atw.c revision 1.23 1 /* $NetBSD: atw.c,v 1.23 2004/01/29 10:25:49 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.23 2004/01/29 10:25:49 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/atwvar.h>
82 #include <dev/ic/smc93cx6var.h>
83
84 /* XXX TBD open questions
85 *
86 *
87 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
88 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
89 * handle this for me?
90 *
91 */
92 /* device attachment
93 *
94 * print TOFS[012]
95 *
96 * device initialization
97 *
98 * clear ATW_FRCTL_MAXPSP to disable max power saving
99 * set ATW_TXBR_ALCUPDATE to enable ALC
100 * set TOFS[012]? (hope not)
101 * disable rx/tx
102 * set ATW_PAR_SWR (software reset)
103 * wait for ATW_PAR_SWR clear
104 * disable interrupts
105 * ack status register
106 * enable interrupts
107 *
108 * rx/tx initialization
109 *
110 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111 * allocate and init descriptor rings
112 * write ATW_PAR_DSL (descriptor skip length)
113 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
114 * write ATW_NAR_SQ for one/both transmit descriptor rings
115 * write ATW_NAR_SQ for one/both transmit descriptor rings
116 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
117 *
118 * rx/tx end
119 *
120 * stop DMA
121 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
122 * flush tx w/ ATW_NAR_HF
123 *
124 * scan
125 *
126 * initialize rx/tx
127 *
128 * IBSS join/create
129 *
130 * set ATW_NAR_EA (is set by ASIC?)
131 *
132 * BSS join: (re)association response
133 *
134 * set ATW_FRCTL_AID
135 *
136 * optimizations ???
137 *
138 */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_rfio_enable_delay = 20 * 1000;
145 int atw_rfio_disable_delay = 2 * 1000;
146 int atw_writewep_delay = 5;
147 int atw_beacon_len_adjust = 4;
148 int atw_dwelltime = 200;
149
150 #ifdef ATW_DEBUG
151 int atw_xhdrctl = 0;
152 int atw_xrtylmt = ~0;
153 int atw_xservice = IEEE80211_PLCP_SERVICE;
154 int atw_xpaylen = 0;
155
156 int atw_debug = 0;
157
158 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
159 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
160 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
161 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
162 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
163 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
164 static void atw_print_regs(struct atw_softc *, const char *);
165 static void atw_rf3000_print(struct atw_softc *);
166 static void atw_si4126_print(struct atw_softc *);
167 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
168 #else
169 #define ATW_DPRINTF(x)
170 #define ATW_DPRINTF2(x)
171 #define ATW_DPRINTF3(x)
172 #define DPRINTF(sc, x) /* nothing */
173 #define DPRINTF2(sc, x) /* nothing */
174 #define DPRINTF3(sc, x) /* nothing */
175 #endif
176
177 #ifdef ATW_STATS
178 void atw_print_stats(struct atw_softc *);
179 #endif
180
181 void atw_start(struct ifnet *);
182 void atw_watchdog(struct ifnet *);
183 int atw_ioctl(struct ifnet *, u_long, caddr_t);
184 int atw_init(struct ifnet *);
185 void atw_stop(struct ifnet *, int);
186
187 void atw_reset(struct atw_softc *);
188 int atw_read_srom(struct atw_softc *);
189
190 void atw_shutdown(void *);
191
192 void atw_rxdrain(struct atw_softc *);
193 int atw_add_rxbuf(struct atw_softc *, int);
194 void atw_idle(struct atw_softc *, u_int32_t);
195
196 int atw_enable(struct atw_softc *);
197 void atw_disable(struct atw_softc *);
198 void atw_power(int, void *);
199
200 void atw_rxintr(struct atw_softc *);
201 void atw_txintr(struct atw_softc *);
202 void atw_linkintr(struct atw_softc *, u_int32_t);
203
204 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
205 static void atw_tsf(struct atw_softc *);
206 static void atw_start_beacon(struct atw_softc *, int);
207 static void atw_write_wep(struct atw_softc *);
208 static void atw_write_bssid(struct atw_softc *);
209 static void atw_write_bcn_thresh(struct atw_softc *);
210 static void atw_write_ssid(struct atw_softc *);
211 static void atw_write_sup_rates(struct atw_softc *);
212 static void atw_clear_sram(struct atw_softc *);
213 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
214 static int atw_media_change(struct ifnet *);
215 static void atw_media_status(struct ifnet *, struct ifmediareq *);
216 static void atw_filter_setup(struct atw_softc *);
217 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
218 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
219 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
220 struct ieee80211_node *, int, int, u_int32_t);
221 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
222 struct ieee80211_node *, int, int, u_int32_t);
223 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
224 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
225
226 static int atw_tune(struct atw_softc *);
227
228 static void atw_rfio_enable(struct atw_softc *, int);
229
230 /* RFMD RF3000 Baseband Processor */
231 static int atw_rf3000_init(struct atw_softc *);
232 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
233 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
234 #ifdef ATW_DEBUG
235 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
236 #endif /* ATW_DEBUG */
237
238 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
239 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
240 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
241 #ifdef ATW_DEBUG
242 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
243 #endif /* ATW_DEBUG */
244
245 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
246 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
247
248 const char *atw_tx_state[] = {
249 "STOPPED",
250 "RUNNING - FETCH",
251 "RUNNING - WAIT",
252 "RUNNING - READING",
253 "-- RESERVED1 --",
254 "-- RESERVED2 --",
255 "SUSPENDED",
256 "RUNNING - CLOSE"
257 };
258
259 const char *atw_rx_state[] = {
260 "STOPPED",
261 "RUNNING - FETCH",
262 "RUNNING - CHECK",
263 "RUNNING - WAIT",
264 "SUSPENDED",
265 "RUNNING - CLOSE",
266 "RUNNING - FLUSH",
267 "RUNNING - QUEUE"
268 };
269
270 int
271 atw_activate(struct device *self, enum devact act)
272 {
273 struct atw_softc *sc = (struct atw_softc *)self;
274 int rv = 0, s;
275
276 s = splnet();
277 switch (act) {
278 case DVACT_ACTIVATE:
279 rv = EOPNOTSUPP;
280 break;
281
282 case DVACT_DEACTIVATE:
283 if_deactivate(&sc->sc_ic.ic_if);
284 break;
285 }
286 splx(s);
287 return rv;
288 }
289
290 /*
291 * atw_enable:
292 *
293 * Enable the ADM8211 chip.
294 */
295 int
296 atw_enable(struct atw_softc *sc)
297 {
298
299 if (ATW_IS_ENABLED(sc) == 0) {
300 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
301 printf("%s: device enable failed\n",
302 sc->sc_dev.dv_xname);
303 return (EIO);
304 }
305 sc->sc_flags |= ATWF_ENABLED;
306 }
307 return (0);
308 }
309
310 /*
311 * atw_disable:
312 *
313 * Disable the ADM8211 chip.
314 */
315 void
316 atw_disable(struct atw_softc *sc)
317 {
318 if (!ATW_IS_ENABLED(sc))
319 return;
320 if (sc->sc_disable != NULL)
321 (*sc->sc_disable)(sc);
322 sc->sc_flags &= ~ATWF_ENABLED;
323 }
324
325 /* Returns -1 on failure. */
326 int
327 atw_read_srom(struct atw_softc *sc)
328 {
329 struct seeprom_descriptor sd;
330 u_int32_t reg;
331
332 (void)memset(&sd, 0, sizeof(sd));
333
334 reg = ATW_READ(sc, ATW_TEST0);
335
336 if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
337 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
338 return -1;
339 }
340
341 switch (reg & ATW_TEST0_EPTYP_MASK) {
342 case ATW_TEST0_EPTYP_93c66:
343 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
344 sc->sc_sromsz = 512;
345 sd.sd_chip = C56_66;
346 break;
347 case ATW_TEST0_EPTYP_93c46:
348 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
349 sc->sc_sromsz = 128;
350 sd.sd_chip = C46;
351 break;
352 default:
353 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
354 MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
355 return -1;
356 }
357
358 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
359
360 if (sc->sc_srom == NULL) {
361 printf("%s: unable to allocate SROM buffer\n",
362 sc->sc_dev.dv_xname);
363 return -1;
364 }
365
366 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
367
368 /* ADM8211 has a single 32-bit register for controlling the
369 * 93cx6 SROM. Bit SRS enables the serial port. There is no
370 * "ready" bit. The ADM8211 input/output sense is the reverse
371 * of read_seeprom's.
372 */
373 sd.sd_tag = sc->sc_st;
374 sd.sd_bsh = sc->sc_sh;
375 sd.sd_regsize = 4;
376 sd.sd_control_offset = ATW_SPR;
377 sd.sd_status_offset = ATW_SPR;
378 sd.sd_dataout_offset = ATW_SPR;
379 sd.sd_CK = ATW_SPR_SCLK;
380 sd.sd_CS = ATW_SPR_SCS;
381 sd.sd_DI = ATW_SPR_SDO;
382 sd.sd_DO = ATW_SPR_SDI;
383 sd.sd_MS = ATW_SPR_SRS;
384 sd.sd_RDY = 0;
385
386 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
387 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
388 free(sc->sc_srom, M_DEVBUF);
389 return -1;
390 }
391 #ifdef ATW_DEBUG
392 {
393 int i;
394 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
395 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
396 if (((i % 8) == 0) && (i != 0)) {
397 ATW_DPRINTF(("\n\t"));
398 }
399 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
400 }
401 ATW_DPRINTF(("\n"));
402 }
403 #endif /* ATW_DEBUG */
404 return 0;
405 }
406
407 #ifdef ATW_DEBUG
408 static void
409 atw_print_regs(struct atw_softc *sc, const char *where)
410 {
411 #define PRINTREG(sc, reg) \
412 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
413 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
414
415 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
416
417 PRINTREG(sc, ATW_PAR);
418 PRINTREG(sc, ATW_FRCTL);
419 PRINTREG(sc, ATW_TDR);
420 PRINTREG(sc, ATW_WTDP);
421 PRINTREG(sc, ATW_RDR);
422 PRINTREG(sc, ATW_WRDP);
423 PRINTREG(sc, ATW_RDB);
424 PRINTREG(sc, ATW_CSR3A);
425 PRINTREG(sc, ATW_TDBD);
426 PRINTREG(sc, ATW_TDBP);
427 PRINTREG(sc, ATW_STSR);
428 PRINTREG(sc, ATW_CSR5A);
429 PRINTREG(sc, ATW_NAR);
430 PRINTREG(sc, ATW_CSR6A);
431 PRINTREG(sc, ATW_IER);
432 PRINTREG(sc, ATW_CSR7A);
433 PRINTREG(sc, ATW_LPC);
434 PRINTREG(sc, ATW_TEST1);
435 PRINTREG(sc, ATW_SPR);
436 PRINTREG(sc, ATW_TEST0);
437 PRINTREG(sc, ATW_WCSR);
438 PRINTREG(sc, ATW_WPDR);
439 PRINTREG(sc, ATW_GPTMR);
440 PRINTREG(sc, ATW_GPIO);
441 PRINTREG(sc, ATW_BBPCTL);
442 PRINTREG(sc, ATW_SYNCTL);
443 PRINTREG(sc, ATW_PLCPHD);
444 PRINTREG(sc, ATW_MMIWADDR);
445 PRINTREG(sc, ATW_MMIRADDR1);
446 PRINTREG(sc, ATW_MMIRADDR2);
447 PRINTREG(sc, ATW_TXBR);
448 PRINTREG(sc, ATW_CSR15A);
449 PRINTREG(sc, ATW_ALCSTAT);
450 PRINTREG(sc, ATW_TOFS2);
451 PRINTREG(sc, ATW_CMDR);
452 PRINTREG(sc, ATW_PCIC);
453 PRINTREG(sc, ATW_PMCSR);
454 PRINTREG(sc, ATW_PAR0);
455 PRINTREG(sc, ATW_PAR1);
456 PRINTREG(sc, ATW_MAR0);
457 PRINTREG(sc, ATW_MAR1);
458 PRINTREG(sc, ATW_ATIMDA0);
459 PRINTREG(sc, ATW_ABDA1);
460 PRINTREG(sc, ATW_BSSID0);
461 PRINTREG(sc, ATW_TXLMT);
462 PRINTREG(sc, ATW_MIBCNT);
463 PRINTREG(sc, ATW_BCNT);
464 PRINTREG(sc, ATW_TSFTH);
465 PRINTREG(sc, ATW_TSC);
466 PRINTREG(sc, ATW_SYNRF);
467 PRINTREG(sc, ATW_BPLI);
468 PRINTREG(sc, ATW_CAP0);
469 PRINTREG(sc, ATW_CAP1);
470 PRINTREG(sc, ATW_RMD);
471 PRINTREG(sc, ATW_CFPP);
472 PRINTREG(sc, ATW_TOFS0);
473 PRINTREG(sc, ATW_TOFS1);
474 PRINTREG(sc, ATW_IFST);
475 PRINTREG(sc, ATW_RSPT);
476 PRINTREG(sc, ATW_TSFTL);
477 PRINTREG(sc, ATW_WEPCTL);
478 PRINTREG(sc, ATW_WESK);
479 PRINTREG(sc, ATW_WEPCNT);
480 PRINTREG(sc, ATW_MACTEST);
481 PRINTREG(sc, ATW_FER);
482 PRINTREG(sc, ATW_FEMR);
483 PRINTREG(sc, ATW_FPSR);
484 PRINTREG(sc, ATW_FFER);
485 #undef PRINTREG
486 }
487 #endif /* ATW_DEBUG */
488
489 /*
490 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
491 */
492 void
493 atw_attach(struct atw_softc *sc)
494 {
495 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
496 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
497 };
498 struct ieee80211com *ic = &sc->sc_ic;
499 struct ifnet *ifp = &ic->ic_if;
500 int country_code, error, i, nrate;
501 u_int32_t reg;
502 static const char *type_strings[] = {"Intersil (not supported)",
503 "RFMD", "Marvel (not supported)"};
504
505 sc->sc_txth = atw_txthresh_tab_lo;
506
507 SIMPLEQ_INIT(&sc->sc_txfreeq);
508 SIMPLEQ_INIT(&sc->sc_txdirtyq);
509
510 #ifdef ATW_DEBUG
511 atw_print_regs(sc, "atw_attach");
512 #endif /* ATW_DEBUG */
513
514 /*
515 * Allocate the control data structures, and create and load the
516 * DMA map for it.
517 */
518 if ((error = bus_dmamem_alloc(sc->sc_dmat,
519 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
520 1, &sc->sc_cdnseg, 0)) != 0) {
521 printf("%s: unable to allocate control data, error = %d\n",
522 sc->sc_dev.dv_xname, error);
523 goto fail_0;
524 }
525
526 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
527 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
528 BUS_DMA_COHERENT)) != 0) {
529 printf("%s: unable to map control data, error = %d\n",
530 sc->sc_dev.dv_xname, error);
531 goto fail_1;
532 }
533
534 if ((error = bus_dmamap_create(sc->sc_dmat,
535 sizeof(struct atw_control_data), 1,
536 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
537 printf("%s: unable to create control data DMA map, "
538 "error = %d\n", sc->sc_dev.dv_xname, error);
539 goto fail_2;
540 }
541
542 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
543 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
544 0)) != 0) {
545 printf("%s: unable to load control data DMA map, error = %d\n",
546 sc->sc_dev.dv_xname, error);
547 goto fail_3;
548 }
549
550 /*
551 * Create the transmit buffer DMA maps.
552 */
553 sc->sc_ntxsegs = ATW_NTXSEGS;
554 for (i = 0; i < ATW_TXQUEUELEN; i++) {
555 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
556 sc->sc_ntxsegs, MCLBYTES, 0, 0,
557 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
558 printf("%s: unable to create tx DMA map %d, "
559 "error = %d\n", sc->sc_dev.dv_xname, i, error);
560 goto fail_4;
561 }
562 }
563
564 /*
565 * Create the receive buffer DMA maps.
566 */
567 for (i = 0; i < ATW_NRXDESC; i++) {
568 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
569 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
570 printf("%s: unable to create rx DMA map %d, "
571 "error = %d\n", sc->sc_dev.dv_xname, i, error);
572 goto fail_5;
573 }
574 }
575 for (i = 0; i < ATW_NRXDESC; i++) {
576 sc->sc_rxsoft[i].rxs_mbuf = NULL;
577 }
578
579 /* Reset the chip to a known state. */
580 atw_reset(sc);
581
582 if (atw_read_srom(sc) == -1)
583 return;
584
585 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
586 ATW_SR_RFTYPE_MASK);
587
588 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
589 ATW_SR_BBPTYPE_MASK);
590
591 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
592 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
593 return;
594 }
595 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
596 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
597 return;
598 }
599
600 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
601 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
602
603 /* XXX There exists a Linux driver which seems to use RFType = 0 for
604 * MARVEL. My bug, or theirs?
605 */
606
607 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
608
609 switch (sc->sc_rftype) {
610 case ATW_RFTYPE_INTERSIL:
611 reg |= ATW_SYNCTL_CS1;
612 break;
613 case ATW_RFTYPE_RFMD:
614 reg |= ATW_SYNCTL_CS0;
615 break;
616 case ATW_RFTYPE_MARVEL:
617 break;
618 }
619
620 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
621 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
622
623 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
624
625 switch (sc->sc_bbptype) {
626 case ATW_RFTYPE_INTERSIL:
627 reg |= ATW_BBPCTL_TWI;
628 break;
629 case ATW_RFTYPE_RFMD:
630 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
631 ATW_BBPCTL_CCA_ACTLO;
632 break;
633 case ATW_RFTYPE_MARVEL:
634 break;
635 }
636
637 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
638 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
639
640 /*
641 * From this point forward, the attachment cannot fail. A failure
642 * before this point releases all resources that may have been
643 * allocated.
644 */
645 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
646
647 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
648 htole16(sc->sc_srom[ATW_SR_MAC00]),
649 htole16(sc->sc_srom[ATW_SR_MAC01]),
650 htole16(sc->sc_srom[ATW_SR_MAC10])));
651
652 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
653 ATW_SR_CTRY_MASK);
654
655 #define ADD_CHANNEL(_ic, _chan) do { \
656 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
657 _ic->ic_channels[_chan].ic_freq = \
658 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
659 } while (0)
660
661 /* Find available channels */
662 switch (country_code) {
663 case COUNTRY_MMK2: /* 1-14 */
664 ADD_CHANNEL(ic, 14);
665 /*FALLTHROUGH*/
666 case COUNTRY_ETSI: /* 1-13 */
667 for (i = 1; i <= 13; i++)
668 ADD_CHANNEL(ic, i);
669 break;
670 case COUNTRY_FCC: /* 1-11 */
671 case COUNTRY_IC: /* 1-11 */
672 for (i = 1; i <= 11; i++)
673 ADD_CHANNEL(ic, i);
674 break;
675 case COUNTRY_MMK: /* 14 */
676 ADD_CHANNEL(ic, 14);
677 break;
678 case COUNTRY_FRANCE: /* 10-13 */
679 for (i = 10; i <= 13; i++)
680 ADD_CHANNEL(ic, i);
681 break;
682 default: /* assume channels 10-11 */
683 case COUNTRY_SPAIN: /* 10-11 */
684 for (i = 10; i <= 11; i++)
685 ADD_CHANNEL(ic, i);
686 break;
687 }
688
689 /* Read the MAC address. */
690 reg = ATW_READ(sc, ATW_PAR0);
691 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
692 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
693 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
694 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
695 reg = ATW_READ(sc, ATW_PAR1);
696 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
697 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
698
699 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
700 printf(" could not get mac address, attach failed\n");
701 return;
702 }
703
704 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
705
706 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
707 ifp->if_softc = sc;
708 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
709 IFF_NOTRAILERS;
710 ifp->if_ioctl = atw_ioctl;
711 ifp->if_start = atw_start;
712 ifp->if_watchdog = atw_watchdog;
713 ifp->if_init = atw_init;
714 ifp->if_stop = atw_stop;
715 IFQ_SET_READY(&ifp->if_snd);
716
717 ic->ic_phytype = IEEE80211_T_DS;
718 ic->ic_opmode = IEEE80211_M_STA;
719 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
720 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
721
722 nrate = 0;
723 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
724 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
725 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
726 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
727 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
728
729 /*
730 * Call MI attach routines.
731 */
732
733 if_attach(ifp);
734 ieee80211_ifattach(ifp);
735
736 sc->sc_newstate = ic->ic_newstate;
737 ic->ic_newstate = atw_newstate;
738
739 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
740 ic->ic_recv_mgmt = atw_recv_mgmt;
741
742 sc->sc_node_free = ic->ic_node_free;
743 ic->ic_node_free = atw_node_free;
744
745 sc->sc_node_alloc = ic->ic_node_alloc;
746 ic->ic_node_alloc = atw_node_alloc;
747
748 /* possibly we should fill in our own sc_send_prresp, since
749 * the ADM8211 is probably sending probe responses in ad hoc
750 * mode.
751 */
752
753 /* complete initialization */
754 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
755 callout_init(&sc->sc_scan_ch);
756
757 #if NBPFILTER > 0
758 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
759 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
760 #endif
761
762 /*
763 * Make sure the interface is shutdown during reboot.
764 */
765 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
766 if (sc->sc_sdhook == NULL)
767 printf("%s: WARNING: unable to establish shutdown hook\n",
768 sc->sc_dev.dv_xname);
769
770 /*
771 * Add a suspend hook to make sure we come back up after a
772 * resume.
773 */
774 sc->sc_powerhook = powerhook_establish(atw_power, sc);
775 if (sc->sc_powerhook == NULL)
776 printf("%s: WARNING: unable to establish power hook\n",
777 sc->sc_dev.dv_xname);
778
779 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
780 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
781 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
782
783 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
784 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
785 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
786
787 return;
788
789 /*
790 * Free any resources we've allocated during the failed attach
791 * attempt. Do this in reverse order and fall through.
792 */
793 fail_5:
794 for (i = 0; i < ATW_NRXDESC; i++) {
795 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
796 continue;
797 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
798 }
799 fail_4:
800 for (i = 0; i < ATW_TXQUEUELEN; i++) {
801 if (sc->sc_txsoft[i].txs_dmamap == NULL)
802 continue;
803 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
804 }
805 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
806 fail_3:
807 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
808 fail_2:
809 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
810 sizeof(struct atw_control_data));
811 fail_1:
812 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
813 fail_0:
814 return;
815 }
816
817 static struct ieee80211_node *
818 atw_node_alloc(struct ieee80211com *ic)
819 {
820 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
821 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
822
823 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
824 return ni;
825 }
826
827 static void
828 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
829 {
830 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
831
832 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
833 ether_sprintf(ni->ni_bssid)));
834 (*sc->sc_node_free)(ic, ni);
835 }
836
837 /*
838 * atw_reset:
839 *
840 * Perform a soft reset on the ADM8211.
841 */
842 void
843 atw_reset(struct atw_softc *sc)
844 {
845 int i;
846
847 if (ATW_IS_ENABLED(sc) == 0)
848 return;
849
850 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
851
852 for (i = 0; i < 10000; i++) {
853 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
854 break;
855 DELAY(1);
856 }
857
858 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
859
860 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
861 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
862
863 /* Turn off maximum power saving. */
864 ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
865
866 /* Recall EEPROM. */
867 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
868
869 DELAY(10 * 1000);
870
871 /* A reset seems to affect the SRAM contents, so put them into
872 * a known state.
873 */
874 atw_clear_sram(sc);
875
876 memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
877
878 sc->sc_lost_bcn_thresh = 0;
879 }
880
881 static void
882 atw_clear_sram(struct atw_softc *sc)
883 {
884 #if 0
885 for (addr = 0; addr < 448; addr++) {
886 ATW_WRITE(sc, ATW_WEPCTL,
887 ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0 | addr);
888 DELAY(1000);
889 ATW_WRITE(sc, ATW_WESK, 0);
890 DELAY(1000); /* paranoia */
891 }
892 return;
893 #endif
894 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
895 /* XXX not for revision 0x20. */
896 atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
897 }
898
899 /* TBD atw_init
900 *
901 * set MAC based on ic->ic_bss->myaddr
902 * write WEP keys
903 * set TX rate
904 */
905
906 /*
907 * atw_init: [ ifnet interface function ]
908 *
909 * Initialize the interface. Must be called at splnet().
910 */
911 int
912 atw_init(struct ifnet *ifp)
913 {
914 struct atw_softc *sc = ifp->if_softc;
915 struct ieee80211com *ic = &sc->sc_ic;
916 struct atw_txsoft *txs;
917 struct atw_rxsoft *rxs;
918 u_int32_t reg;
919 int i, error = 0;
920
921 if ((error = atw_enable(sc)) != 0)
922 goto out;
923
924 /*
925 * Cancel any pending I/O. This also resets.
926 */
927 atw_stop(ifp, 0);
928
929 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
930 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
931 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
932 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
933
934 /* Turn off APM??? (A binary-only driver does this.)
935 *
936 * Set Rx store-and-forward mode.
937 */
938 reg = ATW_READ(sc, ATW_CMDR);
939 reg &= ~ATW_CMDR_APM;
940 reg &= ~ATW_CMDR_DRT_MASK;
941 reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
942
943 ATW_WRITE(sc, ATW_CMDR, reg);
944
945 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
946 *
947 * XXX a binary-only driver sets a different service field than
948 * 0. why?
949 */
950 reg = ATW_READ(sc, ATW_PLCPHD);
951 reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
952 reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
953 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
954 ATW_WRITE(sc, ATW_PLCPHD, reg);
955
956 /* XXX this magic can probably be figured out from the RFMD docs */
957 reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
958 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
959 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
960 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
961 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
962 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
963 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
964 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
965 ATW_WRITE(sc, ATW_TOFS2, reg);
966
967 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
968 LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
969
970 /* XXX this resets an Intersil RF front-end? */
971 /* TBD condition on Intersil RFType? */
972 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
973 DELAY(10 * 1000);
974 ATW_WRITE(sc, ATW_SYNRF, 0);
975 DELAY(5 * 1000);
976
977 /* 16 TU max duration for contention-free period */
978 reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
979 ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
980
981 /* XXX I guess that the Cardbus clock is 22MHz?
982 * I am assuming that the role of ATW_TOFS0_USCNT is
983 * to divide the bus clock to get a 1MHz clock---the datasheet is not
984 * very clear on this point. It says in the datasheet that it is
985 * possible for the ADM8211 to accomodate bus speeds between 22MHz
986 * and 33MHz; maybe this is the way? I see a binary-only driver write
987 * these values. These values are also the power-on default.
988 */
989 ATW_WRITE(sc, ATW_TOFS0,
990 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
991 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
992
993 /* Initialize interframe spacing. EIFS=0x64 is used by a binary-only
994 * driver. Go figure.
995 */
996 reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
997 LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
998 ATW_IFST_SIFS_MASK) |
999 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1000 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1001
1002 ATW_WRITE(sc, ATW_IFST, reg);
1003
1004 /* XXX More magic. Might relate to ACK timing. */
1005 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1006 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1007
1008 /* Set up the MMI read/write addresses for the BBP.
1009 *
1010 * TBD find out the Marvel settings.
1011 */
1012 switch (sc->sc_bbptype) {
1013 case ATW_BBPTYPE_INTERSIL:
1014 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1015 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1016 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1017 break;
1018 case ATW_BBPTYPE_MARVEL:
1019 break;
1020 case ATW_BBPTYPE_RFMD:
1021 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1022 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1023 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1024 default:
1025 break;
1026 }
1027
1028 sc->sc_wepctl = 0;
1029 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1030
1031 if ((error = atw_rf3000_init(sc)) != 0)
1032 goto out;
1033
1034 /*
1035 * Initialize the PCI Access Register.
1036 */
1037 sc->sc_busmode = ATW_PAR_BAR; /* XXX what is this? */
1038
1039 /*
1040 * If we're allowed to do so, use Memory Read Line
1041 * and Memory Read Multiple.
1042 *
1043 * XXX Should we use Memory Write and Invalidate?
1044 */
1045 if (sc->sc_flags & ATWF_MRL)
1046 sc->sc_busmode |= ATW_PAR_MRLE;
1047 if (sc->sc_flags & ATWF_MRM)
1048 sc->sc_busmode |= ATW_PAR_MRME;
1049 if (sc->sc_flags & ATWF_MWI)
1050 sc->sc_busmode |= ATW_PAR_MWIE;
1051 if (sc->sc_maxburst == 0)
1052 sc->sc_maxburst = 8; /* ADM8211 default */
1053
1054 switch (sc->sc_cacheline) {
1055 default:
1056 /* Use burst length. */
1057 break;
1058 case 8:
1059 sc->sc_busmode |= ATW_PAR_CAL_8DW;
1060 break;
1061 case 16:
1062 sc->sc_busmode |= ATW_PAR_CAL_16DW;
1063 break;
1064 case 32:
1065 sc->sc_busmode |= ATW_PAR_CAL_32DW;
1066 break;
1067 }
1068 switch (sc->sc_maxburst) {
1069 case 1:
1070 sc->sc_busmode |= ATW_PAR_PBL_1DW;
1071 break;
1072 case 2:
1073 sc->sc_busmode |= ATW_PAR_PBL_2DW;
1074 break;
1075 case 4:
1076 sc->sc_busmode |= ATW_PAR_PBL_4DW;
1077 break;
1078 case 8:
1079 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1080 break;
1081 case 16:
1082 sc->sc_busmode |= ATW_PAR_PBL_16DW;
1083 break;
1084 case 32:
1085 sc->sc_busmode |= ATW_PAR_PBL_32DW;
1086 break;
1087 default:
1088 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1089 break;
1090 }
1091
1092 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1093 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1094 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1095
1096 /*
1097 * Initialize the OPMODE register. We don't write it until
1098 * we're ready to begin the transmit and receive processes.
1099 */
1100 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1101 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1102
1103 /*
1104 * Initialize the transmit descriptor ring.
1105 */
1106 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1107 for (i = 0; i < ATW_NTXDESC; i++) {
1108 /* no transmit chaining */
1109 sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1110 sc->sc_txdescs[i].at_buf2 =
1111 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1112 }
1113 /* use ring mode */
1114 sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1115 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1116 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1117 sc->sc_txfree = ATW_NTXDESC;
1118 sc->sc_txnext = 0;
1119
1120 /*
1121 * Initialize the transmit job descriptors.
1122 */
1123 SIMPLEQ_INIT(&sc->sc_txfreeq);
1124 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1125 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1126 txs = &sc->sc_txsoft[i];
1127 txs->txs_mbuf = NULL;
1128 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1129 }
1130
1131 /*
1132 * Initialize the receive descriptor and receive job
1133 * descriptor rings.
1134 */
1135 for (i = 0; i < ATW_NRXDESC; i++) {
1136 rxs = &sc->sc_rxsoft[i];
1137 if (rxs->rxs_mbuf == NULL) {
1138 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1139 printf("%s: unable to allocate or map rx "
1140 "buffer %d, error = %d\n",
1141 sc->sc_dev.dv_xname, i, error);
1142 /*
1143 * XXX Should attempt to run with fewer receive
1144 * XXX buffers instead of just failing.
1145 */
1146 atw_rxdrain(sc);
1147 goto out;
1148 }
1149 } else
1150 ATW_INIT_RXDESC(sc, i);
1151 }
1152 sc->sc_rxptr = 0;
1153
1154 /* disable all wake-up events */
1155 ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1156 ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1157 ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1158 ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1159
1160 /* ack all wake-up events */
1161 ATW_SET(sc, ATW_WCSR, 0);
1162
1163 /*
1164 * Initialize the interrupt mask and enable interrupts.
1165 */
1166 /* normal interrupts */
1167 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1168 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1169
1170 /* abnormal interrupts */
1171 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1172 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1173 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1174
1175 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1176 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1177 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1178 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1179 ATW_INTR_TRT;
1180
1181 sc->sc_linkint_mask &= sc->sc_inten;
1182 sc->sc_rxint_mask &= sc->sc_inten;
1183 sc->sc_txint_mask &= sc->sc_inten;
1184
1185 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1186 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1187 if (sc->sc_intr_ack != NULL)
1188 (*sc->sc_intr_ack)(sc);
1189
1190 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1191 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1192
1193 /*
1194 * Give the transmit and receive rings to the ADM8211.
1195 */
1196 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1197 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1198
1199 /* common 802.11 configuration */
1200 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1201 switch (ic->ic_opmode) {
1202 case IEEE80211_M_STA:
1203 sc->sc_opmode &= ~ATW_NAR_EA;
1204 break;
1205 case IEEE80211_M_AHDEMO: /* XXX */
1206 case IEEE80211_M_IBSS:
1207 ic->ic_flags |= IEEE80211_F_IBSSON;
1208 /*FALLTHROUGH*/
1209 case IEEE80211_M_HOSTAP: /* XXX */
1210 /* EA bit seems important for ad hoc reception. */
1211 sc->sc_opmode |= ATW_NAR_EA;
1212 break;
1213 case IEEE80211_M_MONITOR: /* XXX */
1214 break;
1215 }
1216
1217 atw_start_beacon(sc, 0);
1218
1219 switch (ic->ic_opmode) {
1220 case IEEE80211_M_AHDEMO:
1221 case IEEE80211_M_HOSTAP:
1222 ic->ic_bss->ni_intval = ic->ic_lintval;
1223 ic->ic_bss->ni_rssi = 0;
1224 ic->ic_bss->ni_rstamp = 0;
1225 break;
1226 default: /* XXX */
1227 break;
1228 }
1229
1230 atw_write_ssid(sc);
1231 atw_write_sup_rates(sc);
1232 if (ic->ic_caps & IEEE80211_C_WEP)
1233 atw_write_wep(sc);
1234
1235 /*
1236 * Set the receive filter. This will start the transmit and
1237 * receive processes.
1238 */
1239 atw_filter_setup(sc);
1240
1241 /*
1242 * Start the receive process.
1243 */
1244 ATW_WRITE(sc, ATW_RDR, 0x1);
1245
1246 /*
1247 * Note that the interface is now running.
1248 */
1249 ifp->if_flags |= IFF_RUNNING;
1250 ifp->if_flags &= ~IFF_OACTIVE;
1251 ic->ic_state = IEEE80211_S_INIT;
1252
1253 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1254 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1255 else
1256 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1257 out:
1258 if (error) {
1259 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1260 ifp->if_timer = 0;
1261 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1262 }
1263 #ifdef ATW_DEBUG
1264 atw_print_regs(sc, "end of init");
1265 #endif /* ATW_DEBUG */
1266
1267 return (error);
1268 }
1269
1270 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1271 * 0: MAC control of RF3000/Si4126.
1272 *
1273 * Applies power, or selects RF front-end? Sets reset condition.
1274 *
1275 * TBD support non-RFMD BBP, non-SiLabs synth.
1276 */
1277 static void
1278 atw_rfio_enable(struct atw_softc *sc, int enable)
1279 {
1280 if (enable) {
1281 ATW_WRITE(sc, ATW_SYNRF,
1282 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1283 DELAY(atw_rfio_enable_delay);
1284 } else {
1285 ATW_WRITE(sc, ATW_SYNRF, 0);
1286 DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1287 }
1288 }
1289
1290 static int
1291 atw_tune(struct atw_softc *sc)
1292 {
1293 int rc;
1294 u_int32_t reg;
1295 int chan;
1296 struct ieee80211com *ic = &sc->sc_ic;
1297
1298 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1299 if (chan == IEEE80211_CHAN_ANY)
1300 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1301
1302 if (chan == sc->sc_cur_chan)
1303 return 0;
1304
1305 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1306 sc->sc_cur_chan, chan));
1307
1308 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1309
1310 if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1311 (rc = atw_rf3000_tune(sc, chan)) != 0)
1312 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1313 chan);
1314
1315 reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1316 ATW_WRITE(sc, ATW_CAP0,
1317 reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1318
1319 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1320
1321 if (rc == 0)
1322 sc->sc_cur_chan = chan;
1323
1324 return rc;
1325 }
1326
1327 #ifdef ATW_DEBUG
1328 static void
1329 atw_si4126_print(struct atw_softc *sc)
1330 {
1331 struct ifnet *ifp = &sc->sc_ic.ic_if;
1332 u_int addr, val;
1333
1334 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1335 return;
1336
1337 for (addr = 0; addr <= 8; addr++) {
1338 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1339 if (atw_si4126_read(sc, addr, &val) == 0) {
1340 printf("<unknown> (quitting print-out)\n");
1341 break;
1342 }
1343 printf("%05x\n", val);
1344 }
1345 }
1346 #endif /* ATW_DEBUG */
1347
1348 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1349 *
1350 * The RF/IF synthesizer produces two reference frequencies for
1351 * the RF2948B transceiver. The first frequency the RF2948B requires
1352 * is two times the so-called "intermediate frequency" (IF). Since
1353 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1354 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1355 * frequency required by the transceiver is the radio frequency
1356 * (RF). This is a superheterodyne transceiver; for f(chan) the
1357 * center frequency of the channel we are tuning, RF = f(chan) -
1358 * IF.
1359 *
1360 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1361 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1362 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1363 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1364 */
1365 static int
1366 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
1367 {
1368 int rc = 0;
1369 u_int mhz;
1370 u_int R;
1371 u_int32_t reg;
1372 u_int16_t gain;
1373
1374 #ifdef ATW_DEBUG
1375 atw_si4126_print(sc);
1376 #endif /* ATW_DEBUG */
1377
1378 if (chan == 14)
1379 mhz = 2484;
1380 else
1381 mhz = 2412 + 5 * (chan - 1);
1382
1383 /* Tune IF to 748MHz to suit the IF LO input of the
1384 * RF2494B, which is 2 x IF. No need to set an IF divider
1385 * because an IF in 526MHz - 952MHz is allowed.
1386 *
1387 * XIN is 44.000MHz, so divide it by two to get allowable
1388 * range of 2-25MHz. SiLabs tells me that this is not
1389 * strictly necessary.
1390 */
1391
1392 R = 44;
1393
1394 atw_rfio_enable(sc, 1);
1395
1396 /* Power-up RF, IF synthesizers. */
1397 if ((rc = atw_si4126_write(sc, SI4126_POWER,
1398 SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1399 goto out;
1400
1401 /* If RF2 N > 2047, then set KP2 to 1. */
1402 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1403
1404 if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1405 goto out;
1406
1407 /* set LPWR, too? */
1408 if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1409 SI4126_MAIN_XINDIV2)) != 0)
1410 goto out;
1411
1412 /* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN. XIN = 44MHz.
1413 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1414 */
1415 if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1416 goto out;
1417
1418 if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1419 goto out;
1420
1421 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1422 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1423 * which has no RF1!
1424 */
1425 if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1426 goto out;
1427
1428 if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1429 goto out;
1430
1431 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1432 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1433 * Now let's multiply it to mhz. So mhz - IF = N.
1434 */
1435 if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1436 goto out;
1437
1438 if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1439 goto out;
1440
1441 /* wait 100us from power-up for RF, IF to settle */
1442 DELAY(100);
1443
1444 if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1445 /* XXX there is a binary driver which sends
1446 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1447 * that this enables the Si4126 by raising its PWDN#, but I
1448 * think that it actually sets the Prism RF front-end
1449 * to a special mode for channel 14.
1450 */
1451 reg = ATW_READ(sc, ATW_GPIO);
1452 reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1453 reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1454 ATW_WRITE(sc, ATW_GPIO, reg);
1455 }
1456
1457 #ifdef ATW_DEBUG
1458 atw_si4126_print(sc);
1459 #endif /* ATW_DEBUG */
1460
1461 out:
1462 atw_rfio_enable(sc, 0);
1463
1464 return rc;
1465 }
1466
1467 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1468 * diversity.
1469 *
1470 * Call this w/ Tx/Rx suspended.
1471 */
1472 static int
1473 atw_rf3000_init(struct atw_softc *sc)
1474 {
1475 int rc = 0;
1476
1477 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1478
1479 atw_rfio_enable(sc, 1);
1480
1481 /* enable diversity */
1482 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1483
1484 if (rc != 0)
1485 goto out;
1486
1487 /* sensible setting from a binary-only driver */
1488 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1489 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1490
1491 if (rc != 0)
1492 goto out;
1493
1494 /* magic from a binary-only driver */
1495 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1496 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1497
1498 if (rc != 0)
1499 goto out;
1500
1501 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1502
1503 if (rc != 0)
1504 goto out;
1505
1506 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1507
1508 if (rc != 0)
1509 goto out;
1510
1511 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1512
1513 if (rc != 0)
1514 goto out;
1515
1516 /* CCA is acquisition sensitive */
1517 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1518 LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1519
1520 if (rc != 0)
1521 goto out;
1522
1523 out:
1524 atw_rfio_enable(sc, 0);
1525 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1526 return rc;
1527 }
1528
1529 #ifdef ATW_DEBUG
1530 static void
1531 atw_rf3000_print(struct atw_softc *sc)
1532 {
1533 struct ifnet *ifp = &sc->sc_ic.ic_if;
1534 u_int addr, val;
1535
1536 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1537 return;
1538
1539 for (addr = 0x01; addr <= 0x15; addr++) {
1540 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1541 if (atw_rf3000_read(sc, addr, &val) != 0) {
1542 printf("<unknown> (quitting print-out)\n");
1543 break;
1544 }
1545 printf("%08x\n", val);
1546 }
1547 }
1548 #endif /* ATW_DEBUG */
1549
1550 /* Set the power settings on the BBP for channel `chan'. */
1551 static int
1552 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
1553 {
1554 int rc = 0;
1555 u_int32_t reg;
1556 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1557
1558 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1559 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1560 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1561
1562 /* odd channels: LSB, even channels: MSB */
1563 if (chan % 2 == 1) {
1564 txpower &= 0xFF;
1565 lpf_cutoff &= 0xFF;
1566 lna_gs_thresh &= 0xFF;
1567 } else {
1568 txpower >>= 8;
1569 lpf_cutoff >>= 8;
1570 lna_gs_thresh >>= 8;
1571 }
1572
1573 #ifdef ATW_DEBUG
1574 atw_rf3000_print(sc);
1575 #endif /* ATW_DEBUG */
1576
1577 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1578 "lna_gs_thresh %02x\n",
1579 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1580
1581 atw_rfio_enable(sc, 1);
1582
1583 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1584 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1585 goto out;
1586
1587 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1588 goto out;
1589
1590 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1591 goto out;
1592
1593 /* from a binary-only driver. */
1594 reg = ATW_READ(sc, ATW_PLCPHD);
1595 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1596 reg |= LSHIFT(txpower << 2, ATW_PLCPHD_SERVICE_MASK);
1597 ATW_WRITE(sc, ATW_PLCPHD, reg);
1598
1599 #ifdef ATW_DEBUG
1600 atw_rf3000_print(sc);
1601 #endif /* ATW_DEBUG */
1602
1603 out:
1604 atw_rfio_enable(sc, 0);
1605
1606 return rc;
1607 }
1608
1609 /* Write a register on the RF3000 baseband processor using the
1610 * registers provided by the ADM8211 for this purpose.
1611 *
1612 * Return 0 on success.
1613 */
1614 static int
1615 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1616 {
1617 u_int32_t reg;
1618 int i;
1619
1620 for (i = 1000; --i >= 0; ) {
1621 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1622 break;
1623 DELAY(100);
1624 }
1625
1626 if (i < 0) {
1627 printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1628 return ETIMEDOUT;
1629 }
1630
1631 reg = sc->sc_bbpctl_wr |
1632 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1633 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1634
1635 ATW_WRITE(sc, ATW_BBPCTL, reg);
1636
1637 for (i = 1000; --i >= 0; ) {
1638 DELAY(100);
1639 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1640 break;
1641 }
1642
1643 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1644
1645 if (i < 0) {
1646 printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1647 return ETIMEDOUT;
1648 }
1649 return 0;
1650 }
1651
1652 /* Read a register on the RF3000 baseband processor using the registers
1653 * the ADM8211 provides for this purpose.
1654 *
1655 * The 7-bit register address is addr. Record the 8-bit data in the register
1656 * in *val.
1657 *
1658 * Return 0 on success.
1659 *
1660 * XXX This does not seem to work. The ADM8211 must require more or
1661 * different magic to read the chip than to write it. Possibly some
1662 * of the magic I have derived from a binary-only driver concerns
1663 * the "chip address" (see the RF3000 manual).
1664 */
1665 #ifdef ATW_DEBUG
1666 static int
1667 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1668 {
1669 u_int32_t reg;
1670 int i;
1671
1672 for (i = 1000; --i >= 0; ) {
1673 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1674 break;
1675 DELAY(100);
1676 }
1677
1678 if (i < 0) {
1679 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1680 sc->sc_dev.dv_xname);
1681 return ETIMEDOUT;
1682 }
1683
1684 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1685
1686 ATW_WRITE(sc, ATW_BBPCTL, reg);
1687
1688 for (i = 1000; --i >= 0; ) {
1689 DELAY(100);
1690 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1691 break;
1692 }
1693
1694 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1695
1696 if (i < 0) {
1697 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1698 sc->sc_dev.dv_xname, reg);
1699 return ETIMEDOUT;
1700 }
1701 if (val != NULL)
1702 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1703 return 0;
1704 }
1705 #endif /* ATW_DEBUG */
1706
1707 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1708 * provided by the ADM8211 for that purpose.
1709 *
1710 * val is 18 bits of data, and val is the 4-bit address of the register.
1711 *
1712 * Return 0 on success.
1713 */
1714 static int
1715 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1716 {
1717 u_int32_t reg;
1718 int i;
1719
1720 for (i = 1000; --i >= 0; ) {
1721 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1722 break;
1723 DELAY(100);
1724 }
1725
1726 if (i < 0) {
1727 printf("%s: start atw_si4126_write, SYNCTL busy\n",
1728 sc->sc_dev.dv_xname);
1729 return ETIMEDOUT;
1730 }
1731
1732 reg = sc->sc_synctl_wr |
1733 LSHIFT(((val & 0x3ffff) << 4) | (addr & 0xf), ATW_SYNCTL_DATA_MASK);
1734
1735 ATW_WRITE(sc, ATW_SYNCTL, reg);
1736
1737 for (i = 1000; --i >= 0; ) {
1738 DELAY(100);
1739 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1740 break;
1741 }
1742
1743 /* restore to acceptable starting condition */
1744 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1745
1746 if (i < 0) {
1747 printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1748 sc->sc_dev.dv_xname, reg);
1749 return ETIMEDOUT;
1750 }
1751 return 0;
1752 }
1753
1754 /* Read 18-bit data from the 4-bit address addr in Si4126
1755 * RF synthesizer and write the data to *val. Return 0 on success.
1756 *
1757 * XXX This does not seem to work. The ADM8211 must require more or
1758 * different magic to read the chip than to write it.
1759 */
1760 #ifdef ATW_DEBUG
1761 static int
1762 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1763 {
1764 u_int32_t reg;
1765 int i;
1766
1767 for (i = 1000; --i >= 0; ) {
1768 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1769 break;
1770 DELAY(100);
1771 }
1772
1773 if (i < 0) {
1774 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1775 sc->sc_dev.dv_xname);
1776 return ETIMEDOUT;
1777 }
1778
1779 reg = sc->sc_synctl_rd | LSHIFT(addr & 0xf, ATW_SYNCTL_DATA_MASK);
1780
1781 ATW_WRITE(sc, ATW_SYNCTL, reg);
1782
1783 for (i = 1000; --i >= 0; ) {
1784 DELAY(100);
1785 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1786 break;
1787 }
1788
1789 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1790
1791 if (i < 0) {
1792 printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1793 sc->sc_dev.dv_xname, reg);
1794 return ETIMEDOUT;
1795 }
1796 if (val != NULL)
1797 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1798 ATW_SYNCTL_DATA_MASK);
1799 return 0;
1800 }
1801 #endif /* ATW_DEBUG */
1802
1803 /* XXX is the endianness correct? test. */
1804 #define atw_calchash(addr) \
1805 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1806
1807 /*
1808 * atw_filter_setup:
1809 *
1810 * Set the ADM8211's receive filter.
1811 */
1812 static void
1813 atw_filter_setup(struct atw_softc *sc)
1814 {
1815 struct ieee80211com *ic = &sc->sc_ic;
1816 struct ethercom *ec = &ic->ic_ec;
1817 struct ifnet *ifp = &sc->sc_ic.ic_if;
1818 int hash;
1819 u_int32_t hashes[2] = { 0, 0 };
1820 struct ether_multi *enm;
1821 struct ether_multistep step;
1822
1823 DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1824 sc->sc_dev.dv_xname, sc->sc_flags));
1825
1826 /*
1827 * If we're running, idle the receive engine. If we're NOT running,
1828 * we're being called from atw_init(), and our writing ATW_NAR will
1829 * start the transmit and receive processes in motion.
1830 */
1831 if (ifp->if_flags & IFF_RUNNING)
1832 atw_idle(sc, ATW_NAR_SR);
1833
1834 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1835
1836 ifp->if_flags &= ~IFF_ALLMULTI;
1837
1838 if (ifp->if_flags & IFF_PROMISC) {
1839 sc->sc_opmode |= ATW_NAR_PR;
1840 allmulti:
1841 ifp->if_flags |= IFF_ALLMULTI;
1842 goto setit;
1843 }
1844
1845 /*
1846 * Program the 64-bit multicast hash filter.
1847 */
1848 ETHER_FIRST_MULTI(step, ec, enm);
1849 while (enm != NULL) {
1850 /* XXX */
1851 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1852 ETHER_ADDR_LEN) != 0)
1853 goto allmulti;
1854
1855 hash = atw_calchash(enm->enm_addrlo);
1856 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1857 ETHER_NEXT_MULTI(step, enm);
1858 }
1859
1860 if (ifp->if_flags & IFF_BROADCAST) {
1861 hash = atw_calchash(etherbroadcastaddr);
1862 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1863 }
1864
1865 /* all bits set => hash is useless */
1866 if (~(hashes[0] & hashes[1]) == 0)
1867 goto allmulti;
1868
1869 setit:
1870 if (ifp->if_flags & IFF_ALLMULTI)
1871 sc->sc_opmode |= ATW_NAR_MM;
1872
1873 /* XXX in scan mode, do not filter packets. maybe this is
1874 * unnecessary.
1875 */
1876 if (ic->ic_state == IEEE80211_S_SCAN)
1877 sc->sc_opmode |= ATW_NAR_PR;
1878
1879 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1880 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1881 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1882 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1883 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1884
1885 DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1886 }
1887
1888 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1889 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1890 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1891 * no beacon with the preferred BSSID and SSID in the number of
1892 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1893 */
1894 static void
1895 atw_write_bssid(struct atw_softc *sc)
1896 {
1897 struct ieee80211com *ic = &sc->sc_ic;
1898 u_int8_t *bssid;
1899
1900 bssid = ic->ic_bss->ni_bssid;
1901
1902 ATW_WRITE(sc, ATW_ABDA1,
1903 (ATW_READ(sc, ATW_ABDA1) &
1904 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1905 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1906 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1907
1908 ATW_WRITE(sc, ATW_BSSID0,
1909 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1910 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1911 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1912 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1913
1914 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1915 ether_sprintf(sc->sc_bssid)));
1916 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1917
1918 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1919 }
1920
1921 /* Tell the ADM8211 how many beacon intervals must pass without
1922 * receiving a beacon with the preferred BSSID & SSID set by
1923 * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
1924 * raised.
1925 */
1926 static void
1927 atw_write_bcn_thresh(struct atw_softc *sc)
1928 {
1929 struct ieee80211com *ic = &sc->sc_ic;
1930 int lost_bcn_thresh;
1931
1932 /* Lose link after one second or 7 beacons, whichever comes
1933 * first, but do not lose link before 2 beacons are lost.
1934 *
1935 * In host AP mode, set the lost-beacon threshold to 0.
1936 */
1937 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1938 lost_bcn_thresh = 0;
1939 else {
1940 int beacons_per_second =
1941 1000000 / (IEEE80211_DUR_TU * MAX(1,ic->ic_bss->ni_intval));
1942 lost_bcn_thresh = MAX(2, MIN(7, beacons_per_second));
1943 }
1944
1945 /* XXX resets wake-up status bits */
1946 ATW_WRITE(sc, ATW_WCSR,
1947 (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
1948 (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
1949
1950 DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
1951 sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
1952
1953 sc->sc_lost_bcn_thresh = lost_bcn_thresh;
1954
1955 DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
1956 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
1957 }
1958
1959 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1960 * 16-bit word.
1961 */
1962 static void
1963 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
1964 {
1965 u_int i;
1966 u_int8_t *ptr;
1967
1968 memcpy(&sc->sc_sram[ofs], buf, buflen);
1969
1970 if (ofs % 2 != 0) {
1971 ofs--;
1972 buflen++;
1973 }
1974
1975 if (buflen % 2 != 0)
1976 buflen++;
1977
1978 assert(buflen + ofs <= ATW_SRAM_SIZE);
1979
1980 ptr = &sc->sc_sram[ofs];
1981
1982 for (i = 0; i < buflen; i += 2) {
1983 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
1984 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
1985 DELAY(atw_writewep_delay);
1986
1987 ATW_WRITE(sc, ATW_WESK,
1988 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
1989 DELAY(atw_writewep_delay);
1990 }
1991 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
1992
1993 if (sc->sc_if.if_flags & IFF_DEBUG) {
1994 int n_octets = 0;
1995 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
1996 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
1997 for (i = 0; i < buflen; i++) {
1998 printf(" %02x", ptr[i]);
1999 if (++n_octets % 24 == 0)
2000 printf("\n");
2001 }
2002 if (n_octets % 24 != 0)
2003 printf("\n");
2004 }
2005 }
2006
2007 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2008 static void
2009 atw_write_wep(struct atw_softc *sc)
2010 {
2011 struct ieee80211com *ic = &sc->sc_ic;
2012 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2013 u_int8_t buf[IEEE80211_WEP_NKID]
2014 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2015 u_int32_t reg;
2016 int i;
2017
2018 sc->sc_wepctl = 0;
2019 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2020
2021 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2022 return;
2023
2024 memset(&buf[0][0], 0, sizeof(buf));
2025
2026 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2027 if (ic->ic_nw_keys[i].wk_len > 5) {
2028 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2029 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2030 buf[i][1] = ATW_WEP_ENABLED;
2031 } else {
2032 buf[i][1] = 0;
2033 continue;
2034 }
2035 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2036 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2037 ic->ic_nw_keys[i].wk_len - 1);
2038 }
2039
2040 reg = ATW_READ(sc, ATW_MACTEST);
2041 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2042 reg &= ~ATW_MACTEST_KEYID_MASK;
2043 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2044 ATW_WRITE(sc, ATW_MACTEST, reg);
2045
2046 /* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2047 * throughout.)
2048 */
2049 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2050 if (sc->sc_if.if_flags & IFF_LINK2)
2051 sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2052
2053 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2054 sizeof(buf));
2055 }
2056
2057 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2058
2059 static void
2060 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2061 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2062 {
2063 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2064
2065 switch (subtype) {
2066 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2067 /* do nothing: hardware answers probe request */
2068 break;
2069 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2070 case IEEE80211_FC0_SUBTYPE_BEACON:
2071 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2072 break;
2073 default:
2074 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2075 break;
2076 }
2077 return;
2078 }
2079
2080 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2081 * of IBSSs with like SSID/channel but different BSSID. It joins the
2082 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2083 * convention. Possibly the ADMtek chip does this for us; I will have
2084 * to test to find out.
2085 *
2086 * XXX we should add the duration field of the received beacon to
2087 * the TSF time it contains before comparing it with the ADM8211's
2088 * TSF.
2089 */
2090 static void
2091 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2092 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2093 {
2094 struct atw_softc *sc;
2095 struct ieee80211_frame *wh;
2096 u_int64_t tsft, bcn_tsft;
2097 u_int32_t tsftl, tsfth;
2098 int do_print = 0;
2099
2100 sc = (struct atw_softc*)ic->ic_if.if_softc;
2101
2102 if (ic->ic_if.if_flags & IFF_DEBUG)
2103 do_print = (ic->ic_if.if_flags & IFF_LINK0)
2104 ? 1 : ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval);
2105
2106 wh = mtod(m0, struct ieee80211_frame *);
2107
2108 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2109
2110 if (ic->ic_state != IEEE80211_S_RUN) {
2111 if (do_print)
2112 printf("%s: atw_recv_beacon: not running\n",
2113 sc->sc_dev.dv_xname);
2114 return;
2115 }
2116
2117 if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2118 ic->ic_bss->ni_chan)) == NULL) {
2119 if (do_print)
2120 printf("%s: atw_recv_beacon: no node %s\n",
2121 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2122 return;
2123 }
2124
2125 if (ieee80211_match_bss(ic, ni) != 0) {
2126 if (do_print)
2127 printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2128 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2129 return;
2130 }
2131
2132 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2133 return;
2134
2135 if (do_print)
2136 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2137 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2138
2139 if (ic->ic_opmode != IEEE80211_M_IBSS)
2140 return;
2141
2142 /* If we read TSFTL right before rollover, we read a TSF timer
2143 * that is too high rather than too low. This prevents a spurious
2144 * synchronization down the line, however, our IBSS could suffer
2145 * from a creeping TSF....
2146 */
2147 tsftl = ATW_READ(sc, ATW_TSFTL);
2148 tsfth = ATW_READ(sc, ATW_TSFTH);
2149
2150 tsft = (u_int64_t)tsfth << 32 | tsftl;
2151 bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2152
2153 if (do_print)
2154 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2155 sc->sc_dev.dv_xname, tsft, bcn_tsft);
2156
2157 /* we are faster, let the other guy catch up */
2158 if (bcn_tsft < tsft)
2159 return;
2160
2161 if (do_print)
2162 printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2163 ether_sprintf(wh->i_addr2));
2164
2165 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2166
2167 #if 0
2168 atw_tsf(sc);
2169 #endif
2170
2171 /* negotiate rates with new IBSS */
2172 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2173 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2174 if (ni->ni_rates.rs_nrates == 0) {
2175 printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2176 ether_sprintf(ni->ni_bssid));
2177 return;
2178 }
2179
2180 if (do_print) {
2181 printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2182 ether_sprintf(ic->ic_bss->ni_bssid));
2183 printf("%s ", ether_sprintf(ni->ni_bssid));
2184 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2185 }
2186
2187 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2188
2189 atw_write_bssid(sc);
2190 atw_write_bcn_thresh(sc);
2191 atw_start_beacon(sc, 1);
2192 }
2193
2194 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2195 * In ad hoc mode, the SSID is written to the beacons sent by the
2196 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2197 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2198 * indications.
2199 */
2200 static void
2201 atw_write_ssid(struct atw_softc *sc)
2202 {
2203 struct ieee80211com *ic = &sc->sc_ic;
2204 /* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2205 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2206
2207 memset(buf, 0, sizeof(buf));
2208 buf[0] = ic->ic_bss->ni_esslen;
2209 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2210
2211 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2212 }
2213
2214 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2215 * In ad hoc mode, the supported rates are written to beacons sent by the
2216 * ADM8211.
2217 */
2218 static void
2219 atw_write_sup_rates(struct atw_softc *sc)
2220 {
2221 struct ieee80211com *ic = &sc->sc_ic;
2222 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2223 * supported rates
2224 */
2225 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2226
2227 memset(buf, 0, sizeof(buf));
2228
2229 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2230
2231 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2232 ic->ic_bss->ni_rates.rs_nrates);
2233
2234 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2235 }
2236
2237 /* Start/stop sending beacons. */
2238 void
2239 atw_start_beacon(struct atw_softc *sc, int start)
2240 {
2241 struct ieee80211com *ic = &sc->sc_ic;
2242 u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2243
2244 if (ATW_IS_ENABLED(sc) == 0)
2245 return;
2246
2247 len = capinfo = 0;
2248
2249 /* start beacons */
2250 len = sizeof(struct ieee80211_frame) +
2251 8 /* timestamp */ + 2 /* beacon interval */ +
2252 2 /* capability info */ +
2253 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2254 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2255 3 /* DS parameters */ +
2256 IEEE80211_CRC_LEN;
2257
2258 reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2259
2260 reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2261
2262 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2263 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2264
2265 if (!start)
2266 return;
2267
2268 /* TBD use ni_capinfo */
2269
2270 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2271 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2272 if (ic->ic_flags & IEEE80211_F_WEPON)
2273 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2274
2275 switch (ic->ic_opmode) {
2276 case IEEE80211_M_IBSS:
2277 len += 4; /* IBSS parameters */
2278 capinfo |= IEEE80211_CAPINFO_IBSS;
2279 break;
2280 case IEEE80211_M_HOSTAP:
2281 /* XXX 6-byte minimum TIM */
2282 len += atw_beacon_len_adjust;
2283 capinfo |= IEEE80211_CAPINFO_ESS;
2284 break;
2285 default:
2286 return;
2287 }
2288
2289 reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2290 reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2291
2292 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2293 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2294
2295 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2296 sc->sc_dev.dv_xname, reg_bcnt));
2297
2298 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2299 sc->sc_dev.dv_xname, reg_cap1));
2300 }
2301
2302 /* First beacon was sent at time 0 microseconds, current time is
2303 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2304 * microseconds. Return the expected time in microseconds for the
2305 * beacon after next.
2306 */
2307 static __inline u_int64_t
2308 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2309 {
2310 return tsft + (tbtt - tsft % tbtt);
2311 }
2312
2313 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2314 * the ieee80211com.
2315 *
2316 * Predict the next target beacon transmission time (TBTT) and
2317 * write it to the ADM8211.
2318 */
2319 static void
2320 atw_tsf(struct atw_softc *sc)
2321 {
2322 #define TBTTOFS 20 /* TU */
2323
2324 struct ieee80211com *ic = &sc->sc_ic;
2325 u_int64_t tsft, tbtt;
2326
2327 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2328 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2329 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2330 tsft = ATW_READ(sc, ATW_TSFTH);
2331 tsft <<= 32;
2332 tsft |= ATW_READ(sc, ATW_TSFTL);
2333 *(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2334 } else
2335 tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2336
2337 tbtt = atw_predict_beacon(tsft,
2338 ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2339
2340 /* skip one more beacon so that the TBTT cannot pass before
2341 * we've programmed it, and also so that we can subtract a
2342 * few TU so that we wake a little before TBTT.
2343 */
2344 tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2345
2346 /* wake up a little early */
2347 tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2348
2349 DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2350 sc->sc_dev.dv_xname, tsft, tbtt));
2351
2352 ATW_WRITE(sc, ATW_TOFS1,
2353 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2354 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2355 LSHIFT(
2356 MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2357 ATW_TOFS1_TBTTPRE_MASK));
2358 #undef TBTTOFS
2359 }
2360
2361 static void
2362 atw_next_scan(void *arg)
2363 {
2364 struct atw_softc *sc = arg;
2365 struct ieee80211com *ic = &sc->sc_ic;
2366 struct ifnet *ifp = &ic->ic_if;
2367 int s;
2368
2369 /* don't call atw_start w/o network interrupts blocked */
2370 s = splnet();
2371 if (ic->ic_state == IEEE80211_S_SCAN)
2372 ieee80211_next_scan(ifp);
2373 splx(s);
2374 }
2375
2376 /* Synchronize the hardware state with the software state. */
2377 static int
2378 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2379 {
2380 struct ifnet *ifp = &ic->ic_if;
2381 struct atw_softc *sc = ifp->if_softc;
2382 enum ieee80211_state ostate;
2383 int error;
2384
2385 ostate = ic->ic_state;
2386
2387 if (nstate == IEEE80211_S_INIT) {
2388 callout_stop(&sc->sc_scan_ch);
2389 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2390 atw_start_beacon(sc, 0);
2391 return (*sc->sc_newstate)(ic, nstate, arg);
2392 }
2393
2394 if ((error = atw_tune(sc)) != 0)
2395 return error;
2396
2397 switch (nstate) {
2398 case IEEE80211_S_ASSOC:
2399 break;
2400 case IEEE80211_S_INIT:
2401 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2402 break;
2403 case IEEE80211_S_SCAN:
2404 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2405 atw_write_bssid(sc);
2406
2407 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2408 atw_next_scan, sc);
2409
2410 break;
2411 case IEEE80211_S_RUN:
2412 if (ic->ic_opmode == IEEE80211_M_STA)
2413 break;
2414 /*FALLTHROUGH*/
2415 case IEEE80211_S_AUTH:
2416 atw_write_bssid(sc);
2417 atw_write_bcn_thresh(sc);
2418 atw_write_ssid(sc);
2419 atw_write_sup_rates(sc);
2420
2421 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2422 ic->ic_opmode == IEEE80211_M_MONITOR)
2423 break;
2424
2425 /* set listen interval
2426 * XXX do software units agree w/ hardware?
2427 */
2428 ATW_WRITE(sc, ATW_BPLI,
2429 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2430 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2431 ATW_BPLI_LI_MASK));
2432
2433 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2434 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2435
2436 atw_tsf(sc);
2437 break;
2438 }
2439
2440 if (nstate != IEEE80211_S_SCAN)
2441 callout_stop(&sc->sc_scan_ch);
2442
2443 if (nstate == IEEE80211_S_RUN &&
2444 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2445 ic->ic_opmode == IEEE80211_M_IBSS))
2446 atw_start_beacon(sc, 1);
2447 else
2448 atw_start_beacon(sc, 0);
2449
2450 return (*sc->sc_newstate)(ic, nstate, arg);
2451 }
2452
2453 /*
2454 * atw_add_rxbuf:
2455 *
2456 * Add a receive buffer to the indicated descriptor.
2457 */
2458 int
2459 atw_add_rxbuf(struct atw_softc *sc, int idx)
2460 {
2461 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2462 struct mbuf *m;
2463 int error;
2464
2465 MGETHDR(m, M_DONTWAIT, MT_DATA);
2466 if (m == NULL)
2467 return (ENOBUFS);
2468
2469 MCLGET(m, M_DONTWAIT);
2470 if ((m->m_flags & M_EXT) == 0) {
2471 m_freem(m);
2472 return (ENOBUFS);
2473 }
2474
2475 if (rxs->rxs_mbuf != NULL)
2476 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2477
2478 rxs->rxs_mbuf = m;
2479
2480 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2481 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2482 BUS_DMA_READ|BUS_DMA_NOWAIT);
2483 if (error) {
2484 printf("%s: can't load rx DMA map %d, error = %d\n",
2485 sc->sc_dev.dv_xname, idx, error);
2486 panic("atw_add_rxbuf"); /* XXX */
2487 }
2488
2489 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2490 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2491
2492 ATW_INIT_RXDESC(sc, idx);
2493
2494 return (0);
2495 }
2496
2497 /*
2498 * atw_stop: [ ifnet interface function ]
2499 *
2500 * Stop transmission on the interface.
2501 */
2502 void
2503 atw_stop(struct ifnet *ifp, int disable)
2504 {
2505 struct atw_softc *sc = ifp->if_softc;
2506 struct ieee80211com *ic = &sc->sc_ic;
2507 struct atw_txsoft *txs;
2508
2509 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2510
2511 /* Disable interrupts. */
2512 ATW_WRITE(sc, ATW_IER, 0);
2513
2514 /* Stop the transmit and receive processes. */
2515 sc->sc_opmode = 0;
2516 ATW_WRITE(sc, ATW_NAR, 0);
2517 ATW_WRITE(sc, ATW_TDBD, 0);
2518 ATW_WRITE(sc, ATW_TDBP, 0);
2519 ATW_WRITE(sc, ATW_RDB, 0);
2520
2521 /*
2522 * Release any queued transmit buffers.
2523 */
2524 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2525 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2526 if (txs->txs_mbuf != NULL) {
2527 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2528 m_freem(txs->txs_mbuf);
2529 txs->txs_mbuf = NULL;
2530 }
2531 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2532 }
2533
2534 if (disable) {
2535 atw_rxdrain(sc);
2536 atw_disable(sc);
2537 }
2538
2539 /*
2540 * Mark the interface down and cancel the watchdog timer.
2541 */
2542 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2543 ifp->if_timer = 0;
2544
2545 /* XXX */
2546 atw_reset(sc);
2547 }
2548
2549 /*
2550 * atw_rxdrain:
2551 *
2552 * Drain the receive queue.
2553 */
2554 void
2555 atw_rxdrain(struct atw_softc *sc)
2556 {
2557 struct atw_rxsoft *rxs;
2558 int i;
2559
2560 for (i = 0; i < ATW_NRXDESC; i++) {
2561 rxs = &sc->sc_rxsoft[i];
2562 if (rxs->rxs_mbuf == NULL)
2563 continue;
2564 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2565 m_freem(rxs->rxs_mbuf);
2566 rxs->rxs_mbuf = NULL;
2567 }
2568 }
2569
2570 /*
2571 * atw_detach:
2572 *
2573 * Detach an ADM8211 interface.
2574 */
2575 int
2576 atw_detach(struct atw_softc *sc)
2577 {
2578 struct ifnet *ifp = &sc->sc_ic.ic_if;
2579 struct atw_rxsoft *rxs;
2580 struct atw_txsoft *txs;
2581 int i;
2582
2583 /*
2584 * Succeed now if there isn't any work to do.
2585 */
2586 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2587 return (0);
2588
2589 ieee80211_ifdetach(ifp);
2590 if_detach(ifp);
2591
2592 for (i = 0; i < ATW_NRXDESC; i++) {
2593 rxs = &sc->sc_rxsoft[i];
2594 if (rxs->rxs_mbuf != NULL) {
2595 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2596 m_freem(rxs->rxs_mbuf);
2597 rxs->rxs_mbuf = NULL;
2598 }
2599 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2600 }
2601 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2602 txs = &sc->sc_txsoft[i];
2603 if (txs->txs_mbuf != NULL) {
2604 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2605 m_freem(txs->txs_mbuf);
2606 txs->txs_mbuf = NULL;
2607 }
2608 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2609 }
2610 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2611 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2612 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2613 sizeof(struct atw_control_data));
2614 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2615
2616 shutdownhook_disestablish(sc->sc_sdhook);
2617 powerhook_disestablish(sc->sc_powerhook);
2618
2619 if (sc->sc_srom)
2620 free(sc->sc_srom, M_DEVBUF);
2621
2622 return (0);
2623 }
2624
2625 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2626 void
2627 atw_shutdown(void *arg)
2628 {
2629 struct atw_softc *sc = arg;
2630
2631 atw_stop(&sc->sc_ic.ic_if, 1);
2632 }
2633
2634 int
2635 atw_intr(void *arg)
2636 {
2637 struct atw_softc *sc = arg;
2638 struct ifnet *ifp = &sc->sc_ic.ic_if;
2639 u_int32_t status, rxstatus, txstatus, linkstatus;
2640 int handled = 0, txthresh;
2641
2642 #ifdef DEBUG
2643 if (ATW_IS_ENABLED(sc) == 0)
2644 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2645 #endif
2646
2647 /*
2648 * If the interface isn't running, the interrupt couldn't
2649 * possibly have come from us.
2650 */
2651 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2652 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2653 return (0);
2654
2655 for (;;) {
2656 status = ATW_READ(sc, ATW_STSR);
2657
2658 if (status)
2659 ATW_WRITE(sc, ATW_STSR, status);
2660
2661 if (sc->sc_intr_ack != NULL)
2662 (*sc->sc_intr_ack)(sc);
2663
2664 #ifdef ATW_DEBUG
2665 #define PRINTINTR(flag) do { \
2666 if ((status & flag) != 0) { \
2667 printf("%s" #flag, delim); \
2668 delim = ","; \
2669 } \
2670 } while (0)
2671
2672 if (atw_debug > 1 && status) {
2673 const char *delim = "<";
2674
2675 printf("%s: reg[STSR] = %x",
2676 sc->sc_dev.dv_xname, status);
2677
2678 PRINTINTR(ATW_INTR_FBE);
2679 PRINTINTR(ATW_INTR_LINKOFF);
2680 PRINTINTR(ATW_INTR_LINKON);
2681 PRINTINTR(ATW_INTR_RCI);
2682 PRINTINTR(ATW_INTR_RDU);
2683 PRINTINTR(ATW_INTR_REIS);
2684 PRINTINTR(ATW_INTR_RPS);
2685 PRINTINTR(ATW_INTR_TCI);
2686 PRINTINTR(ATW_INTR_TDU);
2687 PRINTINTR(ATW_INTR_TLT);
2688 PRINTINTR(ATW_INTR_TPS);
2689 PRINTINTR(ATW_INTR_TRT);
2690 PRINTINTR(ATW_INTR_TUF);
2691 PRINTINTR(ATW_INTR_BCNTC);
2692 PRINTINTR(ATW_INTR_ATIME);
2693 PRINTINTR(ATW_INTR_TBTT);
2694 PRINTINTR(ATW_INTR_TSCZ);
2695 PRINTINTR(ATW_INTR_TSFTF);
2696 printf(">\n");
2697 }
2698 #undef PRINTINTR
2699 #endif /* ATW_DEBUG */
2700
2701 if ((status & sc->sc_inten) == 0)
2702 break;
2703
2704 handled = 1;
2705
2706 rxstatus = status & sc->sc_rxint_mask;
2707 txstatus = status & sc->sc_txint_mask;
2708 linkstatus = status & sc->sc_linkint_mask;
2709
2710 if (linkstatus) {
2711 atw_linkintr(sc, linkstatus);
2712 }
2713
2714 if (rxstatus) {
2715 /* Grab any new packets. */
2716 atw_rxintr(sc);
2717
2718 if (rxstatus & ATW_INTR_RDU) {
2719 printf("%s: receive ring overrun\n",
2720 sc->sc_dev.dv_xname);
2721 /* Get the receive process going again. */
2722 ATW_WRITE(sc, ATW_RDR, 0x1);
2723 break;
2724 }
2725 }
2726
2727 if (txstatus) {
2728 /* Sweep up transmit descriptors. */
2729 atw_txintr(sc);
2730
2731 if (txstatus & ATW_INTR_TLT)
2732 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2733 sc->sc_dev.dv_xname));
2734
2735 if (txstatus & ATW_INTR_TRT)
2736 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2737 sc->sc_dev.dv_xname));
2738
2739 /* If Tx under-run, increase our transmit threshold
2740 * if another is available.
2741 */
2742 txthresh = sc->sc_txthresh + 1;
2743 if ((txstatus & ATW_INTR_TUF) &&
2744 sc->sc_txth[txthresh].txth_name != NULL) {
2745 /* Idle the transmit process. */
2746 atw_idle(sc, ATW_NAR_ST);
2747
2748 sc->sc_txthresh = txthresh;
2749 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2750 sc->sc_opmode |=
2751 sc->sc_txth[txthresh].txth_opmode;
2752 printf("%s: transmit underrun; new "
2753 "threshold: %s\n", sc->sc_dev.dv_xname,
2754 sc->sc_txth[txthresh].txth_name);
2755
2756 /* Set the new threshold and restart
2757 * the transmit process.
2758 */
2759 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2760 /* XXX Log every Nth underrun from
2761 * XXX now on?
2762 */
2763 }
2764 }
2765
2766 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2767 if (status & ATW_INTR_TPS)
2768 printf("%s: transmit process stopped\n",
2769 sc->sc_dev.dv_xname);
2770 if (status & ATW_INTR_RPS)
2771 printf("%s: receive process stopped\n",
2772 sc->sc_dev.dv_xname);
2773 (void)atw_init(ifp);
2774 break;
2775 }
2776
2777 if (status & ATW_INTR_FBE) {
2778 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2779 (void)atw_init(ifp);
2780 break;
2781 }
2782
2783 /*
2784 * Not handled:
2785 *
2786 * Transmit buffer unavailable -- normal
2787 * condition, nothing to do, really.
2788 *
2789 * Early receive interrupt -- not available on
2790 * all chips, we just use RI. We also only
2791 * use single-segment receive DMA, so this
2792 * is mostly useless.
2793 *
2794 * TBD others
2795 */
2796 }
2797
2798 /* Try to get more packets going. */
2799 atw_start(ifp);
2800
2801 return (handled);
2802 }
2803
2804 /*
2805 * atw_idle:
2806 *
2807 * Cause the transmit and/or receive processes to go idle.
2808 *
2809 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2810 * process in STSR if I clear SR or ST after the process has already
2811 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2812 * do not seem to be too reliable. Perhaps I have the sense of the
2813 * Rx bits switched with the Tx bits?
2814 */
2815 void
2816 atw_idle(struct atw_softc *sc, u_int32_t bits)
2817 {
2818 u_int32_t ackmask = 0, opmode, stsr, test0;
2819 int i, s;
2820
2821 /* without this, somehow we run concurrently w/ interrupt handler */
2822 s = splnet();
2823
2824 opmode = sc->sc_opmode & ~bits;
2825
2826 if (bits & ATW_NAR_SR)
2827 ackmask |= ATW_INTR_RPS;
2828
2829 if (bits & ATW_NAR_ST) {
2830 ackmask |= ATW_INTR_TPS;
2831 /* set ATW_NAR_HF to flush TX FIFO. */
2832 opmode |= ATW_NAR_HF;
2833 }
2834
2835 ATW_WRITE(sc, ATW_NAR, opmode);
2836
2837 for (i = 0; i < 1000; i++) {
2838 stsr = ATW_READ(sc, ATW_STSR);
2839 if ((stsr & ackmask) == ackmask)
2840 break;
2841 DELAY(10);
2842 }
2843
2844 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2845
2846 if ((stsr & ackmask) == ackmask)
2847 goto out;
2848
2849 test0 = ATW_READ(sc, ATW_TEST0);
2850
2851 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2852 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2853 printf("%s: transmit process not idle [%s]\n",
2854 sc->sc_dev.dv_xname,
2855 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2856 printf("%s: bits %08x test0 %08x stsr %08x\n",
2857 sc->sc_dev.dv_xname, bits, test0, stsr);
2858 }
2859
2860 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2861 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2862 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2863 sc->sc_dev.dv_xname,
2864 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2865 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2866 sc->sc_dev.dv_xname, bits, test0, stsr));
2867 }
2868 out:
2869 splx(s);
2870 return;
2871 }
2872
2873 /*
2874 * atw_linkintr:
2875 *
2876 * Helper; handle link-status interrupts.
2877 */
2878 void
2879 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2880 {
2881 struct ieee80211com *ic = &sc->sc_ic;
2882
2883 if (ic->ic_state != IEEE80211_S_RUN)
2884 return;
2885
2886 if (linkstatus & ATW_INTR_LINKON) {
2887 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2888 sc->sc_rescan_timer = 0;
2889 } else if (linkstatus & ATW_INTR_LINKOFF) {
2890 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2891 switch (ic->ic_opmode) {
2892 case IEEE80211_M_HOSTAP:
2893 return;
2894 case IEEE80211_M_IBSS:
2895 if (ic->ic_flags & IEEE80211_F_SIBSS)
2896 return;
2897 /*FALLTHROUGH*/
2898 case IEEE80211_M_STA:
2899 sc->sc_rescan_timer = 3;
2900 ic->ic_if.if_timer = 1;
2901 break;
2902 default:
2903 break;
2904 }
2905 }
2906 }
2907
2908 /*
2909 * atw_rxintr:
2910 *
2911 * Helper; handle receive interrupts.
2912 */
2913 void
2914 atw_rxintr(struct atw_softc *sc)
2915 {
2916 static int rate_tbl[] = {2, 4, 11, 22, 44};
2917 struct ieee80211com *ic = &sc->sc_ic;
2918 struct ieee80211_node *ni;
2919 struct ieee80211_frame *wh;
2920 struct ifnet *ifp = &ic->ic_if;
2921 struct atw_rxsoft *rxs;
2922 struct mbuf *m;
2923 u_int32_t rxstat;
2924 int i, len, rate, rate0;
2925 u_int32_t rssi;
2926
2927 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2928 rxs = &sc->sc_rxsoft[i];
2929
2930 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2931
2932 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2933 rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2934 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2935
2936 if (rxstat & ATW_RXSTAT_OWN)
2937 break; /* We have processed all receive buffers. */
2938
2939 DPRINTF3(sc,
2940 ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2941 sc->sc_dev.dv_xname,
2942 sc->sc_rxdescs[i].ar_stat,
2943 sc->sc_rxdescs[i].ar_rssi,
2944 sc->sc_rxdescs[i].ar_buf1,
2945 sc->sc_rxdescs[i].ar_buf2));
2946
2947 /*
2948 * Make sure the packet fit in one buffer. This should
2949 * always be the case.
2950 */
2951 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2952 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2953 printf("%s: incoming packet spilled, resetting\n",
2954 sc->sc_dev.dv_xname);
2955 (void)atw_init(ifp);
2956 return;
2957 }
2958
2959 /*
2960 * If an error occurred, update stats, clear the status
2961 * word, and leave the packet buffer in place. It will
2962 * simply be reused the next time the ring comes around.
2963 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2964 * error.
2965 */
2966
2967 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
2968 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
2969 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
2970 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
2971 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
2972 ATW_RXSTAT_ICVE)) != 0)) {
2973 #define PRINTERR(bit, str) \
2974 if (rxstat & (bit)) \
2975 printf("%s: receive error: %s\n", \
2976 sc->sc_dev.dv_xname, str)
2977 ifp->if_ierrors++;
2978 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
2979 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
2980 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
2981 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
2982 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
2983 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
2984 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
2985 #undef PRINTERR
2986 ATW_INIT_RXDESC(sc, i);
2987 continue;
2988 }
2989
2990 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2991 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2992
2993 /*
2994 * No errors; receive the packet. Note the ADM8211
2995 * includes the CRC in promiscuous mode.
2996 */
2997 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
2998
2999 /*
3000 * Allocate a new mbuf cluster. If that fails, we are
3001 * out of memory, and must drop the packet and recycle
3002 * the buffer that's already attached to this descriptor.
3003 */
3004 m = rxs->rxs_mbuf;
3005 if (atw_add_rxbuf(sc, i) != 0) {
3006 ifp->if_ierrors++;
3007 ATW_INIT_RXDESC(sc, i);
3008 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3009 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3010 continue;
3011 }
3012
3013 ifp->if_ipackets++;
3014 if (sc->sc_opmode & ATW_NAR_PR)
3015 m->m_flags |= M_HASFCS;
3016 m->m_pkthdr.rcvif = ifp;
3017 m->m_pkthdr.len = m->m_len = len;
3018
3019 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3020 rate = 0;
3021 else
3022 rate = rate_tbl[rate0];
3023
3024 #if NBPFILTER > 0
3025 /* Pass this up to any BPF listeners. */
3026 if (sc->sc_radiobpf != NULL) {
3027 struct mbuf mb;
3028
3029 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3030
3031 tap->ar_rate = rate;
3032 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3033 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3034
3035 /* TBD verify units are dB */
3036 tap->ar_antsignal = (int)rssi;
3037 /* TBD tap->ar_flags */
3038
3039 M_COPY_PKTHDR(&mb, m);
3040 mb.m_data = (caddr_t)tap;
3041 mb.m_len = tap->ar_ihdr.it_len;
3042 mb.m_next = m;
3043 mb.m_pkthdr.len += mb.m_len;
3044 bpf_mtap(sc->sc_radiobpf, &mb);
3045 }
3046 #endif /* NPBFILTER > 0 */
3047
3048 wh = mtod(m, struct ieee80211_frame *);
3049 ni = ieee80211_find_rxnode(ic, wh);
3050 if (m->m_pkthdr.len >= sizeof(struct ieee80211_frame_min) ||
3051 ic->ic_opmode == IEEE80211_M_MONITOR)
3052 ieee80211_input(ifp, m, ni, (int)rssi, 0);
3053 /*
3054 * The frame may have caused the node to be marked for
3055 * reclamation (e.g. in response to a DEAUTH message)
3056 * so use free_node here instead of unref_node.
3057 */
3058 if (ni == ic->ic_bss)
3059 ieee80211_unref_node(&ni);
3060 else
3061 ieee80211_free_node(ic, ni);
3062 }
3063
3064 /* Update the receive pointer. */
3065 sc->sc_rxptr = i;
3066 }
3067
3068 /*
3069 * atw_txintr:
3070 *
3071 * Helper; handle transmit interrupts.
3072 */
3073 void
3074 atw_txintr(struct atw_softc *sc)
3075 {
3076 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3077 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3078 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3079 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3080
3081 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3082 struct ifnet *ifp = &sc->sc_ic.ic_if;
3083 struct atw_txsoft *txs;
3084 u_int32_t txstat;
3085
3086 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3087 sc->sc_dev.dv_xname, sc->sc_flags));
3088
3089 ifp->if_flags &= ~IFF_OACTIVE;
3090
3091 /*
3092 * Go through our Tx list and free mbufs for those
3093 * frames that have been transmitted.
3094 */
3095 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3096 ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3097 txs->txs_ndescs,
3098 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3099
3100 #ifdef ATW_DEBUG
3101 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3102 int i;
3103 printf(" txsoft %p transmit chain:\n", txs);
3104 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3105 printf(" descriptor %d:\n", i);
3106 printf(" at_status: 0x%08x\n",
3107 le32toh(sc->sc_txdescs[i].at_stat));
3108 printf(" at_flags: 0x%08x\n",
3109 le32toh(sc->sc_txdescs[i].at_flags));
3110 printf(" at_buf1: 0x%08x\n",
3111 le32toh(sc->sc_txdescs[i].at_buf1));
3112 printf(" at_buf2: 0x%08x\n",
3113 le32toh(sc->sc_txdescs[i].at_buf2));
3114 if (i == txs->txs_lastdesc)
3115 break;
3116 }
3117 }
3118 #endif
3119
3120 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3121 if (txstat & ATW_TXSTAT_OWN)
3122 break;
3123
3124 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3125
3126 sc->sc_txfree += txs->txs_ndescs;
3127
3128 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3129 0, txs->txs_dmamap->dm_mapsize,
3130 BUS_DMASYNC_POSTWRITE);
3131 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3132 m_freem(txs->txs_mbuf);
3133 txs->txs_mbuf = NULL;
3134
3135 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3136
3137 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3138 (txstat & TXSTAT_ERRMASK) != 0) {
3139 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3140 txstat_buf, sizeof(txstat_buf));
3141 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3142 txstat_buf,
3143 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3144 }
3145
3146 /*
3147 * Check for errors and collisions.
3148 */
3149 if (txstat & ATW_TXSTAT_TUF)
3150 sc->sc_stats.ts_tx_tuf++;
3151 if (txstat & ATW_TXSTAT_TLT)
3152 sc->sc_stats.ts_tx_tlt++;
3153 if (txstat & ATW_TXSTAT_TRT)
3154 sc->sc_stats.ts_tx_trt++;
3155 if (txstat & ATW_TXSTAT_TRO)
3156 sc->sc_stats.ts_tx_tro++;
3157 if (txstat & ATW_TXSTAT_SOFBR) {
3158 sc->sc_stats.ts_tx_sofbr++;
3159 }
3160
3161 if ((txstat & ATW_TXSTAT_ES) == 0)
3162 ifp->if_collisions +=
3163 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3164 else
3165 ifp->if_oerrors++;
3166
3167 ifp->if_opackets++;
3168 }
3169
3170 /*
3171 * If there are no more pending transmissions, cancel the watchdog
3172 * timer.
3173 */
3174 if (txs == NULL)
3175 sc->sc_tx_timer = 0;
3176 #undef TXSTAT_ERRMASK
3177 #undef TXSTAT_FMT
3178 }
3179
3180 /*
3181 * atw_watchdog: [ifnet interface function]
3182 *
3183 * Watchdog timer handler.
3184 */
3185 void
3186 atw_watchdog(struct ifnet *ifp)
3187 {
3188 struct atw_softc *sc = ifp->if_softc;
3189 struct ieee80211com *ic = &sc->sc_ic;
3190
3191 ifp->if_timer = 0;
3192 if (ATW_IS_ENABLED(sc) == 0)
3193 return;
3194
3195 if (sc->sc_rescan_timer) {
3196 if (--sc->sc_rescan_timer == 0)
3197 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3198 }
3199 if (sc->sc_tx_timer) {
3200 if (--sc->sc_tx_timer == 0 &&
3201 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3202 printf("%s: transmit timeout\n", ifp->if_xname);
3203 ifp->if_oerrors++;
3204 (void)atw_init(ifp);
3205 atw_start(ifp);
3206 }
3207 }
3208 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3209 ifp->if_timer = 1;
3210 ieee80211_watchdog(ifp);
3211 }
3212
3213 /* Compute the 802.11 Duration field and the PLCP Length fields for
3214 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3215 * Write the fields to the ADM8211 Tx header, frm.
3216 *
3217 * TBD use the fragmentation threshold to find the right duration for
3218 * the first & last fragments.
3219 *
3220 * TBD make certain of the duration fields applied by the ADM8211 to each
3221 * fragment. I think that the ADM8211 knows how to subtract the CTS
3222 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3223 * I also think that the ADM8211 does *some* arithmetic for us, because
3224 * otherwise I think we would have to set a first duration for CTS/first
3225 * fragment, a second duration for fragments between the first and the
3226 * last, and a third duration for the last fragment.
3227 *
3228 * TBD make certain that duration fields reflect addition of FCS/WEP
3229 * and correct duration arithmetic as necessary.
3230 */
3231 static void
3232 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3233 int len)
3234 {
3235 int remainder;
3236
3237 /* deal also with encrypted fragments */
3238 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3239 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3240 sc->sc_dev.dv_xname));
3241 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3242 IEEE80211_WEP_CRCLEN;
3243 }
3244
3245 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3246 * duration (XXX added by MAC?).
3247 */
3248 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3249 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3250
3251 if (rate <= 4)
3252 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3253 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3254 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3255 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3256 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3257 else
3258 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3259 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3260 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3261 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3262 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3263
3264 /* lengthen duration if long preamble */
3265 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3266 frm->atw_head_dur +=
3267 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3268 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3269 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3270 IEEE80211_DUR_DS_FAST_PLCPHDR);
3271
3272 if (remainder != 0)
3273 frm->atw_head_dur++;
3274
3275 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3276 (rate == 2 || rate == 4)) {
3277 /* derived from Linux: how could this be right? */
3278 frm->atw_head_plcplen = frm->atw_head_dur;
3279 } else {
3280 frm->atw_head_plcplen = (16 * len) / rate;
3281 remainder = (80 * len) % (rate * 5);
3282
3283 if (remainder != 0) {
3284 frm->atw_head_plcplen++;
3285
3286 /* XXX magic */
3287 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3288 rate == 22 && remainder <= 30)
3289 frm->atw_head_plcplen |= 0x8000;
3290 }
3291 }
3292 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3293 htole16(frm->atw_head_plcplen);
3294 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3295 }
3296
3297 #ifdef ATW_DEBUG
3298 static void
3299 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3300 {
3301 struct atw_softc *sc = ifp->if_softc;
3302 struct mbuf *m;
3303 int i, noctets = 0;
3304
3305 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3306 m0->m_pkthdr.len);
3307
3308 for (m = m0; m; m = m->m_next) {
3309 if (m->m_len == 0)
3310 continue;
3311 for (i = 0; i < m->m_len; i++) {
3312 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3313 if (++noctets % 24 == 0)
3314 printf("\n");
3315 }
3316 }
3317 printf("%s%s: %d bytes emitted\n",
3318 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3319 }
3320 #endif /* ATW_DEBUG */
3321
3322 /*
3323 * atw_start: [ifnet interface function]
3324 *
3325 * Start packet transmission on the interface.
3326 */
3327 void
3328 atw_start(struct ifnet *ifp)
3329 {
3330 struct atw_softc *sc = ifp->if_softc;
3331 struct ieee80211com *ic = &sc->sc_ic;
3332 struct ieee80211_node *ni;
3333 struct ieee80211_frame *wh;
3334 struct atw_frame *hh;
3335 struct mbuf *m0, *m;
3336 struct atw_txsoft *txs, *last_txs;
3337 struct atw_txdesc *txd;
3338 int do_encrypt, rate;
3339 bus_dmamap_t dmamap;
3340 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3341
3342 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3343 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3344
3345 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3346 return;
3347
3348 #if 0 /* TBD ??? */
3349 if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3350 return;
3351 #endif
3352
3353 /*
3354 * Remember the previous number of free descriptors and
3355 * the first descriptor we'll use.
3356 */
3357 ofree = sc->sc_txfree;
3358 firsttx = sc->sc_txnext;
3359
3360 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3361 sc->sc_dev.dv_xname, ofree, firsttx));
3362
3363 /*
3364 * Loop through the send queue, setting up transmit descriptors
3365 * until we drain the queue, or use up all available transmit
3366 * descriptors.
3367 */
3368 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3369 sc->sc_txfree != 0) {
3370
3371 do_encrypt = 0;
3372 /*
3373 * Grab a packet off the management queue, if it
3374 * is not empty. Otherwise, from the data queue.
3375 */
3376 IF_DEQUEUE(&ic->ic_mgtq, m0);
3377 if (m0 != NULL) {
3378 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3379 m0->m_pkthdr.rcvif = NULL;
3380 } else {
3381 IFQ_DEQUEUE(&ifp->if_snd, m0);
3382 if (m0 == NULL)
3383 break;
3384 #if NBPFILTER > 0
3385 if (ifp->if_bpf != NULL)
3386 bpf_mtap(ifp->if_bpf, m0);
3387 #endif /* NBPFILTER > 0 */
3388 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3389 ifp->if_oerrors++;
3390 break;
3391 }
3392 }
3393
3394 rate = MAX(ieee80211_get_rate(ic), 2);
3395
3396 #if NBPFILTER > 0
3397 /*
3398 * Pass the packet to any BPF listeners.
3399 */
3400 if (ic->ic_rawbpf != NULL)
3401 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3402
3403 if (sc->sc_radiobpf != NULL) {
3404 struct mbuf mb;
3405 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3406
3407 tap->at_rate = rate;
3408 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3409 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3410
3411 /* TBD tap->at_flags */
3412
3413 M_COPY_PKTHDR(&mb, m0);
3414 mb.m_data = (caddr_t)tap;
3415 mb.m_len = tap->at_ihdr.it_len;
3416 mb.m_next = m0;
3417 mb.m_pkthdr.len += mb.m_len;
3418 bpf_mtap(sc->sc_radiobpf, &mb);
3419 }
3420 #endif /* NBPFILTER > 0 */
3421
3422 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3423
3424 if (ni != NULL && ni != ic->ic_bss)
3425 ieee80211_free_node(ic, ni);
3426
3427 if (m0 == NULL) {
3428 ifp->if_oerrors++;
3429 break;
3430 }
3431
3432 /* just to make sure. */
3433 m0 = m_pullup(m0, sizeof(struct atw_frame));
3434
3435 if (m0 == NULL) {
3436 ifp->if_oerrors++;
3437 break;
3438 }
3439
3440 hh = mtod(m0, struct atw_frame *);
3441 wh = &hh->atw_ihdr;
3442
3443 do_encrypt = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
3444
3445 /* Copy everything we need from the 802.11 header:
3446 * Frame Control; address 1, address 3, or addresses
3447 * 3 and 4. NIC fills in BSSID, SA.
3448 */
3449 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3450 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3451 panic("%s: illegal WDS frame",
3452 sc->sc_dev.dv_xname);
3453 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3454 } else
3455 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3456
3457 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3458
3459 /* initialize remaining Tx parameters */
3460 memset(&hh->u, 0, sizeof(hh->u));
3461
3462 hh->atw_rate = rate * 5;
3463 /* XXX this could be incorrect if M_FCS. _encap should
3464 * probably strip FCS just in case it sticks around in
3465 * bridged packets.
3466 */
3467 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3468 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3469 sizeof(struct atw_frame));
3470
3471 #if 0
3472 /* this virtually guaranteed that WEP-encrypted frames
3473 * are fragmented. oops.
3474 */
3475 hh->atw_fragthr = htole16(m0->m_pkthdr.len -
3476 sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
3477 hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3478 #else
3479 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3480 #endif
3481
3482 hh->atw_rtylmt = 3;
3483 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3484 if (do_encrypt) {
3485 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3486 hh->atw_keyid = ic->ic_wep_txkey;
3487 }
3488
3489 /* TBD 4-addr frames */
3490 atw_frame_setdurs(sc, hh, rate,
3491 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3492 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3493
3494 /* never fragment multicast frames */
3495 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3496 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3497 } else if (sc->sc_flags & ATWF_RTSCTS) {
3498 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3499 }
3500
3501 #ifdef ATW_DEBUG
3502 /* experimental stuff */
3503 if (atw_xrtylmt != ~0)
3504 hh->atw_rtylmt = atw_xrtylmt;
3505 if (atw_xhdrctl != 0)
3506 hh->atw_hdrctl |= htole16(atw_xhdrctl);
3507 if (atw_xservice != IEEE80211_PLCP_SERVICE)
3508 hh->atw_service = atw_xservice;
3509 if (atw_xpaylen != 0)
3510 hh->atw_paylen = htole16(atw_xpaylen);
3511 hh->atw_fragnum = 0;
3512
3513 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3514 printf("%s: dst = %s, rate = 0x%02x, "
3515 "service = 0x%02x, paylen = 0x%04x\n",
3516 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3517 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3518
3519 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3520 "dur1 = 0x%04x, dur2 = 0x%04x, "
3521 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3522 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3523 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3524 hh->atw_tail_dur, hh->atw_head_dur);
3525
3526 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3527 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3528 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3529 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3530
3531 printf("%s: keyid = %d\n",
3532 sc->sc_dev.dv_xname, hh->atw_keyid);
3533
3534 atw_dump_pkt(ifp, m0);
3535 }
3536 #endif /* ATW_DEBUG */
3537
3538 dmamap = txs->txs_dmamap;
3539
3540 /*
3541 * Load the DMA map. Copy and try (once) again if the packet
3542 * didn't fit in the alloted number of segments.
3543 */
3544 for (first = 1;
3545 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3546 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3547 first = 0) {
3548 MGETHDR(m, M_DONTWAIT, MT_DATA);
3549 if (m == NULL) {
3550 printf("%s: unable to allocate Tx mbuf\n",
3551 sc->sc_dev.dv_xname);
3552 break;
3553 }
3554 if (m0->m_pkthdr.len > MHLEN) {
3555 MCLGET(m, M_DONTWAIT);
3556 if ((m->m_flags & M_EXT) == 0) {
3557 printf("%s: unable to allocate Tx "
3558 "cluster\n", sc->sc_dev.dv_xname);
3559 m_freem(m);
3560 break;
3561 }
3562 }
3563 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3564 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3565 m_freem(m0);
3566 m0 = m;
3567 m = NULL;
3568 }
3569 if (error != 0) {
3570 printf("%s: unable to load Tx buffer, "
3571 "error = %d\n", sc->sc_dev.dv_xname, error);
3572 m_freem(m0);
3573 break;
3574 }
3575
3576 /*
3577 * Ensure we have enough descriptors free to describe
3578 * the packet.
3579 */
3580 if (dmamap->dm_nsegs > sc->sc_txfree) {
3581 /*
3582 * Not enough free descriptors to transmit
3583 * this packet. Unload the DMA map and
3584 * drop the packet. Notify the upper layer
3585 * that there are no more slots left.
3586 *
3587 * XXX We could allocate an mbuf and copy, but
3588 * XXX it is worth it?
3589 */
3590 ifp->if_flags |= IFF_OACTIVE;
3591 bus_dmamap_unload(sc->sc_dmat, dmamap);
3592 m_freem(m0);
3593 break;
3594 }
3595
3596 /*
3597 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3598 */
3599
3600 /* Sync the DMA map. */
3601 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3602 BUS_DMASYNC_PREWRITE);
3603
3604 /* XXX arbitrary retry limit; 8 because I have seen it in
3605 * use already and maybe 0 means "no tries" !
3606 */
3607 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3608
3609 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3610 sc->sc_dev.dv_xname, rate * 5));
3611 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3612
3613 /*
3614 * Initialize the transmit descriptors.
3615 */
3616 for (nexttx = sc->sc_txnext, seg = 0;
3617 seg < dmamap->dm_nsegs;
3618 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3619 /*
3620 * If this is the first descriptor we're
3621 * enqueueing, don't set the OWN bit just
3622 * yet. That could cause a race condition.
3623 * We'll do it below.
3624 */
3625 txd = &sc->sc_txdescs[nexttx];
3626 txd->at_ctl = ctl |
3627 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3628
3629 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3630 txd->at_flags =
3631 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3632 ATW_TXFLAG_TBS1_MASK)) |
3633 ((nexttx == (ATW_NTXDESC - 1))
3634 ? htole32(ATW_TXFLAG_TER) : 0);
3635 lasttx = nexttx;
3636 }
3637
3638 IASSERT(lasttx != -1, ("bad lastx"));
3639 /* Set `first segment' and `last segment' appropriately. */
3640 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3641 htole32(ATW_TXFLAG_FS);
3642 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3643
3644 #ifdef ATW_DEBUG
3645 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3646 printf(" txsoft %p transmit chain:\n", txs);
3647 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3648 printf(" descriptor %d:\n", seg);
3649 printf(" at_ctl: 0x%08x\n",
3650 le32toh(sc->sc_txdescs[seg].at_ctl));
3651 printf(" at_flags: 0x%08x\n",
3652 le32toh(sc->sc_txdescs[seg].at_flags));
3653 printf(" at_buf1: 0x%08x\n",
3654 le32toh(sc->sc_txdescs[seg].at_buf1));
3655 printf(" at_buf2: 0x%08x\n",
3656 le32toh(sc->sc_txdescs[seg].at_buf2));
3657 if (seg == lasttx)
3658 break;
3659 }
3660 }
3661 #endif
3662
3663 /* Sync the descriptors we're using. */
3664 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3665 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3666
3667 /*
3668 * Store a pointer to the packet so we can free it later,
3669 * and remember what txdirty will be once the packet is
3670 * done.
3671 */
3672 txs->txs_mbuf = m0;
3673 txs->txs_firstdesc = sc->sc_txnext;
3674 txs->txs_lastdesc = lasttx;
3675 txs->txs_ndescs = dmamap->dm_nsegs;
3676
3677 /* Advance the tx pointer. */
3678 sc->sc_txfree -= dmamap->dm_nsegs;
3679 sc->sc_txnext = nexttx;
3680
3681 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3682 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3683
3684 last_txs = txs;
3685 }
3686
3687 if (txs == NULL || sc->sc_txfree == 0) {
3688 /* No more slots left; notify upper layer. */
3689 ifp->if_flags |= IFF_OACTIVE;
3690 }
3691
3692 if (sc->sc_txfree != ofree) {
3693 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3694 sc->sc_dev.dv_xname, lasttx, firsttx));
3695 /*
3696 * Cause a transmit interrupt to happen on the
3697 * last packet we enqueued.
3698 */
3699 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3700 ATW_CDTXSYNC(sc, lasttx, 1,
3701 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3702
3703 /*
3704 * The entire packet chain is set up. Give the
3705 * first descriptor to the chip now.
3706 */
3707 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3708 ATW_CDTXSYNC(sc, firsttx, 1,
3709 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3710
3711 /* Wake up the transmitter. */
3712 /* XXX USE AUTOPOLLING? */
3713 ATW_WRITE(sc, ATW_TDR, 0x1);
3714
3715 /* Set a watchdog timer in case the chip flakes out. */
3716 sc->sc_tx_timer = 5;
3717 ifp->if_timer = 1;
3718 }
3719 }
3720
3721 /*
3722 * atw_power:
3723 *
3724 * Power management (suspend/resume) hook.
3725 */
3726 void
3727 atw_power(int why, void *arg)
3728 {
3729 struct atw_softc *sc = arg;
3730 struct ifnet *ifp = &sc->sc_ic.ic_if;
3731 int s;
3732
3733 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3734
3735 s = splnet();
3736 switch (why) {
3737 case PWR_STANDBY:
3738 /* XXX do nothing. */
3739 break;
3740 case PWR_SUSPEND:
3741 atw_stop(ifp, 0);
3742 if (sc->sc_power != NULL)
3743 (*sc->sc_power)(sc, why);
3744 break;
3745 case PWR_RESUME:
3746 if (ifp->if_flags & IFF_UP) {
3747 if (sc->sc_power != NULL)
3748 (*sc->sc_power)(sc, why);
3749 atw_init(ifp);
3750 }
3751 break;
3752 case PWR_SOFTSUSPEND:
3753 case PWR_SOFTSTANDBY:
3754 case PWR_SOFTRESUME:
3755 break;
3756 }
3757 splx(s);
3758 }
3759
3760 /*
3761 * atw_ioctl: [ifnet interface function]
3762 *
3763 * Handle control requests from the operator.
3764 */
3765 int
3766 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3767 {
3768 struct atw_softc *sc = ifp->if_softc;
3769 struct ifreq *ifr = (struct ifreq *)data;
3770 int s, error = 0;
3771
3772 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3773 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3774 return ENXIO;
3775
3776 s = splnet();
3777
3778 switch (cmd) {
3779 case SIOCSIFFLAGS:
3780 if (ifp->if_flags & IFF_UP) {
3781 if (ATW_IS_ENABLED(sc)) {
3782 /*
3783 * To avoid rescanning another access point,
3784 * do not call atw_init() here. Instead,
3785 * only reflect media settings.
3786 */
3787 atw_filter_setup(sc);
3788 } else
3789 error = atw_init(ifp);
3790 } else if (ATW_IS_ENABLED(sc))
3791 atw_stop(ifp, 1);
3792 break;
3793 case SIOCADDMULTI:
3794 case SIOCDELMULTI:
3795 error = (cmd == SIOCADDMULTI) ?
3796 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3797 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3798 if (error == ENETRESET) {
3799 if (ATW_IS_ENABLED(sc))
3800 atw_filter_setup(sc); /* do not rescan */
3801 error = 0;
3802 }
3803 break;
3804 default:
3805 error = ieee80211_ioctl(ifp, cmd, data);
3806 if (error == ENETRESET) {
3807 if (ATW_IS_ENABLED(sc))
3808 error = atw_init(ifp);
3809 else
3810 error = 0;
3811 }
3812 break;
3813 }
3814
3815 /* Try to get more packets going. */
3816 if (ATW_IS_ENABLED(sc))
3817 atw_start(ifp);
3818
3819 splx(s);
3820 return (error);
3821 }
3822
3823 static int
3824 atw_media_change(struct ifnet *ifp)
3825 {
3826 int error;
3827
3828 error = ieee80211_media_change(ifp);
3829 if (error == ENETRESET) {
3830 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3831 (IFF_RUNNING|IFF_UP))
3832 atw_init(ifp); /* XXX lose error */
3833 error = 0;
3834 }
3835 return error;
3836 }
3837
3838 static void
3839 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3840 {
3841 struct atw_softc *sc = ifp->if_softc;
3842
3843 if (ATW_IS_ENABLED(sc) == 0) {
3844 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3845 imr->ifm_status = 0;
3846 return;
3847 }
3848 ieee80211_media_status(ifp, imr);
3849 }
3850