Home | History | Annotate | Line # | Download | only in ic
atw.c revision 1.24
      1 /*	$NetBSD: atw.c,v 1.24 2004/02/17 21:20:55 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.24 2004/02/17 21:20:55 dyoung Exp $");
     45 
     46 #include "bpfilter.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/callout.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/malloc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/socket.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/errno.h>
     57 #include <sys/device.h>
     58 #include <sys/time.h>
     59 
     60 #include <machine/endian.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_media.h>
     67 #include <net/if_ether.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_compat.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #if NBPFILTER > 0
     74 #include <net/bpf.h>
     75 #endif
     76 
     77 #include <machine/bus.h>
     78 #include <machine/intr.h>
     79 
     80 #include <dev/ic/atwreg.h>
     81 #include <dev/ic/rf3000reg.h>
     82 #include <dev/ic/si4136reg.h>
     83 #include <dev/ic/atwvar.h>
     84 #include <dev/ic/smc93cx6var.h>
     85 
     86 /* XXX TBD open questions
     87  *
     88  *
     89  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
     90  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
     91  * handle this for me?
     92  *
     93  */
     94 /* device attachment
     95  *
     96  *    print TOFS[012]
     97  *
     98  * device initialization
     99  *
    100  *    clear ATW_FRCTL_MAXPSP to disable max power saving
    101  *    set ATW_TXBR_ALCUPDATE to enable ALC
    102  *    set TOFS[012]? (hope not)
    103  *    disable rx/tx
    104  *    set ATW_PAR_SWR (software reset)
    105  *    wait for ATW_PAR_SWR clear
    106  *    disable interrupts
    107  *    ack status register
    108  *    enable interrupts
    109  *
    110  * rx/tx initialization
    111  *
    112  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    113  *    allocate and init descriptor rings
    114  *    write ATW_PAR_DSL (descriptor skip length)
    115  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
    116  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    118  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    119  *
    120  * rx/tx end
    121  *
    122  *    stop DMA
    123  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    124  *    flush tx w/ ATW_NAR_HF
    125  *
    126  * scan
    127  *
    128  *    initialize rx/tx
    129  *
    130  * IBSS join/create
    131  *
    132  *    set ATW_NAR_EA (is set by ASIC?)
    133  *
    134  * BSS join: (re)association response
    135  *
    136  *    set ATW_FRCTL_AID
    137  *
    138  * optimizations ???
    139  *
    140  */
    141 
    142 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
    143 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
    144 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
    145 
    146 int atw_rfio_enable_delay = 20 * 1000;
    147 int atw_rfio_disable_delay = 2 * 1000;
    148 int atw_writewep_delay = 5;
    149 int atw_beacon_len_adjust = 4;
    150 int atw_dwelltime = 200;
    151 
    152 #ifdef ATW_DEBUG
    153 int atw_xhdrctl = 0;
    154 int atw_xrtylmt = ~0;
    155 int atw_xservice = IEEE80211_PLCP_SERVICE;
    156 int atw_xpaylen = 0;
    157 
    158 int atw_debug = 0;
    159 
    160 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
    161 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
    162 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
    163 #define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
    164 #define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
    165 #define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
    166 static void atw_print_regs(struct atw_softc *, const char *);
    167 static void atw_rf3000_print(struct atw_softc *);
    168 static void atw_si4126_print(struct atw_softc *);
    169 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
    170 #else
    171 #define ATW_DPRINTF(x)
    172 #define ATW_DPRINTF2(x)
    173 #define ATW_DPRINTF3(x)
    174 #define	DPRINTF(sc, x)	/* nothing */
    175 #define	DPRINTF2(sc, x)	/* nothing */
    176 #define	DPRINTF3(sc, x)	/* nothing */
    177 #endif
    178 
    179 #ifdef ATW_STATS
    180 void	atw_print_stats(struct atw_softc *);
    181 #endif
    182 
    183 void	atw_start(struct ifnet *);
    184 void	atw_watchdog(struct ifnet *);
    185 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
    186 int	atw_init(struct ifnet *);
    187 void	atw_stop(struct ifnet *, int);
    188 
    189 void	atw_reset(struct atw_softc *);
    190 int	atw_read_srom(struct atw_softc *);
    191 
    192 void	atw_shutdown(void *);
    193 
    194 void	atw_rxdrain(struct atw_softc *);
    195 int	atw_add_rxbuf(struct atw_softc *, int);
    196 void	atw_idle(struct atw_softc *, u_int32_t);
    197 
    198 int	atw_enable(struct atw_softc *);
    199 void	atw_disable(struct atw_softc *);
    200 void	atw_power(int, void *);
    201 
    202 void	atw_rxintr(struct atw_softc *);
    203 void	atw_txintr(struct atw_softc *);
    204 void	atw_linkintr(struct atw_softc *, u_int32_t);
    205 
    206 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
    207 static void atw_tsf(struct atw_softc *);
    208 static void atw_start_beacon(struct atw_softc *, int);
    209 static void atw_write_wep(struct atw_softc *);
    210 static void atw_write_bssid(struct atw_softc *);
    211 static void atw_write_bcn_thresh(struct atw_softc *);
    212 static void atw_write_ssid(struct atw_softc *);
    213 static void atw_write_sup_rates(struct atw_softc *);
    214 static void atw_clear_sram(struct atw_softc *);
    215 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
    216 static int atw_media_change(struct ifnet *);
    217 static void atw_media_status(struct ifnet *, struct ifmediareq *);
    218 static void atw_filter_setup(struct atw_softc *);
    219 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
    220 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
    221 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
    222     struct ieee80211_node *, int, int, u_int32_t);
    223 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
    224     struct ieee80211_node *, int, int, u_int32_t);
    225 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
    226 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
    227 
    228 static int atw_tune(struct atw_softc *);
    229 
    230 static void atw_rfio_enable(struct atw_softc *, int);
    231 
    232 /* RFMD RF3000 Baseband Processor */
    233 static int atw_rf3000_init(struct atw_softc *);
    234 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
    235 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
    236 #ifdef ATW_DEBUG
    237 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    238 #endif /* ATW_DEBUG */
    239 
    240 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
    241 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
    242 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
    243 #ifdef ATW_DEBUG
    244 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
    245 #endif /* ATW_DEBUG */
    246 
    247 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
    248 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
    249 
    250 const char *atw_tx_state[] = {
    251 	"STOPPED",
    252 	"RUNNING - FETCH",
    253 	"RUNNING - WAIT",
    254 	"RUNNING - READING",
    255 	"-- RESERVED1 --",
    256 	"-- RESERVED2 --",
    257 	"SUSPENDED",
    258 	"RUNNING - CLOSE"
    259 };
    260 
    261 const char *atw_rx_state[] = {
    262 	"STOPPED",
    263 	"RUNNING - FETCH",
    264 	"RUNNING - CHECK",
    265 	"RUNNING - WAIT",
    266 	"SUSPENDED",
    267 	"RUNNING - CLOSE",
    268 	"RUNNING - FLUSH",
    269 	"RUNNING - QUEUE"
    270 };
    271 
    272 int
    273 atw_activate(struct device *self, enum devact act)
    274 {
    275 	struct atw_softc *sc = (struct atw_softc *)self;
    276 	int rv = 0, s;
    277 
    278 	s = splnet();
    279 	switch (act) {
    280 	case DVACT_ACTIVATE:
    281 		rv = EOPNOTSUPP;
    282 		break;
    283 
    284 	case DVACT_DEACTIVATE:
    285 		if_deactivate(&sc->sc_ic.ic_if);
    286 		break;
    287 	}
    288 	splx(s);
    289 	return rv;
    290 }
    291 
    292 /*
    293  * atw_enable:
    294  *
    295  *	Enable the ADM8211 chip.
    296  */
    297 int
    298 atw_enable(struct atw_softc *sc)
    299 {
    300 
    301 	if (ATW_IS_ENABLED(sc) == 0) {
    302 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    303 			printf("%s: device enable failed\n",
    304 			    sc->sc_dev.dv_xname);
    305 			return (EIO);
    306 		}
    307 		sc->sc_flags |= ATWF_ENABLED;
    308 	}
    309 	return (0);
    310 }
    311 
    312 /*
    313  * atw_disable:
    314  *
    315  *	Disable the ADM8211 chip.
    316  */
    317 void
    318 atw_disable(struct atw_softc *sc)
    319 {
    320 	if (!ATW_IS_ENABLED(sc))
    321 		return;
    322 	if (sc->sc_disable != NULL)
    323 		(*sc->sc_disable)(sc);
    324 	sc->sc_flags &= ~ATWF_ENABLED;
    325 }
    326 
    327 /* Returns -1 on failure. */
    328 int
    329 atw_read_srom(struct atw_softc *sc)
    330 {
    331 	struct seeprom_descriptor sd;
    332 	u_int32_t reg;
    333 
    334 	(void)memset(&sd, 0, sizeof(sd));
    335 
    336 	reg = ATW_READ(sc, ATW_TEST0);
    337 
    338 	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
    339 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
    340 		return -1;
    341 	}
    342 
    343 	switch (reg & ATW_TEST0_EPTYP_MASK) {
    344 	case ATW_TEST0_EPTYP_93c66:
    345 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
    346 		sc->sc_sromsz = 512;
    347 		sd.sd_chip = C56_66;
    348 		break;
    349 	case ATW_TEST0_EPTYP_93c46:
    350 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
    351 		sc->sc_sromsz = 128;
    352 		sd.sd_chip = C46;
    353 		break;
    354 	default:
    355 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
    356 		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
    357 		return -1;
    358 	}
    359 
    360 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
    361 
    362 	if (sc->sc_srom == NULL) {
    363 		printf("%s: unable to allocate SROM buffer\n",
    364 		    sc->sc_dev.dv_xname);
    365 		return -1;
    366 	}
    367 
    368 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
    369 
    370 	/* ADM8211 has a single 32-bit register for controlling the
    371 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
    372 	 * "ready" bit. The ADM8211 input/output sense is the reverse
    373 	 * of read_seeprom's.
    374 	 */
    375 	sd.sd_tag = sc->sc_st;
    376 	sd.sd_bsh = sc->sc_sh;
    377 	sd.sd_regsize = 4;
    378 	sd.sd_control_offset = ATW_SPR;
    379 	sd.sd_status_offset = ATW_SPR;
    380 	sd.sd_dataout_offset = ATW_SPR;
    381 	sd.sd_CK = ATW_SPR_SCLK;
    382 	sd.sd_CS = ATW_SPR_SCS;
    383 	sd.sd_DI = ATW_SPR_SDO;
    384 	sd.sd_DO = ATW_SPR_SDI;
    385 	sd.sd_MS = ATW_SPR_SRS;
    386 	sd.sd_RDY = 0;
    387 
    388 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
    389 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
    390 		free(sc->sc_srom, M_DEVBUF);
    391 		return -1;
    392 	}
    393 #ifdef ATW_DEBUG
    394 	{
    395 		int i;
    396 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
    397 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
    398 			if (((i % 8) == 0) && (i != 0)) {
    399 				ATW_DPRINTF(("\n\t"));
    400 			}
    401 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
    402 		}
    403 		ATW_DPRINTF(("\n"));
    404 	}
    405 #endif /* ATW_DEBUG */
    406 	return 0;
    407 }
    408 
    409 #ifdef ATW_DEBUG
    410 static void
    411 atw_print_regs(struct atw_softc *sc, const char *where)
    412 {
    413 #define PRINTREG(sc, reg) \
    414 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
    415 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
    416 
    417 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
    418 
    419 	PRINTREG(sc, ATW_PAR);
    420 	PRINTREG(sc, ATW_FRCTL);
    421 	PRINTREG(sc, ATW_TDR);
    422 	PRINTREG(sc, ATW_WTDP);
    423 	PRINTREG(sc, ATW_RDR);
    424 	PRINTREG(sc, ATW_WRDP);
    425 	PRINTREG(sc, ATW_RDB);
    426 	PRINTREG(sc, ATW_CSR3A);
    427 	PRINTREG(sc, ATW_TDBD);
    428 	PRINTREG(sc, ATW_TDBP);
    429 	PRINTREG(sc, ATW_STSR);
    430 	PRINTREG(sc, ATW_CSR5A);
    431 	PRINTREG(sc, ATW_NAR);
    432 	PRINTREG(sc, ATW_CSR6A);
    433 	PRINTREG(sc, ATW_IER);
    434 	PRINTREG(sc, ATW_CSR7A);
    435 	PRINTREG(sc, ATW_LPC);
    436 	PRINTREG(sc, ATW_TEST1);
    437 	PRINTREG(sc, ATW_SPR);
    438 	PRINTREG(sc, ATW_TEST0);
    439 	PRINTREG(sc, ATW_WCSR);
    440 	PRINTREG(sc, ATW_WPDR);
    441 	PRINTREG(sc, ATW_GPTMR);
    442 	PRINTREG(sc, ATW_GPIO);
    443 	PRINTREG(sc, ATW_BBPCTL);
    444 	PRINTREG(sc, ATW_SYNCTL);
    445 	PRINTREG(sc, ATW_PLCPHD);
    446 	PRINTREG(sc, ATW_MMIWADDR);
    447 	PRINTREG(sc, ATW_MMIRADDR1);
    448 	PRINTREG(sc, ATW_MMIRADDR2);
    449 	PRINTREG(sc, ATW_TXBR);
    450 	PRINTREG(sc, ATW_CSR15A);
    451 	PRINTREG(sc, ATW_ALCSTAT);
    452 	PRINTREG(sc, ATW_TOFS2);
    453 	PRINTREG(sc, ATW_CMDR);
    454 	PRINTREG(sc, ATW_PCIC);
    455 	PRINTREG(sc, ATW_PMCSR);
    456 	PRINTREG(sc, ATW_PAR0);
    457 	PRINTREG(sc, ATW_PAR1);
    458 	PRINTREG(sc, ATW_MAR0);
    459 	PRINTREG(sc, ATW_MAR1);
    460 	PRINTREG(sc, ATW_ATIMDA0);
    461 	PRINTREG(sc, ATW_ABDA1);
    462 	PRINTREG(sc, ATW_BSSID0);
    463 	PRINTREG(sc, ATW_TXLMT);
    464 	PRINTREG(sc, ATW_MIBCNT);
    465 	PRINTREG(sc, ATW_BCNT);
    466 	PRINTREG(sc, ATW_TSFTH);
    467 	PRINTREG(sc, ATW_TSC);
    468 	PRINTREG(sc, ATW_SYNRF);
    469 	PRINTREG(sc, ATW_BPLI);
    470 	PRINTREG(sc, ATW_CAP0);
    471 	PRINTREG(sc, ATW_CAP1);
    472 	PRINTREG(sc, ATW_RMD);
    473 	PRINTREG(sc, ATW_CFPP);
    474 	PRINTREG(sc, ATW_TOFS0);
    475 	PRINTREG(sc, ATW_TOFS1);
    476 	PRINTREG(sc, ATW_IFST);
    477 	PRINTREG(sc, ATW_RSPT);
    478 	PRINTREG(sc, ATW_TSFTL);
    479 	PRINTREG(sc, ATW_WEPCTL);
    480 	PRINTREG(sc, ATW_WESK);
    481 	PRINTREG(sc, ATW_WEPCNT);
    482 	PRINTREG(sc, ATW_MACTEST);
    483 	PRINTREG(sc, ATW_FER);
    484 	PRINTREG(sc, ATW_FEMR);
    485 	PRINTREG(sc, ATW_FPSR);
    486 	PRINTREG(sc, ATW_FFER);
    487 #undef PRINTREG
    488 }
    489 #endif /* ATW_DEBUG */
    490 
    491 /*
    492  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
    493  */
    494 void
    495 atw_attach(struct atw_softc *sc)
    496 {
    497 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
    498 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    499 	};
    500 	struct ieee80211com *ic = &sc->sc_ic;
    501 	struct ifnet *ifp = &ic->ic_if;
    502 	int country_code, error, i, nrate;
    503 	u_int32_t reg;
    504 	static const char *type_strings[] = {"Intersil (not supported)",
    505 	    "RFMD", "Marvel (not supported)"};
    506 
    507 	sc->sc_txth = atw_txthresh_tab_lo;
    508 
    509 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    510 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    511 
    512 #ifdef ATW_DEBUG
    513 	atw_print_regs(sc, "atw_attach");
    514 #endif /* ATW_DEBUG */
    515 
    516 	/*
    517 	 * Allocate the control data structures, and create and load the
    518 	 * DMA map for it.
    519 	 */
    520 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    521 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    522 	    1, &sc->sc_cdnseg, 0)) != 0) {
    523 		printf("%s: unable to allocate control data, error = %d\n",
    524 		    sc->sc_dev.dv_xname, error);
    525 		goto fail_0;
    526 	}
    527 
    528 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
    529 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
    530 	    BUS_DMA_COHERENT)) != 0) {
    531 		printf("%s: unable to map control data, error = %d\n",
    532 		    sc->sc_dev.dv_xname, error);
    533 		goto fail_1;
    534 	}
    535 
    536 	if ((error = bus_dmamap_create(sc->sc_dmat,
    537 	    sizeof(struct atw_control_data), 1,
    538 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    539 		printf("%s: unable to create control data DMA map, "
    540 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    541 		goto fail_2;
    542 	}
    543 
    544 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    545 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
    546 	    0)) != 0) {
    547 		printf("%s: unable to load control data DMA map, error = %d\n",
    548 		    sc->sc_dev.dv_xname, error);
    549 		goto fail_3;
    550 	}
    551 
    552 	/*
    553 	 * Create the transmit buffer DMA maps.
    554 	 */
    555 	sc->sc_ntxsegs = ATW_NTXSEGS;
    556 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    557 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    558 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
    559 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    560 			printf("%s: unable to create tx DMA map %d, "
    561 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    562 			goto fail_4;
    563 		}
    564 	}
    565 
    566 	/*
    567 	 * Create the receive buffer DMA maps.
    568 	 */
    569 	for (i = 0; i < ATW_NRXDESC; i++) {
    570 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    571 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    572 			printf("%s: unable to create rx DMA map %d, "
    573 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    574 			goto fail_5;
    575 		}
    576 	}
    577 	for (i = 0; i < ATW_NRXDESC; i++) {
    578 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    579 	}
    580 
    581 	/* Reset the chip to a known state. */
    582 	atw_reset(sc);
    583 
    584 	if (atw_read_srom(sc) == -1)
    585 		return;
    586 
    587 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    588 	    ATW_SR_RFTYPE_MASK);
    589 
    590 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    591 	    ATW_SR_BBPTYPE_MASK);
    592 
    593 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
    594 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
    595 		return;
    596 	}
    597 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
    598 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
    599 		return;
    600 	}
    601 
    602 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
    603 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
    604 
    605 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
    606 	 * MARVEL. My bug, or theirs?
    607 	 */
    608 
    609 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
    610 
    611 	switch (sc->sc_rftype) {
    612 	case ATW_RFTYPE_INTERSIL:
    613 		reg |= ATW_SYNCTL_CS1;
    614 		break;
    615 	case ATW_RFTYPE_RFMD:
    616 		reg |= ATW_SYNCTL_CS0;
    617 		break;
    618 	case ATW_RFTYPE_MARVEL:
    619 		break;
    620 	}
    621 
    622 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
    623 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
    624 
    625 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
    626 
    627 	switch (sc->sc_bbptype) {
    628 	case ATW_RFTYPE_INTERSIL:
    629 		reg |= ATW_BBPCTL_TWI;
    630 		break;
    631 	case ATW_RFTYPE_RFMD:
    632 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
    633 		    ATW_BBPCTL_CCA_ACTLO;
    634 		break;
    635 	case ATW_RFTYPE_MARVEL:
    636 		break;
    637 	}
    638 
    639 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
    640 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
    641 
    642 	/*
    643 	 * From this point forward, the attachment cannot fail.  A failure
    644 	 * before this point releases all resources that may have been
    645 	 * allocated.
    646 	 */
    647 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
    648 
    649 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
    650 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
    651 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
    652 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
    653 
    654 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    655 	    ATW_SR_CTRY_MASK);
    656 
    657 #define ADD_CHANNEL(_ic, _chan) do {					\
    658 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
    659 	_ic->ic_channels[_chan].ic_freq =				\
    660 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
    661 } while (0)
    662 
    663 	/* Find available channels */
    664 	switch (country_code) {
    665 	case COUNTRY_MMK2:	/* 1-14 */
    666 		ADD_CHANNEL(ic, 14);
    667 		/*FALLTHROUGH*/
    668 	case COUNTRY_ETSI:	/* 1-13 */
    669 		for (i = 1; i <= 13; i++)
    670 			ADD_CHANNEL(ic, i);
    671 		break;
    672 	case COUNTRY_FCC:	/* 1-11 */
    673 	case COUNTRY_IC:	/* 1-11 */
    674 		for (i = 1; i <= 11; i++)
    675 			ADD_CHANNEL(ic, i);
    676 		break;
    677 	case COUNTRY_MMK:	/* 14 */
    678 		ADD_CHANNEL(ic, 14);
    679 		break;
    680 	case COUNTRY_FRANCE:	/* 10-13 */
    681 		for (i = 10; i <= 13; i++)
    682 			ADD_CHANNEL(ic, i);
    683 		break;
    684 	default:	/* assume channels 10-11 */
    685 	case COUNTRY_SPAIN:	/* 10-11 */
    686 		for (i = 10; i <= 11; i++)
    687 			ADD_CHANNEL(ic, i);
    688 		break;
    689 	}
    690 
    691 	/* Read the MAC address. */
    692 	reg = ATW_READ(sc, ATW_PAR0);
    693 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
    694 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
    695 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
    696 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
    697 	reg = ATW_READ(sc, ATW_PAR1);
    698 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
    699 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
    700 
    701 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
    702 		printf(" could not get mac address, attach failed\n");
    703 		return;
    704 	}
    705 
    706 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
    707 
    708 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    709 	ifp->if_softc = sc;
    710 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
    711 	    IFF_NOTRAILERS;
    712 	ifp->if_ioctl = atw_ioctl;
    713 	ifp->if_start = atw_start;
    714 	ifp->if_watchdog = atw_watchdog;
    715 	ifp->if_init = atw_init;
    716 	ifp->if_stop = atw_stop;
    717 	IFQ_SET_READY(&ifp->if_snd);
    718 
    719 	ic->ic_phytype = IEEE80211_T_DS;
    720 	ic->ic_opmode = IEEE80211_M_STA;
    721 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
    722 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
    723 
    724 	nrate = 0;
    725 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
    726 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
    727 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
    728 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
    729 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
    730 
    731 	/*
    732 	 * Call MI attach routines.
    733 	 */
    734 
    735 	if_attach(ifp);
    736 	ieee80211_ifattach(ifp);
    737 
    738 	sc->sc_newstate = ic->ic_newstate;
    739 	ic->ic_newstate = atw_newstate;
    740 
    741 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    742 	ic->ic_recv_mgmt = atw_recv_mgmt;
    743 
    744 	sc->sc_node_free = ic->ic_node_free;
    745 	ic->ic_node_free = atw_node_free;
    746 
    747 	sc->sc_node_alloc = ic->ic_node_alloc;
    748 	ic->ic_node_alloc = atw_node_alloc;
    749 
    750 	/* possibly we should fill in our own sc_send_prresp, since
    751 	 * the ADM8211 is probably sending probe responses in ad hoc
    752 	 * mode.
    753 	 */
    754 
    755 	/* complete initialization */
    756 	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
    757 	callout_init(&sc->sc_scan_ch);
    758 
    759 #if NBPFILTER > 0
    760 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    761 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
    762 #endif
    763 
    764 	/*
    765 	 * Make sure the interface is shutdown during reboot.
    766 	 */
    767 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
    768 	if (sc->sc_sdhook == NULL)
    769 		printf("%s: WARNING: unable to establish shutdown hook\n",
    770 		    sc->sc_dev.dv_xname);
    771 
    772 	/*
    773 	 * Add a suspend hook to make sure we come back up after a
    774 	 * resume.
    775 	 */
    776 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
    777 	if (sc->sc_powerhook == NULL)
    778 		printf("%s: WARNING: unable to establish power hook\n",
    779 		    sc->sc_dev.dv_xname);
    780 
    781 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
    782 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
    783 	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
    784 
    785 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
    786 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
    787 	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
    788 
    789 	return;
    790 
    791 	/*
    792 	 * Free any resources we've allocated during the failed attach
    793 	 * attempt.  Do this in reverse order and fall through.
    794 	 */
    795  fail_5:
    796 	for (i = 0; i < ATW_NRXDESC; i++) {
    797 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
    798 			continue;
    799 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
    800 	}
    801  fail_4:
    802 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    803 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
    804 			continue;
    805 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
    806 	}
    807 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    808  fail_3:
    809 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    810  fail_2:
    811 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    812 	    sizeof(struct atw_control_data));
    813  fail_1:
    814 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
    815  fail_0:
    816 	return;
    817 }
    818 
    819 static struct ieee80211_node *
    820 atw_node_alloc(struct ieee80211com *ic)
    821 {
    822 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    823 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
    824 
    825 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
    826 	return ni;
    827 }
    828 
    829 static void
    830 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
    831 {
    832 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    833 
    834 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
    835 	    ether_sprintf(ni->ni_bssid)));
    836 	(*sc->sc_node_free)(ic, ni);
    837 }
    838 
    839 /*
    840  * atw_reset:
    841  *
    842  *	Perform a soft reset on the ADM8211.
    843  */
    844 void
    845 atw_reset(struct atw_softc *sc)
    846 {
    847 	int i;
    848 
    849 	if (ATW_IS_ENABLED(sc) == 0)
    850 		return;
    851 
    852 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
    853 
    854 	for (i = 0; i < 10000; i++) {
    855 		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
    856 			break;
    857 		DELAY(1);
    858 	}
    859 
    860 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
    861 
    862 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
    863 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
    864 
    865 	/* Turn off maximum power saving. */
    866 	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
    867 
    868 	/* Recall EEPROM. */
    869 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
    870 
    871 	DELAY(10 * 1000);
    872 
    873 	/* A reset seems to affect the SRAM contents, so put them into
    874 	 * a known state.
    875 	 */
    876 	atw_clear_sram(sc);
    877 
    878 	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
    879 
    880 	sc->sc_lost_bcn_thresh = 0;
    881 }
    882 
    883 static void
    884 atw_clear_sram(struct atw_softc *sc)
    885 {
    886 #if 0
    887 	for (addr = 0; addr < 448; addr++) {
    888 		ATW_WRITE(sc, ATW_WEPCTL,
    889 		    ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0	| addr);
    890 		DELAY(1000);
    891 		ATW_WRITE(sc, ATW_WESK, 0);
    892 		DELAY(1000); /* paranoia */
    893 	}
    894 	return;
    895 #endif
    896 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
    897 	/* XXX not for revision 0x20. */
    898 	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
    899 }
    900 
    901 /* TBD atw_init
    902  *
    903  * set MAC based on ic->ic_bss->myaddr
    904  * write WEP keys
    905  * set TX rate
    906  */
    907 
    908 /*
    909  * atw_init:		[ ifnet interface function ]
    910  *
    911  *	Initialize the interface.  Must be called at splnet().
    912  */
    913 int
    914 atw_init(struct ifnet *ifp)
    915 {
    916 	struct atw_softc *sc = ifp->if_softc;
    917 	struct ieee80211com *ic = &sc->sc_ic;
    918 	struct atw_txsoft *txs;
    919 	struct atw_rxsoft *rxs;
    920 	u_int32_t reg;
    921 	int i, error = 0;
    922 
    923 	if ((error = atw_enable(sc)) != 0)
    924 		goto out;
    925 
    926 	/*
    927 	 * Cancel any pending I/O. This also resets.
    928 	 */
    929 	atw_stop(ifp, 0);
    930 
    931 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
    932 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
    933 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
    934 	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
    935 
    936 	/* Turn off APM??? (A binary-only driver does this.)
    937 	 *
    938 	 * Set Rx store-and-forward mode.
    939 	 */
    940 	reg = ATW_READ(sc, ATW_CMDR);
    941 	reg &= ~ATW_CMDR_APM;
    942 	reg &= ~ATW_CMDR_DRT_MASK;
    943 	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
    944 
    945 	ATW_WRITE(sc, ATW_CMDR, reg);
    946 
    947 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
    948 	 *
    949 	 * XXX a binary-only driver sets a different service field than
    950 	 * 0. why?
    951 	 */
    952 	reg = ATW_READ(sc, ATW_PLCPHD);
    953 	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
    954 	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
    955 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
    956 	ATW_WRITE(sc, ATW_PLCPHD, reg);
    957 
    958 	/* XXX this magic can probably be figured out from the RFMD docs */
    959 	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
    960 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
    961 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
    962 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
    963 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
    964 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
    965 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
    966 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
    967 	ATW_WRITE(sc, ATW_TOFS2, reg);
    968 
    969 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
    970 	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
    971 
    972 	/* XXX this resets an Intersil RF front-end? */
    973 	/* TBD condition on Intersil RFType? */
    974 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
    975 	DELAY(10 * 1000);
    976 	ATW_WRITE(sc, ATW_SYNRF, 0);
    977 	DELAY(5 * 1000);
    978 
    979 	/* 16 TU max duration for contention-free period */
    980 	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
    981 	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
    982 
    983 	/* XXX I guess that the Cardbus clock is 22MHz?
    984 	 * I am assuming that the role of ATW_TOFS0_USCNT is
    985 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
    986 	 * very clear on this point. It says in the datasheet that it is
    987 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
    988 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
    989 	 * these values. These values are also the power-on default.
    990 	 */
    991 	ATW_WRITE(sc, ATW_TOFS0,
    992 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
    993 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
    994 
    995 	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
    996 	 * driver. Go figure.
    997 	 */
    998 	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
    999 	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
   1000 	             ATW_IFST_SIFS_MASK) |
   1001 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
   1002 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
   1003 
   1004 	ATW_WRITE(sc, ATW_IFST, reg);
   1005 
   1006 	/* XXX More magic. Might relate to ACK timing. */
   1007 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
   1008 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
   1009 
   1010 	/* Set up the MMI read/write addresses for the BBP.
   1011 	 *
   1012 	 * TBD find out the Marvel settings.
   1013 	 */
   1014 	switch (sc->sc_bbptype) {
   1015 	case ATW_BBPTYPE_INTERSIL:
   1016 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
   1017 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
   1018 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
   1019 		break;
   1020 	case ATW_BBPTYPE_MARVEL:
   1021 		break;
   1022 	case ATW_BBPTYPE_RFMD:
   1023 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
   1024 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
   1025 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
   1026 	default:
   1027 		break;
   1028 	}
   1029 
   1030 	sc->sc_wepctl = 0;
   1031 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
   1032 
   1033 	if ((error = atw_rf3000_init(sc)) != 0)
   1034 		goto out;
   1035 
   1036 	/*
   1037 	 * Initialize the PCI Access Register.
   1038 	 */
   1039 	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
   1040 
   1041 	/*
   1042 	 * If we're allowed to do so, use Memory Read Line
   1043 	 * and Memory Read Multiple.
   1044 	 *
   1045 	 * XXX Should we use Memory Write and Invalidate?
   1046 	 */
   1047 	if (sc->sc_flags & ATWF_MRL)
   1048 		sc->sc_busmode |= ATW_PAR_MRLE;
   1049 	if (sc->sc_flags & ATWF_MRM)
   1050 		sc->sc_busmode |= ATW_PAR_MRME;
   1051 	if (sc->sc_flags & ATWF_MWI)
   1052 		sc->sc_busmode |= ATW_PAR_MWIE;
   1053 	if (sc->sc_maxburst == 0)
   1054 		sc->sc_maxburst = 8;	/* ADM8211 default */
   1055 
   1056 	switch (sc->sc_cacheline) {
   1057 	default:
   1058 		/* Use burst length. */
   1059 		break;
   1060 	case 8:
   1061 		sc->sc_busmode |= ATW_PAR_CAL_8DW;
   1062 		break;
   1063 	case 16:
   1064 		sc->sc_busmode |= ATW_PAR_CAL_16DW;
   1065 		break;
   1066 	case 32:
   1067 		sc->sc_busmode |= ATW_PAR_CAL_32DW;
   1068 		break;
   1069 	}
   1070 	switch (sc->sc_maxburst) {
   1071 	case 1:
   1072 		sc->sc_busmode |= ATW_PAR_PBL_1DW;
   1073 		break;
   1074 	case 2:
   1075 		sc->sc_busmode |= ATW_PAR_PBL_2DW;
   1076 		break;
   1077 	case 4:
   1078 		sc->sc_busmode |= ATW_PAR_PBL_4DW;
   1079 		break;
   1080 	case 8:
   1081 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1082 		break;
   1083 	case 16:
   1084 		sc->sc_busmode |= ATW_PAR_PBL_16DW;
   1085 		break;
   1086 	case 32:
   1087 		sc->sc_busmode |= ATW_PAR_PBL_32DW;
   1088 		break;
   1089 	default:
   1090 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1091 		break;
   1092 	}
   1093 
   1094 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
   1095 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
   1096 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
   1097 
   1098 	/*
   1099 	 * Initialize the OPMODE register.  We don't write it until
   1100 	 * we're ready to begin the transmit and receive processes.
   1101 	 */
   1102 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
   1103 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
   1104 
   1105 	/*
   1106 	 * Initialize the transmit descriptor ring.
   1107 	 */
   1108 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1109 	for (i = 0; i < ATW_NTXDESC; i++) {
   1110 		/* no transmit chaining */
   1111 		sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
   1112 		sc->sc_txdescs[i].at_buf2 =
   1113 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
   1114 	}
   1115 	/* use ring mode */
   1116 	sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
   1117 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
   1118 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1119 	sc->sc_txfree = ATW_NTXDESC;
   1120 	sc->sc_txnext = 0;
   1121 
   1122 	/*
   1123 	 * Initialize the transmit job descriptors.
   1124 	 */
   1125 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1126 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1127 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   1128 		txs = &sc->sc_txsoft[i];
   1129 		txs->txs_mbuf = NULL;
   1130 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1131 	}
   1132 
   1133 	/*
   1134 	 * Initialize the receive descriptor and receive job
   1135 	 * descriptor rings.
   1136 	 */
   1137 	for (i = 0; i < ATW_NRXDESC; i++) {
   1138 		rxs = &sc->sc_rxsoft[i];
   1139 		if (rxs->rxs_mbuf == NULL) {
   1140 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
   1141 				printf("%s: unable to allocate or map rx "
   1142 				    "buffer %d, error = %d\n",
   1143 				    sc->sc_dev.dv_xname, i, error);
   1144 				/*
   1145 				 * XXX Should attempt to run with fewer receive
   1146 				 * XXX buffers instead of just failing.
   1147 				 */
   1148 				atw_rxdrain(sc);
   1149 				goto out;
   1150 			}
   1151 		} else
   1152 			ATW_INIT_RXDESC(sc, i);
   1153 	}
   1154 	sc->sc_rxptr = 0;
   1155 
   1156 	/* disable all wake-up events */
   1157 	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
   1158 	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
   1159 			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
   1160 			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
   1161 
   1162 	/* ack all wake-up events */
   1163 	ATW_SET(sc, ATW_WCSR, 0);
   1164 
   1165 	/*
   1166 	 * Initialize the interrupt mask and enable interrupts.
   1167 	 */
   1168 	/* normal interrupts */
   1169 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
   1170 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
   1171 
   1172 	/* abnormal interrupts */
   1173 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
   1174 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
   1175 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1176 
   1177 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
   1178 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1179 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
   1180 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
   1181 	    ATW_INTR_TRT;
   1182 
   1183 	sc->sc_linkint_mask &= sc->sc_inten;
   1184 	sc->sc_rxint_mask &= sc->sc_inten;
   1185 	sc->sc_txint_mask &= sc->sc_inten;
   1186 
   1187 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
   1188 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1189 	if (sc->sc_intr_ack != NULL)
   1190 		(*sc->sc_intr_ack)(sc);
   1191 
   1192 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
   1193 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
   1194 
   1195 	/*
   1196 	 * Give the transmit and receive rings to the ADM8211.
   1197 	 */
   1198 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
   1199 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
   1200 
   1201 	/* common 802.11 configuration */
   1202 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
   1203 	switch (ic->ic_opmode) {
   1204 	case IEEE80211_M_STA:
   1205 		sc->sc_opmode &= ~ATW_NAR_EA;
   1206 		break;
   1207 	case IEEE80211_M_AHDEMO: /* XXX */
   1208 	case IEEE80211_M_IBSS:
   1209 		ic->ic_flags |= IEEE80211_F_IBSSON;
   1210 		/*FALLTHROUGH*/
   1211 	case IEEE80211_M_HOSTAP: /* XXX */
   1212 		/* EA bit seems important for ad hoc reception. */
   1213 		sc->sc_opmode |= ATW_NAR_EA;
   1214 		break;
   1215 	case IEEE80211_M_MONITOR: /* XXX */
   1216 		break;
   1217 	}
   1218 
   1219 	atw_start_beacon(sc, 0);
   1220 
   1221 	switch (ic->ic_opmode) {
   1222 	case IEEE80211_M_AHDEMO:
   1223 	case IEEE80211_M_HOSTAP:
   1224 		ic->ic_bss->ni_intval = ic->ic_lintval;
   1225 		ic->ic_bss->ni_rssi = 0;
   1226 		ic->ic_bss->ni_rstamp = 0;
   1227 		break;
   1228 	default:					/* XXX */
   1229 		break;
   1230 	}
   1231 
   1232 	atw_write_ssid(sc);
   1233 	atw_write_sup_rates(sc);
   1234 	if (ic->ic_caps & IEEE80211_C_WEP)
   1235 		atw_write_wep(sc);
   1236 
   1237 	/*
   1238 	 * Set the receive filter.  This will start the transmit and
   1239 	 * receive processes.
   1240 	 */
   1241 	atw_filter_setup(sc);
   1242 
   1243 	/*
   1244 	 * Start the receive process.
   1245 	 */
   1246 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1247 
   1248 	/*
   1249 	 * Note that the interface is now running.
   1250 	 */
   1251 	ifp->if_flags |= IFF_RUNNING;
   1252 	ifp->if_flags &= ~IFF_OACTIVE;
   1253 	ic->ic_state = IEEE80211_S_INIT;
   1254 
   1255 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1256 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1257 	else
   1258 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1259  out:
   1260 	if (error) {
   1261 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1262 		ifp->if_timer = 0;
   1263 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1264 	}
   1265 #ifdef ATW_DEBUG
   1266 	atw_print_regs(sc, "end of init");
   1267 #endif /* ATW_DEBUG */
   1268 
   1269 	return (error);
   1270 }
   1271 
   1272 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
   1273  *           0: MAC control of RF3000/Si4126.
   1274  *
   1275  * Applies power, or selects RF front-end? Sets reset condition.
   1276  *
   1277  * TBD support non-RFMD BBP, non-SiLabs synth.
   1278  */
   1279 static void
   1280 atw_rfio_enable(struct atw_softc *sc, int enable)
   1281 {
   1282 	if (enable) {
   1283 		ATW_WRITE(sc, ATW_SYNRF,
   1284 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
   1285 		DELAY(atw_rfio_enable_delay);
   1286 	} else {
   1287 		ATW_WRITE(sc, ATW_SYNRF, 0);
   1288 		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
   1289 	}
   1290 }
   1291 
   1292 static int
   1293 atw_tune(struct atw_softc *sc)
   1294 {
   1295 	int rc;
   1296 	u_int32_t reg;
   1297 	int chan;
   1298 	struct ieee80211com *ic = &sc->sc_ic;
   1299 
   1300 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
   1301 	if (chan == IEEE80211_CHAN_ANY)
   1302 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
   1303 
   1304 	if (chan == sc->sc_cur_chan)
   1305 		return 0;
   1306 
   1307 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
   1308 	    sc->sc_cur_chan, chan));
   1309 
   1310 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1311 
   1312 	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
   1313 	    (rc = atw_rf3000_tune(sc, chan)) != 0)
   1314 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
   1315 		    chan);
   1316 
   1317 	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
   1318 	ATW_WRITE(sc, ATW_CAP0,
   1319 	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
   1320 
   1321 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1322 
   1323 	if (rc == 0)
   1324 		sc->sc_cur_chan = chan;
   1325 
   1326 	return rc;
   1327 }
   1328 
   1329 #ifdef ATW_DEBUG
   1330 static void
   1331 atw_si4126_print(struct atw_softc *sc)
   1332 {
   1333 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1334 	u_int addr, val;
   1335 
   1336 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1337 		return;
   1338 
   1339 	for (addr = 0; addr <= 8; addr++) {
   1340 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
   1341 		if (atw_si4126_read(sc, addr, &val) == 0) {
   1342 			printf("<unknown> (quitting print-out)\n");
   1343 			break;
   1344 		}
   1345 		printf("%05x\n", val);
   1346 	}
   1347 }
   1348 #endif /* ATW_DEBUG */
   1349 
   1350 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
   1351  *
   1352  * The RF/IF synthesizer produces two reference frequencies for
   1353  * the RF2948B transceiver.  The first frequency the RF2948B requires
   1354  * is two times the so-called "intermediate frequency" (IF). Since
   1355  * a SAW filter on the radio fixes the IF at 374MHz, I program the
   1356  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
   1357  * frequency required by the transceiver is the radio frequency
   1358  * (RF). This is a superheterodyne transceiver; for f(chan) the
   1359  * center frequency of the channel we are tuning, RF = f(chan) -
   1360  * IF.
   1361  *
   1362  * XXX I am told by SiLabs that the Si4126 will accept a broader range
   1363  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
   1364  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
   1365  * works, but I have still programmed for XINDIV2 = 1 to be safe.
   1366  */
   1367 static int
   1368 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
   1369 {
   1370 	int rc = 0;
   1371 	u_int mhz;
   1372 	u_int R;
   1373 	u_int32_t reg;
   1374 	u_int16_t gain;
   1375 
   1376 #ifdef ATW_DEBUG
   1377 	atw_si4126_print(sc);
   1378 #endif /* ATW_DEBUG */
   1379 
   1380 	if (chan == 14)
   1381 		mhz = 2484;
   1382 	else
   1383 		mhz = 2412 + 5 * (chan - 1);
   1384 
   1385 	/* Tune IF to 748MHz to suit the IF LO input of the
   1386 	 * RF2494B, which is 2 x IF. No need to set an IF divider
   1387          * because an IF in 526MHz - 952MHz is allowed.
   1388 	 *
   1389 	 * XIN is 44.000MHz, so divide it by two to get allowable
   1390 	 * range of 2-25MHz. SiLabs tells me that this is not
   1391 	 * strictly necessary.
   1392 	 */
   1393 
   1394 	R = 44;
   1395 
   1396 	atw_rfio_enable(sc, 1);
   1397 
   1398 	/* Power-up RF, IF synthesizers. */
   1399 	if ((rc = atw_si4126_write(sc, SI4126_POWER,
   1400 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
   1401 		goto out;
   1402 
   1403 	/* If RF2 N > 2047, then set KP2 to 1. */
   1404 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
   1405 
   1406 	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
   1407 		goto out;
   1408 
   1409 	/* set LPWR, too? */
   1410 	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
   1411 	    SI4126_MAIN_XINDIV2)) != 0)
   1412 		goto out;
   1413 
   1414 	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
   1415 	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
   1416 	 */
   1417 	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
   1418 		goto out;
   1419 
   1420 	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
   1421 		goto out;
   1422 
   1423 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
   1424 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
   1425 	 * which has no RF1!
   1426 	 */
   1427 	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
   1428 		goto out;
   1429 
   1430 	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
   1431 		goto out;
   1432 
   1433 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
   1434 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
   1435 	 * Now let's multiply it to mhz. So mhz - IF = N.
   1436 	 */
   1437 	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
   1438 		goto out;
   1439 
   1440 	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
   1441 		goto out;
   1442 
   1443 	/* wait 100us from power-up for RF, IF to settle */
   1444 	DELAY(100);
   1445 
   1446 	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
   1447 		/* XXX there is a binary driver which sends
   1448 		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
   1449 		 * that this enables the Si4126 by raising its PWDN#, but I
   1450 		 * think that it actually sets the Prism RF front-end
   1451 		 * to a special mode for channel 14.
   1452 		 */
   1453 		reg = ATW_READ(sc, ATW_GPIO);
   1454 		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
   1455 		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
   1456 		ATW_WRITE(sc, ATW_GPIO, reg);
   1457 	}
   1458 
   1459 #ifdef ATW_DEBUG
   1460 	atw_si4126_print(sc);
   1461 #endif /* ATW_DEBUG */
   1462 
   1463 out:
   1464 	atw_rfio_enable(sc, 0);
   1465 
   1466 	return rc;
   1467 }
   1468 
   1469 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
   1470  * diversity.
   1471  *
   1472  * Call this w/ Tx/Rx suspended.
   1473  */
   1474 static int
   1475 atw_rf3000_init(struct atw_softc *sc)
   1476 {
   1477 	int rc = 0;
   1478 
   1479 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1480 
   1481 	atw_rfio_enable(sc, 1);
   1482 
   1483 	/* enable diversity */
   1484 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
   1485 
   1486 	if (rc != 0)
   1487 		goto out;
   1488 
   1489 	/* sensible setting from a binary-only driver */
   1490 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1491 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
   1492 
   1493 	if (rc != 0)
   1494 		goto out;
   1495 
   1496 	/* magic from a binary-only driver */
   1497 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
   1498 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
   1499 
   1500 	if (rc != 0)
   1501 		goto out;
   1502 
   1503 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
   1504 
   1505 	if (rc != 0)
   1506 		goto out;
   1507 
   1508 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
   1509 
   1510 	if (rc != 0)
   1511 		goto out;
   1512 
   1513 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
   1514 
   1515 	if (rc != 0)
   1516 		goto out;
   1517 
   1518 	/* CCA is acquisition sensitive */
   1519 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
   1520 	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
   1521 
   1522 	if (rc != 0)
   1523 		goto out;
   1524 
   1525 out:
   1526 	atw_rfio_enable(sc, 0);
   1527 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1528 	return rc;
   1529 }
   1530 
   1531 #ifdef ATW_DEBUG
   1532 static void
   1533 atw_rf3000_print(struct atw_softc *sc)
   1534 {
   1535 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1536 	u_int addr, val;
   1537 
   1538 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1539 		return;
   1540 
   1541 	for (addr = 0x01; addr <= 0x15; addr++) {
   1542 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
   1543 		if (atw_rf3000_read(sc, addr, &val) != 0) {
   1544 			printf("<unknown> (quitting print-out)\n");
   1545 			break;
   1546 		}
   1547 		printf("%08x\n", val);
   1548 	}
   1549 }
   1550 #endif /* ATW_DEBUG */
   1551 
   1552 /* Set the power settings on the BBP for channel `chan'. */
   1553 static int
   1554 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
   1555 {
   1556 	int rc = 0;
   1557 	u_int32_t reg;
   1558 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
   1559 
   1560 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
   1561 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
   1562 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
   1563 
   1564 	/* odd channels: LSB, even channels: MSB */
   1565 	if (chan % 2 == 1) {
   1566 		txpower &= 0xFF;
   1567 		lpf_cutoff &= 0xFF;
   1568 		lna_gs_thresh &= 0xFF;
   1569 	} else {
   1570 		txpower >>= 8;
   1571 		lpf_cutoff >>= 8;
   1572 		lna_gs_thresh >>= 8;
   1573 	}
   1574 
   1575 #ifdef ATW_DEBUG
   1576 	atw_rf3000_print(sc);
   1577 #endif /* ATW_DEBUG */
   1578 
   1579 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
   1580 	    "lna_gs_thresh %02x\n",
   1581 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
   1582 
   1583 	atw_rfio_enable(sc, 1);
   1584 
   1585 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1586 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
   1587 		goto out;
   1588 
   1589 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
   1590 		goto out;
   1591 
   1592 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
   1593 		goto out;
   1594 
   1595 	/* from a binary-only driver. */
   1596 	reg = ATW_READ(sc, ATW_PLCPHD);
   1597 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
   1598 	reg |= LSHIFT(txpower << 2, ATW_PLCPHD_SERVICE_MASK);
   1599 	ATW_WRITE(sc, ATW_PLCPHD, reg);
   1600 
   1601 #ifdef ATW_DEBUG
   1602 	atw_rf3000_print(sc);
   1603 #endif /* ATW_DEBUG */
   1604 
   1605 out:
   1606 	atw_rfio_enable(sc, 0);
   1607 
   1608 	return rc;
   1609 }
   1610 
   1611 /* Write a register on the RF3000 baseband processor using the
   1612  * registers provided by the ADM8211 for this purpose.
   1613  *
   1614  * Return 0 on success.
   1615  */
   1616 static int
   1617 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
   1618 {
   1619 	u_int32_t reg;
   1620 	int i;
   1621 
   1622 	for (i = 1000; --i >= 0; ) {
   1623 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1624 			break;
   1625 		DELAY(100);
   1626 	}
   1627 
   1628 	if (i < 0) {
   1629 		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
   1630 		return ETIMEDOUT;
   1631 	}
   1632 
   1633 	reg = sc->sc_bbpctl_wr |
   1634 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
   1635 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1636 
   1637 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1638 
   1639 	for (i = 1000; --i >= 0; ) {
   1640 		DELAY(100);
   1641 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
   1642 			break;
   1643 	}
   1644 
   1645 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
   1646 
   1647 	if (i < 0) {
   1648 		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
   1649 		return ETIMEDOUT;
   1650 	}
   1651 	return 0;
   1652 }
   1653 
   1654 /* Read a register on the RF3000 baseband processor using the registers
   1655  * the ADM8211 provides for this purpose.
   1656  *
   1657  * The 7-bit register address is addr.  Record the 8-bit data in the register
   1658  * in *val.
   1659  *
   1660  * Return 0 on success.
   1661  *
   1662  * XXX This does not seem to work. The ADM8211 must require more or
   1663  * different magic to read the chip than to write it. Possibly some
   1664  * of the magic I have derived from a binary-only driver concerns
   1665  * the "chip address" (see the RF3000 manual).
   1666  */
   1667 #ifdef ATW_DEBUG
   1668 static int
   1669 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
   1670 {
   1671 	u_int32_t reg;
   1672 	int i;
   1673 
   1674 	for (i = 1000; --i >= 0; ) {
   1675 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1676 			break;
   1677 		DELAY(100);
   1678 	}
   1679 
   1680 	if (i < 0) {
   1681 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
   1682 		    sc->sc_dev.dv_xname);
   1683 		return ETIMEDOUT;
   1684 	}
   1685 
   1686 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1687 
   1688 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1689 
   1690 	for (i = 1000; --i >= 0; ) {
   1691 		DELAY(100);
   1692 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
   1693 			break;
   1694 	}
   1695 
   1696 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
   1697 
   1698 	if (i < 0) {
   1699 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
   1700 		    sc->sc_dev.dv_xname, reg);
   1701 		return ETIMEDOUT;
   1702 	}
   1703 	if (val != NULL)
   1704 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
   1705 	return 0;
   1706 }
   1707 #endif /* ATW_DEBUG */
   1708 
   1709 /* Write a register on the Si4126 RF/IF synthesizer using the registers
   1710  * provided by the ADM8211 for that purpose.
   1711  *
   1712  * val is 18 bits of data, and val is the 4-bit address of the register.
   1713  *
   1714  * Return 0 on success.
   1715  */
   1716 static int
   1717 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
   1718 {
   1719 	u_int32_t bits, reg;
   1720 	int i;
   1721 
   1722 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1723 	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
   1724 
   1725 	for (i = 1000; --i >= 0; ) {
   1726 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1727 			break;
   1728 		DELAY(100);
   1729 	}
   1730 
   1731 	if (i < 0) {
   1732 		printf("%s: start atw_si4126_write, SYNCTL busy\n",
   1733 		    sc->sc_dev.dv_xname);
   1734 		return ETIMEDOUT;
   1735 	}
   1736 
   1737 	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
   1738 	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
   1739 
   1740 	reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
   1741 
   1742 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1743 
   1744 	for (i = 1000; --i >= 0; ) {
   1745 		DELAY(100);
   1746 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
   1747 			break;
   1748 	}
   1749 
   1750 	/* restore to acceptable starting condition */
   1751 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
   1752 
   1753 	if (i < 0) {
   1754 		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
   1755 		    sc->sc_dev.dv_xname, reg);
   1756 		return ETIMEDOUT;
   1757 	}
   1758 	return 0;
   1759 }
   1760 
   1761 /* Read 18-bit data from the 4-bit address addr in Si4126
   1762  * RF synthesizer and write the data to *val. Return 0 on success.
   1763  *
   1764  * XXX This does not seem to work. The ADM8211 must require more or
   1765  * different magic to read the chip than to write it.
   1766  */
   1767 #ifdef ATW_DEBUG
   1768 static int
   1769 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
   1770 {
   1771 	u_int32_t reg;
   1772 	int i;
   1773 
   1774 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1775 
   1776 	for (i = 1000; --i >= 0; ) {
   1777 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1778 			break;
   1779 		DELAY(100);
   1780 	}
   1781 
   1782 	if (i < 0) {
   1783 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
   1784 		    sc->sc_dev.dv_xname);
   1785 		return ETIMEDOUT;
   1786 	}
   1787 
   1788 	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
   1789 
   1790 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1791 
   1792 	for (i = 1000; --i >= 0; ) {
   1793 		DELAY(100);
   1794 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
   1795 			break;
   1796 	}
   1797 
   1798 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
   1799 
   1800 	if (i < 0) {
   1801 		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
   1802 		    sc->sc_dev.dv_xname, reg);
   1803 		return ETIMEDOUT;
   1804 	}
   1805 	if (val != NULL)
   1806 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
   1807 		                       ATW_SYNCTL_DATA_MASK);
   1808 	return 0;
   1809 }
   1810 #endif /* ATW_DEBUG */
   1811 
   1812 /* XXX is the endianness correct? test. */
   1813 #define	atw_calchash(addr) \
   1814 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
   1815 
   1816 /*
   1817  * atw_filter_setup:
   1818  *
   1819  *	Set the ADM8211's receive filter.
   1820  */
   1821 static void
   1822 atw_filter_setup(struct atw_softc *sc)
   1823 {
   1824 	struct ieee80211com *ic = &sc->sc_ic;
   1825 	struct ethercom *ec = &ic->ic_ec;
   1826 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1827 	int hash;
   1828 	u_int32_t hashes[2] = { 0, 0 };
   1829 	struct ether_multi *enm;
   1830 	struct ether_multistep step;
   1831 
   1832 	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
   1833 	    sc->sc_dev.dv_xname, sc->sc_flags));
   1834 
   1835 	/*
   1836 	 * If we're running, idle the receive engine.  If we're NOT running,
   1837 	 * we're being called from atw_init(), and our writing ATW_NAR will
   1838 	 * start the transmit and receive processes in motion.
   1839 	 */
   1840 	if (ifp->if_flags & IFF_RUNNING)
   1841 		atw_idle(sc, ATW_NAR_SR);
   1842 
   1843 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
   1844 
   1845 	ifp->if_flags &= ~IFF_ALLMULTI;
   1846 
   1847 	if (ifp->if_flags & IFF_PROMISC) {
   1848 		sc->sc_opmode |= ATW_NAR_PR;
   1849 allmulti:
   1850 		ifp->if_flags |= IFF_ALLMULTI;
   1851 		goto setit;
   1852 	}
   1853 
   1854 	/*
   1855 	 * Program the 64-bit multicast hash filter.
   1856 	 */
   1857 	ETHER_FIRST_MULTI(step, ec, enm);
   1858 	while (enm != NULL) {
   1859 		/* XXX */
   1860 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1861 		    ETHER_ADDR_LEN) != 0)
   1862 			goto allmulti;
   1863 
   1864 		hash = atw_calchash(enm->enm_addrlo);
   1865 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1866 		ETHER_NEXT_MULTI(step, enm);
   1867 	}
   1868 
   1869 	if (ifp->if_flags & IFF_BROADCAST) {
   1870 		hash = atw_calchash(etherbroadcastaddr);
   1871 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1872 	}
   1873 
   1874 	/* all bits set => hash is useless */
   1875 	if (~(hashes[0] & hashes[1]) == 0)
   1876 		goto allmulti;
   1877 
   1878  setit:
   1879 	if (ifp->if_flags & IFF_ALLMULTI)
   1880 		sc->sc_opmode |= ATW_NAR_MM;
   1881 
   1882 	/* XXX in scan mode, do not filter packets. maybe this is
   1883 	 * unnecessary.
   1884 	 */
   1885 	if (ic->ic_state == IEEE80211_S_SCAN)
   1886 		sc->sc_opmode |= ATW_NAR_PR;
   1887 
   1888 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
   1889 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
   1890 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1891 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
   1892 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
   1893 
   1894 	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
   1895 }
   1896 
   1897 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
   1898  * a beacon's BSSID and SSID against the preferred BSSID and SSID
   1899  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
   1900  * no beacon with the preferred BSSID and SSID in the number of
   1901  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
   1902  */
   1903 static void
   1904 atw_write_bssid(struct atw_softc *sc)
   1905 {
   1906 	struct ieee80211com *ic = &sc->sc_ic;
   1907 	u_int8_t *bssid;
   1908 
   1909 	bssid = ic->ic_bss->ni_bssid;
   1910 
   1911 	ATW_WRITE(sc, ATW_ABDA1,
   1912 	    (ATW_READ(sc, ATW_ABDA1) &
   1913 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
   1914 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
   1915 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
   1916 
   1917 	ATW_WRITE(sc, ATW_BSSID0,
   1918 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
   1919 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
   1920 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
   1921 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
   1922 
   1923 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
   1924 	    ether_sprintf(sc->sc_bssid)));
   1925 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
   1926 
   1927 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
   1928 }
   1929 
   1930 /* Tell the ADM8211 how many beacon intervals must pass without
   1931  * receiving a beacon with the preferred BSSID & SSID set by
   1932  * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
   1933  * raised.
   1934  */
   1935 static void
   1936 atw_write_bcn_thresh(struct atw_softc *sc)
   1937 {
   1938 	struct ieee80211com *ic = &sc->sc_ic;
   1939 	int lost_bcn_thresh;
   1940 
   1941 	/* Lose link after one second or 7 beacons, whichever comes
   1942 	 * first, but do not lose link before 2 beacons are lost.
   1943 	 *
   1944 	 * In host AP mode, set the lost-beacon threshold to 0.
   1945 	 */
   1946 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1947 		lost_bcn_thresh = 0;
   1948 	else {
   1949 		int beacons_per_second =
   1950 		    1000000 / (IEEE80211_DUR_TU * MAX(1,ic->ic_bss->ni_intval));
   1951 		lost_bcn_thresh = MAX(2, MIN(7, beacons_per_second));
   1952 	}
   1953 
   1954 	/* XXX resets wake-up status bits */
   1955 	ATW_WRITE(sc, ATW_WCSR,
   1956 	    (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
   1957 	    (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
   1958 
   1959 	DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
   1960 	    sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
   1961 
   1962 	sc->sc_lost_bcn_thresh = lost_bcn_thresh;
   1963 
   1964 	DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
   1965 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
   1966 }
   1967 
   1968 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
   1969  * 16-bit word.
   1970  */
   1971 static void
   1972 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
   1973 {
   1974 	u_int i;
   1975 	u_int8_t *ptr;
   1976 
   1977 	memcpy(&sc->sc_sram[ofs], buf, buflen);
   1978 
   1979 	if (ofs % 2 != 0) {
   1980 		ofs--;
   1981 		buflen++;
   1982 	}
   1983 
   1984 	if (buflen % 2 != 0)
   1985 		buflen++;
   1986 
   1987 	assert(buflen + ofs <= ATW_SRAM_SIZE);
   1988 
   1989 	ptr = &sc->sc_sram[ofs];
   1990 
   1991 	for (i = 0; i < buflen; i += 2) {
   1992 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
   1993 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
   1994 		DELAY(atw_writewep_delay);
   1995 
   1996 		ATW_WRITE(sc, ATW_WESK,
   1997 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
   1998 		DELAY(atw_writewep_delay);
   1999 	}
   2000 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
   2001 
   2002 	if (sc->sc_if.if_flags & IFF_DEBUG) {
   2003 		int n_octets = 0;
   2004 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
   2005 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
   2006 		for (i = 0; i < buflen; i++) {
   2007 			printf(" %02x", ptr[i]);
   2008 			if (++n_octets % 24 == 0)
   2009 				printf("\n");
   2010 		}
   2011 		if (n_octets % 24 != 0)
   2012 			printf("\n");
   2013 	}
   2014 }
   2015 
   2016 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
   2017 static void
   2018 atw_write_wep(struct atw_softc *sc)
   2019 {
   2020 	struct ieee80211com *ic = &sc->sc_ic;
   2021 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
   2022 	u_int8_t buf[IEEE80211_WEP_NKID]
   2023 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
   2024 	u_int32_t reg;
   2025 	int i;
   2026 
   2027 	sc->sc_wepctl = 0;
   2028 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
   2029 
   2030 	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
   2031 		return;
   2032 
   2033 	memset(&buf[0][0], 0, sizeof(buf));
   2034 
   2035 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   2036 		if (ic->ic_nw_keys[i].wk_len > 5) {
   2037 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
   2038 		} else if (ic->ic_nw_keys[i].wk_len != 0) {
   2039 			buf[i][1] = ATW_WEP_ENABLED;
   2040 		} else {
   2041 			buf[i][1] = 0;
   2042 			continue;
   2043 		}
   2044 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
   2045 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
   2046 		    ic->ic_nw_keys[i].wk_len - 1);
   2047 	}
   2048 
   2049 	reg = ATW_READ(sc, ATW_MACTEST);
   2050 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
   2051 	reg &= ~ATW_MACTEST_KEYID_MASK;
   2052 	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
   2053 	ATW_WRITE(sc, ATW_MACTEST, reg);
   2054 
   2055 	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
   2056 	 * throughout.)
   2057 	 */
   2058 	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
   2059 	if (sc->sc_if.if_flags & IFF_LINK2)
   2060 		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
   2061 
   2062 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
   2063 	    sizeof(buf));
   2064 }
   2065 
   2066 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
   2067 
   2068 static void
   2069 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2070     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2071 {
   2072 	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
   2073 
   2074 	switch (subtype) {
   2075 	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
   2076 		/* do nothing: hardware answers probe request */
   2077 		break;
   2078 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2079 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2080 		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
   2081 		break;
   2082 	default:
   2083 		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
   2084 		break;
   2085 	}
   2086 	return;
   2087 }
   2088 
   2089 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
   2090  * of IBSSs with like SSID/channel but different BSSID. It joins the
   2091  * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
   2092  * convention. Possibly the ADMtek chip does this for us; I will have
   2093  * to test to find out.
   2094  *
   2095  * XXX we should add the duration field of the received beacon to
   2096  * the TSF time it contains before comparing it with the ADM8211's
   2097  * TSF.
   2098  */
   2099 static void
   2100 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
   2101     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2102 {
   2103 	struct atw_softc *sc;
   2104 	struct ieee80211_frame *wh;
   2105 	u_int64_t tsft, bcn_tsft;
   2106 	u_int32_t tsftl, tsfth;
   2107 	int do_print = 0;
   2108 
   2109 	sc = (struct atw_softc*)ic->ic_if.if_softc;
   2110 
   2111 	if (ic->ic_if.if_flags & IFF_DEBUG)
   2112 		do_print = (ic->ic_if.if_flags & IFF_LINK0)
   2113 		    ? 1 : ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval);
   2114 
   2115 	wh = mtod(m0, struct ieee80211_frame *);
   2116 
   2117 	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
   2118 
   2119 	if (ic->ic_state != IEEE80211_S_RUN) {
   2120 		if (do_print)
   2121 			printf("%s: atw_recv_beacon: not running\n",
   2122 			    sc->sc_dev.dv_xname);
   2123 		return;
   2124 	}
   2125 
   2126 	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
   2127 	    ic->ic_bss->ni_chan)) == NULL) {
   2128 		if (do_print)
   2129 			printf("%s: atw_recv_beacon: no node %s\n",
   2130 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2131 		return;
   2132 	}
   2133 
   2134 	if (ieee80211_match_bss(ic, ni) != 0) {
   2135 		if (do_print)
   2136 			printf("%s: atw_recv_beacon: ssid mismatch %s\n",
   2137 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2138 		return;
   2139 	}
   2140 
   2141 	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
   2142 		return;
   2143 
   2144 	if (do_print)
   2145 		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
   2146 		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
   2147 
   2148 	if (ic->ic_opmode != IEEE80211_M_IBSS)
   2149 		return;
   2150 
   2151 	/* If we read TSFTL right before rollover, we read a TSF timer
   2152 	 * that is too high rather than too low. This prevents a spurious
   2153 	 * synchronization down the line, however, our IBSS could suffer
   2154 	 * from a creeping TSF....
   2155 	 */
   2156 	tsftl = ATW_READ(sc, ATW_TSFTL);
   2157 	tsfth = ATW_READ(sc, ATW_TSFTH);
   2158 
   2159 	tsft = (u_int64_t)tsfth << 32 | tsftl;
   2160 	bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
   2161 
   2162 	if (do_print)
   2163 		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
   2164 		    sc->sc_dev.dv_xname, tsft, bcn_tsft);
   2165 
   2166 	/* we are faster, let the other guy catch up */
   2167 	if (bcn_tsft < tsft)
   2168 		return;
   2169 
   2170 	if (do_print)
   2171 		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
   2172 		    ether_sprintf(wh->i_addr2));
   2173 
   2174 	ic->ic_flags &= ~IEEE80211_F_SIBSS;
   2175 
   2176 #if 0
   2177 	atw_tsf(sc);
   2178 #endif
   2179 
   2180 	/* negotiate rates with new IBSS */
   2181 	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
   2182 	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
   2183 	if (ni->ni_rates.rs_nrates == 0) {
   2184 		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
   2185 			ether_sprintf(ni->ni_bssid));
   2186 		return;
   2187 	}
   2188 
   2189 	if (do_print) {
   2190 		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
   2191 		    ether_sprintf(ic->ic_bss->ni_bssid));
   2192 		printf("%s ", ether_sprintf(ni->ni_bssid));
   2193 		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
   2194 	}
   2195 
   2196 	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
   2197 
   2198 	atw_write_bssid(sc);
   2199 	atw_write_bcn_thresh(sc);
   2200 	atw_start_beacon(sc, 1);
   2201 }
   2202 
   2203 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
   2204  * In ad hoc mode, the SSID is written to the beacons sent by the
   2205  * ADM8211. In both ad hoc and infrastructure mode, beacons received
   2206  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
   2207  * indications.
   2208  */
   2209 static void
   2210 atw_write_ssid(struct atw_softc *sc)
   2211 {
   2212 	struct ieee80211com *ic = &sc->sc_ic;
   2213 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID */
   2214 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
   2215 
   2216 	memset(buf, 0, sizeof(buf));
   2217 	buf[0] = ic->ic_bss->ni_esslen;
   2218 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
   2219 
   2220 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
   2221 }
   2222 
   2223 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
   2224  * In ad hoc mode, the supported rates are written to beacons sent by the
   2225  * ADM8211.
   2226  */
   2227 static void
   2228 atw_write_sup_rates(struct atw_softc *sc)
   2229 {
   2230 	struct ieee80211com *ic = &sc->sc_ic;
   2231 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
   2232 	 * supported rates
   2233 	 */
   2234 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
   2235 
   2236 	memset(buf, 0, sizeof(buf));
   2237 
   2238 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
   2239 
   2240 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
   2241 	    ic->ic_bss->ni_rates.rs_nrates);
   2242 
   2243 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
   2244 }
   2245 
   2246 /* Start/stop sending beacons. */
   2247 void
   2248 atw_start_beacon(struct atw_softc *sc, int start)
   2249 {
   2250 	struct ieee80211com *ic = &sc->sc_ic;
   2251 	u_int32_t len, capinfo, reg_bcnt, reg_cap1;
   2252 
   2253 	if (ATW_IS_ENABLED(sc) == 0)
   2254 		return;
   2255 
   2256 	len = capinfo = 0;
   2257 
   2258 	/* start beacons */
   2259 	len = sizeof(struct ieee80211_frame) +
   2260 	    8 /* timestamp */ + 2 /* beacon interval */ +
   2261 	    2 /* capability info */ +
   2262 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
   2263 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
   2264 	    3 /* DS parameters */ +
   2265 	    IEEE80211_CRC_LEN;
   2266 
   2267 	reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
   2268 
   2269 	reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
   2270 
   2271 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2272 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2273 
   2274 	if (!start)
   2275 		return;
   2276 
   2277 	/* TBD use ni_capinfo */
   2278 
   2279 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
   2280 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   2281 	if (ic->ic_flags & IEEE80211_F_WEPON)
   2282 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   2283 
   2284 	switch (ic->ic_opmode) {
   2285 	case IEEE80211_M_IBSS:
   2286 		len += 4; /* IBSS parameters */
   2287 		capinfo |= IEEE80211_CAPINFO_IBSS;
   2288 		break;
   2289 	case IEEE80211_M_HOSTAP:
   2290 		/* XXX 6-byte minimum TIM */
   2291 		len += atw_beacon_len_adjust;
   2292 		capinfo |= IEEE80211_CAPINFO_ESS;
   2293 		break;
   2294 	default:
   2295 		return;
   2296 	}
   2297 
   2298 	reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
   2299 	reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
   2300 
   2301 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2302 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2303 
   2304 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
   2305 	    sc->sc_dev.dv_xname, reg_bcnt));
   2306 
   2307 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
   2308 	    sc->sc_dev.dv_xname, reg_cap1));
   2309 }
   2310 
   2311 /* First beacon was sent at time 0 microseconds, current time is
   2312  * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
   2313  * microseconds.  Return the expected time in microseconds for the
   2314  * beacon after next.
   2315  */
   2316 static __inline u_int64_t
   2317 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
   2318 {
   2319 	return tsft + (tbtt - tsft % tbtt);
   2320 }
   2321 
   2322 /* If we've created an IBSS, write the TSF time in the ADM8211 to
   2323  * the ieee80211com.
   2324  *
   2325  * Predict the next target beacon transmission time (TBTT) and
   2326  * write it to the ADM8211.
   2327  */
   2328 static void
   2329 atw_tsf(struct atw_softc *sc)
   2330 {
   2331 #define TBTTOFS 20 /* TU */
   2332 
   2333 	struct ieee80211com *ic = &sc->sc_ic;
   2334 	u_int64_t tsft, tbtt;
   2335 
   2336 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
   2337 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
   2338 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
   2339 		tsft = ATW_READ(sc, ATW_TSFTH);
   2340 		tsft <<= 32;
   2341 		tsft |= ATW_READ(sc, ATW_TSFTL);
   2342 		*(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
   2343 	} else
   2344 		tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
   2345 
   2346 	tbtt = atw_predict_beacon(tsft,
   2347 	    ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
   2348 
   2349 	/* skip one more beacon so that the TBTT cannot pass before
   2350 	 * we've programmed it, and also so that we can subtract a
   2351 	 * few TU so that we wake a little before TBTT.
   2352 	 */
   2353 	tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
   2354 
   2355 	/* wake up a little early */
   2356 	tbtt -= TBTTOFS * IEEE80211_DUR_TU;
   2357 
   2358 	DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
   2359 	    sc->sc_dev.dv_xname, tsft, tbtt));
   2360 
   2361 	ATW_WRITE(sc, ATW_TOFS1,
   2362 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
   2363 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
   2364 	    LSHIFT(
   2365 		MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
   2366 		ATW_TOFS1_TBTTPRE_MASK));
   2367 #undef TBTTOFS
   2368 }
   2369 
   2370 static void
   2371 atw_next_scan(void *arg)
   2372 {
   2373 	struct atw_softc *sc = arg;
   2374 	struct ieee80211com *ic = &sc->sc_ic;
   2375 	struct ifnet *ifp = &ic->ic_if;
   2376 	int s;
   2377 
   2378 	/* don't call atw_start w/o network interrupts blocked */
   2379 	s = splnet();
   2380 	if (ic->ic_state == IEEE80211_S_SCAN)
   2381 		ieee80211_next_scan(ifp);
   2382 	splx(s);
   2383 }
   2384 
   2385 /* Synchronize the hardware state with the software state. */
   2386 static int
   2387 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   2388 {
   2389 	struct ifnet *ifp = &ic->ic_if;
   2390 	struct atw_softc *sc = ifp->if_softc;
   2391 	enum ieee80211_state ostate;
   2392 	int error;
   2393 
   2394 	ostate = ic->ic_state;
   2395 
   2396 	if (nstate == IEEE80211_S_INIT) {
   2397 		callout_stop(&sc->sc_scan_ch);
   2398 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
   2399 		atw_start_beacon(sc, 0);
   2400 		return (*sc->sc_newstate)(ic, nstate, arg);
   2401 	}
   2402 
   2403 	if ((error = atw_tune(sc)) != 0)
   2404 		return error;
   2405 
   2406 	switch (nstate) {
   2407 	case IEEE80211_S_ASSOC:
   2408 		break;
   2409 	case IEEE80211_S_INIT:
   2410 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
   2411 		break;
   2412 	case IEEE80211_S_SCAN:
   2413 		memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
   2414 		atw_write_bssid(sc);
   2415 
   2416 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
   2417 		    atw_next_scan, sc);
   2418 
   2419 		break;
   2420 	case IEEE80211_S_RUN:
   2421 		if (ic->ic_opmode == IEEE80211_M_STA)
   2422 			break;
   2423 		/*FALLTHROUGH*/
   2424 	case IEEE80211_S_AUTH:
   2425 		atw_write_bssid(sc);
   2426 		atw_write_bcn_thresh(sc);
   2427 		atw_write_ssid(sc);
   2428 		atw_write_sup_rates(sc);
   2429 
   2430 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
   2431 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   2432 			break;
   2433 
   2434 		/* set listen interval
   2435 		 * XXX do software units agree w/ hardware?
   2436 		 */
   2437 		ATW_WRITE(sc, ATW_BPLI,
   2438 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2439 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
   2440 			   ATW_BPLI_LI_MASK));
   2441 
   2442 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
   2443 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
   2444 
   2445 		atw_tsf(sc);
   2446 		break;
   2447 	}
   2448 
   2449 	if (nstate != IEEE80211_S_SCAN)
   2450 		callout_stop(&sc->sc_scan_ch);
   2451 
   2452 	if (nstate == IEEE80211_S_RUN &&
   2453 	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   2454 	     ic->ic_opmode == IEEE80211_M_IBSS))
   2455 		atw_start_beacon(sc, 1);
   2456 	else
   2457 		atw_start_beacon(sc, 0);
   2458 
   2459 	return (*sc->sc_newstate)(ic, nstate, arg);
   2460 }
   2461 
   2462 /*
   2463  * atw_add_rxbuf:
   2464  *
   2465  *	Add a receive buffer to the indicated descriptor.
   2466  */
   2467 int
   2468 atw_add_rxbuf(struct atw_softc *sc, int idx)
   2469 {
   2470 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2471 	struct mbuf *m;
   2472 	int error;
   2473 
   2474 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2475 	if (m == NULL)
   2476 		return (ENOBUFS);
   2477 
   2478 	MCLGET(m, M_DONTWAIT);
   2479 	if ((m->m_flags & M_EXT) == 0) {
   2480 		m_freem(m);
   2481 		return (ENOBUFS);
   2482 	}
   2483 
   2484 	if (rxs->rxs_mbuf != NULL)
   2485 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2486 
   2487 	rxs->rxs_mbuf = m;
   2488 
   2489 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2490 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2491 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2492 	if (error) {
   2493 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2494 		    sc->sc_dev.dv_xname, idx, error);
   2495 		panic("atw_add_rxbuf");	/* XXX */
   2496 	}
   2497 
   2498 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2499 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2500 
   2501 	ATW_INIT_RXDESC(sc, idx);
   2502 
   2503 	return (0);
   2504 }
   2505 
   2506 /*
   2507  * atw_stop:		[ ifnet interface function ]
   2508  *
   2509  *	Stop transmission on the interface.
   2510  */
   2511 void
   2512 atw_stop(struct ifnet *ifp, int disable)
   2513 {
   2514 	struct atw_softc *sc = ifp->if_softc;
   2515 	struct ieee80211com *ic = &sc->sc_ic;
   2516 	struct atw_txsoft *txs;
   2517 
   2518 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   2519 
   2520 	/* Disable interrupts. */
   2521 	ATW_WRITE(sc, ATW_IER, 0);
   2522 
   2523 	/* Stop the transmit and receive processes. */
   2524 	sc->sc_opmode = 0;
   2525 	ATW_WRITE(sc, ATW_NAR, 0);
   2526 	ATW_WRITE(sc, ATW_TDBD, 0);
   2527 	ATW_WRITE(sc, ATW_TDBP, 0);
   2528 	ATW_WRITE(sc, ATW_RDB, 0);
   2529 
   2530 	/*
   2531 	 * Release any queued transmit buffers.
   2532 	 */
   2533 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2534 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2535 		if (txs->txs_mbuf != NULL) {
   2536 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2537 			m_freem(txs->txs_mbuf);
   2538 			txs->txs_mbuf = NULL;
   2539 		}
   2540 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2541 	}
   2542 
   2543 	if (disable) {
   2544 		atw_rxdrain(sc);
   2545 		atw_disable(sc);
   2546 	}
   2547 
   2548 	/*
   2549 	 * Mark the interface down and cancel the watchdog timer.
   2550 	 */
   2551 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2552 	ifp->if_timer = 0;
   2553 
   2554 	/* XXX */
   2555 	atw_reset(sc);
   2556 }
   2557 
   2558 /*
   2559  * atw_rxdrain:
   2560  *
   2561  *	Drain the receive queue.
   2562  */
   2563 void
   2564 atw_rxdrain(struct atw_softc *sc)
   2565 {
   2566 	struct atw_rxsoft *rxs;
   2567 	int i;
   2568 
   2569 	for (i = 0; i < ATW_NRXDESC; i++) {
   2570 		rxs = &sc->sc_rxsoft[i];
   2571 		if (rxs->rxs_mbuf == NULL)
   2572 			continue;
   2573 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2574 		m_freem(rxs->rxs_mbuf);
   2575 		rxs->rxs_mbuf = NULL;
   2576 	}
   2577 }
   2578 
   2579 /*
   2580  * atw_detach:
   2581  *
   2582  *	Detach an ADM8211 interface.
   2583  */
   2584 int
   2585 atw_detach(struct atw_softc *sc)
   2586 {
   2587 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2588 	struct atw_rxsoft *rxs;
   2589 	struct atw_txsoft *txs;
   2590 	int i;
   2591 
   2592 	/*
   2593 	 * Succeed now if there isn't any work to do.
   2594 	 */
   2595 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
   2596 		return (0);
   2597 
   2598 	ieee80211_ifdetach(ifp);
   2599 	if_detach(ifp);
   2600 
   2601 	for (i = 0; i < ATW_NRXDESC; i++) {
   2602 		rxs = &sc->sc_rxsoft[i];
   2603 		if (rxs->rxs_mbuf != NULL) {
   2604 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2605 			m_freem(rxs->rxs_mbuf);
   2606 			rxs->rxs_mbuf = NULL;
   2607 		}
   2608 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
   2609 	}
   2610 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   2611 		txs = &sc->sc_txsoft[i];
   2612 		if (txs->txs_mbuf != NULL) {
   2613 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2614 			m_freem(txs->txs_mbuf);
   2615 			txs->txs_mbuf = NULL;
   2616 		}
   2617 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
   2618 	}
   2619 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2620 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2621 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2622 	    sizeof(struct atw_control_data));
   2623 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2624 
   2625 	shutdownhook_disestablish(sc->sc_sdhook);
   2626 	powerhook_disestablish(sc->sc_powerhook);
   2627 
   2628 	if (sc->sc_srom)
   2629 		free(sc->sc_srom, M_DEVBUF);
   2630 
   2631 	return (0);
   2632 }
   2633 
   2634 /* atw_shutdown: make sure the interface is stopped at reboot time. */
   2635 void
   2636 atw_shutdown(void *arg)
   2637 {
   2638 	struct atw_softc *sc = arg;
   2639 
   2640 	atw_stop(&sc->sc_ic.ic_if, 1);
   2641 }
   2642 
   2643 int
   2644 atw_intr(void *arg)
   2645 {
   2646 	struct atw_softc *sc = arg;
   2647 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2648 	u_int32_t status, rxstatus, txstatus, linkstatus;
   2649 	int handled = 0, txthresh;
   2650 
   2651 #ifdef DEBUG
   2652 	if (ATW_IS_ENABLED(sc) == 0)
   2653 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
   2654 #endif
   2655 
   2656 	/*
   2657 	 * If the interface isn't running, the interrupt couldn't
   2658 	 * possibly have come from us.
   2659 	 */
   2660 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   2661 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   2662 		return (0);
   2663 
   2664 	for (;;) {
   2665 		status = ATW_READ(sc, ATW_STSR);
   2666 
   2667 		if (status)
   2668 			ATW_WRITE(sc, ATW_STSR, status);
   2669 
   2670 		if (sc->sc_intr_ack != NULL)
   2671 			(*sc->sc_intr_ack)(sc);
   2672 
   2673 #ifdef ATW_DEBUG
   2674 #define PRINTINTR(flag) do { \
   2675 	if ((status & flag) != 0) { \
   2676 		printf("%s" #flag, delim); \
   2677 		delim = ","; \
   2678 	} \
   2679 } while (0)
   2680 
   2681 		if (atw_debug > 1 && status) {
   2682 			const char *delim = "<";
   2683 
   2684 			printf("%s: reg[STSR] = %x",
   2685 			    sc->sc_dev.dv_xname, status);
   2686 
   2687 			PRINTINTR(ATW_INTR_FBE);
   2688 			PRINTINTR(ATW_INTR_LINKOFF);
   2689 			PRINTINTR(ATW_INTR_LINKON);
   2690 			PRINTINTR(ATW_INTR_RCI);
   2691 			PRINTINTR(ATW_INTR_RDU);
   2692 			PRINTINTR(ATW_INTR_REIS);
   2693 			PRINTINTR(ATW_INTR_RPS);
   2694 			PRINTINTR(ATW_INTR_TCI);
   2695 			PRINTINTR(ATW_INTR_TDU);
   2696 			PRINTINTR(ATW_INTR_TLT);
   2697 			PRINTINTR(ATW_INTR_TPS);
   2698 			PRINTINTR(ATW_INTR_TRT);
   2699 			PRINTINTR(ATW_INTR_TUF);
   2700 			PRINTINTR(ATW_INTR_BCNTC);
   2701 			PRINTINTR(ATW_INTR_ATIME);
   2702 			PRINTINTR(ATW_INTR_TBTT);
   2703 			PRINTINTR(ATW_INTR_TSCZ);
   2704 			PRINTINTR(ATW_INTR_TSFTF);
   2705 			printf(">\n");
   2706 		}
   2707 #undef PRINTINTR
   2708 #endif /* ATW_DEBUG */
   2709 
   2710 		if ((status & sc->sc_inten) == 0)
   2711 			break;
   2712 
   2713 		handled = 1;
   2714 
   2715 		rxstatus = status & sc->sc_rxint_mask;
   2716 		txstatus = status & sc->sc_txint_mask;
   2717 		linkstatus = status & sc->sc_linkint_mask;
   2718 
   2719 		if (linkstatus) {
   2720 			atw_linkintr(sc, linkstatus);
   2721 		}
   2722 
   2723 		if (rxstatus) {
   2724 			/* Grab any new packets. */
   2725 			atw_rxintr(sc);
   2726 
   2727 			if (rxstatus & ATW_INTR_RDU) {
   2728 				printf("%s: receive ring overrun\n",
   2729 				    sc->sc_dev.dv_xname);
   2730 				/* Get the receive process going again. */
   2731 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2732 				break;
   2733 			}
   2734 		}
   2735 
   2736 		if (txstatus) {
   2737 			/* Sweep up transmit descriptors. */
   2738 			atw_txintr(sc);
   2739 
   2740 			if (txstatus & ATW_INTR_TLT)
   2741 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
   2742 				    sc->sc_dev.dv_xname));
   2743 
   2744 			if (txstatus & ATW_INTR_TRT)
   2745 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
   2746 				    sc->sc_dev.dv_xname));
   2747 
   2748 			/* If Tx under-run, increase our transmit threshold
   2749 			 * if another is available.
   2750 			 */
   2751 			txthresh = sc->sc_txthresh + 1;
   2752 			if ((txstatus & ATW_INTR_TUF) &&
   2753 			    sc->sc_txth[txthresh].txth_name != NULL) {
   2754 				/* Idle the transmit process. */
   2755 				atw_idle(sc, ATW_NAR_ST);
   2756 
   2757 				sc->sc_txthresh = txthresh;
   2758 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
   2759 				sc->sc_opmode |=
   2760 				    sc->sc_txth[txthresh].txth_opmode;
   2761 				printf("%s: transmit underrun; new "
   2762 				    "threshold: %s\n", sc->sc_dev.dv_xname,
   2763 				    sc->sc_txth[txthresh].txth_name);
   2764 
   2765 				/* Set the new threshold and restart
   2766 				 * the transmit process.
   2767 				 */
   2768 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2769 				/* XXX Log every Nth underrun from
   2770 				 * XXX now on?
   2771 				 */
   2772 			}
   2773 		}
   2774 
   2775 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
   2776 			if (status & ATW_INTR_TPS)
   2777 				printf("%s: transmit process stopped\n",
   2778 				    sc->sc_dev.dv_xname);
   2779 			if (status & ATW_INTR_RPS)
   2780 				printf("%s: receive process stopped\n",
   2781 				    sc->sc_dev.dv_xname);
   2782 			(void)atw_init(ifp);
   2783 			break;
   2784 		}
   2785 
   2786 		if (status & ATW_INTR_FBE) {
   2787 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
   2788 			(void)atw_init(ifp);
   2789 			break;
   2790 		}
   2791 
   2792 		/*
   2793 		 * Not handled:
   2794 		 *
   2795 		 *	Transmit buffer unavailable -- normal
   2796 		 *	condition, nothing to do, really.
   2797 		 *
   2798 		 *	Early receive interrupt -- not available on
   2799 		 *	all chips, we just use RI.  We also only
   2800 		 *	use single-segment receive DMA, so this
   2801 		 *	is mostly useless.
   2802 		 *
   2803 		 *      TBD others
   2804 		 */
   2805 	}
   2806 
   2807 	/* Try to get more packets going. */
   2808 	atw_start(ifp);
   2809 
   2810 	return (handled);
   2811 }
   2812 
   2813 /*
   2814  * atw_idle:
   2815  *
   2816  *	Cause the transmit and/or receive processes to go idle.
   2817  *
   2818  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
   2819  *	process in STSR if I clear SR or ST after the process has already
   2820  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
   2821  *      do not seem to be too reliable. Perhaps I have the sense of the
   2822  *	Rx bits switched with the Tx bits?
   2823  */
   2824 void
   2825 atw_idle(struct atw_softc *sc, u_int32_t bits)
   2826 {
   2827 	u_int32_t ackmask = 0, opmode, stsr, test0;
   2828 	int i, s;
   2829 
   2830 	/* without this, somehow we run concurrently w/ interrupt handler */
   2831 	s = splnet();
   2832 
   2833 	opmode = sc->sc_opmode & ~bits;
   2834 
   2835 	if (bits & ATW_NAR_SR)
   2836 		ackmask |= ATW_INTR_RPS;
   2837 
   2838 	if (bits & ATW_NAR_ST) {
   2839 		ackmask |= ATW_INTR_TPS;
   2840 		/* set ATW_NAR_HF to flush TX FIFO. */
   2841 		opmode |= ATW_NAR_HF;
   2842 	}
   2843 
   2844 	ATW_WRITE(sc, ATW_NAR, opmode);
   2845 
   2846 	for (i = 0; i < 1000; i++) {
   2847 		stsr = ATW_READ(sc, ATW_STSR);
   2848 		if ((stsr & ackmask) == ackmask)
   2849 			break;
   2850 		DELAY(10);
   2851 	}
   2852 
   2853 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
   2854 
   2855 	if ((stsr & ackmask) == ackmask)
   2856 		goto out;
   2857 
   2858 	test0 = ATW_READ(sc, ATW_TEST0);
   2859 
   2860 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
   2861 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
   2862 		printf("%s: transmit process not idle [%s]\n",
   2863 		    sc->sc_dev.dv_xname,
   2864 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
   2865 		printf("%s: bits %08x test0 %08x stsr %08x\n",
   2866 		    sc->sc_dev.dv_xname, bits, test0, stsr);
   2867 	}
   2868 
   2869 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
   2870 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
   2871 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
   2872 		    sc->sc_dev.dv_xname,
   2873 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
   2874 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
   2875 		    sc->sc_dev.dv_xname, bits, test0, stsr));
   2876 	}
   2877 out:
   2878 	splx(s);
   2879 	return;
   2880 }
   2881 
   2882 /*
   2883  * atw_linkintr:
   2884  *
   2885  *	Helper; handle link-status interrupts.
   2886  */
   2887 void
   2888 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
   2889 {
   2890 	struct ieee80211com *ic = &sc->sc_ic;
   2891 
   2892 	if (ic->ic_state != IEEE80211_S_RUN)
   2893 		return;
   2894 
   2895 	if (linkstatus & ATW_INTR_LINKON) {
   2896 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
   2897 		sc->sc_rescan_timer = 0;
   2898 	} else if (linkstatus & ATW_INTR_LINKOFF) {
   2899 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
   2900 		switch (ic->ic_opmode) {
   2901 		case IEEE80211_M_HOSTAP:
   2902 			return;
   2903 		case IEEE80211_M_IBSS:
   2904 			if (ic->ic_flags & IEEE80211_F_SIBSS)
   2905 				return;
   2906 			/*FALLTHROUGH*/
   2907 		case IEEE80211_M_STA:
   2908 			sc->sc_rescan_timer = 3;
   2909 			ic->ic_if.if_timer = 1;
   2910 			break;
   2911 		default:
   2912 			break;
   2913 		}
   2914 	}
   2915 }
   2916 
   2917 /*
   2918  * atw_rxintr:
   2919  *
   2920  *	Helper; handle receive interrupts.
   2921  */
   2922 void
   2923 atw_rxintr(struct atw_softc *sc)
   2924 {
   2925 	static int rate_tbl[] = {2, 4, 11, 22, 44};
   2926 	struct ieee80211com *ic = &sc->sc_ic;
   2927 	struct ieee80211_node *ni;
   2928 	struct ieee80211_frame *wh;
   2929 	struct ifnet *ifp = &ic->ic_if;
   2930 	struct atw_rxsoft *rxs;
   2931 	struct mbuf *m;
   2932 	u_int32_t rxstat;
   2933 	int i, len, rate, rate0;
   2934 	u_int32_t rssi;
   2935 
   2936 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
   2937 		rxs = &sc->sc_rxsoft[i];
   2938 
   2939 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2940 
   2941 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
   2942 		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
   2943 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
   2944 
   2945 		if (rxstat & ATW_RXSTAT_OWN)
   2946 			break; /* We have processed all receive buffers. */
   2947 
   2948 		DPRINTF3(sc,
   2949 		    ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
   2950 		    sc->sc_dev.dv_xname,
   2951 		    sc->sc_rxdescs[i].ar_stat,
   2952 		    sc->sc_rxdescs[i].ar_rssi,
   2953 		    sc->sc_rxdescs[i].ar_buf1,
   2954 		    sc->sc_rxdescs[i].ar_buf2));
   2955 
   2956 		/*
   2957 		 * Make sure the packet fit in one buffer.  This should
   2958 		 * always be the case.
   2959 		 */
   2960 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
   2961 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
   2962 			printf("%s: incoming packet spilled, resetting\n",
   2963 			    sc->sc_dev.dv_xname);
   2964 			(void)atw_init(ifp);
   2965 			return;
   2966 		}
   2967 
   2968 		/*
   2969 		 * If an error occurred, update stats, clear the status
   2970 		 * word, and leave the packet buffer in place.  It will
   2971 		 * simply be reused the next time the ring comes around.
   2972 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
   2973 		 * error.
   2974 		 */
   2975 
   2976 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
   2977 		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
   2978 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
   2979 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
   2980 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
   2981 				ATW_RXSTAT_ICVE)) != 0)) {
   2982 #define	PRINTERR(bit, str)						\
   2983 			if (rxstat & (bit))				\
   2984 				printf("%s: receive error: %s\n",	\
   2985 				    sc->sc_dev.dv_xname, str)
   2986 			ifp->if_ierrors++;
   2987 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
   2988 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
   2989 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
   2990 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
   2991 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
   2992 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
   2993 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
   2994 #undef PRINTERR
   2995 			ATW_INIT_RXDESC(sc, i);
   2996 			continue;
   2997 		}
   2998 
   2999 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3000 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3001 
   3002 		/*
   3003 		 * No errors; receive the packet.  Note the ADM8211
   3004 		 * includes the CRC in promiscuous mode.
   3005 		 */
   3006 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
   3007 
   3008 		/*
   3009 		 * Allocate a new mbuf cluster.  If that fails, we are
   3010 		 * out of memory, and must drop the packet and recycle
   3011 		 * the buffer that's already attached to this descriptor.
   3012 		 */
   3013 		m = rxs->rxs_mbuf;
   3014 		if (atw_add_rxbuf(sc, i) != 0) {
   3015 			ifp->if_ierrors++;
   3016 			ATW_INIT_RXDESC(sc, i);
   3017 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3018 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3019 			continue;
   3020 		}
   3021 
   3022 		ifp->if_ipackets++;
   3023 		if (sc->sc_opmode & ATW_NAR_PR)
   3024 			m->m_flags |= M_HASFCS;
   3025 		m->m_pkthdr.rcvif = ifp;
   3026 		m->m_pkthdr.len = m->m_len = len;
   3027 
   3028 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
   3029 			rate = 0;
   3030 		else
   3031 			rate = rate_tbl[rate0];
   3032 
   3033  #if NBPFILTER > 0
   3034 		/* Pass this up to any BPF listeners. */
   3035 		if (sc->sc_radiobpf != NULL) {
   3036 			struct mbuf mb;
   3037 
   3038 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
   3039 
   3040 			tap->ar_rate = rate;
   3041 			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3042 			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3043 
   3044 			/* TBD verify units are dB */
   3045 			tap->ar_antsignal = (int)rssi;
   3046 			/* TBD tap->ar_flags */
   3047 
   3048 			M_COPY_PKTHDR(&mb, m);
   3049 			mb.m_data = (caddr_t)tap;
   3050 			mb.m_len = tap->ar_ihdr.it_len;
   3051 			mb.m_next = m;
   3052 			mb.m_pkthdr.len += mb.m_len;
   3053 			bpf_mtap(sc->sc_radiobpf, &mb);
   3054  		}
   3055  #endif /* NPBFILTER > 0 */
   3056 
   3057 		wh = mtod(m, struct ieee80211_frame *);
   3058 		ni = ieee80211_find_rxnode(ic, wh);
   3059 		if (m->m_pkthdr.len >= sizeof(struct ieee80211_frame_min) ||
   3060 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   3061 			ieee80211_input(ifp, m, ni, (int)rssi, 0);
   3062 		/*
   3063 		 * The frame may have caused the node to be marked for
   3064 		 * reclamation (e.g. in response to a DEAUTH message)
   3065 		 * so use free_node here instead of unref_node.
   3066 		 */
   3067 		if (ni == ic->ic_bss)
   3068 			ieee80211_unref_node(&ni);
   3069 		else
   3070 			ieee80211_free_node(ic, ni);
   3071 	}
   3072 
   3073 	/* Update the receive pointer. */
   3074 	sc->sc_rxptr = i;
   3075 }
   3076 
   3077 /*
   3078  * atw_txintr:
   3079  *
   3080  *	Helper; handle transmit interrupts.
   3081  */
   3082 void
   3083 atw_txintr(struct atw_softc *sc)
   3084 {
   3085 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
   3086     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
   3087 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
   3088     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
   3089 
   3090 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
   3091 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3092 	struct atw_txsoft *txs;
   3093 	u_int32_t txstat;
   3094 
   3095 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
   3096 	    sc->sc_dev.dv_xname, sc->sc_flags));
   3097 
   3098 	ifp->if_flags &= ~IFF_OACTIVE;
   3099 
   3100 	/*
   3101 	 * Go through our Tx list and free mbufs for those
   3102 	 * frames that have been transmitted.
   3103 	 */
   3104 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   3105 		ATW_CDTXSYNC(sc, txs->txs_lastdesc,
   3106 		    txs->txs_ndescs,
   3107 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3108 
   3109 #ifdef ATW_DEBUG
   3110 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3111 			int i;
   3112 			printf("    txsoft %p transmit chain:\n", txs);
   3113 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
   3114 				printf("     descriptor %d:\n", i);
   3115 				printf("       at_status:   0x%08x\n",
   3116 				    le32toh(sc->sc_txdescs[i].at_stat));
   3117 				printf("       at_flags:      0x%08x\n",
   3118 				    le32toh(sc->sc_txdescs[i].at_flags));
   3119 				printf("       at_buf1: 0x%08x\n",
   3120 				    le32toh(sc->sc_txdescs[i].at_buf1));
   3121 				printf("       at_buf2: 0x%08x\n",
   3122 				    le32toh(sc->sc_txdescs[i].at_buf2));
   3123 				if (i == txs->txs_lastdesc)
   3124 					break;
   3125 			}
   3126 		}
   3127 #endif
   3128 
   3129 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
   3130 		if (txstat & ATW_TXSTAT_OWN)
   3131 			break;
   3132 
   3133 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   3134 
   3135 		sc->sc_txfree += txs->txs_ndescs;
   3136 
   3137 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   3138 		    0, txs->txs_dmamap->dm_mapsize,
   3139 		    BUS_DMASYNC_POSTWRITE);
   3140 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3141 		m_freem(txs->txs_mbuf);
   3142 		txs->txs_mbuf = NULL;
   3143 
   3144 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   3145 
   3146 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   3147 		    (txstat & TXSTAT_ERRMASK) != 0) {
   3148 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
   3149 			    txstat_buf, sizeof(txstat_buf));
   3150 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
   3151 			    txstat_buf,
   3152 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
   3153 		}
   3154 
   3155 		/*
   3156 		 * Check for errors and collisions.
   3157 		 */
   3158 		if (txstat & ATW_TXSTAT_TUF)
   3159 			sc->sc_stats.ts_tx_tuf++;
   3160 		if (txstat & ATW_TXSTAT_TLT)
   3161 			sc->sc_stats.ts_tx_tlt++;
   3162 		if (txstat & ATW_TXSTAT_TRT)
   3163 			sc->sc_stats.ts_tx_trt++;
   3164 		if (txstat & ATW_TXSTAT_TRO)
   3165 			sc->sc_stats.ts_tx_tro++;
   3166 		if (txstat & ATW_TXSTAT_SOFBR) {
   3167 			sc->sc_stats.ts_tx_sofbr++;
   3168 		}
   3169 
   3170 		if ((txstat & ATW_TXSTAT_ES) == 0)
   3171 			ifp->if_collisions +=
   3172 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
   3173 		else
   3174 			ifp->if_oerrors++;
   3175 
   3176 		ifp->if_opackets++;
   3177 	}
   3178 
   3179 	/*
   3180 	 * If there are no more pending transmissions, cancel the watchdog
   3181 	 * timer.
   3182 	 */
   3183 	if (txs == NULL)
   3184 		sc->sc_tx_timer = 0;
   3185 #undef TXSTAT_ERRMASK
   3186 #undef TXSTAT_FMT
   3187 }
   3188 
   3189 /*
   3190  * atw_watchdog:	[ifnet interface function]
   3191  *
   3192  *	Watchdog timer handler.
   3193  */
   3194 void
   3195 atw_watchdog(struct ifnet *ifp)
   3196 {
   3197 	struct atw_softc *sc = ifp->if_softc;
   3198 	struct ieee80211com *ic = &sc->sc_ic;
   3199 
   3200 	ifp->if_timer = 0;
   3201 	if (ATW_IS_ENABLED(sc) == 0)
   3202 		return;
   3203 
   3204 	if (sc->sc_rescan_timer) {
   3205 		if (--sc->sc_rescan_timer == 0)
   3206 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3207 	}
   3208 	if (sc->sc_tx_timer) {
   3209 		if (--sc->sc_tx_timer == 0 &&
   3210 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
   3211 			printf("%s: transmit timeout\n", ifp->if_xname);
   3212 			ifp->if_oerrors++;
   3213 			(void)atw_init(ifp);
   3214 			atw_start(ifp);
   3215 		}
   3216 	}
   3217 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
   3218 		ifp->if_timer = 1;
   3219 	ieee80211_watchdog(ifp);
   3220 }
   3221 
   3222 /* Compute the 802.11 Duration field and the PLCP Length fields for
   3223  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
   3224  * Write the fields to the ADM8211 Tx header, frm.
   3225  *
   3226  * TBD use the fragmentation threshold to find the right duration for
   3227  * the first & last fragments.
   3228  *
   3229  * TBD make certain of the duration fields applied by the ADM8211 to each
   3230  * fragment. I think that the ADM8211 knows how to subtract the CTS
   3231  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
   3232  * I also think that the ADM8211 does *some* arithmetic for us, because
   3233  * otherwise I think we would have to set a first duration for CTS/first
   3234  * fragment, a second duration for fragments between the first and the
   3235  * last, and a third duration for the last fragment.
   3236  *
   3237  * TBD make certain that duration fields reflect addition of FCS/WEP
   3238  * and correct duration arithmetic as necessary.
   3239  */
   3240 static void
   3241 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
   3242     int len)
   3243 {
   3244 	int remainder;
   3245 
   3246 	/* deal also with encrypted fragments */
   3247 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
   3248 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
   3249 		    sc->sc_dev.dv_xname));
   3250 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
   3251 		       IEEE80211_WEP_CRCLEN;
   3252 	}
   3253 
   3254 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
   3255 	 * duration (XXX added by MAC?).
   3256 	 */
   3257 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
   3258 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
   3259 
   3260 	if (rate <= 4)
   3261 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
   3262 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3263 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3264 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3265 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
   3266 	else
   3267 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
   3268 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3269 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3270 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3271 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
   3272 
   3273 	/* lengthen duration if long preamble */
   3274 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
   3275 		frm->atw_head_dur +=
   3276 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
   3277 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
   3278 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
   3279 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
   3280 
   3281 	if (remainder != 0)
   3282 		frm->atw_head_dur++;
   3283 
   3284 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
   3285 	    (rate == 2 || rate == 4)) {
   3286 		/* derived from Linux: how could this be right? */
   3287 		frm->atw_head_plcplen = frm->atw_head_dur;
   3288 	} else {
   3289 		frm->atw_head_plcplen = (16 * len) / rate;
   3290 		remainder = (80 * len) % (rate * 5);
   3291 
   3292 		if (remainder != 0) {
   3293 			frm->atw_head_plcplen++;
   3294 
   3295 			/* XXX magic */
   3296 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
   3297 			    rate == 22 && remainder <= 30)
   3298 				frm->atw_head_plcplen |= 0x8000;
   3299 		}
   3300 	}
   3301 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
   3302 	    htole16(frm->atw_head_plcplen);
   3303 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
   3304 }
   3305 
   3306 #ifdef ATW_DEBUG
   3307 static void
   3308 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
   3309 {
   3310 	struct atw_softc *sc = ifp->if_softc;
   3311 	struct mbuf *m;
   3312 	int i, noctets = 0;
   3313 
   3314 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
   3315 	    m0->m_pkthdr.len);
   3316 
   3317 	for (m = m0; m; m = m->m_next) {
   3318 		if (m->m_len == 0)
   3319 			continue;
   3320 		for (i = 0; i < m->m_len; i++) {
   3321 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
   3322 			if (++noctets % 24 == 0)
   3323 				printf("\n");
   3324 		}
   3325 	}
   3326 	printf("%s%s: %d bytes emitted\n",
   3327 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
   3328 }
   3329 #endif /* ATW_DEBUG */
   3330 
   3331 /*
   3332  * atw_start:		[ifnet interface function]
   3333  *
   3334  *	Start packet transmission on the interface.
   3335  */
   3336 void
   3337 atw_start(struct ifnet *ifp)
   3338 {
   3339 	struct atw_softc *sc = ifp->if_softc;
   3340 	struct ieee80211com *ic = &sc->sc_ic;
   3341 	struct ieee80211_node *ni;
   3342 	struct ieee80211_frame *wh;
   3343 	struct atw_frame *hh;
   3344 	struct mbuf *m0, *m;
   3345 	struct atw_txsoft *txs, *last_txs;
   3346 	struct atw_txdesc *txd;
   3347 	int do_encrypt, rate;
   3348 	bus_dmamap_t dmamap;
   3349 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
   3350 
   3351 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
   3352 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
   3353 
   3354 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3355 		return;
   3356 
   3357 #if 0 /* TBD ??? */
   3358 	if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
   3359 		return;
   3360 #endif
   3361 
   3362 	/*
   3363 	 * Remember the previous number of free descriptors and
   3364 	 * the first descriptor we'll use.
   3365 	 */
   3366 	ofree = sc->sc_txfree;
   3367 	firsttx = sc->sc_txnext;
   3368 
   3369 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
   3370 	    sc->sc_dev.dv_xname, ofree, firsttx));
   3371 
   3372 	/*
   3373 	 * Loop through the send queue, setting up transmit descriptors
   3374 	 * until we drain the queue, or use up all available transmit
   3375 	 * descriptors.
   3376 	 */
   3377 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   3378 	       sc->sc_txfree != 0) {
   3379 
   3380 		do_encrypt = 0;
   3381 		/*
   3382 		 * Grab a packet off the management queue, if it
   3383 		 * is not empty. Otherwise, from the data queue.
   3384 		 */
   3385 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   3386 		if (m0 != NULL) {
   3387 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   3388 			m0->m_pkthdr.rcvif = NULL;
   3389 		} else {
   3390 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   3391 			if (m0 == NULL)
   3392 				break;
   3393 #if NBPFILTER > 0
   3394 			if (ifp->if_bpf != NULL)
   3395 				bpf_mtap(ifp->if_bpf, m0);
   3396 #endif /* NBPFILTER > 0 */
   3397 			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
   3398 				ifp->if_oerrors++;
   3399 				break;
   3400 			}
   3401 		}
   3402 
   3403 		rate = MAX(ieee80211_get_rate(ic), 2);
   3404 
   3405 #if NBPFILTER > 0
   3406 		/*
   3407 		 * Pass the packet to any BPF listeners.
   3408 		 */
   3409 		if (ic->ic_rawbpf != NULL)
   3410 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
   3411 
   3412 		if (sc->sc_radiobpf != NULL) {
   3413 			struct mbuf mb;
   3414 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
   3415 
   3416 			tap->at_rate = rate;
   3417 			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3418 			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3419 
   3420 			/* TBD tap->at_flags */
   3421 
   3422 			M_COPY_PKTHDR(&mb, m0);
   3423 			mb.m_data = (caddr_t)tap;
   3424 			mb.m_len = tap->at_ihdr.it_len;
   3425 			mb.m_next = m0;
   3426 			mb.m_pkthdr.len += mb.m_len;
   3427 			bpf_mtap(sc->sc_radiobpf, &mb);
   3428 		}
   3429 #endif /* NBPFILTER > 0 */
   3430 
   3431 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
   3432 
   3433 		if (ni != NULL && ni != ic->ic_bss)
   3434 			ieee80211_free_node(ic, ni);
   3435 
   3436 		if (m0 == NULL) {
   3437 			ifp->if_oerrors++;
   3438 			break;
   3439 		}
   3440 
   3441 		/* just to make sure. */
   3442 		m0 = m_pullup(m0, sizeof(struct atw_frame));
   3443 
   3444 		if (m0 == NULL) {
   3445 			ifp->if_oerrors++;
   3446 			break;
   3447 		}
   3448 
   3449 		hh = mtod(m0, struct atw_frame *);
   3450 		wh = &hh->atw_ihdr;
   3451 
   3452 		do_encrypt = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
   3453 
   3454 		/* Copy everything we need from the 802.11 header:
   3455 		 * Frame Control; address 1, address 3, or addresses
   3456 		 * 3 and 4. NIC fills in BSSID, SA.
   3457 		 */
   3458 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
   3459 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
   3460 				panic("%s: illegal WDS frame",
   3461 				    sc->sc_dev.dv_xname);
   3462 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
   3463 		} else
   3464 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
   3465 
   3466 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
   3467 
   3468 		/* initialize remaining Tx parameters */
   3469 		memset(&hh->u, 0, sizeof(hh->u));
   3470 
   3471 		hh->atw_rate = rate * 5;
   3472 		/* XXX this could be incorrect if M_FCS. _encap should
   3473 		 * probably strip FCS just in case it sticks around in
   3474 		 * bridged packets.
   3475 		 */
   3476 		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
   3477 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
   3478 		    sizeof(struct atw_frame));
   3479 
   3480 #if 0
   3481 		/* this virtually guaranteed that WEP-encrypted frames
   3482 		 * are fragmented. oops.
   3483 		 */
   3484 		hh->atw_fragthr = htole16(m0->m_pkthdr.len -
   3485 		    sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
   3486 		hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3487 #else
   3488 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3489 #endif
   3490 
   3491 		hh->atw_rtylmt = 3;
   3492 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
   3493 		if (do_encrypt) {
   3494 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
   3495 			hh->atw_keyid = ic->ic_wep_txkey;
   3496 		}
   3497 
   3498 		/* TBD 4-addr frames */
   3499 		atw_frame_setdurs(sc, hh, rate,
   3500 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
   3501 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
   3502 
   3503 		/* never fragment multicast frames */
   3504 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
   3505 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3506 		} else if (sc->sc_flags & ATWF_RTSCTS) {
   3507 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
   3508 		}
   3509 
   3510 #ifdef ATW_DEBUG
   3511 		/* experimental stuff */
   3512 		if (atw_xrtylmt != ~0)
   3513 			hh->atw_rtylmt = atw_xrtylmt;
   3514 		if (atw_xhdrctl != 0)
   3515 			hh->atw_hdrctl |= htole16(atw_xhdrctl);
   3516 		if (atw_xservice != IEEE80211_PLCP_SERVICE)
   3517 			hh->atw_service = atw_xservice;
   3518 		if (atw_xpaylen != 0)
   3519 			hh->atw_paylen = htole16(atw_xpaylen);
   3520 		hh->atw_fragnum = 0;
   3521 
   3522 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3523 			printf("%s: dst = %s, rate = 0x%02x, "
   3524 			    "service = 0x%02x, paylen = 0x%04x\n",
   3525 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
   3526 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
   3527 
   3528 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
   3529 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
   3530 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
   3531 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
   3532 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
   3533 			    hh->atw_tail_dur, hh->atw_head_dur);
   3534 
   3535 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
   3536 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
   3537 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
   3538 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
   3539 
   3540 			printf("%s: keyid = %d\n",
   3541 			    sc->sc_dev.dv_xname, hh->atw_keyid);
   3542 
   3543 			atw_dump_pkt(ifp, m0);
   3544 		}
   3545 #endif /* ATW_DEBUG */
   3546 
   3547 		dmamap = txs->txs_dmamap;
   3548 
   3549 		/*
   3550 		 * Load the DMA map.  Copy and try (once) again if the packet
   3551 		 * didn't fit in the alloted number of segments.
   3552 		 */
   3553 		for (first = 1;
   3554 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   3555 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
   3556 		     first = 0) {
   3557 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   3558 			if (m == NULL) {
   3559 				printf("%s: unable to allocate Tx mbuf\n",
   3560 				    sc->sc_dev.dv_xname);
   3561 				break;
   3562 			}
   3563 			if (m0->m_pkthdr.len > MHLEN) {
   3564 				MCLGET(m, M_DONTWAIT);
   3565 				if ((m->m_flags & M_EXT) == 0) {
   3566 					printf("%s: unable to allocate Tx "
   3567 					    "cluster\n", sc->sc_dev.dv_xname);
   3568 					m_freem(m);
   3569 					break;
   3570 				}
   3571 			}
   3572 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   3573 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   3574 			m_freem(m0);
   3575 			m0 = m;
   3576 			m = NULL;
   3577 		}
   3578 		if (error != 0) {
   3579 			printf("%s: unable to load Tx buffer, "
   3580 			    "error = %d\n", sc->sc_dev.dv_xname, error);
   3581 			m_freem(m0);
   3582 			break;
   3583 		}
   3584 
   3585 		/*
   3586 		 * Ensure we have enough descriptors free to describe
   3587 		 * the packet.
   3588 		 */
   3589 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   3590 			/*
   3591 			 * Not enough free descriptors to transmit
   3592 			 * this packet.  Unload the DMA map and
   3593 			 * drop the packet.  Notify the upper layer
   3594 			 * that there are no more slots left.
   3595 			 *
   3596 			 * XXX We could allocate an mbuf and copy, but
   3597 			 * XXX it is worth it?
   3598 			 */
   3599 			ifp->if_flags |= IFF_OACTIVE;
   3600 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   3601 			m_freem(m0);
   3602 			break;
   3603 		}
   3604 
   3605 		/*
   3606 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   3607 		 */
   3608 
   3609 		/* Sync the DMA map. */
   3610 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   3611 		    BUS_DMASYNC_PREWRITE);
   3612 
   3613 		/* XXX arbitrary retry limit; 8 because I have seen it in
   3614 		 * use already and maybe 0 means "no tries" !
   3615 		 */
   3616 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
   3617 
   3618 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
   3619 		    sc->sc_dev.dv_xname, rate * 5));
   3620 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
   3621 
   3622 		/*
   3623 		 * Initialize the transmit descriptors.
   3624 		 */
   3625 		for (nexttx = sc->sc_txnext, seg = 0;
   3626 		     seg < dmamap->dm_nsegs;
   3627 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
   3628 			/*
   3629 			 * If this is the first descriptor we're
   3630 			 * enqueueing, don't set the OWN bit just
   3631 			 * yet.  That could cause a race condition.
   3632 			 * We'll do it below.
   3633 			 */
   3634 			txd = &sc->sc_txdescs[nexttx];
   3635 			txd->at_ctl = ctl |
   3636 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
   3637 
   3638 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
   3639 			txd->at_flags =
   3640 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
   3641 			                   ATW_TXFLAG_TBS1_MASK)) |
   3642 			    ((nexttx == (ATW_NTXDESC - 1))
   3643 			        ? htole32(ATW_TXFLAG_TER) : 0);
   3644 			lasttx = nexttx;
   3645 		}
   3646 
   3647 		IASSERT(lasttx != -1, ("bad lastx"));
   3648 		/* Set `first segment' and `last segment' appropriately. */
   3649 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
   3650 		    htole32(ATW_TXFLAG_FS);
   3651 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
   3652 
   3653 #ifdef ATW_DEBUG
   3654 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3655 			printf("     txsoft %p transmit chain:\n", txs);
   3656 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
   3657 				printf("     descriptor %d:\n", seg);
   3658 				printf("       at_ctl:   0x%08x\n",
   3659 				    le32toh(sc->sc_txdescs[seg].at_ctl));
   3660 				printf("       at_flags:      0x%08x\n",
   3661 				    le32toh(sc->sc_txdescs[seg].at_flags));
   3662 				printf("       at_buf1: 0x%08x\n",
   3663 				    le32toh(sc->sc_txdescs[seg].at_buf1));
   3664 				printf("       at_buf2: 0x%08x\n",
   3665 				    le32toh(sc->sc_txdescs[seg].at_buf2));
   3666 				if (seg == lasttx)
   3667 					break;
   3668 			}
   3669 		}
   3670 #endif
   3671 
   3672 		/* Sync the descriptors we're using. */
   3673 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   3674 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3675 
   3676 		/*
   3677 		 * Store a pointer to the packet so we can free it later,
   3678 		 * and remember what txdirty will be once the packet is
   3679 		 * done.
   3680 		 */
   3681 		txs->txs_mbuf = m0;
   3682 		txs->txs_firstdesc = sc->sc_txnext;
   3683 		txs->txs_lastdesc = lasttx;
   3684 		txs->txs_ndescs = dmamap->dm_nsegs;
   3685 
   3686 		/* Advance the tx pointer. */
   3687 		sc->sc_txfree -= dmamap->dm_nsegs;
   3688 		sc->sc_txnext = nexttx;
   3689 
   3690 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   3691 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   3692 
   3693 		last_txs = txs;
   3694 	}
   3695 
   3696 	if (txs == NULL || sc->sc_txfree == 0) {
   3697 		/* No more slots left; notify upper layer. */
   3698 		ifp->if_flags |= IFF_OACTIVE;
   3699 	}
   3700 
   3701 	if (sc->sc_txfree != ofree) {
   3702 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   3703 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   3704 		/*
   3705 		 * Cause a transmit interrupt to happen on the
   3706 		 * last packet we enqueued.
   3707 		 */
   3708 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
   3709 		ATW_CDTXSYNC(sc, lasttx, 1,
   3710 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3711 
   3712 		/*
   3713 		 * The entire packet chain is set up.  Give the
   3714 		 * first descriptor to the chip now.
   3715 		 */
   3716 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
   3717 		ATW_CDTXSYNC(sc, firsttx, 1,
   3718 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3719 
   3720 		/* Wake up the transmitter. */
   3721 		/* XXX USE AUTOPOLLING? */
   3722 		ATW_WRITE(sc, ATW_TDR, 0x1);
   3723 
   3724 		/* Set a watchdog timer in case the chip flakes out. */
   3725 		sc->sc_tx_timer = 5;
   3726 		ifp->if_timer = 1;
   3727 	}
   3728 }
   3729 
   3730 /*
   3731  * atw_power:
   3732  *
   3733  *	Power management (suspend/resume) hook.
   3734  */
   3735 void
   3736 atw_power(int why, void *arg)
   3737 {
   3738 	struct atw_softc *sc = arg;
   3739 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3740 	int s;
   3741 
   3742 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
   3743 
   3744 	s = splnet();
   3745 	switch (why) {
   3746 	case PWR_STANDBY:
   3747 		/* XXX do nothing. */
   3748 		break;
   3749 	case PWR_SUSPEND:
   3750 		atw_stop(ifp, 0);
   3751 		if (sc->sc_power != NULL)
   3752 			(*sc->sc_power)(sc, why);
   3753 		break;
   3754 	case PWR_RESUME:
   3755 		if (ifp->if_flags & IFF_UP) {
   3756 			if (sc->sc_power != NULL)
   3757 				(*sc->sc_power)(sc, why);
   3758 			atw_init(ifp);
   3759 		}
   3760 		break;
   3761 	case PWR_SOFTSUSPEND:
   3762 	case PWR_SOFTSTANDBY:
   3763 	case PWR_SOFTRESUME:
   3764 		break;
   3765 	}
   3766 	splx(s);
   3767 }
   3768 
   3769 /*
   3770  * atw_ioctl:		[ifnet interface function]
   3771  *
   3772  *	Handle control requests from the operator.
   3773  */
   3774 int
   3775 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   3776 {
   3777 	struct atw_softc *sc = ifp->if_softc;
   3778 	struct ifreq *ifr = (struct ifreq *)data;
   3779 	int s, error = 0;
   3780 
   3781 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
   3782 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   3783 		return ENXIO;
   3784 
   3785 	s = splnet();
   3786 
   3787 	switch (cmd) {
   3788 	case SIOCSIFFLAGS:
   3789 		if (ifp->if_flags & IFF_UP) {
   3790 			if (ATW_IS_ENABLED(sc)) {
   3791 				/*
   3792 				 * To avoid rescanning another access point,
   3793 				 * do not call atw_init() here.  Instead,
   3794 				 * only reflect media settings.
   3795 				 */
   3796 				atw_filter_setup(sc);
   3797 			} else
   3798 				error = atw_init(ifp);
   3799 		} else if (ATW_IS_ENABLED(sc))
   3800 			atw_stop(ifp, 1);
   3801 		break;
   3802 	case SIOCADDMULTI:
   3803 	case SIOCDELMULTI:
   3804 		error = (cmd == SIOCADDMULTI) ?
   3805 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
   3806 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
   3807 		if (error == ENETRESET) {
   3808 			if (ATW_IS_ENABLED(sc))
   3809 				atw_filter_setup(sc); /* do not rescan */
   3810 			error = 0;
   3811 		}
   3812 		break;
   3813 	default:
   3814 		error = ieee80211_ioctl(ifp, cmd, data);
   3815 		if (error == ENETRESET) {
   3816 			if (ATW_IS_ENABLED(sc))
   3817 				error = atw_init(ifp);
   3818 			else
   3819 				error = 0;
   3820 		}
   3821 		break;
   3822 	}
   3823 
   3824 	/* Try to get more packets going. */
   3825 	if (ATW_IS_ENABLED(sc))
   3826 		atw_start(ifp);
   3827 
   3828 	splx(s);
   3829 	return (error);
   3830 }
   3831 
   3832 static int
   3833 atw_media_change(struct ifnet *ifp)
   3834 {
   3835 	int error;
   3836 
   3837 	error = ieee80211_media_change(ifp);
   3838 	if (error == ENETRESET) {
   3839 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   3840 		    (IFF_RUNNING|IFF_UP))
   3841 			atw_init(ifp);		/* XXX lose error */
   3842 		error = 0;
   3843 	}
   3844 	return error;
   3845 }
   3846 
   3847 static void
   3848 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
   3849 {
   3850 	struct atw_softc *sc = ifp->if_softc;
   3851 
   3852 	if (ATW_IS_ENABLED(sc) == 0) {
   3853 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
   3854 		imr->ifm_status = 0;
   3855 		return;
   3856 	}
   3857 	ieee80211_media_status(ifp, imr);
   3858 }
   3859