534 */
1535 static void
1536 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1537 {
1538 u_int mhz;
1539 u_int R;
1540 u_int32_t gpio;
1541 u_int16_t gain;
1542
1543 #ifdef ATW_SYNDEBUG
1544 atw_si4126_print(sc);
1545 #endif /* ATW_SYNDEBUG */
1546
1547 if (chan == 14)
1548 mhz = 2484;
1549 else
1550 mhz = 2412 + 5 * (chan - 1);
1551
1552 /* Tune IF to 748 MHz to suit the IF LO input of the
1553 * RF2494B, which is 2 x IF. No need to set an IF divider
1554 * because an IF in 526 MHz - 952 MHz is allowed.
1555 *
1556 * XIN is 44.000 MHz, so divide it by two to get allowable
1557 * range of 2-25 MHz. SiLabs tells me that this is not
1558 * strictly necessary.
1559 */
1560
1561 if (atw_xindiv2)
1562 R = 44;
1563 else
1564 R = 88;
1565
1566 /* Power-up RF, IF synthesizers. */
1567 atw_si4126_write(sc, SI4126_POWER,
1568 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1569
1570 /* set LPWR, too? */
1571 atw_si4126_write(sc, SI4126_MAIN,
1572 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1573
1574 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1575 * set KP2 to 1.
1576 *
1577 * REFDIF This is different from the reference driver, which
1578 * always sets SI4126_GAIN to 0.
1579 */
1580 gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1581
1582 atw_si4126_write(sc, SI4126_GAIN, gain);
1583
1584 /* XIN = 44 MHz.
1585 *
1586 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1587 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1588 *
1589 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1590 * so that 1496/88 * 44 MHz = 748 MHz.
1591 */
1592 atw_si4126_write(sc, SI4126_IFN, 1496);
1593
1594 atw_si4126_write(sc, SI4126_IFR, R);
1595
1596 #ifndef ATW_REFSLAVE
1597 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1598 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1599 * which has no RF1!
1600 */
1601 atw_si4126_write(sc, SI4126_RF1R, R);
1602
1603 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1604 #endif
1605
1606 /* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1607 * where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44.
1608 * Now let's multiply it to mhz. So mhz - IF = N.
1609 */
1610 atw_si4126_write(sc, SI4126_RF2R, R);
1611
1612 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1613
1614 /* wait 100us from power-up for RF, IF to settle */
1615 DELAY(100);
1616
1617 gpio = ATW_READ(sc, ATW_GPIO);
1618 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1619 gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1620
1621 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1622 /* Set a Prism RF front-end to a special mode for channel 14?
1623 *
1624 * Apparently the SMC2635W needs this, although I don't think
1625 * it has a Prism RF.
1626 */
1627 gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1628 }
1629 ATW_WRITE(sc, ATW_GPIO, gpio);
1630
1631 #ifdef ATW_SYNDEBUG
1632 atw_si4126_print(sc);
1633 #endif /* ATW_SYNDEBUG */
1634 }
1635
1636 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1637 * diversity.
1638 *
1639 * !!!
1640 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1641 * !!!
1642 */
1643 static int
1644 atw_rf3000_init(struct atw_softc *sc)
1645 {
1646 int rc = 0;
1647
1648 atw_bbp_io_enable(sc, 1);
1649
1650 /* CCA is acquisition sensitive */
1651 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1652 __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1653
1654 if (rc != 0)
1655 goto out;
1656
1657 /* enable diversity */
1658 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1659
1660 if (rc != 0)
1661 goto out;
1662
1663 /* sensible setting from a binary-only driver */
1664 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1665 __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1666
1667 if (rc != 0)
1668 goto out;
1669
1670 /* magic from a binary-only driver */
1671 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1672 __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1673
1674 if (rc != 0)
1675 goto out;
1676
1677 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1678
1679 if (rc != 0)
1680 goto out;
1681
1682 /* XXX Reference driver remarks that Abocom sets this to 50.
1683 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1684 * in the "reserved" area of register RF3000_OPTIONS1.
1685 */
1686 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1687
1688 if (rc != 0)
1689 goto out;
1690
1691 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1692
1693 if (rc != 0)
1694 goto out;
1695
1696 out:
1697 atw_bbp_io_enable(sc, 0);
1698 return rc;
1699 }
1700
1701 #ifdef ATW_BBPDEBUG
1702 static void
1703 atw_rf3000_print(struct atw_softc *sc)
1704 {
1705 struct ifnet *ifp = &sc->sc_if;
1706 u_int addr, val;
1707
1708 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1709 return;
1710
1711 for (addr = 0x01; addr <= 0x15; addr++) {
1712 printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1713 if (atw_rf3000_read(sc, addr, &val) != 0) {
1714 printf("<unknown> (quitting print-out)\n");
1715 break;
1716 }
1717 printf("%08x\n", val);
1718 }
1719 }
1720 #endif /* ATW_BBPDEBUG */
1721
1722 /* Set the power settings on the BBP for channel `chan'. */
1723 static int
1724 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1725 {
1726 int rc = 0;
1727 u_int32_t reg;
1728 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1729
1730 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1731 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1732 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1733
1734 /* odd channels: LSB, even channels: MSB */
1735 if (chan % 2 == 1) {
1736 txpower &= 0xFF;
1737 lpf_cutoff &= 0xFF;
1738 lna_gs_thresh &= 0xFF;
1739 } else {
1740 txpower >>= 8;
1741 lpf_cutoff >>= 8;
1742 lna_gs_thresh >>= 8;
1743 }
1744
1745 #ifdef ATW_BBPDEBUG
1746 atw_rf3000_print(sc);
1747 #endif /* ATW_BBPDEBUG */
1748
1749 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1750 "lna_gs_thresh %02x\n",
1751 device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1752
1753 atw_bbp_io_enable(sc, 1);
1754
1755 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1756 __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1757 goto out;
1758
1759 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1760 goto out;
1761
1762 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1763 goto out;
1764
1765 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1766
1767 if (rc != 0)
1768 goto out;
1769
1770 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1771
1772 if (rc != 0)
1773 goto out;
1774
1775 #ifdef ATW_BBPDEBUG
1776 atw_rf3000_print(sc);
1777 #endif /* ATW_BBPDEBUG */
1778
1779 out:
1780 atw_bbp_io_enable(sc, 0);
1781
1782 /* set beacon, rts, atim transmit power */
1783 reg = ATW_READ(sc, ATW_PLCPHD);
1784 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1785 reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1786 ATW_PLCPHD_SERVICE_MASK);
1787 ATW_WRITE(sc, ATW_PLCPHD, reg);
1788 DELAY(atw_plcphd_delay);
1789
1790 return rc;
1791 }
1792
1793 /* Write a register on the RF3000 baseband processor using the
1794 * registers provided by the ADM8211 for this purpose.
1795 *
1796 * Return 0 on success.
1797 */
1798 static int
1799 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1800 {
1801 u_int32_t reg;
1802 int i;
1803
1804 reg = sc->sc_bbpctl_wr |
1805 __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1806 __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1807
1808 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1809 ATW_WRITE(sc, ATW_BBPCTL, reg);
1810 DELAY(2 * atw_pseudo_milli);
1811 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1812 break;
1813 }
1814
1815 if (i < 0) {
1816 printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1817 return ETIMEDOUT;
1818 }
1819 return 0;
1820 }
1821
1822 /* Read a register on the RF3000 baseband processor using the registers
1823 * the ADM8211 provides for this purpose.
1824 *
1825 * The 7-bit register address is addr. Record the 8-bit data in the register
1826 * in *val.
1827 *
1828 * Return 0 on success.
1829 *
1830 * XXX This does not seem to work. The ADM8211 must require more or
1831 * different magic to read the chip than to write it. Possibly some
1832 * of the magic I have derived from a binary-only driver concerns
1833 * the "chip address" (see the RF3000 manual).
1834 */
1835 #ifdef ATW_BBPDEBUG
1836 static int
1837 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1838 {
1839 u_int32_t reg;
1840 int i;
1841
1842 for (i = 1000; --i >= 0; ) {
1843 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1844 break;
1845 DELAY(100);
1846 }
1847
1848 if (i < 0) {
1849 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1850 device_xname(sc->sc_dev));
1851 return ETIMEDOUT;
1852 }
1853
1854 reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1855
1856 ATW_WRITE(sc, ATW_BBPCTL, reg);
1857
1858 for (i = 1000; --i >= 0; ) {
1859 DELAY(100);
1860 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1861 break;
1862 }
1863
1864 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1865
1866 if (i < 0) {
1867 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1868 device_xname(sc->sc_dev), reg);
1869 return ETIMEDOUT;
1870 }
1871 if (val != NULL)
1872 *val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1873 return 0;
1874 }
1875 #endif /* ATW_BBPDEBUG */
1876
1877 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1878 * provided by the ADM8211 for that purpose.
1879 *
1880 * val is 18 bits of data, and val is the 4-bit address of the register.
1881 *
1882 * Return 0 on success.
1883 */
1884 static void
1885 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1886 {
1887 uint32_t bits, mask, reg;
1888 const int nbits = 22;
1889
1890 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1891 KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1892
1893 bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1894 __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1895
1896 reg = ATW_SYNRF_SELSYN;
1897 /* reference driver: reset Si4126 serial bus to initial
1898 * conditions?
1899 */
1900 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1901 ATW_WRITE(sc, ATW_SYNRF, reg);
1902
1903 for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1904 if ((bits & mask) != 0)
1905 reg |= ATW_SYNRF_SYNDATA;
1906 else
1907 reg &= ~ATW_SYNRF_SYNDATA;
1908 ATW_WRITE(sc, ATW_SYNRF, reg);
1909 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1910 ATW_WRITE(sc, ATW_SYNRF, reg);
1911 }
1912 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1913 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1914 }
1915
1916 /* Read 18-bit data from the 4-bit address addr in Si4126
1917 * RF synthesizer and write the data to *val. Return 0 on success.
1918 *
1919 * XXX This does not seem to work. The ADM8211 must require more or
1920 * different magic to read the chip than to write it.
1921 */
1922 #ifdef ATW_SYNDEBUG
1923 static int
1924 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1925 {
1926 u_int32_t reg;
1927 int i;
1928
1929 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1930
1931 for (i = 1000; --i >= 0; ) {
1932 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1933 break;
1934 DELAY(100);
1935 }
1936
1937 if (i < 0) {
1938 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1939 device_xname(sc->sc_dev));
1940 return ETIMEDOUT;
1941 }
1942
1943 reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1944
1945 ATW_WRITE(sc, ATW_SYNCTL, reg);
1946
1947 for (i = 1000; --i >= 0; ) {
1948 DELAY(100);
1949 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1950 break;
1951 }
1952
1953 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1954
1955 if (i < 0) {
1956 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1957 device_xname(sc->sc_dev), reg);
1958 return ETIMEDOUT;
1959 }
1960 if (val != NULL)
1961 *val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1962 ATW_SYNCTL_DATA_MASK);
1963 return 0;
1964 }
1965 #endif /* ATW_SYNDEBUG */
1966
1967 /* XXX is the endianness correct? test. */
1968 #define atw_calchash(addr) \
1969 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1970
1971 /*
1972 * atw_filter_setup:
1973 *
1974 * Set the ADM8211's receive filter.
1975 */
1976 static void
1977 atw_filter_setup(struct atw_softc *sc)
1978 {
1979 struct ieee80211com *ic = &sc->sc_ic;
1980 struct ethercom *ec = &sc->sc_ec;
1981 struct ifnet *ifp = &sc->sc_if;
1982 int hash;
1983 u_int32_t hashes[2];
1984 struct ether_multi *enm;
1985 struct ether_multistep step;
1986
1987 /* According to comments in tlp_al981_filter_setup
1988 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1989 * multicast filter to be set while it is running. Hopefully
1990 * the ADM8211 is not the same!
1991 */
1992 if ((ifp->if_flags & IFF_RUNNING) != 0)
1993 atw_idle(sc, ATW_NAR_SR);
1994
1995 sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
1996 ifp->if_flags &= ~IFF_ALLMULTI;
1997
1998 /* XXX in scan mode, do not filter packets. Maybe this is
1999 * unnecessary.
2000 */
2001 if (ic->ic_state == IEEE80211_S_SCAN ||
2002 (ifp->if_flags & IFF_PROMISC) != 0) {
2003 sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2004 goto allmulti;
2005 }
2006
2007 hashes[0] = hashes[1] = 0x0;
2008
2009 /*
2010 * Program the 64-bit multicast hash filter.
2011 */
2012 ETHER_FIRST_MULTI(step, ec, enm);
2013 while (enm != NULL) {
2014 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2015 ETHER_ADDR_LEN) != 0)
2016 goto allmulti;
2017
2018 hash = atw_calchash(enm->enm_addrlo);
2019 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2020 ETHER_NEXT_MULTI(step, enm);
2021 sc->sc_opmode |= ATW_NAR_MM;
2022 }
2023 ifp->if_flags &= ~IFF_ALLMULTI;
2024 goto setit;
2025
2026 allmulti:
2027 sc->sc_opmode |= ATW_NAR_MM;
2028 ifp->if_flags |= IFF_ALLMULTI;
2029 hashes[0] = hashes[1] = 0xffffffff;
2030
2031 setit:
2032 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2033 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2034 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2035 DELAY(atw_nar_delay);
2036 ATW_WRITE(sc, ATW_RDR, 0x1);
2037
2038 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2039 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2040 }
2041
2042 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2043 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2044 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2045 * no beacon with the preferred BSSID and SSID in the number of
2046 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2047 */
2048 static void
2049 atw_write_bssid(struct atw_softc *sc)
2050 {
2051 struct ieee80211com *ic = &sc->sc_ic;
2052 u_int8_t *bssid;
2053
2054 bssid = ic->ic_bss->ni_bssid;
2055
2056 ATW_WRITE(sc, ATW_BSSID0,
2057 __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2058 __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2059 __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2060 __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2061
2062 ATW_WRITE(sc, ATW_ABDA1,
2063 (ATW_READ(sc, ATW_ABDA1) &
2064 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2065 __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2066 __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2067
2068 DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2069 ether_sprintf(sc->sc_bssid)));
2070 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2071
2072 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2073 }
2074
2075 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2076 * 16-bit word.
2077 */
2078 static void
2079 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2080 {
2081 u_int i;
2082 u_int8_t *ptr;
2083
2084 memcpy(&sc->sc_sram[ofs], buf, buflen);
2085
2086 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2087
2088 KASSERT(buflen + ofs <= sc->sc_sramlen);
2089
2090 ptr = &sc->sc_sram[ofs];
2091
2092 for (i = 0; i < buflen; i += 2) {
2093 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2094 __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2095 DELAY(atw_writewep_delay);
2096
2097 ATW_WRITE(sc, ATW_WESK,
2098 __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2099 DELAY(atw_writewep_delay);
2100 }
2101 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2102
2103 if (sc->sc_if.if_flags & IFF_DEBUG) {
2104 int n_octets = 0;
2105 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2106 device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2107 for (i = 0; i < buflen; i++) {
2108 printf(" %02x", ptr[i]);
2109 if (++n_octets % 24 == 0)
2110 printf("\n");
2111 }
2112 if (n_octets % 24 != 0)
2113 printf("\n");
2114 }
2115 }
2116
2117 static int
2118 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2119 {
2120 struct atw_softc *sc = ic->ic_ifp->if_softc;
2121 u_int keyix = k->wk_keyix;
2122
2123 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2124
2125 if (keyix >= IEEE80211_WEP_NKID)
2126 return 0;
2127 if (k->wk_keylen != 0)
2128 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2129
2130 return 1;
2131 }
2132
2133 static int
2134 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2135 const u_int8_t mac[IEEE80211_ADDR_LEN])
2136 {
2137 struct atw_softc *sc = ic->ic_ifp->if_softc;
2138
2139 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2140
2141 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2142 return 0;
2143
2144 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2145
2146 return 1;
2147 }
2148
2149 static void
2150 atw_key_update_begin(struct ieee80211com *ic)
2151 {
2152 #ifdef ATW_DEBUG
2153 struct ifnet *ifp = ic->ic_ifp;
2154 struct atw_softc *sc = ifp->if_softc;
2155 #endif
2156
2157 DPRINTF(sc, ("%s:\n", __func__));
2158 }
2159
2160 static void
2161 atw_key_update_end(struct ieee80211com *ic)
2162 {
2163 struct ifnet *ifp = ic->ic_ifp;
2164 struct atw_softc *sc = ifp->if_softc;
2165
2166 DPRINTF(sc, ("%s:\n", __func__));
2167
2168 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2169 return;
2170 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2171 return;
2172 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2173 atw_write_wep(sc);
2174 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2175 DELAY(atw_nar_delay);
2176 ATW_WRITE(sc, ATW_RDR, 0x1);
2177 }
2178
2179 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2180 static void
2181 atw_write_wep(struct atw_softc *sc)
2182 {
2183 #if 0
2184 struct ieee80211com *ic = &sc->sc_ic;
2185 u_int32_t reg;
2186 int i;
2187 #endif
2188 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2189 u_int8_t buf[IEEE80211_WEP_NKID]
2190 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2191
2192 sc->sc_wepctl = 0;
2193 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2194
2195 memset(&buf[0][0], 0, sizeof(buf));
2196
2197 #if 0
2198 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2199 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2200 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2201 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2202 buf[i][1] = ATW_WEP_ENABLED;
2203 } else {
2204 buf[i][1] = 0;
2205 continue;
2206 }
2207 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2208 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2209 ic->ic_nw_keys[i].wk_keylen - 1);
2210 }
2211
2212 reg = ATW_READ(sc, ATW_MACTEST);
2213 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2214 reg &= ~ATW_MACTEST_KEYID_MASK;
2215 reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2216 ATW_WRITE(sc, ATW_MACTEST, reg);
2217
2218 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2219 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2220
2221 switch (sc->sc_rev) {
2222 case ATW_REVISION_AB:
2223 case ATW_REVISION_AF:
2224 /* Bypass WEP on Rx. */
2225 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2226 break;
2227 default:
2228 break;
2229 }
2230 #endif
2231
2232 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2233 sizeof(buf));
2234
2235 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2236 }
2237
2238 static void
2239 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2240 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2241 {
2242 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2243
2244 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2245 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2246 return;
2247
2248 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2249
2250 switch (subtype) {
2251 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2252 case IEEE80211_FC0_SUBTYPE_BEACON:
2253 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2254 ic->ic_state == IEEE80211_S_RUN) {
2255 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2256 (void)ieee80211_ibss_merge(ni);
2257 }
2258 break;
2259 default:
2260 break;
2261 }
2262 return;
2263 }
2264
2265 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2266 * In ad hoc mode, the SSID is written to the beacons sent by the
2267 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2268 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2269 * indications.
2270 */
2271 static void
2272 atw_write_ssid(struct atw_softc *sc)
2273 {
2274 struct ieee80211com *ic = &sc->sc_ic;
2275 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2276 * it only expects the element length, not its ID.
2277 */
2278 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2279
2280 memset(buf, 0, sizeof(buf));
2281 buf[0] = ic->ic_bss->ni_esslen;
2282 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2283
2284 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2285 roundup(1 + ic->ic_bss->ni_esslen, 2));
2286 }
2287
2288 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2289 * In ad hoc mode, the supported rates are written to beacons sent by the
2290 * ADM8211.
2291 */
2292 static void
2293 atw_write_sup_rates(struct atw_softc *sc)
2294 {
2295 struct ieee80211com *ic = &sc->sc_ic;
2296 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2297 * supported rates
2298 */
2299 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2300
2301 memset(buf, 0, sizeof(buf));
2302
2303 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2304
2305 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2306 ic->ic_bss->ni_rates.rs_nrates);
2307
2308 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2309 }
2310
2311 /* Start/stop sending beacons. */
2312 void
2313 atw_start_beacon(struct atw_softc *sc, int start)
2314 {
2315 struct ieee80211com *ic = &sc->sc_ic;
2316 uint16_t chan;
2317 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2318 size_t len;
2319
2320 if (!device_is_active(sc->sc_dev))
2321 return;
2322
2323 /* start beacons */
2324 len = sizeof(struct ieee80211_frame) +
2325 8 /* timestamp */ + 2 /* beacon interval */ +
2326 2 /* capability info */ +
2327 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2328 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2329 3 /* DS parameters */ +
2330 IEEE80211_CRC_LEN;
2331
2332 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2333 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2334 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2335
2336 ATW_WRITE(sc, ATW_BCNT, bcnt);
2337 ATW_WRITE(sc, ATW_CAP1, cap1);
2338
2339 if (!start)
2340 return;
2341
2342 /* TBD use ni_capinfo */
2343
2344 capinfo = 0;
2345 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2346 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2347 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2348 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2349
2350 switch (ic->ic_opmode) {
2351 case IEEE80211_M_IBSS:
2352 len += 4; /* IBSS parameters */
2353 capinfo |= IEEE80211_CAPINFO_IBSS;
2354 break;
2355 case IEEE80211_M_HOSTAP:
2356 /* XXX 6-byte minimum TIM */
2357 len += atw_beacon_len_adjust;
2358 capinfo |= IEEE80211_CAPINFO_ESS;
2359 break;
2360 default:
2361 return;
2362 }
2363
2364 /* set listen interval
2365 * XXX do software units agree w/ hardware?
2366 */
2367 bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2368 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2369
2370 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2371
2372 bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2373 cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2374 cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2375
2376 ATW_WRITE(sc, ATW_BCNT, bcnt);
2377 ATW_WRITE(sc, ATW_BPLI, bpli);
2378 ATW_WRITE(sc, ATW_CAP0, cap0);
2379 ATW_WRITE(sc, ATW_CAP1, cap1);
2380
2381 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2382 device_xname(sc->sc_dev), bcnt));
2383
2384 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2385 device_xname(sc->sc_dev), cap1));
2386 }
2387
2388 /* Return the 32 lsb of the last TSFT divisible by ival. */
2389 static inline uint32_t
2390 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2391 {
2392 /* Following the reference driver's lead, I compute
2393 *
2394 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2395 *
2396 * without using 64-bit arithmetic, using the following
2397 * relationship:
2398 *
2399 * (0x100000000 * H + L) % m
2400 * = ((0x100000000 % m) * H + L) % m
2401 * = (((0xffffffff + 1) % m) * H + L) % m
2402 * = ((0xffffffff % m + 1 % m) * H + L) % m
2403 * = ((0xffffffff % m + 1) * H + L) % m
2404 */
2405 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2406 }
2407
2408 static uint64_t
2409 atw_get_tsft(struct atw_softc *sc)
2410 {
2411 int i;
2412 uint32_t tsfth, tsftl;
2413 for (i = 0; i < 2; i++) {
2414 tsfth = ATW_READ(sc, ATW_TSFTH);
2415 tsftl = ATW_READ(sc, ATW_TSFTL);
2416 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2417 break;
2418 }
2419 return ((uint64_t)tsfth << 32) | tsftl;
2420 }
2421
2422 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2423 * the ieee80211com.
2424 *
2425 * Predict the next target beacon transmission time (TBTT) and
2426 * write it to the ADM8211.
2427 */
2428 static void
2429 atw_predict_beacon(struct atw_softc *sc)
2430 {
2431 #define TBTTOFS 20 /* TU */
2432
2433 struct ieee80211com *ic = &sc->sc_ic;
2434 uint64_t tsft;
2435 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2436 union {
2437 uint64_t word;
2438 uint8_t tstamp[8];
2439 } u;
2440
2441 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2442 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2443 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2444 tsft = atw_get_tsft(sc);
2445 u.word = htole64(tsft);
2446 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2447 sizeof(ic->ic_bss->ni_tstamp));
2448 } else
2449 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2450
2451 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2452
2453 tsftl = tsft & 0xFFFFFFFF;
2454 tsfth = tsft >> 32;
2455
2456 /* We sent/received the last beacon `past' microseconds
2457 * after the interval divided the TSF timer.
2458 */
2459 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2460
2461 /* Skip ten beacons so that the TBTT cannot pass before
2462 * we've programmed it. Ten is an arbitrary number.
2463 */
2464 tbtt = past_even + ival * 10;
2465
2466 ATW_WRITE(sc, ATW_TOFS1,
2467 __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2468 __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2469 __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2470 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2471 #undef TBTTOFS
2472 }
2473
2474 static void
2475 atw_next_scan(void *arg)
2476 {
2477 struct atw_softc *sc = arg;
2478 struct ieee80211com *ic = &sc->sc_ic;
2479 int s;
2480
2481 /* don't call atw_start w/o network interrupts blocked */
2482 s = splnet();
2483 if (ic->ic_state == IEEE80211_S_SCAN)
2484 ieee80211_next_scan(ic);
2485 splx(s);
2486 }
2487
2488 /* Synchronize the hardware state with the software state. */
2489 static int
2490 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2491 {
2492 struct ifnet *ifp = ic->ic_ifp;
2493 struct atw_softc *sc = ifp->if_softc;
2494 int error = 0;
2495
2496 callout_stop(&sc->sc_scan_ch);
2497
2498 switch (nstate) {
2499 case IEEE80211_S_AUTH:
2500 case IEEE80211_S_ASSOC:
2501 atw_write_bssid(sc);
2502 error = atw_tune(sc);
2503 break;
2504 case IEEE80211_S_INIT:
2505 callout_stop(&sc->sc_scan_ch);
2506 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2507 atw_start_beacon(sc, 0);
2508 break;
2509 case IEEE80211_S_SCAN:
2510 error = atw_tune(sc);
2511 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2512 atw_next_scan, sc);
2513 break;
2514 case IEEE80211_S_RUN:
2515 error = atw_tune(sc);
2516 atw_write_bssid(sc);
2517 atw_write_ssid(sc);
2518 atw_write_sup_rates(sc);
2519
2520 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2521 ic->ic_opmode == IEEE80211_M_MONITOR)
2522 break;
2523
2524 /* set listen interval
2525 * XXX do software units agree w/ hardware?
2526 */
2527 ATW_WRITE(sc, ATW_BPLI,
2528 __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2529 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2530 ATW_BPLI_LI_MASK));
2531
2532 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2533 ATW_READ(sc, ATW_BPLI)));
2534
2535 atw_predict_beacon(sc);
2536
2537 switch (ic->ic_opmode) {
2538 case IEEE80211_M_AHDEMO:
2539 case IEEE80211_M_HOSTAP:
2540 case IEEE80211_M_IBSS:
2541 atw_start_beacon(sc, 1);
2542 break;
2543 case IEEE80211_M_MONITOR:
2544 case IEEE80211_M_STA:
2545 break;
2546 }
2547
2548 break;
2549 }
2550 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2551 }
2552
2553 /*
2554 * atw_add_rxbuf:
2555 *
2556 * Add a receive buffer to the indicated descriptor.
2557 */
2558 int
2559 atw_add_rxbuf(struct atw_softc *sc, int idx)
2560 {
2561 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2562 struct mbuf *m;
2563 int error;
2564
2565 MGETHDR(m, M_DONTWAIT, MT_DATA);
2566 if (m == NULL)
2567 return (ENOBUFS);
2568
2569 MCLGET(m, M_DONTWAIT);
2570 if ((m->m_flags & M_EXT) == 0) {
2571 m_freem(m);
2572 return (ENOBUFS);
2573 }
2574
2575 if (rxs->rxs_mbuf != NULL)
2576 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2577
2578 rxs->rxs_mbuf = m;
2579
2580 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2581 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2582 BUS_DMA_READ|BUS_DMA_NOWAIT);
2583 if (error) {
2584 aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2585 idx, error);
2586 panic("atw_add_rxbuf"); /* XXX */
2587 }
2588
2589 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2590 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2591
2592 atw_init_rxdesc(sc, idx);
2593
2594 return (0);
2595 }
2596
2597 /*
2598 * Release any queued transmit buffers.
2599 */
2600 void
2601 atw_txdrain(struct atw_softc *sc)
2602 {
2603 struct atw_txsoft *txs;
2604
2605 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2606 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2607 if (txs->txs_mbuf != NULL) {
2608 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2609 m_freem(txs->txs_mbuf);
2610 txs->txs_mbuf = NULL;
2611 }
2612 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2613 sc->sc_txfree += txs->txs_ndescs;
2614 }
2615
2616 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2617 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2618 sc->sc_txfree != ATW_NTXDESC));
2619 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2620 sc->sc_tx_timer = 0;
2621 }
2622
2623 /*
2624 * atw_stop: [ ifnet interface function ]
2625 *
2626 * Stop transmission on the interface.
2627 */
2628 void
2629 atw_stop(struct ifnet *ifp, int disable)
2630 {
2631 struct atw_softc *sc = ifp->if_softc;
2632 struct ieee80211com *ic = &sc->sc_ic;
2633
2634 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2635
2636 if (device_is_active(sc->sc_dev)) {
2637 /* Disable interrupts. */
2638 ATW_WRITE(sc, ATW_IER, 0);
2639
2640 /* Stop the transmit and receive processes. */
2641 ATW_WRITE(sc, ATW_NAR, 0);
2642 DELAY(atw_nar_delay);
2643 ATW_WRITE(sc, ATW_TDBD, 0);
2644 ATW_WRITE(sc, ATW_TDBP, 0);
2645 ATW_WRITE(sc, ATW_RDB, 0);
2646 }
2647
2648 sc->sc_opmode = 0;
2649
2650 atw_txdrain(sc);
2651
2652 /*
2653 * Mark the interface down and cancel the watchdog timer.
2654 */
2655 ifp->if_flags &= ~IFF_RUNNING;
2656 ifp->if_timer = 0;
2657
2658 if (disable)
2659 pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2660 }
2661
2662 /*
2663 * atw_rxdrain:
2664 *
2665 * Drain the receive queue.
2666 */
2667 void
2668 atw_rxdrain(struct atw_softc *sc)
2669 {
2670 struct atw_rxsoft *rxs;
2671 int i;
2672
2673 for (i = 0; i < ATW_NRXDESC; i++) {
2674 rxs = &sc->sc_rxsoft[i];
2675 if (rxs->rxs_mbuf == NULL)
2676 continue;
2677 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2678 m_freem(rxs->rxs_mbuf);
2679 rxs->rxs_mbuf = NULL;
2680 }
2681 }
2682
2683 /*
2684 * atw_detach:
2685 *
2686 * Detach an ADM8211 interface.
2687 */
2688 int
2689 atw_detach(struct atw_softc *sc)
2690 {
2691 struct ifnet *ifp = &sc->sc_if;
2692 struct atw_rxsoft *rxs;
2693 struct atw_txsoft *txs;
2694 int i;
2695
2696 /*
2697 * Succeed now if there isn't any work to do.
2698 */
2699 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2700 return (0);
2701
2702 pmf_device_deregister(sc->sc_dev);
2703
2704 callout_stop(&sc->sc_scan_ch);
2705
2706 ieee80211_ifdetach(&sc->sc_ic);
2707 if_detach(ifp);
2708
2709 for (i = 0; i < ATW_NRXDESC; i++) {
2710 rxs = &sc->sc_rxsoft[i];
2711 if (rxs->rxs_mbuf != NULL) {
2712 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2713 m_freem(rxs->rxs_mbuf);
2714 rxs->rxs_mbuf = NULL;
2715 }
2716 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2717 }
2718 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2719 txs = &sc->sc_txsoft[i];
2720 if (txs->txs_mbuf != NULL) {
2721 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2722 m_freem(txs->txs_mbuf);
2723 txs->txs_mbuf = NULL;
2724 }
2725 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2726 }
2727 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2728 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2729 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2730 sizeof(struct atw_control_data));
2731 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2732
2733 if (sc->sc_srom)
2734 free(sc->sc_srom, M_DEVBUF);
2735
2736 atw_evcnt_detach(sc);
2737
2738 if (sc->sc_soft_ih != NULL) {
2739 softint_disestablish(sc->sc_soft_ih);
2740 sc->sc_soft_ih = NULL;
2741 }
2742
2743 return (0);
2744 }
2745
2746 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2747 bool
2748 atw_shutdown(device_t self, int flags)
2749 {
2750 struct atw_softc *sc = device_private(self);
2751
2752 atw_stop(&sc->sc_if, 1);
2753 return true;
2754 }
2755
2756 #if 0
2757 static void
2758 atw_workaround1(struct atw_softc *sc)
2759 {
2760 uint32_t test1;
2761
2762 test1 = ATW_READ(sc, ATW_TEST1);
2763
2764 sc->sc_misc_ev.ev_count++;
2765
2766 if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2767 sc->sc_rxpkt1in_ev.ev_count++;
2768 return;
2769 }
2770 if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2771 __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2772 sc->sc_rxamatch_ev.ev_count++;
2773 return;
2774 }
2775 sc->sc_workaround1_ev.ev_count++;
2776 (void)atw_init(&sc->sc_if);
2777 }
2778 #endif
2779
2780 int
2781 atw_intr(void *arg)
2782 {
2783 struct atw_softc *sc = arg;
2784 struct ifnet *ifp = &sc->sc_if;
2785 uint32_t status;
2786
2787 #ifdef DEBUG
2788 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2789 panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2790 #endif
2791
2792 /*
2793 * If the interface isn't running, the interrupt couldn't
2794 * possibly have come from us.
2795 */
2796 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2797 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2798 return (0);
2799
2800 status = ATW_READ(sc, ATW_STSR);
2801 if (status == 0)
2802 return 0;
2803
2804 if ((status & sc->sc_inten) == 0) {
2805 ATW_WRITE(sc, ATW_STSR, status);
2806 return 0;
2807 }
2808
2809 /* Disable interrupts */
2810 ATW_WRITE(sc, ATW_IER, 0);
2811
2812 softint_schedule(sc->sc_soft_ih);
2813 return 1;
2814 }
2815
2816 void
2817 atw_softintr(void *arg)
2818 {
2819 struct atw_softc *sc = arg;
2820 struct ifnet *ifp = &sc->sc_if;
2821 uint32_t status, rxstatus, txstatus, linkstatus;
2822 int txthresh, s;
2823
2824 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2825 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2826 return;
2827
2828 for (;;) {
2829 status = ATW_READ(sc, ATW_STSR);
2830
2831 if (status)
2832 ATW_WRITE(sc, ATW_STSR, status);
2833
2834 #ifdef ATW_DEBUG
2835 #define PRINTINTR(flag) do { \
2836 if ((status & flag) != 0) { \
2837 printf("%s" #flag, delim); \
2838 delim = ","; \
2839 } \
2840 } while (0)
2841
2842 if (atw_debug > 1 && status) {
2843 const char *delim = "<";
2844
2845 printf("%s: reg[STSR] = %x",
2846 device_xname(sc->sc_dev), status);
2847
2848 PRINTINTR(ATW_INTR_FBE);
2849 PRINTINTR(ATW_INTR_LINKOFF);
2850 PRINTINTR(ATW_INTR_LINKON);
2851 PRINTINTR(ATW_INTR_RCI);
2852 PRINTINTR(ATW_INTR_RDU);
2853 PRINTINTR(ATW_INTR_REIS);
2854 PRINTINTR(ATW_INTR_RPS);
2855 PRINTINTR(ATW_INTR_TCI);
2856 PRINTINTR(ATW_INTR_TDU);
2857 PRINTINTR(ATW_INTR_TLT);
2858 PRINTINTR(ATW_INTR_TPS);
2859 PRINTINTR(ATW_INTR_TRT);
2860 PRINTINTR(ATW_INTR_TUF);
2861 PRINTINTR(ATW_INTR_BCNTC);
2862 PRINTINTR(ATW_INTR_ATIME);
2863 PRINTINTR(ATW_INTR_TBTT);
2864 PRINTINTR(ATW_INTR_TSCZ);
2865 PRINTINTR(ATW_INTR_TSFTF);
2866 printf(">\n");
2867 }
2868 #undef PRINTINTR
2869 #endif /* ATW_DEBUG */
2870
2871 if ((status & sc->sc_inten) == 0)
2872 break;
2873
2874 rxstatus = status & sc->sc_rxint_mask;
2875 txstatus = status & sc->sc_txint_mask;
2876 linkstatus = status & sc->sc_linkint_mask;
2877
2878 if (linkstatus) {
2879 atw_linkintr(sc, linkstatus);
2880 }
2881
2882 if (rxstatus) {
2883 /* Grab any new packets. */
2884 atw_rxintr(sc);
2885
2886 if (rxstatus & ATW_INTR_RDU) {
2887 printf("%s: receive ring overrun\n",
2888 device_xname(sc->sc_dev));
2889 /* Get the receive process going again. */
2890 ATW_WRITE(sc, ATW_RDR, 0x1);
2891 }
2892 }
2893
2894 if (txstatus) {
2895 /* Sweep up transmit descriptors. */
2896 atw_txintr(sc, txstatus);
2897
2898 if (txstatus & ATW_INTR_TLT) {
2899 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2900 device_xname(sc->sc_dev)));
2901 (void)atw_init(&sc->sc_if);
2902 }
2903
2904 if (txstatus & ATW_INTR_TRT) {
2905 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2906 device_xname(sc->sc_dev)));
2907 }
2908
2909 /* If Tx under-run, increase our transmit threshold
2910 * if another is available.
2911 */
2912 txthresh = sc->sc_txthresh + 1;
2913 if ((txstatus & ATW_INTR_TUF) &&
2914 sc->sc_txth[txthresh].txth_name != NULL) {
2915 /* Idle the transmit process. */
2916 atw_idle(sc, ATW_NAR_ST);
2917
2918 sc->sc_txthresh = txthresh;
2919 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2920 sc->sc_opmode |=
2921 sc->sc_txth[txthresh].txth_opmode;
2922 printf("%s: transmit underrun; new "
2923 "threshold: %s\n", device_xname(sc->sc_dev),
2924 sc->sc_txth[txthresh].txth_name);
2925
2926 /* Set the new threshold and restart
2927 * the transmit process.
2928 */
2929 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2930 DELAY(atw_nar_delay);
2931 ATW_WRITE(sc, ATW_TDR, 0x1);
2932 /* XXX Log every Nth underrun from
2933 * XXX now on?
2934 */
2935 }
2936 }
2937
2938 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2939 if (status & ATW_INTR_TPS)
2940 printf("%s: transmit process stopped\n",
2941 device_xname(sc->sc_dev));
2942 if (status & ATW_INTR_RPS)
2943 printf("%s: receive process stopped\n",
2944 device_xname(sc->sc_dev));
2945 s = splnet();
2946 (void)atw_init(ifp);
2947 splx(s);
2948 break;
2949 }
2950
2951 if (status & ATW_INTR_FBE) {
2952 aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2953 s = splnet();
2954 (void)atw_init(ifp);
2955 splx(s);
2956 break;
2957 }
2958
2959 /*
2960 * Not handled:
2961 *
2962 * Transmit buffer unavailable -- normal
2963 * condition, nothing to do, really.
2964 *
2965 * Early receive interrupt -- not available on
2966 * all chips, we just use RI. We also only
2967 * use single-segment receive DMA, so this
2968 * is mostly useless.
2969 *
2970 * TBD others
2971 */
2972 }
2973
2974 /* Try to get more packets going. */
2975 s = splnet();
2976 atw_start(ifp);
2977 splx(s);
2978
2979 /* Enable interrupts */
2980 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
2981 }
2982
2983 /*
2984 * atw_idle:
2985 *
2986 * Cause the transmit and/or receive processes to go idle.
2987 *
2988 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2989 * process in STSR if I clear SR or ST after the process has already
2990 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2991 * do not seem to be too reliable. Perhaps I have the sense of the
2992 * Rx bits switched with the Tx bits?
2993 */
2994 void
2995 atw_idle(struct atw_softc *sc, u_int32_t bits)
2996 {
2997 u_int32_t ackmask = 0, opmode, stsr, test0;
2998 int i, s;
2999
3000 s = splnet();
3001
3002 opmode = sc->sc_opmode & ~bits;
3003
3004 if (bits & ATW_NAR_SR)
3005 ackmask |= ATW_INTR_RPS;
3006
3007 if (bits & ATW_NAR_ST) {
3008 ackmask |= ATW_INTR_TPS;
3009 /* set ATW_NAR_HF to flush TX FIFO. */
3010 opmode |= ATW_NAR_HF;
3011 }
3012
3013 ATW_WRITE(sc, ATW_NAR, opmode);
3014 DELAY(atw_nar_delay);
3015
3016 for (i = 0; i < 1000; i++) {
3017 stsr = ATW_READ(sc, ATW_STSR);
3018 if ((stsr & ackmask) == ackmask)
3019 break;
3020 DELAY(10);
3021 }
3022
3023 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3024
3025 if ((stsr & ackmask) == ackmask)
3026 goto out;
3027
3028 test0 = ATW_READ(sc, ATW_TEST0);
3029
3030 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3031 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3032 printf("%s: transmit process not idle [%s]\n",
3033 device_xname(sc->sc_dev),
3034 atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3035 printf("%s: bits %08x test0 %08x stsr %08x\n",
3036 device_xname(sc->sc_dev), bits, test0, stsr);
3037 }
3038
3039 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3040 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3041 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3042 device_xname(sc->sc_dev),
3043 atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3044 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3045 device_xname(sc->sc_dev), bits, test0, stsr));
3046 }
3047 out:
3048 if ((bits & ATW_NAR_ST) != 0)
3049 atw_txdrain(sc);
3050 splx(s);
3051 return;
3052 }
3053
3054 /*
3055 * atw_linkintr:
3056 *
3057 * Helper; handle link-status interrupts.
3058 */
3059 void
3060 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3061 {
3062 struct ieee80211com *ic = &sc->sc_ic;
3063
3064 if (ic->ic_state != IEEE80211_S_RUN)
3065 return;
3066
3067 if (linkstatus & ATW_INTR_LINKON) {
3068 DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3069 sc->sc_rescan_timer = 0;
3070 } else if (linkstatus & ATW_INTR_LINKOFF) {
3071 DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3072 if (ic->ic_opmode != IEEE80211_M_STA)
3073 return;
3074 sc->sc_rescan_timer = 3;
3075 sc->sc_if.if_timer = 1;
3076 }
3077 }
3078
3079 #if 0
3080 static inline int
3081 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3082 {
3083 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3084 return 0;
3085 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3086 return 0;
3087 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3088 }
3089 #endif
3090
3091 /*
3092 * atw_rxintr:
3093 *
3094 * Helper; handle receive interrupts.
3095 */
3096 void
3097 atw_rxintr(struct atw_softc *sc)
3098 {
3099 static int rate_tbl[] = {2, 4, 11, 22, 44};
3100 struct ieee80211com *ic = &sc->sc_ic;
3101 struct ieee80211_node *ni;
3102 struct ieee80211_frame_min *wh;
3103 struct ifnet *ifp = &sc->sc_if;
3104 struct atw_rxsoft *rxs;
3105 struct mbuf *m;
3106 u_int32_t rxstat;
3107 int i, s, len, rate, rate0;
3108 u_int32_t rssi, ctlrssi;
3109
3110 for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3111 rxs = &sc->sc_rxsoft[i];
3112
3113 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3114
3115 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3116 ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3117 rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3118
3119 if (rxstat & ATW_RXSTAT_OWN) {
3120 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3121 break;
3122 }
3123
3124 sc->sc_rxptr = ATW_NEXTRX(i);
3125
3126 DPRINTF3(sc,
3127 ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3128 device_xname(sc->sc_dev),
3129 rxstat, ctlrssi,
3130 le32toh(sc->sc_rxdescs[i].ar_buf1),
3131 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3132
3133 /*
3134 * Make sure the packet fits in one buffer. This should
3135 * always be the case.
3136 */
3137 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3138 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3139 printf("%s: incoming packet spilled, resetting\n",
3140 device_xname(sc->sc_dev));
3141 (void)atw_init(ifp);
3142 return;
3143 }
3144
3145 /*
3146 * If an error occurred, update stats, clear the status
3147 * word, and leave the packet buffer in place. It will
3148 * simply be reused the next time the ring comes around.
3149 */
3150 if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3151 #define PRINTERR(bit, str) \
3152 if (rxstat & (bit)) \
3153 aprint_error_dev(sc->sc_dev, "receive error: %s\n", \
3154 str)
3155 ifp->if_ierrors++;
3156 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3157 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3158 #if 0
3159 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3160 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3161 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3162 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3163 #endif
3164 #undef PRINTERR
3165 atw_init_rxdesc(sc, i);
3166 continue;
3167 }
3168
3169 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3170 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3171
3172 /*
3173 * No errors; receive the packet. Note the ADM8211
3174 * includes the CRC in promiscuous mode.
3175 */
3176 len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3177
3178 /*
3179 * Allocate a new mbuf cluster. If that fails, we are
3180 * out of memory, and must drop the packet and recycle
3181 * the buffer that's already attached to this descriptor.
3182 */
3183 m = rxs->rxs_mbuf;
3184 if (atw_add_rxbuf(sc, i) != 0) {
3185 ifp->if_ierrors++;
3186 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3187 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3188 atw_init_rxdesc(sc, i);
3189 continue;
3190 }
3191
3192 ifp->if_ipackets++;
3193 m_set_rcvif(m, ifp);
3194 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3195
3196 rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3197
3198 /* The RSSI comes straight from a register in the
3199 * baseband processor. I know that for the RF3000,
3200 * the RSSI register also contains the antenna-selection
3201 * bits. Mask those off.
3202 *
3203 * TBD Treat other basebands.
3204 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3205 */
3206 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3207 rssi = ctlrssi & RF3000_RSSI_MASK;
3208 else
3209 rssi = ctlrssi;
3210
3211 s = splnet();
3212
3213 /* Pass this up to any BPF listeners. */
3214 if (sc->sc_radiobpf != NULL) {
3215 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3216
3217 tap->ar_rate = rate;
3218
3219 /* TBD verify units are dB */
3220 tap->ar_antsignal = (int)rssi;
3221 if (sc->sc_opmode & ATW_NAR_PR)
3222 tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3223 else
3224 tap->ar_flags = 0;
3225
3226 if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3227 tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3228
3229 bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_rxtapu),
3230 m, BPF_D_IN);
3231 }
3232
3233 sc->sc_recv_ev.ev_count++;
3234
3235 if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3236 if (rxstat & ATW_RXSTAT_CRC16E)
3237 sc->sc_crc16e_ev.ev_count++;
3238 if (rxstat & ATW_RXSTAT_CRC32E)
3239 sc->sc_crc32e_ev.ev_count++;
3240 if (rxstat & ATW_RXSTAT_ICVE)
3241 sc->sc_icve_ev.ev_count++;
3242 if (rxstat & ATW_RXSTAT_SFDE)
3243 sc->sc_sfde_ev.ev_count++;
3244 if (rxstat & ATW_RXSTAT_SIGE)
3245 sc->sc_sige_ev.ev_count++;
3246 ifp->if_ierrors++;
3247 m_freem(m);
3248 splx(s);
3249 continue;
3250 }
3251
3252 if (sc->sc_opmode & ATW_NAR_PR)
3253 m_adj(m, -IEEE80211_CRC_LEN);
3254
3255 wh = mtod(m, struct ieee80211_frame_min *);
3256 ni = ieee80211_find_rxnode(ic, wh);
3257 #if 0
3258 if (atw_hw_decrypted(sc, wh)) {
3259 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3260 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3261 }
3262 #endif
3263 ieee80211_input(ic, m, ni, (int)rssi, 0);
3264 ieee80211_free_node(ni);
3265 splx(s);
3266 }
3267 }
3268
3269 /*
3270 * atw_txintr:
3271 *
3272 * Helper; handle transmit interrupts.
3273 */
3274 void
3275 atw_txintr(struct atw_softc *sc, uint32_t status)
3276 {
3277 static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3278 struct ifnet *ifp = &sc->sc_if;
3279 struct atw_txsoft *txs;
3280 u_int32_t txstat;
3281 int s;
3282
3283 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3284 device_xname(sc->sc_dev), sc->sc_flags));
3285
3286 s = splnet();
3287
3288 /*
3289 * Go through our Tx list and free mbufs for those
3290 * frames that have been transmitted.
3291 */
3292 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3293 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3294 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3295
3296 #ifdef ATW_DEBUG
3297 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3298 int i;
3299 printf(" txsoft %p transmit chain:\n", txs);
3300 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3301 txs->txs_ndescs - 1,
3302 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3303 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3304 printf(" descriptor %d:\n", i);
3305 printf(" at_status: 0x%08x\n",
3306 le32toh(sc->sc_txdescs[i].at_stat));
3307 printf(" at_flags: 0x%08x\n",
3308 le32toh(sc->sc_txdescs[i].at_flags));
3309 printf(" at_buf1: 0x%08x\n",
3310 le32toh(sc->sc_txdescs[i].at_buf1));
3311 printf(" at_buf2: 0x%08x\n",
3312 le32toh(sc->sc_txdescs[i].at_buf2));
3313 if (i == txs->txs_lastdesc)
3314 break;
3315 }
3316 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3317 txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3318 }
3319 #endif
3320
3321 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3322 if (txstat & ATW_TXSTAT_OWN) {
3323 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3324 BUS_DMASYNC_PREREAD);
3325 break;
3326 }
3327
3328 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3329
3330 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3331 0, txs->txs_dmamap->dm_mapsize,
3332 BUS_DMASYNC_POSTWRITE);
3333 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3334 m_freem(txs->txs_mbuf);
3335 txs->txs_mbuf = NULL;
3336
3337 sc->sc_txfree += txs->txs_ndescs;
3338 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3339
3340 KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3341 sc->sc_tx_timer = 0;
3342 ifp->if_flags &= ~IFF_OACTIVE;
3343
3344 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3345 (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3346 snprintb(txstat_buf, sizeof(txstat_buf),
3347 ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3348 printf("%s: txstat %s %" __PRIuBITS "\n",
3349 device_xname(sc->sc_dev), txstat_buf,
3350 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3351 }
3352
3353 sc->sc_xmit_ev.ev_count++;
3354
3355 /*
3356 * Check for errors and collisions.
3357 */
3358 if (txstat & ATW_TXSTAT_TUF)
3359 sc->sc_tuf_ev.ev_count++;
3360 if (txstat & ATW_TXSTAT_TLT)
3361 sc->sc_tlt_ev.ev_count++;
3362 if (txstat & ATW_TXSTAT_TRT)
3363 sc->sc_trt_ev.ev_count++;
3364 if (txstat & ATW_TXSTAT_TRO)
3365 sc->sc_tro_ev.ev_count++;
3366 if (txstat & ATW_TXSTAT_SOFBR)
3367 sc->sc_sofbr_ev.ev_count++;
3368
3369 if ((txstat & ATW_TXSTAT_ES) == 0)
3370 ifp->if_collisions +=
3371 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3372 else
3373 ifp->if_oerrors++;
3374
3375 ifp->if_opackets++;
3376 }
3377
3378 KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3379
3380 splx(s);
3381 }
3382
3383 /*
3384 * atw_watchdog: [ifnet interface function]
3385 *
3386 * Watchdog timer handler.
3387 */
3388 void
3389 atw_watchdog(struct ifnet *ifp)
3390 {
3391 struct atw_softc *sc = ifp->if_softc;
3392 struct ieee80211com *ic = &sc->sc_ic;
3393
3394 ifp->if_timer = 0;
3395 if (!device_is_active(sc->sc_dev))
3396 return;
3397
3398 if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3399 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3400 if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3401 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3402 printf("%s: transmit timeout\n", ifp->if_xname);
3403 ifp->if_oerrors++;
3404 (void)atw_init(ifp);
3405 atw_start(ifp);
3406 }
3407 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3408 ifp->if_timer = 1;
3409 ieee80211_watchdog(ic);
3410 }
3411
3412 static void
3413 atw_evcnt_detach(struct atw_softc *sc)
3414 {
3415 evcnt_detach(&sc->sc_sige_ev);
3416 evcnt_detach(&sc->sc_sfde_ev);
3417 evcnt_detach(&sc->sc_icve_ev);
3418 evcnt_detach(&sc->sc_crc32e_ev);
3419 evcnt_detach(&sc->sc_crc16e_ev);
3420 evcnt_detach(&sc->sc_recv_ev);
3421
3422 evcnt_detach(&sc->sc_tuf_ev);
3423 evcnt_detach(&sc->sc_tro_ev);
3424 evcnt_detach(&sc->sc_trt_ev);
3425 evcnt_detach(&sc->sc_tlt_ev);
3426 evcnt_detach(&sc->sc_sofbr_ev);
3427 evcnt_detach(&sc->sc_xmit_ev);
3428
3429 evcnt_detach(&sc->sc_rxpkt1in_ev);
3430 evcnt_detach(&sc->sc_rxamatch_ev);
3431 evcnt_detach(&sc->sc_workaround1_ev);
3432 evcnt_detach(&sc->sc_misc_ev);
3433 }
3434
3435 static void
3436 atw_evcnt_attach(struct atw_softc *sc)
3437 {
3438 evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3439 NULL, sc->sc_if.if_xname, "recv");
3440 evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3441 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3442 evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3443 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3444 evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3445 &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3446 evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3447 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3448 evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3449 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3450
3451 evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3452 NULL, sc->sc_if.if_xname, "xmit");
3453 evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3454 &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3455 evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3456 &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3457 evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3458 &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3459 evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3460 &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3461 evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3462 &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3463
3464 evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3465 NULL, sc->sc_if.if_xname, "misc");
3466 evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3467 &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3468 evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3469 &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3470 evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3471 &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3472 }
3473
3474 #ifdef ATW_DEBUG
3475 static void
3476 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3477 {
3478 struct atw_softc *sc = ifp->if_softc;
3479 struct mbuf *m;
3480 int i, noctets = 0;
3481
3482 printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3483 m0->m_pkthdr.len);
3484
3485 for (m = m0; m; m = m->m_next) {
3486 if (m->m_len == 0)
3487 continue;
3488 for (i = 0; i < m->m_len; i++) {
3489 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3490 if (++noctets % 24 == 0)
3491 printf("\n");
3492 }
3493 }
3494 printf("%s%s: %d bytes emitted\n",
3495 (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3496 }
3497 #endif /* ATW_DEBUG */
3498
3499 /*
3500 * atw_start: [ifnet interface function]
3501 *
3502 * Start packet transmission on the interface.
3503 */
3504 void
3505 atw_start(struct ifnet *ifp)
3506 {
3507 struct atw_softc *sc = ifp->if_softc;
3508 struct ieee80211_key *k;
3509 struct ieee80211com *ic = &sc->sc_ic;
3510 struct ieee80211_node *ni;
3511 struct ieee80211_frame_min *whm;
3512 struct ieee80211_frame *wh;
3513 struct atw_frame *hh;
3514 uint16_t hdrctl;
3515 struct mbuf *m0, *m;
3516 struct atw_txsoft *txs;
3517 struct atw_txdesc *txd;
3518 int npkt, rate;
3519 bus_dmamap_t dmamap;
3520 int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3521
3522 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3523 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3524
3525 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3526 return;
3527
3528 /*
3529 * Remember the previous number of free descriptors and
3530 * the first descriptor we'll use.
3531 */
3532 ofree = sc->sc_txfree;
3533 firsttx = lasttx = sc->sc_txnext;
3534
3535 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3536 device_xname(sc->sc_dev), ofree, firsttx));
3537
3538 /*
3539 * Loop through the send queue, setting up transmit descriptors
3540 * until we drain the queue, or use up all available transmit
3541 * descriptors.
3542 */
3543 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3544 sc->sc_txfree != 0) {
3545
3546 hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3547
3548 /*
3549 * Grab a packet off the management queue, if it
3550 * is not empty. Otherwise, from the data queue.
3551 */
3552 IF_DEQUEUE(&ic->ic_mgtq, m0);
3553 if (m0 != NULL) {
3554 ni = M_GETCTX(m0, struct ieee80211_node *);
3555 M_CLEARCTX(m0);
3556 } else if (ic->ic_state != IEEE80211_S_RUN)
3557 break; /* send no data until associated */
3558 else {
3559 IFQ_DEQUEUE(&ifp->if_snd, m0);
3560 if (m0 == NULL)
3561 break;
3562 bpf_mtap(ifp, m0, BPF_D_OUT);
3563 ni = ieee80211_find_txnode(ic,
3564 mtod(m0, struct ether_header *)->ether_dhost);
3565 if (ni == NULL) {
3566 ifp->if_oerrors++;
3567 break;
3568 }
3569 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3570 ieee80211_free_node(ni);
3571 ifp->if_oerrors++;
3572 break;
3573 }
3574 }
3575
3576 rate = MAX(ieee80211_get_rate(ni), 2);
3577
3578 whm = mtod(m0, struct ieee80211_frame_min *);
3579
3580 if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3581 k = NULL;
3582 else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3583 m_freem(m0);
3584 ieee80211_free_node(ni);
3585 ifp->if_oerrors++;
3586 break;
3587 }
3588 #if 0
3589 if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3590 m0->m_pkthdr.len > ic->ic_fragthreshold)
3591 hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3592 #endif
3593
3594 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3595 hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3596
3597 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3598 ic->ic_flags, ic->ic_fragthreshold, rate,
3599 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3600 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3601 m_freem(m0);
3602 break;
3603 }
3604
3605 /* XXX Misleading if fragmentation is enabled. Better
3606 * to fragment in software?
3607 */
3608 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3609
3610 /*
3611 * Pass the packet to any BPF listeners.
3612 */
3613 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
3614
3615 if (sc->sc_radiobpf != NULL) {
3616 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3617
3618 tap->at_rate = rate;
3619
3620 bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_txtapu),
3621 m0, BPF_D_OUT);
3622 }
3623
3624 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3625
3626 if (ni != NULL)
3627 ieee80211_free_node(ni);
3628
3629 if (m0 == NULL) {
3630 ifp->if_oerrors++;
3631 break;
3632 }
3633
3634 /* just to make sure. */
3635 m0 = m_pullup(m0, sizeof(struct atw_frame));
3636
3637 if (m0 == NULL) {
3638 ifp->if_oerrors++;
3639 break;
3640 }
3641
3642 hh = mtod(m0, struct atw_frame *);
3643 wh = &hh->atw_ihdr;
3644
3645 /* Copy everything we need from the 802.11 header:
3646 * Frame Control; address 1, address 3, or addresses
3647 * 3 and 4. NIC fills in BSSID, SA.
3648 */
3649 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3650 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3651 panic("%s: illegal WDS frame",
3652 device_xname(sc->sc_dev));
3653 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3654 } else
3655 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3656
3657 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3658
3659 /* initialize remaining Tx parameters */
3660 memset(&hh->u, 0, sizeof(hh->u));
3661
3662 hh->atw_rate = rate * 5;
3663 /* XXX this could be incorrect if M_FCS. _encap should
3664 * probably strip FCS just in case it sticks around in
3665 * bridged packets.
3666 */
3667 hh->atw_service = 0x00; /* XXX guess */
3668 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3669 sizeof(struct atw_frame));
3670
3671 /* never fragment multicast frames */
3672 if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3673 hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3674 else {
3675 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3676 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3677 hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3678 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3679 }
3680
3681 hh->atw_rtylmt = 3;
3682 #if 0
3683 if (do_encrypt) {
3684 hdrctl |= htole16(ATW_HDRCTL_WEP);
3685 hh->atw_keyid = ic->ic_def_txkey;
3686 }
3687 #endif
3688
3689 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3690 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3691 if (txs->txs_d0.d_residue)
3692 hh->atw_head_plcplen |= htole16(0x8000);
3693 if (txs->txs_dn.d_residue)
3694 hh->atw_tail_plcplen |= htole16(0x8000);
3695 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3696 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3697
3698 hh->atw_hdrctl = hdrctl;
3699 hh->atw_fragnum = npkt << 4;
3700 #ifdef ATW_DEBUG
3701
3702 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3703 printf("%s: dst = %s, rate = 0x%02x, "
3704 "service = 0x%02x, paylen = 0x%04x\n",
3705 device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3706 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3707
3708 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3709 "dur1 = 0x%04x, dur2 = 0x%04x, "
3710 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3711 device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3712 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3713 hh->atw_tail_dur, hh->atw_head_dur);
3714
3715 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3716 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3717 device_xname(sc->sc_dev), hh->atw_hdrctl,
3718 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3719
3720 printf("%s: keyid = %d\n",
3721 device_xname(sc->sc_dev), hh->atw_keyid);
3722
3723 atw_dump_pkt(ifp, m0);
3724 }
3725 #endif /* ATW_DEBUG */
3726
3727 dmamap = txs->txs_dmamap;
3728
3729 /*
3730 * Load the DMA map. Copy and try (once) again if the packet
3731 * didn't fit in the alloted number of segments.
3732 */
3733 for (first = 1;
3734 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3735 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3736 first = 0) {
3737 MGETHDR(m, M_DONTWAIT, MT_DATA);
3738 if (m == NULL) {
3739 aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3740 break;
3741 }
3742 if (m0->m_pkthdr.len > MHLEN) {
3743 MCLGET(m, M_DONTWAIT);
3744 if ((m->m_flags & M_EXT) == 0) {
3745 aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3746 "cluster\n");
3747 m_freem(m);
3748 break;
3749 }
3750 }
3751 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3752 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3753 m_freem(m0);
3754 m0 = m;
3755 m = NULL;
3756 }
3757 if (error != 0) {
3758 aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3759 "error = %d\n", error);
3760 m_freem(m0);
3761 break;
3762 }
3763
3764 /*
3765 * Ensure we have enough descriptors free to describe
3766 * the packet.
3767 */
3768 if (dmamap->dm_nsegs > sc->sc_txfree) {
3769 /*
3770 * Not enough free descriptors to transmit
3771 * this packet. Unload the DMA map and
3772 * drop the packet. Notify the upper layer
3773 * that there are no more slots left.
3774 *
3775 * XXX We could allocate an mbuf and copy, but
3776 * XXX it is worth it?
3777 */
3778 bus_dmamap_unload(sc->sc_dmat, dmamap);
3779 m_freem(m0);
3780 break;
3781 }
3782
3783 /*
3784 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3785 */
3786
3787 /* Sync the DMA map. */
3788 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3789 BUS_DMASYNC_PREWRITE);
3790
3791 /* XXX arbitrary retry limit; 8 because I have seen it in
3792 * use already and maybe 0 means "no tries" !
3793 */
3794 ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3795
3796 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3797 device_xname(sc->sc_dev), rate * 5));
3798 ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3799
3800 /*
3801 * Initialize the transmit descriptors.
3802 */
3803 for (nexttx = sc->sc_txnext, seg = 0;
3804 seg < dmamap->dm_nsegs;
3805 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3806 /*
3807 * If this is the first descriptor we're
3808 * enqueueing, don't set the OWN bit just
3809 * yet. That could cause a race condition.
3810 * We'll do it below.
3811 */
3812 txd = &sc->sc_txdescs[nexttx];
3813 txd->at_ctl = ctl |
3814 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3815
3816 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3817 txd->at_flags =
3818 htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3819 ATW_TXFLAG_TBS1_MASK)) |
3820 ((nexttx == (ATW_NTXDESC - 1))
3821 ? htole32(ATW_TXFLAG_TER) : 0);
3822 lasttx = nexttx;
3823 }
3824
3825 /* Set `first segment' and `last segment' appropriately. */
3826 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3827 htole32(ATW_TXFLAG_FS);
3828 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3829
3830 #ifdef ATW_DEBUG
3831 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3832 printf(" txsoft %p transmit chain:\n", txs);
3833 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3834 printf(" descriptor %d:\n", seg);
3835 printf(" at_ctl: 0x%08x\n",
3836 le32toh(sc->sc_txdescs[seg].at_ctl));
3837 printf(" at_flags: 0x%08x\n",
3838 le32toh(sc->sc_txdescs[seg].at_flags));
3839 printf(" at_buf1: 0x%08x\n",
3840 le32toh(sc->sc_txdescs[seg].at_buf1));
3841 printf(" at_buf2: 0x%08x\n",
3842 le32toh(sc->sc_txdescs[seg].at_buf2));
3843 if (seg == lasttx)
3844 break;
3845 }
3846 }
3847 #endif
3848
3849 /* Sync the descriptors we're using. */
3850 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3851 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3852
3853 /*
3854 * Store a pointer to the packet so we can free it later,
3855 * and remember what txdirty will be once the packet is
3856 * done.
3857 */
3858 txs->txs_mbuf = m0;
3859 txs->txs_firstdesc = sc->sc_txnext;
3860 txs->txs_lastdesc = lasttx;
3861 txs->txs_ndescs = dmamap->dm_nsegs;
3862
3863 /* Advance the tx pointer. */
3864 sc->sc_txfree -= dmamap->dm_nsegs;
3865 sc->sc_txnext = nexttx;
3866
3867 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3868 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3869 }
3870
3871 if (sc->sc_txfree != ofree) {
3872 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3873 device_xname(sc->sc_dev), lasttx, firsttx));
3874 /*
3875 * Cause a transmit interrupt to happen on the
3876 * last packet we enqueued.
3877 */
3878 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3879 ATW_CDTXSYNC(sc, lasttx, 1,
3880 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3881
3882 /*
3883 * The entire packet chain is set up. Give the
3884 * first descriptor to the chip now.
3885 */
3886 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3887 ATW_CDTXSYNC(sc, firsttx, 1,
3888 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3889
3890 /* Wake up the transmitter. */
3891 ATW_WRITE(sc, ATW_TDR, 0x1);
3892
3893 if (txs == NULL || sc->sc_txfree == 0)
3894 ifp->if_flags |= IFF_OACTIVE;
3895
3896 /* Set a watchdog timer in case the chip flakes out. */
3897 sc->sc_tx_timer = 5;
3898 ifp->if_timer = 1;
3899 }
3900 }
3901
3902 /*
3903 * atw_ioctl: [ifnet interface function]
3904 *
3905 * Handle control requests from the operator.
3906 */
3907 int
3908 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3909 {
3910 struct atw_softc *sc = ifp->if_softc;
3911 struct ieee80211req *ireq;
3912 int s, error = 0;
3913
3914 s = splnet();
3915
3916 switch (cmd) {
3917 case SIOCSIFFLAGS:
3918 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3919 break;
3920 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
3921 case IFF_UP|IFF_RUNNING:
3922 /*
3923 * To avoid rescanning another access point,
3924 * do not call atw_init() here. Instead,
3925 * only reflect media settings.
3926 */
3927 if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3928 atw_filter_setup(sc);
3929 break;
3930 case IFF_UP:
3931 error = atw_init(ifp);
3932 break;
3933 case IFF_RUNNING:
3934 atw_stop(ifp, 1);
3935 break;
3936 case 0:
3937 break;
3938 }
3939 break;
3940 case SIOCADDMULTI:
3941 case SIOCDELMULTI:
3942 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3943 if (ifp->if_flags & IFF_RUNNING)
3944 atw_filter_setup(sc); /* do not rescan */
3945 error = 0;
3946 }
3947 break;
3948 case SIOCS80211:
3949 ireq = data;
3950 if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3951 if ((error = kauth_authorize_network(curlwp->l_cred,
3952 KAUTH_NETWORK_INTERFACE,
3953 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3954 (void *)cmd, NULL)) != 0)
3955 break;
3956 if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3957 ireq->i_val <= IEEE80211_FRAG_MAX))
3958 error = EINVAL;
3959 else
3960 sc->sc_ic.ic_fragthreshold = ireq->i_val;
3961 break;
3962 }
3963 /*FALLTHROUGH*/
3964 default:
3965 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3966 if (error == ENETRESET || error == ERESTART) {
3967 if (is_running(ifp))
3968 error = atw_init(ifp);
3969 else
3970 error = 0;
3971 }
3972 break;
3973 }
3974
3975 /* Try to get more packets going. */
3976 if (device_is_active(sc->sc_dev))
3977 atw_start(ifp);
3978
3979 splx(s);
3980 return (error);
3981 }
3982
3983 static int
3984 atw_media_change(struct ifnet *ifp)
3985 {
3986 int error;
3987
3988 error = ieee80211_media_change(ifp);
3989 if (error == ENETRESET) {
3990 if (is_running(ifp))
3991 error = atw_init(ifp);
3992 else
3993 error = 0;
3994 }
3995 return error;
3996 }
3997