atw.c revision 1.19 1 /* $NetBSD: atw.c,v 1.19 2004/01/13 23:37:29 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.19 2004/01/13 23:37:29 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/atwvar.h>
82 #include <dev/ic/smc93cx6var.h>
83
84 /* XXX TBD open questions
85 *
86 *
87 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
88 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
89 * handle this for me?
90 *
91 */
92 /* device attachment
93 *
94 * print TOFS[012]
95 *
96 * device initialization
97 *
98 * clear ATW_FRCTL_MAXPSP to disable max power saving
99 * set ATW_TXBR_ALCUPDATE to enable ALC
100 * set TOFS[012]? (hope not)
101 * disable rx/tx
102 * set ATW_PAR_SWR (software reset)
103 * wait for ATW_PAR_SWR clear
104 * disable interrupts
105 * ack status register
106 * enable interrupts
107 *
108 * rx/tx initialization
109 *
110 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111 * allocate and init descriptor rings
112 * write ATW_PAR_DSL (descriptor skip length)
113 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
114 * write ATW_NAR_SQ for one/both transmit descriptor rings
115 * write ATW_NAR_SQ for one/both transmit descriptor rings
116 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
117 *
118 * rx/tx end
119 *
120 * stop DMA
121 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
122 * flush tx w/ ATW_NAR_HF
123 *
124 * scan
125 *
126 * initialize rx/tx
127 *
128 * IBSS join/create
129 *
130 * set ATW_NAR_EA (is set by ASIC?)
131 *
132 * BSS join: (re)association response
133 *
134 * set ATW_FRCTL_AID
135 *
136 * optimizations ???
137 *
138 */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_rfio_enable_delay = 20 * 1000;
145 int atw_rfio_disable_delay = 2 * 1000;
146 int atw_writewep_delay = 5;
147 int atw_beacon_len_adjust = 4;
148 int atw_dwelltime = 200;
149
150 #ifdef ATW_DEBUG
151 int atw_xhdrctl = 0;
152 int atw_xrtylmt = ~0;
153 int atw_xservice = IEEE80211_PLCP_SERVICE;
154 int atw_xpaylen = 0;
155
156 int atw_debug = 0;
157
158 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
159 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
160 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
161 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
162 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
163 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
164 static void atw_print_regs(struct atw_softc *, const char *);
165 static void atw_rf3000_print(struct atw_softc *);
166 static void atw_si4126_print(struct atw_softc *);
167 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
168 #else
169 #define ATW_DPRINTF(x)
170 #define ATW_DPRINTF2(x)
171 #define ATW_DPRINTF3(x)
172 #define DPRINTF(sc, x) /* nothing */
173 #define DPRINTF2(sc, x) /* nothing */
174 #define DPRINTF3(sc, x) /* nothing */
175 #endif
176
177 #ifdef ATW_STATS
178 void atw_print_stats __P((struct atw_softc *));
179 #endif
180
181 void atw_start __P((struct ifnet *));
182 void atw_watchdog __P((struct ifnet *));
183 int atw_ioctl __P((struct ifnet *, u_long, caddr_t));
184 int atw_init __P((struct ifnet *));
185 void atw_stop __P((struct ifnet *, int));
186
187 void atw_reset __P((struct atw_softc *));
188 int atw_read_srom __P((struct atw_softc *));
189
190 void atw_shutdown __P((void *));
191
192 void atw_rxdrain __P((struct atw_softc *));
193 int atw_add_rxbuf __P((struct atw_softc *, int));
194 void atw_idle __P((struct atw_softc *, u_int32_t));
195
196 int atw_enable __P((struct atw_softc *));
197 void atw_disable __P((struct atw_softc *));
198 void atw_power __P((int, void *));
199
200 void atw_rxintr __P((struct atw_softc *));
201 void atw_txintr __P((struct atw_softc *));
202 void atw_linkintr __P((struct atw_softc *, u_int32_t));
203
204 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
205 static void atw_tsf(struct atw_softc *);
206 static void atw_start_beacon(struct atw_softc *, int);
207 static void atw_write_wep(struct atw_softc *);
208 static void atw_write_bssid(struct atw_softc *);
209 static void atw_write_bcn_thresh(struct atw_softc *);
210 static void atw_write_ssid(struct atw_softc *);
211 static void atw_write_sup_rates(struct atw_softc *);
212 static void atw_clear_sram(struct atw_softc *);
213 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
214 static int atw_media_change(struct ifnet *);
215 static void atw_media_status(struct ifnet *, struct ifmediareq *);
216 static void atw_filter_setup(struct atw_softc *);
217 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
218 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
219 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
220 struct ieee80211_node *, int, int, u_int32_t);
221 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
222 struct ieee80211_node *, int, int, u_int32_t);
223 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
224 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
225
226 static int atw_tune(struct atw_softc *);
227
228 static void atw_rfio_enable(struct atw_softc *, int);
229
230 /* RFMD RF3000 Baseband Processor */
231 static int atw_rf3000_init(struct atw_softc *);
232 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
233 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
234 #ifdef ATW_DEBUG
235 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
236 #endif /* ATW_DEBUG */
237
238 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
239 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
240 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
241 #ifdef ATW_DEBUG
242 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
243 #endif /* ATW_DEBUG */
244
245 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
246 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
247
248 const char *atw_tx_state[] = {
249 "STOPPED",
250 "RUNNING - FETCH",
251 "RUNNING - WAIT",
252 "RUNNING - READING",
253 "-- RESERVED1 --",
254 "-- RESERVED2 --",
255 "SUSPENDED",
256 "RUNNING - CLOSE"
257 };
258
259 const char *atw_rx_state[] = {
260 "STOPPED",
261 "RUNNING - FETCH",
262 "RUNNING - CHECK",
263 "RUNNING - WAIT",
264 "SUSPENDED",
265 "RUNNING - CLOSE",
266 "RUNNING - FLUSH",
267 "RUNNING - QUEUE"
268 };
269
270 int
271 atw_activate(struct device *self, enum devact act)
272 {
273 struct atw_softc *sc = (struct atw_softc *)self;
274 int rv = 0, s;
275
276 s = splnet();
277 switch (act) {
278 case DVACT_ACTIVATE:
279 rv = EOPNOTSUPP;
280 break;
281
282 case DVACT_DEACTIVATE:
283 if_deactivate(&sc->sc_ic.ic_if);
284 break;
285 }
286 splx(s);
287 return rv;
288 }
289
290 /*
291 * atw_enable:
292 *
293 * Enable the ADM8211 chip.
294 */
295 int
296 atw_enable(sc)
297 struct atw_softc *sc;
298 {
299
300 if (ATW_IS_ENABLED(sc) == 0) {
301 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
302 printf("%s: device enable failed\n",
303 sc->sc_dev.dv_xname);
304 return (EIO);
305 }
306 sc->sc_flags |= ATWF_ENABLED;
307 }
308 return (0);
309 }
310
311 /*
312 * atw_disable:
313 *
314 * Disable the ADM8211 chip.
315 */
316 void
317 atw_disable(sc)
318 struct atw_softc *sc;
319 {
320 if (!ATW_IS_ENABLED(sc))
321 return;
322 if (sc->sc_disable != NULL)
323 (*sc->sc_disable)(sc);
324 sc->sc_flags &= ~ATWF_ENABLED;
325 }
326
327 /* Returns -1 on failure. */
328 int
329 atw_read_srom(struct atw_softc *sc)
330 {
331 struct seeprom_descriptor sd;
332 u_int32_t reg;
333
334 (void)memset(&sd, 0, sizeof(sd));
335
336 reg = ATW_READ(sc, ATW_TEST0);
337
338 if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
339 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
340 return -1;
341 }
342
343 switch (reg & ATW_TEST0_EPTYP_MASK) {
344 case ATW_TEST0_EPTYP_93c66:
345 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
346 sc->sc_sromsz = 512;
347 sd.sd_chip = C56_66;
348 break;
349 case ATW_TEST0_EPTYP_93c46:
350 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
351 sc->sc_sromsz = 128;
352 sd.sd_chip = C46;
353 break;
354 default:
355 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
356 MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
357 return -1;
358 }
359
360 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
361
362 if (sc->sc_srom == NULL) {
363 printf("%s: unable to allocate SROM buffer\n",
364 sc->sc_dev.dv_xname);
365 return -1;
366 }
367
368 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
369
370 /* ADM8211 has a single 32-bit register for controlling the
371 * 93cx6 SROM. Bit SRS enables the serial port. There is no
372 * "ready" bit. The ADM8211 input/output sense is the reverse
373 * of read_seeprom's.
374 */
375 sd.sd_tag = sc->sc_st;
376 sd.sd_bsh = sc->sc_sh;
377 sd.sd_regsize = 4;
378 sd.sd_control_offset = ATW_SPR;
379 sd.sd_status_offset = ATW_SPR;
380 sd.sd_dataout_offset = ATW_SPR;
381 sd.sd_CK = ATW_SPR_SCLK;
382 sd.sd_CS = ATW_SPR_SCS;
383 sd.sd_DI = ATW_SPR_SDO;
384 sd.sd_DO = ATW_SPR_SDI;
385 sd.sd_MS = ATW_SPR_SRS;
386 sd.sd_RDY = 0;
387
388 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
389 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
390 free(sc->sc_srom, M_DEVBUF);
391 return -1;
392 }
393 #ifdef ATW_DEBUG
394 {
395 int i;
396 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
397 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
398 if (((i % 8) == 0) && (i != 0)) {
399 ATW_DPRINTF(("\n\t"));
400 }
401 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
402 }
403 ATW_DPRINTF(("\n"));
404 }
405 #endif /* ATW_DEBUG */
406 return 0;
407 }
408
409 #ifdef ATW_DEBUG
410 static void
411 atw_print_regs(struct atw_softc *sc, const char *where)
412 {
413 #define PRINTREG(sc, reg) \
414 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
415 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
416
417 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
418
419 PRINTREG(sc, ATW_PAR);
420 PRINTREG(sc, ATW_FRCTL);
421 PRINTREG(sc, ATW_TDR);
422 PRINTREG(sc, ATW_WTDP);
423 PRINTREG(sc, ATW_RDR);
424 PRINTREG(sc, ATW_WRDP);
425 PRINTREG(sc, ATW_RDB);
426 PRINTREG(sc, ATW_CSR3A);
427 PRINTREG(sc, ATW_TDBD);
428 PRINTREG(sc, ATW_TDBP);
429 PRINTREG(sc, ATW_STSR);
430 PRINTREG(sc, ATW_CSR5A);
431 PRINTREG(sc, ATW_NAR);
432 PRINTREG(sc, ATW_CSR6A);
433 PRINTREG(sc, ATW_IER);
434 PRINTREG(sc, ATW_CSR7A);
435 PRINTREG(sc, ATW_LPC);
436 PRINTREG(sc, ATW_TEST1);
437 PRINTREG(sc, ATW_SPR);
438 PRINTREG(sc, ATW_TEST0);
439 PRINTREG(sc, ATW_WCSR);
440 PRINTREG(sc, ATW_WPDR);
441 PRINTREG(sc, ATW_GPTMR);
442 PRINTREG(sc, ATW_GPIO);
443 PRINTREG(sc, ATW_BBPCTL);
444 PRINTREG(sc, ATW_SYNCTL);
445 PRINTREG(sc, ATW_PLCPHD);
446 PRINTREG(sc, ATW_MMIWADDR);
447 PRINTREG(sc, ATW_MMIRADDR1);
448 PRINTREG(sc, ATW_MMIRADDR2);
449 PRINTREG(sc, ATW_TXBR);
450 PRINTREG(sc, ATW_CSR15A);
451 PRINTREG(sc, ATW_ALCSTAT);
452 PRINTREG(sc, ATW_TOFS2);
453 PRINTREG(sc, ATW_CMDR);
454 PRINTREG(sc, ATW_PCIC);
455 PRINTREG(sc, ATW_PMCSR);
456 PRINTREG(sc, ATW_PAR0);
457 PRINTREG(sc, ATW_PAR1);
458 PRINTREG(sc, ATW_MAR0);
459 PRINTREG(sc, ATW_MAR1);
460 PRINTREG(sc, ATW_ATIMDA0);
461 PRINTREG(sc, ATW_ABDA1);
462 PRINTREG(sc, ATW_BSSID0);
463 PRINTREG(sc, ATW_TXLMT);
464 PRINTREG(sc, ATW_MIBCNT);
465 PRINTREG(sc, ATW_BCNT);
466 PRINTREG(sc, ATW_TSFTH);
467 PRINTREG(sc, ATW_TSC);
468 PRINTREG(sc, ATW_SYNRF);
469 PRINTREG(sc, ATW_BPLI);
470 PRINTREG(sc, ATW_CAP0);
471 PRINTREG(sc, ATW_CAP1);
472 PRINTREG(sc, ATW_RMD);
473 PRINTREG(sc, ATW_CFPP);
474 PRINTREG(sc, ATW_TOFS0);
475 PRINTREG(sc, ATW_TOFS1);
476 PRINTREG(sc, ATW_IFST);
477 PRINTREG(sc, ATW_RSPT);
478 PRINTREG(sc, ATW_TSFTL);
479 PRINTREG(sc, ATW_WEPCTL);
480 PRINTREG(sc, ATW_WESK);
481 PRINTREG(sc, ATW_WEPCNT);
482 PRINTREG(sc, ATW_MACTEST);
483 PRINTREG(sc, ATW_FER);
484 PRINTREG(sc, ATW_FEMR);
485 PRINTREG(sc, ATW_FPSR);
486 PRINTREG(sc, ATW_FFER);
487 #undef PRINTREG
488 }
489 #endif /* ATW_DEBUG */
490
491 /*
492 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
493 */
494 void
495 atw_attach(struct atw_softc *sc)
496 {
497 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
498 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
499 };
500 struct ieee80211com *ic = &sc->sc_ic;
501 struct ifnet *ifp = &ic->ic_if;
502 int country_code, error, i, nrate;
503 u_int32_t reg;
504 static const char *type_strings[] = {"Intersil (not supported)",
505 "RFMD", "Marvel (not supported)"};
506
507 sc->sc_txth = atw_txthresh_tab_lo;
508
509 SIMPLEQ_INIT(&sc->sc_txfreeq);
510 SIMPLEQ_INIT(&sc->sc_txdirtyq);
511
512 #ifdef ATW_DEBUG
513 atw_print_regs(sc, "atw_attach");
514 #endif /* ATW_DEBUG */
515
516 /*
517 * Allocate the control data structures, and create and load the
518 * DMA map for it.
519 */
520 if ((error = bus_dmamem_alloc(sc->sc_dmat,
521 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
522 1, &sc->sc_cdnseg, 0)) != 0) {
523 printf("%s: unable to allocate control data, error = %d\n",
524 sc->sc_dev.dv_xname, error);
525 goto fail_0;
526 }
527
528 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
529 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
530 BUS_DMA_COHERENT)) != 0) {
531 printf("%s: unable to map control data, error = %d\n",
532 sc->sc_dev.dv_xname, error);
533 goto fail_1;
534 }
535
536 if ((error = bus_dmamap_create(sc->sc_dmat,
537 sizeof(struct atw_control_data), 1,
538 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
539 printf("%s: unable to create control data DMA map, "
540 "error = %d\n", sc->sc_dev.dv_xname, error);
541 goto fail_2;
542 }
543
544 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
545 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
546 0)) != 0) {
547 printf("%s: unable to load control data DMA map, error = %d\n",
548 sc->sc_dev.dv_xname, error);
549 goto fail_3;
550 }
551
552 /*
553 * Create the transmit buffer DMA maps.
554 */
555 sc->sc_ntxsegs = ATW_NTXSEGS;
556 for (i = 0; i < ATW_TXQUEUELEN; i++) {
557 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
558 sc->sc_ntxsegs, MCLBYTES, 0, 0,
559 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
560 printf("%s: unable to create tx DMA map %d, "
561 "error = %d\n", sc->sc_dev.dv_xname, i, error);
562 goto fail_4;
563 }
564 }
565
566 /*
567 * Create the receive buffer DMA maps.
568 */
569 for (i = 0; i < ATW_NRXDESC; i++) {
570 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
571 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
572 printf("%s: unable to create rx DMA map %d, "
573 "error = %d\n", sc->sc_dev.dv_xname, i, error);
574 goto fail_5;
575 }
576 }
577 for (i = 0; i < ATW_NRXDESC; i++) {
578 sc->sc_rxsoft[i].rxs_mbuf = NULL;
579 }
580
581 /* Reset the chip to a known state. */
582 atw_reset(sc);
583
584 if (atw_read_srom(sc) == -1)
585 return;
586
587 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
588 ATW_SR_RFTYPE_MASK);
589
590 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
591 ATW_SR_BBPTYPE_MASK);
592
593 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
594 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
595 return;
596 }
597 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
598 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
599 return;
600 }
601
602 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
603 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
604
605 /* XXX There exists a Linux driver which seems to use RFType = 0 for
606 * MARVEL. My bug, or theirs?
607 */
608
609 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
610
611 switch (sc->sc_rftype) {
612 case ATW_RFTYPE_INTERSIL:
613 reg |= ATW_SYNCTL_CS1;
614 break;
615 case ATW_RFTYPE_RFMD:
616 reg |= ATW_SYNCTL_CS0;
617 break;
618 case ATW_RFTYPE_MARVEL:
619 break;
620 }
621
622 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
623 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
624
625 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
626
627 switch (sc->sc_bbptype) {
628 case ATW_RFTYPE_INTERSIL:
629 reg |= ATW_BBPCTL_TWI;
630 break;
631 case ATW_RFTYPE_RFMD:
632 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
633 ATW_BBPCTL_CCA_ACTLO;
634 break;
635 case ATW_RFTYPE_MARVEL:
636 break;
637 }
638
639 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
640 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
641
642 /*
643 * From this point forward, the attachment cannot fail. A failure
644 * before this point releases all resources that may have been
645 * allocated.
646 */
647 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
648
649 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
650 htole16(sc->sc_srom[ATW_SR_MAC00]),
651 htole16(sc->sc_srom[ATW_SR_MAC01]),
652 htole16(sc->sc_srom[ATW_SR_MAC10])));
653
654 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
655 ATW_SR_CTRY_MASK);
656
657 #define ADD_CHANNEL(_ic, _chan) do { \
658 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
659 _ic->ic_channels[_chan].ic_freq = \
660 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
661 } while (0)
662
663 /* Find available channels */
664 switch (country_code) {
665 case COUNTRY_MMK2: /* 1-14 */
666 ADD_CHANNEL(ic, 14);
667 /*FALLTHROUGH*/
668 case COUNTRY_ETSI: /* 1-13 */
669 for (i = 1; i <= 13; i++)
670 ADD_CHANNEL(ic, i);
671 break;
672 case COUNTRY_FCC: /* 1-11 */
673 case COUNTRY_IC: /* 1-11 */
674 for (i = 1; i <= 11; i++)
675 ADD_CHANNEL(ic, i);
676 break;
677 case COUNTRY_MMK: /* 14 */
678 ADD_CHANNEL(ic, 14);
679 break;
680 case COUNTRY_FRANCE: /* 10-13 */
681 for (i = 10; i <= 13; i++)
682 ADD_CHANNEL(ic, i);
683 break;
684 default: /* assume channels 10-11 */
685 case COUNTRY_SPAIN: /* 10-11 */
686 for (i = 10; i <= 11; i++)
687 ADD_CHANNEL(ic, i);
688 break;
689 }
690
691 /* Read the MAC address. */
692 reg = ATW_READ(sc, ATW_PAR0);
693 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
694 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
695 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
696 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
697 reg = ATW_READ(sc, ATW_PAR1);
698 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
699 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
700
701 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
702 printf(" could not get mac address, attach failed\n");
703 return;
704 }
705
706 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
707
708 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
709 ifp->if_softc = sc;
710 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
711 IFF_NOTRAILERS;
712 ifp->if_ioctl = atw_ioctl;
713 ifp->if_start = atw_start;
714 ifp->if_watchdog = atw_watchdog;
715 ifp->if_init = atw_init;
716 ifp->if_stop = atw_stop;
717 IFQ_SET_READY(&ifp->if_snd);
718
719 ic->ic_phytype = IEEE80211_T_DS;
720 ic->ic_opmode = IEEE80211_M_STA;
721 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
722 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
723
724 nrate = 0;
725 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
726 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
727 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
728 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
729 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
730
731 /*
732 * Call MI attach routines.
733 */
734
735 if_attach(ifp);
736 ieee80211_ifattach(ifp);
737
738 sc->sc_newstate = ic->ic_newstate;
739 ic->ic_newstate = atw_newstate;
740
741 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
742 ic->ic_recv_mgmt = atw_recv_mgmt;
743
744 sc->sc_node_free = ic->ic_node_free;
745 ic->ic_node_free = atw_node_free;
746
747 sc->sc_node_alloc = ic->ic_node_alloc;
748 ic->ic_node_alloc = atw_node_alloc;
749
750 /* possibly we should fill in our own sc_send_prresp, since
751 * the ADM8211 is probably sending probe responses in ad hoc
752 * mode.
753 */
754
755 /* complete initialization */
756 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
757 callout_init(&sc->sc_scan_ch);
758
759 #if NBPFILTER > 0
760 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
761 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
762 #endif
763
764 /*
765 * Make sure the interface is shutdown during reboot.
766 */
767 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
768 if (sc->sc_sdhook == NULL)
769 printf("%s: WARNING: unable to establish shutdown hook\n",
770 sc->sc_dev.dv_xname);
771
772 /*
773 * Add a suspend hook to make sure we come back up after a
774 * resume.
775 */
776 sc->sc_powerhook = powerhook_establish(atw_power, sc);
777 if (sc->sc_powerhook == NULL)
778 printf("%s: WARNING: unable to establish power hook\n",
779 sc->sc_dev.dv_xname);
780
781 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
782 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
783 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
784
785 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
786 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
787 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
788
789 return;
790
791 /*
792 * Free any resources we've allocated during the failed attach
793 * attempt. Do this in reverse order and fall through.
794 */
795 fail_5:
796 for (i = 0; i < ATW_NRXDESC; i++) {
797 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
798 continue;
799 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
800 }
801 fail_4:
802 for (i = 0; i < ATW_TXQUEUELEN; i++) {
803 if (sc->sc_txsoft[i].txs_dmamap == NULL)
804 continue;
805 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
806 }
807 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
808 fail_3:
809 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
810 fail_2:
811 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
812 sizeof(struct atw_control_data));
813 fail_1:
814 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
815 fail_0:
816 return;
817 }
818
819 static struct ieee80211_node *
820 atw_node_alloc(struct ieee80211com *ic)
821 {
822 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
823 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
824
825 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
826 return ni;
827 }
828
829 static void
830 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
831 {
832 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
833
834 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
835 ether_sprintf(ni->ni_bssid)));
836 (*sc->sc_node_free)(ic, ni);
837 }
838
839 /*
840 * atw_reset:
841 *
842 * Perform a soft reset on the ADM8211.
843 */
844 void
845 atw_reset(sc)
846 struct atw_softc *sc;
847 {
848 int i;
849
850 if (ATW_IS_ENABLED(sc) == 0)
851 return;
852
853 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
854
855 for (i = 0; i < 10000; i++) {
856 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
857 break;
858 DELAY(1);
859 }
860
861 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
862
863 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
864 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
865
866 /* Turn off maximum power saving. */
867 ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
868
869 /* Recall EEPROM. */
870 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
871
872 DELAY(10 * 1000);
873
874 /* A reset seems to affect the SRAM contents, so put them into
875 * a known state.
876 */
877 atw_clear_sram(sc);
878
879 memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
880
881 sc->sc_lost_bcn_thresh = 0;
882 }
883
884 static void
885 atw_clear_sram(sc)
886 struct atw_softc *sc;
887 {
888 #if 0
889 for (addr = 0; addr < 448; addr++) {
890 ATW_WRITE(sc, ATW_WEPCTL,
891 ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0 | addr);
892 DELAY(1000);
893 ATW_WRITE(sc, ATW_WESK, 0);
894 DELAY(1000); /* paranoia */
895 }
896 return;
897 #endif
898 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
899 /* XXX not for revision 0x20. */
900 atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
901 }
902
903 /* TBD atw_init
904 *
905 * set MAC based on ic->ic_bss->myaddr
906 * write WEP keys
907 * set TX rate
908 */
909
910 /*
911 * atw_init: [ ifnet interface function ]
912 *
913 * Initialize the interface. Must be called at splnet().
914 */
915 int
916 atw_init(ifp)
917 struct ifnet *ifp;
918 {
919 struct atw_softc *sc = ifp->if_softc;
920 struct ieee80211com *ic = &sc->sc_ic;
921 struct atw_txsoft *txs;
922 struct atw_rxsoft *rxs;
923 u_int32_t reg;
924 int i, error = 0;
925
926 if ((error = atw_enable(sc)) != 0)
927 goto out;
928
929 /*
930 * Cancel any pending I/O. This also resets.
931 */
932 atw_stop(ifp, 0);
933
934 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
935 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
936 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
937 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
938
939 /* Turn off APM??? (A binary-only driver does this.)
940 *
941 * Set Rx store-and-forward mode.
942 */
943 reg = ATW_READ(sc, ATW_CMDR);
944 reg &= ~ATW_CMDR_APM;
945 reg &= ~ATW_CMDR_DRT_MASK;
946 reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
947
948 ATW_WRITE(sc, ATW_CMDR, reg);
949
950 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
951 *
952 * XXX a binary-only driver sets a different service field than
953 * 0. why?
954 */
955 reg = ATW_READ(sc, ATW_PLCPHD);
956 reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
957 reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
958 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
959 ATW_WRITE(sc, ATW_PLCPHD, reg);
960
961 /* XXX this magic can probably be figured out from the RFMD docs */
962 reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
963 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
964 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
965 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
966 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
967 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
968 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
969 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
970 ATW_WRITE(sc, ATW_TOFS2, reg);
971
972 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
973 LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
974
975 /* XXX this resets an Intersil RF front-end? */
976 /* TBD condition on Intersil RFType? */
977 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
978 DELAY(10 * 1000);
979 ATW_WRITE(sc, ATW_SYNRF, 0);
980 DELAY(5 * 1000);
981
982 /* 16 TU max duration for contention-free period */
983 reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
984 ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
985
986 /* XXX I guess that the Cardbus clock is 22MHz?
987 * I am assuming that the role of ATW_TOFS0_USCNT is
988 * to divide the bus clock to get a 1MHz clock---the datasheet is not
989 * very clear on this point. It says in the datasheet that it is
990 * possible for the ADM8211 to accomodate bus speeds between 22MHz
991 * and 33MHz; maybe this is the way? I see a binary-only driver write
992 * these values. These values are also the power-on default.
993 */
994 ATW_WRITE(sc, ATW_TOFS0,
995 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
996 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
997
998 /* Initialize interframe spacing. EIFS=0x64 is used by a binary-only
999 * driver. Go figure.
1000 */
1001 reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1002 LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
1003 ATW_IFST_SIFS_MASK) |
1004 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1005 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1006
1007 ATW_WRITE(sc, ATW_IFST, reg);
1008
1009 /* XXX More magic. Might relate to ACK timing. */
1010 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1011 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1012
1013 /* Set up the MMI read/write addresses for the BBP.
1014 *
1015 * TBD find out the Marvel settings.
1016 */
1017 switch (sc->sc_bbptype) {
1018 case ATW_BBPTYPE_INTERSIL:
1019 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1020 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1021 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1022 break;
1023 case ATW_BBPTYPE_MARVEL:
1024 break;
1025 case ATW_BBPTYPE_RFMD:
1026 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1027 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1028 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1029 default:
1030 break;
1031 }
1032
1033 sc->sc_wepctl = 0;
1034 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1035
1036 if ((error = atw_rf3000_init(sc)) != 0)
1037 goto out;
1038
1039 /*
1040 * Initialize the PCI Access Register.
1041 */
1042 sc->sc_busmode = ATW_PAR_BAR; /* XXX what is this? */
1043
1044 /*
1045 * If we're allowed to do so, use Memory Read Line
1046 * and Memory Read Multiple.
1047 *
1048 * XXX Should we use Memory Write and Invalidate?
1049 */
1050 if (sc->sc_flags & ATWF_MRL)
1051 sc->sc_busmode |= ATW_PAR_MRLE;
1052 if (sc->sc_flags & ATWF_MRM)
1053 sc->sc_busmode |= ATW_PAR_MRME;
1054 if (sc->sc_flags & ATWF_MWI)
1055 sc->sc_busmode |= ATW_PAR_MWIE;
1056 if (sc->sc_maxburst == 0)
1057 sc->sc_maxburst = 8; /* ADM8211 default */
1058
1059 switch (sc->sc_cacheline) {
1060 default:
1061 /* Use burst length. */
1062 break;
1063 case 8:
1064 sc->sc_busmode |= ATW_PAR_CAL_8DW;
1065 break;
1066 case 16:
1067 sc->sc_busmode |= ATW_PAR_CAL_16DW;
1068 break;
1069 case 32:
1070 sc->sc_busmode |= ATW_PAR_CAL_32DW;
1071 break;
1072 }
1073 switch (sc->sc_maxburst) {
1074 case 1:
1075 sc->sc_busmode |= ATW_PAR_PBL_1DW;
1076 break;
1077 case 2:
1078 sc->sc_busmode |= ATW_PAR_PBL_2DW;
1079 break;
1080 case 4:
1081 sc->sc_busmode |= ATW_PAR_PBL_4DW;
1082 break;
1083 case 8:
1084 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1085 break;
1086 case 16:
1087 sc->sc_busmode |= ATW_PAR_PBL_16DW;
1088 break;
1089 case 32:
1090 sc->sc_busmode |= ATW_PAR_PBL_32DW;
1091 break;
1092 default:
1093 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1094 break;
1095 }
1096
1097 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1098 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1099 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1100
1101 /*
1102 * Initialize the OPMODE register. We don't write it until
1103 * we're ready to begin the transmit and receive processes.
1104 */
1105 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1106 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1107
1108 /*
1109 * Initialize the transmit descriptor ring.
1110 */
1111 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1112 for (i = 0; i < ATW_NTXDESC; i++) {
1113 /* no transmit chaining */
1114 sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1115 sc->sc_txdescs[i].at_buf2 =
1116 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1117 }
1118 /* use ring mode */
1119 sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1120 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1121 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1122 sc->sc_txfree = ATW_NTXDESC;
1123 sc->sc_txnext = 0;
1124
1125 /*
1126 * Initialize the transmit job descriptors.
1127 */
1128 SIMPLEQ_INIT(&sc->sc_txfreeq);
1129 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1130 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1131 txs = &sc->sc_txsoft[i];
1132 txs->txs_mbuf = NULL;
1133 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1134 }
1135
1136 /*
1137 * Initialize the receive descriptor and receive job
1138 * descriptor rings.
1139 */
1140 for (i = 0; i < ATW_NRXDESC; i++) {
1141 rxs = &sc->sc_rxsoft[i];
1142 if (rxs->rxs_mbuf == NULL) {
1143 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1144 printf("%s: unable to allocate or map rx "
1145 "buffer %d, error = %d\n",
1146 sc->sc_dev.dv_xname, i, error);
1147 /*
1148 * XXX Should attempt to run with fewer receive
1149 * XXX buffers instead of just failing.
1150 */
1151 atw_rxdrain(sc);
1152 goto out;
1153 }
1154 } else
1155 ATW_INIT_RXDESC(sc, i);
1156 }
1157 sc->sc_rxptr = 0;
1158
1159 /* disable all wake-up events */
1160 ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1161 ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1162 ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1163 ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1164
1165 /* ack all wake-up events */
1166 ATW_SET(sc, ATW_WCSR, 0);
1167
1168 /*
1169 * Initialize the interrupt mask and enable interrupts.
1170 */
1171 /* normal interrupts */
1172 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1173 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1174
1175 /* abnormal interrupts */
1176 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1177 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1178 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1179
1180 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1181 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1182 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1183 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1184 ATW_INTR_TRT;
1185
1186 sc->sc_linkint_mask &= sc->sc_inten;
1187 sc->sc_rxint_mask &= sc->sc_inten;
1188 sc->sc_txint_mask &= sc->sc_inten;
1189
1190 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1191 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1192 if (sc->sc_intr_ack != NULL)
1193 (*sc->sc_intr_ack)(sc);
1194
1195 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1196 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1197
1198 /*
1199 * Give the transmit and receive rings to the ADM8211.
1200 */
1201 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1202 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1203
1204 /* common 802.11 configuration */
1205 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1206 switch (ic->ic_opmode) {
1207 case IEEE80211_M_STA:
1208 sc->sc_opmode &= ~ATW_NAR_EA;
1209 break;
1210 case IEEE80211_M_AHDEMO: /* XXX */
1211 case IEEE80211_M_IBSS:
1212 ic->ic_flags |= IEEE80211_F_IBSSON;
1213 /*FALLTHROUGH*/
1214 case IEEE80211_M_HOSTAP: /* XXX */
1215 /* EA bit seems important for ad hoc reception. */
1216 sc->sc_opmode |= ATW_NAR_EA;
1217 break;
1218 case IEEE80211_M_MONITOR: /* XXX */
1219 break;
1220 }
1221
1222 atw_start_beacon(sc, 0);
1223
1224 switch (ic->ic_opmode) {
1225 case IEEE80211_M_AHDEMO:
1226 case IEEE80211_M_HOSTAP:
1227 ic->ic_bss->ni_intval = ic->ic_lintval;
1228 ic->ic_bss->ni_rssi = 0;
1229 ic->ic_bss->ni_rstamp = 0;
1230 break;
1231 default: /* XXX */
1232 break;
1233 }
1234
1235 atw_write_ssid(sc);
1236 atw_write_sup_rates(sc);
1237 if (ic->ic_caps & IEEE80211_C_WEP)
1238 atw_write_wep(sc);
1239
1240 /*
1241 * Set the receive filter. This will start the transmit and
1242 * receive processes.
1243 */
1244 atw_filter_setup(sc);
1245
1246 /*
1247 * Start the receive process.
1248 */
1249 ATW_WRITE(sc, ATW_RDR, 0x1);
1250
1251 /*
1252 * Note that the interface is now running.
1253 */
1254 ifp->if_flags |= IFF_RUNNING;
1255 ifp->if_flags &= ~IFF_OACTIVE;
1256 ic->ic_state = IEEE80211_S_INIT;
1257
1258 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1259 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1260 else
1261 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1262 out:
1263 if (error) {
1264 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1265 ifp->if_timer = 0;
1266 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1267 }
1268 #ifdef ATW_DEBUG
1269 atw_print_regs(sc, "end of init");
1270 #endif /* ATW_DEBUG */
1271
1272 return (error);
1273 }
1274
1275 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1276 * 0: MAC control of RF3000/Si4126.
1277 *
1278 * Applies power, or selects RF front-end? Sets reset condition.
1279 *
1280 * TBD support non-RFMD BBP, non-SiLabs synth.
1281 */
1282 static void
1283 atw_rfio_enable(struct atw_softc *sc, int enable)
1284 {
1285 if (enable) {
1286 ATW_WRITE(sc, ATW_SYNRF,
1287 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1288 DELAY(atw_rfio_enable_delay);
1289 } else {
1290 ATW_WRITE(sc, ATW_SYNRF, 0);
1291 DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1292 }
1293 }
1294
1295 static int
1296 atw_tune(sc)
1297 struct atw_softc *sc;
1298 {
1299 int rc;
1300 u_int32_t reg;
1301 int chan;
1302 struct ieee80211com *ic = &sc->sc_ic;
1303
1304 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1305 if (chan == IEEE80211_CHAN_ANY)
1306 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1307
1308 if (chan == sc->sc_cur_chan)
1309 return 0;
1310
1311 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1312 sc->sc_cur_chan, chan));
1313
1314 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1315
1316 if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1317 (rc = atw_rf3000_tune(sc, chan)) != 0)
1318 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1319 chan);
1320
1321 reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1322 ATW_WRITE(sc, ATW_CAP0,
1323 reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1324
1325 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1326
1327 if (rc == 0)
1328 sc->sc_cur_chan = chan;
1329
1330 return rc;
1331 }
1332
1333 #ifdef ATW_DEBUG
1334 static void
1335 atw_si4126_print(sc)
1336 struct atw_softc *sc;
1337 {
1338 struct ifnet *ifp = &sc->sc_ic.ic_if;
1339 u_int addr, val;
1340
1341 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1342 return;
1343
1344 for (addr = 0; addr <= 8; addr++) {
1345 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1346 if (atw_si4126_read(sc, addr, &val) == 0) {
1347 printf("<unknown> (quitting print-out)\n");
1348 break;
1349 }
1350 printf("%05x\n", val);
1351 }
1352 }
1353 #endif /* ATW_DEBUG */
1354
1355 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1356 *
1357 * The RF/IF synthesizer produces two reference frequencies for
1358 * the RF2948B transceiver. The first frequency the RF2948B requires
1359 * is two times the so-called "intermediate frequency" (IF). Since
1360 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1361 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1362 * frequency required by the transceiver is the radio frequency
1363 * (RF). This is a superheterodyne transceiver; for f(chan) the
1364 * center frequency of the channel we are tuning, RF = f(chan) -
1365 * IF.
1366 *
1367 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1368 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1369 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1370 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1371 */
1372 static int
1373 atw_si4126_tune(sc, chan)
1374 struct atw_softc *sc;
1375 u_int8_t chan;
1376 {
1377 int rc = 0;
1378 u_int mhz;
1379 u_int R;
1380 u_int32_t reg;
1381 u_int16_t gain;
1382
1383 #ifdef ATW_DEBUG
1384 atw_si4126_print(sc);
1385 #endif /* ATW_DEBUG */
1386
1387 if (chan == 14)
1388 mhz = 2484;
1389 else
1390 mhz = 2412 + 5 * (chan - 1);
1391
1392 /* Tune IF to 748MHz to suit the IF LO input of the
1393 * RF2494B, which is 2 x IF. No need to set an IF divider
1394 * because an IF in 526MHz - 952MHz is allowed.
1395 *
1396 * XIN is 44.000MHz, so divide it by two to get allowable
1397 * range of 2-25MHz. SiLabs tells me that this is not
1398 * strictly necessary.
1399 */
1400
1401 R = 44;
1402
1403 atw_rfio_enable(sc, 1);
1404
1405 /* Power-up RF, IF synthesizers. */
1406 if ((rc = atw_si4126_write(sc, SI4126_POWER,
1407 SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1408 goto out;
1409
1410 /* If RF2 N > 2047, then set KP2 to 1. */
1411 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1412
1413 if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1414 goto out;
1415
1416 /* set LPWR, too? */
1417 if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1418 SI4126_MAIN_XINDIV2)) != 0)
1419 goto out;
1420
1421 /* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN. XIN = 44MHz.
1422 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1423 */
1424 if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1425 goto out;
1426
1427 if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1428 goto out;
1429
1430 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1431 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1432 * which has no RF1!
1433 */
1434 if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1435 goto out;
1436
1437 if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1438 goto out;
1439
1440 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1441 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1442 * Now let's multiply it to mhz. So mhz - IF = N.
1443 */
1444 if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1445 goto out;
1446
1447 if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1448 goto out;
1449
1450 /* wait 100us from power-up for RF, IF to settle */
1451 DELAY(100);
1452
1453 if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1454 /* XXX there is a binary driver which sends
1455 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1456 * that this enables the Si4126 by raising its PWDN#, but I
1457 * think that it actually sets the Prism RF front-end
1458 * to a special mode for channel 14.
1459 */
1460 reg = ATW_READ(sc, ATW_GPIO);
1461 reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1462 reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1463 ATW_WRITE(sc, ATW_GPIO, reg);
1464 }
1465
1466 #ifdef ATW_DEBUG
1467 atw_si4126_print(sc);
1468 #endif /* ATW_DEBUG */
1469
1470 out:
1471 atw_rfio_enable(sc, 0);
1472
1473 return rc;
1474 }
1475
1476 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1477 * diversity.
1478 *
1479 * Call this w/ Tx/Rx suspended.
1480 */
1481 static int
1482 atw_rf3000_init(sc)
1483 struct atw_softc *sc;
1484 {
1485 int rc = 0;
1486
1487 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1488
1489 atw_rfio_enable(sc, 1);
1490
1491 /* enable diversity */
1492 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1493
1494 if (rc != 0)
1495 goto out;
1496
1497 /* sensible setting from a binary-only driver */
1498 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1499 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1500
1501 if (rc != 0)
1502 goto out;
1503
1504 /* magic from a binary-only driver */
1505 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1506 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1507
1508 if (rc != 0)
1509 goto out;
1510
1511 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1512
1513 if (rc != 0)
1514 goto out;
1515
1516 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1517
1518 if (rc != 0)
1519 goto out;
1520
1521 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1522
1523 if (rc != 0)
1524 goto out;
1525
1526 /* CCA is acquisition sensitive */
1527 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1528 LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1529
1530 if (rc != 0)
1531 goto out;
1532
1533 out:
1534 atw_rfio_enable(sc, 0);
1535 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1536 return rc;
1537 }
1538
1539 #ifdef ATW_DEBUG
1540 static void
1541 atw_rf3000_print(sc)
1542 struct atw_softc *sc;
1543 {
1544 struct ifnet *ifp = &sc->sc_ic.ic_if;
1545 u_int addr, val;
1546
1547 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1548 return;
1549
1550 for (addr = 0x01; addr <= 0x15; addr++) {
1551 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1552 if (atw_rf3000_read(sc, addr, &val) != 0) {
1553 printf("<unknown> (quitting print-out)\n");
1554 break;
1555 }
1556 printf("%08x\n", val);
1557 }
1558 }
1559 #endif /* ATW_DEBUG */
1560
1561 /* Set the power settings on the BBP for channel `chan'. */
1562 static int
1563 atw_rf3000_tune(sc, chan)
1564 struct atw_softc *sc;
1565 u_int8_t chan;
1566 {
1567 int rc = 0;
1568 u_int32_t reg;
1569 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1570
1571 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1572 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1573 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1574
1575 /* odd channels: LSB, even channels: MSB */
1576 if (chan % 2 == 1) {
1577 txpower &= 0xFF;
1578 lpf_cutoff &= 0xFF;
1579 lna_gs_thresh &= 0xFF;
1580 } else {
1581 txpower >>= 8;
1582 lpf_cutoff >>= 8;
1583 lna_gs_thresh >>= 8;
1584 }
1585
1586 #ifdef ATW_DEBUG
1587 atw_rf3000_print(sc);
1588 #endif /* ATW_DEBUG */
1589
1590 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1591 "lna_gs_thresh %02x\n",
1592 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1593
1594 atw_rfio_enable(sc, 1);
1595
1596 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1597 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1598 goto out;
1599
1600 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1601 goto out;
1602
1603 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1604 goto out;
1605
1606 /* from a binary-only driver. */
1607 reg = ATW_READ(sc, ATW_PLCPHD);
1608 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1609 reg |= LSHIFT(txpower << 2, ATW_PLCPHD_SERVICE_MASK);
1610 ATW_WRITE(sc, ATW_PLCPHD, reg);
1611
1612 #ifdef ATW_DEBUG
1613 atw_rf3000_print(sc);
1614 #endif /* ATW_DEBUG */
1615
1616 out:
1617 atw_rfio_enable(sc, 0);
1618
1619 return rc;
1620 }
1621
1622 /* Write a register on the RF3000 baseband processor using the
1623 * registers provided by the ADM8211 for this purpose.
1624 *
1625 * Return 0 on success.
1626 */
1627 static int
1628 atw_rf3000_write(sc, addr, val)
1629 struct atw_softc *sc;
1630 u_int addr, val;
1631 {
1632 u_int32_t reg;
1633 int i;
1634
1635 for (i = 1000; --i >= 0; ) {
1636 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1637 break;
1638 DELAY(100);
1639 }
1640
1641 if (i < 0) {
1642 printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1643 return ETIMEDOUT;
1644 }
1645
1646 reg = sc->sc_bbpctl_wr |
1647 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1648 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1649
1650 ATW_WRITE(sc, ATW_BBPCTL, reg);
1651
1652 for (i = 1000; --i >= 0; ) {
1653 DELAY(100);
1654 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1655 break;
1656 }
1657
1658 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1659
1660 if (i < 0) {
1661 printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1662 return ETIMEDOUT;
1663 }
1664 return 0;
1665 }
1666
1667 /* Read a register on the RF3000 baseband processor using the registers
1668 * the ADM8211 provides for this purpose.
1669 *
1670 * The 7-bit register address is addr. Record the 8-bit data in the register
1671 * in *val.
1672 *
1673 * Return 0 on success.
1674 *
1675 * XXX This does not seem to work. The ADM8211 must require more or
1676 * different magic to read the chip than to write it. Possibly some
1677 * of the magic I have derived from a binary-only driver concerns
1678 * the "chip address" (see the RF3000 manual).
1679 */
1680 #ifdef ATW_DEBUG
1681 static int
1682 atw_rf3000_read(sc, addr, val)
1683 struct atw_softc *sc;
1684 u_int addr, *val;
1685 {
1686 u_int32_t reg;
1687 int i;
1688
1689 for (i = 1000; --i >= 0; ) {
1690 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1691 break;
1692 DELAY(100);
1693 }
1694
1695 if (i < 0) {
1696 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1697 sc->sc_dev.dv_xname);
1698 return ETIMEDOUT;
1699 }
1700
1701 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1702
1703 ATW_WRITE(sc, ATW_BBPCTL, reg);
1704
1705 for (i = 1000; --i >= 0; ) {
1706 DELAY(100);
1707 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1708 break;
1709 }
1710
1711 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1712
1713 if (i < 0) {
1714 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1715 sc->sc_dev.dv_xname, reg);
1716 return ETIMEDOUT;
1717 }
1718 if (val != NULL)
1719 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1720 return 0;
1721 }
1722 #endif /* ATW_DEBUG */
1723
1724 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1725 * provided by the ADM8211 for that purpose.
1726 *
1727 * val is 18 bits of data, and val is the 4-bit address of the register.
1728 *
1729 * Return 0 on success.
1730 */
1731 static int
1732 atw_si4126_write(sc, addr, val)
1733 struct atw_softc *sc;
1734 u_int addr, val;
1735 {
1736 u_int32_t reg;
1737 int i;
1738
1739 for (i = 1000; --i >= 0; ) {
1740 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1741 break;
1742 DELAY(100);
1743 }
1744
1745 if (i < 0) {
1746 printf("%s: start atw_si4126_write, SYNCTL busy\n",
1747 sc->sc_dev.dv_xname);
1748 return ETIMEDOUT;
1749 }
1750
1751 reg = sc->sc_synctl_wr |
1752 LSHIFT(((val & 0x3ffff) << 4) | (addr & 0xf), ATW_SYNCTL_DATA_MASK);
1753
1754 ATW_WRITE(sc, ATW_SYNCTL, reg);
1755
1756 for (i = 1000; --i >= 0; ) {
1757 DELAY(100);
1758 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1759 break;
1760 }
1761
1762 /* restore to acceptable starting condition */
1763 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1764
1765 if (i < 0) {
1766 printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1767 sc->sc_dev.dv_xname, reg);
1768 return ETIMEDOUT;
1769 }
1770 return 0;
1771 }
1772
1773 /* Read 18-bit data from the 4-bit address addr in Si4126
1774 * RF synthesizer and write the data to *val. Return 0 on success.
1775 *
1776 * XXX This does not seem to work. The ADM8211 must require more or
1777 * different magic to read the chip than to write it.
1778 */
1779 #ifdef ATW_DEBUG
1780 static int
1781 atw_si4126_read(sc, addr, val)
1782 struct atw_softc *sc;
1783 u_int addr;
1784 u_int *val;
1785 {
1786 u_int32_t reg;
1787 int i;
1788
1789 for (i = 1000; --i >= 0; ) {
1790 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1791 break;
1792 DELAY(100);
1793 }
1794
1795 if (i < 0) {
1796 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1797 sc->sc_dev.dv_xname);
1798 return ETIMEDOUT;
1799 }
1800
1801 reg = sc->sc_synctl_rd | LSHIFT(addr & 0xf, ATW_SYNCTL_DATA_MASK);
1802
1803 ATW_WRITE(sc, ATW_SYNCTL, reg);
1804
1805 for (i = 1000; --i >= 0; ) {
1806 DELAY(100);
1807 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1808 break;
1809 }
1810
1811 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1812
1813 if (i < 0) {
1814 printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1815 sc->sc_dev.dv_xname, reg);
1816 return ETIMEDOUT;
1817 }
1818 if (val != NULL)
1819 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1820 ATW_SYNCTL_DATA_MASK);
1821 return 0;
1822 }
1823 #endif /* ATW_DEBUG */
1824
1825 /* XXX is the endianness correct? test. */
1826 #define atw_calchash(addr) \
1827 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1828
1829 /*
1830 * atw_filter_setup:
1831 *
1832 * Set the ADM8211's receive filter.
1833 */
1834 static void
1835 atw_filter_setup(sc)
1836 struct atw_softc *sc;
1837 {
1838 struct ieee80211com *ic = &sc->sc_ic;
1839 struct ethercom *ec = &ic->ic_ec;
1840 struct ifnet *ifp = &sc->sc_ic.ic_if;
1841 int hash;
1842 u_int32_t hashes[2] = { 0, 0 };
1843 struct ether_multi *enm;
1844 struct ether_multistep step;
1845
1846 DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1847 sc->sc_dev.dv_xname, sc->sc_flags));
1848
1849 /*
1850 * If we're running, idle the receive engine. If we're NOT running,
1851 * we're being called from atw_init(), and our writing ATW_NAR will
1852 * start the transmit and receive processes in motion.
1853 */
1854 if (ifp->if_flags & IFF_RUNNING)
1855 atw_idle(sc, ATW_NAR_SR);
1856
1857 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1858
1859 ifp->if_flags &= ~IFF_ALLMULTI;
1860
1861 if (ifp->if_flags & IFF_PROMISC) {
1862 sc->sc_opmode |= ATW_NAR_PR;
1863 allmulti:
1864 ifp->if_flags |= IFF_ALLMULTI;
1865 goto setit;
1866 }
1867
1868 /*
1869 * Program the 64-bit multicast hash filter.
1870 */
1871 ETHER_FIRST_MULTI(step, ec, enm);
1872 while (enm != NULL) {
1873 /* XXX */
1874 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1875 ETHER_ADDR_LEN) != 0)
1876 goto allmulti;
1877
1878 hash = atw_calchash(enm->enm_addrlo);
1879 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1880 ETHER_NEXT_MULTI(step, enm);
1881 }
1882
1883 if (ifp->if_flags & IFF_BROADCAST) {
1884 hash = atw_calchash(etherbroadcastaddr);
1885 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1886 }
1887
1888 /* all bits set => hash is useless */
1889 if (~(hashes[0] & hashes[1]) == 0)
1890 goto allmulti;
1891
1892 setit:
1893 if (ifp->if_flags & IFF_ALLMULTI)
1894 sc->sc_opmode |= ATW_NAR_MM;
1895
1896 /* XXX in scan mode, do not filter packets. maybe this is
1897 * unnecessary.
1898 */
1899 if (ic->ic_state == IEEE80211_S_SCAN)
1900 sc->sc_opmode |= ATW_NAR_PR;
1901
1902 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1903 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1904 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1905 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1906 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1907
1908 DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1909 }
1910
1911 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1912 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1913 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1914 * no beacon with the preferred BSSID and SSID in the number of
1915 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1916 */
1917 static void
1918 atw_write_bssid(sc)
1919 struct atw_softc *sc;
1920 {
1921 struct ieee80211com *ic = &sc->sc_ic;
1922 u_int8_t *bssid;
1923
1924 bssid = ic->ic_bss->ni_bssid;
1925
1926 ATW_WRITE(sc, ATW_ABDA1,
1927 (ATW_READ(sc, ATW_ABDA1) &
1928 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1929 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1930 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1931
1932 ATW_WRITE(sc, ATW_BSSID0,
1933 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1934 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1935 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1936 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1937
1938 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1939 ether_sprintf(sc->sc_bssid)));
1940 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1941
1942 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1943 }
1944
1945 /* Tell the ADM8211 how many beacon intervals must pass without
1946 * receiving a beacon with the preferred BSSID & SSID set by
1947 * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
1948 * raised.
1949 */
1950 static void
1951 atw_write_bcn_thresh(sc)
1952 struct atw_softc *sc;
1953 {
1954 struct ieee80211com *ic = &sc->sc_ic;
1955 int lost_bcn_thresh;
1956
1957 /* Lose link after one second or 7 beacons, whichever comes
1958 * first, but do not lose link before 2 beacons are lost.
1959 *
1960 * In host AP mode, set the lost-beacon threshold to 0.
1961 */
1962 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1963 lost_bcn_thresh = 0;
1964 else
1965 lost_bcn_thresh = MAX(2,
1966 MIN(1000000/(IEEE80211_DUR_TU * ic->ic_bss->ni_intval), 7));
1967
1968 /* XXX resets wake-up status bits */
1969 ATW_WRITE(sc, ATW_WCSR,
1970 (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
1971 (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
1972
1973 DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
1974 sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
1975
1976 sc->sc_lost_bcn_thresh = lost_bcn_thresh;
1977
1978 DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
1979 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
1980 }
1981
1982 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1983 * 16-bit word.
1984 */
1985 static void
1986 atw_write_sram(sc, ofs, buf, buflen)
1987 struct atw_softc *sc;
1988 u_int ofs;
1989 u_int8_t *buf;
1990 u_int buflen;
1991 {
1992 u_int i;
1993 u_int8_t *ptr;
1994
1995 memcpy(&sc->sc_sram[ofs], buf, buflen);
1996
1997 if (ofs % 2 != 0) {
1998 ofs--;
1999 buflen++;
2000 }
2001
2002 if (buflen % 2 != 0)
2003 buflen++;
2004
2005 assert(buflen + ofs <= ATW_SRAM_SIZE);
2006
2007 ptr = &sc->sc_sram[ofs];
2008
2009 for (i = 0; i < buflen; i += 2) {
2010 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2011 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2012 DELAY(atw_writewep_delay);
2013
2014 ATW_WRITE(sc, ATW_WESK,
2015 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2016 DELAY(atw_writewep_delay);
2017 }
2018 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2019
2020 if (sc->sc_if.if_flags & IFF_DEBUG) {
2021 int n_octets = 0;
2022 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2023 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2024 for (i = 0; i < buflen; i++) {
2025 printf(" %02x", ptr[i]);
2026 if (++n_octets % 24 == 0)
2027 printf("\n");
2028 }
2029 if (n_octets % 24 != 0)
2030 printf("\n");
2031 }
2032 }
2033
2034 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2035 static void
2036 atw_write_wep(sc)
2037 struct atw_softc *sc;
2038 {
2039 struct ieee80211com *ic = &sc->sc_ic;
2040 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2041 u_int8_t buf[IEEE80211_WEP_NKID]
2042 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2043 u_int32_t reg;
2044 int i;
2045
2046 sc->sc_wepctl = 0;
2047 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2048
2049 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2050 return;
2051
2052 memset(&buf[0][0], 0, sizeof(buf));
2053
2054 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2055 if (ic->ic_nw_keys[i].wk_len > 5) {
2056 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2057 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2058 buf[i][1] = ATW_WEP_ENABLED;
2059 } else {
2060 buf[i][1] = 0;
2061 continue;
2062 }
2063 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2064 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2065 ic->ic_nw_keys[i].wk_len - 1);
2066 }
2067
2068 reg = ATW_READ(sc, ATW_MACTEST);
2069 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2070 reg &= ~ATW_MACTEST_KEYID_MASK;
2071 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2072 ATW_WRITE(sc, ATW_MACTEST, reg);
2073
2074 /* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2075 * throughout.)
2076 */
2077 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2078 if (sc->sc_if.if_flags & IFF_LINK2)
2079 sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2080
2081 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2082 sizeof(buf));
2083 }
2084
2085 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2086
2087 static void
2088 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2089 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2090 {
2091 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2092
2093 switch (subtype) {
2094 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2095 /* do nothing: hardware answers probe request */
2096 break;
2097 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2098 case IEEE80211_FC0_SUBTYPE_BEACON:
2099 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2100 break;
2101 default:
2102 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2103 break;
2104 }
2105 return;
2106 }
2107
2108 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2109 * of IBSSs with like SSID/channel but different BSSID. It joins the
2110 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2111 * convention. Possibly the ADMtek chip does this for us; I will have
2112 * to test to find out.
2113 *
2114 * XXX we should add the duration field of the received beacon to
2115 * the TSF time it contains before comparing it with the ADM8211's
2116 * TSF.
2117 */
2118 static void
2119 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2120 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2121 {
2122 struct atw_softc *sc;
2123 struct ieee80211_frame *wh;
2124 u_int64_t tsft, bcn_tsft;
2125 u_int32_t tsftl, tsfth;
2126 int do_print = 0;
2127
2128 sc = (struct atw_softc*)ic->ic_if.if_softc;
2129
2130 if (ic->ic_if.if_flags & IFF_DEBUG)
2131 do_print = (ic->ic_if.if_flags & IFF_LINK0)
2132 ? 1 : ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval);
2133
2134 wh = mtod(m0, struct ieee80211_frame *);
2135
2136 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2137
2138 if (ic->ic_state != IEEE80211_S_RUN) {
2139 if (do_print)
2140 printf("%s: atw_recv_beacon: not running\n",
2141 sc->sc_dev.dv_xname);
2142 return;
2143 }
2144
2145 if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2146 ic->ic_bss->ni_chan)) == NULL) {
2147 if (do_print)
2148 printf("%s: atw_recv_beacon: no node %s\n",
2149 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2150 return;
2151 }
2152
2153 if (ieee80211_match_bss(ic, ni) != 0) {
2154 if (do_print)
2155 printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2156 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2157 return;
2158 }
2159
2160 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2161 return;
2162
2163 if (do_print)
2164 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2165 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2166
2167 if (ic->ic_opmode != IEEE80211_M_IBSS)
2168 return;
2169
2170 /* If we read TSFTL right before rollover, we read a TSF timer
2171 * that is too high rather than too low. This prevents a spurious
2172 * synchronization down the line, however, our IBSS could suffer
2173 * from a creeping TSF....
2174 */
2175 tsftl = ATW_READ(sc, ATW_TSFTL);
2176 tsfth = ATW_READ(sc, ATW_TSFTH);
2177
2178 tsft = (u_int64_t)tsfth << 32 | tsftl;
2179 bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2180
2181 if (do_print)
2182 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2183 sc->sc_dev.dv_xname, tsft, bcn_tsft);
2184
2185 /* we are faster, let the other guy catch up */
2186 if (bcn_tsft < tsft)
2187 return;
2188
2189 if (do_print)
2190 printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2191 ether_sprintf(wh->i_addr2));
2192
2193 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2194
2195 #if 0
2196 atw_tsf(sc);
2197 #endif
2198
2199 /* negotiate rates with new IBSS */
2200 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2201 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2202 if (ni->ni_rates.rs_nrates == 0) {
2203 printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2204 ether_sprintf(ni->ni_bssid));
2205 return;
2206 }
2207
2208 if (do_print) {
2209 printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2210 ether_sprintf(ic->ic_bss->ni_bssid));
2211 printf("%s ", ether_sprintf(ni->ni_bssid));
2212 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2213 }
2214
2215 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2216
2217 atw_write_bssid(sc);
2218 atw_write_bcn_thresh(sc);
2219 atw_start_beacon(sc, 1);
2220 }
2221
2222 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2223 * In ad hoc mode, the SSID is written to the beacons sent by the
2224 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2225 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2226 * indications.
2227 */
2228 static void
2229 atw_write_ssid(sc)
2230 struct atw_softc *sc;
2231 {
2232 struct ieee80211com *ic = &sc->sc_ic;
2233 /* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2234 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2235
2236 memset(buf, 0, sizeof(buf));
2237 buf[0] = ic->ic_bss->ni_esslen;
2238 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2239
2240 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2241 }
2242
2243 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2244 * In ad hoc mode, the supported rates are written to beacons sent by the
2245 * ADM8211.
2246 */
2247 static void
2248 atw_write_sup_rates(sc)
2249 struct atw_softc *sc;
2250 {
2251 struct ieee80211com *ic = &sc->sc_ic;
2252 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2253 * supported rates
2254 */
2255 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2256
2257 memset(buf, 0, sizeof(buf));
2258
2259 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2260
2261 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2262 ic->ic_bss->ni_rates.rs_nrates);
2263
2264 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2265 }
2266
2267 /* Start/stop sending beacons. */
2268 void
2269 atw_start_beacon(struct atw_softc *sc, int start)
2270 {
2271 struct ieee80211com *ic = &sc->sc_ic;
2272 u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2273
2274 if (ATW_IS_ENABLED(sc) == 0)
2275 return;
2276
2277 len = capinfo = 0;
2278
2279 /* start beacons */
2280 len = sizeof(struct ieee80211_frame) +
2281 8 /* timestamp */ + 2 /* beacon interval */ +
2282 2 /* capability info */ +
2283 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2284 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2285 3 /* DS parameters */ +
2286 IEEE80211_CRC_LEN;
2287
2288 reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2289
2290 reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2291
2292 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2293 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2294
2295 if (!start)
2296 return;
2297
2298 /* TBD use ni_capinfo */
2299
2300 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2301 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2302 if (ic->ic_flags & IEEE80211_F_WEPON)
2303 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2304
2305 switch (ic->ic_opmode) {
2306 case IEEE80211_M_IBSS:
2307 len += 4; /* IBSS parameters */
2308 capinfo |= IEEE80211_CAPINFO_IBSS;
2309 break;
2310 case IEEE80211_M_HOSTAP:
2311 /* XXX 6-byte minimum TIM */
2312 len += atw_beacon_len_adjust;
2313 capinfo |= IEEE80211_CAPINFO_ESS;
2314 break;
2315 default:
2316 return;
2317 }
2318
2319 reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2320 reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2321
2322 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2323 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2324
2325 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2326 sc->sc_dev.dv_xname, reg_bcnt));
2327
2328 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2329 sc->sc_dev.dv_xname, reg_cap1));
2330 }
2331
2332 /* First beacon was sent at time 0 microseconds, current time is
2333 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2334 * microseconds. Return the expected time in microseconds for the
2335 * beacon after next.
2336 */
2337 static __inline u_int64_t
2338 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2339 {
2340 return tsft + (tbtt - tsft % tbtt);
2341 }
2342
2343 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2344 * the ieee80211com.
2345 *
2346 * Predict the next target beacon transmission time (TBTT) and
2347 * write it to the ADM8211.
2348 */
2349 static void
2350 atw_tsf(struct atw_softc *sc)
2351 {
2352 #define TBTTOFS 20 /* TU */
2353
2354 struct ieee80211com *ic = &sc->sc_ic;
2355 u_int64_t tsft, tbtt;
2356
2357 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2358 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2359 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2360 tsft = ATW_READ(sc, ATW_TSFTH);
2361 tsft <<= 32;
2362 tsft |= ATW_READ(sc, ATW_TSFTL);
2363 *(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2364 } else
2365 tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2366
2367 tbtt = atw_predict_beacon(tsft,
2368 ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2369
2370 /* skip one more beacon so that the TBTT cannot pass before
2371 * we've programmed it, and also so that we can subtract a
2372 * few TU so that we wake a little before TBTT.
2373 */
2374 tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2375
2376 /* wake up a little early */
2377 tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2378
2379 DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2380 sc->sc_dev.dv_xname, tsft, tbtt));
2381
2382 ATW_WRITE(sc, ATW_TOFS1,
2383 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2384 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2385 LSHIFT(
2386 MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2387 ATW_TOFS1_TBTTPRE_MASK));
2388 #undef TBTTOFS
2389 }
2390
2391 static void
2392 atw_next_scan(void *arg)
2393 {
2394 struct atw_softc *sc = arg;
2395 struct ieee80211com *ic = &sc->sc_ic;
2396 struct ifnet *ifp = &ic->ic_if;
2397 int s;
2398
2399 /* don't call atw_start w/o network interrupts blocked */
2400 s = splnet();
2401 if (ic->ic_state == IEEE80211_S_SCAN)
2402 ieee80211_next_scan(ifp);
2403 splx(s);
2404 }
2405
2406 /* Synchronize the hardware state with the software state. */
2407 static int
2408 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2409 {
2410 struct ifnet *ifp = &ic->ic_if;
2411 struct atw_softc *sc = ifp->if_softc;
2412 enum ieee80211_state ostate;
2413 int error;
2414
2415 ostate = ic->ic_state;
2416
2417 if (nstate == IEEE80211_S_INIT) {
2418 callout_stop(&sc->sc_scan_ch);
2419 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2420 atw_start_beacon(sc, 0);
2421 return (*sc->sc_newstate)(ic, nstate, arg);
2422 }
2423
2424 if ((error = atw_tune(sc)) != 0)
2425 return error;
2426
2427 switch (nstate) {
2428 case IEEE80211_S_ASSOC:
2429 break;
2430 case IEEE80211_S_INIT:
2431 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2432 break;
2433 case IEEE80211_S_SCAN:
2434 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2435 atw_write_bssid(sc);
2436
2437 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2438 atw_next_scan, sc);
2439
2440 break;
2441 case IEEE80211_S_RUN:
2442 if (ic->ic_opmode == IEEE80211_M_STA)
2443 break;
2444 /*FALLTHROUGH*/
2445 case IEEE80211_S_AUTH:
2446 atw_write_bssid(sc);
2447 atw_write_bcn_thresh(sc);
2448 atw_write_ssid(sc);
2449 atw_write_sup_rates(sc);
2450
2451 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2452 ic->ic_opmode == IEEE80211_M_MONITOR)
2453 break;
2454
2455 /* set listen interval
2456 * XXX do software units agree w/ hardware?
2457 */
2458 ATW_WRITE(sc, ATW_BPLI,
2459 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2460 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2461 ATW_BPLI_LI_MASK));
2462
2463 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2464 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2465
2466 atw_tsf(sc);
2467 break;
2468 }
2469
2470 if (nstate != IEEE80211_S_SCAN)
2471 callout_stop(&sc->sc_scan_ch);
2472
2473 if (nstate == IEEE80211_S_RUN &&
2474 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2475 ic->ic_opmode == IEEE80211_M_IBSS))
2476 atw_start_beacon(sc, 1);
2477 else
2478 atw_start_beacon(sc, 0);
2479
2480 return (*sc->sc_newstate)(ic, nstate, arg);
2481 }
2482
2483 /*
2484 * atw_add_rxbuf:
2485 *
2486 * Add a receive buffer to the indicated descriptor.
2487 */
2488 int
2489 atw_add_rxbuf(sc, idx)
2490 struct atw_softc *sc;
2491 int idx;
2492 {
2493 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2494 struct mbuf *m;
2495 int error;
2496
2497 MGETHDR(m, M_DONTWAIT, MT_DATA);
2498 if (m == NULL)
2499 return (ENOBUFS);
2500
2501 MCLGET(m, M_DONTWAIT);
2502 if ((m->m_flags & M_EXT) == 0) {
2503 m_freem(m);
2504 return (ENOBUFS);
2505 }
2506
2507 if (rxs->rxs_mbuf != NULL)
2508 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2509
2510 rxs->rxs_mbuf = m;
2511
2512 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2513 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2514 BUS_DMA_READ|BUS_DMA_NOWAIT);
2515 if (error) {
2516 printf("%s: can't load rx DMA map %d, error = %d\n",
2517 sc->sc_dev.dv_xname, idx, error);
2518 panic("atw_add_rxbuf"); /* XXX */
2519 }
2520
2521 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2522 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2523
2524 ATW_INIT_RXDESC(sc, idx);
2525
2526 return (0);
2527 }
2528
2529 /*
2530 * atw_stop: [ ifnet interface function ]
2531 *
2532 * Stop transmission on the interface.
2533 */
2534 void
2535 atw_stop(ifp, disable)
2536 struct ifnet *ifp;
2537 int disable;
2538 {
2539 struct atw_softc *sc = ifp->if_softc;
2540 struct ieee80211com *ic = &sc->sc_ic;
2541 struct atw_txsoft *txs;
2542
2543 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2544
2545 /* Disable interrupts. */
2546 ATW_WRITE(sc, ATW_IER, 0);
2547
2548 /* Stop the transmit and receive processes. */
2549 sc->sc_opmode = 0;
2550 ATW_WRITE(sc, ATW_NAR, 0);
2551 ATW_WRITE(sc, ATW_TDBD, 0);
2552 ATW_WRITE(sc, ATW_TDBP, 0);
2553 ATW_WRITE(sc, ATW_RDB, 0);
2554
2555 /*
2556 * Release any queued transmit buffers.
2557 */
2558 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2559 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2560 if (txs->txs_mbuf != NULL) {
2561 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2562 m_freem(txs->txs_mbuf);
2563 txs->txs_mbuf = NULL;
2564 }
2565 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2566 }
2567
2568 if (disable) {
2569 atw_rxdrain(sc);
2570 atw_disable(sc);
2571 }
2572
2573 /*
2574 * Mark the interface down and cancel the watchdog timer.
2575 */
2576 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2577 ifp->if_timer = 0;
2578
2579 /* XXX */
2580 atw_reset(sc);
2581 }
2582
2583 /*
2584 * atw_rxdrain:
2585 *
2586 * Drain the receive queue.
2587 */
2588 void
2589 atw_rxdrain(sc)
2590 struct atw_softc *sc;
2591 {
2592 struct atw_rxsoft *rxs;
2593 int i;
2594
2595 for (i = 0; i < ATW_NRXDESC; i++) {
2596 rxs = &sc->sc_rxsoft[i];
2597 if (rxs->rxs_mbuf == NULL)
2598 continue;
2599 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2600 m_freem(rxs->rxs_mbuf);
2601 rxs->rxs_mbuf = NULL;
2602 }
2603 }
2604
2605 /*
2606 * atw_detach:
2607 *
2608 * Detach an ADM8211 interface.
2609 */
2610 int
2611 atw_detach(sc)
2612 struct atw_softc *sc;
2613 {
2614 struct ifnet *ifp = &sc->sc_ic.ic_if;
2615 struct atw_rxsoft *rxs;
2616 struct atw_txsoft *txs;
2617 int i;
2618
2619 /*
2620 * Succeed now if there isn't any work to do.
2621 */
2622 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2623 return (0);
2624
2625 ieee80211_ifdetach(ifp);
2626 if_detach(ifp);
2627
2628 for (i = 0; i < ATW_NRXDESC; i++) {
2629 rxs = &sc->sc_rxsoft[i];
2630 if (rxs->rxs_mbuf != NULL) {
2631 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2632 m_freem(rxs->rxs_mbuf);
2633 rxs->rxs_mbuf = NULL;
2634 }
2635 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2636 }
2637 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2638 txs = &sc->sc_txsoft[i];
2639 if (txs->txs_mbuf != NULL) {
2640 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2641 m_freem(txs->txs_mbuf);
2642 txs->txs_mbuf = NULL;
2643 }
2644 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2645 }
2646 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2647 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2648 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2649 sizeof(struct atw_control_data));
2650 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2651
2652 shutdownhook_disestablish(sc->sc_sdhook);
2653 powerhook_disestablish(sc->sc_powerhook);
2654
2655 if (sc->sc_srom)
2656 free(sc->sc_srom, M_DEVBUF);
2657
2658 return (0);
2659 }
2660
2661 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2662 void
2663 atw_shutdown(arg)
2664 void *arg;
2665 {
2666 struct atw_softc *sc = arg;
2667
2668 atw_stop(&sc->sc_ic.ic_if, 1);
2669 }
2670
2671 int
2672 atw_intr(arg)
2673 void *arg;
2674 {
2675 struct atw_softc *sc = arg;
2676 struct ifnet *ifp = &sc->sc_ic.ic_if;
2677 u_int32_t status, rxstatus, txstatus, linkstatus;
2678 int handled = 0, txthresh;
2679
2680 #ifdef DEBUG
2681 if (ATW_IS_ENABLED(sc) == 0)
2682 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2683 #endif
2684
2685 /*
2686 * If the interface isn't running, the interrupt couldn't
2687 * possibly have come from us.
2688 */
2689 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2690 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2691 return (0);
2692
2693 for (;;) {
2694 status = ATW_READ(sc, ATW_STSR);
2695
2696 if (status)
2697 ATW_WRITE(sc, ATW_STSR, status);
2698
2699 if (sc->sc_intr_ack != NULL)
2700 (*sc->sc_intr_ack)(sc);
2701
2702 #ifdef ATW_DEBUG
2703 #define PRINTINTR(flag) do { \
2704 if ((status & flag) != 0) { \
2705 printf("%s" #flag, delim); \
2706 delim = ","; \
2707 } \
2708 } while (0)
2709
2710 if (atw_debug > 1 && status) {
2711 const char *delim = "<";
2712
2713 printf("%s: reg[STSR] = %x",
2714 sc->sc_dev.dv_xname, status);
2715
2716 PRINTINTR(ATW_INTR_FBE);
2717 PRINTINTR(ATW_INTR_LINKOFF);
2718 PRINTINTR(ATW_INTR_LINKON);
2719 PRINTINTR(ATW_INTR_RCI);
2720 PRINTINTR(ATW_INTR_RDU);
2721 PRINTINTR(ATW_INTR_REIS);
2722 PRINTINTR(ATW_INTR_RPS);
2723 PRINTINTR(ATW_INTR_TCI);
2724 PRINTINTR(ATW_INTR_TDU);
2725 PRINTINTR(ATW_INTR_TLT);
2726 PRINTINTR(ATW_INTR_TPS);
2727 PRINTINTR(ATW_INTR_TRT);
2728 PRINTINTR(ATW_INTR_TUF);
2729 PRINTINTR(ATW_INTR_BCNTC);
2730 PRINTINTR(ATW_INTR_ATIME);
2731 PRINTINTR(ATW_INTR_TBTT);
2732 PRINTINTR(ATW_INTR_TSCZ);
2733 PRINTINTR(ATW_INTR_TSFTF);
2734 printf(">\n");
2735 }
2736 #undef PRINTINTR
2737 #endif /* ATW_DEBUG */
2738
2739 if ((status & sc->sc_inten) == 0)
2740 break;
2741
2742 handled = 1;
2743
2744 rxstatus = status & sc->sc_rxint_mask;
2745 txstatus = status & sc->sc_txint_mask;
2746 linkstatus = status & sc->sc_linkint_mask;
2747
2748 if (linkstatus) {
2749 atw_linkintr(sc, linkstatus);
2750 }
2751
2752 if (rxstatus) {
2753 /* Grab any new packets. */
2754 atw_rxintr(sc);
2755
2756 if (rxstatus & ATW_INTR_RDU) {
2757 printf("%s: receive ring overrun\n",
2758 sc->sc_dev.dv_xname);
2759 /* Get the receive process going again. */
2760 ATW_WRITE(sc, ATW_RDR, 0x1);
2761 break;
2762 }
2763 }
2764
2765 if (txstatus) {
2766 /* Sweep up transmit descriptors. */
2767 atw_txintr(sc);
2768
2769 if (txstatus & ATW_INTR_TLT)
2770 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2771 sc->sc_dev.dv_xname));
2772
2773 if (txstatus & ATW_INTR_TRT)
2774 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2775 sc->sc_dev.dv_xname));
2776
2777 /* If Tx under-run, increase our transmit threshold
2778 * if another is available.
2779 */
2780 txthresh = sc->sc_txthresh + 1;
2781 if ((txstatus & ATW_INTR_TUF) &&
2782 sc->sc_txth[txthresh].txth_name != NULL) {
2783 /* Idle the transmit process. */
2784 atw_idle(sc, ATW_NAR_ST);
2785
2786 sc->sc_txthresh = txthresh;
2787 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2788 sc->sc_opmode |=
2789 sc->sc_txth[txthresh].txth_opmode;
2790 printf("%s: transmit underrun; new "
2791 "threshold: %s\n", sc->sc_dev.dv_xname,
2792 sc->sc_txth[txthresh].txth_name);
2793
2794 /* Set the new threshold and restart
2795 * the transmit process.
2796 */
2797 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2798 /* XXX Log every Nth underrun from
2799 * XXX now on?
2800 */
2801 }
2802 }
2803
2804 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2805 if (status & ATW_INTR_TPS)
2806 printf("%s: transmit process stopped\n",
2807 sc->sc_dev.dv_xname);
2808 if (status & ATW_INTR_RPS)
2809 printf("%s: receive process stopped\n",
2810 sc->sc_dev.dv_xname);
2811 (void)atw_init(ifp);
2812 break;
2813 }
2814
2815 if (status & ATW_INTR_FBE) {
2816 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2817 (void)atw_init(ifp);
2818 break;
2819 }
2820
2821 /*
2822 * Not handled:
2823 *
2824 * Transmit buffer unavailable -- normal
2825 * condition, nothing to do, really.
2826 *
2827 * Early receive interrupt -- not available on
2828 * all chips, we just use RI. We also only
2829 * use single-segment receive DMA, so this
2830 * is mostly useless.
2831 *
2832 * TBD others
2833 */
2834 }
2835
2836 /* Try to get more packets going. */
2837 atw_start(ifp);
2838
2839 return (handled);
2840 }
2841
2842 /*
2843 * atw_idle:
2844 *
2845 * Cause the transmit and/or receive processes to go idle.
2846 *
2847 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2848 * process in STSR if I clear SR or ST after the process has already
2849 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2850 * do not seem to be too reliable. Perhaps I have the sense of the
2851 * Rx bits switched with the Tx bits?
2852 */
2853 void
2854 atw_idle(sc, bits)
2855 struct atw_softc *sc;
2856 u_int32_t bits;
2857 {
2858 u_int32_t ackmask = 0, opmode, stsr, test0;
2859 int i, s;
2860
2861 /* without this, somehow we run concurrently w/ interrupt handler */
2862 s = splnet();
2863
2864 opmode = sc->sc_opmode & ~bits;
2865
2866 if (bits & ATW_NAR_SR)
2867 ackmask |= ATW_INTR_RPS;
2868
2869 if (bits & ATW_NAR_ST) {
2870 ackmask |= ATW_INTR_TPS;
2871 /* set ATW_NAR_HF to flush TX FIFO. */
2872 opmode |= ATW_NAR_HF;
2873 }
2874
2875 ATW_WRITE(sc, ATW_NAR, opmode);
2876
2877 for (i = 0; i < 1000; i++) {
2878 stsr = ATW_READ(sc, ATW_STSR);
2879 if ((stsr & ackmask) == ackmask)
2880 break;
2881 DELAY(10);
2882 }
2883
2884 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2885
2886 if ((stsr & ackmask) == ackmask)
2887 goto out;
2888
2889 test0 = ATW_READ(sc, ATW_TEST0);
2890
2891 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2892 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2893 printf("%s: transmit process not idle [%s]\n",
2894 sc->sc_dev.dv_xname,
2895 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2896 printf("%s: bits %08x test0 %08x stsr %08x\n",
2897 sc->sc_dev.dv_xname, bits, test0, stsr);
2898 }
2899
2900 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2901 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2902 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2903 sc->sc_dev.dv_xname,
2904 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2905 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2906 sc->sc_dev.dv_xname, bits, test0, stsr));
2907 }
2908 out:
2909 splx(s);
2910 return;
2911 }
2912
2913 /*
2914 * atw_linkintr:
2915 *
2916 * Helper; handle link-status interrupts.
2917 */
2918 void
2919 atw_linkintr(sc, linkstatus)
2920 struct atw_softc *sc;
2921 u_int32_t linkstatus;
2922 {
2923 struct ieee80211com *ic = &sc->sc_ic;
2924
2925 if (ic->ic_state != IEEE80211_S_RUN)
2926 return;
2927
2928 if (linkstatus & ATW_INTR_LINKON) {
2929 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2930 sc->sc_rescan_timer = 0;
2931 } else if (linkstatus & ATW_INTR_LINKOFF) {
2932 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2933 switch (ic->ic_opmode) {
2934 case IEEE80211_M_HOSTAP:
2935 return;
2936 case IEEE80211_M_IBSS:
2937 if (ic->ic_flags & IEEE80211_F_SIBSS)
2938 return;
2939 /*FALLTHROUGH*/
2940 case IEEE80211_M_STA:
2941 sc->sc_rescan_timer = 3;
2942 ic->ic_if.if_timer = 1;
2943 break;
2944 default:
2945 break;
2946 }
2947 }
2948 }
2949
2950 /*
2951 * atw_rxintr:
2952 *
2953 * Helper; handle receive interrupts.
2954 */
2955 void
2956 atw_rxintr(sc)
2957 struct atw_softc *sc;
2958 {
2959 static int rate_tbl[] = {2, 4, 11, 22, 44};
2960 struct ieee80211com *ic = &sc->sc_ic;
2961 struct ieee80211_node *ni;
2962 struct ieee80211_frame *wh;
2963 struct ifnet *ifp = &ic->ic_if;
2964 struct atw_rxsoft *rxs;
2965 struct mbuf *m;
2966 u_int32_t rxstat;
2967 int i, len, rate, rate0, rssi;
2968
2969 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2970 rxs = &sc->sc_rxsoft[i];
2971
2972 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2973
2974 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2975 rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2976 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2977
2978 if (rxstat & ATW_RXSTAT_OWN)
2979 break; /* We have processed all receive buffers. */
2980
2981 DPRINTF3(sc,
2982 ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2983 sc->sc_dev.dv_xname,
2984 sc->sc_rxdescs[i].ar_stat,
2985 sc->sc_rxdescs[i].ar_rssi,
2986 sc->sc_rxdescs[i].ar_buf1,
2987 sc->sc_rxdescs[i].ar_buf2));
2988
2989 /*
2990 * Make sure the packet fit in one buffer. This should
2991 * always be the case.
2992 */
2993 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2994 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2995 printf("%s: incoming packet spilled, resetting\n",
2996 sc->sc_dev.dv_xname);
2997 (void)atw_init(ifp);
2998 return;
2999 }
3000
3001 /*
3002 * If an error occurred, update stats, clear the status
3003 * word, and leave the packet buffer in place. It will
3004 * simply be reused the next time the ring comes around.
3005 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3006 * error.
3007 */
3008
3009 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3010 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3011 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3012 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3013 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3014 ATW_RXSTAT_ICVE)) != 0)) {
3015 #define PRINTERR(bit, str) \
3016 if (rxstat & (bit)) \
3017 printf("%s: receive error: %s\n", \
3018 sc->sc_dev.dv_xname, str)
3019 ifp->if_ierrors++;
3020 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3021 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3022 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3023 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3024 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3025 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3026 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3027 #undef PRINTERR
3028 ATW_INIT_RXDESC(sc, i);
3029 continue;
3030 }
3031
3032 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3033 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3034
3035 /*
3036 * No errors; receive the packet. Note the ADM8211
3037 * includes the CRC in promiscuous mode.
3038 */
3039 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3040
3041 /*
3042 * Allocate a new mbuf cluster. If that fails, we are
3043 * out of memory, and must drop the packet and recycle
3044 * the buffer that's already attached to this descriptor.
3045 */
3046 m = rxs->rxs_mbuf;
3047 if (atw_add_rxbuf(sc, i) != 0) {
3048 ifp->if_ierrors++;
3049 ATW_INIT_RXDESC(sc, i);
3050 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3051 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3052 continue;
3053 }
3054
3055 ifp->if_ipackets++;
3056 if (sc->sc_opmode & ATW_NAR_PR)
3057 m->m_flags |= M_HASFCS;
3058 m->m_pkthdr.rcvif = ifp;
3059 m->m_pkthdr.len = m->m_len = len;
3060
3061 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3062 rate = 0;
3063 else
3064 rate = rate_tbl[rate0];
3065
3066 #if NBPFILTER > 0
3067 /* Pass this up to any BPF listeners. */
3068 if (sc->sc_radiobpf != NULL) {
3069 struct mbuf mb;
3070
3071 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3072
3073 tap->ar_rate = rate;
3074 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3075 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3076
3077 /* TBD verify units are dB */
3078 tap->ar_antsignal = rssi;
3079 /* TBD tap->ar_flags */
3080
3081 M_COPY_PKTHDR(&mb, m);
3082 mb.m_data = (caddr_t)tap;
3083 mb.m_len = tap->ar_ihdr.it_len;
3084 mb.m_next = m;
3085 mb.m_pkthdr.len += mb.m_len;
3086 bpf_mtap(sc->sc_radiobpf, &mb);
3087 }
3088 #endif /* NPBFILTER > 0 */
3089
3090 wh = mtod(m, struct ieee80211_frame *);
3091 ni = ieee80211_find_rxnode(ic, wh);
3092 ieee80211_input(ifp, m, ni, rssi, 0);
3093 /*
3094 * The frame may have caused the node to be marked for
3095 * reclamation (e.g. in response to a DEAUTH message)
3096 * so use free_node here instead of unref_node.
3097 */
3098 if (ni == ic->ic_bss)
3099 ieee80211_unref_node(&ni);
3100 else
3101 ieee80211_free_node(ic, ni);
3102 }
3103
3104 /* Update the receive pointer. */
3105 sc->sc_rxptr = i;
3106 }
3107
3108 /*
3109 * atw_txintr:
3110 *
3111 * Helper; handle transmit interrupts.
3112 */
3113 void
3114 atw_txintr(sc)
3115 struct atw_softc *sc;
3116 {
3117 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3118 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3119 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3120 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3121
3122 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3123 struct ifnet *ifp = &sc->sc_ic.ic_if;
3124 struct atw_txsoft *txs;
3125 u_int32_t txstat;
3126
3127 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3128 sc->sc_dev.dv_xname, sc->sc_flags));
3129
3130 ifp->if_flags &= ~IFF_OACTIVE;
3131
3132 /*
3133 * Go through our Tx list and free mbufs for those
3134 * frames that have been transmitted.
3135 */
3136 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3137 ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3138 txs->txs_ndescs,
3139 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3140
3141 #ifdef ATW_DEBUG
3142 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3143 int i;
3144 printf(" txsoft %p transmit chain:\n", txs);
3145 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3146 printf(" descriptor %d:\n", i);
3147 printf(" at_status: 0x%08x\n",
3148 le32toh(sc->sc_txdescs[i].at_stat));
3149 printf(" at_flags: 0x%08x\n",
3150 le32toh(sc->sc_txdescs[i].at_flags));
3151 printf(" at_buf1: 0x%08x\n",
3152 le32toh(sc->sc_txdescs[i].at_buf1));
3153 printf(" at_buf2: 0x%08x\n",
3154 le32toh(sc->sc_txdescs[i].at_buf2));
3155 if (i == txs->txs_lastdesc)
3156 break;
3157 }
3158 }
3159 #endif
3160
3161 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3162 if (txstat & ATW_TXSTAT_OWN)
3163 break;
3164
3165 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3166
3167 sc->sc_txfree += txs->txs_ndescs;
3168
3169 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3170 0, txs->txs_dmamap->dm_mapsize,
3171 BUS_DMASYNC_POSTWRITE);
3172 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3173 m_freem(txs->txs_mbuf);
3174 txs->txs_mbuf = NULL;
3175
3176 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3177
3178 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3179 (txstat & TXSTAT_ERRMASK) != 0) {
3180 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3181 txstat_buf, sizeof(txstat_buf));
3182 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3183 txstat_buf,
3184 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3185 }
3186
3187 /*
3188 * Check for errors and collisions.
3189 */
3190 if (txstat & ATW_TXSTAT_TUF)
3191 sc->sc_stats.ts_tx_tuf++;
3192 if (txstat & ATW_TXSTAT_TLT)
3193 sc->sc_stats.ts_tx_tlt++;
3194 if (txstat & ATW_TXSTAT_TRT)
3195 sc->sc_stats.ts_tx_trt++;
3196 if (txstat & ATW_TXSTAT_TRO)
3197 sc->sc_stats.ts_tx_tro++;
3198 if (txstat & ATW_TXSTAT_SOFBR) {
3199 sc->sc_stats.ts_tx_sofbr++;
3200 }
3201
3202 if ((txstat & ATW_TXSTAT_ES) == 0)
3203 ifp->if_collisions +=
3204 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3205 else
3206 ifp->if_oerrors++;
3207
3208 ifp->if_opackets++;
3209 }
3210
3211 /*
3212 * If there are no more pending transmissions, cancel the watchdog
3213 * timer.
3214 */
3215 if (txs == NULL)
3216 sc->sc_tx_timer = 0;
3217 #undef TXSTAT_ERRMASK
3218 #undef TXSTAT_FMT
3219 }
3220
3221 /*
3222 * atw_watchdog: [ifnet interface function]
3223 *
3224 * Watchdog timer handler.
3225 */
3226 void
3227 atw_watchdog(ifp)
3228 struct ifnet *ifp;
3229 {
3230 struct atw_softc *sc = ifp->if_softc;
3231 struct ieee80211com *ic = &sc->sc_ic;
3232
3233 ifp->if_timer = 0;
3234 if (ATW_IS_ENABLED(sc) == 0)
3235 return;
3236
3237 if (sc->sc_rescan_timer) {
3238 if (--sc->sc_rescan_timer == 0)
3239 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3240 }
3241 if (sc->sc_tx_timer) {
3242 if (--sc->sc_tx_timer == 0 &&
3243 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3244 printf("%s: transmit timeout\n", ifp->if_xname);
3245 ifp->if_oerrors++;
3246 (void)atw_init(ifp);
3247 atw_start(ifp);
3248 }
3249 }
3250 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3251 ifp->if_timer = 1;
3252 ieee80211_watchdog(ifp);
3253 }
3254
3255 /* Compute the 802.11 Duration field and the PLCP Length fields for
3256 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3257 * Write the fields to the ADM8211 Tx header, frm.
3258 *
3259 * TBD use the fragmentation threshold to find the right duration for
3260 * the first & last fragments.
3261 *
3262 * TBD make certain of the duration fields applied by the ADM8211 to each
3263 * fragment. I think that the ADM8211 knows how to subtract the CTS
3264 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3265 * I also think that the ADM8211 does *some* arithmetic for us, because
3266 * otherwise I think we would have to set a first duration for CTS/first
3267 * fragment, a second duration for fragments between the first and the
3268 * last, and a third duration for the last fragment.
3269 *
3270 * TBD make certain that duration fields reflect addition of FCS/WEP
3271 * and correct duration arithmetic as necessary.
3272 */
3273 static void
3274 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3275 int len)
3276 {
3277 int remainder;
3278
3279 /* deal also with encrypted fragments */
3280 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3281 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3282 sc->sc_dev.dv_xname));
3283 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3284 IEEE80211_WEP_CRCLEN;
3285 }
3286
3287 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3288 * duration (XXX added by MAC?).
3289 */
3290 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3291 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3292
3293 if (rate <= 4)
3294 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3295 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3296 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3297 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3298 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3299 else
3300 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3301 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3302 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3303 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3304 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3305
3306 /* lengthen duration if long preamble */
3307 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3308 frm->atw_head_dur +=
3309 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3310 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3311 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3312 IEEE80211_DUR_DS_FAST_PLCPHDR);
3313
3314 if (remainder != 0)
3315 frm->atw_head_dur++;
3316
3317 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3318 (rate == 2 || rate == 4)) {
3319 /* derived from Linux: how could this be right? */
3320 frm->atw_head_plcplen = frm->atw_head_dur;
3321 } else {
3322 frm->atw_head_plcplen = (16 * len) / rate;
3323 remainder = (80 * len) % (rate * 5);
3324
3325 if (remainder != 0) {
3326 frm->atw_head_plcplen++;
3327
3328 /* XXX magic */
3329 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3330 rate == 22 && remainder <= 30)
3331 frm->atw_head_plcplen |= 0x8000;
3332 }
3333 }
3334 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3335 htole16(frm->atw_head_plcplen);
3336 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3337 }
3338
3339 #ifdef ATW_DEBUG
3340 static void
3341 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3342 {
3343 struct atw_softc *sc = ifp->if_softc;
3344 struct mbuf *m;
3345 int i, noctets = 0;
3346
3347 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3348 m0->m_pkthdr.len);
3349
3350 for (m = m0; m; m = m->m_next) {
3351 if (m->m_len == 0)
3352 continue;
3353 for (i = 0; i < m->m_len; i++) {
3354 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3355 if (++noctets % 24 == 0)
3356 printf("\n");
3357 }
3358 }
3359 printf("%s%s: %d bytes emitted\n",
3360 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3361 }
3362 #endif /* ATW_DEBUG */
3363
3364 /*
3365 * atw_start: [ifnet interface function]
3366 *
3367 * Start packet transmission on the interface.
3368 */
3369 void
3370 atw_start(ifp)
3371 struct ifnet *ifp;
3372 {
3373 struct atw_softc *sc = ifp->if_softc;
3374 struct ieee80211com *ic = &sc->sc_ic;
3375 struct ieee80211_node *ni;
3376 struct ieee80211_frame *wh;
3377 struct atw_frame *hh;
3378 struct mbuf *m0, *m;
3379 struct atw_txsoft *txs, *last_txs;
3380 struct atw_txdesc *txd;
3381 int do_encrypt, rate;
3382 bus_dmamap_t dmamap;
3383 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3384
3385 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3386 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3387
3388 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3389 return;
3390
3391 #if 0 /* TBD ??? */
3392 if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3393 return;
3394 #endif
3395
3396 /*
3397 * Remember the previous number of free descriptors and
3398 * the first descriptor we'll use.
3399 */
3400 ofree = sc->sc_txfree;
3401 firsttx = sc->sc_txnext;
3402
3403 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3404 sc->sc_dev.dv_xname, ofree, firsttx));
3405
3406 /*
3407 * Loop through the send queue, setting up transmit descriptors
3408 * until we drain the queue, or use up all available transmit
3409 * descriptors.
3410 */
3411 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3412 sc->sc_txfree != 0) {
3413
3414 do_encrypt = 0;
3415 /*
3416 * Grab a packet off the management queue, if it
3417 * is not empty. Otherwise, from the data queue.
3418 */
3419 IF_DEQUEUE(&ic->ic_mgtq, m0);
3420 if (m0 != NULL) {
3421 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3422 m0->m_pkthdr.rcvif = NULL;
3423 } else {
3424 IFQ_DEQUEUE(&ifp->if_snd, m0);
3425 if (m0 == NULL)
3426 break;
3427 #if NBPFILTER > 0
3428 if (ifp->if_bpf != NULL)
3429 bpf_mtap(ifp->if_bpf, m0);
3430 #endif /* NBPFILTER > 0 */
3431 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3432 ifp->if_oerrors++;
3433 break;
3434 }
3435 }
3436
3437 rate = MAX(ieee80211_get_rate(ic), 2);
3438
3439 #if NBPFILTER > 0
3440 /*
3441 * Pass the packet to any BPF listeners.
3442 */
3443 if (ic->ic_rawbpf != NULL)
3444 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3445
3446 if (sc->sc_radiobpf != NULL) {
3447 struct mbuf mb;
3448 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3449
3450 tap->at_rate = rate;
3451 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3452 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3453
3454 /* TBD tap->at_flags */
3455
3456 M_COPY_PKTHDR(&mb, m0);
3457 mb.m_data = (caddr_t)tap;
3458 mb.m_len = tap->at_ihdr.it_len;
3459 mb.m_next = m0;
3460 mb.m_pkthdr.len += mb.m_len;
3461 bpf_mtap(sc->sc_radiobpf, &mb);
3462 }
3463 #endif /* NBPFILTER > 0 */
3464
3465 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3466
3467 if (ni != NULL && ni != ic->ic_bss)
3468 ieee80211_free_node(ic, ni);
3469
3470 if (m0 == NULL) {
3471 ifp->if_oerrors++;
3472 break;
3473 }
3474
3475 /* just to make sure. */
3476 m0 = m_pullup(m0, sizeof(struct atw_frame));
3477
3478 if (m0 == NULL) {
3479 ifp->if_oerrors++;
3480 break;
3481 }
3482
3483 hh = mtod(m0, struct atw_frame *);
3484 wh = &hh->atw_ihdr;
3485
3486 do_encrypt = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
3487
3488 /* Copy everything we need from the 802.11 header:
3489 * Frame Control; address 1, address 3, or addresses
3490 * 3 and 4. NIC fills in BSSID, SA.
3491 */
3492 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3493 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3494 panic("%s: illegal WDS frame",
3495 sc->sc_dev.dv_xname);
3496 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3497 } else
3498 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3499
3500 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3501
3502 /* initialize remaining Tx parameters */
3503 memset(&hh->u, 0, sizeof(hh->u));
3504
3505 hh->atw_rate = rate * 5;
3506 /* XXX this could be incorrect if M_FCS. _encap should
3507 * probably strip FCS just in case it sticks around in
3508 * bridged packets.
3509 */
3510 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3511 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3512 sizeof(struct atw_frame));
3513
3514 #if 0
3515 /* this virtually guaranteed that WEP-encrypted frames
3516 * are fragmented. oops.
3517 */
3518 hh->atw_fragthr = htole16(m0->m_pkthdr.len -
3519 sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
3520 hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3521 #else
3522 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3523 #endif
3524
3525 hh->atw_rtylmt = 3;
3526 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3527 if (do_encrypt) {
3528 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3529 hh->atw_keyid = ic->ic_wep_txkey;
3530 }
3531
3532 /* TBD 4-addr frames */
3533 atw_frame_setdurs(sc, hh, rate,
3534 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3535 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3536
3537 /* never fragment multicast frames */
3538 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3539 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3540 } else if (sc->sc_flags & ATWF_RTSCTS) {
3541 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3542 }
3543
3544 #ifdef ATW_DEBUG
3545 /* experimental stuff */
3546 if (atw_xrtylmt != ~0)
3547 hh->atw_rtylmt = atw_xrtylmt;
3548 if (atw_xhdrctl != 0)
3549 hh->atw_hdrctl |= htole16(atw_xhdrctl);
3550 if (atw_xservice != IEEE80211_PLCP_SERVICE)
3551 hh->atw_service = atw_xservice;
3552 if (atw_xpaylen != 0)
3553 hh->atw_paylen = htole16(atw_xpaylen);
3554 hh->atw_fragnum = 0;
3555
3556 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3557 printf("%s: dst = %s, rate = 0x%02x, "
3558 "service = 0x%02x, paylen = 0x%04x\n",
3559 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3560 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3561
3562 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3563 "dur1 = 0x%04x, dur2 = 0x%04x, "
3564 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3565 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3566 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3567 hh->atw_tail_dur, hh->atw_head_dur);
3568
3569 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3570 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3571 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3572 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3573
3574 printf("%s: keyid = %d\n",
3575 sc->sc_dev.dv_xname, hh->atw_keyid);
3576
3577 atw_dump_pkt(ifp, m0);
3578 }
3579 #endif /* ATW_DEBUG */
3580
3581 dmamap = txs->txs_dmamap;
3582
3583 /*
3584 * Load the DMA map. Copy and try (once) again if the packet
3585 * didn't fit in the alloted number of segments.
3586 */
3587 for (first = 1;
3588 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3589 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3590 first = 0) {
3591 MGETHDR(m, M_DONTWAIT, MT_DATA);
3592 if (m == NULL) {
3593 printf("%s: unable to allocate Tx mbuf\n",
3594 sc->sc_dev.dv_xname);
3595 break;
3596 }
3597 if (m0->m_pkthdr.len > MHLEN) {
3598 MCLGET(m, M_DONTWAIT);
3599 if ((m->m_flags & M_EXT) == 0) {
3600 printf("%s: unable to allocate Tx "
3601 "cluster\n", sc->sc_dev.dv_xname);
3602 m_freem(m);
3603 break;
3604 }
3605 }
3606 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3607 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3608 m_freem(m0);
3609 m0 = m;
3610 m = NULL;
3611 }
3612 if (error != 0) {
3613 printf("%s: unable to load Tx buffer, "
3614 "error = %d\n", sc->sc_dev.dv_xname, error);
3615 m_freem(m0);
3616 break;
3617 }
3618
3619 /*
3620 * Ensure we have enough descriptors free to describe
3621 * the packet.
3622 */
3623 if (dmamap->dm_nsegs > sc->sc_txfree) {
3624 /*
3625 * Not enough free descriptors to transmit
3626 * this packet. Unload the DMA map and
3627 * drop the packet. Notify the upper layer
3628 * that there are no more slots left.
3629 *
3630 * XXX We could allocate an mbuf and copy, but
3631 * XXX it is worth it?
3632 */
3633 ifp->if_flags |= IFF_OACTIVE;
3634 bus_dmamap_unload(sc->sc_dmat, dmamap);
3635 m_freem(m0);
3636 break;
3637 }
3638
3639 /*
3640 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3641 */
3642
3643 /* Sync the DMA map. */
3644 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3645 BUS_DMASYNC_PREWRITE);
3646
3647 /* XXX arbitrary retry limit; 8 because I have seen it in
3648 * use already and maybe 0 means "no tries" !
3649 */
3650 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3651
3652 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3653 sc->sc_dev.dv_xname, rate * 5));
3654 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3655
3656 /*
3657 * Initialize the transmit descriptors.
3658 */
3659 for (nexttx = sc->sc_txnext, seg = 0;
3660 seg < dmamap->dm_nsegs;
3661 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3662 /*
3663 * If this is the first descriptor we're
3664 * enqueueing, don't set the OWN bit just
3665 * yet. That could cause a race condition.
3666 * We'll do it below.
3667 */
3668 txd = &sc->sc_txdescs[nexttx];
3669 txd->at_ctl = ctl |
3670 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3671
3672 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3673 txd->at_flags =
3674 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3675 ATW_TXFLAG_TBS1_MASK)) |
3676 ((nexttx == (ATW_NTXDESC - 1))
3677 ? htole32(ATW_TXFLAG_TER) : 0);
3678 lasttx = nexttx;
3679 }
3680
3681 IASSERT(lasttx != -1, ("bad lastx"));
3682 /* Set `first segment' and `last segment' appropriately. */
3683 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3684 htole32(ATW_TXFLAG_FS);
3685 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3686
3687 #ifdef ATW_DEBUG
3688 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3689 printf(" txsoft %p transmit chain:\n", txs);
3690 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3691 printf(" descriptor %d:\n", seg);
3692 printf(" at_ctl: 0x%08x\n",
3693 le32toh(sc->sc_txdescs[seg].at_ctl));
3694 printf(" at_flags: 0x%08x\n",
3695 le32toh(sc->sc_txdescs[seg].at_flags));
3696 printf(" at_buf1: 0x%08x\n",
3697 le32toh(sc->sc_txdescs[seg].at_buf1));
3698 printf(" at_buf2: 0x%08x\n",
3699 le32toh(sc->sc_txdescs[seg].at_buf2));
3700 if (seg == lasttx)
3701 break;
3702 }
3703 }
3704 #endif
3705
3706 /* Sync the descriptors we're using. */
3707 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3708 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3709
3710 /*
3711 * Store a pointer to the packet so we can free it later,
3712 * and remember what txdirty will be once the packet is
3713 * done.
3714 */
3715 txs->txs_mbuf = m0;
3716 txs->txs_firstdesc = sc->sc_txnext;
3717 txs->txs_lastdesc = lasttx;
3718 txs->txs_ndescs = dmamap->dm_nsegs;
3719
3720 /* Advance the tx pointer. */
3721 sc->sc_txfree -= dmamap->dm_nsegs;
3722 sc->sc_txnext = nexttx;
3723
3724 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3725 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3726
3727 last_txs = txs;
3728 }
3729
3730 if (txs == NULL || sc->sc_txfree == 0) {
3731 /* No more slots left; notify upper layer. */
3732 ifp->if_flags |= IFF_OACTIVE;
3733 }
3734
3735 if (sc->sc_txfree != ofree) {
3736 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3737 sc->sc_dev.dv_xname, lasttx, firsttx));
3738 /*
3739 * Cause a transmit interrupt to happen on the
3740 * last packet we enqueued.
3741 */
3742 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3743 ATW_CDTXSYNC(sc, lasttx, 1,
3744 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3745
3746 /*
3747 * The entire packet chain is set up. Give the
3748 * first descriptor to the chip now.
3749 */
3750 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3751 ATW_CDTXSYNC(sc, firsttx, 1,
3752 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3753
3754 /* Wake up the transmitter. */
3755 /* XXX USE AUTOPOLLING? */
3756 ATW_WRITE(sc, ATW_TDR, 0x1);
3757
3758 /* Set a watchdog timer in case the chip flakes out. */
3759 sc->sc_tx_timer = 5;
3760 ifp->if_timer = 1;
3761 }
3762 }
3763
3764 /*
3765 * atw_power:
3766 *
3767 * Power management (suspend/resume) hook.
3768 */
3769 void
3770 atw_power(why, arg)
3771 int why;
3772 void *arg;
3773 {
3774 struct atw_softc *sc = arg;
3775 struct ifnet *ifp = &sc->sc_ic.ic_if;
3776 int s;
3777
3778 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3779
3780 s = splnet();
3781 switch (why) {
3782 case PWR_STANDBY:
3783 /* XXX do nothing. */
3784 break;
3785 case PWR_SUSPEND:
3786 atw_stop(ifp, 0);
3787 if (sc->sc_power != NULL)
3788 (*sc->sc_power)(sc, why);
3789 break;
3790 case PWR_RESUME:
3791 if (ifp->if_flags & IFF_UP) {
3792 if (sc->sc_power != NULL)
3793 (*sc->sc_power)(sc, why);
3794 atw_init(ifp);
3795 }
3796 break;
3797 case PWR_SOFTSUSPEND:
3798 case PWR_SOFTSTANDBY:
3799 case PWR_SOFTRESUME:
3800 break;
3801 }
3802 splx(s);
3803 }
3804
3805 /*
3806 * atw_ioctl: [ifnet interface function]
3807 *
3808 * Handle control requests from the operator.
3809 */
3810 int
3811 atw_ioctl(ifp, cmd, data)
3812 struct ifnet *ifp;
3813 u_long cmd;
3814 caddr_t data;
3815 {
3816 struct atw_softc *sc = ifp->if_softc;
3817 struct ifreq *ifr = (struct ifreq *)data;
3818 int s, error = 0;
3819
3820 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3821 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3822 return ENXIO;
3823
3824 s = splnet();
3825
3826 switch (cmd) {
3827 case SIOCSIFFLAGS:
3828 if (ifp->if_flags & IFF_UP) {
3829 if (ATW_IS_ENABLED(sc)) {
3830 /*
3831 * To avoid rescanning another access point,
3832 * do not call atw_init() here. Instead,
3833 * only reflect media settings.
3834 */
3835 atw_filter_setup(sc);
3836 } else
3837 error = atw_init(ifp);
3838 } else if (ATW_IS_ENABLED(sc))
3839 atw_stop(ifp, 1);
3840 break;
3841 case SIOCADDMULTI:
3842 case SIOCDELMULTI:
3843 error = (cmd == SIOCADDMULTI) ?
3844 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3845 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3846 if (error == ENETRESET) {
3847 if (ATW_IS_ENABLED(sc))
3848 atw_filter_setup(sc); /* do not rescan */
3849 error = 0;
3850 }
3851 break;
3852 default:
3853 error = ieee80211_ioctl(ifp, cmd, data);
3854 if (error == ENETRESET) {
3855 if (ATW_IS_ENABLED(sc))
3856 error = atw_init(ifp);
3857 else
3858 error = 0;
3859 }
3860 break;
3861 }
3862
3863 /* Try to get more packets going. */
3864 if (ATW_IS_ENABLED(sc))
3865 atw_start(ifp);
3866
3867 splx(s);
3868 return (error);
3869 }
3870
3871 static int
3872 atw_media_change(struct ifnet *ifp)
3873 {
3874 int error;
3875
3876 error = ieee80211_media_change(ifp);
3877 if (error == ENETRESET) {
3878 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3879 (IFF_RUNNING|IFF_UP))
3880 atw_init(ifp); /* XXX lose error */
3881 error = 0;
3882 }
3883 return error;
3884 }
3885
3886 static void
3887 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3888 {
3889 struct atw_softc *sc = ifp->if_softc;
3890
3891 if (ATW_IS_ENABLED(sc) == 0) {
3892 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3893 imr->ifm_status = 0;
3894 return;
3895 }
3896 ieee80211_media_status(ifp, imr);
3897 }
3898