atw.c revision 1.166 1 /* $NetBSD: atw.c,v 1.166 2019/05/23 10:57:28 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.166 2019/05/23 10:57:28 msaitoh Exp $");
38
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/device.h>
50 #include <sys/kauth.h>
51 #include <sys/time.h>
52 #include <sys/proc.h>
53 #include <sys/atomic.h>
54 #include <lib/libkern/libkern.h>
55
56 #include <machine/endian.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #include <net80211/ieee80211_netbsd.h>
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66
67 #include <net/bpf.h>
68
69 #include <sys/bus.h>
70 #include <sys/intr.h>
71
72 #include <dev/ic/atwreg.h>
73 #include <dev/ic/rf3000reg.h>
74 #include <dev/ic/si4136reg.h>
75 #include <dev/ic/atwvar.h>
76 #include <dev/ic/smc93cx6var.h>
77
78 /* XXX TBD open questions
79 *
80 *
81 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
82 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
83 * handle this for me?
84 *
85 */
86 /* device attachment
87 *
88 * print TOFS[012]
89 *
90 * device initialization
91 *
92 * clear ATW_FRCTL_MAXPSP to disable max power saving
93 * set ATW_TXBR_ALCUPDATE to enable ALC
94 * set TOFS[012]? (hope not)
95 * disable rx/tx
96 * set ATW_PAR_SWR (software reset)
97 * wait for ATW_PAR_SWR clear
98 * disable interrupts
99 * ack status register
100 * enable interrupts
101 *
102 * rx/tx initialization
103 *
104 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
105 * allocate and init descriptor rings
106 * write ATW_PAR_DSL (descriptor skip length)
107 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
108 * write ATW_NAR_SQ for one/both transmit descriptor rings
109 * write ATW_NAR_SQ for one/both transmit descriptor rings
110 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111 *
112 * rx/tx end
113 *
114 * stop DMA
115 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
116 * flush tx w/ ATW_NAR_HF
117 *
118 * scan
119 *
120 * initialize rx/tx
121 *
122 * BSS join: (re)association response
123 *
124 * set ATW_FRCTL_AID
125 *
126 * optimizations ???
127 *
128 */
129
130 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
131
132 int atw_pseudo_milli = 1;
133 int atw_magic_delay1 = 100 * 1000;
134 int atw_magic_delay2 = 100 * 1000;
135 /* more magic multi-millisecond delays (units: microseconds) */
136 int atw_nar_delay = 20 * 1000;
137 int atw_magic_delay4 = 10 * 1000;
138 int atw_rf_delay1 = 10 * 1000;
139 int atw_rf_delay2 = 5 * 1000;
140 int atw_plcphd_delay = 2 * 1000;
141 int atw_bbp_io_enable_delay = 20 * 1000;
142 int atw_bbp_io_disable_delay = 2 * 1000;
143 int atw_writewep_delay = 1000;
144 int atw_beacon_len_adjust = 4;
145 int atw_dwelltime = 200;
146 int atw_xindiv2 = 0;
147
148 #ifdef ATW_DEBUG
149 int atw_debug = 0;
150
151 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
152 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
153 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
154 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
155 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157
158 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
159 static void atw_print_regs(struct atw_softc *, const char *);
160
161 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162 # ifdef ATW_BBPDEBUG
163 static void atw_rf3000_print(struct atw_softc *);
164 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
165 # endif /* ATW_BBPDEBUG */
166
167 # ifdef ATW_SYNDEBUG
168 static void atw_si4126_print(struct atw_softc *);
169 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
170 # endif /* ATW_SYNDEBUG */
171 #define __atwdebugused /* empty */
172 #else
173 #define ATW_DPRINTF(x)
174 #define ATW_DPRINTF2(x)
175 #define ATW_DPRINTF3(x)
176 #define DPRINTF(sc, x) /* nothing */
177 #define DPRINTF2(sc, x) /* nothing */
178 #define DPRINTF3(sc, x) /* nothing */
179 #define __atwdebugused __unused
180 #endif
181
182 /* ifnet methods */
183 int atw_init(struct ifnet *);
184 int atw_ioctl(struct ifnet *, u_long, void *);
185 void atw_start(struct ifnet *);
186 void atw_stop(struct ifnet *, int);
187 void atw_watchdog(struct ifnet *);
188
189 /* Device attachment */
190 void atw_attach(struct atw_softc *);
191 int atw_detach(struct atw_softc *);
192 static void atw_evcnt_attach(struct atw_softc *);
193 static void atw_evcnt_detach(struct atw_softc *);
194
195 /* Rx/Tx process */
196 int atw_add_rxbuf(struct atw_softc *, int);
197 void atw_idle(struct atw_softc *, uint32_t);
198 void atw_rxdrain(struct atw_softc *);
199 void atw_txdrain(struct atw_softc *);
200
201 /* Device (de)activation and power state */
202 void atw_reset(struct atw_softc *);
203
204 /* Interrupt handlers */
205 void atw_softintr(void *);
206 void atw_linkintr(struct atw_softc *, uint32_t);
207 void atw_rxintr(struct atw_softc *);
208 void atw_txintr(struct atw_softc *, uint32_t);
209
210 /* 802.11 state machine */
211 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
212 static void atw_next_scan(void *);
213 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
214 struct ieee80211_node *, int, int, uint32_t);
215 static int atw_tune(struct atw_softc *);
216
217 /* Device initialization */
218 static void atw_bbp_io_init(struct atw_softc *);
219 static void atw_cfp_init(struct atw_softc *);
220 static void atw_cmdr_init(struct atw_softc *);
221 static void atw_ifs_init(struct atw_softc *);
222 static void atw_nar_init(struct atw_softc *);
223 static void atw_response_times_init(struct atw_softc *);
224 static void atw_rf_reset(struct atw_softc *);
225 static void atw_test1_init(struct atw_softc *);
226 static void atw_tofs0_init(struct atw_softc *);
227 static void atw_tofs2_init(struct atw_softc *);
228 static void atw_txlmt_init(struct atw_softc *);
229 static void atw_wcsr_init(struct atw_softc *);
230
231 /* Key management */
232 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
233 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
234 const uint8_t[IEEE80211_ADDR_LEN]);
235 static void atw_key_update_begin(struct ieee80211com *);
236 static void atw_key_update_end(struct ieee80211com *);
237
238 /* RAM/ROM utilities */
239 static void atw_clear_sram(struct atw_softc *);
240 static void atw_write_sram(struct atw_softc *, u_int, uint8_t *, u_int);
241 static int atw_read_srom(struct atw_softc *);
242
243 /* BSS setup */
244 static void atw_predict_beacon(struct atw_softc *);
245 static void atw_start_beacon(struct atw_softc *, int);
246 static void atw_write_bssid(struct atw_softc *);
247 static void atw_write_ssid(struct atw_softc *);
248 static void atw_write_sup_rates(struct atw_softc *);
249 static void atw_write_wep(struct atw_softc *);
250
251 /* Media */
252 static int atw_media_change(struct ifnet *);
253
254 static void atw_filter_setup(struct atw_softc *);
255
256 /* 802.11 utilities */
257 static uint64_t atw_get_tsft(struct atw_softc *);
258 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
259 uint32_t);
260 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
261 static void atw_node_free(struct ieee80211_node *);
262
263 /*
264 * Tuner/transceiver/modem
265 */
266 static void atw_bbp_io_enable(struct atw_softc *, int);
267
268 /* RFMD RF3000 Baseband Processor */
269 static int atw_rf3000_init(struct atw_softc *);
270 static int atw_rf3000_tune(struct atw_softc *, u_int);
271 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
272
273 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
274 static void atw_si4126_tune(struct atw_softc *, u_int);
275 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
276
277 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
278 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
279
280 const char *atw_tx_state[] = {
281 "STOPPED",
282 "RUNNING - read descriptor",
283 "RUNNING - transmitting",
284 "RUNNING - filling fifo", /* XXX */
285 "SUSPENDED",
286 "RUNNING -- write descriptor",
287 "RUNNING -- write last descriptor",
288 "RUNNING - fifo full"
289 };
290
291 const char *atw_rx_state[] = {
292 "STOPPED",
293 "RUNNING - read descriptor",
294 "RUNNING - check this packet, pre-fetch next",
295 "RUNNING - wait for reception",
296 "SUSPENDED",
297 "RUNNING - write descriptor",
298 "RUNNING - flush fifo",
299 "RUNNING - fifo drain"
300 };
301
302 static inline int
303 is_running(struct ifnet *ifp)
304 {
305 return (ifp->if_flags & (IFF_RUNNING | IFF_UP))
306 == (IFF_RUNNING | IFF_UP);
307 }
308
309 int
310 atw_activate(device_t self, enum devact act)
311 {
312 struct atw_softc *sc = device_private(self);
313
314 switch (act) {
315 case DVACT_DEACTIVATE:
316 if_deactivate(&sc->sc_if);
317 return 0;
318 default:
319 return EOPNOTSUPP;
320 }
321 }
322
323 bool
324 atw_suspend(device_t self, const pmf_qual_t *qual)
325 {
326 struct atw_softc *sc = device_private(self);
327
328 atw_rxdrain(sc);
329 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
330
331 return true;
332 }
333
334 /* Returns -1 on failure. */
335 static int
336 atw_read_srom(struct atw_softc *sc)
337 {
338 struct seeprom_descriptor sd;
339 uint32_t test0, fail_bits;
340
341 (void)memset(&sd, 0, sizeof(sd));
342
343 test0 = ATW_READ(sc, ATW_TEST0);
344
345 switch (sc->sc_rev) {
346 case ATW_REVISION_BA:
347 case ATW_REVISION_CA:
348 fail_bits = ATW_TEST0_EPNE;
349 break;
350 default:
351 fail_bits = ATW_TEST0_EPNE | ATW_TEST0_EPSNM;
352 break;
353 }
354 if ((test0 & fail_bits) != 0) {
355 aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
356 return -1;
357 }
358
359 switch (test0 & ATW_TEST0_EPTYP_MASK) {
360 case ATW_TEST0_EPTYP_93c66:
361 ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
362 sc->sc_sromsz = 512;
363 sd.sd_chip = C56_66;
364 break;
365 case ATW_TEST0_EPTYP_93c46:
366 ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
367 sc->sc_sromsz = 128;
368 sd.sd_chip = C46;
369 break;
370 default:
371 printf("%s: unknown SROM type %" __PRIuBITS "\n",
372 device_xname(sc->sc_dev),
373 __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
374 return -1;
375 }
376
377 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
378
379 if (sc->sc_srom == NULL) {
380 aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
381 return -1;
382 }
383
384 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
385
386 /* ADM8211 has a single 32-bit register for controlling the
387 * 93cx6 SROM. Bit SRS enables the serial port. There is no
388 * "ready" bit. The ADM8211 input/output sense is the reverse
389 * of read_seeprom's.
390 */
391 sd.sd_tag = sc->sc_st;
392 sd.sd_bsh = sc->sc_sh;
393 sd.sd_regsize = 4;
394 sd.sd_control_offset = ATW_SPR;
395 sd.sd_status_offset = ATW_SPR;
396 sd.sd_dataout_offset = ATW_SPR;
397 sd.sd_CK = ATW_SPR_SCLK;
398 sd.sd_CS = ATW_SPR_SCS;
399 sd.sd_DI = ATW_SPR_SDO;
400 sd.sd_DO = ATW_SPR_SDI;
401 sd.sd_MS = ATW_SPR_SRS;
402 sd.sd_RDY = 0;
403
404 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
405 aprint_error_dev(sc->sc_dev, "could not read SROM\n");
406 free(sc->sc_srom, M_DEVBUF);
407 return -1;
408 }
409 #ifdef ATW_DEBUG
410 {
411 int i;
412 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
413 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
414 if (((i % 8) == 0) && (i != 0)) {
415 ATW_DPRINTF(("\n\t"));
416 }
417 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
418 }
419 ATW_DPRINTF(("\n"));
420 }
421 #endif /* ATW_DEBUG */
422 return 0;
423 }
424
425 #ifdef ATW_DEBUG
426 static void
427 atw_print_regs(struct atw_softc *sc, const char *where)
428 {
429 #define PRINTREG(sc, reg) \
430 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
431 device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
432
433 ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
434
435 PRINTREG(sc, ATW_PAR);
436 PRINTREG(sc, ATW_FRCTL);
437 PRINTREG(sc, ATW_TDR);
438 PRINTREG(sc, ATW_WTDP);
439 PRINTREG(sc, ATW_RDR);
440 PRINTREG(sc, ATW_WRDP);
441 PRINTREG(sc, ATW_RDB);
442 PRINTREG(sc, ATW_CSR3A);
443 PRINTREG(sc, ATW_TDBD);
444 PRINTREG(sc, ATW_TDBP);
445 PRINTREG(sc, ATW_STSR);
446 PRINTREG(sc, ATW_CSR5A);
447 PRINTREG(sc, ATW_NAR);
448 PRINTREG(sc, ATW_CSR6A);
449 PRINTREG(sc, ATW_IER);
450 PRINTREG(sc, ATW_CSR7A);
451 PRINTREG(sc, ATW_LPC);
452 PRINTREG(sc, ATW_TEST1);
453 PRINTREG(sc, ATW_SPR);
454 PRINTREG(sc, ATW_TEST0);
455 PRINTREG(sc, ATW_WCSR);
456 PRINTREG(sc, ATW_WPDR);
457 PRINTREG(sc, ATW_GPTMR);
458 PRINTREG(sc, ATW_GPIO);
459 PRINTREG(sc, ATW_BBPCTL);
460 PRINTREG(sc, ATW_SYNCTL);
461 PRINTREG(sc, ATW_PLCPHD);
462 PRINTREG(sc, ATW_MMIWADDR);
463 PRINTREG(sc, ATW_MMIRADDR1);
464 PRINTREG(sc, ATW_MMIRADDR2);
465 PRINTREG(sc, ATW_TXBR);
466 PRINTREG(sc, ATW_CSR15A);
467 PRINTREG(sc, ATW_ALCSTAT);
468 PRINTREG(sc, ATW_TOFS2);
469 PRINTREG(sc, ATW_CMDR);
470 PRINTREG(sc, ATW_PCIC);
471 PRINTREG(sc, ATW_PMCSR);
472 PRINTREG(sc, ATW_PAR0);
473 PRINTREG(sc, ATW_PAR1);
474 PRINTREG(sc, ATW_MAR0);
475 PRINTREG(sc, ATW_MAR1);
476 PRINTREG(sc, ATW_ATIMDA0);
477 PRINTREG(sc, ATW_ABDA1);
478 PRINTREG(sc, ATW_BSSID0);
479 PRINTREG(sc, ATW_TXLMT);
480 PRINTREG(sc, ATW_MIBCNT);
481 PRINTREG(sc, ATW_BCNT);
482 PRINTREG(sc, ATW_TSFTH);
483 PRINTREG(sc, ATW_TSC);
484 PRINTREG(sc, ATW_SYNRF);
485 PRINTREG(sc, ATW_BPLI);
486 PRINTREG(sc, ATW_CAP0);
487 PRINTREG(sc, ATW_CAP1);
488 PRINTREG(sc, ATW_RMD);
489 PRINTREG(sc, ATW_CFPP);
490 PRINTREG(sc, ATW_TOFS0);
491 PRINTREG(sc, ATW_TOFS1);
492 PRINTREG(sc, ATW_IFST);
493 PRINTREG(sc, ATW_RSPT);
494 PRINTREG(sc, ATW_TSFTL);
495 PRINTREG(sc, ATW_WEPCTL);
496 PRINTREG(sc, ATW_WESK);
497 PRINTREG(sc, ATW_WEPCNT);
498 PRINTREG(sc, ATW_MACTEST);
499 PRINTREG(sc, ATW_FER);
500 PRINTREG(sc, ATW_FEMR);
501 PRINTREG(sc, ATW_FPSR);
502 PRINTREG(sc, ATW_FFER);
503 #undef PRINTREG
504 }
505 #endif /* ATW_DEBUG */
506
507 /*
508 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
509 */
510 void
511 atw_attach(struct atw_softc *sc)
512 {
513 static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
514 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
515 };
516 struct ieee80211com *ic = &sc->sc_ic;
517 struct ifnet *ifp = &sc->sc_if;
518 int country_code, error, i, srom_major;
519 uint32_t reg;
520 static const char *type_strings[] = {"Intersil (not supported)",
521 "RFMD", "Marvel (not supported)"};
522
523 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
524
525 sc->sc_soft_ih = softint_establish(SOFTINT_NET, atw_softintr, sc);
526 if (sc->sc_soft_ih == NULL) {
527 aprint_error_dev(sc->sc_dev, "unable to establish softint\n");
528 goto fail_0;
529 }
530
531 sc->sc_txth = atw_txthresh_tab_lo;
532
533 SIMPLEQ_INIT(&sc->sc_txfreeq);
534 SIMPLEQ_INIT(&sc->sc_txdirtyq);
535
536 #ifdef ATW_DEBUG
537 atw_print_regs(sc, "atw_attach");
538 #endif /* ATW_DEBUG */
539
540 /*
541 * Allocate the control data structures, and create and load the
542 * DMA map for it.
543 */
544 if ((error = bus_dmamem_alloc(sc->sc_dmat,
545 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
546 1, &sc->sc_cdnseg, 0)) != 0) {
547 aprint_error_dev(sc->sc_dev,
548 "unable to allocate control data, error = %d\n",
549 error);
550 goto fail_0;
551 }
552
553 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
554 sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
555 BUS_DMA_COHERENT)) != 0) {
556 aprint_error_dev(sc->sc_dev,
557 "unable to map control data, error = %d\n",
558 error);
559 goto fail_1;
560 }
561
562 if ((error = bus_dmamap_create(sc->sc_dmat,
563 sizeof(struct atw_control_data), 1,
564 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
565 aprint_error_dev(sc->sc_dev,
566 "unable to create control data DMA map, error = %d\n",
567 error);
568 goto fail_2;
569 }
570
571 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
572 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
573 0)) != 0) {
574 aprint_error_dev(sc->sc_dev,
575 "unable to load control data DMA map, error = %d\n", error);
576 goto fail_3;
577 }
578
579 /*
580 * Create the transmit buffer DMA maps.
581 */
582 sc->sc_ntxsegs = ATW_NTXSEGS;
583 for (i = 0; i < ATW_TXQUEUELEN; i++) {
584 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
585 sc->sc_ntxsegs, MCLBYTES, 0, 0,
586 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
587 aprint_error_dev(sc->sc_dev,
588 "unable to create tx DMA map %d, error = %d\n", i,
589 error);
590 goto fail_4;
591 }
592 }
593
594 /*
595 * Create the receive buffer DMA maps.
596 */
597 for (i = 0; i < ATW_NRXDESC; i++) {
598 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
599 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
600 aprint_error_dev(sc->sc_dev,
601 "unable to create rx DMA map %d, error = %d\n", i,
602 error);
603 goto fail_5;
604 }
605 }
606 for (i = 0; i < ATW_NRXDESC; i++) {
607 sc->sc_rxsoft[i].rxs_mbuf = NULL;
608 }
609
610 switch (sc->sc_rev) {
611 case ATW_REVISION_AB:
612 case ATW_REVISION_AF:
613 sc->sc_sramlen = ATW_SRAM_A_SIZE;
614 break;
615 case ATW_REVISION_BA:
616 case ATW_REVISION_CA:
617 sc->sc_sramlen = ATW_SRAM_B_SIZE;
618 break;
619 }
620
621 /* Reset the chip to a known state. */
622 atw_reset(sc);
623
624 if (atw_read_srom(sc) == -1)
625 goto fail_5;
626
627 sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
628 ATW_SR_RFTYPE_MASK);
629
630 sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
631 ATW_SR_BBPTYPE_MASK);
632
633 if (sc->sc_rftype >= __arraycount(type_strings)) {
634 aprint_error_dev(sc->sc_dev, "unknown RF\n");
635 goto fail_5;
636 }
637 if (sc->sc_bbptype >= __arraycount(type_strings)) {
638 aprint_error_dev(sc->sc_dev, "unknown BBP\n");
639 goto fail_5;
640 }
641
642 aprint_normal_dev(sc->sc_dev, "%s RF, %s BBP",
643 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
644
645 /* XXX There exists a Linux driver which seems to use RFType = 0 for
646 * MARVEL. My bug, or theirs?
647 */
648
649 reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
650
651 switch (sc->sc_rftype) {
652 case ATW_RFTYPE_INTERSIL:
653 reg |= ATW_SYNCTL_CS1;
654 break;
655 case ATW_RFTYPE_RFMD:
656 reg |= ATW_SYNCTL_CS0;
657 break;
658 case ATW_RFTYPE_MARVEL:
659 break;
660 }
661
662 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
663 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
664
665 reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
666
667 switch (sc->sc_bbptype) {
668 case ATW_BBPTYPE_INTERSIL:
669 reg |= ATW_BBPCTL_TWI;
670 break;
671 case ATW_BBPTYPE_RFMD:
672 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
673 ATW_BBPCTL_CCA_ACTLO;
674 break;
675 case ATW_BBPTYPE_MARVEL:
676 break;
677 case ATW_C_BBPTYPE_RFMD:
678 aprint_error_dev(sc->sc_dev,
679 "ADM8211C MAC/RFMD BBP not supported yet.\n");
680 break;
681 }
682
683 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
684 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
685
686 /*
687 * From this point forward, the attachment cannot fail. A failure
688 * before this point releases all resources that may have been
689 * allocated.
690 */
691 sc->sc_flags |= ATWF_ATTACHED;
692
693 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
694 htole16(sc->sc_srom[ATW_SR_MAC00]),
695 htole16(sc->sc_srom[ATW_SR_MAC01]),
696 htole16(sc->sc_srom[ATW_SR_MAC10])));
697
698 srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
699 ATW_SR_MAJOR_MASK);
700
701 if (srom_major < 2)
702 sc->sc_rf3000_options1 = 0;
703 else if (sc->sc_rev == ATW_REVISION_BA) {
704 sc->sc_rf3000_options1 =
705 __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
706 ATW_SR_CR28_MASK);
707 } else
708 sc->sc_rf3000_options1 = 0;
709
710 sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
711 ATW_SR_CR29_MASK);
712
713 country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
714 ATW_SR_CTRY_MASK);
715
716 #define ADD_CHANNEL(_ic, _chan) do { \
717 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
718 _ic->ic_channels[_chan].ic_freq = \
719 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
720 } while (0)
721
722 /* Find available channels */
723 switch (country_code) {
724 case COUNTRY_MMK2: /* 1-14 */
725 ADD_CHANNEL(ic, 14);
726 /*FALLTHROUGH*/
727 case COUNTRY_ETSI: /* 1-13 */
728 for (i = 1; i <= 13; i++)
729 ADD_CHANNEL(ic, i);
730 break;
731 case COUNTRY_FCC: /* 1-11 */
732 case COUNTRY_IC: /* 1-11 */
733 for (i = 1; i <= 11; i++)
734 ADD_CHANNEL(ic, i);
735 break;
736 case COUNTRY_MMK: /* 14 */
737 ADD_CHANNEL(ic, 14);
738 break;
739 case COUNTRY_FRANCE: /* 10-13 */
740 for (i = 10; i <= 13; i++)
741 ADD_CHANNEL(ic, i);
742 break;
743 default: /* assume channels 10-11 */
744 case COUNTRY_SPAIN: /* 10-11 */
745 for (i = 10; i <= 11; i++)
746 ADD_CHANNEL(ic, i);
747 break;
748 }
749
750 /* Read the MAC address. */
751 reg = ATW_READ(sc, ATW_PAR0);
752 ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
753 ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
754 ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
755 ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
756 reg = ATW_READ(sc, ATW_PAR1);
757 ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
758 ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
759
760 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
761 aprint_error_dev(sc->sc_dev,
762 "could not get mac address, attach failed\n");
763 goto fail_5;
764 }
765
766 aprint_normal(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
767
768 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
769 ifp->if_softc = sc;
770 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
771 ifp->if_ioctl = atw_ioctl;
772 ifp->if_start = atw_start;
773 ifp->if_watchdog = atw_watchdog;
774 ifp->if_init = atw_init;
775 ifp->if_stop = atw_stop;
776 IFQ_SET_READY(&ifp->if_snd);
777
778 ic->ic_ifp = ifp;
779 ic->ic_phytype = IEEE80211_T_DS;
780 ic->ic_opmode = IEEE80211_M_STA;
781 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
782 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
783
784 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
785
786 /*
787 * Call MI attach routines.
788 */
789
790 error = if_initialize(ifp);
791 if (error != 0) {
792 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
793 error);
794 goto fail_5;
795 }
796 ieee80211_ifattach(ic);
797 /* Use common softint-based if_input */
798 ifp->if_percpuq = if_percpuq_create(ifp);
799 if_register(ifp);
800
801 atw_evcnt_attach(sc);
802
803 sc->sc_newstate = ic->ic_newstate;
804 ic->ic_newstate = atw_newstate;
805
806 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
807 ic->ic_recv_mgmt = atw_recv_mgmt;
808
809 sc->sc_node_free = ic->ic_node_free;
810 ic->ic_node_free = atw_node_free;
811
812 sc->sc_node_alloc = ic->ic_node_alloc;
813 ic->ic_node_alloc = atw_node_alloc;
814
815 ic->ic_crypto.cs_key_delete = atw_key_delete;
816 ic->ic_crypto.cs_key_set = atw_key_set;
817 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
818 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
819
820 /* possibly we should fill in our own sc_send_prresp, since
821 * the ADM8211 is probably sending probe responses in ad hoc
822 * mode.
823 */
824
825 /* complete initialization */
826 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
827 callout_init(&sc->sc_scan_ch, 0);
828
829 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
830 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
831
832 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
833 sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
834 sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
835
836 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
837 sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
838 sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
839
840 ieee80211_announce(ic);
841 return;
842
843 /*
844 * Free any resources we've allocated during the failed attach
845 * attempt. Do this in reverse order and fall through.
846 */
847 fail_5:
848 for (i = 0; i < ATW_NRXDESC; i++) {
849 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
850 continue;
851 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
852 }
853 fail_4:
854 for (i = 0; i < ATW_TXQUEUELEN; i++) {
855 if (sc->sc_txsoft[i].txs_dmamap == NULL)
856 continue;
857 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
858 }
859 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
860 fail_3:
861 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
862 fail_2:
863 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
864 sizeof(struct atw_control_data));
865 fail_1:
866 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
867 fail_0:
868 if (sc->sc_soft_ih != NULL) {
869 softint_disestablish(sc->sc_soft_ih);
870 sc->sc_soft_ih = NULL;
871 }
872 }
873
874 static struct ieee80211_node *
875 atw_node_alloc(struct ieee80211_node_table *nt)
876 {
877 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
878 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
879
880 DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
881 return ni;
882 }
883
884 static void
885 atw_node_free(struct ieee80211_node *ni)
886 {
887 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
888
889 DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
890 ether_sprintf(ni->ni_bssid)));
891 (*sc->sc_node_free)(ni);
892 }
893
894
895 static void
896 atw_test1_reset(struct atw_softc *sc)
897 {
898 switch (sc->sc_rev) {
899 case ATW_REVISION_BA:
900 if (1 /* XXX condition on transceiver type */) {
901 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
902 }
903 break;
904 case ATW_REVISION_CA:
905 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
906 break;
907 default:
908 break;
909 }
910 }
911
912 /*
913 * atw_reset:
914 *
915 * Perform a soft reset on the ADM8211.
916 */
917 void
918 atw_reset(struct atw_softc *sc)
919 {
920 int i;
921 uint32_t lpc __atwdebugused;
922
923 ATW_WRITE(sc, ATW_NAR, 0x0);
924 DELAY(atw_nar_delay);
925
926 /* Reference driver has a cryptic remark indicating that this might
927 * power-on the chip. I know that it turns off power-saving....
928 */
929 ATW_WRITE(sc, ATW_FRCTL, 0x0);
930
931 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
932
933 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
934 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
935 break;
936 DELAY(atw_pseudo_milli);
937 }
938
939 /* ... and then pause 100ms longer for good measure. */
940 DELAY(atw_magic_delay1);
941
942 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
943
944 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
945 aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
946
947 /*
948 * Initialize the PCI Access Register.
949 */
950 sc->sc_busmode = ATW_PAR_PBL_8DW;
951
952 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
953 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
954 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
955
956 atw_test1_reset(sc);
957
958 /* Turn off maximum power saving, etc. */
959 ATW_WRITE(sc, ATW_FRCTL, 0x0);
960
961 DELAY(atw_magic_delay2);
962
963 /* Recall EEPROM. */
964 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
965
966 DELAY(atw_magic_delay4);
967
968 lpc = ATW_READ(sc, ATW_LPC);
969
970 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
971
972 /* A reset seems to affect the SRAM contents, so put them into
973 * a known state.
974 */
975 atw_clear_sram(sc);
976
977 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
978 }
979
980 static void
981 atw_clear_sram(struct atw_softc *sc)
982 {
983 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
984 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
985 /* XXX not for revision 0x20. */
986 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
987 }
988
989 /* TBD atw_init
990 *
991 * set MAC based on ic->ic_bss->myaddr
992 * write WEP keys
993 * set TX rate
994 */
995
996 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
997 * without receiving a beacon with the preferred BSSID & SSID.
998 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
999 */
1000 static void
1001 atw_wcsr_init(struct atw_softc *sc)
1002 {
1003 uint32_t wcsr;
1004
1005 wcsr = ATW_READ(sc, ATW_WCSR);
1006 wcsr &= ~ATW_WCSR_BLN_MASK;
1007 wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1008 /* We always want to wake up on link loss or TSFT out of range */
1009 wcsr |= ATW_WCSR_LSOE | ATW_WCSR_TSFTWE;
1010 ATW_WRITE(sc, ATW_WCSR, wcsr);
1011
1012 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1013 device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1014 }
1015
1016 /* Turn off power management. Set Rx store-and-forward mode. */
1017 static void
1018 atw_cmdr_init(struct atw_softc *sc)
1019 {
1020 uint32_t cmdr;
1021 cmdr = ATW_READ(sc, ATW_CMDR);
1022 cmdr &= ~ATW_CMDR_APM;
1023 cmdr |= ATW_CMDR_RTE;
1024 cmdr &= ~ATW_CMDR_DRT_MASK;
1025 cmdr |= ATW_CMDR_DRT_SF;
1026
1027 ATW_WRITE(sc, ATW_CMDR, cmdr);
1028 }
1029
1030 static void
1031 atw_tofs2_init(struct atw_softc *sc)
1032 {
1033 uint32_t tofs2;
1034 /* XXX this magic can probably be figured out from the RFMD docs */
1035 #ifndef ATW_REFSLAVE
1036 tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1037 __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1038 __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1039 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1040 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1041 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1042 __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1043 __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1044 #else
1045 /* XXX new magic from reference driver source */
1046 tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1047 __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1048 __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */
1049 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1050 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1051 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1052 __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */
1053 __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */
1054 #endif
1055 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1056 }
1057
1058 static void
1059 atw_nar_init(struct atw_softc *sc)
1060 {
1061 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF | ATW_NAR_PB);
1062 }
1063
1064 static void
1065 atw_txlmt_init(struct atw_softc *sc)
1066 {
1067 ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1068 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1069 }
1070
1071 static void
1072 atw_test1_init(struct atw_softc *sc)
1073 {
1074 uint32_t test1;
1075
1076 test1 = ATW_READ(sc, ATW_TEST1);
1077 test1 &= ~(ATW_TEST1_DBGREAD_MASK | ATW_TEST1_CONTROL);
1078 /* XXX magic 0x1 */
1079 test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1080 ATW_WRITE(sc, ATW_TEST1, test1);
1081 }
1082
1083 static void
1084 atw_rf_reset(struct atw_softc *sc)
1085 {
1086 /* XXX this resets an Intersil RF front-end? */
1087 /* TBD condition on Intersil RFType? */
1088 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1089 DELAY(atw_rf_delay1);
1090 ATW_WRITE(sc, ATW_SYNRF, 0);
1091 DELAY(atw_rf_delay2);
1092 }
1093
1094 /* Set 16 TU max duration for the contention-free period (CFP). */
1095 static void
1096 atw_cfp_init(struct atw_softc *sc)
1097 {
1098 uint32_t cfpp;
1099
1100 cfpp = ATW_READ(sc, ATW_CFPP);
1101 cfpp &= ~ATW_CFPP_CFPMD;
1102 cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1103 ATW_WRITE(sc, ATW_CFPP, cfpp);
1104 }
1105
1106 static void
1107 atw_tofs0_init(struct atw_softc *sc)
1108 {
1109 /* XXX I guess that the Cardbus clock is 22 MHz?
1110 * I am assuming that the role of ATW_TOFS0_USCNT is
1111 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1112 * very clear on this point. It says in the datasheet that it is
1113 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1114 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1115 * these values. These values are also the power-on default.
1116 */
1117 ATW_WRITE(sc, ATW_TOFS0,
1118 __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1119 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1120 }
1121
1122 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1123 static void
1124 atw_ifs_init(struct atw_softc *sc)
1125 {
1126 uint32_t ifst;
1127 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1128 * Go figure.
1129 */
1130 ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1131 __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1132 ATW_IFST_SIFS_MASK) |
1133 __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1134 __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1135
1136 ATW_WRITE(sc, ATW_IFST, ifst);
1137 }
1138
1139 static void
1140 atw_response_times_init(struct atw_softc *sc)
1141 {
1142 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1143 * indicate that the MAC expects at least SIFS + MIRT microseconds
1144 * to pass after it transmits a frame that requires a response;
1145 * it waits at most SIFS + MART microseconds for the response.
1146 * Surely this is not the ACK timeout?
1147 */
1148 ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1149 __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1150 }
1151
1152 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1153 * engines read and write baseband registers after Rx and before
1154 * Tx, respectively.
1155 */
1156 static void
1157 atw_bbp_io_init(struct atw_softc *sc)
1158 {
1159 uint32_t mmiraddr2;
1160
1161 /* XXX The reference driver does this, but is it *really*
1162 * necessary?
1163 */
1164 switch (sc->sc_rev) {
1165 case ATW_REVISION_AB:
1166 case ATW_REVISION_AF:
1167 mmiraddr2 = 0x0;
1168 break;
1169 default:
1170 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1171 mmiraddr2 &=
1172 ~(ATW_MMIRADDR2_PROREXT | ATW_MMIRADDR2_PRORLEN_MASK);
1173 break;
1174 }
1175
1176 switch (sc->sc_bbptype) {
1177 case ATW_BBPTYPE_INTERSIL:
1178 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1179 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1180 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1181 break;
1182 case ATW_BBPTYPE_MARVEL:
1183 /* TBD find out the Marvel settings. */
1184 break;
1185 case ATW_BBPTYPE_RFMD:
1186 default:
1187 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1188 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1189 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1190 break;
1191 }
1192 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1193 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1194 }
1195
1196 /*
1197 * atw_init: [ ifnet interface function ]
1198 *
1199 * Initialize the interface. Must be called at splnet().
1200 */
1201 int
1202 atw_init(struct ifnet *ifp)
1203 {
1204 struct atw_softc *sc = ifp->if_softc;
1205 struct ieee80211com *ic = &sc->sc_ic;
1206 struct atw_txsoft *txs;
1207 struct atw_rxsoft *rxs;
1208 int i, error = 0;
1209
1210 if (device_is_active(sc->sc_dev)) {
1211 /*
1212 * Cancel any pending I/O.
1213 */
1214 atw_stop(ifp, 0);
1215 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1216 !device_is_active(sc->sc_dev))
1217 return 0;
1218
1219 /*
1220 * Reset the chip to a known state.
1221 */
1222 atw_reset(sc);
1223
1224 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1225 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1226 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1227
1228 atw_wcsr_init(sc);
1229
1230 atw_cmdr_init(sc);
1231
1232 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1233 *
1234 * XXX Set transmit power for ATIM, RTS, Beacon.
1235 */
1236 ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1237 __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1238
1239 atw_tofs2_init(sc);
1240
1241 atw_nar_init(sc);
1242
1243 atw_txlmt_init(sc);
1244
1245 atw_test1_init(sc);
1246
1247 atw_rf_reset(sc);
1248
1249 atw_cfp_init(sc);
1250
1251 atw_tofs0_init(sc);
1252
1253 atw_ifs_init(sc);
1254
1255 /* XXX Fall asleep after one second of inactivity.
1256 * XXX A frame may only dribble in for 65536us.
1257 */
1258 ATW_WRITE(sc, ATW_RMD,
1259 __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1260
1261 atw_response_times_init(sc);
1262
1263 atw_bbp_io_init(sc);
1264
1265 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1266
1267 if ((error = atw_rf3000_init(sc)) != 0)
1268 goto out;
1269
1270 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1271 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1272 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1273
1274 /*
1275 * Initialize the transmit descriptor ring.
1276 */
1277 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1278 for (i = 0; i < ATW_NTXDESC; i++) {
1279 sc->sc_txdescs[i].at_ctl = 0;
1280 /* no transmit chaining */
1281 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1282 sc->sc_txdescs[i].at_buf2 =
1283 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1284 }
1285 /* use ring mode */
1286 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1287 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1288 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1289 sc->sc_txfree = ATW_NTXDESC;
1290 sc->sc_txnext = 0;
1291
1292 /*
1293 * Initialize the transmit job descriptors.
1294 */
1295 SIMPLEQ_INIT(&sc->sc_txfreeq);
1296 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1297 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1298 txs = &sc->sc_txsoft[i];
1299 txs->txs_mbuf = NULL;
1300 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1301 }
1302
1303 /*
1304 * Initialize the receive descriptor and receive job
1305 * descriptor rings.
1306 */
1307 for (i = 0; i < ATW_NRXDESC; i++) {
1308 rxs = &sc->sc_rxsoft[i];
1309 if (rxs->rxs_mbuf == NULL) {
1310 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1311 aprint_error_dev(sc->sc_dev,
1312 "unable to allocate or map rx buffer %d, "
1313 "error = %d\n", i, error);
1314 /*
1315 * XXX Should attempt to run with fewer receive
1316 * XXX buffers instead of just failing.
1317 */
1318 atw_rxdrain(sc);
1319 goto out;
1320 }
1321 } else
1322 atw_init_rxdesc(sc, i);
1323 }
1324 sc->sc_rxptr = 0;
1325
1326 /*
1327 * Initialize the interrupt mask and enable interrupts.
1328 */
1329 /* normal interrupts */
1330 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1331 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1332
1333 /* abnormal interrupts */
1334 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1335 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1336 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1337
1338 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1339 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1340 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1341 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1342 ATW_INTR_TRT;
1343
1344 sc->sc_linkint_mask &= sc->sc_inten;
1345 sc->sc_rxint_mask &= sc->sc_inten;
1346 sc->sc_txint_mask &= sc->sc_inten;
1347
1348 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1349 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1350
1351 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1352 device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1353
1354 /*
1355 * Give the transmit and receive rings to the ADM8211.
1356 */
1357 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1358 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1359
1360 sc->sc_txthresh = 0;
1361 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1362 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1363
1364 /* common 802.11 configuration */
1365 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1366 switch (ic->ic_opmode) {
1367 case IEEE80211_M_STA:
1368 break;
1369 case IEEE80211_M_AHDEMO: /* XXX */
1370 case IEEE80211_M_IBSS:
1371 ic->ic_flags |= IEEE80211_F_IBSSON;
1372 /*FALLTHROUGH*/
1373 case IEEE80211_M_HOSTAP: /* XXX */
1374 break;
1375 case IEEE80211_M_MONITOR: /* XXX */
1376 break;
1377 }
1378
1379 switch (ic->ic_opmode) {
1380 case IEEE80211_M_AHDEMO:
1381 case IEEE80211_M_HOSTAP:
1382 #ifndef IEEE80211_NO_HOSTAP
1383 ic->ic_bss->ni_intval = ic->ic_lintval;
1384 ic->ic_bss->ni_rssi = 0;
1385 ic->ic_bss->ni_rstamp = 0;
1386 #endif /* !IEEE80211_NO_HOSTAP */
1387 break;
1388 default: /* XXX */
1389 break;
1390 }
1391
1392 sc->sc_wepctl = 0;
1393
1394 atw_write_ssid(sc);
1395 atw_write_sup_rates(sc);
1396 atw_write_wep(sc);
1397
1398 ic->ic_state = IEEE80211_S_INIT;
1399
1400 /*
1401 * Set the receive filter. This will start the transmit and
1402 * receive processes.
1403 */
1404 atw_filter_setup(sc);
1405
1406 /*
1407 * Start the receive process.
1408 */
1409 ATW_WRITE(sc, ATW_RDR, 0x1);
1410
1411 /*
1412 * Note that the interface is now running.
1413 */
1414 ifp->if_flags |= IFF_RUNNING;
1415
1416 /* send no beacons, yet. */
1417 atw_start_beacon(sc, 0);
1418
1419 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1420 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1421 else
1422 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1423 out:
1424 if (error) {
1425 ifp->if_flags &= ~IFF_RUNNING;
1426 sc->sc_tx_timer = 0;
1427 ifp->if_timer = 0;
1428 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1429 }
1430 #ifdef ATW_DEBUG
1431 atw_print_regs(sc, "end of init");
1432 #endif /* ATW_DEBUG */
1433
1434 return (error);
1435 }
1436
1437 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1438 * 0: MAC control of RF3000/Si4126.
1439 *
1440 * Applies power, or selects RF front-end? Sets reset condition.
1441 *
1442 * TBD support non-RFMD BBP, non-SiLabs synth.
1443 */
1444 static void
1445 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1446 {
1447 if (enable) {
1448 ATW_WRITE(sc, ATW_SYNRF,
1449 ATW_SYNRF_SELRF | ATW_SYNRF_PE1 | ATW_SYNRF_PHYRST);
1450 DELAY(atw_bbp_io_enable_delay);
1451 } else {
1452 ATW_WRITE(sc, ATW_SYNRF, 0);
1453 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1454 }
1455 }
1456
1457 static int
1458 atw_tune(struct atw_softc *sc)
1459 {
1460 int rc;
1461 u_int chan;
1462 struct ieee80211com *ic = &sc->sc_ic;
1463
1464 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1465 if (chan == IEEE80211_CHAN_ANY)
1466 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1467
1468 if (chan == sc->sc_cur_chan)
1469 return 0;
1470
1471 DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1472 sc->sc_cur_chan, chan));
1473
1474 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
1475
1476 atw_si4126_tune(sc, chan);
1477 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1478 printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1479 chan);
1480
1481 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1482 DELAY(atw_nar_delay);
1483 ATW_WRITE(sc, ATW_RDR, 0x1);
1484
1485 if (rc == 0) {
1486 sc->sc_cur_chan = chan;
1487 sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1488 htole16(ic->ic_curchan->ic_freq);
1489 sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1490 htole16(ic->ic_curchan->ic_flags);
1491 }
1492
1493 return rc;
1494 }
1495
1496 #ifdef ATW_SYNDEBUG
1497 static void
1498 atw_si4126_print(struct atw_softc *sc)
1499 {
1500 struct ifnet *ifp = &sc->sc_if;
1501 u_int addr, val;
1502
1503 val = 0;
1504
1505 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1506 return;
1507
1508 for (addr = 0; addr <= 8; addr++) {
1509 printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1510 if (atw_si4126_read(sc, addr, &val) == 0) {
1511 printf("<unknown> (quitting print-out)\n");
1512 break;
1513 }
1514 printf("%05x\n", val);
1515 }
1516 }
1517 #endif /* ATW_SYNDEBUG */
1518
1519 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1520 *
1521 * The RF/IF synthesizer produces two reference frequencies for
1522 * the RF2948B transceiver. The first frequency the RF2948B requires
1523 * is two times the so-called "intermediate frequency" (IF). Since
1524 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1525 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second
1526 * frequency required by the transceiver is the radio frequency
1527 * (RF). This is a superheterodyne transceiver; for f(chan) the
1528 * center frequency of the channel we are tuning, RF = f(chan) -
1529 * IF.
1530 *
1531 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1532 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1533 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1534 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1535 */
1536 static void
1537 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1538 {
1539 u_int mhz;
1540 u_int R;
1541 uint32_t gpio;
1542 uint16_t gain;
1543
1544 #ifdef ATW_SYNDEBUG
1545 atw_si4126_print(sc);
1546 #endif /* ATW_SYNDEBUG */
1547
1548 if (chan == 14)
1549 mhz = 2484;
1550 else
1551 mhz = 2412 + 5 * (chan - 1);
1552
1553 /* Tune IF to 748 MHz to suit the IF LO input of the
1554 * RF2494B, which is 2 x IF. No need to set an IF divider
1555 * because an IF in 526 MHz - 952 MHz is allowed.
1556 *
1557 * XIN is 44.000 MHz, so divide it by two to get allowable
1558 * range of 2-25 MHz. SiLabs tells me that this is not
1559 * strictly necessary.
1560 */
1561
1562 if (atw_xindiv2)
1563 R = 44;
1564 else
1565 R = 88;
1566
1567 /* Power-up RF, IF synthesizers. */
1568 atw_si4126_write(sc, SI4126_POWER,
1569 SI4126_POWER_PDIB | SI4126_POWER_PDRB);
1570
1571 /* set LPWR, too? */
1572 atw_si4126_write(sc, SI4126_MAIN,
1573 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1574
1575 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1576 * set KP2 to 1.
1577 *
1578 * REFDIF This is different from the reference driver, which
1579 * always sets SI4126_GAIN to 0.
1580 */
1581 gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1582
1583 atw_si4126_write(sc, SI4126_GAIN, gain);
1584
1585 /* XIN = 44 MHz.
1586 *
1587 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1588 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1589 *
1590 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1591 * so that 1496/88 * 44 MHz = 748 MHz.
1592 */
1593 atw_si4126_write(sc, SI4126_IFN, 1496);
1594
1595 atw_si4126_write(sc, SI4126_IFR, R);
1596
1597 #ifndef ATW_REFSLAVE
1598 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1599 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1600 * which has no RF1!
1601 */
1602 atw_si4126_write(sc, SI4126_RF1R, R);
1603
1604 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1605 #endif
1606
1607 /* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1608 * where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44.
1609 * Now let's multiply it to mhz. So mhz - IF = N.
1610 */
1611 atw_si4126_write(sc, SI4126_RF2R, R);
1612
1613 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1614
1615 /* wait 100us from power-up for RF, IF to settle */
1616 DELAY(100);
1617
1618 gpio = ATW_READ(sc, ATW_GPIO);
1619 gpio &= ~(ATW_GPIO_EN_MASK | ATW_GPIO_O_MASK | ATW_GPIO_I_MASK);
1620 gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1621
1622 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1623 /* Set a Prism RF front-end to a special mode for channel 14?
1624 *
1625 * Apparently the SMC2635W needs this, although I don't think
1626 * it has a Prism RF.
1627 */
1628 gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1629 }
1630 ATW_WRITE(sc, ATW_GPIO, gpio);
1631
1632 #ifdef ATW_SYNDEBUG
1633 atw_si4126_print(sc);
1634 #endif /* ATW_SYNDEBUG */
1635 }
1636
1637 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1638 * diversity.
1639 *
1640 * !!!
1641 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1642 * !!!
1643 */
1644 static int
1645 atw_rf3000_init(struct atw_softc *sc)
1646 {
1647 int rc = 0;
1648
1649 atw_bbp_io_enable(sc, 1);
1650
1651 /* CCA is acquisition sensitive */
1652 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1653 __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1654
1655 if (rc != 0)
1656 goto out;
1657
1658 /* enable diversity */
1659 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1660
1661 if (rc != 0)
1662 goto out;
1663
1664 /* sensible setting from a binary-only driver */
1665 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1666 __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1667
1668 if (rc != 0)
1669 goto out;
1670
1671 /* magic from a binary-only driver */
1672 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1673 __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1674
1675 if (rc != 0)
1676 goto out;
1677
1678 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1679
1680 if (rc != 0)
1681 goto out;
1682
1683 /* XXX Reference driver remarks that Abocom sets this to 50.
1684 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1685 * in the "reserved" area of register RF3000_OPTIONS1.
1686 */
1687 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1688
1689 if (rc != 0)
1690 goto out;
1691
1692 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1693
1694 if (rc != 0)
1695 goto out;
1696
1697 out:
1698 atw_bbp_io_enable(sc, 0);
1699 return rc;
1700 }
1701
1702 #ifdef ATW_BBPDEBUG
1703 static void
1704 atw_rf3000_print(struct atw_softc *sc)
1705 {
1706 struct ifnet *ifp = &sc->sc_if;
1707 u_int addr, val;
1708
1709 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1710 return;
1711
1712 for (addr = 0x01; addr <= 0x15; addr++) {
1713 printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1714 if (atw_rf3000_read(sc, addr, &val) != 0) {
1715 printf("<unknown> (quitting print-out)\n");
1716 break;
1717 }
1718 printf("%08x\n", val);
1719 }
1720 }
1721 #endif /* ATW_BBPDEBUG */
1722
1723 /* Set the power settings on the BBP for channel `chan'. */
1724 static int
1725 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1726 {
1727 int rc = 0;
1728 uint32_t reg;
1729 uint16_t txpower, lpf_cutoff, lna_gs_thresh;
1730
1731 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1732 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1733 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1734
1735 /* odd channels: LSB, even channels: MSB */
1736 if (chan % 2 == 1) {
1737 txpower &= 0xFF;
1738 lpf_cutoff &= 0xFF;
1739 lna_gs_thresh &= 0xFF;
1740 } else {
1741 txpower >>= 8;
1742 lpf_cutoff >>= 8;
1743 lna_gs_thresh >>= 8;
1744 }
1745
1746 #ifdef ATW_BBPDEBUG
1747 atw_rf3000_print(sc);
1748 #endif /* ATW_BBPDEBUG */
1749
1750 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1751 "lna_gs_thresh %02x\n",
1752 device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1753
1754 atw_bbp_io_enable(sc, 1);
1755
1756 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1757 __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1758 goto out;
1759
1760 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1761 goto out;
1762
1763 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1764 goto out;
1765
1766 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1767
1768 if (rc != 0)
1769 goto out;
1770
1771 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1772
1773 if (rc != 0)
1774 goto out;
1775
1776 #ifdef ATW_BBPDEBUG
1777 atw_rf3000_print(sc);
1778 #endif /* ATW_BBPDEBUG */
1779
1780 out:
1781 atw_bbp_io_enable(sc, 0);
1782
1783 /* set beacon, rts, atim transmit power */
1784 reg = ATW_READ(sc, ATW_PLCPHD);
1785 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1786 reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1787 ATW_PLCPHD_SERVICE_MASK);
1788 ATW_WRITE(sc, ATW_PLCPHD, reg);
1789 DELAY(atw_plcphd_delay);
1790
1791 return rc;
1792 }
1793
1794 /* Write a register on the RF3000 baseband processor using the
1795 * registers provided by the ADM8211 for this purpose.
1796 *
1797 * Return 0 on success.
1798 */
1799 static int
1800 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1801 {
1802 uint32_t reg;
1803 int i;
1804
1805 reg = sc->sc_bbpctl_wr |
1806 __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1807 __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1808
1809 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1810 ATW_WRITE(sc, ATW_BBPCTL, reg);
1811 DELAY(2 * atw_pseudo_milli);
1812 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1813 break;
1814 }
1815
1816 if (i < 0) {
1817 printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1818 return ETIMEDOUT;
1819 }
1820 return 0;
1821 }
1822
1823 /* Read a register on the RF3000 baseband processor using the registers
1824 * the ADM8211 provides for this purpose.
1825 *
1826 * The 7-bit register address is addr. Record the 8-bit data in the register
1827 * in *val.
1828 *
1829 * Return 0 on success.
1830 *
1831 * XXX This does not seem to work. The ADM8211 must require more or
1832 * different magic to read the chip than to write it. Possibly some
1833 * of the magic I have derived from a binary-only driver concerns
1834 * the "chip address" (see the RF3000 manual).
1835 */
1836 #ifdef ATW_BBPDEBUG
1837 static int
1838 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1839 {
1840 uint32_t reg;
1841 int i;
1842
1843 for (i = 1000; --i >= 0; ) {
1844 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD | ATW_BBPCTL_WR)
1845 == 0)
1846 break;
1847 DELAY(100);
1848 }
1849
1850 if (i < 0) {
1851 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1852 device_xname(sc->sc_dev));
1853 return ETIMEDOUT;
1854 }
1855
1856 reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1857
1858 ATW_WRITE(sc, ATW_BBPCTL, reg);
1859
1860 for (i = 1000; --i >= 0; ) {
1861 DELAY(100);
1862 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1863 break;
1864 }
1865
1866 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1867
1868 if (i < 0) {
1869 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1870 device_xname(sc->sc_dev), reg);
1871 return ETIMEDOUT;
1872 }
1873 if (val != NULL)
1874 *val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1875 return 0;
1876 }
1877 #endif /* ATW_BBPDEBUG */
1878
1879 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1880 * provided by the ADM8211 for that purpose.
1881 *
1882 * val is 18 bits of data, and val is the 4-bit address of the register.
1883 *
1884 * Return 0 on success.
1885 */
1886 static void
1887 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1888 {
1889 uint32_t bits, mask, reg;
1890 const int nbits = 22;
1891
1892 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1893 KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1894
1895 bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1896 __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1897
1898 reg = ATW_SYNRF_SELSYN;
1899 /* reference driver: reset Si4126 serial bus to initial
1900 * conditions?
1901 */
1902 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1903 ATW_WRITE(sc, ATW_SYNRF, reg);
1904
1905 for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1906 if ((bits & mask) != 0)
1907 reg |= ATW_SYNRF_SYNDATA;
1908 else
1909 reg &= ~ATW_SYNRF_SYNDATA;
1910 ATW_WRITE(sc, ATW_SYNRF, reg);
1911 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1912 ATW_WRITE(sc, ATW_SYNRF, reg);
1913 }
1914 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1915 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1916 }
1917
1918 /* Read 18-bit data from the 4-bit address addr in Si4126
1919 * RF synthesizer and write the data to *val. Return 0 on success.
1920 *
1921 * XXX This does not seem to work. The ADM8211 must require more or
1922 * different magic to read the chip than to write it.
1923 */
1924 #ifdef ATW_SYNDEBUG
1925 static int
1926 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1927 {
1928 uint32_t reg;
1929 int i;
1930
1931 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1932
1933 for (i = 1000; --i >= 0; ) {
1934 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD | ATW_SYNCTL_WR)
1935 == 0)
1936 break;
1937 DELAY(100);
1938 }
1939
1940 if (i < 0) {
1941 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1942 device_xname(sc->sc_dev));
1943 return ETIMEDOUT;
1944 }
1945
1946 reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1947
1948 ATW_WRITE(sc, ATW_SYNCTL, reg);
1949
1950 for (i = 1000; --i >= 0; ) {
1951 DELAY(100);
1952 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1953 break;
1954 }
1955
1956 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1957
1958 if (i < 0) {
1959 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1960 device_xname(sc->sc_dev), reg);
1961 return ETIMEDOUT;
1962 }
1963 if (val != NULL)
1964 *val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1965 ATW_SYNCTL_DATA_MASK);
1966 return 0;
1967 }
1968 #endif /* ATW_SYNDEBUG */
1969
1970 /* XXX is the endianness correct? test. */
1971 #define atw_calchash(addr) \
1972 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1973
1974 /*
1975 * atw_filter_setup:
1976 *
1977 * Set the ADM8211's receive filter.
1978 */
1979 static void
1980 atw_filter_setup(struct atw_softc *sc)
1981 {
1982 struct ieee80211com *ic = &sc->sc_ic;
1983 struct ethercom *ec = &sc->sc_ec;
1984 struct ifnet *ifp = &sc->sc_if;
1985 int hash;
1986 uint32_t hashes[2];
1987 struct ether_multi *enm;
1988 struct ether_multistep step;
1989
1990 /* According to comments in tlp_al981_filter_setup
1991 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1992 * multicast filter to be set while it is running. Hopefully
1993 * the ADM8211 is not the same!
1994 */
1995 if ((ifp->if_flags & IFF_RUNNING) != 0)
1996 atw_idle(sc, ATW_NAR_SR);
1997
1998 sc->sc_opmode &= ~(ATW_NAR_PB | ATW_NAR_PR | ATW_NAR_MM);
1999 ifp->if_flags &= ~IFF_ALLMULTI;
2000
2001 /* XXX in scan mode, do not filter packets. Maybe this is
2002 * unnecessary.
2003 */
2004 if (ic->ic_state == IEEE80211_S_SCAN ||
2005 (ifp->if_flags & IFF_PROMISC) != 0) {
2006 sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2007 goto allmulti;
2008 }
2009
2010 hashes[0] = hashes[1] = 0x0;
2011
2012 /*
2013 * Program the 64-bit multicast hash filter.
2014 */
2015 ETHER_FIRST_MULTI(step, ec, enm);
2016 while (enm != NULL) {
2017 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2018 ETHER_ADDR_LEN) != 0)
2019 goto allmulti;
2020
2021 hash = atw_calchash(enm->enm_addrlo);
2022 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2023 ETHER_NEXT_MULTI(step, enm);
2024 sc->sc_opmode |= ATW_NAR_MM;
2025 }
2026 ifp->if_flags &= ~IFF_ALLMULTI;
2027 goto setit;
2028
2029 allmulti:
2030 sc->sc_opmode |= ATW_NAR_MM;
2031 ifp->if_flags |= IFF_ALLMULTI;
2032 hashes[0] = hashes[1] = 0xffffffff;
2033
2034 setit:
2035 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2036 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2037 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2038 DELAY(atw_nar_delay);
2039 ATW_WRITE(sc, ATW_RDR, 0x1);
2040
2041 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2042 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2043 }
2044
2045 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2046 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2047 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2048 * no beacon with the preferred BSSID and SSID in the number of
2049 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2050 */
2051 static void
2052 atw_write_bssid(struct atw_softc *sc)
2053 {
2054 struct ieee80211com *ic = &sc->sc_ic;
2055 uint8_t *bssid;
2056
2057 bssid = ic->ic_bss->ni_bssid;
2058
2059 ATW_WRITE(sc, ATW_BSSID0,
2060 __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2061 __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2062 __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2063 __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2064
2065 ATW_WRITE(sc, ATW_ABDA1,
2066 (ATW_READ(sc, ATW_ABDA1) &
2067 ~(ATW_ABDA1_BSSIDB4_MASK | ATW_ABDA1_BSSIDB5_MASK)) |
2068 __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2069 __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2070
2071 DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2072 ether_sprintf(sc->sc_bssid)));
2073 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2074
2075 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2076 }
2077
2078 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2079 * 16-bit word.
2080 */
2081 static void
2082 atw_write_sram(struct atw_softc *sc, u_int ofs, uint8_t *buf, u_int buflen)
2083 {
2084 u_int i;
2085 uint8_t *ptr;
2086
2087 memcpy(&sc->sc_sram[ofs], buf, buflen);
2088
2089 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2090
2091 KASSERT(buflen + ofs <= sc->sc_sramlen);
2092
2093 ptr = &sc->sc_sram[ofs];
2094
2095 for (i = 0; i < buflen; i += 2) {
2096 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2097 __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2098 DELAY(atw_writewep_delay);
2099
2100 ATW_WRITE(sc, ATW_WESK,
2101 __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2102 DELAY(atw_writewep_delay);
2103 }
2104 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2105
2106 if (sc->sc_if.if_flags & IFF_DEBUG) {
2107 int n_octets = 0;
2108 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2109 device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2110 for (i = 0; i < buflen; i++) {
2111 printf(" %02x", ptr[i]);
2112 if (++n_octets % 24 == 0)
2113 printf("\n");
2114 }
2115 if (n_octets % 24 != 0)
2116 printf("\n");
2117 }
2118 }
2119
2120 static int
2121 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2122 {
2123 struct atw_softc *sc = ic->ic_ifp->if_softc;
2124 u_int keyix = k->wk_keyix;
2125
2126 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2127
2128 if (keyix >= IEEE80211_WEP_NKID)
2129 return 0;
2130 if (k->wk_keylen != 0)
2131 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2132
2133 return 1;
2134 }
2135
2136 static int
2137 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2138 const uint8_t mac[IEEE80211_ADDR_LEN])
2139 {
2140 struct atw_softc *sc = ic->ic_ifp->if_softc;
2141
2142 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2143
2144 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2145 return 0;
2146
2147 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2148
2149 return 1;
2150 }
2151
2152 static void
2153 atw_key_update_begin(struct ieee80211com *ic)
2154 {
2155 #ifdef ATW_DEBUG
2156 struct ifnet *ifp = ic->ic_ifp;
2157 struct atw_softc *sc = ifp->if_softc;
2158 #endif
2159
2160 DPRINTF(sc, ("%s:\n", __func__));
2161 }
2162
2163 static void
2164 atw_key_update_end(struct ieee80211com *ic)
2165 {
2166 struct ifnet *ifp = ic->ic_ifp;
2167 struct atw_softc *sc = ifp->if_softc;
2168
2169 DPRINTF(sc, ("%s:\n", __func__));
2170
2171 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2172 return;
2173 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2174 return;
2175 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2176 atw_write_wep(sc);
2177 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2178 DELAY(atw_nar_delay);
2179 ATW_WRITE(sc, ATW_RDR, 0x1);
2180 }
2181
2182 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2183 static void
2184 atw_write_wep(struct atw_softc *sc)
2185 {
2186 #if 0
2187 struct ieee80211com *ic = &sc->sc_ic;
2188 uint32_t reg;
2189 int i;
2190 #endif
2191 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2192 uint8_t buf[IEEE80211_WEP_NKID]
2193 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2194
2195 sc->sc_wepctl = 0;
2196 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2197
2198 memset(&buf[0][0], 0, sizeof(buf));
2199
2200 #if 0
2201 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2202 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2203 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2204 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2205 buf[i][1] = ATW_WEP_ENABLED;
2206 } else {
2207 buf[i][1] = 0;
2208 continue;
2209 }
2210 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2211 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2212 ic->ic_nw_keys[i].wk_keylen - 1);
2213 }
2214
2215 reg = ATW_READ(sc, ATW_MACTEST);
2216 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2217 reg &= ~ATW_MACTEST_KEYID_MASK;
2218 reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2219 ATW_WRITE(sc, ATW_MACTEST, reg);
2220
2221 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2222 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2223
2224 switch (sc->sc_rev) {
2225 case ATW_REVISION_AB:
2226 case ATW_REVISION_AF:
2227 /* Bypass WEP on Rx. */
2228 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2229 break;
2230 default:
2231 break;
2232 }
2233 #endif
2234
2235 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (uint8_t*)&buf[0][0],
2236 sizeof(buf));
2237
2238 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2239 }
2240
2241 static void
2242 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2243 struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
2244 {
2245 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2246
2247 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2248 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2249 return;
2250
2251 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2252
2253 switch (subtype) {
2254 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2255 case IEEE80211_FC0_SUBTYPE_BEACON:
2256 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2257 ic->ic_state == IEEE80211_S_RUN) {
2258 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2259 (void)ieee80211_ibss_merge(ni);
2260 }
2261 break;
2262 default:
2263 break;
2264 }
2265 return;
2266 }
2267
2268 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2269 * In ad hoc mode, the SSID is written to the beacons sent by the
2270 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2271 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2272 * indications.
2273 */
2274 static void
2275 atw_write_ssid(struct atw_softc *sc)
2276 {
2277 struct ieee80211com *ic = &sc->sc_ic;
2278 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2279 * it only expects the element length, not its ID.
2280 */
2281 uint8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2282
2283 memset(buf, 0, sizeof(buf));
2284 buf[0] = ic->ic_bss->ni_esslen;
2285 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2286
2287 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2288 roundup(1 + ic->ic_bss->ni_esslen, 2));
2289 }
2290
2291 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2292 * In ad hoc mode, the supported rates are written to beacons sent by the
2293 * ADM8211.
2294 */
2295 static void
2296 atw_write_sup_rates(struct atw_softc *sc)
2297 {
2298 struct ieee80211com *ic = &sc->sc_ic;
2299 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2300 * supported rates
2301 */
2302 uint8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2303
2304 memset(buf, 0, sizeof(buf));
2305
2306 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2307
2308 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2309 ic->ic_bss->ni_rates.rs_nrates);
2310
2311 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2312 }
2313
2314 /* Start/stop sending beacons. */
2315 void
2316 atw_start_beacon(struct atw_softc *sc, int start)
2317 {
2318 struct ieee80211com *ic = &sc->sc_ic;
2319 uint16_t chan;
2320 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2321 size_t len;
2322
2323 if (!device_is_active(sc->sc_dev))
2324 return;
2325
2326 /* start beacons */
2327 len = sizeof(struct ieee80211_frame) +
2328 8 /* timestamp */ + 2 /* beacon interval */ +
2329 2 /* capability info */ +
2330 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2331 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2332 3 /* DS parameters */ +
2333 IEEE80211_CRC_LEN;
2334
2335 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2336 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2337 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2338
2339 ATW_WRITE(sc, ATW_BCNT, bcnt);
2340 ATW_WRITE(sc, ATW_CAP1, cap1);
2341
2342 if (!start)
2343 return;
2344
2345 /* TBD use ni_capinfo */
2346
2347 capinfo = 0;
2348 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2349 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2350 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2351 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2352
2353 switch (ic->ic_opmode) {
2354 case IEEE80211_M_IBSS:
2355 len += 4; /* IBSS parameters */
2356 capinfo |= IEEE80211_CAPINFO_IBSS;
2357 break;
2358 case IEEE80211_M_HOSTAP:
2359 /* XXX 6-byte minimum TIM */
2360 len += atw_beacon_len_adjust;
2361 capinfo |= IEEE80211_CAPINFO_ESS;
2362 break;
2363 default:
2364 return;
2365 }
2366
2367 /* set listen interval
2368 * XXX do software units agree w/ hardware?
2369 */
2370 bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2371 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2372
2373 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2374
2375 bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2376 cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2377 cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2378
2379 ATW_WRITE(sc, ATW_BCNT, bcnt);
2380 ATW_WRITE(sc, ATW_BPLI, bpli);
2381 ATW_WRITE(sc, ATW_CAP0, cap0);
2382 ATW_WRITE(sc, ATW_CAP1, cap1);
2383
2384 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2385 device_xname(sc->sc_dev), bcnt));
2386
2387 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2388 device_xname(sc->sc_dev), cap1));
2389 }
2390
2391 /* Return the 32 lsb of the last TSFT divisible by ival. */
2392 static inline uint32_t
2393 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2394 {
2395 /* Following the reference driver's lead, I compute
2396 *
2397 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2398 *
2399 * without using 64-bit arithmetic, using the following
2400 * relationship:
2401 *
2402 * (0x100000000 * H + L) % m
2403 * = ((0x100000000 % m) * H + L) % m
2404 * = (((0xffffffff + 1) % m) * H + L) % m
2405 * = ((0xffffffff % m + 1 % m) * H + L) % m
2406 * = ((0xffffffff % m + 1) * H + L) % m
2407 */
2408 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2409 }
2410
2411 static uint64_t
2412 atw_get_tsft(struct atw_softc *sc)
2413 {
2414 int i;
2415 uint32_t tsfth, tsftl;
2416 for (i = 0; i < 2; i++) {
2417 tsfth = ATW_READ(sc, ATW_TSFTH);
2418 tsftl = ATW_READ(sc, ATW_TSFTL);
2419 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2420 break;
2421 }
2422 return ((uint64_t)tsfth << 32) | tsftl;
2423 }
2424
2425 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2426 * the ieee80211com.
2427 *
2428 * Predict the next target beacon transmission time (TBTT) and
2429 * write it to the ADM8211.
2430 */
2431 static void
2432 atw_predict_beacon(struct atw_softc *sc)
2433 {
2434 #define TBTTOFS 20 /* TU */
2435
2436 struct ieee80211com *ic = &sc->sc_ic;
2437 uint64_t tsft;
2438 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2439 union {
2440 uint64_t word;
2441 uint8_t tstamp[8];
2442 } u;
2443
2444 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2445 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2446 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2447 tsft = atw_get_tsft(sc);
2448 u.word = htole64(tsft);
2449 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2450 sizeof(ic->ic_bss->ni_tstamp));
2451 } else
2452 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2453
2454 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2455
2456 tsftl = tsft & 0xFFFFFFFF;
2457 tsfth = tsft >> 32;
2458
2459 /* We sent/received the last beacon `past' microseconds
2460 * after the interval divided the TSF timer.
2461 */
2462 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2463
2464 /* Skip ten beacons so that the TBTT cannot pass before
2465 * we've programmed it. Ten is an arbitrary number.
2466 */
2467 tbtt = past_even + ival * 10;
2468
2469 ATW_WRITE(sc, ATW_TOFS1,
2470 __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2471 __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2472 __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2473 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2474 #undef TBTTOFS
2475 }
2476
2477 static void
2478 atw_next_scan(void *arg)
2479 {
2480 struct atw_softc *sc = arg;
2481 struct ieee80211com *ic = &sc->sc_ic;
2482 int s;
2483
2484 /* don't call atw_start w/o network interrupts blocked */
2485 s = splnet();
2486 if (ic->ic_state == IEEE80211_S_SCAN)
2487 ieee80211_next_scan(ic);
2488 splx(s);
2489 }
2490
2491 /* Synchronize the hardware state with the software state. */
2492 static int
2493 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2494 {
2495 struct ifnet *ifp = ic->ic_ifp;
2496 struct atw_softc *sc = ifp->if_softc;
2497 int error = 0;
2498
2499 callout_stop(&sc->sc_scan_ch);
2500
2501 switch (nstate) {
2502 case IEEE80211_S_AUTH:
2503 case IEEE80211_S_ASSOC:
2504 atw_write_bssid(sc);
2505 error = atw_tune(sc);
2506 break;
2507 case IEEE80211_S_INIT:
2508 callout_stop(&sc->sc_scan_ch);
2509 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2510 atw_start_beacon(sc, 0);
2511 break;
2512 case IEEE80211_S_SCAN:
2513 error = atw_tune(sc);
2514 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2515 atw_next_scan, sc);
2516 break;
2517 case IEEE80211_S_RUN:
2518 error = atw_tune(sc);
2519 atw_write_bssid(sc);
2520 atw_write_ssid(sc);
2521 atw_write_sup_rates(sc);
2522
2523 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2524 ic->ic_opmode == IEEE80211_M_MONITOR)
2525 break;
2526
2527 /* set listen interval
2528 * XXX do software units agree w/ hardware?
2529 */
2530 ATW_WRITE(sc, ATW_BPLI,
2531 __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2532 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2533 ATW_BPLI_LI_MASK));
2534
2535 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2536 ATW_READ(sc, ATW_BPLI)));
2537
2538 atw_predict_beacon(sc);
2539
2540 switch (ic->ic_opmode) {
2541 case IEEE80211_M_AHDEMO:
2542 case IEEE80211_M_HOSTAP:
2543 case IEEE80211_M_IBSS:
2544 atw_start_beacon(sc, 1);
2545 break;
2546 case IEEE80211_M_MONITOR:
2547 case IEEE80211_M_STA:
2548 break;
2549 }
2550
2551 break;
2552 }
2553 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2554 }
2555
2556 /*
2557 * atw_add_rxbuf:
2558 *
2559 * Add a receive buffer to the indicated descriptor.
2560 */
2561 int
2562 atw_add_rxbuf(struct atw_softc *sc, int idx)
2563 {
2564 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2565 struct mbuf *m;
2566 int error;
2567
2568 MGETHDR(m, M_DONTWAIT, MT_DATA);
2569 if (m == NULL)
2570 return (ENOBUFS);
2571
2572 MCLGET(m, M_DONTWAIT);
2573 if ((m->m_flags & M_EXT) == 0) {
2574 m_freem(m);
2575 return (ENOBUFS);
2576 }
2577
2578 if (rxs->rxs_mbuf != NULL)
2579 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2580
2581 rxs->rxs_mbuf = m;
2582
2583 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2584 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2585 BUS_DMA_READ | BUS_DMA_NOWAIT);
2586 if (error) {
2587 aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2588 idx, error);
2589 panic("atw_add_rxbuf"); /* XXX */
2590 }
2591
2592 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2593 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2594
2595 atw_init_rxdesc(sc, idx);
2596
2597 return (0);
2598 }
2599
2600 /*
2601 * Release any queued transmit buffers.
2602 */
2603 void
2604 atw_txdrain(struct atw_softc *sc)
2605 {
2606 struct atw_txsoft *txs;
2607
2608 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2609 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2610 if (txs->txs_mbuf != NULL) {
2611 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2612 m_freem(txs->txs_mbuf);
2613 txs->txs_mbuf = NULL;
2614 }
2615 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2616 sc->sc_txfree += txs->txs_ndescs;
2617 }
2618
2619 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2620 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2621 sc->sc_txfree != ATW_NTXDESC));
2622 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2623 sc->sc_tx_timer = 0;
2624 }
2625
2626 /*
2627 * atw_stop: [ ifnet interface function ]
2628 *
2629 * Stop transmission on the interface.
2630 */
2631 void
2632 atw_stop(struct ifnet *ifp, int disable)
2633 {
2634 struct atw_softc *sc = ifp->if_softc;
2635 struct ieee80211com *ic = &sc->sc_ic;
2636
2637 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2638
2639 if (device_is_active(sc->sc_dev)) {
2640 /* Disable interrupts. */
2641 ATW_WRITE(sc, ATW_IER, 0);
2642
2643 /* Stop the transmit and receive processes. */
2644 ATW_WRITE(sc, ATW_NAR, 0);
2645 DELAY(atw_nar_delay);
2646 ATW_WRITE(sc, ATW_TDBD, 0);
2647 ATW_WRITE(sc, ATW_TDBP, 0);
2648 ATW_WRITE(sc, ATW_RDB, 0);
2649 }
2650
2651 sc->sc_opmode = 0;
2652
2653 atw_txdrain(sc);
2654
2655 /*
2656 * Mark the interface down and cancel the watchdog timer.
2657 */
2658 ifp->if_flags &= ~IFF_RUNNING;
2659 ifp->if_timer = 0;
2660
2661 if (disable)
2662 pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2663 }
2664
2665 /*
2666 * atw_rxdrain:
2667 *
2668 * Drain the receive queue.
2669 */
2670 void
2671 atw_rxdrain(struct atw_softc *sc)
2672 {
2673 struct atw_rxsoft *rxs;
2674 int i;
2675
2676 for (i = 0; i < ATW_NRXDESC; i++) {
2677 rxs = &sc->sc_rxsoft[i];
2678 if (rxs->rxs_mbuf == NULL)
2679 continue;
2680 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2681 m_freem(rxs->rxs_mbuf);
2682 rxs->rxs_mbuf = NULL;
2683 }
2684 }
2685
2686 /*
2687 * atw_detach:
2688 *
2689 * Detach an ADM8211 interface.
2690 */
2691 int
2692 atw_detach(struct atw_softc *sc)
2693 {
2694 struct ifnet *ifp = &sc->sc_if;
2695 struct atw_rxsoft *rxs;
2696 struct atw_txsoft *txs;
2697 int i;
2698
2699 /*
2700 * Succeed now if there isn't any work to do.
2701 */
2702 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2703 return (0);
2704
2705 pmf_device_deregister(sc->sc_dev);
2706
2707 callout_stop(&sc->sc_scan_ch);
2708
2709 ieee80211_ifdetach(&sc->sc_ic);
2710 if_detach(ifp);
2711
2712 for (i = 0; i < ATW_NRXDESC; i++) {
2713 rxs = &sc->sc_rxsoft[i];
2714 if (rxs->rxs_mbuf != NULL) {
2715 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2716 m_freem(rxs->rxs_mbuf);
2717 rxs->rxs_mbuf = NULL;
2718 }
2719 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2720 }
2721 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2722 txs = &sc->sc_txsoft[i];
2723 if (txs->txs_mbuf != NULL) {
2724 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2725 m_freem(txs->txs_mbuf);
2726 txs->txs_mbuf = NULL;
2727 }
2728 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2729 }
2730 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2731 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2732 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2733 sizeof(struct atw_control_data));
2734 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2735
2736 if (sc->sc_srom)
2737 free(sc->sc_srom, M_DEVBUF);
2738
2739 atw_evcnt_detach(sc);
2740
2741 if (sc->sc_soft_ih != NULL) {
2742 softint_disestablish(sc->sc_soft_ih);
2743 sc->sc_soft_ih = NULL;
2744 }
2745
2746 return (0);
2747 }
2748
2749 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2750 bool
2751 atw_shutdown(device_t self, int flags)
2752 {
2753 struct atw_softc *sc = device_private(self);
2754
2755 atw_stop(&sc->sc_if, 1);
2756 return true;
2757 }
2758
2759 #if 0
2760 static void
2761 atw_workaround1(struct atw_softc *sc)
2762 {
2763 uint32_t test1;
2764
2765 test1 = ATW_READ(sc, ATW_TEST1);
2766
2767 sc->sc_misc_ev.ev_count++;
2768
2769 if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2770 sc->sc_rxpkt1in_ev.ev_count++;
2771 return;
2772 }
2773 if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2774 __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2775 sc->sc_rxamatch_ev.ev_count++;
2776 return;
2777 }
2778 sc->sc_workaround1_ev.ev_count++;
2779 (void)atw_init(&sc->sc_if);
2780 }
2781 #endif
2782
2783 int
2784 atw_intr(void *arg)
2785 {
2786 struct atw_softc *sc = arg;
2787 struct ifnet *ifp = &sc->sc_if;
2788 uint32_t status;
2789
2790 #ifdef DEBUG
2791 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2792 panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2793 #endif
2794
2795 /*
2796 * If the interface isn't running, the interrupt couldn't
2797 * possibly have come from us.
2798 */
2799 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2800 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2801 return (0);
2802
2803 status = ATW_READ(sc, ATW_STSR);
2804 if (status == 0)
2805 return 0;
2806
2807 if ((status & sc->sc_inten) == 0) {
2808 ATW_WRITE(sc, ATW_STSR, status);
2809 return 0;
2810 }
2811
2812 /* Disable interrupts */
2813 ATW_WRITE(sc, ATW_IER, 0);
2814
2815 softint_schedule(sc->sc_soft_ih);
2816 return 1;
2817 }
2818
2819 void
2820 atw_softintr(void *arg)
2821 {
2822 struct atw_softc *sc = arg;
2823 struct ifnet *ifp = &sc->sc_if;
2824 uint32_t status, rxstatus, txstatus, linkstatus;
2825 int txthresh, s;
2826
2827 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2828 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2829 return;
2830
2831 for (;;) {
2832 status = ATW_READ(sc, ATW_STSR);
2833
2834 if (status)
2835 ATW_WRITE(sc, ATW_STSR, status);
2836
2837 #ifdef ATW_DEBUG
2838 #define PRINTINTR(flag) do { \
2839 if ((status & flag) != 0) { \
2840 printf("%s" #flag, delim); \
2841 delim = ","; \
2842 } \
2843 } while (0)
2844
2845 if (atw_debug > 1 && status) {
2846 const char *delim = "<";
2847
2848 printf("%s: reg[STSR] = %x",
2849 device_xname(sc->sc_dev), status);
2850
2851 PRINTINTR(ATW_INTR_FBE);
2852 PRINTINTR(ATW_INTR_LINKOFF);
2853 PRINTINTR(ATW_INTR_LINKON);
2854 PRINTINTR(ATW_INTR_RCI);
2855 PRINTINTR(ATW_INTR_RDU);
2856 PRINTINTR(ATW_INTR_REIS);
2857 PRINTINTR(ATW_INTR_RPS);
2858 PRINTINTR(ATW_INTR_TCI);
2859 PRINTINTR(ATW_INTR_TDU);
2860 PRINTINTR(ATW_INTR_TLT);
2861 PRINTINTR(ATW_INTR_TPS);
2862 PRINTINTR(ATW_INTR_TRT);
2863 PRINTINTR(ATW_INTR_TUF);
2864 PRINTINTR(ATW_INTR_BCNTC);
2865 PRINTINTR(ATW_INTR_ATIME);
2866 PRINTINTR(ATW_INTR_TBTT);
2867 PRINTINTR(ATW_INTR_TSCZ);
2868 PRINTINTR(ATW_INTR_TSFTF);
2869 printf(">\n");
2870 }
2871 #undef PRINTINTR
2872 #endif /* ATW_DEBUG */
2873
2874 if ((status & sc->sc_inten) == 0)
2875 break;
2876
2877 rxstatus = status & sc->sc_rxint_mask;
2878 txstatus = status & sc->sc_txint_mask;
2879 linkstatus = status & sc->sc_linkint_mask;
2880
2881 if (linkstatus) {
2882 atw_linkintr(sc, linkstatus);
2883 }
2884
2885 if (rxstatus) {
2886 /* Grab any new packets. */
2887 atw_rxintr(sc);
2888
2889 if (rxstatus & ATW_INTR_RDU) {
2890 printf("%s: receive ring overrun\n",
2891 device_xname(sc->sc_dev));
2892 /* Get the receive process going again. */
2893 ATW_WRITE(sc, ATW_RDR, 0x1);
2894 }
2895 }
2896
2897 if (txstatus) {
2898 /* Sweep up transmit descriptors. */
2899 atw_txintr(sc, txstatus);
2900
2901 if (txstatus & ATW_INTR_TLT) {
2902 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2903 device_xname(sc->sc_dev)));
2904 (void)atw_init(&sc->sc_if);
2905 }
2906
2907 if (txstatus & ATW_INTR_TRT) {
2908 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2909 device_xname(sc->sc_dev)));
2910 }
2911
2912 /* If Tx under-run, increase our transmit threshold
2913 * if another is available.
2914 */
2915 txthresh = sc->sc_txthresh + 1;
2916 if ((txstatus & ATW_INTR_TUF) &&
2917 sc->sc_txth[txthresh].txth_name != NULL) {
2918 /* Idle the transmit process. */
2919 atw_idle(sc, ATW_NAR_ST);
2920
2921 sc->sc_txthresh = txthresh;
2922 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2923 sc->sc_opmode |=
2924 sc->sc_txth[txthresh].txth_opmode;
2925 printf("%s: transmit underrun; new "
2926 "threshold: %s\n", device_xname(sc->sc_dev),
2927 sc->sc_txth[txthresh].txth_name);
2928
2929 /* Set the new threshold and restart
2930 * the transmit process.
2931 */
2932 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2933 DELAY(atw_nar_delay);
2934 ATW_WRITE(sc, ATW_TDR, 0x1);
2935 /* XXX Log every Nth underrun from
2936 * XXX now on?
2937 */
2938 }
2939 }
2940
2941 if (status & (ATW_INTR_TPS | ATW_INTR_RPS)) {
2942 if (status & ATW_INTR_TPS)
2943 printf("%s: transmit process stopped\n",
2944 device_xname(sc->sc_dev));
2945 if (status & ATW_INTR_RPS)
2946 printf("%s: receive process stopped\n",
2947 device_xname(sc->sc_dev));
2948 s = splnet();
2949 (void)atw_init(ifp);
2950 splx(s);
2951 break;
2952 }
2953
2954 if (status & ATW_INTR_FBE) {
2955 aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2956 s = splnet();
2957 (void)atw_init(ifp);
2958 splx(s);
2959 break;
2960 }
2961
2962 /*
2963 * Not handled:
2964 *
2965 * Transmit buffer unavailable -- normal
2966 * condition, nothing to do, really.
2967 *
2968 * Early receive interrupt -- not available on
2969 * all chips, we just use RI. We also only
2970 * use single-segment receive DMA, so this
2971 * is mostly useless.
2972 *
2973 * TBD others
2974 */
2975 }
2976
2977 /* Try to get more packets going. */
2978 s = splnet();
2979 atw_start(ifp);
2980 splx(s);
2981
2982 /* Enable interrupts */
2983 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
2984 }
2985
2986 /*
2987 * atw_idle:
2988 *
2989 * Cause the transmit and/or receive processes to go idle.
2990 *
2991 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2992 * process in STSR if I clear SR or ST after the process has already
2993 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2994 * do not seem to be too reliable. Perhaps I have the sense of the
2995 * Rx bits switched with the Tx bits?
2996 */
2997 void
2998 atw_idle(struct atw_softc *sc, uint32_t bits)
2999 {
3000 uint32_t ackmask = 0, opmode, stsr, test0;
3001 int i, s;
3002
3003 s = splnet();
3004
3005 opmode = sc->sc_opmode & ~bits;
3006
3007 if (bits & ATW_NAR_SR)
3008 ackmask |= ATW_INTR_RPS;
3009
3010 if (bits & ATW_NAR_ST) {
3011 ackmask |= ATW_INTR_TPS;
3012 /* set ATW_NAR_HF to flush TX FIFO. */
3013 opmode |= ATW_NAR_HF;
3014 }
3015
3016 ATW_WRITE(sc, ATW_NAR, opmode);
3017 DELAY(atw_nar_delay);
3018
3019 for (i = 0; i < 1000; i++) {
3020 stsr = ATW_READ(sc, ATW_STSR);
3021 if ((stsr & ackmask) == ackmask)
3022 break;
3023 DELAY(10);
3024 }
3025
3026 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3027
3028 if ((stsr & ackmask) == ackmask)
3029 goto out;
3030
3031 test0 = ATW_READ(sc, ATW_TEST0);
3032
3033 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3034 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3035 printf("%s: transmit process not idle [%s]\n",
3036 device_xname(sc->sc_dev),
3037 atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3038 printf("%s: bits %08x test0 %08x stsr %08x\n",
3039 device_xname(sc->sc_dev), bits, test0, stsr);
3040 }
3041
3042 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3043 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3044 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3045 device_xname(sc->sc_dev),
3046 atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3047 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3048 device_xname(sc->sc_dev), bits, test0, stsr));
3049 }
3050 out:
3051 if ((bits & ATW_NAR_ST) != 0)
3052 atw_txdrain(sc);
3053 splx(s);
3054 return;
3055 }
3056
3057 /*
3058 * atw_linkintr:
3059 *
3060 * Helper; handle link-status interrupts.
3061 */
3062 void
3063 atw_linkintr(struct atw_softc *sc, uint32_t linkstatus)
3064 {
3065 struct ieee80211com *ic = &sc->sc_ic;
3066
3067 if (ic->ic_state != IEEE80211_S_RUN)
3068 return;
3069
3070 if (linkstatus & ATW_INTR_LINKON) {
3071 DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3072 sc->sc_rescan_timer = 0;
3073 } else if (linkstatus & ATW_INTR_LINKOFF) {
3074 DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3075 if (ic->ic_opmode != IEEE80211_M_STA)
3076 return;
3077 sc->sc_rescan_timer = 3;
3078 sc->sc_if.if_timer = 1;
3079 }
3080 }
3081
3082 #if 0
3083 static inline int
3084 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3085 {
3086 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3087 return 0;
3088 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3089 return 0;
3090 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3091 }
3092 #endif
3093
3094 /*
3095 * atw_rxintr:
3096 *
3097 * Helper; handle receive interrupts.
3098 */
3099 void
3100 atw_rxintr(struct atw_softc *sc)
3101 {
3102 static int rate_tbl[] = {2, 4, 11, 22, 44};
3103 struct ieee80211com *ic = &sc->sc_ic;
3104 struct ieee80211_node *ni;
3105 struct ieee80211_frame_min *wh;
3106 struct ifnet *ifp = &sc->sc_if;
3107 struct atw_rxsoft *rxs;
3108 struct mbuf *m;
3109 uint32_t rxstat;
3110 int i, s, len, rate, rate0;
3111 uint32_t rssi, ctlrssi;
3112
3113 for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3114 rxs = &sc->sc_rxsoft[i];
3115
3116 ATW_CDRXSYNC(sc, i,
3117 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3118
3119 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3120 ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3121 rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3122
3123 if (rxstat & ATW_RXSTAT_OWN) {
3124 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3125 break;
3126 }
3127
3128 sc->sc_rxptr = ATW_NEXTRX(i);
3129
3130 DPRINTF3(sc,
3131 ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3132 device_xname(sc->sc_dev),
3133 rxstat, ctlrssi,
3134 le32toh(sc->sc_rxdescs[i].ar_buf1),
3135 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3136
3137 /*
3138 * Make sure the packet fits in one buffer. This should
3139 * always be the case.
3140 */
3141 if ((rxstat & (ATW_RXSTAT_FS | ATW_RXSTAT_LS)) !=
3142 (ATW_RXSTAT_FS | ATW_RXSTAT_LS)) {
3143 printf("%s: incoming packet spilled, resetting\n",
3144 device_xname(sc->sc_dev));
3145 (void)atw_init(ifp);
3146 return;
3147 }
3148
3149 /*
3150 * If an error occurred, update stats, clear the status
3151 * word, and leave the packet buffer in place. It will
3152 * simply be reused the next time the ring comes around.
3153 */
3154 if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3155 #define PRINTERR(bit, str) \
3156 if (rxstat & (bit)) \
3157 aprint_error_dev(sc->sc_dev, "receive error: %s\n", \
3158 str)
3159 ifp->if_ierrors++;
3160 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3161 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3162 #if 0
3163 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3164 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3165 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3166 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3167 #endif
3168 #undef PRINTERR
3169 atw_init_rxdesc(sc, i);
3170 continue;
3171 }
3172
3173 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3174 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3175
3176 /*
3177 * No errors; receive the packet. Note the ADM8211
3178 * includes the CRC in promiscuous mode.
3179 */
3180 len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3181
3182 /*
3183 * Allocate a new mbuf cluster. If that fails, we are
3184 * out of memory, and must drop the packet and recycle
3185 * the buffer that's already attached to this descriptor.
3186 */
3187 m = rxs->rxs_mbuf;
3188 if (atw_add_rxbuf(sc, i) != 0) {
3189 ifp->if_ierrors++;
3190 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3191 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3192 atw_init_rxdesc(sc, i);
3193 continue;
3194 }
3195
3196 ifp->if_ipackets++;
3197 m_set_rcvif(m, ifp);
3198 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3199
3200 rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3201
3202 /* The RSSI comes straight from a register in the
3203 * baseband processor. I know that for the RF3000,
3204 * the RSSI register also contains the antenna-selection
3205 * bits. Mask those off.
3206 *
3207 * TBD Treat other basebands.
3208 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3209 */
3210 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3211 rssi = ctlrssi & RF3000_RSSI_MASK;
3212 else
3213 rssi = ctlrssi;
3214
3215 s = splnet();
3216
3217 /* Pass this up to any BPF listeners. */
3218 if (sc->sc_radiobpf != NULL) {
3219 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3220
3221 tap->ar_rate = rate;
3222
3223 /* TBD verify units are dB */
3224 tap->ar_antsignal = (int)rssi;
3225 if (sc->sc_opmode & ATW_NAR_PR)
3226 tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3227 else
3228 tap->ar_flags = 0;
3229
3230 if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3231 tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3232
3233 bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_rxtapu),
3234 m, BPF_D_IN);
3235 }
3236
3237 sc->sc_recv_ev.ev_count++;
3238
3239 if ((rxstat & (ATW_RXSTAT_CRC16E | ATW_RXSTAT_CRC32E |
3240 ATW_RXSTAT_ICVE | ATW_RXSTAT_SFDE | ATW_RXSTAT_SIGE))
3241 != 0) {
3242 if (rxstat & ATW_RXSTAT_CRC16E)
3243 sc->sc_crc16e_ev.ev_count++;
3244 if (rxstat & ATW_RXSTAT_CRC32E)
3245 sc->sc_crc32e_ev.ev_count++;
3246 if (rxstat & ATW_RXSTAT_ICVE)
3247 sc->sc_icve_ev.ev_count++;
3248 if (rxstat & ATW_RXSTAT_SFDE)
3249 sc->sc_sfde_ev.ev_count++;
3250 if (rxstat & ATW_RXSTAT_SIGE)
3251 sc->sc_sige_ev.ev_count++;
3252 ifp->if_ierrors++;
3253 m_freem(m);
3254 splx(s);
3255 continue;
3256 }
3257
3258 if (sc->sc_opmode & ATW_NAR_PR)
3259 m_adj(m, -IEEE80211_CRC_LEN);
3260
3261 wh = mtod(m, struct ieee80211_frame_min *);
3262 ni = ieee80211_find_rxnode(ic, wh);
3263 #if 0
3264 if (atw_hw_decrypted(sc, wh)) {
3265 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3266 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3267 }
3268 #endif
3269 ieee80211_input(ic, m, ni, (int)rssi, 0);
3270 ieee80211_free_node(ni);
3271 splx(s);
3272 }
3273 }
3274
3275 /*
3276 * atw_txintr:
3277 *
3278 * Helper; handle transmit interrupts.
3279 */
3280 void
3281 atw_txintr(struct atw_softc *sc, uint32_t status)
3282 {
3283 static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3284 struct ifnet *ifp = &sc->sc_if;
3285 struct atw_txsoft *txs;
3286 uint32_t txstat;
3287 int s;
3288
3289 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3290 device_xname(sc->sc_dev), sc->sc_flags));
3291
3292 s = splnet();
3293
3294 /*
3295 * Go through our Tx list and free mbufs for those
3296 * frames that have been transmitted.
3297 */
3298 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3299 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3300 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3301
3302 #ifdef ATW_DEBUG
3303 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3304 int i;
3305 printf(" txsoft %p transmit chain:\n", txs);
3306 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3307 txs->txs_ndescs - 1,
3308 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3309 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3310 printf(" descriptor %d:\n", i);
3311 printf(" at_status: 0x%08x\n",
3312 le32toh(sc->sc_txdescs[i].at_stat));
3313 printf(" at_flags: 0x%08x\n",
3314 le32toh(sc->sc_txdescs[i].at_flags));
3315 printf(" at_buf1: 0x%08x\n",
3316 le32toh(sc->sc_txdescs[i].at_buf1));
3317 printf(" at_buf2: 0x%08x\n",
3318 le32toh(sc->sc_txdescs[i].at_buf2));
3319 if (i == txs->txs_lastdesc)
3320 break;
3321 }
3322 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3323 txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3324 }
3325 #endif
3326
3327 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3328 if (txstat & ATW_TXSTAT_OWN) {
3329 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3330 BUS_DMASYNC_PREREAD);
3331 break;
3332 }
3333
3334 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3335
3336 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3337 0, txs->txs_dmamap->dm_mapsize,
3338 BUS_DMASYNC_POSTWRITE);
3339 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3340 m_freem(txs->txs_mbuf);
3341 txs->txs_mbuf = NULL;
3342
3343 sc->sc_txfree += txs->txs_ndescs;
3344 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3345
3346 KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3347 sc->sc_tx_timer = 0;
3348 ifp->if_flags &= ~IFF_OACTIVE;
3349
3350 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3351 (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3352 snprintb(txstat_buf, sizeof(txstat_buf),
3353 ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3354 printf("%s: txstat %s %" __PRIuBITS "\n",
3355 device_xname(sc->sc_dev), txstat_buf,
3356 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3357 }
3358
3359 sc->sc_xmit_ev.ev_count++;
3360
3361 /*
3362 * Check for errors and collisions.
3363 */
3364 if (txstat & ATW_TXSTAT_TUF)
3365 sc->sc_tuf_ev.ev_count++;
3366 if (txstat & ATW_TXSTAT_TLT)
3367 sc->sc_tlt_ev.ev_count++;
3368 if (txstat & ATW_TXSTAT_TRT)
3369 sc->sc_trt_ev.ev_count++;
3370 if (txstat & ATW_TXSTAT_TRO)
3371 sc->sc_tro_ev.ev_count++;
3372 if (txstat & ATW_TXSTAT_SOFBR)
3373 sc->sc_sofbr_ev.ev_count++;
3374
3375 if ((txstat & ATW_TXSTAT_ES) == 0)
3376 ifp->if_collisions +=
3377 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3378 else
3379 ifp->if_oerrors++;
3380
3381 ifp->if_opackets++;
3382 }
3383
3384 KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3385
3386 splx(s);
3387 }
3388
3389 /*
3390 * atw_watchdog: [ifnet interface function]
3391 *
3392 * Watchdog timer handler.
3393 */
3394 void
3395 atw_watchdog(struct ifnet *ifp)
3396 {
3397 struct atw_softc *sc = ifp->if_softc;
3398 struct ieee80211com *ic = &sc->sc_ic;
3399
3400 ifp->if_timer = 0;
3401 if (!device_is_active(sc->sc_dev))
3402 return;
3403
3404 if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3405 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3406 if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3407 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3408 printf("%s: transmit timeout\n", ifp->if_xname);
3409 ifp->if_oerrors++;
3410 (void)atw_init(ifp);
3411 atw_start(ifp);
3412 }
3413 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3414 ifp->if_timer = 1;
3415 ieee80211_watchdog(ic);
3416 }
3417
3418 static void
3419 atw_evcnt_detach(struct atw_softc *sc)
3420 {
3421 evcnt_detach(&sc->sc_sige_ev);
3422 evcnt_detach(&sc->sc_sfde_ev);
3423 evcnt_detach(&sc->sc_icve_ev);
3424 evcnt_detach(&sc->sc_crc32e_ev);
3425 evcnt_detach(&sc->sc_crc16e_ev);
3426 evcnt_detach(&sc->sc_recv_ev);
3427
3428 evcnt_detach(&sc->sc_tuf_ev);
3429 evcnt_detach(&sc->sc_tro_ev);
3430 evcnt_detach(&sc->sc_trt_ev);
3431 evcnt_detach(&sc->sc_tlt_ev);
3432 evcnt_detach(&sc->sc_sofbr_ev);
3433 evcnt_detach(&sc->sc_xmit_ev);
3434
3435 evcnt_detach(&sc->sc_rxpkt1in_ev);
3436 evcnt_detach(&sc->sc_rxamatch_ev);
3437 evcnt_detach(&sc->sc_workaround1_ev);
3438 evcnt_detach(&sc->sc_misc_ev);
3439 }
3440
3441 static void
3442 atw_evcnt_attach(struct atw_softc *sc)
3443 {
3444 evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3445 NULL, sc->sc_if.if_xname, "recv");
3446 evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3447 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3448 evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3449 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3450 evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3451 &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3452 evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3453 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3454 evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3455 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3456
3457 evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3458 NULL, sc->sc_if.if_xname, "xmit");
3459 evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3460 &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3461 evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3462 &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3463 evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3464 &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3465 evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3466 &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3467 evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3468 &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3469
3470 evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3471 NULL, sc->sc_if.if_xname, "misc");
3472 evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3473 &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3474 evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3475 &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3476 evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3477 &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3478 }
3479
3480 #ifdef ATW_DEBUG
3481 static void
3482 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3483 {
3484 struct atw_softc *sc = ifp->if_softc;
3485 struct mbuf *m;
3486 int i, noctets = 0;
3487
3488 printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3489 m0->m_pkthdr.len);
3490
3491 for (m = m0; m; m = m->m_next) {
3492 if (m->m_len == 0)
3493 continue;
3494 for (i = 0; i < m->m_len; i++) {
3495 printf(" %02x", ((uint8_t*)m->m_data)[i]);
3496 if (++noctets % 24 == 0)
3497 printf("\n");
3498 }
3499 }
3500 printf("%s%s: %d bytes emitted\n",
3501 (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3502 }
3503 #endif /* ATW_DEBUG */
3504
3505 /*
3506 * atw_start: [ifnet interface function]
3507 *
3508 * Start packet transmission on the interface.
3509 */
3510 void
3511 atw_start(struct ifnet *ifp)
3512 {
3513 struct atw_softc *sc = ifp->if_softc;
3514 struct ieee80211_key *k;
3515 struct ieee80211com *ic = &sc->sc_ic;
3516 struct ieee80211_node *ni;
3517 struct ieee80211_frame_min *whm;
3518 struct ieee80211_frame *wh;
3519 struct atw_frame *hh;
3520 uint16_t hdrctl;
3521 struct mbuf *m0, *m;
3522 struct atw_txsoft *txs;
3523 struct atw_txdesc *txd;
3524 int npkt, rate;
3525 bus_dmamap_t dmamap;
3526 int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3527
3528 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3529 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3530
3531 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3532 return;
3533
3534 /*
3535 * Remember the previous number of free descriptors and
3536 * the first descriptor we'll use.
3537 */
3538 ofree = sc->sc_txfree;
3539 firsttx = lasttx = sc->sc_txnext;
3540
3541 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3542 device_xname(sc->sc_dev), ofree, firsttx));
3543
3544 /*
3545 * Loop through the send queue, setting up transmit descriptors
3546 * until we drain the queue, or use up all available transmit
3547 * descriptors.
3548 */
3549 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3550 sc->sc_txfree != 0) {
3551
3552 hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3553
3554 /*
3555 * Grab a packet off the management queue, if it
3556 * is not empty. Otherwise, from the data queue.
3557 */
3558 IF_DEQUEUE(&ic->ic_mgtq, m0);
3559 if (m0 != NULL) {
3560 ni = M_GETCTX(m0, struct ieee80211_node *);
3561 M_CLEARCTX(m0);
3562 } else if (ic->ic_state != IEEE80211_S_RUN)
3563 break; /* send no data until associated */
3564 else {
3565 IFQ_DEQUEUE(&ifp->if_snd, m0);
3566 if (m0 == NULL)
3567 break;
3568 bpf_mtap(ifp, m0, BPF_D_OUT);
3569 ni = ieee80211_find_txnode(ic,
3570 mtod(m0, struct ether_header *)->ether_dhost);
3571 if (ni == NULL) {
3572 ifp->if_oerrors++;
3573 break;
3574 }
3575 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3576 ieee80211_free_node(ni);
3577 ifp->if_oerrors++;
3578 break;
3579 }
3580 }
3581
3582 rate = MAX(ieee80211_get_rate(ni), 2);
3583
3584 whm = mtod(m0, struct ieee80211_frame_min *);
3585
3586 if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3587 k = NULL;
3588 else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3589 m_freem(m0);
3590 ieee80211_free_node(ni);
3591 ifp->if_oerrors++;
3592 break;
3593 }
3594 #if 0
3595 if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3596 m0->m_pkthdr.len > ic->ic_fragthreshold)
3597 hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3598 #endif
3599
3600 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3601 hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3602
3603 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3604 ic->ic_flags, ic->ic_fragthreshold, rate,
3605 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3606 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3607 m_freem(m0);
3608 break;
3609 }
3610
3611 /* XXX Misleading if fragmentation is enabled. Better
3612 * to fragment in software?
3613 */
3614 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3615
3616 /*
3617 * Pass the packet to any BPF listeners.
3618 */
3619 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
3620
3621 if (sc->sc_radiobpf != NULL) {
3622 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3623
3624 tap->at_rate = rate;
3625
3626 bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_txtapu),
3627 m0, BPF_D_OUT);
3628 }
3629
3630 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3631
3632 if (ni != NULL)
3633 ieee80211_free_node(ni);
3634
3635 if (m0 == NULL) {
3636 ifp->if_oerrors++;
3637 break;
3638 }
3639
3640 /* just to make sure. */
3641 m0 = m_pullup(m0, sizeof(struct atw_frame));
3642
3643 if (m0 == NULL) {
3644 ifp->if_oerrors++;
3645 break;
3646 }
3647
3648 hh = mtod(m0, struct atw_frame *);
3649 wh = &hh->atw_ihdr;
3650
3651 /* Copy everything we need from the 802.11 header:
3652 * Frame Control; address 1, address 3, or addresses
3653 * 3 and 4. NIC fills in BSSID, SA.
3654 */
3655 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3656 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3657 panic("%s: illegal WDS frame",
3658 device_xname(sc->sc_dev));
3659 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3660 } else
3661 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3662
3663 *(uint16_t*)hh->atw_fc = *(uint16_t*)wh->i_fc;
3664
3665 /* initialize remaining Tx parameters */
3666 memset(&hh->u, 0, sizeof(hh->u));
3667
3668 hh->atw_rate = rate * 5;
3669 /* XXX this could be incorrect if M_FCS. _encap should
3670 * probably strip FCS just in case it sticks around in
3671 * bridged packets.
3672 */
3673 hh->atw_service = 0x00; /* XXX guess */
3674 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3675 sizeof(struct atw_frame));
3676
3677 /* never fragment multicast frames */
3678 if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3679 hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3680 else {
3681 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3682 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3683 hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3684 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3685 }
3686
3687 hh->atw_rtylmt = 3;
3688 #if 0
3689 if (do_encrypt) {
3690 hdrctl |= htole16(ATW_HDRCTL_WEP);
3691 hh->atw_keyid = ic->ic_def_txkey;
3692 }
3693 #endif
3694
3695 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3696 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3697 if (txs->txs_d0.d_residue)
3698 hh->atw_head_plcplen |= htole16(0x8000);
3699 if (txs->txs_dn.d_residue)
3700 hh->atw_tail_plcplen |= htole16(0x8000);
3701 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3702 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3703
3704 hh->atw_hdrctl = hdrctl;
3705 hh->atw_fragnum = npkt << 4;
3706 #ifdef ATW_DEBUG
3707
3708 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3709 printf("%s: dst = %s, rate = 0x%02x, "
3710 "service = 0x%02x, paylen = 0x%04x\n",
3711 device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3712 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3713
3714 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3715 "dur1 = 0x%04x, dur2 = 0x%04x, "
3716 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3717 device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3718 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3719 hh->atw_tail_dur, hh->atw_head_dur);
3720
3721 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3722 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3723 device_xname(sc->sc_dev), hh->atw_hdrctl,
3724 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3725
3726 printf("%s: keyid = %d\n",
3727 device_xname(sc->sc_dev), hh->atw_keyid);
3728
3729 atw_dump_pkt(ifp, m0);
3730 }
3731 #endif /* ATW_DEBUG */
3732
3733 dmamap = txs->txs_dmamap;
3734
3735 /*
3736 * Load the DMA map. Copy and try (once) again if the packet
3737 * didn't fit in the alloted number of segments.
3738 */
3739 for (first = 1;
3740 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3741 BUS_DMA_WRITE | BUS_DMA_NOWAIT)) != 0 && first;
3742 first = 0) {
3743 MGETHDR(m, M_DONTWAIT, MT_DATA);
3744 if (m == NULL) {
3745 aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3746 break;
3747 }
3748 if (m0->m_pkthdr.len > MHLEN) {
3749 MCLGET(m, M_DONTWAIT);
3750 if ((m->m_flags & M_EXT) == 0) {
3751 aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3752 "cluster\n");
3753 m_freem(m);
3754 break;
3755 }
3756 }
3757 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3758 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3759 m_freem(m0);
3760 m0 = m;
3761 m = NULL;
3762 }
3763 if (error != 0) {
3764 aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3765 "error = %d\n", error);
3766 m_freem(m0);
3767 break;
3768 }
3769
3770 /*
3771 * Ensure we have enough descriptors free to describe
3772 * the packet.
3773 */
3774 if (dmamap->dm_nsegs > sc->sc_txfree) {
3775 /*
3776 * Not enough free descriptors to transmit
3777 * this packet. Unload the DMA map and
3778 * drop the packet. Notify the upper layer
3779 * that there are no more slots left.
3780 *
3781 * XXX We could allocate an mbuf and copy, but
3782 * XXX it is worth it?
3783 */
3784 bus_dmamap_unload(sc->sc_dmat, dmamap);
3785 m_freem(m0);
3786 break;
3787 }
3788
3789 /*
3790 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3791 */
3792
3793 /* Sync the DMA map. */
3794 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3795 BUS_DMASYNC_PREWRITE);
3796
3797 /* XXX arbitrary retry limit; 8 because I have seen it in
3798 * use already and maybe 0 means "no tries" !
3799 */
3800 ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3801
3802 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3803 device_xname(sc->sc_dev), rate * 5));
3804 ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3805
3806 /*
3807 * Initialize the transmit descriptors.
3808 */
3809 for (nexttx = sc->sc_txnext, seg = 0;
3810 seg < dmamap->dm_nsegs;
3811 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3812 /*
3813 * If this is the first descriptor we're
3814 * enqueueing, don't set the OWN bit just
3815 * yet. That could cause a race condition.
3816 * We'll do it below.
3817 */
3818 txd = &sc->sc_txdescs[nexttx];
3819 txd->at_ctl = ctl |
3820 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3821
3822 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3823 txd->at_flags =
3824 htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3825 ATW_TXFLAG_TBS1_MASK)) |
3826 ((nexttx == (ATW_NTXDESC - 1))
3827 ? htole32(ATW_TXFLAG_TER) : 0);
3828 lasttx = nexttx;
3829 }
3830
3831 /* Set `first segment' and `last segment' appropriately. */
3832 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3833 htole32(ATW_TXFLAG_FS);
3834 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3835
3836 #ifdef ATW_DEBUG
3837 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3838 printf(" txsoft %p transmit chain:\n", txs);
3839 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3840 printf(" descriptor %d:\n", seg);
3841 printf(" at_ctl: 0x%08x\n",
3842 le32toh(sc->sc_txdescs[seg].at_ctl));
3843 printf(" at_flags: 0x%08x\n",
3844 le32toh(sc->sc_txdescs[seg].at_flags));
3845 printf(" at_buf1: 0x%08x\n",
3846 le32toh(sc->sc_txdescs[seg].at_buf1));
3847 printf(" at_buf2: 0x%08x\n",
3848 le32toh(sc->sc_txdescs[seg].at_buf2));
3849 if (seg == lasttx)
3850 break;
3851 }
3852 }
3853 #endif
3854
3855 /* Sync the descriptors we're using. */
3856 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3857 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3858
3859 /*
3860 * Store a pointer to the packet so we can free it later,
3861 * and remember what txdirty will be once the packet is
3862 * done.
3863 */
3864 txs->txs_mbuf = m0;
3865 txs->txs_firstdesc = sc->sc_txnext;
3866 txs->txs_lastdesc = lasttx;
3867 txs->txs_ndescs = dmamap->dm_nsegs;
3868
3869 /* Advance the tx pointer. */
3870 sc->sc_txfree -= dmamap->dm_nsegs;
3871 sc->sc_txnext = nexttx;
3872
3873 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3874 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3875 }
3876
3877 if (sc->sc_txfree != ofree) {
3878 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3879 device_xname(sc->sc_dev), lasttx, firsttx));
3880 /*
3881 * Cause a transmit interrupt to happen on the
3882 * last packet we enqueued.
3883 */
3884 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3885 ATW_CDTXSYNC(sc, lasttx, 1,
3886 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3887
3888 /*
3889 * The entire packet chain is set up. Give the
3890 * first descriptor to the chip now.
3891 */
3892 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3893 ATW_CDTXSYNC(sc, firsttx, 1,
3894 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3895
3896 /* Wake up the transmitter. */
3897 ATW_WRITE(sc, ATW_TDR, 0x1);
3898
3899 if (txs == NULL || sc->sc_txfree == 0)
3900 ifp->if_flags |= IFF_OACTIVE;
3901
3902 /* Set a watchdog timer in case the chip flakes out. */
3903 sc->sc_tx_timer = 5;
3904 ifp->if_timer = 1;
3905 }
3906 }
3907
3908 /*
3909 * atw_ioctl: [ifnet interface function]
3910 *
3911 * Handle control requests from the operator.
3912 */
3913 int
3914 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3915 {
3916 struct atw_softc *sc = ifp->if_softc;
3917 struct ieee80211req *ireq;
3918 int s, error = 0;
3919
3920 s = splnet();
3921
3922 switch (cmd) {
3923 case SIOCSIFFLAGS:
3924 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3925 break;
3926 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
3927 case IFF_UP | IFF_RUNNING:
3928 /*
3929 * To avoid rescanning another access point,
3930 * do not call atw_init() here. Instead,
3931 * only reflect media settings.
3932 */
3933 if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3934 atw_filter_setup(sc);
3935 break;
3936 case IFF_UP:
3937 error = atw_init(ifp);
3938 break;
3939 case IFF_RUNNING:
3940 atw_stop(ifp, 1);
3941 break;
3942 case 0:
3943 break;
3944 }
3945 break;
3946 case SIOCADDMULTI:
3947 case SIOCDELMULTI:
3948 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3949 if (ifp->if_flags & IFF_RUNNING)
3950 atw_filter_setup(sc); /* do not rescan */
3951 error = 0;
3952 }
3953 break;
3954 case SIOCS80211:
3955 ireq = data;
3956 if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3957 if ((error = kauth_authorize_network(curlwp->l_cred,
3958 KAUTH_NETWORK_INTERFACE,
3959 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3960 (void *)cmd, NULL)) != 0)
3961 break;
3962 if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3963 ireq->i_val <= IEEE80211_FRAG_MAX))
3964 error = EINVAL;
3965 else
3966 sc->sc_ic.ic_fragthreshold = ireq->i_val;
3967 break;
3968 }
3969 /*FALLTHROUGH*/
3970 default:
3971 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3972 if (error == ENETRESET || error == ERESTART) {
3973 if (is_running(ifp))
3974 error = atw_init(ifp);
3975 else
3976 error = 0;
3977 }
3978 break;
3979 }
3980
3981 /* Try to get more packets going. */
3982 if (device_is_active(sc->sc_dev))
3983 atw_start(ifp);
3984
3985 splx(s);
3986 return (error);
3987 }
3988
3989 static int
3990 atw_media_change(struct ifnet *ifp)
3991 {
3992 int error;
3993
3994 error = ieee80211_media_change(ifp);
3995 if (error == ENETRESET) {
3996 if (is_running(ifp))
3997 error = atw_init(ifp);
3998 else
3999 error = 0;
4000 }
4001 return error;
4002 }
4003