atw.c revision 1.169 1 /* $NetBSD: atw.c,v 1.169 2019/11/10 21:16:35 chs Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.169 2019/11/10 21:16:35 chs Exp $");
38
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/device.h>
50 #include <sys/kauth.h>
51 #include <sys/time.h>
52 #include <sys/proc.h>
53 #include <sys/atomic.h>
54 #include <lib/libkern/libkern.h>
55
56 #include <machine/endian.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #include <net80211/ieee80211_netbsd.h>
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66
67 #include <net/bpf.h>
68
69 #include <sys/bus.h>
70 #include <sys/intr.h>
71
72 #include <dev/ic/atwreg.h>
73 #include <dev/ic/rf3000reg.h>
74 #include <dev/ic/si4136reg.h>
75 #include <dev/ic/atwvar.h>
76 #include <dev/ic/smc93cx6var.h>
77
78 /* XXX TBD open questions
79 *
80 *
81 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
82 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
83 * handle this for me?
84 *
85 */
86 /* device attachment
87 *
88 * print TOFS[012]
89 *
90 * device initialization
91 *
92 * clear ATW_FRCTL_MAXPSP to disable max power saving
93 * set ATW_TXBR_ALCUPDATE to enable ALC
94 * set TOFS[012]? (hope not)
95 * disable rx/tx
96 * set ATW_PAR_SWR (software reset)
97 * wait for ATW_PAR_SWR clear
98 * disable interrupts
99 * ack status register
100 * enable interrupts
101 *
102 * rx/tx initialization
103 *
104 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
105 * allocate and init descriptor rings
106 * write ATW_PAR_DSL (descriptor skip length)
107 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
108 * write ATW_NAR_SQ for one/both transmit descriptor rings
109 * write ATW_NAR_SQ for one/both transmit descriptor rings
110 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111 *
112 * rx/tx end
113 *
114 * stop DMA
115 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
116 * flush tx w/ ATW_NAR_HF
117 *
118 * scan
119 *
120 * initialize rx/tx
121 *
122 * BSS join: (re)association response
123 *
124 * set ATW_FRCTL_AID
125 *
126 * optimizations ???
127 *
128 */
129
130 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
131
132 int atw_pseudo_milli = 1;
133 int atw_magic_delay1 = 100 * 1000;
134 int atw_magic_delay2 = 100 * 1000;
135 /* more magic multi-millisecond delays (units: microseconds) */
136 int atw_nar_delay = 20 * 1000;
137 int atw_magic_delay4 = 10 * 1000;
138 int atw_rf_delay1 = 10 * 1000;
139 int atw_rf_delay2 = 5 * 1000;
140 int atw_plcphd_delay = 2 * 1000;
141 int atw_bbp_io_enable_delay = 20 * 1000;
142 int atw_bbp_io_disable_delay = 2 * 1000;
143 int atw_writewep_delay = 1000;
144 int atw_beacon_len_adjust = 4;
145 int atw_dwelltime = 200;
146 int atw_xindiv2 = 0;
147
148 #ifdef ATW_DEBUG
149 int atw_debug = 0;
150
151 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
152 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
153 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
154 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
155 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157
158 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
159 static void atw_print_regs(struct atw_softc *, const char *);
160
161 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162 # ifdef ATW_BBPDEBUG
163 static void atw_rf3000_print(struct atw_softc *);
164 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
165 # endif /* ATW_BBPDEBUG */
166
167 # ifdef ATW_SYNDEBUG
168 static void atw_si4126_print(struct atw_softc *);
169 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
170 # endif /* ATW_SYNDEBUG */
171 #define __atwdebugused /* empty */
172 #else
173 #define ATW_DPRINTF(x)
174 #define ATW_DPRINTF2(x)
175 #define ATW_DPRINTF3(x)
176 #define DPRINTF(sc, x) /* nothing */
177 #define DPRINTF2(sc, x) /* nothing */
178 #define DPRINTF3(sc, x) /* nothing */
179 #define __atwdebugused __unused
180 #endif
181
182 /* ifnet methods */
183 int atw_init(struct ifnet *);
184 int atw_ioctl(struct ifnet *, u_long, void *);
185 void atw_start(struct ifnet *);
186 void atw_stop(struct ifnet *, int);
187 void atw_watchdog(struct ifnet *);
188
189 /* Device attachment */
190 void atw_attach(struct atw_softc *);
191 int atw_detach(struct atw_softc *);
192 static void atw_evcnt_attach(struct atw_softc *);
193 static void atw_evcnt_detach(struct atw_softc *);
194
195 /* Rx/Tx process */
196 int atw_add_rxbuf(struct atw_softc *, int);
197 void atw_idle(struct atw_softc *, uint32_t);
198 void atw_rxdrain(struct atw_softc *);
199 void atw_txdrain(struct atw_softc *);
200
201 /* Device (de)activation and power state */
202 void atw_reset(struct atw_softc *);
203
204 /* Interrupt handlers */
205 void atw_softintr(void *);
206 void atw_linkintr(struct atw_softc *, uint32_t);
207 void atw_rxintr(struct atw_softc *);
208 void atw_txintr(struct atw_softc *, uint32_t);
209
210 /* 802.11 state machine */
211 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
212 static void atw_next_scan(void *);
213 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
214 struct ieee80211_node *, int, int, uint32_t);
215 static int atw_tune(struct atw_softc *);
216
217 /* Device initialization */
218 static void atw_bbp_io_init(struct atw_softc *);
219 static void atw_cfp_init(struct atw_softc *);
220 static void atw_cmdr_init(struct atw_softc *);
221 static void atw_ifs_init(struct atw_softc *);
222 static void atw_nar_init(struct atw_softc *);
223 static void atw_response_times_init(struct atw_softc *);
224 static void atw_rf_reset(struct atw_softc *);
225 static void atw_test1_init(struct atw_softc *);
226 static void atw_tofs0_init(struct atw_softc *);
227 static void atw_tofs2_init(struct atw_softc *);
228 static void atw_txlmt_init(struct atw_softc *);
229 static void atw_wcsr_init(struct atw_softc *);
230
231 /* Key management */
232 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
233 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
234 const uint8_t[IEEE80211_ADDR_LEN]);
235 static void atw_key_update_begin(struct ieee80211com *);
236 static void atw_key_update_end(struct ieee80211com *);
237
238 /* RAM/ROM utilities */
239 static void atw_clear_sram(struct atw_softc *);
240 static void atw_write_sram(struct atw_softc *, u_int, uint8_t *, u_int);
241 static int atw_read_srom(struct atw_softc *);
242
243 /* BSS setup */
244 static void atw_predict_beacon(struct atw_softc *);
245 static void atw_start_beacon(struct atw_softc *, int);
246 static void atw_write_bssid(struct atw_softc *);
247 static void atw_write_ssid(struct atw_softc *);
248 static void atw_write_sup_rates(struct atw_softc *);
249 static void atw_write_wep(struct atw_softc *);
250
251 /* Media */
252 static int atw_media_change(struct ifnet *);
253
254 static void atw_filter_setup(struct atw_softc *);
255
256 /* 802.11 utilities */
257 static uint64_t atw_get_tsft(struct atw_softc *);
258 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
259 uint32_t);
260 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
261 static void atw_node_free(struct ieee80211_node *);
262
263 /*
264 * Tuner/transceiver/modem
265 */
266 static void atw_bbp_io_enable(struct atw_softc *, int);
267
268 /* RFMD RF3000 Baseband Processor */
269 static int atw_rf3000_init(struct atw_softc *);
270 static int atw_rf3000_tune(struct atw_softc *, u_int);
271 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
272
273 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
274 static void atw_si4126_tune(struct atw_softc *, u_int);
275 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
276
277 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
278 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
279
280 const char *atw_tx_state[] = {
281 "STOPPED",
282 "RUNNING - read descriptor",
283 "RUNNING - transmitting",
284 "RUNNING - filling fifo", /* XXX */
285 "SUSPENDED",
286 "RUNNING -- write descriptor",
287 "RUNNING -- write last descriptor",
288 "RUNNING - fifo full"
289 };
290
291 const char *atw_rx_state[] = {
292 "STOPPED",
293 "RUNNING - read descriptor",
294 "RUNNING - check this packet, pre-fetch next",
295 "RUNNING - wait for reception",
296 "SUSPENDED",
297 "RUNNING - write descriptor",
298 "RUNNING - flush fifo",
299 "RUNNING - fifo drain"
300 };
301
302 static inline int
303 is_running(struct ifnet *ifp)
304 {
305 return (ifp->if_flags & (IFF_RUNNING | IFF_UP))
306 == (IFF_RUNNING | IFF_UP);
307 }
308
309 int
310 atw_activate(device_t self, enum devact act)
311 {
312 struct atw_softc *sc = device_private(self);
313
314 switch (act) {
315 case DVACT_DEACTIVATE:
316 if_deactivate(&sc->sc_if);
317 return 0;
318 default:
319 return EOPNOTSUPP;
320 }
321 }
322
323 bool
324 atw_suspend(device_t self, const pmf_qual_t *qual)
325 {
326 struct atw_softc *sc = device_private(self);
327
328 atw_rxdrain(sc);
329 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
330
331 return true;
332 }
333
334 /* Returns -1 on failure. */
335 static int
336 atw_read_srom(struct atw_softc *sc)
337 {
338 struct seeprom_descriptor sd;
339 uint32_t test0, fail_bits;
340
341 (void)memset(&sd, 0, sizeof(sd));
342
343 test0 = ATW_READ(sc, ATW_TEST0);
344
345 switch (sc->sc_rev) {
346 case ATW_REVISION_BA:
347 case ATW_REVISION_CA:
348 fail_bits = ATW_TEST0_EPNE;
349 break;
350 default:
351 fail_bits = ATW_TEST0_EPNE | ATW_TEST0_EPSNM;
352 break;
353 }
354 if ((test0 & fail_bits) != 0) {
355 aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
356 return -1;
357 }
358
359 switch (test0 & ATW_TEST0_EPTYP_MASK) {
360 case ATW_TEST0_EPTYP_93c66:
361 ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
362 sc->sc_sromsz = 512;
363 sd.sd_chip = C56_66;
364 break;
365 case ATW_TEST0_EPTYP_93c46:
366 ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
367 sc->sc_sromsz = 128;
368 sd.sd_chip = C46;
369 break;
370 default:
371 printf("%s: unknown SROM type %" __PRIuBITS "\n",
372 device_xname(sc->sc_dev),
373 __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
374 return -1;
375 }
376
377 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_WAITOK | M_ZERO);
378
379 /* ADM8211 has a single 32-bit register for controlling the
380 * 93cx6 SROM. Bit SRS enables the serial port. There is no
381 * "ready" bit. The ADM8211 input/output sense is the reverse
382 * of read_seeprom's.
383 */
384 sd.sd_tag = sc->sc_st;
385 sd.sd_bsh = sc->sc_sh;
386 sd.sd_regsize = 4;
387 sd.sd_control_offset = ATW_SPR;
388 sd.sd_status_offset = ATW_SPR;
389 sd.sd_dataout_offset = ATW_SPR;
390 sd.sd_CK = ATW_SPR_SCLK;
391 sd.sd_CS = ATW_SPR_SCS;
392 sd.sd_DI = ATW_SPR_SDO;
393 sd.sd_DO = ATW_SPR_SDI;
394 sd.sd_MS = ATW_SPR_SRS;
395 sd.sd_RDY = 0;
396
397 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
398 aprint_error_dev(sc->sc_dev, "could not read SROM\n");
399 free(sc->sc_srom, M_DEVBUF);
400 return -1;
401 }
402 #ifdef ATW_DEBUG
403 {
404 int i;
405 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
406 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
407 if (((i % 8) == 0) && (i != 0)) {
408 ATW_DPRINTF(("\n\t"));
409 }
410 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
411 }
412 ATW_DPRINTF(("\n"));
413 }
414 #endif /* ATW_DEBUG */
415 return 0;
416 }
417
418 #ifdef ATW_DEBUG
419 static void
420 atw_print_regs(struct atw_softc *sc, const char *where)
421 {
422 #define PRINTREG(sc, reg) \
423 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
424 device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
425
426 ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
427
428 PRINTREG(sc, ATW_PAR);
429 PRINTREG(sc, ATW_FRCTL);
430 PRINTREG(sc, ATW_TDR);
431 PRINTREG(sc, ATW_WTDP);
432 PRINTREG(sc, ATW_RDR);
433 PRINTREG(sc, ATW_WRDP);
434 PRINTREG(sc, ATW_RDB);
435 PRINTREG(sc, ATW_CSR3A);
436 PRINTREG(sc, ATW_TDBD);
437 PRINTREG(sc, ATW_TDBP);
438 PRINTREG(sc, ATW_STSR);
439 PRINTREG(sc, ATW_CSR5A);
440 PRINTREG(sc, ATW_NAR);
441 PRINTREG(sc, ATW_CSR6A);
442 PRINTREG(sc, ATW_IER);
443 PRINTREG(sc, ATW_CSR7A);
444 PRINTREG(sc, ATW_LPC);
445 PRINTREG(sc, ATW_TEST1);
446 PRINTREG(sc, ATW_SPR);
447 PRINTREG(sc, ATW_TEST0);
448 PRINTREG(sc, ATW_WCSR);
449 PRINTREG(sc, ATW_WPDR);
450 PRINTREG(sc, ATW_GPTMR);
451 PRINTREG(sc, ATW_GPIO);
452 PRINTREG(sc, ATW_BBPCTL);
453 PRINTREG(sc, ATW_SYNCTL);
454 PRINTREG(sc, ATW_PLCPHD);
455 PRINTREG(sc, ATW_MMIWADDR);
456 PRINTREG(sc, ATW_MMIRADDR1);
457 PRINTREG(sc, ATW_MMIRADDR2);
458 PRINTREG(sc, ATW_TXBR);
459 PRINTREG(sc, ATW_CSR15A);
460 PRINTREG(sc, ATW_ALCSTAT);
461 PRINTREG(sc, ATW_TOFS2);
462 PRINTREG(sc, ATW_CMDR);
463 PRINTREG(sc, ATW_PCIC);
464 PRINTREG(sc, ATW_PMCSR);
465 PRINTREG(sc, ATW_PAR0);
466 PRINTREG(sc, ATW_PAR1);
467 PRINTREG(sc, ATW_MAR0);
468 PRINTREG(sc, ATW_MAR1);
469 PRINTREG(sc, ATW_ATIMDA0);
470 PRINTREG(sc, ATW_ABDA1);
471 PRINTREG(sc, ATW_BSSID0);
472 PRINTREG(sc, ATW_TXLMT);
473 PRINTREG(sc, ATW_MIBCNT);
474 PRINTREG(sc, ATW_BCNT);
475 PRINTREG(sc, ATW_TSFTH);
476 PRINTREG(sc, ATW_TSC);
477 PRINTREG(sc, ATW_SYNRF);
478 PRINTREG(sc, ATW_BPLI);
479 PRINTREG(sc, ATW_CAP0);
480 PRINTREG(sc, ATW_CAP1);
481 PRINTREG(sc, ATW_RMD);
482 PRINTREG(sc, ATW_CFPP);
483 PRINTREG(sc, ATW_TOFS0);
484 PRINTREG(sc, ATW_TOFS1);
485 PRINTREG(sc, ATW_IFST);
486 PRINTREG(sc, ATW_RSPT);
487 PRINTREG(sc, ATW_TSFTL);
488 PRINTREG(sc, ATW_WEPCTL);
489 PRINTREG(sc, ATW_WESK);
490 PRINTREG(sc, ATW_WEPCNT);
491 PRINTREG(sc, ATW_MACTEST);
492 PRINTREG(sc, ATW_FER);
493 PRINTREG(sc, ATW_FEMR);
494 PRINTREG(sc, ATW_FPSR);
495 PRINTREG(sc, ATW_FFER);
496 #undef PRINTREG
497 }
498 #endif /* ATW_DEBUG */
499
500 /*
501 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
502 */
503 void
504 atw_attach(struct atw_softc *sc)
505 {
506 static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
507 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
508 };
509 struct ieee80211com *ic = &sc->sc_ic;
510 struct ifnet *ifp = &sc->sc_if;
511 int country_code, error, i, srom_major;
512 uint32_t reg;
513 static const char *type_strings[] = {"Intersil (not supported)",
514 "RFMD", "Marvel (not supported)"};
515
516 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
517
518 sc->sc_soft_ih = softint_establish(SOFTINT_NET, atw_softintr, sc);
519 if (sc->sc_soft_ih == NULL) {
520 aprint_error_dev(sc->sc_dev, "unable to establish softint\n");
521 goto fail_0;
522 }
523
524 sc->sc_txth = atw_txthresh_tab_lo;
525
526 SIMPLEQ_INIT(&sc->sc_txfreeq);
527 SIMPLEQ_INIT(&sc->sc_txdirtyq);
528
529 #ifdef ATW_DEBUG
530 atw_print_regs(sc, "atw_attach");
531 #endif /* ATW_DEBUG */
532
533 /*
534 * Allocate the control data structures, and create and load the
535 * DMA map for it.
536 */
537 if ((error = bus_dmamem_alloc(sc->sc_dmat,
538 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
539 1, &sc->sc_cdnseg, 0)) != 0) {
540 aprint_error_dev(sc->sc_dev,
541 "unable to allocate control data, error = %d\n",
542 error);
543 goto fail_0;
544 }
545
546 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
547 sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
548 BUS_DMA_COHERENT)) != 0) {
549 aprint_error_dev(sc->sc_dev,
550 "unable to map control data, error = %d\n",
551 error);
552 goto fail_1;
553 }
554
555 if ((error = bus_dmamap_create(sc->sc_dmat,
556 sizeof(struct atw_control_data), 1,
557 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
558 aprint_error_dev(sc->sc_dev,
559 "unable to create control data DMA map, error = %d\n",
560 error);
561 goto fail_2;
562 }
563
564 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
565 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
566 0)) != 0) {
567 aprint_error_dev(sc->sc_dev,
568 "unable to load control data DMA map, error = %d\n", error);
569 goto fail_3;
570 }
571
572 /*
573 * Create the transmit buffer DMA maps.
574 */
575 sc->sc_ntxsegs = ATW_NTXSEGS;
576 for (i = 0; i < ATW_TXQUEUELEN; i++) {
577 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
578 sc->sc_ntxsegs, MCLBYTES, 0, 0,
579 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
580 aprint_error_dev(sc->sc_dev,
581 "unable to create tx DMA map %d, error = %d\n", i,
582 error);
583 goto fail_4;
584 }
585 }
586
587 /*
588 * Create the receive buffer DMA maps.
589 */
590 for (i = 0; i < ATW_NRXDESC; i++) {
591 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
592 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
593 aprint_error_dev(sc->sc_dev,
594 "unable to create rx DMA map %d, error = %d\n", i,
595 error);
596 goto fail_5;
597 }
598 }
599 for (i = 0; i < ATW_NRXDESC; i++) {
600 sc->sc_rxsoft[i].rxs_mbuf = NULL;
601 }
602
603 switch (sc->sc_rev) {
604 case ATW_REVISION_AB:
605 case ATW_REVISION_AF:
606 sc->sc_sramlen = ATW_SRAM_A_SIZE;
607 break;
608 case ATW_REVISION_BA:
609 case ATW_REVISION_CA:
610 sc->sc_sramlen = ATW_SRAM_B_SIZE;
611 break;
612 }
613
614 /* Reset the chip to a known state. */
615 atw_reset(sc);
616
617 if (atw_read_srom(sc) == -1)
618 goto fail_5;
619
620 sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
621 ATW_SR_RFTYPE_MASK);
622
623 sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
624 ATW_SR_BBPTYPE_MASK);
625
626 if (sc->sc_rftype >= __arraycount(type_strings)) {
627 aprint_error_dev(sc->sc_dev, "unknown RF\n");
628 goto fail_5;
629 }
630 if (sc->sc_bbptype >= __arraycount(type_strings)) {
631 aprint_error_dev(sc->sc_dev, "unknown BBP\n");
632 goto fail_5;
633 }
634
635 aprint_normal_dev(sc->sc_dev, "%s RF, %s BBP",
636 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
637
638 /* XXX There exists a Linux driver which seems to use RFType = 0 for
639 * MARVEL. My bug, or theirs?
640 */
641
642 reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
643
644 switch (sc->sc_rftype) {
645 case ATW_RFTYPE_INTERSIL:
646 reg |= ATW_SYNCTL_CS1;
647 break;
648 case ATW_RFTYPE_RFMD:
649 reg |= ATW_SYNCTL_CS0;
650 break;
651 case ATW_RFTYPE_MARVEL:
652 break;
653 }
654
655 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
656 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
657
658 reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
659
660 switch (sc->sc_bbptype) {
661 case ATW_BBPTYPE_INTERSIL:
662 reg |= ATW_BBPCTL_TWI;
663 break;
664 case ATW_BBPTYPE_RFMD:
665 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
666 ATW_BBPCTL_CCA_ACTLO;
667 break;
668 case ATW_BBPTYPE_MARVEL:
669 break;
670 case ATW_C_BBPTYPE_RFMD:
671 aprint_error_dev(sc->sc_dev,
672 "ADM8211C MAC/RFMD BBP not supported yet.\n");
673 break;
674 }
675
676 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
677 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
678
679 /*
680 * From this point forward, the attachment cannot fail. A failure
681 * before this point releases all resources that may have been
682 * allocated.
683 */
684 sc->sc_flags |= ATWF_ATTACHED;
685
686 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
687 htole16(sc->sc_srom[ATW_SR_MAC00]),
688 htole16(sc->sc_srom[ATW_SR_MAC01]),
689 htole16(sc->sc_srom[ATW_SR_MAC10])));
690
691 srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
692 ATW_SR_MAJOR_MASK);
693
694 if (srom_major < 2)
695 sc->sc_rf3000_options1 = 0;
696 else if (sc->sc_rev == ATW_REVISION_BA) {
697 sc->sc_rf3000_options1 =
698 __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
699 ATW_SR_CR28_MASK);
700 } else
701 sc->sc_rf3000_options1 = 0;
702
703 sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
704 ATW_SR_CR29_MASK);
705
706 country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
707 ATW_SR_CTRY_MASK);
708
709 #define ADD_CHANNEL(_ic, _chan) do { \
710 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
711 _ic->ic_channels[_chan].ic_freq = \
712 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
713 } while (0)
714
715 /* Find available channels */
716 switch (country_code) {
717 case COUNTRY_MMK2: /* 1-14 */
718 ADD_CHANNEL(ic, 14);
719 /*FALLTHROUGH*/
720 case COUNTRY_ETSI: /* 1-13 */
721 for (i = 1; i <= 13; i++)
722 ADD_CHANNEL(ic, i);
723 break;
724 case COUNTRY_FCC: /* 1-11 */
725 case COUNTRY_IC: /* 1-11 */
726 for (i = 1; i <= 11; i++)
727 ADD_CHANNEL(ic, i);
728 break;
729 case COUNTRY_MMK: /* 14 */
730 ADD_CHANNEL(ic, 14);
731 break;
732 case COUNTRY_FRANCE: /* 10-13 */
733 for (i = 10; i <= 13; i++)
734 ADD_CHANNEL(ic, i);
735 break;
736 default: /* assume channels 10-11 */
737 case COUNTRY_SPAIN: /* 10-11 */
738 for (i = 10; i <= 11; i++)
739 ADD_CHANNEL(ic, i);
740 break;
741 }
742
743 /* Read the MAC address. */
744 reg = ATW_READ(sc, ATW_PAR0);
745 ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
746 ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
747 ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
748 ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
749 reg = ATW_READ(sc, ATW_PAR1);
750 ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
751 ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
752
753 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
754 aprint_error_dev(sc->sc_dev,
755 "could not get mac address, attach failed\n");
756 goto fail_5;
757 }
758
759 aprint_normal(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
760
761 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
762 ifp->if_softc = sc;
763 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
764 ifp->if_ioctl = atw_ioctl;
765 ifp->if_start = atw_start;
766 ifp->if_watchdog = atw_watchdog;
767 ifp->if_init = atw_init;
768 ifp->if_stop = atw_stop;
769 IFQ_SET_READY(&ifp->if_snd);
770
771 ic->ic_ifp = ifp;
772 ic->ic_phytype = IEEE80211_T_DS;
773 ic->ic_opmode = IEEE80211_M_STA;
774 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
775 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
776
777 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
778
779 /*
780 * Call MI attach routines.
781 */
782
783 error = if_initialize(ifp);
784 if (error != 0) {
785 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
786 error);
787 goto fail_5;
788 }
789 ieee80211_ifattach(ic);
790 /* Use common softint-based if_input */
791 ifp->if_percpuq = if_percpuq_create(ifp);
792 if_register(ifp);
793
794 atw_evcnt_attach(sc);
795
796 sc->sc_newstate = ic->ic_newstate;
797 ic->ic_newstate = atw_newstate;
798
799 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
800 ic->ic_recv_mgmt = atw_recv_mgmt;
801
802 sc->sc_node_free = ic->ic_node_free;
803 ic->ic_node_free = atw_node_free;
804
805 sc->sc_node_alloc = ic->ic_node_alloc;
806 ic->ic_node_alloc = atw_node_alloc;
807
808 ic->ic_crypto.cs_key_delete = atw_key_delete;
809 ic->ic_crypto.cs_key_set = atw_key_set;
810 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
811 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
812
813 /* possibly we should fill in our own sc_send_prresp, since
814 * the ADM8211 is probably sending probe responses in ad hoc
815 * mode.
816 */
817
818 /* complete initialization */
819 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
820 callout_init(&sc->sc_scan_ch, 0);
821
822 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
823 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
824
825 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
826 sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
827 sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
828
829 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
830 sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
831 sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
832
833 ieee80211_announce(ic);
834 return;
835
836 /*
837 * Free any resources we've allocated during the failed attach
838 * attempt. Do this in reverse order and fall through.
839 */
840 fail_5:
841 for (i = 0; i < ATW_NRXDESC; i++) {
842 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
843 continue;
844 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
845 }
846 fail_4:
847 for (i = 0; i < ATW_TXQUEUELEN; i++) {
848 if (sc->sc_txsoft[i].txs_dmamap == NULL)
849 continue;
850 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
851 }
852 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
853 fail_3:
854 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
855 fail_2:
856 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
857 sizeof(struct atw_control_data));
858 fail_1:
859 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
860 fail_0:
861 if (sc->sc_soft_ih != NULL) {
862 softint_disestablish(sc->sc_soft_ih);
863 sc->sc_soft_ih = NULL;
864 }
865 }
866
867 static struct ieee80211_node *
868 atw_node_alloc(struct ieee80211_node_table *nt)
869 {
870 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
871 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
872
873 DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
874 return ni;
875 }
876
877 static void
878 atw_node_free(struct ieee80211_node *ni)
879 {
880 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
881
882 DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
883 ether_sprintf(ni->ni_bssid)));
884 (*sc->sc_node_free)(ni);
885 }
886
887
888 static void
889 atw_test1_reset(struct atw_softc *sc)
890 {
891 switch (sc->sc_rev) {
892 case ATW_REVISION_BA:
893 if (1 /* XXX condition on transceiver type */) {
894 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
895 }
896 break;
897 case ATW_REVISION_CA:
898 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
899 break;
900 default:
901 break;
902 }
903 }
904
905 /*
906 * atw_reset:
907 *
908 * Perform a soft reset on the ADM8211.
909 */
910 void
911 atw_reset(struct atw_softc *sc)
912 {
913 int i;
914 uint32_t lpc __atwdebugused;
915
916 ATW_WRITE(sc, ATW_NAR, 0x0);
917 DELAY(atw_nar_delay);
918
919 /* Reference driver has a cryptic remark indicating that this might
920 * power-on the chip. I know that it turns off power-saving....
921 */
922 ATW_WRITE(sc, ATW_FRCTL, 0x0);
923
924 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
925
926 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
927 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
928 break;
929 DELAY(atw_pseudo_milli);
930 }
931
932 /* ... and then pause 100ms longer for good measure. */
933 DELAY(atw_magic_delay1);
934
935 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
936
937 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
938 aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
939
940 /*
941 * Initialize the PCI Access Register.
942 */
943 sc->sc_busmode = ATW_PAR_PBL_8DW;
944
945 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
946 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
947 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
948
949 atw_test1_reset(sc);
950
951 /* Turn off maximum power saving, etc. */
952 ATW_WRITE(sc, ATW_FRCTL, 0x0);
953
954 DELAY(atw_magic_delay2);
955
956 /* Recall EEPROM. */
957 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
958
959 DELAY(atw_magic_delay4);
960
961 lpc = ATW_READ(sc, ATW_LPC);
962
963 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
964
965 /* A reset seems to affect the SRAM contents, so put them into
966 * a known state.
967 */
968 atw_clear_sram(sc);
969
970 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
971 }
972
973 static void
974 atw_clear_sram(struct atw_softc *sc)
975 {
976 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
977 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
978 /* XXX not for revision 0x20. */
979 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
980 }
981
982 /* TBD atw_init
983 *
984 * set MAC based on ic->ic_bss->myaddr
985 * write WEP keys
986 * set TX rate
987 */
988
989 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
990 * without receiving a beacon with the preferred BSSID & SSID.
991 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
992 */
993 static void
994 atw_wcsr_init(struct atw_softc *sc)
995 {
996 uint32_t wcsr;
997
998 wcsr = ATW_READ(sc, ATW_WCSR);
999 wcsr &= ~ATW_WCSR_BLN_MASK;
1000 wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1001 /* We always want to wake up on link loss or TSFT out of range */
1002 wcsr |= ATW_WCSR_LSOE | ATW_WCSR_TSFTWE;
1003 ATW_WRITE(sc, ATW_WCSR, wcsr);
1004
1005 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1006 device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1007 }
1008
1009 /* Turn off power management. Set Rx store-and-forward mode. */
1010 static void
1011 atw_cmdr_init(struct atw_softc *sc)
1012 {
1013 uint32_t cmdr;
1014 cmdr = ATW_READ(sc, ATW_CMDR);
1015 cmdr &= ~ATW_CMDR_APM;
1016 cmdr |= ATW_CMDR_RTE;
1017 cmdr &= ~ATW_CMDR_DRT_MASK;
1018 cmdr |= ATW_CMDR_DRT_SF;
1019
1020 ATW_WRITE(sc, ATW_CMDR, cmdr);
1021 }
1022
1023 static void
1024 atw_tofs2_init(struct atw_softc *sc)
1025 {
1026 uint32_t tofs2;
1027 /* XXX this magic can probably be figured out from the RFMD docs */
1028 #ifndef ATW_REFSLAVE
1029 tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1030 __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1031 __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1032 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1033 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1034 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1035 __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1036 __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1037 #else
1038 /* XXX new magic from reference driver source */
1039 tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1040 __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1041 __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */
1042 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1043 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1044 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1045 __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */
1046 __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */
1047 #endif
1048 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1049 }
1050
1051 static void
1052 atw_nar_init(struct atw_softc *sc)
1053 {
1054 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF | ATW_NAR_PB);
1055 }
1056
1057 static void
1058 atw_txlmt_init(struct atw_softc *sc)
1059 {
1060 ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1061 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1062 }
1063
1064 static void
1065 atw_test1_init(struct atw_softc *sc)
1066 {
1067 uint32_t test1;
1068
1069 test1 = ATW_READ(sc, ATW_TEST1);
1070 test1 &= ~(ATW_TEST1_DBGREAD_MASK | ATW_TEST1_CONTROL);
1071 /* XXX magic 0x1 */
1072 test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1073 ATW_WRITE(sc, ATW_TEST1, test1);
1074 }
1075
1076 static void
1077 atw_rf_reset(struct atw_softc *sc)
1078 {
1079 /* XXX this resets an Intersil RF front-end? */
1080 /* TBD condition on Intersil RFType? */
1081 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1082 DELAY(atw_rf_delay1);
1083 ATW_WRITE(sc, ATW_SYNRF, 0);
1084 DELAY(atw_rf_delay2);
1085 }
1086
1087 /* Set 16 TU max duration for the contention-free period (CFP). */
1088 static void
1089 atw_cfp_init(struct atw_softc *sc)
1090 {
1091 uint32_t cfpp;
1092
1093 cfpp = ATW_READ(sc, ATW_CFPP);
1094 cfpp &= ~ATW_CFPP_CFPMD;
1095 cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1096 ATW_WRITE(sc, ATW_CFPP, cfpp);
1097 }
1098
1099 static void
1100 atw_tofs0_init(struct atw_softc *sc)
1101 {
1102 /* XXX I guess that the Cardbus clock is 22 MHz?
1103 * I am assuming that the role of ATW_TOFS0_USCNT is
1104 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1105 * very clear on this point. It says in the datasheet that it is
1106 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1107 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1108 * these values. These values are also the power-on default.
1109 */
1110 ATW_WRITE(sc, ATW_TOFS0,
1111 __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1112 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1113 }
1114
1115 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1116 static void
1117 atw_ifs_init(struct atw_softc *sc)
1118 {
1119 uint32_t ifst;
1120 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1121 * Go figure.
1122 */
1123 ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1124 __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1125 ATW_IFST_SIFS_MASK) |
1126 __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1127 __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1128
1129 ATW_WRITE(sc, ATW_IFST, ifst);
1130 }
1131
1132 static void
1133 atw_response_times_init(struct atw_softc *sc)
1134 {
1135 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1136 * indicate that the MAC expects at least SIFS + MIRT microseconds
1137 * to pass after it transmits a frame that requires a response;
1138 * it waits at most SIFS + MART microseconds for the response.
1139 * Surely this is not the ACK timeout?
1140 */
1141 ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1142 __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1143 }
1144
1145 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1146 * engines read and write baseband registers after Rx and before
1147 * Tx, respectively.
1148 */
1149 static void
1150 atw_bbp_io_init(struct atw_softc *sc)
1151 {
1152 uint32_t mmiraddr2;
1153
1154 /* XXX The reference driver does this, but is it *really*
1155 * necessary?
1156 */
1157 switch (sc->sc_rev) {
1158 case ATW_REVISION_AB:
1159 case ATW_REVISION_AF:
1160 mmiraddr2 = 0x0;
1161 break;
1162 default:
1163 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1164 mmiraddr2 &=
1165 ~(ATW_MMIRADDR2_PROREXT | ATW_MMIRADDR2_PRORLEN_MASK);
1166 break;
1167 }
1168
1169 switch (sc->sc_bbptype) {
1170 case ATW_BBPTYPE_INTERSIL:
1171 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1172 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1173 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1174 break;
1175 case ATW_BBPTYPE_MARVEL:
1176 /* TBD find out the Marvel settings. */
1177 break;
1178 case ATW_BBPTYPE_RFMD:
1179 default:
1180 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1181 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1182 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1183 break;
1184 }
1185 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1186 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1187 }
1188
1189 /*
1190 * atw_init: [ ifnet interface function ]
1191 *
1192 * Initialize the interface. Must be called at splnet().
1193 */
1194 int
1195 atw_init(struct ifnet *ifp)
1196 {
1197 struct atw_softc *sc = ifp->if_softc;
1198 struct ieee80211com *ic = &sc->sc_ic;
1199 struct atw_txsoft *txs;
1200 struct atw_rxsoft *rxs;
1201 int i, error = 0;
1202
1203 if (device_is_active(sc->sc_dev)) {
1204 /*
1205 * Cancel any pending I/O.
1206 */
1207 atw_stop(ifp, 0);
1208 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1209 !device_is_active(sc->sc_dev))
1210 return 0;
1211
1212 /*
1213 * Reset the chip to a known state.
1214 */
1215 atw_reset(sc);
1216
1217 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1218 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1219 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1220
1221 atw_wcsr_init(sc);
1222
1223 atw_cmdr_init(sc);
1224
1225 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1226 *
1227 * XXX Set transmit power for ATIM, RTS, Beacon.
1228 */
1229 ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1230 __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1231
1232 atw_tofs2_init(sc);
1233
1234 atw_nar_init(sc);
1235
1236 atw_txlmt_init(sc);
1237
1238 atw_test1_init(sc);
1239
1240 atw_rf_reset(sc);
1241
1242 atw_cfp_init(sc);
1243
1244 atw_tofs0_init(sc);
1245
1246 atw_ifs_init(sc);
1247
1248 /* XXX Fall asleep after one second of inactivity.
1249 * XXX A frame may only dribble in for 65536us.
1250 */
1251 ATW_WRITE(sc, ATW_RMD,
1252 __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1253
1254 atw_response_times_init(sc);
1255
1256 atw_bbp_io_init(sc);
1257
1258 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1259
1260 if ((error = atw_rf3000_init(sc)) != 0)
1261 goto out;
1262
1263 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1264 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1265 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1266
1267 /*
1268 * Initialize the transmit descriptor ring.
1269 */
1270 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1271 for (i = 0; i < ATW_NTXDESC; i++) {
1272 sc->sc_txdescs[i].at_ctl = 0;
1273 /* no transmit chaining */
1274 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1275 sc->sc_txdescs[i].at_buf2 =
1276 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1277 }
1278 /* use ring mode */
1279 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1280 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1281 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1282 sc->sc_txfree = ATW_NTXDESC;
1283 sc->sc_txnext = 0;
1284
1285 /*
1286 * Initialize the transmit job descriptors.
1287 */
1288 SIMPLEQ_INIT(&sc->sc_txfreeq);
1289 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1290 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1291 txs = &sc->sc_txsoft[i];
1292 txs->txs_mbuf = NULL;
1293 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1294 }
1295
1296 /*
1297 * Initialize the receive descriptor and receive job
1298 * descriptor rings.
1299 */
1300 for (i = 0; i < ATW_NRXDESC; i++) {
1301 rxs = &sc->sc_rxsoft[i];
1302 if (rxs->rxs_mbuf == NULL) {
1303 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1304 aprint_error_dev(sc->sc_dev,
1305 "unable to allocate or map rx buffer %d, "
1306 "error = %d\n", i, error);
1307 /*
1308 * XXX Should attempt to run with fewer receive
1309 * XXX buffers instead of just failing.
1310 */
1311 atw_rxdrain(sc);
1312 goto out;
1313 }
1314 } else
1315 atw_init_rxdesc(sc, i);
1316 }
1317 sc->sc_rxptr = 0;
1318
1319 /*
1320 * Initialize the interrupt mask and enable interrupts.
1321 */
1322 /* normal interrupts */
1323 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1324 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1325
1326 /* abnormal interrupts */
1327 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1328 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1329 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1330
1331 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1332 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1333 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1334 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1335 ATW_INTR_TRT;
1336
1337 sc->sc_linkint_mask &= sc->sc_inten;
1338 sc->sc_rxint_mask &= sc->sc_inten;
1339 sc->sc_txint_mask &= sc->sc_inten;
1340
1341 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1342 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1343
1344 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1345 device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1346
1347 /*
1348 * Give the transmit and receive rings to the ADM8211.
1349 */
1350 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1351 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1352
1353 sc->sc_txthresh = 0;
1354 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1355 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1356
1357 /* common 802.11 configuration */
1358 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1359 switch (ic->ic_opmode) {
1360 case IEEE80211_M_STA:
1361 break;
1362 case IEEE80211_M_AHDEMO: /* XXX */
1363 case IEEE80211_M_IBSS:
1364 ic->ic_flags |= IEEE80211_F_IBSSON;
1365 /*FALLTHROUGH*/
1366 case IEEE80211_M_HOSTAP: /* XXX */
1367 break;
1368 case IEEE80211_M_MONITOR: /* XXX */
1369 break;
1370 }
1371
1372 switch (ic->ic_opmode) {
1373 case IEEE80211_M_AHDEMO:
1374 case IEEE80211_M_HOSTAP:
1375 #ifndef IEEE80211_NO_HOSTAP
1376 ic->ic_bss->ni_intval = ic->ic_lintval;
1377 ic->ic_bss->ni_rssi = 0;
1378 ic->ic_bss->ni_rstamp = 0;
1379 #endif /* !IEEE80211_NO_HOSTAP */
1380 break;
1381 default: /* XXX */
1382 break;
1383 }
1384
1385 sc->sc_wepctl = 0;
1386
1387 atw_write_ssid(sc);
1388 atw_write_sup_rates(sc);
1389 atw_write_wep(sc);
1390
1391 ic->ic_state = IEEE80211_S_INIT;
1392
1393 /*
1394 * Set the receive filter. This will start the transmit and
1395 * receive processes.
1396 */
1397 atw_filter_setup(sc);
1398
1399 /*
1400 * Start the receive process.
1401 */
1402 ATW_WRITE(sc, ATW_RDR, 0x1);
1403
1404 /*
1405 * Note that the interface is now running.
1406 */
1407 ifp->if_flags |= IFF_RUNNING;
1408
1409 /* send no beacons, yet. */
1410 atw_start_beacon(sc, 0);
1411
1412 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1413 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1414 else
1415 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1416 out:
1417 if (error) {
1418 ifp->if_flags &= ~IFF_RUNNING;
1419 sc->sc_tx_timer = 0;
1420 ifp->if_timer = 0;
1421 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1422 }
1423 #ifdef ATW_DEBUG
1424 atw_print_regs(sc, "end of init");
1425 #endif /* ATW_DEBUG */
1426
1427 return (error);
1428 }
1429
1430 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1431 * 0: MAC control of RF3000/Si4126.
1432 *
1433 * Applies power, or selects RF front-end? Sets reset condition.
1434 *
1435 * TBD support non-RFMD BBP, non-SiLabs synth.
1436 */
1437 static void
1438 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1439 {
1440 if (enable) {
1441 ATW_WRITE(sc, ATW_SYNRF,
1442 ATW_SYNRF_SELRF | ATW_SYNRF_PE1 | ATW_SYNRF_PHYRST);
1443 DELAY(atw_bbp_io_enable_delay);
1444 } else {
1445 ATW_WRITE(sc, ATW_SYNRF, 0);
1446 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1447 }
1448 }
1449
1450 static int
1451 atw_tune(struct atw_softc *sc)
1452 {
1453 int rc;
1454 u_int chan;
1455 struct ieee80211com *ic = &sc->sc_ic;
1456
1457 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1458 if (chan == IEEE80211_CHAN_ANY)
1459 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1460
1461 if (chan == sc->sc_cur_chan)
1462 return 0;
1463
1464 DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1465 sc->sc_cur_chan, chan));
1466
1467 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
1468
1469 atw_si4126_tune(sc, chan);
1470 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1471 printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1472 chan);
1473
1474 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1475 DELAY(atw_nar_delay);
1476 ATW_WRITE(sc, ATW_RDR, 0x1);
1477
1478 if (rc == 0) {
1479 sc->sc_cur_chan = chan;
1480 sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1481 htole16(ic->ic_curchan->ic_freq);
1482 sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1483 htole16(ic->ic_curchan->ic_flags);
1484 }
1485
1486 return rc;
1487 }
1488
1489 #ifdef ATW_SYNDEBUG
1490 static void
1491 atw_si4126_print(struct atw_softc *sc)
1492 {
1493 struct ifnet *ifp = &sc->sc_if;
1494 u_int addr, val;
1495
1496 val = 0;
1497
1498 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1499 return;
1500
1501 for (addr = 0; addr <= 8; addr++) {
1502 printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1503 if (atw_si4126_read(sc, addr, &val) == 0) {
1504 printf("<unknown> (quitting print-out)\n");
1505 break;
1506 }
1507 printf("%05x\n", val);
1508 }
1509 }
1510 #endif /* ATW_SYNDEBUG */
1511
1512 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1513 *
1514 * The RF/IF synthesizer produces two reference frequencies for
1515 * the RF2948B transceiver. The first frequency the RF2948B requires
1516 * is two times the so-called "intermediate frequency" (IF). Since
1517 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1518 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second
1519 * frequency required by the transceiver is the radio frequency
1520 * (RF). This is a superheterodyne transceiver; for f(chan) the
1521 * center frequency of the channel we are tuning, RF = f(chan) -
1522 * IF.
1523 *
1524 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1525 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1526 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1527 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1528 */
1529 static void
1530 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1531 {
1532 u_int mhz;
1533 u_int R;
1534 uint32_t gpio;
1535 uint16_t gain;
1536
1537 #ifdef ATW_SYNDEBUG
1538 atw_si4126_print(sc);
1539 #endif /* ATW_SYNDEBUG */
1540
1541 if (chan == 14)
1542 mhz = 2484;
1543 else
1544 mhz = 2412 + 5 * (chan - 1);
1545
1546 /* Tune IF to 748 MHz to suit the IF LO input of the
1547 * RF2494B, which is 2 x IF. No need to set an IF divider
1548 * because an IF in 526 MHz - 952 MHz is allowed.
1549 *
1550 * XIN is 44.000 MHz, so divide it by two to get allowable
1551 * range of 2-25 MHz. SiLabs tells me that this is not
1552 * strictly necessary.
1553 */
1554
1555 if (atw_xindiv2)
1556 R = 44;
1557 else
1558 R = 88;
1559
1560 /* Power-up RF, IF synthesizers. */
1561 atw_si4126_write(sc, SI4126_POWER,
1562 SI4126_POWER_PDIB | SI4126_POWER_PDRB);
1563
1564 /* set LPWR, too? */
1565 atw_si4126_write(sc, SI4126_MAIN,
1566 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1567
1568 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1569 * set KP2 to 1.
1570 *
1571 * REFDIF This is different from the reference driver, which
1572 * always sets SI4126_GAIN to 0.
1573 */
1574 gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1575
1576 atw_si4126_write(sc, SI4126_GAIN, gain);
1577
1578 /* XIN = 44 MHz.
1579 *
1580 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1581 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1582 *
1583 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1584 * so that 1496/88 * 44 MHz = 748 MHz.
1585 */
1586 atw_si4126_write(sc, SI4126_IFN, 1496);
1587
1588 atw_si4126_write(sc, SI4126_IFR, R);
1589
1590 #ifndef ATW_REFSLAVE
1591 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1592 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1593 * which has no RF1!
1594 */
1595 atw_si4126_write(sc, SI4126_RF1R, R);
1596
1597 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1598 #endif
1599
1600 /* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1601 * where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44.
1602 * Now let's multiply it to mhz. So mhz - IF = N.
1603 */
1604 atw_si4126_write(sc, SI4126_RF2R, R);
1605
1606 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1607
1608 /* wait 100us from power-up for RF, IF to settle */
1609 DELAY(100);
1610
1611 gpio = ATW_READ(sc, ATW_GPIO);
1612 gpio &= ~(ATW_GPIO_EN_MASK | ATW_GPIO_O_MASK | ATW_GPIO_I_MASK);
1613 gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1614
1615 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1616 /* Set a Prism RF front-end to a special mode for channel 14?
1617 *
1618 * Apparently the SMC2635W needs this, although I don't think
1619 * it has a Prism RF.
1620 */
1621 gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1622 }
1623 ATW_WRITE(sc, ATW_GPIO, gpio);
1624
1625 #ifdef ATW_SYNDEBUG
1626 atw_si4126_print(sc);
1627 #endif /* ATW_SYNDEBUG */
1628 }
1629
1630 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1631 * diversity.
1632 *
1633 * !!!
1634 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1635 * !!!
1636 */
1637 static int
1638 atw_rf3000_init(struct atw_softc *sc)
1639 {
1640 int rc = 0;
1641
1642 atw_bbp_io_enable(sc, 1);
1643
1644 /* CCA is acquisition sensitive */
1645 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1646 __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1647
1648 if (rc != 0)
1649 goto out;
1650
1651 /* enable diversity */
1652 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1653
1654 if (rc != 0)
1655 goto out;
1656
1657 /* sensible setting from a binary-only driver */
1658 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1659 __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1660
1661 if (rc != 0)
1662 goto out;
1663
1664 /* magic from a binary-only driver */
1665 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1666 __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1667
1668 if (rc != 0)
1669 goto out;
1670
1671 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1672
1673 if (rc != 0)
1674 goto out;
1675
1676 /* XXX Reference driver remarks that Abocom sets this to 50.
1677 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1678 * in the "reserved" area of register RF3000_OPTIONS1.
1679 */
1680 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1681
1682 if (rc != 0)
1683 goto out;
1684
1685 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1686
1687 if (rc != 0)
1688 goto out;
1689
1690 out:
1691 atw_bbp_io_enable(sc, 0);
1692 return rc;
1693 }
1694
1695 #ifdef ATW_BBPDEBUG
1696 static void
1697 atw_rf3000_print(struct atw_softc *sc)
1698 {
1699 struct ifnet *ifp = &sc->sc_if;
1700 u_int addr, val;
1701
1702 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1703 return;
1704
1705 for (addr = 0x01; addr <= 0x15; addr++) {
1706 printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1707 if (atw_rf3000_read(sc, addr, &val) != 0) {
1708 printf("<unknown> (quitting print-out)\n");
1709 break;
1710 }
1711 printf("%08x\n", val);
1712 }
1713 }
1714 #endif /* ATW_BBPDEBUG */
1715
1716 /* Set the power settings on the BBP for channel `chan'. */
1717 static int
1718 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1719 {
1720 int rc = 0;
1721 uint32_t reg;
1722 uint16_t txpower, lpf_cutoff, lna_gs_thresh;
1723
1724 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1725 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1726 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1727
1728 /* odd channels: LSB, even channels: MSB */
1729 if (chan % 2 == 1) {
1730 txpower &= 0xFF;
1731 lpf_cutoff &= 0xFF;
1732 lna_gs_thresh &= 0xFF;
1733 } else {
1734 txpower >>= 8;
1735 lpf_cutoff >>= 8;
1736 lna_gs_thresh >>= 8;
1737 }
1738
1739 #ifdef ATW_BBPDEBUG
1740 atw_rf3000_print(sc);
1741 #endif /* ATW_BBPDEBUG */
1742
1743 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1744 "lna_gs_thresh %02x\n",
1745 device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1746
1747 atw_bbp_io_enable(sc, 1);
1748
1749 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1750 __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1751 goto out;
1752
1753 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1754 goto out;
1755
1756 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1757 goto out;
1758
1759 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1760
1761 if (rc != 0)
1762 goto out;
1763
1764 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1765
1766 if (rc != 0)
1767 goto out;
1768
1769 #ifdef ATW_BBPDEBUG
1770 atw_rf3000_print(sc);
1771 #endif /* ATW_BBPDEBUG */
1772
1773 out:
1774 atw_bbp_io_enable(sc, 0);
1775
1776 /* set beacon, rts, atim transmit power */
1777 reg = ATW_READ(sc, ATW_PLCPHD);
1778 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1779 reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1780 ATW_PLCPHD_SERVICE_MASK);
1781 ATW_WRITE(sc, ATW_PLCPHD, reg);
1782 DELAY(atw_plcphd_delay);
1783
1784 return rc;
1785 }
1786
1787 /* Write a register on the RF3000 baseband processor using the
1788 * registers provided by the ADM8211 for this purpose.
1789 *
1790 * Return 0 on success.
1791 */
1792 static int
1793 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1794 {
1795 uint32_t reg;
1796 int i;
1797
1798 reg = sc->sc_bbpctl_wr |
1799 __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1800 __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1801
1802 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1803 ATW_WRITE(sc, ATW_BBPCTL, reg);
1804 DELAY(2 * atw_pseudo_milli);
1805 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1806 break;
1807 }
1808
1809 if (i < 0) {
1810 printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1811 return ETIMEDOUT;
1812 }
1813 return 0;
1814 }
1815
1816 /* Read a register on the RF3000 baseband processor using the registers
1817 * the ADM8211 provides for this purpose.
1818 *
1819 * The 7-bit register address is addr. Record the 8-bit data in the register
1820 * in *val.
1821 *
1822 * Return 0 on success.
1823 *
1824 * XXX This does not seem to work. The ADM8211 must require more or
1825 * different magic to read the chip than to write it. Possibly some
1826 * of the magic I have derived from a binary-only driver concerns
1827 * the "chip address" (see the RF3000 manual).
1828 */
1829 #ifdef ATW_BBPDEBUG
1830 static int
1831 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1832 {
1833 uint32_t reg;
1834 int i;
1835
1836 for (i = 1000; --i >= 0; ) {
1837 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD | ATW_BBPCTL_WR)
1838 == 0)
1839 break;
1840 DELAY(100);
1841 }
1842
1843 if (i < 0) {
1844 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1845 device_xname(sc->sc_dev));
1846 return ETIMEDOUT;
1847 }
1848
1849 reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1850
1851 ATW_WRITE(sc, ATW_BBPCTL, reg);
1852
1853 for (i = 1000; --i >= 0; ) {
1854 DELAY(100);
1855 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1856 break;
1857 }
1858
1859 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1860
1861 if (i < 0) {
1862 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1863 device_xname(sc->sc_dev), reg);
1864 return ETIMEDOUT;
1865 }
1866 if (val != NULL)
1867 *val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1868 return 0;
1869 }
1870 #endif /* ATW_BBPDEBUG */
1871
1872 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1873 * provided by the ADM8211 for that purpose.
1874 *
1875 * val is 18 bits of data, and val is the 4-bit address of the register.
1876 *
1877 * Return 0 on success.
1878 */
1879 static void
1880 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1881 {
1882 uint32_t bits, mask, reg;
1883 const int nbits = 22;
1884
1885 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1886 KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1887
1888 bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1889 __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1890
1891 reg = ATW_SYNRF_SELSYN;
1892 /* reference driver: reset Si4126 serial bus to initial
1893 * conditions?
1894 */
1895 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1896 ATW_WRITE(sc, ATW_SYNRF, reg);
1897
1898 for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1899 if ((bits & mask) != 0)
1900 reg |= ATW_SYNRF_SYNDATA;
1901 else
1902 reg &= ~ATW_SYNRF_SYNDATA;
1903 ATW_WRITE(sc, ATW_SYNRF, reg);
1904 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1905 ATW_WRITE(sc, ATW_SYNRF, reg);
1906 }
1907 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1908 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1909 }
1910
1911 /* Read 18-bit data from the 4-bit address addr in Si4126
1912 * RF synthesizer and write the data to *val. Return 0 on success.
1913 *
1914 * XXX This does not seem to work. The ADM8211 must require more or
1915 * different magic to read the chip than to write it.
1916 */
1917 #ifdef ATW_SYNDEBUG
1918 static int
1919 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1920 {
1921 uint32_t reg;
1922 int i;
1923
1924 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1925
1926 for (i = 1000; --i >= 0; ) {
1927 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD | ATW_SYNCTL_WR)
1928 == 0)
1929 break;
1930 DELAY(100);
1931 }
1932
1933 if (i < 0) {
1934 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1935 device_xname(sc->sc_dev));
1936 return ETIMEDOUT;
1937 }
1938
1939 reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1940
1941 ATW_WRITE(sc, ATW_SYNCTL, reg);
1942
1943 for (i = 1000; --i >= 0; ) {
1944 DELAY(100);
1945 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1946 break;
1947 }
1948
1949 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1950
1951 if (i < 0) {
1952 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1953 device_xname(sc->sc_dev), reg);
1954 return ETIMEDOUT;
1955 }
1956 if (val != NULL)
1957 *val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1958 ATW_SYNCTL_DATA_MASK);
1959 return 0;
1960 }
1961 #endif /* ATW_SYNDEBUG */
1962
1963 /* XXX is the endianness correct? test. */
1964 #define atw_calchash(addr) \
1965 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1966
1967 /*
1968 * atw_filter_setup:
1969 *
1970 * Set the ADM8211's receive filter.
1971 */
1972 static void
1973 atw_filter_setup(struct atw_softc *sc)
1974 {
1975 struct ieee80211com *ic = &sc->sc_ic;
1976 struct ethercom *ec = &sc->sc_ec;
1977 struct ifnet *ifp = &sc->sc_if;
1978 int hash;
1979 uint32_t hashes[2];
1980 struct ether_multi *enm;
1981 struct ether_multistep step;
1982
1983 /* According to comments in tlp_al981_filter_setup
1984 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1985 * multicast filter to be set while it is running. Hopefully
1986 * the ADM8211 is not the same!
1987 */
1988 if ((ifp->if_flags & IFF_RUNNING) != 0)
1989 atw_idle(sc, ATW_NAR_SR);
1990
1991 sc->sc_opmode &= ~(ATW_NAR_PB | ATW_NAR_PR | ATW_NAR_MM);
1992 ifp->if_flags &= ~IFF_ALLMULTI;
1993
1994 /* XXX in scan mode, do not filter packets. Maybe this is
1995 * unnecessary.
1996 */
1997 if (ic->ic_state == IEEE80211_S_SCAN ||
1998 (ifp->if_flags & IFF_PROMISC) != 0) {
1999 sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2000 goto allmulti;
2001 }
2002
2003 hashes[0] = hashes[1] = 0x0;
2004
2005 /*
2006 * Program the 64-bit multicast hash filter.
2007 */
2008 ETHER_LOCK(ec);
2009 ETHER_FIRST_MULTI(step, ec, enm);
2010 while (enm != NULL) {
2011 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2012 ETHER_ADDR_LEN) != 0) {
2013 ETHER_UNLOCK(ec);
2014 goto allmulti;
2015 }
2016
2017 hash = atw_calchash(enm->enm_addrlo);
2018 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2019 ETHER_NEXT_MULTI(step, enm);
2020 sc->sc_opmode |= ATW_NAR_MM;
2021 }
2022 ETHER_UNLOCK(ec);
2023 ifp->if_flags &= ~IFF_ALLMULTI;
2024 goto setit;
2025
2026 allmulti:
2027 sc->sc_opmode |= ATW_NAR_MM;
2028 ifp->if_flags |= IFF_ALLMULTI;
2029 hashes[0] = hashes[1] = 0xffffffff;
2030
2031 setit:
2032 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2033 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2034 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2035 DELAY(atw_nar_delay);
2036 ATW_WRITE(sc, ATW_RDR, 0x1);
2037
2038 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2039 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2040 }
2041
2042 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2043 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2044 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2045 * no beacon with the preferred BSSID and SSID in the number of
2046 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2047 */
2048 static void
2049 atw_write_bssid(struct atw_softc *sc)
2050 {
2051 struct ieee80211com *ic = &sc->sc_ic;
2052 uint8_t *bssid;
2053
2054 bssid = ic->ic_bss->ni_bssid;
2055
2056 ATW_WRITE(sc, ATW_BSSID0,
2057 __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2058 __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2059 __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2060 __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2061
2062 ATW_WRITE(sc, ATW_ABDA1,
2063 (ATW_READ(sc, ATW_ABDA1) &
2064 ~(ATW_ABDA1_BSSIDB4_MASK | ATW_ABDA1_BSSIDB5_MASK)) |
2065 __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2066 __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2067
2068 DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2069 ether_sprintf(sc->sc_bssid)));
2070 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2071
2072 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2073 }
2074
2075 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2076 * 16-bit word.
2077 */
2078 static void
2079 atw_write_sram(struct atw_softc *sc, u_int ofs, uint8_t *buf, u_int buflen)
2080 {
2081 u_int i;
2082 uint8_t *ptr;
2083
2084 memcpy(&sc->sc_sram[ofs], buf, buflen);
2085
2086 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2087
2088 KASSERT(buflen + ofs <= sc->sc_sramlen);
2089
2090 ptr = &sc->sc_sram[ofs];
2091
2092 for (i = 0; i < buflen; i += 2) {
2093 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2094 __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2095 DELAY(atw_writewep_delay);
2096
2097 ATW_WRITE(sc, ATW_WESK,
2098 __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2099 DELAY(atw_writewep_delay);
2100 }
2101 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2102
2103 if (sc->sc_if.if_flags & IFF_DEBUG) {
2104 int n_octets = 0;
2105 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2106 device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2107 for (i = 0; i < buflen; i++) {
2108 printf(" %02x", ptr[i]);
2109 if (++n_octets % 24 == 0)
2110 printf("\n");
2111 }
2112 if (n_octets % 24 != 0)
2113 printf("\n");
2114 }
2115 }
2116
2117 static int
2118 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2119 {
2120 struct atw_softc *sc = ic->ic_ifp->if_softc;
2121 u_int keyix = k->wk_keyix;
2122
2123 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2124
2125 if (keyix >= IEEE80211_WEP_NKID)
2126 return 0;
2127 if (k->wk_keylen != 0)
2128 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2129
2130 return 1;
2131 }
2132
2133 static int
2134 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2135 const uint8_t mac[IEEE80211_ADDR_LEN])
2136 {
2137 struct atw_softc *sc = ic->ic_ifp->if_softc;
2138
2139 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2140
2141 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2142 return 0;
2143
2144 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2145
2146 return 1;
2147 }
2148
2149 static void
2150 atw_key_update_begin(struct ieee80211com *ic)
2151 {
2152 #ifdef ATW_DEBUG
2153 struct ifnet *ifp = ic->ic_ifp;
2154 struct atw_softc *sc = ifp->if_softc;
2155 #endif
2156
2157 DPRINTF(sc, ("%s:\n", __func__));
2158 }
2159
2160 static void
2161 atw_key_update_end(struct ieee80211com *ic)
2162 {
2163 struct ifnet *ifp = ic->ic_ifp;
2164 struct atw_softc *sc = ifp->if_softc;
2165
2166 DPRINTF(sc, ("%s:\n", __func__));
2167
2168 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2169 return;
2170 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2171 return;
2172 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2173 atw_write_wep(sc);
2174 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2175 DELAY(atw_nar_delay);
2176 ATW_WRITE(sc, ATW_RDR, 0x1);
2177 }
2178
2179 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2180 static void
2181 atw_write_wep(struct atw_softc *sc)
2182 {
2183 #if 0
2184 struct ieee80211com *ic = &sc->sc_ic;
2185 uint32_t reg;
2186 int i;
2187 #endif
2188 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2189 uint8_t buf[IEEE80211_WEP_NKID]
2190 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2191
2192 sc->sc_wepctl = 0;
2193 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2194
2195 memset(&buf[0][0], 0, sizeof(buf));
2196
2197 #if 0
2198 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2199 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2200 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2201 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2202 buf[i][1] = ATW_WEP_ENABLED;
2203 } else {
2204 buf[i][1] = 0;
2205 continue;
2206 }
2207 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2208 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2209 ic->ic_nw_keys[i].wk_keylen - 1);
2210 }
2211
2212 reg = ATW_READ(sc, ATW_MACTEST);
2213 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2214 reg &= ~ATW_MACTEST_KEYID_MASK;
2215 reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2216 ATW_WRITE(sc, ATW_MACTEST, reg);
2217
2218 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2219 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2220
2221 switch (sc->sc_rev) {
2222 case ATW_REVISION_AB:
2223 case ATW_REVISION_AF:
2224 /* Bypass WEP on Rx. */
2225 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2226 break;
2227 default:
2228 break;
2229 }
2230 #endif
2231
2232 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (uint8_t*)&buf[0][0],
2233 sizeof(buf));
2234
2235 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2236 }
2237
2238 static void
2239 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2240 struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
2241 {
2242 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2243
2244 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2245 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2246 return;
2247
2248 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2249
2250 switch (subtype) {
2251 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2252 case IEEE80211_FC0_SUBTYPE_BEACON:
2253 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2254 ic->ic_state == IEEE80211_S_RUN) {
2255 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2256 (void)ieee80211_ibss_merge(ni);
2257 }
2258 break;
2259 default:
2260 break;
2261 }
2262 return;
2263 }
2264
2265 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2266 * In ad hoc mode, the SSID is written to the beacons sent by the
2267 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2268 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2269 * indications.
2270 */
2271 static void
2272 atw_write_ssid(struct atw_softc *sc)
2273 {
2274 struct ieee80211com *ic = &sc->sc_ic;
2275 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2276 * it only expects the element length, not its ID.
2277 */
2278 uint8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2279
2280 memset(buf, 0, sizeof(buf));
2281 buf[0] = ic->ic_bss->ni_esslen;
2282 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2283
2284 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2285 roundup(1 + ic->ic_bss->ni_esslen, 2));
2286 }
2287
2288 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2289 * In ad hoc mode, the supported rates are written to beacons sent by the
2290 * ADM8211.
2291 */
2292 static void
2293 atw_write_sup_rates(struct atw_softc *sc)
2294 {
2295 struct ieee80211com *ic = &sc->sc_ic;
2296 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2297 * supported rates
2298 */
2299 uint8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2300
2301 memset(buf, 0, sizeof(buf));
2302
2303 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2304
2305 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2306 ic->ic_bss->ni_rates.rs_nrates);
2307
2308 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2309 }
2310
2311 /* Start/stop sending beacons. */
2312 void
2313 atw_start_beacon(struct atw_softc *sc, int start)
2314 {
2315 struct ieee80211com *ic = &sc->sc_ic;
2316 uint16_t chan;
2317 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2318 size_t len;
2319
2320 if (!device_is_active(sc->sc_dev))
2321 return;
2322
2323 /* start beacons */
2324 len = sizeof(struct ieee80211_frame) +
2325 8 /* timestamp */ + 2 /* beacon interval */ +
2326 2 /* capability info */ +
2327 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2328 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2329 3 /* DS parameters */ +
2330 IEEE80211_CRC_LEN;
2331
2332 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2333 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2334 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2335
2336 ATW_WRITE(sc, ATW_BCNT, bcnt);
2337 ATW_WRITE(sc, ATW_CAP1, cap1);
2338
2339 if (!start)
2340 return;
2341
2342 /* TBD use ni_capinfo */
2343
2344 capinfo = 0;
2345 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2346 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2347 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2348 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2349
2350 switch (ic->ic_opmode) {
2351 case IEEE80211_M_IBSS:
2352 len += 4; /* IBSS parameters */
2353 capinfo |= IEEE80211_CAPINFO_IBSS;
2354 break;
2355 case IEEE80211_M_HOSTAP:
2356 /* XXX 6-byte minimum TIM */
2357 len += atw_beacon_len_adjust;
2358 capinfo |= IEEE80211_CAPINFO_ESS;
2359 break;
2360 default:
2361 return;
2362 }
2363
2364 /* set listen interval
2365 * XXX do software units agree w/ hardware?
2366 */
2367 bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2368 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2369
2370 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2371
2372 bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2373 cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2374 cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2375
2376 ATW_WRITE(sc, ATW_BCNT, bcnt);
2377 ATW_WRITE(sc, ATW_BPLI, bpli);
2378 ATW_WRITE(sc, ATW_CAP0, cap0);
2379 ATW_WRITE(sc, ATW_CAP1, cap1);
2380
2381 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2382 device_xname(sc->sc_dev), bcnt));
2383
2384 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2385 device_xname(sc->sc_dev), cap1));
2386 }
2387
2388 /* Return the 32 lsb of the last TSFT divisible by ival. */
2389 static inline uint32_t
2390 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2391 {
2392 /* Following the reference driver's lead, I compute
2393 *
2394 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2395 *
2396 * without using 64-bit arithmetic, using the following
2397 * relationship:
2398 *
2399 * (0x100000000 * H + L) % m
2400 * = ((0x100000000 % m) * H + L) % m
2401 * = (((0xffffffff + 1) % m) * H + L) % m
2402 * = ((0xffffffff % m + 1 % m) * H + L) % m
2403 * = ((0xffffffff % m + 1) * H + L) % m
2404 */
2405 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2406 }
2407
2408 static uint64_t
2409 atw_get_tsft(struct atw_softc *sc)
2410 {
2411 int i;
2412 uint32_t tsfth, tsftl;
2413 for (i = 0; i < 2; i++) {
2414 tsfth = ATW_READ(sc, ATW_TSFTH);
2415 tsftl = ATW_READ(sc, ATW_TSFTL);
2416 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2417 break;
2418 }
2419 return ((uint64_t)tsfth << 32) | tsftl;
2420 }
2421
2422 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2423 * the ieee80211com.
2424 *
2425 * Predict the next target beacon transmission time (TBTT) and
2426 * write it to the ADM8211.
2427 */
2428 static void
2429 atw_predict_beacon(struct atw_softc *sc)
2430 {
2431 #define TBTTOFS 20 /* TU */
2432
2433 struct ieee80211com *ic = &sc->sc_ic;
2434 uint64_t tsft;
2435 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2436 union {
2437 uint64_t word;
2438 uint8_t tstamp[8];
2439 } u;
2440
2441 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2442 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2443 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2444 tsft = atw_get_tsft(sc);
2445 u.word = htole64(tsft);
2446 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2447 sizeof(ic->ic_bss->ni_tstamp));
2448 } else
2449 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2450
2451 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2452
2453 tsftl = tsft & 0xFFFFFFFF;
2454 tsfth = tsft >> 32;
2455
2456 /* We sent/received the last beacon `past' microseconds
2457 * after the interval divided the TSF timer.
2458 */
2459 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2460
2461 /* Skip ten beacons so that the TBTT cannot pass before
2462 * we've programmed it. Ten is an arbitrary number.
2463 */
2464 tbtt = past_even + ival * 10;
2465
2466 ATW_WRITE(sc, ATW_TOFS1,
2467 __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2468 __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2469 __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2470 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2471 #undef TBTTOFS
2472 }
2473
2474 static void
2475 atw_next_scan(void *arg)
2476 {
2477 struct atw_softc *sc = arg;
2478 struct ieee80211com *ic = &sc->sc_ic;
2479 int s;
2480
2481 /* don't call atw_start w/o network interrupts blocked */
2482 s = splnet();
2483 if (ic->ic_state == IEEE80211_S_SCAN)
2484 ieee80211_next_scan(ic);
2485 splx(s);
2486 }
2487
2488 /* Synchronize the hardware state with the software state. */
2489 static int
2490 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2491 {
2492 struct ifnet *ifp = ic->ic_ifp;
2493 struct atw_softc *sc = ifp->if_softc;
2494 int error = 0;
2495
2496 callout_stop(&sc->sc_scan_ch);
2497
2498 switch (nstate) {
2499 case IEEE80211_S_AUTH:
2500 case IEEE80211_S_ASSOC:
2501 atw_write_bssid(sc);
2502 error = atw_tune(sc);
2503 break;
2504 case IEEE80211_S_INIT:
2505 callout_stop(&sc->sc_scan_ch);
2506 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2507 atw_start_beacon(sc, 0);
2508 break;
2509 case IEEE80211_S_SCAN:
2510 error = atw_tune(sc);
2511 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2512 atw_next_scan, sc);
2513 break;
2514 case IEEE80211_S_RUN:
2515 error = atw_tune(sc);
2516 atw_write_bssid(sc);
2517 atw_write_ssid(sc);
2518 atw_write_sup_rates(sc);
2519
2520 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2521 ic->ic_opmode == IEEE80211_M_MONITOR)
2522 break;
2523
2524 /* set listen interval
2525 * XXX do software units agree w/ hardware?
2526 */
2527 ATW_WRITE(sc, ATW_BPLI,
2528 __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2529 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2530 ATW_BPLI_LI_MASK));
2531
2532 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2533 ATW_READ(sc, ATW_BPLI)));
2534
2535 atw_predict_beacon(sc);
2536
2537 switch (ic->ic_opmode) {
2538 case IEEE80211_M_AHDEMO:
2539 case IEEE80211_M_HOSTAP:
2540 case IEEE80211_M_IBSS:
2541 atw_start_beacon(sc, 1);
2542 break;
2543 case IEEE80211_M_MONITOR:
2544 case IEEE80211_M_STA:
2545 break;
2546 }
2547
2548 break;
2549 }
2550 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2551 }
2552
2553 /*
2554 * atw_add_rxbuf:
2555 *
2556 * Add a receive buffer to the indicated descriptor.
2557 */
2558 int
2559 atw_add_rxbuf(struct atw_softc *sc, int idx)
2560 {
2561 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2562 struct mbuf *m;
2563 int error;
2564
2565 MGETHDR(m, M_DONTWAIT, MT_DATA);
2566 if (m == NULL)
2567 return (ENOBUFS);
2568
2569 MCLGET(m, M_DONTWAIT);
2570 if ((m->m_flags & M_EXT) == 0) {
2571 m_freem(m);
2572 return (ENOBUFS);
2573 }
2574
2575 if (rxs->rxs_mbuf != NULL)
2576 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2577
2578 rxs->rxs_mbuf = m;
2579
2580 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2581 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2582 BUS_DMA_READ | BUS_DMA_NOWAIT);
2583 if (error) {
2584 aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2585 idx, error);
2586 panic("atw_add_rxbuf"); /* XXX */
2587 }
2588
2589 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2590 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2591
2592 atw_init_rxdesc(sc, idx);
2593
2594 return (0);
2595 }
2596
2597 /*
2598 * Release any queued transmit buffers.
2599 */
2600 void
2601 atw_txdrain(struct atw_softc *sc)
2602 {
2603 struct atw_txsoft *txs;
2604
2605 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2606 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2607 if (txs->txs_mbuf != NULL) {
2608 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2609 m_freem(txs->txs_mbuf);
2610 txs->txs_mbuf = NULL;
2611 }
2612 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2613 sc->sc_txfree += txs->txs_ndescs;
2614 }
2615
2616 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2617 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2618 sc->sc_txfree != ATW_NTXDESC));
2619 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2620 sc->sc_tx_timer = 0;
2621 }
2622
2623 /*
2624 * atw_stop: [ ifnet interface function ]
2625 *
2626 * Stop transmission on the interface.
2627 */
2628 void
2629 atw_stop(struct ifnet *ifp, int disable)
2630 {
2631 struct atw_softc *sc = ifp->if_softc;
2632 struct ieee80211com *ic = &sc->sc_ic;
2633
2634 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2635
2636 if (device_is_active(sc->sc_dev)) {
2637 /* Disable interrupts. */
2638 ATW_WRITE(sc, ATW_IER, 0);
2639
2640 /* Stop the transmit and receive processes. */
2641 ATW_WRITE(sc, ATW_NAR, 0);
2642 DELAY(atw_nar_delay);
2643 ATW_WRITE(sc, ATW_TDBD, 0);
2644 ATW_WRITE(sc, ATW_TDBP, 0);
2645 ATW_WRITE(sc, ATW_RDB, 0);
2646 }
2647
2648 sc->sc_opmode = 0;
2649
2650 atw_txdrain(sc);
2651
2652 /*
2653 * Mark the interface down and cancel the watchdog timer.
2654 */
2655 ifp->if_flags &= ~IFF_RUNNING;
2656 ifp->if_timer = 0;
2657
2658 if (disable)
2659 pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2660 }
2661
2662 /*
2663 * atw_rxdrain:
2664 *
2665 * Drain the receive queue.
2666 */
2667 void
2668 atw_rxdrain(struct atw_softc *sc)
2669 {
2670 struct atw_rxsoft *rxs;
2671 int i;
2672
2673 for (i = 0; i < ATW_NRXDESC; i++) {
2674 rxs = &sc->sc_rxsoft[i];
2675 if (rxs->rxs_mbuf == NULL)
2676 continue;
2677 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2678 m_freem(rxs->rxs_mbuf);
2679 rxs->rxs_mbuf = NULL;
2680 }
2681 }
2682
2683 /*
2684 * atw_detach:
2685 *
2686 * Detach an ADM8211 interface.
2687 */
2688 int
2689 atw_detach(struct atw_softc *sc)
2690 {
2691 struct ifnet *ifp = &sc->sc_if;
2692 struct atw_rxsoft *rxs;
2693 struct atw_txsoft *txs;
2694 int i;
2695
2696 /*
2697 * Succeed now if there isn't any work to do.
2698 */
2699 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2700 return (0);
2701
2702 pmf_device_deregister(sc->sc_dev);
2703
2704 callout_stop(&sc->sc_scan_ch);
2705
2706 ieee80211_ifdetach(&sc->sc_ic);
2707 if_detach(ifp);
2708
2709 for (i = 0; i < ATW_NRXDESC; i++) {
2710 rxs = &sc->sc_rxsoft[i];
2711 if (rxs->rxs_mbuf != NULL) {
2712 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2713 m_freem(rxs->rxs_mbuf);
2714 rxs->rxs_mbuf = NULL;
2715 }
2716 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2717 }
2718 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2719 txs = &sc->sc_txsoft[i];
2720 if (txs->txs_mbuf != NULL) {
2721 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2722 m_freem(txs->txs_mbuf);
2723 txs->txs_mbuf = NULL;
2724 }
2725 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2726 }
2727 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2728 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2729 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2730 sizeof(struct atw_control_data));
2731 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2732
2733 if (sc->sc_srom)
2734 free(sc->sc_srom, M_DEVBUF);
2735
2736 atw_evcnt_detach(sc);
2737
2738 if (sc->sc_soft_ih != NULL) {
2739 softint_disestablish(sc->sc_soft_ih);
2740 sc->sc_soft_ih = NULL;
2741 }
2742
2743 return (0);
2744 }
2745
2746 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2747 bool
2748 atw_shutdown(device_t self, int flags)
2749 {
2750 struct atw_softc *sc = device_private(self);
2751
2752 atw_stop(&sc->sc_if, 1);
2753 return true;
2754 }
2755
2756 #if 0
2757 static void
2758 atw_workaround1(struct atw_softc *sc)
2759 {
2760 uint32_t test1;
2761
2762 test1 = ATW_READ(sc, ATW_TEST1);
2763
2764 sc->sc_misc_ev.ev_count++;
2765
2766 if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2767 sc->sc_rxpkt1in_ev.ev_count++;
2768 return;
2769 }
2770 if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2771 __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2772 sc->sc_rxamatch_ev.ev_count++;
2773 return;
2774 }
2775 sc->sc_workaround1_ev.ev_count++;
2776 (void)atw_init(&sc->sc_if);
2777 }
2778 #endif
2779
2780 int
2781 atw_intr(void *arg)
2782 {
2783 struct atw_softc *sc = arg;
2784 struct ifnet *ifp = &sc->sc_if;
2785 uint32_t status;
2786
2787 #ifdef DEBUG
2788 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2789 panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2790 #endif
2791
2792 /*
2793 * If the interface isn't running, the interrupt couldn't
2794 * possibly have come from us.
2795 */
2796 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2797 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2798 return (0);
2799
2800 status = ATW_READ(sc, ATW_STSR);
2801 if (status == 0)
2802 return 0;
2803
2804 if ((status & sc->sc_inten) == 0) {
2805 ATW_WRITE(sc, ATW_STSR, status);
2806 return 0;
2807 }
2808
2809 /* Disable interrupts */
2810 ATW_WRITE(sc, ATW_IER, 0);
2811
2812 softint_schedule(sc->sc_soft_ih);
2813 return 1;
2814 }
2815
2816 void
2817 atw_softintr(void *arg)
2818 {
2819 struct atw_softc *sc = arg;
2820 struct ifnet *ifp = &sc->sc_if;
2821 uint32_t status, rxstatus, txstatus, linkstatus;
2822 int txthresh, s;
2823
2824 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2825 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2826 return;
2827
2828 for (;;) {
2829 status = ATW_READ(sc, ATW_STSR);
2830
2831 if (status)
2832 ATW_WRITE(sc, ATW_STSR, status);
2833
2834 #ifdef ATW_DEBUG
2835 #define PRINTINTR(flag) do { \
2836 if ((status & flag) != 0) { \
2837 printf("%s" #flag, delim); \
2838 delim = ","; \
2839 } \
2840 } while (0)
2841
2842 if (atw_debug > 1 && status) {
2843 const char *delim = "<";
2844
2845 printf("%s: reg[STSR] = %x",
2846 device_xname(sc->sc_dev), status);
2847
2848 PRINTINTR(ATW_INTR_FBE);
2849 PRINTINTR(ATW_INTR_LINKOFF);
2850 PRINTINTR(ATW_INTR_LINKON);
2851 PRINTINTR(ATW_INTR_RCI);
2852 PRINTINTR(ATW_INTR_RDU);
2853 PRINTINTR(ATW_INTR_REIS);
2854 PRINTINTR(ATW_INTR_RPS);
2855 PRINTINTR(ATW_INTR_TCI);
2856 PRINTINTR(ATW_INTR_TDU);
2857 PRINTINTR(ATW_INTR_TLT);
2858 PRINTINTR(ATW_INTR_TPS);
2859 PRINTINTR(ATW_INTR_TRT);
2860 PRINTINTR(ATW_INTR_TUF);
2861 PRINTINTR(ATW_INTR_BCNTC);
2862 PRINTINTR(ATW_INTR_ATIME);
2863 PRINTINTR(ATW_INTR_TBTT);
2864 PRINTINTR(ATW_INTR_TSCZ);
2865 PRINTINTR(ATW_INTR_TSFTF);
2866 printf(">\n");
2867 }
2868 #undef PRINTINTR
2869 #endif /* ATW_DEBUG */
2870
2871 if ((status & sc->sc_inten) == 0)
2872 break;
2873
2874 rxstatus = status & sc->sc_rxint_mask;
2875 txstatus = status & sc->sc_txint_mask;
2876 linkstatus = status & sc->sc_linkint_mask;
2877
2878 if (linkstatus) {
2879 atw_linkintr(sc, linkstatus);
2880 }
2881
2882 if (rxstatus) {
2883 /* Grab any new packets. */
2884 atw_rxintr(sc);
2885
2886 if (rxstatus & ATW_INTR_RDU) {
2887 printf("%s: receive ring overrun\n",
2888 device_xname(sc->sc_dev));
2889 /* Get the receive process going again. */
2890 ATW_WRITE(sc, ATW_RDR, 0x1);
2891 }
2892 }
2893
2894 if (txstatus) {
2895 /* Sweep up transmit descriptors. */
2896 atw_txintr(sc, txstatus);
2897
2898 if (txstatus & ATW_INTR_TLT) {
2899 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2900 device_xname(sc->sc_dev)));
2901 (void)atw_init(&sc->sc_if);
2902 }
2903
2904 if (txstatus & ATW_INTR_TRT) {
2905 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2906 device_xname(sc->sc_dev)));
2907 }
2908
2909 /* If Tx under-run, increase our transmit threshold
2910 * if another is available.
2911 */
2912 txthresh = sc->sc_txthresh + 1;
2913 if ((txstatus & ATW_INTR_TUF) &&
2914 sc->sc_txth[txthresh].txth_name != NULL) {
2915 /* Idle the transmit process. */
2916 atw_idle(sc, ATW_NAR_ST);
2917
2918 sc->sc_txthresh = txthresh;
2919 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2920 sc->sc_opmode |=
2921 sc->sc_txth[txthresh].txth_opmode;
2922 printf("%s: transmit underrun; new "
2923 "threshold: %s\n", device_xname(sc->sc_dev),
2924 sc->sc_txth[txthresh].txth_name);
2925
2926 /* Set the new threshold and restart
2927 * the transmit process.
2928 */
2929 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2930 DELAY(atw_nar_delay);
2931 ATW_WRITE(sc, ATW_TDR, 0x1);
2932 /* XXX Log every Nth underrun from
2933 * XXX now on?
2934 */
2935 }
2936 }
2937
2938 if (status & (ATW_INTR_TPS | ATW_INTR_RPS)) {
2939 if (status & ATW_INTR_TPS)
2940 printf("%s: transmit process stopped\n",
2941 device_xname(sc->sc_dev));
2942 if (status & ATW_INTR_RPS)
2943 printf("%s: receive process stopped\n",
2944 device_xname(sc->sc_dev));
2945 s = splnet();
2946 (void)atw_init(ifp);
2947 splx(s);
2948 break;
2949 }
2950
2951 if (status & ATW_INTR_FBE) {
2952 aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2953 s = splnet();
2954 (void)atw_init(ifp);
2955 splx(s);
2956 break;
2957 }
2958
2959 /*
2960 * Not handled:
2961 *
2962 * Transmit buffer unavailable -- normal
2963 * condition, nothing to do, really.
2964 *
2965 * Early receive interrupt -- not available on
2966 * all chips, we just use RI. We also only
2967 * use single-segment receive DMA, so this
2968 * is mostly useless.
2969 *
2970 * TBD others
2971 */
2972 }
2973
2974 /* Try to get more packets going. */
2975 s = splnet();
2976 atw_start(ifp);
2977 splx(s);
2978
2979 /* Enable interrupts */
2980 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
2981 }
2982
2983 /*
2984 * atw_idle:
2985 *
2986 * Cause the transmit and/or receive processes to go idle.
2987 *
2988 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2989 * process in STSR if I clear SR or ST after the process has already
2990 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2991 * do not seem to be too reliable. Perhaps I have the sense of the
2992 * Rx bits switched with the Tx bits?
2993 */
2994 void
2995 atw_idle(struct atw_softc *sc, uint32_t bits)
2996 {
2997 uint32_t ackmask = 0, opmode, stsr, test0;
2998 int i, s;
2999
3000 s = splnet();
3001
3002 opmode = sc->sc_opmode & ~bits;
3003
3004 if (bits & ATW_NAR_SR)
3005 ackmask |= ATW_INTR_RPS;
3006
3007 if (bits & ATW_NAR_ST) {
3008 ackmask |= ATW_INTR_TPS;
3009 /* set ATW_NAR_HF to flush TX FIFO. */
3010 opmode |= ATW_NAR_HF;
3011 }
3012
3013 ATW_WRITE(sc, ATW_NAR, opmode);
3014 DELAY(atw_nar_delay);
3015
3016 for (i = 0; i < 1000; i++) {
3017 stsr = ATW_READ(sc, ATW_STSR);
3018 if ((stsr & ackmask) == ackmask)
3019 break;
3020 DELAY(10);
3021 }
3022
3023 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3024
3025 if ((stsr & ackmask) == ackmask)
3026 goto out;
3027
3028 test0 = ATW_READ(sc, ATW_TEST0);
3029
3030 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3031 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3032 printf("%s: transmit process not idle [%s]\n",
3033 device_xname(sc->sc_dev),
3034 atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3035 printf("%s: bits %08x test0 %08x stsr %08x\n",
3036 device_xname(sc->sc_dev), bits, test0, stsr);
3037 }
3038
3039 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3040 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3041 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3042 device_xname(sc->sc_dev),
3043 atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3044 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3045 device_xname(sc->sc_dev), bits, test0, stsr));
3046 }
3047 out:
3048 if ((bits & ATW_NAR_ST) != 0)
3049 atw_txdrain(sc);
3050 splx(s);
3051 return;
3052 }
3053
3054 /*
3055 * atw_linkintr:
3056 *
3057 * Helper; handle link-status interrupts.
3058 */
3059 void
3060 atw_linkintr(struct atw_softc *sc, uint32_t linkstatus)
3061 {
3062 struct ieee80211com *ic = &sc->sc_ic;
3063
3064 if (ic->ic_state != IEEE80211_S_RUN)
3065 return;
3066
3067 if (linkstatus & ATW_INTR_LINKON) {
3068 DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3069 sc->sc_rescan_timer = 0;
3070 } else if (linkstatus & ATW_INTR_LINKOFF) {
3071 DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3072 if (ic->ic_opmode != IEEE80211_M_STA)
3073 return;
3074 sc->sc_rescan_timer = 3;
3075 sc->sc_if.if_timer = 1;
3076 }
3077 }
3078
3079 #if 0
3080 static inline int
3081 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3082 {
3083 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3084 return 0;
3085 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3086 return 0;
3087 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3088 }
3089 #endif
3090
3091 /*
3092 * atw_rxintr:
3093 *
3094 * Helper; handle receive interrupts.
3095 */
3096 void
3097 atw_rxintr(struct atw_softc *sc)
3098 {
3099 static int rate_tbl[] = {2, 4, 11, 22, 44};
3100 struct ieee80211com *ic = &sc->sc_ic;
3101 struct ieee80211_node *ni;
3102 struct ieee80211_frame_min *wh;
3103 struct ifnet *ifp = &sc->sc_if;
3104 struct atw_rxsoft *rxs;
3105 struct mbuf *m;
3106 uint32_t rxstat;
3107 int i, s, len, rate, rate0;
3108 uint32_t rssi, ctlrssi;
3109
3110 for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3111 rxs = &sc->sc_rxsoft[i];
3112
3113 ATW_CDRXSYNC(sc, i,
3114 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3115
3116 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3117 ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3118 rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3119
3120 if (rxstat & ATW_RXSTAT_OWN) {
3121 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3122 break;
3123 }
3124
3125 sc->sc_rxptr = ATW_NEXTRX(i);
3126
3127 DPRINTF3(sc,
3128 ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3129 device_xname(sc->sc_dev),
3130 rxstat, ctlrssi,
3131 le32toh(sc->sc_rxdescs[i].ar_buf1),
3132 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3133
3134 /*
3135 * Make sure the packet fits in one buffer. This should
3136 * always be the case.
3137 */
3138 if ((rxstat & (ATW_RXSTAT_FS | ATW_RXSTAT_LS)) !=
3139 (ATW_RXSTAT_FS | ATW_RXSTAT_LS)) {
3140 printf("%s: incoming packet spilled, resetting\n",
3141 device_xname(sc->sc_dev));
3142 (void)atw_init(ifp);
3143 return;
3144 }
3145
3146 /*
3147 * If an error occurred, update stats, clear the status
3148 * word, and leave the packet buffer in place. It will
3149 * simply be reused the next time the ring comes around.
3150 */
3151 if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3152 #define PRINTERR(bit, str) \
3153 if (rxstat & (bit)) \
3154 aprint_error_dev(sc->sc_dev, "receive error: %s\n", \
3155 str)
3156 ifp->if_ierrors++;
3157 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3158 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3159 #if 0
3160 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3161 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3162 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3163 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3164 #endif
3165 #undef PRINTERR
3166 atw_init_rxdesc(sc, i);
3167 continue;
3168 }
3169
3170 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3171 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3172
3173 /*
3174 * No errors; receive the packet. Note the ADM8211
3175 * includes the CRC in promiscuous mode.
3176 */
3177 len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3178
3179 /*
3180 * Allocate a new mbuf cluster. If that fails, we are
3181 * out of memory, and must drop the packet and recycle
3182 * the buffer that's already attached to this descriptor.
3183 */
3184 m = rxs->rxs_mbuf;
3185 if (atw_add_rxbuf(sc, i) != 0) {
3186 ifp->if_ierrors++;
3187 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3188 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3189 atw_init_rxdesc(sc, i);
3190 continue;
3191 }
3192
3193 ifp->if_ipackets++;
3194 m_set_rcvif(m, ifp);
3195 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3196
3197 rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3198
3199 /* The RSSI comes straight from a register in the
3200 * baseband processor. I know that for the RF3000,
3201 * the RSSI register also contains the antenna-selection
3202 * bits. Mask those off.
3203 *
3204 * TBD Treat other basebands.
3205 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3206 */
3207 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3208 rssi = ctlrssi & RF3000_RSSI_MASK;
3209 else
3210 rssi = ctlrssi;
3211
3212 s = splnet();
3213
3214 /* Pass this up to any BPF listeners. */
3215 if (sc->sc_radiobpf != NULL) {
3216 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3217
3218 tap->ar_rate = rate;
3219
3220 /* TBD verify units are dB */
3221 tap->ar_antsignal = (int)rssi;
3222 if (sc->sc_opmode & ATW_NAR_PR)
3223 tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3224 else
3225 tap->ar_flags = 0;
3226
3227 if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3228 tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3229
3230 bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_rxtapu),
3231 m, BPF_D_IN);
3232 }
3233
3234 sc->sc_recv_ev.ev_count++;
3235
3236 if ((rxstat & (ATW_RXSTAT_CRC16E | ATW_RXSTAT_CRC32E |
3237 ATW_RXSTAT_ICVE | ATW_RXSTAT_SFDE | ATW_RXSTAT_SIGE))
3238 != 0) {
3239 if (rxstat & ATW_RXSTAT_CRC16E)
3240 sc->sc_crc16e_ev.ev_count++;
3241 if (rxstat & ATW_RXSTAT_CRC32E)
3242 sc->sc_crc32e_ev.ev_count++;
3243 if (rxstat & ATW_RXSTAT_ICVE)
3244 sc->sc_icve_ev.ev_count++;
3245 if (rxstat & ATW_RXSTAT_SFDE)
3246 sc->sc_sfde_ev.ev_count++;
3247 if (rxstat & ATW_RXSTAT_SIGE)
3248 sc->sc_sige_ev.ev_count++;
3249 ifp->if_ierrors++;
3250 m_freem(m);
3251 splx(s);
3252 continue;
3253 }
3254
3255 if (sc->sc_opmode & ATW_NAR_PR)
3256 m_adj(m, -IEEE80211_CRC_LEN);
3257
3258 wh = mtod(m, struct ieee80211_frame_min *);
3259 ni = ieee80211_find_rxnode(ic, wh);
3260 #if 0
3261 if (atw_hw_decrypted(sc, wh)) {
3262 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3263 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3264 }
3265 #endif
3266 ieee80211_input(ic, m, ni, (int)rssi, 0);
3267 ieee80211_free_node(ni);
3268 splx(s);
3269 }
3270 }
3271
3272 /*
3273 * atw_txintr:
3274 *
3275 * Helper; handle transmit interrupts.
3276 */
3277 void
3278 atw_txintr(struct atw_softc *sc, uint32_t status)
3279 {
3280 static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3281 struct ifnet *ifp = &sc->sc_if;
3282 struct atw_txsoft *txs;
3283 uint32_t txstat;
3284 int s;
3285
3286 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3287 device_xname(sc->sc_dev), sc->sc_flags));
3288
3289 s = splnet();
3290
3291 /*
3292 * Go through our Tx list and free mbufs for those
3293 * frames that have been transmitted.
3294 */
3295 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3296 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3297 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3298
3299 #ifdef ATW_DEBUG
3300 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3301 int i;
3302 printf(" txsoft %p transmit chain:\n", txs);
3303 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3304 txs->txs_ndescs - 1,
3305 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3306 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3307 printf(" descriptor %d:\n", i);
3308 printf(" at_status: 0x%08x\n",
3309 le32toh(sc->sc_txdescs[i].at_stat));
3310 printf(" at_flags: 0x%08x\n",
3311 le32toh(sc->sc_txdescs[i].at_flags));
3312 printf(" at_buf1: 0x%08x\n",
3313 le32toh(sc->sc_txdescs[i].at_buf1));
3314 printf(" at_buf2: 0x%08x\n",
3315 le32toh(sc->sc_txdescs[i].at_buf2));
3316 if (i == txs->txs_lastdesc)
3317 break;
3318 }
3319 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3320 txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3321 }
3322 #endif
3323
3324 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3325 if (txstat & ATW_TXSTAT_OWN) {
3326 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3327 BUS_DMASYNC_PREREAD);
3328 break;
3329 }
3330
3331 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3332
3333 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3334 0, txs->txs_dmamap->dm_mapsize,
3335 BUS_DMASYNC_POSTWRITE);
3336 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3337 m_freem(txs->txs_mbuf);
3338 txs->txs_mbuf = NULL;
3339
3340 sc->sc_txfree += txs->txs_ndescs;
3341 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3342
3343 KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3344 sc->sc_tx_timer = 0;
3345 ifp->if_flags &= ~IFF_OACTIVE;
3346
3347 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3348 (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3349 snprintb(txstat_buf, sizeof(txstat_buf),
3350 ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3351 printf("%s: txstat %s %" __PRIuBITS "\n",
3352 device_xname(sc->sc_dev), txstat_buf,
3353 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3354 }
3355
3356 sc->sc_xmit_ev.ev_count++;
3357
3358 /*
3359 * Check for errors and collisions.
3360 */
3361 if (txstat & ATW_TXSTAT_TUF)
3362 sc->sc_tuf_ev.ev_count++;
3363 if (txstat & ATW_TXSTAT_TLT)
3364 sc->sc_tlt_ev.ev_count++;
3365 if (txstat & ATW_TXSTAT_TRT)
3366 sc->sc_trt_ev.ev_count++;
3367 if (txstat & ATW_TXSTAT_TRO)
3368 sc->sc_tro_ev.ev_count++;
3369 if (txstat & ATW_TXSTAT_SOFBR)
3370 sc->sc_sofbr_ev.ev_count++;
3371
3372 if ((txstat & ATW_TXSTAT_ES) == 0)
3373 ifp->if_collisions +=
3374 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3375 else
3376 ifp->if_oerrors++;
3377
3378 ifp->if_opackets++;
3379 }
3380
3381 KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3382
3383 splx(s);
3384 }
3385
3386 /*
3387 * atw_watchdog: [ifnet interface function]
3388 *
3389 * Watchdog timer handler.
3390 */
3391 void
3392 atw_watchdog(struct ifnet *ifp)
3393 {
3394 struct atw_softc *sc = ifp->if_softc;
3395 struct ieee80211com *ic = &sc->sc_ic;
3396
3397 ifp->if_timer = 0;
3398 if (!device_is_active(sc->sc_dev))
3399 return;
3400
3401 if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3402 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3403 if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3404 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3405 printf("%s: transmit timeout\n", ifp->if_xname);
3406 ifp->if_oerrors++;
3407 (void)atw_init(ifp);
3408 atw_start(ifp);
3409 }
3410 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3411 ifp->if_timer = 1;
3412 ieee80211_watchdog(ic);
3413 }
3414
3415 static void
3416 atw_evcnt_detach(struct atw_softc *sc)
3417 {
3418 evcnt_detach(&sc->sc_sige_ev);
3419 evcnt_detach(&sc->sc_sfde_ev);
3420 evcnt_detach(&sc->sc_icve_ev);
3421 evcnt_detach(&sc->sc_crc32e_ev);
3422 evcnt_detach(&sc->sc_crc16e_ev);
3423 evcnt_detach(&sc->sc_recv_ev);
3424
3425 evcnt_detach(&sc->sc_tuf_ev);
3426 evcnt_detach(&sc->sc_tro_ev);
3427 evcnt_detach(&sc->sc_trt_ev);
3428 evcnt_detach(&sc->sc_tlt_ev);
3429 evcnt_detach(&sc->sc_sofbr_ev);
3430 evcnt_detach(&sc->sc_xmit_ev);
3431
3432 evcnt_detach(&sc->sc_rxpkt1in_ev);
3433 evcnt_detach(&sc->sc_rxamatch_ev);
3434 evcnt_detach(&sc->sc_workaround1_ev);
3435 evcnt_detach(&sc->sc_misc_ev);
3436 }
3437
3438 static void
3439 atw_evcnt_attach(struct atw_softc *sc)
3440 {
3441 evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3442 NULL, sc->sc_if.if_xname, "recv");
3443 evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3444 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3445 evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3446 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3447 evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3448 &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3449 evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3450 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3451 evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3452 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3453
3454 evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3455 NULL, sc->sc_if.if_xname, "xmit");
3456 evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3457 &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3458 evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3459 &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3460 evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3461 &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3462 evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3463 &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3464 evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3465 &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3466
3467 evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3468 NULL, sc->sc_if.if_xname, "misc");
3469 evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3470 &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3471 evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3472 &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3473 evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3474 &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3475 }
3476
3477 #ifdef ATW_DEBUG
3478 static void
3479 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3480 {
3481 struct atw_softc *sc = ifp->if_softc;
3482 struct mbuf *m;
3483 int i, noctets = 0;
3484
3485 printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3486 m0->m_pkthdr.len);
3487
3488 for (m = m0; m; m = m->m_next) {
3489 if (m->m_len == 0)
3490 continue;
3491 for (i = 0; i < m->m_len; i++) {
3492 printf(" %02x", ((uint8_t*)m->m_data)[i]);
3493 if (++noctets % 24 == 0)
3494 printf("\n");
3495 }
3496 }
3497 printf("%s%s: %d bytes emitted\n",
3498 (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3499 }
3500 #endif /* ATW_DEBUG */
3501
3502 /*
3503 * atw_start: [ifnet interface function]
3504 *
3505 * Start packet transmission on the interface.
3506 */
3507 void
3508 atw_start(struct ifnet *ifp)
3509 {
3510 struct atw_softc *sc = ifp->if_softc;
3511 struct ieee80211_key *k;
3512 struct ieee80211com *ic = &sc->sc_ic;
3513 struct ieee80211_node *ni;
3514 struct ieee80211_frame_min *whm;
3515 struct ieee80211_frame *wh;
3516 struct atw_frame *hh;
3517 uint16_t hdrctl;
3518 struct mbuf *m0, *m;
3519 struct atw_txsoft *txs;
3520 struct atw_txdesc *txd;
3521 int npkt, rate;
3522 bus_dmamap_t dmamap;
3523 int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3524
3525 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3526 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3527
3528 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3529 return;
3530
3531 /*
3532 * Remember the previous number of free descriptors and
3533 * the first descriptor we'll use.
3534 */
3535 ofree = sc->sc_txfree;
3536 firsttx = lasttx = sc->sc_txnext;
3537
3538 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3539 device_xname(sc->sc_dev), ofree, firsttx));
3540
3541 /*
3542 * Loop through the send queue, setting up transmit descriptors
3543 * until we drain the queue, or use up all available transmit
3544 * descriptors.
3545 */
3546 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3547 sc->sc_txfree != 0) {
3548
3549 hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3550
3551 /*
3552 * Grab a packet off the management queue, if it
3553 * is not empty. Otherwise, from the data queue.
3554 */
3555 IF_DEQUEUE(&ic->ic_mgtq, m0);
3556 if (m0 != NULL) {
3557 ni = M_GETCTX(m0, struct ieee80211_node *);
3558 M_CLEARCTX(m0);
3559 } else if (ic->ic_state != IEEE80211_S_RUN)
3560 break; /* send no data until associated */
3561 else {
3562 IFQ_DEQUEUE(&ifp->if_snd, m0);
3563 if (m0 == NULL)
3564 break;
3565 bpf_mtap(ifp, m0, BPF_D_OUT);
3566 ni = ieee80211_find_txnode(ic,
3567 mtod(m0, struct ether_header *)->ether_dhost);
3568 if (ni == NULL) {
3569 ifp->if_oerrors++;
3570 break;
3571 }
3572 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3573 ieee80211_free_node(ni);
3574 ifp->if_oerrors++;
3575 break;
3576 }
3577 }
3578
3579 rate = MAX(ieee80211_get_rate(ni), 2);
3580
3581 whm = mtod(m0, struct ieee80211_frame_min *);
3582
3583 if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3584 k = NULL;
3585 else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3586 m_freem(m0);
3587 ieee80211_free_node(ni);
3588 ifp->if_oerrors++;
3589 break;
3590 }
3591 #if 0
3592 if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3593 m0->m_pkthdr.len > ic->ic_fragthreshold)
3594 hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3595 #endif
3596
3597 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3598 hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3599
3600 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3601 ic->ic_flags, ic->ic_fragthreshold, rate,
3602 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3603 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3604 m_freem(m0);
3605 break;
3606 }
3607
3608 /* XXX Misleading if fragmentation is enabled. Better
3609 * to fragment in software?
3610 */
3611 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3612
3613 /*
3614 * Pass the packet to any BPF listeners.
3615 */
3616 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
3617
3618 if (sc->sc_radiobpf != NULL) {
3619 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3620
3621 tap->at_rate = rate;
3622
3623 bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_txtapu),
3624 m0, BPF_D_OUT);
3625 }
3626
3627 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3628
3629 if (ni != NULL)
3630 ieee80211_free_node(ni);
3631
3632 if (m0 == NULL) {
3633 ifp->if_oerrors++;
3634 break;
3635 }
3636
3637 /* just to make sure. */
3638 m0 = m_pullup(m0, sizeof(struct atw_frame));
3639
3640 if (m0 == NULL) {
3641 ifp->if_oerrors++;
3642 break;
3643 }
3644
3645 hh = mtod(m0, struct atw_frame *);
3646 wh = &hh->atw_ihdr;
3647
3648 /* Copy everything we need from the 802.11 header:
3649 * Frame Control; address 1, address 3, or addresses
3650 * 3 and 4. NIC fills in BSSID, SA.
3651 */
3652 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3653 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3654 panic("%s: illegal WDS frame",
3655 device_xname(sc->sc_dev));
3656 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3657 } else
3658 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3659
3660 *(uint16_t*)hh->atw_fc = *(uint16_t*)wh->i_fc;
3661
3662 /* initialize remaining Tx parameters */
3663 memset(&hh->u, 0, sizeof(hh->u));
3664
3665 hh->atw_rate = rate * 5;
3666 /* XXX this could be incorrect if M_FCS. _encap should
3667 * probably strip FCS just in case it sticks around in
3668 * bridged packets.
3669 */
3670 hh->atw_service = 0x00; /* XXX guess */
3671 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3672 sizeof(struct atw_frame));
3673
3674 /* never fragment multicast frames */
3675 if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3676 hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3677 else {
3678 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3679 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3680 hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3681 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3682 }
3683
3684 hh->atw_rtylmt = 3;
3685 #if 0
3686 if (do_encrypt) {
3687 hdrctl |= htole16(ATW_HDRCTL_WEP);
3688 hh->atw_keyid = ic->ic_def_txkey;
3689 }
3690 #endif
3691
3692 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3693 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3694 if (txs->txs_d0.d_residue)
3695 hh->atw_head_plcplen |= htole16(0x8000);
3696 if (txs->txs_dn.d_residue)
3697 hh->atw_tail_plcplen |= htole16(0x8000);
3698 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3699 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3700
3701 hh->atw_hdrctl = hdrctl;
3702 hh->atw_fragnum = npkt << 4;
3703 #ifdef ATW_DEBUG
3704
3705 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3706 printf("%s: dst = %s, rate = 0x%02x, "
3707 "service = 0x%02x, paylen = 0x%04x\n",
3708 device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3709 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3710
3711 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3712 "dur1 = 0x%04x, dur2 = 0x%04x, "
3713 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3714 device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3715 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3716 hh->atw_tail_dur, hh->atw_head_dur);
3717
3718 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3719 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3720 device_xname(sc->sc_dev), hh->atw_hdrctl,
3721 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3722
3723 printf("%s: keyid = %d\n",
3724 device_xname(sc->sc_dev), hh->atw_keyid);
3725
3726 atw_dump_pkt(ifp, m0);
3727 }
3728 #endif /* ATW_DEBUG */
3729
3730 dmamap = txs->txs_dmamap;
3731
3732 /*
3733 * Load the DMA map. Copy and try (once) again if the packet
3734 * didn't fit in the alloted number of segments.
3735 */
3736 for (first = 1;
3737 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3738 BUS_DMA_WRITE | BUS_DMA_NOWAIT)) != 0 && first;
3739 first = 0) {
3740 MGETHDR(m, M_DONTWAIT, MT_DATA);
3741 if (m == NULL) {
3742 aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3743 break;
3744 }
3745 if (m0->m_pkthdr.len > MHLEN) {
3746 MCLGET(m, M_DONTWAIT);
3747 if ((m->m_flags & M_EXT) == 0) {
3748 aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3749 "cluster\n");
3750 m_freem(m);
3751 break;
3752 }
3753 }
3754 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3755 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3756 m_freem(m0);
3757 m0 = m;
3758 m = NULL;
3759 }
3760 if (error != 0) {
3761 aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3762 "error = %d\n", error);
3763 m_freem(m0);
3764 break;
3765 }
3766
3767 /*
3768 * Ensure we have enough descriptors free to describe
3769 * the packet.
3770 */
3771 if (dmamap->dm_nsegs > sc->sc_txfree) {
3772 /*
3773 * Not enough free descriptors to transmit
3774 * this packet. Unload the DMA map and
3775 * drop the packet. Notify the upper layer
3776 * that there are no more slots left.
3777 *
3778 * XXX We could allocate an mbuf and copy, but
3779 * XXX it is worth it?
3780 */
3781 bus_dmamap_unload(sc->sc_dmat, dmamap);
3782 m_freem(m0);
3783 break;
3784 }
3785
3786 /*
3787 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3788 */
3789
3790 /* Sync the DMA map. */
3791 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3792 BUS_DMASYNC_PREWRITE);
3793
3794 /* XXX arbitrary retry limit; 8 because I have seen it in
3795 * use already and maybe 0 means "no tries" !
3796 */
3797 ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3798
3799 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3800 device_xname(sc->sc_dev), rate * 5));
3801 ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3802
3803 /*
3804 * Initialize the transmit descriptors.
3805 */
3806 for (nexttx = sc->sc_txnext, seg = 0;
3807 seg < dmamap->dm_nsegs;
3808 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3809 /*
3810 * If this is the first descriptor we're
3811 * enqueueing, don't set the OWN bit just
3812 * yet. That could cause a race condition.
3813 * We'll do it below.
3814 */
3815 txd = &sc->sc_txdescs[nexttx];
3816 txd->at_ctl = ctl |
3817 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3818
3819 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3820 txd->at_flags =
3821 htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3822 ATW_TXFLAG_TBS1_MASK)) |
3823 ((nexttx == (ATW_NTXDESC - 1))
3824 ? htole32(ATW_TXFLAG_TER) : 0);
3825 lasttx = nexttx;
3826 }
3827
3828 /* Set `first segment' and `last segment' appropriately. */
3829 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3830 htole32(ATW_TXFLAG_FS);
3831 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3832
3833 #ifdef ATW_DEBUG
3834 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3835 printf(" txsoft %p transmit chain:\n", txs);
3836 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3837 printf(" descriptor %d:\n", seg);
3838 printf(" at_ctl: 0x%08x\n",
3839 le32toh(sc->sc_txdescs[seg].at_ctl));
3840 printf(" at_flags: 0x%08x\n",
3841 le32toh(sc->sc_txdescs[seg].at_flags));
3842 printf(" at_buf1: 0x%08x\n",
3843 le32toh(sc->sc_txdescs[seg].at_buf1));
3844 printf(" at_buf2: 0x%08x\n",
3845 le32toh(sc->sc_txdescs[seg].at_buf2));
3846 if (seg == lasttx)
3847 break;
3848 }
3849 }
3850 #endif
3851
3852 /* Sync the descriptors we're using. */
3853 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3854 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3855
3856 /*
3857 * Store a pointer to the packet so we can free it later,
3858 * and remember what txdirty will be once the packet is
3859 * done.
3860 */
3861 txs->txs_mbuf = m0;
3862 txs->txs_firstdesc = sc->sc_txnext;
3863 txs->txs_lastdesc = lasttx;
3864 txs->txs_ndescs = dmamap->dm_nsegs;
3865
3866 /* Advance the tx pointer. */
3867 sc->sc_txfree -= dmamap->dm_nsegs;
3868 sc->sc_txnext = nexttx;
3869
3870 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3871 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3872 }
3873
3874 if (sc->sc_txfree != ofree) {
3875 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3876 device_xname(sc->sc_dev), lasttx, firsttx));
3877 /*
3878 * Cause a transmit interrupt to happen on the
3879 * last packet we enqueued.
3880 */
3881 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3882 ATW_CDTXSYNC(sc, lasttx, 1,
3883 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3884
3885 /*
3886 * The entire packet chain is set up. Give the
3887 * first descriptor to the chip now.
3888 */
3889 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3890 ATW_CDTXSYNC(sc, firsttx, 1,
3891 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3892
3893 /* Wake up the transmitter. */
3894 ATW_WRITE(sc, ATW_TDR, 0x1);
3895
3896 if (txs == NULL || sc->sc_txfree == 0)
3897 ifp->if_flags |= IFF_OACTIVE;
3898
3899 /* Set a watchdog timer in case the chip flakes out. */
3900 sc->sc_tx_timer = 5;
3901 ifp->if_timer = 1;
3902 }
3903 }
3904
3905 /*
3906 * atw_ioctl: [ifnet interface function]
3907 *
3908 * Handle control requests from the operator.
3909 */
3910 int
3911 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3912 {
3913 struct atw_softc *sc = ifp->if_softc;
3914 struct ieee80211req *ireq;
3915 int s, error = 0;
3916
3917 s = splnet();
3918
3919 switch (cmd) {
3920 case SIOCSIFFLAGS:
3921 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3922 break;
3923 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
3924 case IFF_UP | IFF_RUNNING:
3925 /*
3926 * To avoid rescanning another access point,
3927 * do not call atw_init() here. Instead,
3928 * only reflect media settings.
3929 */
3930 if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3931 atw_filter_setup(sc);
3932 break;
3933 case IFF_UP:
3934 error = atw_init(ifp);
3935 break;
3936 case IFF_RUNNING:
3937 atw_stop(ifp, 1);
3938 break;
3939 case 0:
3940 break;
3941 }
3942 break;
3943 case SIOCADDMULTI:
3944 case SIOCDELMULTI:
3945 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3946 if (ifp->if_flags & IFF_RUNNING)
3947 atw_filter_setup(sc); /* do not rescan */
3948 error = 0;
3949 }
3950 break;
3951 case SIOCS80211:
3952 ireq = data;
3953 if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3954 if ((error = kauth_authorize_network(curlwp->l_cred,
3955 KAUTH_NETWORK_INTERFACE,
3956 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3957 (void *)cmd, NULL)) != 0)
3958 break;
3959 if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3960 ireq->i_val <= IEEE80211_FRAG_MAX))
3961 error = EINVAL;
3962 else
3963 sc->sc_ic.ic_fragthreshold = ireq->i_val;
3964 break;
3965 }
3966 /*FALLTHROUGH*/
3967 default:
3968 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3969 if (error == ENETRESET || error == ERESTART) {
3970 if (is_running(ifp))
3971 error = atw_init(ifp);
3972 else
3973 error = 0;
3974 }
3975 break;
3976 }
3977
3978 /* Try to get more packets going. */
3979 if (device_is_active(sc->sc_dev))
3980 atw_start(ifp);
3981
3982 splx(s);
3983 return (error);
3984 }
3985
3986 static int
3987 atw_media_change(struct ifnet *ifp)
3988 {
3989 int error;
3990
3991 error = ieee80211_media_change(ifp);
3992 if (error == ENETRESET) {
3993 if (is_running(ifp))
3994 error = atw_init(ifp);
3995 else
3996 error = 0;
3997 }
3998 return error;
3999 }
4000