Home | History | Annotate | Line # | Download | only in ic
atw.c revision 1.21
      1 /*	$NetBSD: atw.c,v 1.21 2004/01/29 10:01:14 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.21 2004/01/29 10:01:14 dyoung Exp $");
     45 
     46 #include "bpfilter.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/callout.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/malloc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/socket.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/errno.h>
     57 #include <sys/device.h>
     58 #include <sys/time.h>
     59 
     60 #include <machine/endian.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_media.h>
     67 #include <net/if_ether.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_compat.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #if NBPFILTER > 0
     74 #include <net/bpf.h>
     75 #endif
     76 
     77 #include <machine/bus.h>
     78 #include <machine/intr.h>
     79 
     80 #include <dev/ic/atwreg.h>
     81 #include <dev/ic/atwvar.h>
     82 #include <dev/ic/smc93cx6var.h>
     83 
     84 /* XXX TBD open questions
     85  *
     86  *
     87  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
     88  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
     89  * handle this for me?
     90  *
     91  */
     92 /* device attachment
     93  *
     94  *    print TOFS[012]
     95  *
     96  * device initialization
     97  *
     98  *    clear ATW_FRCTL_MAXPSP to disable max power saving
     99  *    set ATW_TXBR_ALCUPDATE to enable ALC
    100  *    set TOFS[012]? (hope not)
    101  *    disable rx/tx
    102  *    set ATW_PAR_SWR (software reset)
    103  *    wait for ATW_PAR_SWR clear
    104  *    disable interrupts
    105  *    ack status register
    106  *    enable interrupts
    107  *
    108  * rx/tx initialization
    109  *
    110  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    111  *    allocate and init descriptor rings
    112  *    write ATW_PAR_DSL (descriptor skip length)
    113  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
    114  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    115  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    116  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    117  *
    118  * rx/tx end
    119  *
    120  *    stop DMA
    121  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    122  *    flush tx w/ ATW_NAR_HF
    123  *
    124  * scan
    125  *
    126  *    initialize rx/tx
    127  *
    128  * IBSS join/create
    129  *
    130  *    set ATW_NAR_EA (is set by ASIC?)
    131  *
    132  * BSS join: (re)association response
    133  *
    134  *    set ATW_FRCTL_AID
    135  *
    136  * optimizations ???
    137  *
    138  */
    139 
    140 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
    141 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
    142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
    143 
    144 int atw_rfio_enable_delay = 20 * 1000;
    145 int atw_rfio_disable_delay = 2 * 1000;
    146 int atw_writewep_delay = 5;
    147 int atw_beacon_len_adjust = 4;
    148 int atw_dwelltime = 200;
    149 
    150 #ifdef ATW_DEBUG
    151 int atw_xhdrctl = 0;
    152 int atw_xrtylmt = ~0;
    153 int atw_xservice = IEEE80211_PLCP_SERVICE;
    154 int atw_xpaylen = 0;
    155 
    156 int atw_debug = 0;
    157 
    158 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
    159 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
    160 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
    161 #define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
    162 #define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
    163 #define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
    164 static void atw_print_regs(struct atw_softc *, const char *);
    165 static void atw_rf3000_print(struct atw_softc *);
    166 static void atw_si4126_print(struct atw_softc *);
    167 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
    168 #else
    169 #define ATW_DPRINTF(x)
    170 #define ATW_DPRINTF2(x)
    171 #define ATW_DPRINTF3(x)
    172 #define	DPRINTF(sc, x)	/* nothing */
    173 #define	DPRINTF2(sc, x)	/* nothing */
    174 #define	DPRINTF3(sc, x)	/* nothing */
    175 #endif
    176 
    177 #ifdef ATW_STATS
    178 void	atw_print_stats __P((struct atw_softc *));
    179 #endif
    180 
    181 void	atw_start __P((struct ifnet *));
    182 void	atw_watchdog __P((struct ifnet *));
    183 int	atw_ioctl __P((struct ifnet *, u_long, caddr_t));
    184 int	atw_init __P((struct ifnet *));
    185 void	atw_stop __P((struct ifnet *, int));
    186 
    187 void	atw_reset __P((struct atw_softc *));
    188 int	atw_read_srom __P((struct atw_softc *));
    189 
    190 void	atw_shutdown __P((void *));
    191 
    192 void	atw_rxdrain __P((struct atw_softc *));
    193 int	atw_add_rxbuf __P((struct atw_softc *, int));
    194 void	atw_idle __P((struct atw_softc *, u_int32_t));
    195 
    196 int	atw_enable __P((struct atw_softc *));
    197 void	atw_disable __P((struct atw_softc *));
    198 void	atw_power __P((int, void *));
    199 
    200 void	atw_rxintr __P((struct atw_softc *));
    201 void	atw_txintr __P((struct atw_softc *));
    202 void	atw_linkintr __P((struct atw_softc *, u_int32_t));
    203 
    204 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
    205 static void atw_tsf(struct atw_softc *);
    206 static void atw_start_beacon(struct atw_softc *, int);
    207 static void atw_write_wep(struct atw_softc *);
    208 static void atw_write_bssid(struct atw_softc *);
    209 static void atw_write_bcn_thresh(struct atw_softc *);
    210 static void atw_write_ssid(struct atw_softc *);
    211 static void atw_write_sup_rates(struct atw_softc *);
    212 static void atw_clear_sram(struct atw_softc *);
    213 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
    214 static int atw_media_change(struct ifnet *);
    215 static void atw_media_status(struct ifnet *, struct ifmediareq *);
    216 static void atw_filter_setup(struct atw_softc *);
    217 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
    218 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
    219 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
    220     struct ieee80211_node *, int, int, u_int32_t);
    221 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
    222     struct ieee80211_node *, int, int, u_int32_t);
    223 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
    224 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
    225 
    226 static int atw_tune(struct atw_softc *);
    227 
    228 static void atw_rfio_enable(struct atw_softc *, int);
    229 
    230 /* RFMD RF3000 Baseband Processor */
    231 static int atw_rf3000_init(struct atw_softc *);
    232 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
    233 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
    234 #ifdef ATW_DEBUG
    235 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    236 #endif /* ATW_DEBUG */
    237 
    238 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
    239 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
    240 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
    241 #ifdef ATW_DEBUG
    242 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
    243 #endif /* ATW_DEBUG */
    244 
    245 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
    246 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
    247 
    248 const char *atw_tx_state[] = {
    249 	"STOPPED",
    250 	"RUNNING - FETCH",
    251 	"RUNNING - WAIT",
    252 	"RUNNING - READING",
    253 	"-- RESERVED1 --",
    254 	"-- RESERVED2 --",
    255 	"SUSPENDED",
    256 	"RUNNING - CLOSE"
    257 };
    258 
    259 const char *atw_rx_state[] = {
    260 	"STOPPED",
    261 	"RUNNING - FETCH",
    262 	"RUNNING - CHECK",
    263 	"RUNNING - WAIT",
    264 	"SUSPENDED",
    265 	"RUNNING - CLOSE",
    266 	"RUNNING - FLUSH",
    267 	"RUNNING - QUEUE"
    268 };
    269 
    270 int
    271 atw_activate(struct device *self, enum devact act)
    272 {
    273 	struct atw_softc *sc = (struct atw_softc *)self;
    274 	int rv = 0, s;
    275 
    276 	s = splnet();
    277 	switch (act) {
    278 	case DVACT_ACTIVATE:
    279 		rv = EOPNOTSUPP;
    280 		break;
    281 
    282 	case DVACT_DEACTIVATE:
    283 		if_deactivate(&sc->sc_ic.ic_if);
    284 		break;
    285 	}
    286 	splx(s);
    287 	return rv;
    288 }
    289 
    290 /*
    291  * atw_enable:
    292  *
    293  *	Enable the ADM8211 chip.
    294  */
    295 int
    296 atw_enable(sc)
    297 	struct atw_softc *sc;
    298 {
    299 
    300 	if (ATW_IS_ENABLED(sc) == 0) {
    301 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    302 			printf("%s: device enable failed\n",
    303 			    sc->sc_dev.dv_xname);
    304 			return (EIO);
    305 		}
    306 		sc->sc_flags |= ATWF_ENABLED;
    307 	}
    308 	return (0);
    309 }
    310 
    311 /*
    312  * atw_disable:
    313  *
    314  *	Disable the ADM8211 chip.
    315  */
    316 void
    317 atw_disable(sc)
    318 	struct atw_softc *sc;
    319 {
    320 	if (!ATW_IS_ENABLED(sc))
    321 		return;
    322 	if (sc->sc_disable != NULL)
    323 		(*sc->sc_disable)(sc);
    324 	sc->sc_flags &= ~ATWF_ENABLED;
    325 }
    326 
    327 /* Returns -1 on failure. */
    328 int
    329 atw_read_srom(struct atw_softc *sc)
    330 {
    331 	struct seeprom_descriptor sd;
    332 	u_int32_t reg;
    333 
    334 	(void)memset(&sd, 0, sizeof(sd));
    335 
    336 	reg = ATW_READ(sc, ATW_TEST0);
    337 
    338 	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
    339 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
    340 		return -1;
    341 	}
    342 
    343 	switch (reg & ATW_TEST0_EPTYP_MASK) {
    344 	case ATW_TEST0_EPTYP_93c66:
    345 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
    346 		sc->sc_sromsz = 512;
    347 		sd.sd_chip = C56_66;
    348 		break;
    349 	case ATW_TEST0_EPTYP_93c46:
    350 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
    351 		sc->sc_sromsz = 128;
    352 		sd.sd_chip = C46;
    353 		break;
    354 	default:
    355 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
    356 		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
    357 		return -1;
    358 	}
    359 
    360 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
    361 
    362 	if (sc->sc_srom == NULL) {
    363 		printf("%s: unable to allocate SROM buffer\n",
    364 		    sc->sc_dev.dv_xname);
    365 		return -1;
    366 	}
    367 
    368 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
    369 
    370 	/* ADM8211 has a single 32-bit register for controlling the
    371 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
    372 	 * "ready" bit. The ADM8211 input/output sense is the reverse
    373 	 * of read_seeprom's.
    374 	 */
    375 	sd.sd_tag = sc->sc_st;
    376 	sd.sd_bsh = sc->sc_sh;
    377 	sd.sd_regsize = 4;
    378 	sd.sd_control_offset = ATW_SPR;
    379 	sd.sd_status_offset = ATW_SPR;
    380 	sd.sd_dataout_offset = ATW_SPR;
    381 	sd.sd_CK = ATW_SPR_SCLK;
    382 	sd.sd_CS = ATW_SPR_SCS;
    383 	sd.sd_DI = ATW_SPR_SDO;
    384 	sd.sd_DO = ATW_SPR_SDI;
    385 	sd.sd_MS = ATW_SPR_SRS;
    386 	sd.sd_RDY = 0;
    387 
    388 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
    389 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
    390 		free(sc->sc_srom, M_DEVBUF);
    391 		return -1;
    392 	}
    393 #ifdef ATW_DEBUG
    394 	{
    395 		int i;
    396 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
    397 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
    398 			if (((i % 8) == 0) && (i != 0)) {
    399 				ATW_DPRINTF(("\n\t"));
    400 			}
    401 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
    402 		}
    403 		ATW_DPRINTF(("\n"));
    404 	}
    405 #endif /* ATW_DEBUG */
    406 	return 0;
    407 }
    408 
    409 #ifdef ATW_DEBUG
    410 static void
    411 atw_print_regs(struct atw_softc *sc, const char *where)
    412 {
    413 #define PRINTREG(sc, reg) \
    414 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
    415 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
    416 
    417 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
    418 
    419 	PRINTREG(sc, ATW_PAR);
    420 	PRINTREG(sc, ATW_FRCTL);
    421 	PRINTREG(sc, ATW_TDR);
    422 	PRINTREG(sc, ATW_WTDP);
    423 	PRINTREG(sc, ATW_RDR);
    424 	PRINTREG(sc, ATW_WRDP);
    425 	PRINTREG(sc, ATW_RDB);
    426 	PRINTREG(sc, ATW_CSR3A);
    427 	PRINTREG(sc, ATW_TDBD);
    428 	PRINTREG(sc, ATW_TDBP);
    429 	PRINTREG(sc, ATW_STSR);
    430 	PRINTREG(sc, ATW_CSR5A);
    431 	PRINTREG(sc, ATW_NAR);
    432 	PRINTREG(sc, ATW_CSR6A);
    433 	PRINTREG(sc, ATW_IER);
    434 	PRINTREG(sc, ATW_CSR7A);
    435 	PRINTREG(sc, ATW_LPC);
    436 	PRINTREG(sc, ATW_TEST1);
    437 	PRINTREG(sc, ATW_SPR);
    438 	PRINTREG(sc, ATW_TEST0);
    439 	PRINTREG(sc, ATW_WCSR);
    440 	PRINTREG(sc, ATW_WPDR);
    441 	PRINTREG(sc, ATW_GPTMR);
    442 	PRINTREG(sc, ATW_GPIO);
    443 	PRINTREG(sc, ATW_BBPCTL);
    444 	PRINTREG(sc, ATW_SYNCTL);
    445 	PRINTREG(sc, ATW_PLCPHD);
    446 	PRINTREG(sc, ATW_MMIWADDR);
    447 	PRINTREG(sc, ATW_MMIRADDR1);
    448 	PRINTREG(sc, ATW_MMIRADDR2);
    449 	PRINTREG(sc, ATW_TXBR);
    450 	PRINTREG(sc, ATW_CSR15A);
    451 	PRINTREG(sc, ATW_ALCSTAT);
    452 	PRINTREG(sc, ATW_TOFS2);
    453 	PRINTREG(sc, ATW_CMDR);
    454 	PRINTREG(sc, ATW_PCIC);
    455 	PRINTREG(sc, ATW_PMCSR);
    456 	PRINTREG(sc, ATW_PAR0);
    457 	PRINTREG(sc, ATW_PAR1);
    458 	PRINTREG(sc, ATW_MAR0);
    459 	PRINTREG(sc, ATW_MAR1);
    460 	PRINTREG(sc, ATW_ATIMDA0);
    461 	PRINTREG(sc, ATW_ABDA1);
    462 	PRINTREG(sc, ATW_BSSID0);
    463 	PRINTREG(sc, ATW_TXLMT);
    464 	PRINTREG(sc, ATW_MIBCNT);
    465 	PRINTREG(sc, ATW_BCNT);
    466 	PRINTREG(sc, ATW_TSFTH);
    467 	PRINTREG(sc, ATW_TSC);
    468 	PRINTREG(sc, ATW_SYNRF);
    469 	PRINTREG(sc, ATW_BPLI);
    470 	PRINTREG(sc, ATW_CAP0);
    471 	PRINTREG(sc, ATW_CAP1);
    472 	PRINTREG(sc, ATW_RMD);
    473 	PRINTREG(sc, ATW_CFPP);
    474 	PRINTREG(sc, ATW_TOFS0);
    475 	PRINTREG(sc, ATW_TOFS1);
    476 	PRINTREG(sc, ATW_IFST);
    477 	PRINTREG(sc, ATW_RSPT);
    478 	PRINTREG(sc, ATW_TSFTL);
    479 	PRINTREG(sc, ATW_WEPCTL);
    480 	PRINTREG(sc, ATW_WESK);
    481 	PRINTREG(sc, ATW_WEPCNT);
    482 	PRINTREG(sc, ATW_MACTEST);
    483 	PRINTREG(sc, ATW_FER);
    484 	PRINTREG(sc, ATW_FEMR);
    485 	PRINTREG(sc, ATW_FPSR);
    486 	PRINTREG(sc, ATW_FFER);
    487 #undef PRINTREG
    488 }
    489 #endif /* ATW_DEBUG */
    490 
    491 /*
    492  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
    493  */
    494 void
    495 atw_attach(struct atw_softc *sc)
    496 {
    497 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
    498 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    499 	};
    500 	struct ieee80211com *ic = &sc->sc_ic;
    501 	struct ifnet *ifp = &ic->ic_if;
    502 	int country_code, error, i, nrate;
    503 	u_int32_t reg;
    504 	static const char *type_strings[] = {"Intersil (not supported)",
    505 	    "RFMD", "Marvel (not supported)"};
    506 
    507 	sc->sc_txth = atw_txthresh_tab_lo;
    508 
    509 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    510 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    511 
    512 #ifdef ATW_DEBUG
    513 	atw_print_regs(sc, "atw_attach");
    514 #endif /* ATW_DEBUG */
    515 
    516 	/*
    517 	 * Allocate the control data structures, and create and load the
    518 	 * DMA map for it.
    519 	 */
    520 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    521 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    522 	    1, &sc->sc_cdnseg, 0)) != 0) {
    523 		printf("%s: unable to allocate control data, error = %d\n",
    524 		    sc->sc_dev.dv_xname, error);
    525 		goto fail_0;
    526 	}
    527 
    528 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
    529 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
    530 	    BUS_DMA_COHERENT)) != 0) {
    531 		printf("%s: unable to map control data, error = %d\n",
    532 		    sc->sc_dev.dv_xname, error);
    533 		goto fail_1;
    534 	}
    535 
    536 	if ((error = bus_dmamap_create(sc->sc_dmat,
    537 	    sizeof(struct atw_control_data), 1,
    538 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    539 		printf("%s: unable to create control data DMA map, "
    540 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    541 		goto fail_2;
    542 	}
    543 
    544 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    545 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
    546 	    0)) != 0) {
    547 		printf("%s: unable to load control data DMA map, error = %d\n",
    548 		    sc->sc_dev.dv_xname, error);
    549 		goto fail_3;
    550 	}
    551 
    552 	/*
    553 	 * Create the transmit buffer DMA maps.
    554 	 */
    555 	sc->sc_ntxsegs = ATW_NTXSEGS;
    556 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    557 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    558 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
    559 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    560 			printf("%s: unable to create tx DMA map %d, "
    561 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    562 			goto fail_4;
    563 		}
    564 	}
    565 
    566 	/*
    567 	 * Create the receive buffer DMA maps.
    568 	 */
    569 	for (i = 0; i < ATW_NRXDESC; i++) {
    570 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    571 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    572 			printf("%s: unable to create rx DMA map %d, "
    573 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    574 			goto fail_5;
    575 		}
    576 	}
    577 	for (i = 0; i < ATW_NRXDESC; i++) {
    578 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    579 	}
    580 
    581 	/* Reset the chip to a known state. */
    582 	atw_reset(sc);
    583 
    584 	if (atw_read_srom(sc) == -1)
    585 		return;
    586 
    587 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    588 	    ATW_SR_RFTYPE_MASK);
    589 
    590 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    591 	    ATW_SR_BBPTYPE_MASK);
    592 
    593 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
    594 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
    595 		return;
    596 	}
    597 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
    598 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
    599 		return;
    600 	}
    601 
    602 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
    603 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
    604 
    605 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
    606 	 * MARVEL. My bug, or theirs?
    607 	 */
    608 
    609 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
    610 
    611 	switch (sc->sc_rftype) {
    612 	case ATW_RFTYPE_INTERSIL:
    613 		reg |= ATW_SYNCTL_CS1;
    614 		break;
    615 	case ATW_RFTYPE_RFMD:
    616 		reg |= ATW_SYNCTL_CS0;
    617 		break;
    618 	case ATW_RFTYPE_MARVEL:
    619 		break;
    620 	}
    621 
    622 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
    623 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
    624 
    625 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
    626 
    627 	switch (sc->sc_bbptype) {
    628 	case ATW_RFTYPE_INTERSIL:
    629 		reg |= ATW_BBPCTL_TWI;
    630 		break;
    631 	case ATW_RFTYPE_RFMD:
    632 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
    633 		    ATW_BBPCTL_CCA_ACTLO;
    634 		break;
    635 	case ATW_RFTYPE_MARVEL:
    636 		break;
    637 	}
    638 
    639 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
    640 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
    641 
    642 	/*
    643 	 * From this point forward, the attachment cannot fail.  A failure
    644 	 * before this point releases all resources that may have been
    645 	 * allocated.
    646 	 */
    647 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
    648 
    649 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
    650 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
    651 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
    652 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
    653 
    654 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    655 	    ATW_SR_CTRY_MASK);
    656 
    657 #define ADD_CHANNEL(_ic, _chan) do {					\
    658 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
    659 	_ic->ic_channels[_chan].ic_freq =				\
    660 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
    661 } while (0)
    662 
    663 	/* Find available channels */
    664 	switch (country_code) {
    665 	case COUNTRY_MMK2:	/* 1-14 */
    666 		ADD_CHANNEL(ic, 14);
    667 		/*FALLTHROUGH*/
    668 	case COUNTRY_ETSI:	/* 1-13 */
    669 		for (i = 1; i <= 13; i++)
    670 			ADD_CHANNEL(ic, i);
    671 		break;
    672 	case COUNTRY_FCC:	/* 1-11 */
    673 	case COUNTRY_IC:	/* 1-11 */
    674 		for (i = 1; i <= 11; i++)
    675 			ADD_CHANNEL(ic, i);
    676 		break;
    677 	case COUNTRY_MMK:	/* 14 */
    678 		ADD_CHANNEL(ic, 14);
    679 		break;
    680 	case COUNTRY_FRANCE:	/* 10-13 */
    681 		for (i = 10; i <= 13; i++)
    682 			ADD_CHANNEL(ic, i);
    683 		break;
    684 	default:	/* assume channels 10-11 */
    685 	case COUNTRY_SPAIN:	/* 10-11 */
    686 		for (i = 10; i <= 11; i++)
    687 			ADD_CHANNEL(ic, i);
    688 		break;
    689 	}
    690 
    691 	/* Read the MAC address. */
    692 	reg = ATW_READ(sc, ATW_PAR0);
    693 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
    694 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
    695 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
    696 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
    697 	reg = ATW_READ(sc, ATW_PAR1);
    698 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
    699 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
    700 
    701 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
    702 		printf(" could not get mac address, attach failed\n");
    703 		return;
    704 	}
    705 
    706 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
    707 
    708 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    709 	ifp->if_softc = sc;
    710 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
    711 	    IFF_NOTRAILERS;
    712 	ifp->if_ioctl = atw_ioctl;
    713 	ifp->if_start = atw_start;
    714 	ifp->if_watchdog = atw_watchdog;
    715 	ifp->if_init = atw_init;
    716 	ifp->if_stop = atw_stop;
    717 	IFQ_SET_READY(&ifp->if_snd);
    718 
    719 	ic->ic_phytype = IEEE80211_T_DS;
    720 	ic->ic_opmode = IEEE80211_M_STA;
    721 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
    722 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
    723 
    724 	nrate = 0;
    725 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
    726 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
    727 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
    728 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
    729 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
    730 
    731 	/*
    732 	 * Call MI attach routines.
    733 	 */
    734 
    735 	if_attach(ifp);
    736 	ieee80211_ifattach(ifp);
    737 
    738 	sc->sc_newstate = ic->ic_newstate;
    739 	ic->ic_newstate = atw_newstate;
    740 
    741 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    742 	ic->ic_recv_mgmt = atw_recv_mgmt;
    743 
    744 	sc->sc_node_free = ic->ic_node_free;
    745 	ic->ic_node_free = atw_node_free;
    746 
    747 	sc->sc_node_alloc = ic->ic_node_alloc;
    748 	ic->ic_node_alloc = atw_node_alloc;
    749 
    750 	/* possibly we should fill in our own sc_send_prresp, since
    751 	 * the ADM8211 is probably sending probe responses in ad hoc
    752 	 * mode.
    753 	 */
    754 
    755 	/* complete initialization */
    756 	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
    757 	callout_init(&sc->sc_scan_ch);
    758 
    759 #if NBPFILTER > 0
    760 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    761 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
    762 #endif
    763 
    764 	/*
    765 	 * Make sure the interface is shutdown during reboot.
    766 	 */
    767 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
    768 	if (sc->sc_sdhook == NULL)
    769 		printf("%s: WARNING: unable to establish shutdown hook\n",
    770 		    sc->sc_dev.dv_xname);
    771 
    772 	/*
    773 	 * Add a suspend hook to make sure we come back up after a
    774 	 * resume.
    775 	 */
    776 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
    777 	if (sc->sc_powerhook == NULL)
    778 		printf("%s: WARNING: unable to establish power hook\n",
    779 		    sc->sc_dev.dv_xname);
    780 
    781 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
    782 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
    783 	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
    784 
    785 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
    786 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
    787 	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
    788 
    789 	return;
    790 
    791 	/*
    792 	 * Free any resources we've allocated during the failed attach
    793 	 * attempt.  Do this in reverse order and fall through.
    794 	 */
    795  fail_5:
    796 	for (i = 0; i < ATW_NRXDESC; i++) {
    797 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
    798 			continue;
    799 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
    800 	}
    801  fail_4:
    802 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    803 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
    804 			continue;
    805 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
    806 	}
    807 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    808  fail_3:
    809 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    810  fail_2:
    811 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    812 	    sizeof(struct atw_control_data));
    813  fail_1:
    814 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
    815  fail_0:
    816 	return;
    817 }
    818 
    819 static struct ieee80211_node *
    820 atw_node_alloc(struct ieee80211com *ic)
    821 {
    822 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    823 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
    824 
    825 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
    826 	return ni;
    827 }
    828 
    829 static void
    830 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
    831 {
    832 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    833 
    834 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
    835 	    ether_sprintf(ni->ni_bssid)));
    836 	(*sc->sc_node_free)(ic, ni);
    837 }
    838 
    839 /*
    840  * atw_reset:
    841  *
    842  *	Perform a soft reset on the ADM8211.
    843  */
    844 void
    845 atw_reset(sc)
    846 	struct atw_softc *sc;
    847 {
    848 	int i;
    849 
    850 	if (ATW_IS_ENABLED(sc) == 0)
    851 		return;
    852 
    853 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
    854 
    855 	for (i = 0; i < 10000; i++) {
    856 		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
    857 			break;
    858 		DELAY(1);
    859 	}
    860 
    861 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
    862 
    863 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
    864 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
    865 
    866 	/* Turn off maximum power saving. */
    867 	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
    868 
    869 	/* Recall EEPROM. */
    870 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
    871 
    872 	DELAY(10 * 1000);
    873 
    874 	/* A reset seems to affect the SRAM contents, so put them into
    875 	 * a known state.
    876 	 */
    877 	atw_clear_sram(sc);
    878 
    879 	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
    880 
    881 	sc->sc_lost_bcn_thresh = 0;
    882 }
    883 
    884 static void
    885 atw_clear_sram(sc)
    886 	struct atw_softc *sc;
    887 {
    888 #if 0
    889 	for (addr = 0; addr < 448; addr++) {
    890 		ATW_WRITE(sc, ATW_WEPCTL,
    891 		    ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0	| addr);
    892 		DELAY(1000);
    893 		ATW_WRITE(sc, ATW_WESK, 0);
    894 		DELAY(1000); /* paranoia */
    895 	}
    896 	return;
    897 #endif
    898 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
    899 	/* XXX not for revision 0x20. */
    900 	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
    901 }
    902 
    903 /* TBD atw_init
    904  *
    905  * set MAC based on ic->ic_bss->myaddr
    906  * write WEP keys
    907  * set TX rate
    908  */
    909 
    910 /*
    911  * atw_init:		[ ifnet interface function ]
    912  *
    913  *	Initialize the interface.  Must be called at splnet().
    914  */
    915 int
    916 atw_init(ifp)
    917 	struct ifnet *ifp;
    918 {
    919 	struct atw_softc *sc = ifp->if_softc;
    920 	struct ieee80211com *ic = &sc->sc_ic;
    921 	struct atw_txsoft *txs;
    922 	struct atw_rxsoft *rxs;
    923 	u_int32_t reg;
    924 	int i, error = 0;
    925 
    926 	if ((error = atw_enable(sc)) != 0)
    927 		goto out;
    928 
    929 	/*
    930 	 * Cancel any pending I/O. This also resets.
    931 	 */
    932 	atw_stop(ifp, 0);
    933 
    934 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
    935 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
    936 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
    937 	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
    938 
    939 	/* Turn off APM??? (A binary-only driver does this.)
    940 	 *
    941 	 * Set Rx store-and-forward mode.
    942 	 */
    943 	reg = ATW_READ(sc, ATW_CMDR);
    944 	reg &= ~ATW_CMDR_APM;
    945 	reg &= ~ATW_CMDR_DRT_MASK;
    946 	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
    947 
    948 	ATW_WRITE(sc, ATW_CMDR, reg);
    949 
    950 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
    951 	 *
    952 	 * XXX a binary-only driver sets a different service field than
    953 	 * 0. why?
    954 	 */
    955 	reg = ATW_READ(sc, ATW_PLCPHD);
    956 	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
    957 	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
    958 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
    959 	ATW_WRITE(sc, ATW_PLCPHD, reg);
    960 
    961 	/* XXX this magic can probably be figured out from the RFMD docs */
    962 	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
    963 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
    964 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
    965 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
    966 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
    967 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
    968 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
    969 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
    970 	ATW_WRITE(sc, ATW_TOFS2, reg);
    971 
    972 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
    973 	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
    974 
    975 	/* XXX this resets an Intersil RF front-end? */
    976 	/* TBD condition on Intersil RFType? */
    977 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
    978 	DELAY(10 * 1000);
    979 	ATW_WRITE(sc, ATW_SYNRF, 0);
    980 	DELAY(5 * 1000);
    981 
    982 	/* 16 TU max duration for contention-free period */
    983 	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
    984 	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
    985 
    986 	/* XXX I guess that the Cardbus clock is 22MHz?
    987 	 * I am assuming that the role of ATW_TOFS0_USCNT is
    988 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
    989 	 * very clear on this point. It says in the datasheet that it is
    990 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
    991 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
    992 	 * these values. These values are also the power-on default.
    993 	 */
    994 	ATW_WRITE(sc, ATW_TOFS0,
    995 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
    996 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
    997 
    998 	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
    999 	 * driver. Go figure.
   1000 	 */
   1001 	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
   1002 	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
   1003 	             ATW_IFST_SIFS_MASK) |
   1004 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
   1005 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
   1006 
   1007 	ATW_WRITE(sc, ATW_IFST, reg);
   1008 
   1009 	/* XXX More magic. Might relate to ACK timing. */
   1010 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
   1011 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
   1012 
   1013 	/* Set up the MMI read/write addresses for the BBP.
   1014 	 *
   1015 	 * TBD find out the Marvel settings.
   1016 	 */
   1017 	switch (sc->sc_bbptype) {
   1018 	case ATW_BBPTYPE_INTERSIL:
   1019 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
   1020 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
   1021 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
   1022 		break;
   1023 	case ATW_BBPTYPE_MARVEL:
   1024 		break;
   1025 	case ATW_BBPTYPE_RFMD:
   1026 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
   1027 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
   1028 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
   1029 	default:
   1030 		break;
   1031 	}
   1032 
   1033 	sc->sc_wepctl = 0;
   1034 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
   1035 
   1036 	if ((error = atw_rf3000_init(sc)) != 0)
   1037 		goto out;
   1038 
   1039 	/*
   1040 	 * Initialize the PCI Access Register.
   1041 	 */
   1042 	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
   1043 
   1044 	/*
   1045 	 * If we're allowed to do so, use Memory Read Line
   1046 	 * and Memory Read Multiple.
   1047 	 *
   1048 	 * XXX Should we use Memory Write and Invalidate?
   1049 	 */
   1050 	if (sc->sc_flags & ATWF_MRL)
   1051 		sc->sc_busmode |= ATW_PAR_MRLE;
   1052 	if (sc->sc_flags & ATWF_MRM)
   1053 		sc->sc_busmode |= ATW_PAR_MRME;
   1054 	if (sc->sc_flags & ATWF_MWI)
   1055 		sc->sc_busmode |= ATW_PAR_MWIE;
   1056 	if (sc->sc_maxburst == 0)
   1057 		sc->sc_maxburst = 8;	/* ADM8211 default */
   1058 
   1059 	switch (sc->sc_cacheline) {
   1060 	default:
   1061 		/* Use burst length. */
   1062 		break;
   1063 	case 8:
   1064 		sc->sc_busmode |= ATW_PAR_CAL_8DW;
   1065 		break;
   1066 	case 16:
   1067 		sc->sc_busmode |= ATW_PAR_CAL_16DW;
   1068 		break;
   1069 	case 32:
   1070 		sc->sc_busmode |= ATW_PAR_CAL_32DW;
   1071 		break;
   1072 	}
   1073 	switch (sc->sc_maxburst) {
   1074 	case 1:
   1075 		sc->sc_busmode |= ATW_PAR_PBL_1DW;
   1076 		break;
   1077 	case 2:
   1078 		sc->sc_busmode |= ATW_PAR_PBL_2DW;
   1079 		break;
   1080 	case 4:
   1081 		sc->sc_busmode |= ATW_PAR_PBL_4DW;
   1082 		break;
   1083 	case 8:
   1084 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1085 		break;
   1086 	case 16:
   1087 		sc->sc_busmode |= ATW_PAR_PBL_16DW;
   1088 		break;
   1089 	case 32:
   1090 		sc->sc_busmode |= ATW_PAR_PBL_32DW;
   1091 		break;
   1092 	default:
   1093 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1094 		break;
   1095 	}
   1096 
   1097 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
   1098 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
   1099 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
   1100 
   1101 	/*
   1102 	 * Initialize the OPMODE register.  We don't write it until
   1103 	 * we're ready to begin the transmit and receive processes.
   1104 	 */
   1105 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
   1106 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
   1107 
   1108 	/*
   1109 	 * Initialize the transmit descriptor ring.
   1110 	 */
   1111 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1112 	for (i = 0; i < ATW_NTXDESC; i++) {
   1113 		/* no transmit chaining */
   1114 		sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
   1115 		sc->sc_txdescs[i].at_buf2 =
   1116 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
   1117 	}
   1118 	/* use ring mode */
   1119 	sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
   1120 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
   1121 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1122 	sc->sc_txfree = ATW_NTXDESC;
   1123 	sc->sc_txnext = 0;
   1124 
   1125 	/*
   1126 	 * Initialize the transmit job descriptors.
   1127 	 */
   1128 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1129 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1130 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   1131 		txs = &sc->sc_txsoft[i];
   1132 		txs->txs_mbuf = NULL;
   1133 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1134 	}
   1135 
   1136 	/*
   1137 	 * Initialize the receive descriptor and receive job
   1138 	 * descriptor rings.
   1139 	 */
   1140 	for (i = 0; i < ATW_NRXDESC; i++) {
   1141 		rxs = &sc->sc_rxsoft[i];
   1142 		if (rxs->rxs_mbuf == NULL) {
   1143 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
   1144 				printf("%s: unable to allocate or map rx "
   1145 				    "buffer %d, error = %d\n",
   1146 				    sc->sc_dev.dv_xname, i, error);
   1147 				/*
   1148 				 * XXX Should attempt to run with fewer receive
   1149 				 * XXX buffers instead of just failing.
   1150 				 */
   1151 				atw_rxdrain(sc);
   1152 				goto out;
   1153 			}
   1154 		} else
   1155 			ATW_INIT_RXDESC(sc, i);
   1156 	}
   1157 	sc->sc_rxptr = 0;
   1158 
   1159 	/* disable all wake-up events */
   1160 	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
   1161 	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
   1162 			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
   1163 			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
   1164 
   1165 	/* ack all wake-up events */
   1166 	ATW_SET(sc, ATW_WCSR, 0);
   1167 
   1168 	/*
   1169 	 * Initialize the interrupt mask and enable interrupts.
   1170 	 */
   1171 	/* normal interrupts */
   1172 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
   1173 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
   1174 
   1175 	/* abnormal interrupts */
   1176 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
   1177 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
   1178 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1179 
   1180 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
   1181 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1182 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
   1183 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
   1184 	    ATW_INTR_TRT;
   1185 
   1186 	sc->sc_linkint_mask &= sc->sc_inten;
   1187 	sc->sc_rxint_mask &= sc->sc_inten;
   1188 	sc->sc_txint_mask &= sc->sc_inten;
   1189 
   1190 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
   1191 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1192 	if (sc->sc_intr_ack != NULL)
   1193 		(*sc->sc_intr_ack)(sc);
   1194 
   1195 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
   1196 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
   1197 
   1198 	/*
   1199 	 * Give the transmit and receive rings to the ADM8211.
   1200 	 */
   1201 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
   1202 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
   1203 
   1204 	/* common 802.11 configuration */
   1205 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
   1206 	switch (ic->ic_opmode) {
   1207 	case IEEE80211_M_STA:
   1208 		sc->sc_opmode &= ~ATW_NAR_EA;
   1209 		break;
   1210 	case IEEE80211_M_AHDEMO: /* XXX */
   1211 	case IEEE80211_M_IBSS:
   1212 		ic->ic_flags |= IEEE80211_F_IBSSON;
   1213 		/*FALLTHROUGH*/
   1214 	case IEEE80211_M_HOSTAP: /* XXX */
   1215 		/* EA bit seems important for ad hoc reception. */
   1216 		sc->sc_opmode |= ATW_NAR_EA;
   1217 		break;
   1218 	case IEEE80211_M_MONITOR: /* XXX */
   1219 		break;
   1220 	}
   1221 
   1222 	atw_start_beacon(sc, 0);
   1223 
   1224 	switch (ic->ic_opmode) {
   1225 	case IEEE80211_M_AHDEMO:
   1226 	case IEEE80211_M_HOSTAP:
   1227 		ic->ic_bss->ni_intval = ic->ic_lintval;
   1228 		ic->ic_bss->ni_rssi = 0;
   1229 		ic->ic_bss->ni_rstamp = 0;
   1230 		break;
   1231 	default:					/* XXX */
   1232 		break;
   1233 	}
   1234 
   1235 	atw_write_ssid(sc);
   1236 	atw_write_sup_rates(sc);
   1237 	if (ic->ic_caps & IEEE80211_C_WEP)
   1238 		atw_write_wep(sc);
   1239 
   1240 	/*
   1241 	 * Set the receive filter.  This will start the transmit and
   1242 	 * receive processes.
   1243 	 */
   1244 	atw_filter_setup(sc);
   1245 
   1246 	/*
   1247 	 * Start the receive process.
   1248 	 */
   1249 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1250 
   1251 	/*
   1252 	 * Note that the interface is now running.
   1253 	 */
   1254 	ifp->if_flags |= IFF_RUNNING;
   1255 	ifp->if_flags &= ~IFF_OACTIVE;
   1256 	ic->ic_state = IEEE80211_S_INIT;
   1257 
   1258 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1259 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1260 	else
   1261 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1262  out:
   1263 	if (error) {
   1264 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1265 		ifp->if_timer = 0;
   1266 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1267 	}
   1268 #ifdef ATW_DEBUG
   1269 	atw_print_regs(sc, "end of init");
   1270 #endif /* ATW_DEBUG */
   1271 
   1272 	return (error);
   1273 }
   1274 
   1275 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
   1276  *           0: MAC control of RF3000/Si4126.
   1277  *
   1278  * Applies power, or selects RF front-end? Sets reset condition.
   1279  *
   1280  * TBD support non-RFMD BBP, non-SiLabs synth.
   1281  */
   1282 static void
   1283 atw_rfio_enable(struct atw_softc *sc, int enable)
   1284 {
   1285 	if (enable) {
   1286 		ATW_WRITE(sc, ATW_SYNRF,
   1287 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
   1288 		DELAY(atw_rfio_enable_delay);
   1289 	} else {
   1290 		ATW_WRITE(sc, ATW_SYNRF, 0);
   1291 		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
   1292 	}
   1293 }
   1294 
   1295 static int
   1296 atw_tune(sc)
   1297 	struct atw_softc *sc;
   1298 {
   1299 	int rc;
   1300 	u_int32_t reg;
   1301 	int chan;
   1302 	struct ieee80211com *ic = &sc->sc_ic;
   1303 
   1304 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
   1305 	if (chan == IEEE80211_CHAN_ANY)
   1306 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
   1307 
   1308 	if (chan == sc->sc_cur_chan)
   1309 		return 0;
   1310 
   1311 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
   1312 	    sc->sc_cur_chan, chan));
   1313 
   1314 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1315 
   1316 	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
   1317 	    (rc = atw_rf3000_tune(sc, chan)) != 0)
   1318 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
   1319 		    chan);
   1320 
   1321 	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
   1322 	ATW_WRITE(sc, ATW_CAP0,
   1323 	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
   1324 
   1325 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1326 
   1327 	if (rc == 0)
   1328 		sc->sc_cur_chan = chan;
   1329 
   1330 	return rc;
   1331 }
   1332 
   1333 #ifdef ATW_DEBUG
   1334 static void
   1335 atw_si4126_print(sc)
   1336 	struct atw_softc *sc;
   1337 {
   1338 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1339 	u_int addr, val;
   1340 
   1341 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1342 		return;
   1343 
   1344 	for (addr = 0; addr <= 8; addr++) {
   1345 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
   1346 		if (atw_si4126_read(sc, addr, &val) == 0) {
   1347 			printf("<unknown> (quitting print-out)\n");
   1348 			break;
   1349 		}
   1350 		printf("%05x\n", val);
   1351 	}
   1352 }
   1353 #endif /* ATW_DEBUG */
   1354 
   1355 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
   1356  *
   1357  * The RF/IF synthesizer produces two reference frequencies for
   1358  * the RF2948B transceiver.  The first frequency the RF2948B requires
   1359  * is two times the so-called "intermediate frequency" (IF). Since
   1360  * a SAW filter on the radio fixes the IF at 374MHz, I program the
   1361  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
   1362  * frequency required by the transceiver is the radio frequency
   1363  * (RF). This is a superheterodyne transceiver; for f(chan) the
   1364  * center frequency of the channel we are tuning, RF = f(chan) -
   1365  * IF.
   1366  *
   1367  * XXX I am told by SiLabs that the Si4126 will accept a broader range
   1368  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
   1369  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
   1370  * works, but I have still programmed for XINDIV2 = 1 to be safe.
   1371  */
   1372 static int
   1373 atw_si4126_tune(sc, chan)
   1374 	struct atw_softc *sc;
   1375 	u_int8_t chan;
   1376 {
   1377 	int rc = 0;
   1378 	u_int mhz;
   1379 	u_int R;
   1380 	u_int32_t reg;
   1381 	u_int16_t gain;
   1382 
   1383 #ifdef ATW_DEBUG
   1384 	atw_si4126_print(sc);
   1385 #endif /* ATW_DEBUG */
   1386 
   1387 	if (chan == 14)
   1388 		mhz = 2484;
   1389 	else
   1390 		mhz = 2412 + 5 * (chan - 1);
   1391 
   1392 	/* Tune IF to 748MHz to suit the IF LO input of the
   1393 	 * RF2494B, which is 2 x IF. No need to set an IF divider
   1394          * because an IF in 526MHz - 952MHz is allowed.
   1395 	 *
   1396 	 * XIN is 44.000MHz, so divide it by two to get allowable
   1397 	 * range of 2-25MHz. SiLabs tells me that this is not
   1398 	 * strictly necessary.
   1399 	 */
   1400 
   1401 	R = 44;
   1402 
   1403 	atw_rfio_enable(sc, 1);
   1404 
   1405 	/* Power-up RF, IF synthesizers. */
   1406 	if ((rc = atw_si4126_write(sc, SI4126_POWER,
   1407 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
   1408 		goto out;
   1409 
   1410 	/* If RF2 N > 2047, then set KP2 to 1. */
   1411 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
   1412 
   1413 	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
   1414 		goto out;
   1415 
   1416 	/* set LPWR, too? */
   1417 	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
   1418 	    SI4126_MAIN_XINDIV2)) != 0)
   1419 		goto out;
   1420 
   1421 	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
   1422 	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
   1423 	 */
   1424 	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
   1425 		goto out;
   1426 
   1427 	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
   1428 		goto out;
   1429 
   1430 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
   1431 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
   1432 	 * which has no RF1!
   1433 	 */
   1434 	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
   1435 		goto out;
   1436 
   1437 	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
   1438 		goto out;
   1439 
   1440 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
   1441 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
   1442 	 * Now let's multiply it to mhz. So mhz - IF = N.
   1443 	 */
   1444 	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
   1445 		goto out;
   1446 
   1447 	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
   1448 		goto out;
   1449 
   1450 	/* wait 100us from power-up for RF, IF to settle */
   1451 	DELAY(100);
   1452 
   1453 	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
   1454 		/* XXX there is a binary driver which sends
   1455 		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
   1456 		 * that this enables the Si4126 by raising its PWDN#, but I
   1457 		 * think that it actually sets the Prism RF front-end
   1458 		 * to a special mode for channel 14.
   1459 		 */
   1460 		reg = ATW_READ(sc, ATW_GPIO);
   1461 		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
   1462 		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
   1463 		ATW_WRITE(sc, ATW_GPIO, reg);
   1464 	}
   1465 
   1466 #ifdef ATW_DEBUG
   1467 	atw_si4126_print(sc);
   1468 #endif /* ATW_DEBUG */
   1469 
   1470 out:
   1471 	atw_rfio_enable(sc, 0);
   1472 
   1473 	return rc;
   1474 }
   1475 
   1476 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
   1477  * diversity.
   1478  *
   1479  * Call this w/ Tx/Rx suspended.
   1480  */
   1481 static int
   1482 atw_rf3000_init(sc)
   1483 	struct atw_softc *sc;
   1484 {
   1485 	int rc = 0;
   1486 
   1487 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1488 
   1489 	atw_rfio_enable(sc, 1);
   1490 
   1491 	/* enable diversity */
   1492 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
   1493 
   1494 	if (rc != 0)
   1495 		goto out;
   1496 
   1497 	/* sensible setting from a binary-only driver */
   1498 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1499 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
   1500 
   1501 	if (rc != 0)
   1502 		goto out;
   1503 
   1504 	/* magic from a binary-only driver */
   1505 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
   1506 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
   1507 
   1508 	if (rc != 0)
   1509 		goto out;
   1510 
   1511 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
   1512 
   1513 	if (rc != 0)
   1514 		goto out;
   1515 
   1516 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
   1517 
   1518 	if (rc != 0)
   1519 		goto out;
   1520 
   1521 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
   1522 
   1523 	if (rc != 0)
   1524 		goto out;
   1525 
   1526 	/* CCA is acquisition sensitive */
   1527 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
   1528 	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
   1529 
   1530 	if (rc != 0)
   1531 		goto out;
   1532 
   1533 out:
   1534 	atw_rfio_enable(sc, 0);
   1535 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1536 	return rc;
   1537 }
   1538 
   1539 #ifdef ATW_DEBUG
   1540 static void
   1541 atw_rf3000_print(sc)
   1542 	struct atw_softc *sc;
   1543 {
   1544 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1545 	u_int addr, val;
   1546 
   1547 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1548 		return;
   1549 
   1550 	for (addr = 0x01; addr <= 0x15; addr++) {
   1551 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
   1552 		if (atw_rf3000_read(sc, addr, &val) != 0) {
   1553 			printf("<unknown> (quitting print-out)\n");
   1554 			break;
   1555 		}
   1556 		printf("%08x\n", val);
   1557 	}
   1558 }
   1559 #endif /* ATW_DEBUG */
   1560 
   1561 /* Set the power settings on the BBP for channel `chan'. */
   1562 static int
   1563 atw_rf3000_tune(sc, chan)
   1564 	struct atw_softc *sc;
   1565 	u_int8_t chan;
   1566 {
   1567 	int rc = 0;
   1568 	u_int32_t reg;
   1569 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
   1570 
   1571 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
   1572 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
   1573 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
   1574 
   1575 	/* odd channels: LSB, even channels: MSB */
   1576 	if (chan % 2 == 1) {
   1577 		txpower &= 0xFF;
   1578 		lpf_cutoff &= 0xFF;
   1579 		lna_gs_thresh &= 0xFF;
   1580 	} else {
   1581 		txpower >>= 8;
   1582 		lpf_cutoff >>= 8;
   1583 		lna_gs_thresh >>= 8;
   1584 	}
   1585 
   1586 #ifdef ATW_DEBUG
   1587 	atw_rf3000_print(sc);
   1588 #endif /* ATW_DEBUG */
   1589 
   1590 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
   1591 	    "lna_gs_thresh %02x\n",
   1592 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
   1593 
   1594 	atw_rfio_enable(sc, 1);
   1595 
   1596 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1597 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
   1598 		goto out;
   1599 
   1600 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
   1601 		goto out;
   1602 
   1603 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
   1604 		goto out;
   1605 
   1606 	/* from a binary-only driver. */
   1607 	reg = ATW_READ(sc, ATW_PLCPHD);
   1608 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
   1609 	reg |= LSHIFT(txpower << 2, ATW_PLCPHD_SERVICE_MASK);
   1610 	ATW_WRITE(sc, ATW_PLCPHD, reg);
   1611 
   1612 #ifdef ATW_DEBUG
   1613 	atw_rf3000_print(sc);
   1614 #endif /* ATW_DEBUG */
   1615 
   1616 out:
   1617 	atw_rfio_enable(sc, 0);
   1618 
   1619 	return rc;
   1620 }
   1621 
   1622 /* Write a register on the RF3000 baseband processor using the
   1623  * registers provided by the ADM8211 for this purpose.
   1624  *
   1625  * Return 0 on success.
   1626  */
   1627 static int
   1628 atw_rf3000_write(sc, addr, val)
   1629 	struct atw_softc *sc;
   1630 	u_int addr, val;
   1631 {
   1632 	u_int32_t reg;
   1633 	int i;
   1634 
   1635 	for (i = 1000; --i >= 0; ) {
   1636 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1637 			break;
   1638 		DELAY(100);
   1639 	}
   1640 
   1641 	if (i < 0) {
   1642 		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
   1643 		return ETIMEDOUT;
   1644 	}
   1645 
   1646 	reg = sc->sc_bbpctl_wr |
   1647 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
   1648 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1649 
   1650 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1651 
   1652 	for (i = 1000; --i >= 0; ) {
   1653 		DELAY(100);
   1654 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
   1655 			break;
   1656 	}
   1657 
   1658 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
   1659 
   1660 	if (i < 0) {
   1661 		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
   1662 		return ETIMEDOUT;
   1663 	}
   1664 	return 0;
   1665 }
   1666 
   1667 /* Read a register on the RF3000 baseband processor using the registers
   1668  * the ADM8211 provides for this purpose.
   1669  *
   1670  * The 7-bit register address is addr.  Record the 8-bit data in the register
   1671  * in *val.
   1672  *
   1673  * Return 0 on success.
   1674  *
   1675  * XXX This does not seem to work. The ADM8211 must require more or
   1676  * different magic to read the chip than to write it. Possibly some
   1677  * of the magic I have derived from a binary-only driver concerns
   1678  * the "chip address" (see the RF3000 manual).
   1679  */
   1680 #ifdef ATW_DEBUG
   1681 static int
   1682 atw_rf3000_read(sc, addr, val)
   1683 	struct atw_softc *sc;
   1684 	u_int addr, *val;
   1685 {
   1686 	u_int32_t reg;
   1687 	int i;
   1688 
   1689 	for (i = 1000; --i >= 0; ) {
   1690 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1691 			break;
   1692 		DELAY(100);
   1693 	}
   1694 
   1695 	if (i < 0) {
   1696 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
   1697 		    sc->sc_dev.dv_xname);
   1698 		return ETIMEDOUT;
   1699 	}
   1700 
   1701 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1702 
   1703 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1704 
   1705 	for (i = 1000; --i >= 0; ) {
   1706 		DELAY(100);
   1707 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
   1708 			break;
   1709 	}
   1710 
   1711 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
   1712 
   1713 	if (i < 0) {
   1714 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
   1715 		    sc->sc_dev.dv_xname, reg);
   1716 		return ETIMEDOUT;
   1717 	}
   1718 	if (val != NULL)
   1719 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
   1720 	return 0;
   1721 }
   1722 #endif /* ATW_DEBUG */
   1723 
   1724 /* Write a register on the Si4126 RF/IF synthesizer using the registers
   1725  * provided by the ADM8211 for that purpose.
   1726  *
   1727  * val is 18 bits of data, and val is the 4-bit address of the register.
   1728  *
   1729  * Return 0 on success.
   1730  */
   1731 static int
   1732 atw_si4126_write(sc, addr, val)
   1733 	struct atw_softc *sc;
   1734 	u_int addr, val;
   1735 {
   1736 	u_int32_t reg;
   1737 	int i;
   1738 
   1739 	for (i = 1000; --i >= 0; ) {
   1740 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1741 			break;
   1742 		DELAY(100);
   1743 	}
   1744 
   1745 	if (i < 0) {
   1746 		printf("%s: start atw_si4126_write, SYNCTL busy\n",
   1747 		    sc->sc_dev.dv_xname);
   1748 		return ETIMEDOUT;
   1749 	}
   1750 
   1751 	reg = sc->sc_synctl_wr |
   1752 	    LSHIFT(((val & 0x3ffff) << 4) | (addr & 0xf), ATW_SYNCTL_DATA_MASK);
   1753 
   1754 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1755 
   1756 	for (i = 1000; --i >= 0; ) {
   1757 		DELAY(100);
   1758 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
   1759 			break;
   1760 	}
   1761 
   1762 	/* restore to acceptable starting condition */
   1763 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
   1764 
   1765 	if (i < 0) {
   1766 		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
   1767 		    sc->sc_dev.dv_xname, reg);
   1768 		return ETIMEDOUT;
   1769 	}
   1770 	return 0;
   1771 }
   1772 
   1773 /* Read 18-bit data from the 4-bit address addr in Si4126
   1774  * RF synthesizer and write the data to *val. Return 0 on success.
   1775  *
   1776  * XXX This does not seem to work. The ADM8211 must require more or
   1777  * different magic to read the chip than to write it.
   1778  */
   1779 #ifdef ATW_DEBUG
   1780 static int
   1781 atw_si4126_read(sc, addr, val)
   1782 	struct atw_softc *sc;
   1783 	u_int addr;
   1784 	u_int *val;
   1785 {
   1786 	u_int32_t reg;
   1787 	int i;
   1788 
   1789 	for (i = 1000; --i >= 0; ) {
   1790 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1791 			break;
   1792 		DELAY(100);
   1793 	}
   1794 
   1795 	if (i < 0) {
   1796 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
   1797 		    sc->sc_dev.dv_xname);
   1798 		return ETIMEDOUT;
   1799 	}
   1800 
   1801 	reg = sc->sc_synctl_rd | LSHIFT(addr & 0xf, ATW_SYNCTL_DATA_MASK);
   1802 
   1803 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1804 
   1805 	for (i = 1000; --i >= 0; ) {
   1806 		DELAY(100);
   1807 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
   1808 			break;
   1809 	}
   1810 
   1811 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
   1812 
   1813 	if (i < 0) {
   1814 		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
   1815 		    sc->sc_dev.dv_xname, reg);
   1816 		return ETIMEDOUT;
   1817 	}
   1818 	if (val != NULL)
   1819 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
   1820 		                       ATW_SYNCTL_DATA_MASK);
   1821 	return 0;
   1822 }
   1823 #endif /* ATW_DEBUG */
   1824 
   1825 /* XXX is the endianness correct? test. */
   1826 #define	atw_calchash(addr) \
   1827 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
   1828 
   1829 /*
   1830  * atw_filter_setup:
   1831  *
   1832  *	Set the ADM8211's receive filter.
   1833  */
   1834 static void
   1835 atw_filter_setup(sc)
   1836 	struct atw_softc *sc;
   1837 {
   1838 	struct ieee80211com *ic = &sc->sc_ic;
   1839 	struct ethercom *ec = &ic->ic_ec;
   1840 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1841 	int hash;
   1842 	u_int32_t hashes[2] = { 0, 0 };
   1843 	struct ether_multi *enm;
   1844 	struct ether_multistep step;
   1845 
   1846 	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
   1847 	    sc->sc_dev.dv_xname, sc->sc_flags));
   1848 
   1849 	/*
   1850 	 * If we're running, idle the receive engine.  If we're NOT running,
   1851 	 * we're being called from atw_init(), and our writing ATW_NAR will
   1852 	 * start the transmit and receive processes in motion.
   1853 	 */
   1854 	if (ifp->if_flags & IFF_RUNNING)
   1855 		atw_idle(sc, ATW_NAR_SR);
   1856 
   1857 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
   1858 
   1859 	ifp->if_flags &= ~IFF_ALLMULTI;
   1860 
   1861 	if (ifp->if_flags & IFF_PROMISC) {
   1862 		sc->sc_opmode |= ATW_NAR_PR;
   1863 allmulti:
   1864 		ifp->if_flags |= IFF_ALLMULTI;
   1865 		goto setit;
   1866 	}
   1867 
   1868 	/*
   1869 	 * Program the 64-bit multicast hash filter.
   1870 	 */
   1871 	ETHER_FIRST_MULTI(step, ec, enm);
   1872 	while (enm != NULL) {
   1873 		/* XXX */
   1874 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1875 		    ETHER_ADDR_LEN) != 0)
   1876 			goto allmulti;
   1877 
   1878 		hash = atw_calchash(enm->enm_addrlo);
   1879 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1880 		ETHER_NEXT_MULTI(step, enm);
   1881 	}
   1882 
   1883 	if (ifp->if_flags & IFF_BROADCAST) {
   1884 		hash = atw_calchash(etherbroadcastaddr);
   1885 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1886 	}
   1887 
   1888 	/* all bits set => hash is useless */
   1889 	if (~(hashes[0] & hashes[1]) == 0)
   1890 		goto allmulti;
   1891 
   1892  setit:
   1893 	if (ifp->if_flags & IFF_ALLMULTI)
   1894 		sc->sc_opmode |= ATW_NAR_MM;
   1895 
   1896 	/* XXX in scan mode, do not filter packets. maybe this is
   1897 	 * unnecessary.
   1898 	 */
   1899 	if (ic->ic_state == IEEE80211_S_SCAN)
   1900 		sc->sc_opmode |= ATW_NAR_PR;
   1901 
   1902 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
   1903 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
   1904 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1905 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
   1906 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
   1907 
   1908 	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
   1909 }
   1910 
   1911 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
   1912  * a beacon's BSSID and SSID against the preferred BSSID and SSID
   1913  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
   1914  * no beacon with the preferred BSSID and SSID in the number of
   1915  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
   1916  */
   1917 static void
   1918 atw_write_bssid(sc)
   1919 	struct atw_softc *sc;
   1920 {
   1921 	struct ieee80211com *ic = &sc->sc_ic;
   1922 	u_int8_t *bssid;
   1923 
   1924 	bssid = ic->ic_bss->ni_bssid;
   1925 
   1926 	ATW_WRITE(sc, ATW_ABDA1,
   1927 	    (ATW_READ(sc, ATW_ABDA1) &
   1928 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
   1929 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
   1930 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
   1931 
   1932 	ATW_WRITE(sc, ATW_BSSID0,
   1933 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
   1934 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
   1935 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
   1936 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
   1937 
   1938 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
   1939 	    ether_sprintf(sc->sc_bssid)));
   1940 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
   1941 
   1942 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
   1943 }
   1944 
   1945 /* Tell the ADM8211 how many beacon intervals must pass without
   1946  * receiving a beacon with the preferred BSSID & SSID set by
   1947  * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
   1948  * raised.
   1949  */
   1950 static void
   1951 atw_write_bcn_thresh(sc)
   1952 	struct atw_softc *sc;
   1953 {
   1954 	struct ieee80211com *ic = &sc->sc_ic;
   1955 	int lost_bcn_thresh;
   1956 
   1957 	/* Lose link after one second or 7 beacons, whichever comes
   1958 	 * first, but do not lose link before 2 beacons are lost.
   1959 	 *
   1960 	 * In host AP mode, set the lost-beacon threshold to 0.
   1961 	 */
   1962 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1963 		lost_bcn_thresh = 0;
   1964 	else {
   1965 		int beacons_per_second =
   1966 		    1000000 / (IEEE80211_DUR_TU * MAX(1,ic->ic_bss->ni_intval));
   1967 		lost_bcn_thresh = MAX(2, MIN(7, beacons_per_second));
   1968 	}
   1969 
   1970 	/* XXX resets wake-up status bits */
   1971 	ATW_WRITE(sc, ATW_WCSR,
   1972 	    (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
   1973 	    (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
   1974 
   1975 	DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
   1976 	    sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
   1977 
   1978 	sc->sc_lost_bcn_thresh = lost_bcn_thresh;
   1979 
   1980 	DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
   1981 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
   1982 }
   1983 
   1984 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
   1985  * 16-bit word.
   1986  */
   1987 static void
   1988 atw_write_sram(sc, ofs, buf, buflen)
   1989 	struct atw_softc *sc;
   1990 	u_int ofs;
   1991 	u_int8_t *buf;
   1992 	u_int buflen;
   1993 {
   1994 	u_int i;
   1995 	u_int8_t *ptr;
   1996 
   1997 	memcpy(&sc->sc_sram[ofs], buf, buflen);
   1998 
   1999 	if (ofs % 2 != 0) {
   2000 		ofs--;
   2001 		buflen++;
   2002 	}
   2003 
   2004 	if (buflen % 2 != 0)
   2005 		buflen++;
   2006 
   2007 	assert(buflen + ofs <= ATW_SRAM_SIZE);
   2008 
   2009 	ptr = &sc->sc_sram[ofs];
   2010 
   2011 	for (i = 0; i < buflen; i += 2) {
   2012 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
   2013 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
   2014 		DELAY(atw_writewep_delay);
   2015 
   2016 		ATW_WRITE(sc, ATW_WESK,
   2017 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
   2018 		DELAY(atw_writewep_delay);
   2019 	}
   2020 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
   2021 
   2022 	if (sc->sc_if.if_flags & IFF_DEBUG) {
   2023 		int n_octets = 0;
   2024 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
   2025 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
   2026 		for (i = 0; i < buflen; i++) {
   2027 			printf(" %02x", ptr[i]);
   2028 			if (++n_octets % 24 == 0)
   2029 				printf("\n");
   2030 		}
   2031 		if (n_octets % 24 != 0)
   2032 			printf("\n");
   2033 	}
   2034 }
   2035 
   2036 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
   2037 static void
   2038 atw_write_wep(sc)
   2039 	struct atw_softc *sc;
   2040 {
   2041 	struct ieee80211com *ic = &sc->sc_ic;
   2042 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
   2043 	u_int8_t buf[IEEE80211_WEP_NKID]
   2044 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
   2045 	u_int32_t reg;
   2046 	int i;
   2047 
   2048 	sc->sc_wepctl = 0;
   2049 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
   2050 
   2051 	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
   2052 		return;
   2053 
   2054 	memset(&buf[0][0], 0, sizeof(buf));
   2055 
   2056 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   2057 		if (ic->ic_nw_keys[i].wk_len > 5) {
   2058 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
   2059 		} else if (ic->ic_nw_keys[i].wk_len != 0) {
   2060 			buf[i][1] = ATW_WEP_ENABLED;
   2061 		} else {
   2062 			buf[i][1] = 0;
   2063 			continue;
   2064 		}
   2065 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
   2066 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
   2067 		    ic->ic_nw_keys[i].wk_len - 1);
   2068 	}
   2069 
   2070 	reg = ATW_READ(sc, ATW_MACTEST);
   2071 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
   2072 	reg &= ~ATW_MACTEST_KEYID_MASK;
   2073 	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
   2074 	ATW_WRITE(sc, ATW_MACTEST, reg);
   2075 
   2076 	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
   2077 	 * throughout.)
   2078 	 */
   2079 	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
   2080 	if (sc->sc_if.if_flags & IFF_LINK2)
   2081 		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
   2082 
   2083 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
   2084 	    sizeof(buf));
   2085 }
   2086 
   2087 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
   2088 
   2089 static void
   2090 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2091     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2092 {
   2093 	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
   2094 
   2095 	switch (subtype) {
   2096 	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
   2097 		/* do nothing: hardware answers probe request */
   2098 		break;
   2099 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2100 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2101 		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
   2102 		break;
   2103 	default:
   2104 		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
   2105 		break;
   2106 	}
   2107 	return;
   2108 }
   2109 
   2110 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
   2111  * of IBSSs with like SSID/channel but different BSSID. It joins the
   2112  * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
   2113  * convention. Possibly the ADMtek chip does this for us; I will have
   2114  * to test to find out.
   2115  *
   2116  * XXX we should add the duration field of the received beacon to
   2117  * the TSF time it contains before comparing it with the ADM8211's
   2118  * TSF.
   2119  */
   2120 static void
   2121 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
   2122     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2123 {
   2124 	struct atw_softc *sc;
   2125 	struct ieee80211_frame *wh;
   2126 	u_int64_t tsft, bcn_tsft;
   2127 	u_int32_t tsftl, tsfth;
   2128 	int do_print = 0;
   2129 
   2130 	sc = (struct atw_softc*)ic->ic_if.if_softc;
   2131 
   2132 	if (ic->ic_if.if_flags & IFF_DEBUG)
   2133 		do_print = (ic->ic_if.if_flags & IFF_LINK0)
   2134 		    ? 1 : ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval);
   2135 
   2136 	wh = mtod(m0, struct ieee80211_frame *);
   2137 
   2138 	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
   2139 
   2140 	if (ic->ic_state != IEEE80211_S_RUN) {
   2141 		if (do_print)
   2142 			printf("%s: atw_recv_beacon: not running\n",
   2143 			    sc->sc_dev.dv_xname);
   2144 		return;
   2145 	}
   2146 
   2147 	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
   2148 	    ic->ic_bss->ni_chan)) == NULL) {
   2149 		if (do_print)
   2150 			printf("%s: atw_recv_beacon: no node %s\n",
   2151 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2152 		return;
   2153 	}
   2154 
   2155 	if (ieee80211_match_bss(ic, ni) != 0) {
   2156 		if (do_print)
   2157 			printf("%s: atw_recv_beacon: ssid mismatch %s\n",
   2158 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2159 		return;
   2160 	}
   2161 
   2162 	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
   2163 		return;
   2164 
   2165 	if (do_print)
   2166 		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
   2167 		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
   2168 
   2169 	if (ic->ic_opmode != IEEE80211_M_IBSS)
   2170 		return;
   2171 
   2172 	/* If we read TSFTL right before rollover, we read a TSF timer
   2173 	 * that is too high rather than too low. This prevents a spurious
   2174 	 * synchronization down the line, however, our IBSS could suffer
   2175 	 * from a creeping TSF....
   2176 	 */
   2177 	tsftl = ATW_READ(sc, ATW_TSFTL);
   2178 	tsfth = ATW_READ(sc, ATW_TSFTH);
   2179 
   2180 	tsft = (u_int64_t)tsfth << 32 | tsftl;
   2181 	bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
   2182 
   2183 	if (do_print)
   2184 		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
   2185 		    sc->sc_dev.dv_xname, tsft, bcn_tsft);
   2186 
   2187 	/* we are faster, let the other guy catch up */
   2188 	if (bcn_tsft < tsft)
   2189 		return;
   2190 
   2191 	if (do_print)
   2192 		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
   2193 		    ether_sprintf(wh->i_addr2));
   2194 
   2195 	ic->ic_flags &= ~IEEE80211_F_SIBSS;
   2196 
   2197 #if 0
   2198 	atw_tsf(sc);
   2199 #endif
   2200 
   2201 	/* negotiate rates with new IBSS */
   2202 	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
   2203 	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
   2204 	if (ni->ni_rates.rs_nrates == 0) {
   2205 		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
   2206 			ether_sprintf(ni->ni_bssid));
   2207 		return;
   2208 	}
   2209 
   2210 	if (do_print) {
   2211 		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
   2212 		    ether_sprintf(ic->ic_bss->ni_bssid));
   2213 		printf("%s ", ether_sprintf(ni->ni_bssid));
   2214 		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
   2215 	}
   2216 
   2217 	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
   2218 
   2219 	atw_write_bssid(sc);
   2220 	atw_write_bcn_thresh(sc);
   2221 	atw_start_beacon(sc, 1);
   2222 }
   2223 
   2224 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
   2225  * In ad hoc mode, the SSID is written to the beacons sent by the
   2226  * ADM8211. In both ad hoc and infrastructure mode, beacons received
   2227  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
   2228  * indications.
   2229  */
   2230 static void
   2231 atw_write_ssid(sc)
   2232 	struct atw_softc *sc;
   2233 {
   2234 	struct ieee80211com *ic = &sc->sc_ic;
   2235 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID */
   2236 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
   2237 
   2238 	memset(buf, 0, sizeof(buf));
   2239 	buf[0] = ic->ic_bss->ni_esslen;
   2240 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
   2241 
   2242 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
   2243 }
   2244 
   2245 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
   2246  * In ad hoc mode, the supported rates are written to beacons sent by the
   2247  * ADM8211.
   2248  */
   2249 static void
   2250 atw_write_sup_rates(sc)
   2251 	struct atw_softc *sc;
   2252 {
   2253 	struct ieee80211com *ic = &sc->sc_ic;
   2254 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
   2255 	 * supported rates
   2256 	 */
   2257 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
   2258 
   2259 	memset(buf, 0, sizeof(buf));
   2260 
   2261 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
   2262 
   2263 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
   2264 	    ic->ic_bss->ni_rates.rs_nrates);
   2265 
   2266 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
   2267 }
   2268 
   2269 /* Start/stop sending beacons. */
   2270 void
   2271 atw_start_beacon(struct atw_softc *sc, int start)
   2272 {
   2273 	struct ieee80211com *ic = &sc->sc_ic;
   2274 	u_int32_t len, capinfo, reg_bcnt, reg_cap1;
   2275 
   2276 	if (ATW_IS_ENABLED(sc) == 0)
   2277 		return;
   2278 
   2279 	len = capinfo = 0;
   2280 
   2281 	/* start beacons */
   2282 	len = sizeof(struct ieee80211_frame) +
   2283 	    8 /* timestamp */ + 2 /* beacon interval */ +
   2284 	    2 /* capability info */ +
   2285 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
   2286 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
   2287 	    3 /* DS parameters */ +
   2288 	    IEEE80211_CRC_LEN;
   2289 
   2290 	reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
   2291 
   2292 	reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
   2293 
   2294 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2295 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2296 
   2297 	if (!start)
   2298 		return;
   2299 
   2300 	/* TBD use ni_capinfo */
   2301 
   2302 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
   2303 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   2304 	if (ic->ic_flags & IEEE80211_F_WEPON)
   2305 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   2306 
   2307 	switch (ic->ic_opmode) {
   2308 	case IEEE80211_M_IBSS:
   2309 		len += 4; /* IBSS parameters */
   2310 		capinfo |= IEEE80211_CAPINFO_IBSS;
   2311 		break;
   2312 	case IEEE80211_M_HOSTAP:
   2313 		/* XXX 6-byte minimum TIM */
   2314 		len += atw_beacon_len_adjust;
   2315 		capinfo |= IEEE80211_CAPINFO_ESS;
   2316 		break;
   2317 	default:
   2318 		return;
   2319 	}
   2320 
   2321 	reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
   2322 	reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
   2323 
   2324 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2325 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2326 
   2327 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
   2328 	    sc->sc_dev.dv_xname, reg_bcnt));
   2329 
   2330 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
   2331 	    sc->sc_dev.dv_xname, reg_cap1));
   2332 }
   2333 
   2334 /* First beacon was sent at time 0 microseconds, current time is
   2335  * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
   2336  * microseconds.  Return the expected time in microseconds for the
   2337  * beacon after next.
   2338  */
   2339 static __inline u_int64_t
   2340 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
   2341 {
   2342 	return tsft + (tbtt - tsft % tbtt);
   2343 }
   2344 
   2345 /* If we've created an IBSS, write the TSF time in the ADM8211 to
   2346  * the ieee80211com.
   2347  *
   2348  * Predict the next target beacon transmission time (TBTT) and
   2349  * write it to the ADM8211.
   2350  */
   2351 static void
   2352 atw_tsf(struct atw_softc *sc)
   2353 {
   2354 #define TBTTOFS 20 /* TU */
   2355 
   2356 	struct ieee80211com *ic = &sc->sc_ic;
   2357 	u_int64_t tsft, tbtt;
   2358 
   2359 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
   2360 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
   2361 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
   2362 		tsft = ATW_READ(sc, ATW_TSFTH);
   2363 		tsft <<= 32;
   2364 		tsft |= ATW_READ(sc, ATW_TSFTL);
   2365 		*(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
   2366 	} else
   2367 		tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
   2368 
   2369 	tbtt = atw_predict_beacon(tsft,
   2370 	    ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
   2371 
   2372 	/* skip one more beacon so that the TBTT cannot pass before
   2373 	 * we've programmed it, and also so that we can subtract a
   2374 	 * few TU so that we wake a little before TBTT.
   2375 	 */
   2376 	tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
   2377 
   2378 	/* wake up a little early */
   2379 	tbtt -= TBTTOFS * IEEE80211_DUR_TU;
   2380 
   2381 	DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
   2382 	    sc->sc_dev.dv_xname, tsft, tbtt));
   2383 
   2384 	ATW_WRITE(sc, ATW_TOFS1,
   2385 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
   2386 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
   2387 	    LSHIFT(
   2388 		MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
   2389 		ATW_TOFS1_TBTTPRE_MASK));
   2390 #undef TBTTOFS
   2391 }
   2392 
   2393 static void
   2394 atw_next_scan(void *arg)
   2395 {
   2396 	struct atw_softc *sc = arg;
   2397 	struct ieee80211com *ic = &sc->sc_ic;
   2398 	struct ifnet *ifp = &ic->ic_if;
   2399 	int s;
   2400 
   2401 	/* don't call atw_start w/o network interrupts blocked */
   2402 	s = splnet();
   2403 	if (ic->ic_state == IEEE80211_S_SCAN)
   2404 		ieee80211_next_scan(ifp);
   2405 	splx(s);
   2406 }
   2407 
   2408 /* Synchronize the hardware state with the software state. */
   2409 static int
   2410 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   2411 {
   2412 	struct ifnet *ifp = &ic->ic_if;
   2413 	struct atw_softc *sc = ifp->if_softc;
   2414 	enum ieee80211_state ostate;
   2415 	int error;
   2416 
   2417 	ostate = ic->ic_state;
   2418 
   2419 	if (nstate == IEEE80211_S_INIT) {
   2420 		callout_stop(&sc->sc_scan_ch);
   2421 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
   2422 		atw_start_beacon(sc, 0);
   2423 		return (*sc->sc_newstate)(ic, nstate, arg);
   2424 	}
   2425 
   2426 	if ((error = atw_tune(sc)) != 0)
   2427 		return error;
   2428 
   2429 	switch (nstate) {
   2430 	case IEEE80211_S_ASSOC:
   2431 		break;
   2432 	case IEEE80211_S_INIT:
   2433 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
   2434 		break;
   2435 	case IEEE80211_S_SCAN:
   2436 		memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
   2437 		atw_write_bssid(sc);
   2438 
   2439 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
   2440 		    atw_next_scan, sc);
   2441 
   2442 		break;
   2443 	case IEEE80211_S_RUN:
   2444 		if (ic->ic_opmode == IEEE80211_M_STA)
   2445 			break;
   2446 		/*FALLTHROUGH*/
   2447 	case IEEE80211_S_AUTH:
   2448 		atw_write_bssid(sc);
   2449 		atw_write_bcn_thresh(sc);
   2450 		atw_write_ssid(sc);
   2451 		atw_write_sup_rates(sc);
   2452 
   2453 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
   2454 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   2455 			break;
   2456 
   2457 		/* set listen interval
   2458 		 * XXX do software units agree w/ hardware?
   2459 		 */
   2460 		ATW_WRITE(sc, ATW_BPLI,
   2461 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2462 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
   2463 			   ATW_BPLI_LI_MASK));
   2464 
   2465 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
   2466 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
   2467 
   2468 		atw_tsf(sc);
   2469 		break;
   2470 	}
   2471 
   2472 	if (nstate != IEEE80211_S_SCAN)
   2473 		callout_stop(&sc->sc_scan_ch);
   2474 
   2475 	if (nstate == IEEE80211_S_RUN &&
   2476 	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   2477 	     ic->ic_opmode == IEEE80211_M_IBSS))
   2478 		atw_start_beacon(sc, 1);
   2479 	else
   2480 		atw_start_beacon(sc, 0);
   2481 
   2482 	return (*sc->sc_newstate)(ic, nstate, arg);
   2483 }
   2484 
   2485 /*
   2486  * atw_add_rxbuf:
   2487  *
   2488  *	Add a receive buffer to the indicated descriptor.
   2489  */
   2490 int
   2491 atw_add_rxbuf(sc, idx)
   2492 	struct atw_softc *sc;
   2493 	int idx;
   2494 {
   2495 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2496 	struct mbuf *m;
   2497 	int error;
   2498 
   2499 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2500 	if (m == NULL)
   2501 		return (ENOBUFS);
   2502 
   2503 	MCLGET(m, M_DONTWAIT);
   2504 	if ((m->m_flags & M_EXT) == 0) {
   2505 		m_freem(m);
   2506 		return (ENOBUFS);
   2507 	}
   2508 
   2509 	if (rxs->rxs_mbuf != NULL)
   2510 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2511 
   2512 	rxs->rxs_mbuf = m;
   2513 
   2514 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2515 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2516 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2517 	if (error) {
   2518 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2519 		    sc->sc_dev.dv_xname, idx, error);
   2520 		panic("atw_add_rxbuf");	/* XXX */
   2521 	}
   2522 
   2523 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2524 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2525 
   2526 	ATW_INIT_RXDESC(sc, idx);
   2527 
   2528 	return (0);
   2529 }
   2530 
   2531 /*
   2532  * atw_stop:		[ ifnet interface function ]
   2533  *
   2534  *	Stop transmission on the interface.
   2535  */
   2536 void
   2537 atw_stop(ifp, disable)
   2538 	struct ifnet *ifp;
   2539 	int disable;
   2540 {
   2541 	struct atw_softc *sc = ifp->if_softc;
   2542 	struct ieee80211com *ic = &sc->sc_ic;
   2543 	struct atw_txsoft *txs;
   2544 
   2545 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   2546 
   2547 	/* Disable interrupts. */
   2548 	ATW_WRITE(sc, ATW_IER, 0);
   2549 
   2550 	/* Stop the transmit and receive processes. */
   2551 	sc->sc_opmode = 0;
   2552 	ATW_WRITE(sc, ATW_NAR, 0);
   2553 	ATW_WRITE(sc, ATW_TDBD, 0);
   2554 	ATW_WRITE(sc, ATW_TDBP, 0);
   2555 	ATW_WRITE(sc, ATW_RDB, 0);
   2556 
   2557 	/*
   2558 	 * Release any queued transmit buffers.
   2559 	 */
   2560 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2561 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2562 		if (txs->txs_mbuf != NULL) {
   2563 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2564 			m_freem(txs->txs_mbuf);
   2565 			txs->txs_mbuf = NULL;
   2566 		}
   2567 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2568 	}
   2569 
   2570 	if (disable) {
   2571 		atw_rxdrain(sc);
   2572 		atw_disable(sc);
   2573 	}
   2574 
   2575 	/*
   2576 	 * Mark the interface down and cancel the watchdog timer.
   2577 	 */
   2578 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2579 	ifp->if_timer = 0;
   2580 
   2581 	/* XXX */
   2582 	atw_reset(sc);
   2583 }
   2584 
   2585 /*
   2586  * atw_rxdrain:
   2587  *
   2588  *	Drain the receive queue.
   2589  */
   2590 void
   2591 atw_rxdrain(sc)
   2592 	struct atw_softc *sc;
   2593 {
   2594 	struct atw_rxsoft *rxs;
   2595 	int i;
   2596 
   2597 	for (i = 0; i < ATW_NRXDESC; i++) {
   2598 		rxs = &sc->sc_rxsoft[i];
   2599 		if (rxs->rxs_mbuf == NULL)
   2600 			continue;
   2601 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2602 		m_freem(rxs->rxs_mbuf);
   2603 		rxs->rxs_mbuf = NULL;
   2604 	}
   2605 }
   2606 
   2607 /*
   2608  * atw_detach:
   2609  *
   2610  *	Detach an ADM8211 interface.
   2611  */
   2612 int
   2613 atw_detach(sc)
   2614 	struct atw_softc *sc;
   2615 {
   2616 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2617 	struct atw_rxsoft *rxs;
   2618 	struct atw_txsoft *txs;
   2619 	int i;
   2620 
   2621 	/*
   2622 	 * Succeed now if there isn't any work to do.
   2623 	 */
   2624 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
   2625 		return (0);
   2626 
   2627 	ieee80211_ifdetach(ifp);
   2628 	if_detach(ifp);
   2629 
   2630 	for (i = 0; i < ATW_NRXDESC; i++) {
   2631 		rxs = &sc->sc_rxsoft[i];
   2632 		if (rxs->rxs_mbuf != NULL) {
   2633 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2634 			m_freem(rxs->rxs_mbuf);
   2635 			rxs->rxs_mbuf = NULL;
   2636 		}
   2637 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
   2638 	}
   2639 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   2640 		txs = &sc->sc_txsoft[i];
   2641 		if (txs->txs_mbuf != NULL) {
   2642 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2643 			m_freem(txs->txs_mbuf);
   2644 			txs->txs_mbuf = NULL;
   2645 		}
   2646 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
   2647 	}
   2648 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2649 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2650 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2651 	    sizeof(struct atw_control_data));
   2652 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2653 
   2654 	shutdownhook_disestablish(sc->sc_sdhook);
   2655 	powerhook_disestablish(sc->sc_powerhook);
   2656 
   2657 	if (sc->sc_srom)
   2658 		free(sc->sc_srom, M_DEVBUF);
   2659 
   2660 	return (0);
   2661 }
   2662 
   2663 /* atw_shutdown: make sure the interface is stopped at reboot time. */
   2664 void
   2665 atw_shutdown(arg)
   2666 	void *arg;
   2667 {
   2668 	struct atw_softc *sc = arg;
   2669 
   2670 	atw_stop(&sc->sc_ic.ic_if, 1);
   2671 }
   2672 
   2673 int
   2674 atw_intr(arg)
   2675 	void *arg;
   2676 {
   2677 	struct atw_softc *sc = arg;
   2678 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2679 	u_int32_t status, rxstatus, txstatus, linkstatus;
   2680 	int handled = 0, txthresh;
   2681 
   2682 #ifdef DEBUG
   2683 	if (ATW_IS_ENABLED(sc) == 0)
   2684 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
   2685 #endif
   2686 
   2687 	/*
   2688 	 * If the interface isn't running, the interrupt couldn't
   2689 	 * possibly have come from us.
   2690 	 */
   2691 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   2692 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   2693 		return (0);
   2694 
   2695 	for (;;) {
   2696 		status = ATW_READ(sc, ATW_STSR);
   2697 
   2698 		if (status)
   2699 			ATW_WRITE(sc, ATW_STSR, status);
   2700 
   2701 		if (sc->sc_intr_ack != NULL)
   2702 			(*sc->sc_intr_ack)(sc);
   2703 
   2704 #ifdef ATW_DEBUG
   2705 #define PRINTINTR(flag) do { \
   2706 	if ((status & flag) != 0) { \
   2707 		printf("%s" #flag, delim); \
   2708 		delim = ","; \
   2709 	} \
   2710 } while (0)
   2711 
   2712 		if (atw_debug > 1 && status) {
   2713 			const char *delim = "<";
   2714 
   2715 			printf("%s: reg[STSR] = %x",
   2716 			    sc->sc_dev.dv_xname, status);
   2717 
   2718 			PRINTINTR(ATW_INTR_FBE);
   2719 			PRINTINTR(ATW_INTR_LINKOFF);
   2720 			PRINTINTR(ATW_INTR_LINKON);
   2721 			PRINTINTR(ATW_INTR_RCI);
   2722 			PRINTINTR(ATW_INTR_RDU);
   2723 			PRINTINTR(ATW_INTR_REIS);
   2724 			PRINTINTR(ATW_INTR_RPS);
   2725 			PRINTINTR(ATW_INTR_TCI);
   2726 			PRINTINTR(ATW_INTR_TDU);
   2727 			PRINTINTR(ATW_INTR_TLT);
   2728 			PRINTINTR(ATW_INTR_TPS);
   2729 			PRINTINTR(ATW_INTR_TRT);
   2730 			PRINTINTR(ATW_INTR_TUF);
   2731 			PRINTINTR(ATW_INTR_BCNTC);
   2732 			PRINTINTR(ATW_INTR_ATIME);
   2733 			PRINTINTR(ATW_INTR_TBTT);
   2734 			PRINTINTR(ATW_INTR_TSCZ);
   2735 			PRINTINTR(ATW_INTR_TSFTF);
   2736 			printf(">\n");
   2737 		}
   2738 #undef PRINTINTR
   2739 #endif /* ATW_DEBUG */
   2740 
   2741 		if ((status & sc->sc_inten) == 0)
   2742 			break;
   2743 
   2744 		handled = 1;
   2745 
   2746 		rxstatus = status & sc->sc_rxint_mask;
   2747 		txstatus = status & sc->sc_txint_mask;
   2748 		linkstatus = status & sc->sc_linkint_mask;
   2749 
   2750 		if (linkstatus) {
   2751 			atw_linkintr(sc, linkstatus);
   2752 		}
   2753 
   2754 		if (rxstatus) {
   2755 			/* Grab any new packets. */
   2756 			atw_rxintr(sc);
   2757 
   2758 			if (rxstatus & ATW_INTR_RDU) {
   2759 				printf("%s: receive ring overrun\n",
   2760 				    sc->sc_dev.dv_xname);
   2761 				/* Get the receive process going again. */
   2762 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2763 				break;
   2764 			}
   2765 		}
   2766 
   2767 		if (txstatus) {
   2768 			/* Sweep up transmit descriptors. */
   2769 			atw_txintr(sc);
   2770 
   2771 			if (txstatus & ATW_INTR_TLT)
   2772 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
   2773 				    sc->sc_dev.dv_xname));
   2774 
   2775 			if (txstatus & ATW_INTR_TRT)
   2776 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
   2777 				    sc->sc_dev.dv_xname));
   2778 
   2779 			/* If Tx under-run, increase our transmit threshold
   2780 			 * if another is available.
   2781 			 */
   2782 			txthresh = sc->sc_txthresh + 1;
   2783 			if ((txstatus & ATW_INTR_TUF) &&
   2784 			    sc->sc_txth[txthresh].txth_name != NULL) {
   2785 				/* Idle the transmit process. */
   2786 				atw_idle(sc, ATW_NAR_ST);
   2787 
   2788 				sc->sc_txthresh = txthresh;
   2789 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
   2790 				sc->sc_opmode |=
   2791 				    sc->sc_txth[txthresh].txth_opmode;
   2792 				printf("%s: transmit underrun; new "
   2793 				    "threshold: %s\n", sc->sc_dev.dv_xname,
   2794 				    sc->sc_txth[txthresh].txth_name);
   2795 
   2796 				/* Set the new threshold and restart
   2797 				 * the transmit process.
   2798 				 */
   2799 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2800 				/* XXX Log every Nth underrun from
   2801 				 * XXX now on?
   2802 				 */
   2803 			}
   2804 		}
   2805 
   2806 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
   2807 			if (status & ATW_INTR_TPS)
   2808 				printf("%s: transmit process stopped\n",
   2809 				    sc->sc_dev.dv_xname);
   2810 			if (status & ATW_INTR_RPS)
   2811 				printf("%s: receive process stopped\n",
   2812 				    sc->sc_dev.dv_xname);
   2813 			(void)atw_init(ifp);
   2814 			break;
   2815 		}
   2816 
   2817 		if (status & ATW_INTR_FBE) {
   2818 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
   2819 			(void)atw_init(ifp);
   2820 			break;
   2821 		}
   2822 
   2823 		/*
   2824 		 * Not handled:
   2825 		 *
   2826 		 *	Transmit buffer unavailable -- normal
   2827 		 *	condition, nothing to do, really.
   2828 		 *
   2829 		 *	Early receive interrupt -- not available on
   2830 		 *	all chips, we just use RI.  We also only
   2831 		 *	use single-segment receive DMA, so this
   2832 		 *	is mostly useless.
   2833 		 *
   2834 		 *      TBD others
   2835 		 */
   2836 	}
   2837 
   2838 	/* Try to get more packets going. */
   2839 	atw_start(ifp);
   2840 
   2841 	return (handled);
   2842 }
   2843 
   2844 /*
   2845  * atw_idle:
   2846  *
   2847  *	Cause the transmit and/or receive processes to go idle.
   2848  *
   2849  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
   2850  *	process in STSR if I clear SR or ST after the process has already
   2851  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
   2852  *      do not seem to be too reliable. Perhaps I have the sense of the
   2853  *	Rx bits switched with the Tx bits?
   2854  */
   2855 void
   2856 atw_idle(sc, bits)
   2857 	struct atw_softc *sc;
   2858 	u_int32_t bits;
   2859 {
   2860 	u_int32_t ackmask = 0, opmode, stsr, test0;
   2861 	int i, s;
   2862 
   2863 	/* without this, somehow we run concurrently w/ interrupt handler */
   2864 	s = splnet();
   2865 
   2866 	opmode = sc->sc_opmode & ~bits;
   2867 
   2868 	if (bits & ATW_NAR_SR)
   2869 		ackmask |= ATW_INTR_RPS;
   2870 
   2871 	if (bits & ATW_NAR_ST) {
   2872 		ackmask |= ATW_INTR_TPS;
   2873 		/* set ATW_NAR_HF to flush TX FIFO. */
   2874 		opmode |= ATW_NAR_HF;
   2875 	}
   2876 
   2877 	ATW_WRITE(sc, ATW_NAR, opmode);
   2878 
   2879 	for (i = 0; i < 1000; i++) {
   2880 		stsr = ATW_READ(sc, ATW_STSR);
   2881 		if ((stsr & ackmask) == ackmask)
   2882 			break;
   2883 		DELAY(10);
   2884 	}
   2885 
   2886 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
   2887 
   2888 	if ((stsr & ackmask) == ackmask)
   2889 		goto out;
   2890 
   2891 	test0 = ATW_READ(sc, ATW_TEST0);
   2892 
   2893 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
   2894 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
   2895 		printf("%s: transmit process not idle [%s]\n",
   2896 		    sc->sc_dev.dv_xname,
   2897 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
   2898 		printf("%s: bits %08x test0 %08x stsr %08x\n",
   2899 		    sc->sc_dev.dv_xname, bits, test0, stsr);
   2900 	}
   2901 
   2902 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
   2903 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
   2904 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
   2905 		    sc->sc_dev.dv_xname,
   2906 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
   2907 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
   2908 		    sc->sc_dev.dv_xname, bits, test0, stsr));
   2909 	}
   2910 out:
   2911 	splx(s);
   2912 	return;
   2913 }
   2914 
   2915 /*
   2916  * atw_linkintr:
   2917  *
   2918  *	Helper; handle link-status interrupts.
   2919  */
   2920 void
   2921 atw_linkintr(sc, linkstatus)
   2922 	struct atw_softc *sc;
   2923 	u_int32_t linkstatus;
   2924 {
   2925 	struct ieee80211com *ic = &sc->sc_ic;
   2926 
   2927 	if (ic->ic_state != IEEE80211_S_RUN)
   2928 		return;
   2929 
   2930 	if (linkstatus & ATW_INTR_LINKON) {
   2931 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
   2932 		sc->sc_rescan_timer = 0;
   2933 	} else if (linkstatus & ATW_INTR_LINKOFF) {
   2934 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
   2935 		switch (ic->ic_opmode) {
   2936 		case IEEE80211_M_HOSTAP:
   2937 			return;
   2938 		case IEEE80211_M_IBSS:
   2939 			if (ic->ic_flags & IEEE80211_F_SIBSS)
   2940 				return;
   2941 			/*FALLTHROUGH*/
   2942 		case IEEE80211_M_STA:
   2943 			sc->sc_rescan_timer = 3;
   2944 			ic->ic_if.if_timer = 1;
   2945 			break;
   2946 		default:
   2947 			break;
   2948 		}
   2949 	}
   2950 }
   2951 
   2952 /*
   2953  * atw_rxintr:
   2954  *
   2955  *	Helper; handle receive interrupts.
   2956  */
   2957 void
   2958 atw_rxintr(sc)
   2959 	struct atw_softc *sc;
   2960 {
   2961 	static int rate_tbl[] = {2, 4, 11, 22, 44};
   2962 	struct ieee80211com *ic = &sc->sc_ic;
   2963 	struct ieee80211_node *ni;
   2964 	struct ieee80211_frame *wh;
   2965 	struct ifnet *ifp = &ic->ic_if;
   2966 	struct atw_rxsoft *rxs;
   2967 	struct mbuf *m;
   2968 	u_int32_t rxstat;
   2969 	int i, len, rate, rate0;
   2970 	u_int32_t rssi;
   2971 
   2972 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
   2973 		rxs = &sc->sc_rxsoft[i];
   2974 
   2975 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2976 
   2977 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
   2978 		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
   2979 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
   2980 
   2981 		if (rxstat & ATW_RXSTAT_OWN)
   2982 			break; /* We have processed all receive buffers. */
   2983 
   2984 		DPRINTF3(sc,
   2985 		    ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
   2986 		    sc->sc_dev.dv_xname,
   2987 		    sc->sc_rxdescs[i].ar_stat,
   2988 		    sc->sc_rxdescs[i].ar_rssi,
   2989 		    sc->sc_rxdescs[i].ar_buf1,
   2990 		    sc->sc_rxdescs[i].ar_buf2));
   2991 
   2992 		/*
   2993 		 * Make sure the packet fit in one buffer.  This should
   2994 		 * always be the case.
   2995 		 */
   2996 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
   2997 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
   2998 			printf("%s: incoming packet spilled, resetting\n",
   2999 			    sc->sc_dev.dv_xname);
   3000 			(void)atw_init(ifp);
   3001 			return;
   3002 		}
   3003 
   3004 		/*
   3005 		 * If an error occurred, update stats, clear the status
   3006 		 * word, and leave the packet buffer in place.  It will
   3007 		 * simply be reused the next time the ring comes around.
   3008 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
   3009 		 * error.
   3010 		 */
   3011 
   3012 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
   3013 		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
   3014 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
   3015 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
   3016 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
   3017 				ATW_RXSTAT_ICVE)) != 0)) {
   3018 #define	PRINTERR(bit, str)						\
   3019 			if (rxstat & (bit))				\
   3020 				printf("%s: receive error: %s\n",	\
   3021 				    sc->sc_dev.dv_xname, str)
   3022 			ifp->if_ierrors++;
   3023 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
   3024 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
   3025 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
   3026 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
   3027 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
   3028 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
   3029 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
   3030 #undef PRINTERR
   3031 			ATW_INIT_RXDESC(sc, i);
   3032 			continue;
   3033 		}
   3034 
   3035 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3036 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3037 
   3038 		/*
   3039 		 * No errors; receive the packet.  Note the ADM8211
   3040 		 * includes the CRC in promiscuous mode.
   3041 		 */
   3042 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
   3043 
   3044 		/*
   3045 		 * Allocate a new mbuf cluster.  If that fails, we are
   3046 		 * out of memory, and must drop the packet and recycle
   3047 		 * the buffer that's already attached to this descriptor.
   3048 		 */
   3049 		m = rxs->rxs_mbuf;
   3050 		if (atw_add_rxbuf(sc, i) != 0) {
   3051 			ifp->if_ierrors++;
   3052 			ATW_INIT_RXDESC(sc, i);
   3053 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3054 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3055 			continue;
   3056 		}
   3057 
   3058 		ifp->if_ipackets++;
   3059 		if (sc->sc_opmode & ATW_NAR_PR)
   3060 			m->m_flags |= M_HASFCS;
   3061 		m->m_pkthdr.rcvif = ifp;
   3062 		m->m_pkthdr.len = m->m_len = len;
   3063 
   3064 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
   3065 			rate = 0;
   3066 		else
   3067 			rate = rate_tbl[rate0];
   3068 
   3069  #if NBPFILTER > 0
   3070 		/* Pass this up to any BPF listeners. */
   3071 		if (sc->sc_radiobpf != NULL) {
   3072 			struct mbuf mb;
   3073 
   3074 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
   3075 
   3076 			tap->ar_rate = rate;
   3077 			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3078 			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3079 
   3080 			/* TBD verify units are dB */
   3081 			tap->ar_antsignal = (int)rssi;
   3082 			/* TBD tap->ar_flags */
   3083 
   3084 			M_COPY_PKTHDR(&mb, m);
   3085 			mb.m_data = (caddr_t)tap;
   3086 			mb.m_len = tap->ar_ihdr.it_len;
   3087 			mb.m_next = m;
   3088 			mb.m_pkthdr.len += mb.m_len;
   3089 			bpf_mtap(sc->sc_radiobpf, &mb);
   3090  		}
   3091  #endif /* NPBFILTER > 0 */
   3092 
   3093 		wh = mtod(m, struct ieee80211_frame *);
   3094 		ni = ieee80211_find_rxnode(ic, wh);
   3095 		ieee80211_input(ifp, m, ni, rssi, 0);
   3096 		/*
   3097 		 * The frame may have caused the node to be marked for
   3098 		 * reclamation (e.g. in response to a DEAUTH message)
   3099 		 * so use free_node here instead of unref_node.
   3100 		 */
   3101 		if (ni == ic->ic_bss)
   3102 			ieee80211_unref_node(&ni);
   3103 		else
   3104 			ieee80211_free_node(ic, ni);
   3105 	}
   3106 
   3107 	/* Update the receive pointer. */
   3108 	sc->sc_rxptr = i;
   3109 }
   3110 
   3111 /*
   3112  * atw_txintr:
   3113  *
   3114  *	Helper; handle transmit interrupts.
   3115  */
   3116 void
   3117 atw_txintr(sc)
   3118 	struct atw_softc *sc;
   3119 {
   3120 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
   3121     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
   3122 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
   3123     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
   3124 
   3125 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
   3126 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3127 	struct atw_txsoft *txs;
   3128 	u_int32_t txstat;
   3129 
   3130 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
   3131 	    sc->sc_dev.dv_xname, sc->sc_flags));
   3132 
   3133 	ifp->if_flags &= ~IFF_OACTIVE;
   3134 
   3135 	/*
   3136 	 * Go through our Tx list and free mbufs for those
   3137 	 * frames that have been transmitted.
   3138 	 */
   3139 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   3140 		ATW_CDTXSYNC(sc, txs->txs_lastdesc,
   3141 		    txs->txs_ndescs,
   3142 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3143 
   3144 #ifdef ATW_DEBUG
   3145 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3146 			int i;
   3147 			printf("    txsoft %p transmit chain:\n", txs);
   3148 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
   3149 				printf("     descriptor %d:\n", i);
   3150 				printf("       at_status:   0x%08x\n",
   3151 				    le32toh(sc->sc_txdescs[i].at_stat));
   3152 				printf("       at_flags:      0x%08x\n",
   3153 				    le32toh(sc->sc_txdescs[i].at_flags));
   3154 				printf("       at_buf1: 0x%08x\n",
   3155 				    le32toh(sc->sc_txdescs[i].at_buf1));
   3156 				printf("       at_buf2: 0x%08x\n",
   3157 				    le32toh(sc->sc_txdescs[i].at_buf2));
   3158 				if (i == txs->txs_lastdesc)
   3159 					break;
   3160 			}
   3161 		}
   3162 #endif
   3163 
   3164 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
   3165 		if (txstat & ATW_TXSTAT_OWN)
   3166 			break;
   3167 
   3168 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   3169 
   3170 		sc->sc_txfree += txs->txs_ndescs;
   3171 
   3172 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   3173 		    0, txs->txs_dmamap->dm_mapsize,
   3174 		    BUS_DMASYNC_POSTWRITE);
   3175 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3176 		m_freem(txs->txs_mbuf);
   3177 		txs->txs_mbuf = NULL;
   3178 
   3179 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   3180 
   3181 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   3182 		    (txstat & TXSTAT_ERRMASK) != 0) {
   3183 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
   3184 			    txstat_buf, sizeof(txstat_buf));
   3185 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
   3186 			    txstat_buf,
   3187 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
   3188 		}
   3189 
   3190 		/*
   3191 		 * Check for errors and collisions.
   3192 		 */
   3193 		if (txstat & ATW_TXSTAT_TUF)
   3194 			sc->sc_stats.ts_tx_tuf++;
   3195 		if (txstat & ATW_TXSTAT_TLT)
   3196 			sc->sc_stats.ts_tx_tlt++;
   3197 		if (txstat & ATW_TXSTAT_TRT)
   3198 			sc->sc_stats.ts_tx_trt++;
   3199 		if (txstat & ATW_TXSTAT_TRO)
   3200 			sc->sc_stats.ts_tx_tro++;
   3201 		if (txstat & ATW_TXSTAT_SOFBR) {
   3202 			sc->sc_stats.ts_tx_sofbr++;
   3203 		}
   3204 
   3205 		if ((txstat & ATW_TXSTAT_ES) == 0)
   3206 			ifp->if_collisions +=
   3207 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
   3208 		else
   3209 			ifp->if_oerrors++;
   3210 
   3211 		ifp->if_opackets++;
   3212 	}
   3213 
   3214 	/*
   3215 	 * If there are no more pending transmissions, cancel the watchdog
   3216 	 * timer.
   3217 	 */
   3218 	if (txs == NULL)
   3219 		sc->sc_tx_timer = 0;
   3220 #undef TXSTAT_ERRMASK
   3221 #undef TXSTAT_FMT
   3222 }
   3223 
   3224 /*
   3225  * atw_watchdog:	[ifnet interface function]
   3226  *
   3227  *	Watchdog timer handler.
   3228  */
   3229 void
   3230 atw_watchdog(ifp)
   3231 	struct ifnet *ifp;
   3232 {
   3233 	struct atw_softc *sc = ifp->if_softc;
   3234 	struct ieee80211com *ic = &sc->sc_ic;
   3235 
   3236 	ifp->if_timer = 0;
   3237 	if (ATW_IS_ENABLED(sc) == 0)
   3238 		return;
   3239 
   3240 	if (sc->sc_rescan_timer) {
   3241 		if (--sc->sc_rescan_timer == 0)
   3242 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3243 	}
   3244 	if (sc->sc_tx_timer) {
   3245 		if (--sc->sc_tx_timer == 0 &&
   3246 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
   3247 			printf("%s: transmit timeout\n", ifp->if_xname);
   3248 			ifp->if_oerrors++;
   3249 			(void)atw_init(ifp);
   3250 			atw_start(ifp);
   3251 		}
   3252 	}
   3253 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
   3254 		ifp->if_timer = 1;
   3255 	ieee80211_watchdog(ifp);
   3256 }
   3257 
   3258 /* Compute the 802.11 Duration field and the PLCP Length fields for
   3259  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
   3260  * Write the fields to the ADM8211 Tx header, frm.
   3261  *
   3262  * TBD use the fragmentation threshold to find the right duration for
   3263  * the first & last fragments.
   3264  *
   3265  * TBD make certain of the duration fields applied by the ADM8211 to each
   3266  * fragment. I think that the ADM8211 knows how to subtract the CTS
   3267  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
   3268  * I also think that the ADM8211 does *some* arithmetic for us, because
   3269  * otherwise I think we would have to set a first duration for CTS/first
   3270  * fragment, a second duration for fragments between the first and the
   3271  * last, and a third duration for the last fragment.
   3272  *
   3273  * TBD make certain that duration fields reflect addition of FCS/WEP
   3274  * and correct duration arithmetic as necessary.
   3275  */
   3276 static void
   3277 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
   3278     int len)
   3279 {
   3280 	int remainder;
   3281 
   3282 	/* deal also with encrypted fragments */
   3283 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
   3284 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
   3285 		    sc->sc_dev.dv_xname));
   3286 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
   3287 		       IEEE80211_WEP_CRCLEN;
   3288 	}
   3289 
   3290 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
   3291 	 * duration (XXX added by MAC?).
   3292 	 */
   3293 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
   3294 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
   3295 
   3296 	if (rate <= 4)
   3297 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
   3298 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3299 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3300 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3301 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
   3302 	else
   3303 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
   3304 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3305 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3306 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3307 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
   3308 
   3309 	/* lengthen duration if long preamble */
   3310 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
   3311 		frm->atw_head_dur +=
   3312 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
   3313 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
   3314 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
   3315 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
   3316 
   3317 	if (remainder != 0)
   3318 		frm->atw_head_dur++;
   3319 
   3320 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
   3321 	    (rate == 2 || rate == 4)) {
   3322 		/* derived from Linux: how could this be right? */
   3323 		frm->atw_head_plcplen = frm->atw_head_dur;
   3324 	} else {
   3325 		frm->atw_head_plcplen = (16 * len) / rate;
   3326 		remainder = (80 * len) % (rate * 5);
   3327 
   3328 		if (remainder != 0) {
   3329 			frm->atw_head_plcplen++;
   3330 
   3331 			/* XXX magic */
   3332 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
   3333 			    rate == 22 && remainder <= 30)
   3334 				frm->atw_head_plcplen |= 0x8000;
   3335 		}
   3336 	}
   3337 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
   3338 	    htole16(frm->atw_head_plcplen);
   3339 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
   3340 }
   3341 
   3342 #ifdef ATW_DEBUG
   3343 static void
   3344 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
   3345 {
   3346 	struct atw_softc *sc = ifp->if_softc;
   3347 	struct mbuf *m;
   3348 	int i, noctets = 0;
   3349 
   3350 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
   3351 	    m0->m_pkthdr.len);
   3352 
   3353 	for (m = m0; m; m = m->m_next) {
   3354 		if (m->m_len == 0)
   3355 			continue;
   3356 		for (i = 0; i < m->m_len; i++) {
   3357 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
   3358 			if (++noctets % 24 == 0)
   3359 				printf("\n");
   3360 		}
   3361 	}
   3362 	printf("%s%s: %d bytes emitted\n",
   3363 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
   3364 }
   3365 #endif /* ATW_DEBUG */
   3366 
   3367 /*
   3368  * atw_start:		[ifnet interface function]
   3369  *
   3370  *	Start packet transmission on the interface.
   3371  */
   3372 void
   3373 atw_start(ifp)
   3374 	struct ifnet *ifp;
   3375 {
   3376 	struct atw_softc *sc = ifp->if_softc;
   3377 	struct ieee80211com *ic = &sc->sc_ic;
   3378 	struct ieee80211_node *ni;
   3379 	struct ieee80211_frame *wh;
   3380 	struct atw_frame *hh;
   3381 	struct mbuf *m0, *m;
   3382 	struct atw_txsoft *txs, *last_txs;
   3383 	struct atw_txdesc *txd;
   3384 	int do_encrypt, rate;
   3385 	bus_dmamap_t dmamap;
   3386 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
   3387 
   3388 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
   3389 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
   3390 
   3391 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3392 		return;
   3393 
   3394 #if 0 /* TBD ??? */
   3395 	if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
   3396 		return;
   3397 #endif
   3398 
   3399 	/*
   3400 	 * Remember the previous number of free descriptors and
   3401 	 * the first descriptor we'll use.
   3402 	 */
   3403 	ofree = sc->sc_txfree;
   3404 	firsttx = sc->sc_txnext;
   3405 
   3406 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
   3407 	    sc->sc_dev.dv_xname, ofree, firsttx));
   3408 
   3409 	/*
   3410 	 * Loop through the send queue, setting up transmit descriptors
   3411 	 * until we drain the queue, or use up all available transmit
   3412 	 * descriptors.
   3413 	 */
   3414 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   3415 	       sc->sc_txfree != 0) {
   3416 
   3417 		do_encrypt = 0;
   3418 		/*
   3419 		 * Grab a packet off the management queue, if it
   3420 		 * is not empty. Otherwise, from the data queue.
   3421 		 */
   3422 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   3423 		if (m0 != NULL) {
   3424 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   3425 			m0->m_pkthdr.rcvif = NULL;
   3426 		} else {
   3427 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   3428 			if (m0 == NULL)
   3429 				break;
   3430 #if NBPFILTER > 0
   3431 			if (ifp->if_bpf != NULL)
   3432 				bpf_mtap(ifp->if_bpf, m0);
   3433 #endif /* NBPFILTER > 0 */
   3434 			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
   3435 				ifp->if_oerrors++;
   3436 				break;
   3437 			}
   3438 		}
   3439 
   3440 		rate = MAX(ieee80211_get_rate(ic), 2);
   3441 
   3442 #if NBPFILTER > 0
   3443 		/*
   3444 		 * Pass the packet to any BPF listeners.
   3445 		 */
   3446 		if (ic->ic_rawbpf != NULL)
   3447 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
   3448 
   3449 		if (sc->sc_radiobpf != NULL) {
   3450 			struct mbuf mb;
   3451 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
   3452 
   3453 			tap->at_rate = rate;
   3454 			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3455 			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3456 
   3457 			/* TBD tap->at_flags */
   3458 
   3459 			M_COPY_PKTHDR(&mb, m0);
   3460 			mb.m_data = (caddr_t)tap;
   3461 			mb.m_len = tap->at_ihdr.it_len;
   3462 			mb.m_next = m0;
   3463 			mb.m_pkthdr.len += mb.m_len;
   3464 			bpf_mtap(sc->sc_radiobpf, &mb);
   3465 		}
   3466 #endif /* NBPFILTER > 0 */
   3467 
   3468 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
   3469 
   3470 		if (ni != NULL && ni != ic->ic_bss)
   3471 			ieee80211_free_node(ic, ni);
   3472 
   3473 		if (m0 == NULL) {
   3474 			ifp->if_oerrors++;
   3475 			break;
   3476 		}
   3477 
   3478 		/* just to make sure. */
   3479 		m0 = m_pullup(m0, sizeof(struct atw_frame));
   3480 
   3481 		if (m0 == NULL) {
   3482 			ifp->if_oerrors++;
   3483 			break;
   3484 		}
   3485 
   3486 		hh = mtod(m0, struct atw_frame *);
   3487 		wh = &hh->atw_ihdr;
   3488 
   3489 		do_encrypt = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
   3490 
   3491 		/* Copy everything we need from the 802.11 header:
   3492 		 * Frame Control; address 1, address 3, or addresses
   3493 		 * 3 and 4. NIC fills in BSSID, SA.
   3494 		 */
   3495 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
   3496 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
   3497 				panic("%s: illegal WDS frame",
   3498 				    sc->sc_dev.dv_xname);
   3499 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
   3500 		} else
   3501 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
   3502 
   3503 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
   3504 
   3505 		/* initialize remaining Tx parameters */
   3506 		memset(&hh->u, 0, sizeof(hh->u));
   3507 
   3508 		hh->atw_rate = rate * 5;
   3509 		/* XXX this could be incorrect if M_FCS. _encap should
   3510 		 * probably strip FCS just in case it sticks around in
   3511 		 * bridged packets.
   3512 		 */
   3513 		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
   3514 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
   3515 		    sizeof(struct atw_frame));
   3516 
   3517 #if 0
   3518 		/* this virtually guaranteed that WEP-encrypted frames
   3519 		 * are fragmented. oops.
   3520 		 */
   3521 		hh->atw_fragthr = htole16(m0->m_pkthdr.len -
   3522 		    sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
   3523 		hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3524 #else
   3525 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3526 #endif
   3527 
   3528 		hh->atw_rtylmt = 3;
   3529 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
   3530 		if (do_encrypt) {
   3531 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
   3532 			hh->atw_keyid = ic->ic_wep_txkey;
   3533 		}
   3534 
   3535 		/* TBD 4-addr frames */
   3536 		atw_frame_setdurs(sc, hh, rate,
   3537 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
   3538 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
   3539 
   3540 		/* never fragment multicast frames */
   3541 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
   3542 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3543 		} else if (sc->sc_flags & ATWF_RTSCTS) {
   3544 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
   3545 		}
   3546 
   3547 #ifdef ATW_DEBUG
   3548 		/* experimental stuff */
   3549 		if (atw_xrtylmt != ~0)
   3550 			hh->atw_rtylmt = atw_xrtylmt;
   3551 		if (atw_xhdrctl != 0)
   3552 			hh->atw_hdrctl |= htole16(atw_xhdrctl);
   3553 		if (atw_xservice != IEEE80211_PLCP_SERVICE)
   3554 			hh->atw_service = atw_xservice;
   3555 		if (atw_xpaylen != 0)
   3556 			hh->atw_paylen = htole16(atw_xpaylen);
   3557 		hh->atw_fragnum = 0;
   3558 
   3559 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3560 			printf("%s: dst = %s, rate = 0x%02x, "
   3561 			    "service = 0x%02x, paylen = 0x%04x\n",
   3562 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
   3563 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
   3564 
   3565 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
   3566 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
   3567 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
   3568 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
   3569 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
   3570 			    hh->atw_tail_dur, hh->atw_head_dur);
   3571 
   3572 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
   3573 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
   3574 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
   3575 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
   3576 
   3577 			printf("%s: keyid = %d\n",
   3578 			    sc->sc_dev.dv_xname, hh->atw_keyid);
   3579 
   3580 			atw_dump_pkt(ifp, m0);
   3581 		}
   3582 #endif /* ATW_DEBUG */
   3583 
   3584 		dmamap = txs->txs_dmamap;
   3585 
   3586 		/*
   3587 		 * Load the DMA map.  Copy and try (once) again if the packet
   3588 		 * didn't fit in the alloted number of segments.
   3589 		 */
   3590 		for (first = 1;
   3591 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   3592 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
   3593 		     first = 0) {
   3594 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   3595 			if (m == NULL) {
   3596 				printf("%s: unable to allocate Tx mbuf\n",
   3597 				    sc->sc_dev.dv_xname);
   3598 				break;
   3599 			}
   3600 			if (m0->m_pkthdr.len > MHLEN) {
   3601 				MCLGET(m, M_DONTWAIT);
   3602 				if ((m->m_flags & M_EXT) == 0) {
   3603 					printf("%s: unable to allocate Tx "
   3604 					    "cluster\n", sc->sc_dev.dv_xname);
   3605 					m_freem(m);
   3606 					break;
   3607 				}
   3608 			}
   3609 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   3610 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   3611 			m_freem(m0);
   3612 			m0 = m;
   3613 			m = NULL;
   3614 		}
   3615 		if (error != 0) {
   3616 			printf("%s: unable to load Tx buffer, "
   3617 			    "error = %d\n", sc->sc_dev.dv_xname, error);
   3618 			m_freem(m0);
   3619 			break;
   3620 		}
   3621 
   3622 		/*
   3623 		 * Ensure we have enough descriptors free to describe
   3624 		 * the packet.
   3625 		 */
   3626 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   3627 			/*
   3628 			 * Not enough free descriptors to transmit
   3629 			 * this packet.  Unload the DMA map and
   3630 			 * drop the packet.  Notify the upper layer
   3631 			 * that there are no more slots left.
   3632 			 *
   3633 			 * XXX We could allocate an mbuf and copy, but
   3634 			 * XXX it is worth it?
   3635 			 */
   3636 			ifp->if_flags |= IFF_OACTIVE;
   3637 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   3638 			m_freem(m0);
   3639 			break;
   3640 		}
   3641 
   3642 		/*
   3643 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   3644 		 */
   3645 
   3646 		/* Sync the DMA map. */
   3647 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   3648 		    BUS_DMASYNC_PREWRITE);
   3649 
   3650 		/* XXX arbitrary retry limit; 8 because I have seen it in
   3651 		 * use already and maybe 0 means "no tries" !
   3652 		 */
   3653 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
   3654 
   3655 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
   3656 		    sc->sc_dev.dv_xname, rate * 5));
   3657 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
   3658 
   3659 		/*
   3660 		 * Initialize the transmit descriptors.
   3661 		 */
   3662 		for (nexttx = sc->sc_txnext, seg = 0;
   3663 		     seg < dmamap->dm_nsegs;
   3664 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
   3665 			/*
   3666 			 * If this is the first descriptor we're
   3667 			 * enqueueing, don't set the OWN bit just
   3668 			 * yet.  That could cause a race condition.
   3669 			 * We'll do it below.
   3670 			 */
   3671 			txd = &sc->sc_txdescs[nexttx];
   3672 			txd->at_ctl = ctl |
   3673 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
   3674 
   3675 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
   3676 			txd->at_flags =
   3677 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
   3678 			                   ATW_TXFLAG_TBS1_MASK)) |
   3679 			    ((nexttx == (ATW_NTXDESC - 1))
   3680 			        ? htole32(ATW_TXFLAG_TER) : 0);
   3681 			lasttx = nexttx;
   3682 		}
   3683 
   3684 		IASSERT(lasttx != -1, ("bad lastx"));
   3685 		/* Set `first segment' and `last segment' appropriately. */
   3686 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
   3687 		    htole32(ATW_TXFLAG_FS);
   3688 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
   3689 
   3690 #ifdef ATW_DEBUG
   3691 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3692 			printf("     txsoft %p transmit chain:\n", txs);
   3693 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
   3694 				printf("     descriptor %d:\n", seg);
   3695 				printf("       at_ctl:   0x%08x\n",
   3696 				    le32toh(sc->sc_txdescs[seg].at_ctl));
   3697 				printf("       at_flags:      0x%08x\n",
   3698 				    le32toh(sc->sc_txdescs[seg].at_flags));
   3699 				printf("       at_buf1: 0x%08x\n",
   3700 				    le32toh(sc->sc_txdescs[seg].at_buf1));
   3701 				printf("       at_buf2: 0x%08x\n",
   3702 				    le32toh(sc->sc_txdescs[seg].at_buf2));
   3703 				if (seg == lasttx)
   3704 					break;
   3705 			}
   3706 		}
   3707 #endif
   3708 
   3709 		/* Sync the descriptors we're using. */
   3710 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   3711 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3712 
   3713 		/*
   3714 		 * Store a pointer to the packet so we can free it later,
   3715 		 * and remember what txdirty will be once the packet is
   3716 		 * done.
   3717 		 */
   3718 		txs->txs_mbuf = m0;
   3719 		txs->txs_firstdesc = sc->sc_txnext;
   3720 		txs->txs_lastdesc = lasttx;
   3721 		txs->txs_ndescs = dmamap->dm_nsegs;
   3722 
   3723 		/* Advance the tx pointer. */
   3724 		sc->sc_txfree -= dmamap->dm_nsegs;
   3725 		sc->sc_txnext = nexttx;
   3726 
   3727 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   3728 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   3729 
   3730 		last_txs = txs;
   3731 	}
   3732 
   3733 	if (txs == NULL || sc->sc_txfree == 0) {
   3734 		/* No more slots left; notify upper layer. */
   3735 		ifp->if_flags |= IFF_OACTIVE;
   3736 	}
   3737 
   3738 	if (sc->sc_txfree != ofree) {
   3739 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   3740 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   3741 		/*
   3742 		 * Cause a transmit interrupt to happen on the
   3743 		 * last packet we enqueued.
   3744 		 */
   3745 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
   3746 		ATW_CDTXSYNC(sc, lasttx, 1,
   3747 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3748 
   3749 		/*
   3750 		 * The entire packet chain is set up.  Give the
   3751 		 * first descriptor to the chip now.
   3752 		 */
   3753 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
   3754 		ATW_CDTXSYNC(sc, firsttx, 1,
   3755 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3756 
   3757 		/* Wake up the transmitter. */
   3758 		/* XXX USE AUTOPOLLING? */
   3759 		ATW_WRITE(sc, ATW_TDR, 0x1);
   3760 
   3761 		/* Set a watchdog timer in case the chip flakes out. */
   3762 		sc->sc_tx_timer = 5;
   3763 		ifp->if_timer = 1;
   3764 	}
   3765 }
   3766 
   3767 /*
   3768  * atw_power:
   3769  *
   3770  *	Power management (suspend/resume) hook.
   3771  */
   3772 void
   3773 atw_power(why, arg)
   3774 	int why;
   3775 	void *arg;
   3776 {
   3777 	struct atw_softc *sc = arg;
   3778 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3779 	int s;
   3780 
   3781 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
   3782 
   3783 	s = splnet();
   3784 	switch (why) {
   3785 	case PWR_STANDBY:
   3786 		/* XXX do nothing. */
   3787 		break;
   3788 	case PWR_SUSPEND:
   3789 		atw_stop(ifp, 0);
   3790 		if (sc->sc_power != NULL)
   3791 			(*sc->sc_power)(sc, why);
   3792 		break;
   3793 	case PWR_RESUME:
   3794 		if (ifp->if_flags & IFF_UP) {
   3795 			if (sc->sc_power != NULL)
   3796 				(*sc->sc_power)(sc, why);
   3797 			atw_init(ifp);
   3798 		}
   3799 		break;
   3800 	case PWR_SOFTSUSPEND:
   3801 	case PWR_SOFTSTANDBY:
   3802 	case PWR_SOFTRESUME:
   3803 		break;
   3804 	}
   3805 	splx(s);
   3806 }
   3807 
   3808 /*
   3809  * atw_ioctl:		[ifnet interface function]
   3810  *
   3811  *	Handle control requests from the operator.
   3812  */
   3813 int
   3814 atw_ioctl(ifp, cmd, data)
   3815 	struct ifnet *ifp;
   3816 	u_long cmd;
   3817 	caddr_t data;
   3818 {
   3819 	struct atw_softc *sc = ifp->if_softc;
   3820 	struct ifreq *ifr = (struct ifreq *)data;
   3821 	int s, error = 0;
   3822 
   3823 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
   3824 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   3825 		return ENXIO;
   3826 
   3827 	s = splnet();
   3828 
   3829 	switch (cmd) {
   3830 	case SIOCSIFFLAGS:
   3831 		if (ifp->if_flags & IFF_UP) {
   3832 			if (ATW_IS_ENABLED(sc)) {
   3833 				/*
   3834 				 * To avoid rescanning another access point,
   3835 				 * do not call atw_init() here.  Instead,
   3836 				 * only reflect media settings.
   3837 				 */
   3838 				atw_filter_setup(sc);
   3839 			} else
   3840 				error = atw_init(ifp);
   3841 		} else if (ATW_IS_ENABLED(sc))
   3842 			atw_stop(ifp, 1);
   3843 		break;
   3844 	case SIOCADDMULTI:
   3845 	case SIOCDELMULTI:
   3846 		error = (cmd == SIOCADDMULTI) ?
   3847 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
   3848 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
   3849 		if (error == ENETRESET) {
   3850 			if (ATW_IS_ENABLED(sc))
   3851 				atw_filter_setup(sc); /* do not rescan */
   3852 			error = 0;
   3853 		}
   3854 		break;
   3855 	default:
   3856 		error = ieee80211_ioctl(ifp, cmd, data);
   3857 		if (error == ENETRESET) {
   3858 			if (ATW_IS_ENABLED(sc))
   3859 				error = atw_init(ifp);
   3860 			else
   3861 				error = 0;
   3862 		}
   3863 		break;
   3864 	}
   3865 
   3866 	/* Try to get more packets going. */
   3867 	if (ATW_IS_ENABLED(sc))
   3868 		atw_start(ifp);
   3869 
   3870 	splx(s);
   3871 	return (error);
   3872 }
   3873 
   3874 static int
   3875 atw_media_change(struct ifnet *ifp)
   3876 {
   3877 	int error;
   3878 
   3879 	error = ieee80211_media_change(ifp);
   3880 	if (error == ENETRESET) {
   3881 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   3882 		    (IFF_RUNNING|IFF_UP))
   3883 			atw_init(ifp);		/* XXX lose error */
   3884 		error = 0;
   3885 	}
   3886 	return error;
   3887 }
   3888 
   3889 static void
   3890 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
   3891 {
   3892 	struct atw_softc *sc = ifp->if_softc;
   3893 
   3894 	if (ATW_IS_ENABLED(sc) == 0) {
   3895 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
   3896 		imr->ifm_status = 0;
   3897 		return;
   3898 	}
   3899 	ieee80211_media_status(ifp, imr);
   3900 }
   3901