Home | History | Annotate | Line # | Download | only in ic
atw.c revision 1.24.2.1
      1 /*	$NetBSD: atw.c,v 1.24.2.1 2004/06/27 08:25:58 jdc Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.24.2.1 2004/06/27 08:25:58 jdc Exp $");
     45 
     46 #include "bpfilter.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/callout.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/malloc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/socket.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/errno.h>
     57 #include <sys/device.h>
     58 #include <sys/time.h>
     59 
     60 #include <machine/endian.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_media.h>
     67 #include <net/if_ether.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_compat.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #if NBPFILTER > 0
     74 #include <net/bpf.h>
     75 #endif
     76 
     77 #include <machine/bus.h>
     78 #include <machine/intr.h>
     79 
     80 #include <dev/ic/atwreg.h>
     81 #include <dev/ic/rf3000reg.h>
     82 #include <dev/ic/si4136reg.h>
     83 #include <dev/ic/atwvar.h>
     84 #include <dev/ic/smc93cx6var.h>
     85 
     86 /* XXX TBD open questions
     87  *
     88  *
     89  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
     90  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
     91  * handle this for me?
     92  *
     93  */
     94 /* device attachment
     95  *
     96  *    print TOFS[012]
     97  *
     98  * device initialization
     99  *
    100  *    clear ATW_FRCTL_MAXPSP to disable max power saving
    101  *    set ATW_TXBR_ALCUPDATE to enable ALC
    102  *    set TOFS[012]? (hope not)
    103  *    disable rx/tx
    104  *    set ATW_PAR_SWR (software reset)
    105  *    wait for ATW_PAR_SWR clear
    106  *    disable interrupts
    107  *    ack status register
    108  *    enable interrupts
    109  *
    110  * rx/tx initialization
    111  *
    112  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    113  *    allocate and init descriptor rings
    114  *    write ATW_PAR_DSL (descriptor skip length)
    115  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
    116  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    118  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    119  *
    120  * rx/tx end
    121  *
    122  *    stop DMA
    123  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    124  *    flush tx w/ ATW_NAR_HF
    125  *
    126  * scan
    127  *
    128  *    initialize rx/tx
    129  *
    130  * IBSS join/create
    131  *
    132  *    set ATW_NAR_EA (is set by ASIC?)
    133  *
    134  * BSS join: (re)association response
    135  *
    136  *    set ATW_FRCTL_AID
    137  *
    138  * optimizations ???
    139  *
    140  */
    141 
    142 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
    143 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
    144 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
    145 
    146 int atw_rfio_enable_delay = 20 * 1000;
    147 int atw_rfio_disable_delay = 2 * 1000;
    148 int atw_writewep_delay = 5;
    149 int atw_beacon_len_adjust = 4;
    150 int atw_dwelltime = 200;
    151 
    152 #ifdef ATW_DEBUG
    153 int atw_xhdrctl = 0;
    154 int atw_xrtylmt = ~0;
    155 int atw_xservice = IEEE80211_PLCP_SERVICE;
    156 int atw_xpaylen = 0;
    157 
    158 int atw_debug = 0;
    159 
    160 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
    161 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
    162 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
    163 #define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
    164 #define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
    165 #define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
    166 static void atw_print_regs(struct atw_softc *, const char *);
    167 static void atw_rf3000_print(struct atw_softc *);
    168 static void atw_si4126_print(struct atw_softc *);
    169 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
    170 #else
    171 #define ATW_DPRINTF(x)
    172 #define ATW_DPRINTF2(x)
    173 #define ATW_DPRINTF3(x)
    174 #define	DPRINTF(sc, x)	/* nothing */
    175 #define	DPRINTF2(sc, x)	/* nothing */
    176 #define	DPRINTF3(sc, x)	/* nothing */
    177 #endif
    178 
    179 #ifdef ATW_STATS
    180 void	atw_print_stats(struct atw_softc *);
    181 #endif
    182 
    183 void	atw_start(struct ifnet *);
    184 void	atw_watchdog(struct ifnet *);
    185 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
    186 int	atw_init(struct ifnet *);
    187 void	atw_stop(struct ifnet *, int);
    188 
    189 void	atw_reset(struct atw_softc *);
    190 int	atw_read_srom(struct atw_softc *);
    191 
    192 void	atw_shutdown(void *);
    193 
    194 void	atw_rxdrain(struct atw_softc *);
    195 int	atw_add_rxbuf(struct atw_softc *, int);
    196 void	atw_idle(struct atw_softc *, u_int32_t);
    197 
    198 int	atw_enable(struct atw_softc *);
    199 void	atw_disable(struct atw_softc *);
    200 void	atw_power(int, void *);
    201 
    202 void	atw_rxintr(struct atw_softc *);
    203 void	atw_txintr(struct atw_softc *);
    204 void	atw_linkintr(struct atw_softc *, u_int32_t);
    205 
    206 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
    207 static void atw_tsf(struct atw_softc *);
    208 static void atw_start_beacon(struct atw_softc *, int);
    209 static void atw_write_wep(struct atw_softc *);
    210 static void atw_write_bssid(struct atw_softc *);
    211 static void atw_write_bcn_thresh(struct atw_softc *);
    212 static void atw_write_ssid(struct atw_softc *);
    213 static void atw_write_sup_rates(struct atw_softc *);
    214 static void atw_clear_sram(struct atw_softc *);
    215 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
    216 static int atw_media_change(struct ifnet *);
    217 static void atw_media_status(struct ifnet *, struct ifmediareq *);
    218 static void atw_filter_setup(struct atw_softc *);
    219 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
    220 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
    221 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
    222     struct ieee80211_node *, int, int, u_int32_t);
    223 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
    224     struct ieee80211_node *, int, int, u_int32_t);
    225 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
    226 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
    227 
    228 static int atw_tune(struct atw_softc *);
    229 
    230 static void atw_rfio_enable(struct atw_softc *, int);
    231 
    232 /* RFMD RF3000 Baseband Processor */
    233 static int atw_rf3000_init(struct atw_softc *);
    234 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
    235 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
    236 #ifdef ATW_DEBUG
    237 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    238 #endif /* ATW_DEBUG */
    239 
    240 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
    241 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
    242 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
    243 #ifdef ATW_DEBUG
    244 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
    245 #endif /* ATW_DEBUG */
    246 
    247 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
    248 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
    249 
    250 const char *atw_tx_state[] = {
    251 	"STOPPED",
    252 	"RUNNING - FETCH",
    253 	"RUNNING - WAIT",
    254 	"RUNNING - READING",
    255 	"-- RESERVED1 --",
    256 	"-- RESERVED2 --",
    257 	"SUSPENDED",
    258 	"RUNNING - CLOSE"
    259 };
    260 
    261 const char *atw_rx_state[] = {
    262 	"STOPPED",
    263 	"RUNNING - FETCH",
    264 	"RUNNING - CHECK",
    265 	"RUNNING - WAIT",
    266 	"SUSPENDED",
    267 	"RUNNING - CLOSE",
    268 	"RUNNING - FLUSH",
    269 	"RUNNING - QUEUE"
    270 };
    271 
    272 int
    273 atw_activate(struct device *self, enum devact act)
    274 {
    275 	struct atw_softc *sc = (struct atw_softc *)self;
    276 	int rv = 0, s;
    277 
    278 	s = splnet();
    279 	switch (act) {
    280 	case DVACT_ACTIVATE:
    281 		rv = EOPNOTSUPP;
    282 		break;
    283 
    284 	case DVACT_DEACTIVATE:
    285 		if_deactivate(&sc->sc_ic.ic_if);
    286 		break;
    287 	}
    288 	splx(s);
    289 	return rv;
    290 }
    291 
    292 /*
    293  * atw_enable:
    294  *
    295  *	Enable the ADM8211 chip.
    296  */
    297 int
    298 atw_enable(struct atw_softc *sc)
    299 {
    300 
    301 	if (ATW_IS_ENABLED(sc) == 0) {
    302 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    303 			printf("%s: device enable failed\n",
    304 			    sc->sc_dev.dv_xname);
    305 			return (EIO);
    306 		}
    307 		sc->sc_flags |= ATWF_ENABLED;
    308 	}
    309 	return (0);
    310 }
    311 
    312 /*
    313  * atw_disable:
    314  *
    315  *	Disable the ADM8211 chip.
    316  */
    317 void
    318 atw_disable(struct atw_softc *sc)
    319 {
    320 	if (!ATW_IS_ENABLED(sc))
    321 		return;
    322 	if (sc->sc_disable != NULL)
    323 		(*sc->sc_disable)(sc);
    324 	sc->sc_flags &= ~ATWF_ENABLED;
    325 }
    326 
    327 /* Returns -1 on failure. */
    328 int
    329 atw_read_srom(struct atw_softc *sc)
    330 {
    331 	struct seeprom_descriptor sd;
    332 	u_int32_t reg;
    333 
    334 	(void)memset(&sd, 0, sizeof(sd));
    335 
    336 	reg = ATW_READ(sc, ATW_TEST0);
    337 
    338 	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
    339 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
    340 		return -1;
    341 	}
    342 
    343 	switch (reg & ATW_TEST0_EPTYP_MASK) {
    344 	case ATW_TEST0_EPTYP_93c66:
    345 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
    346 		sc->sc_sromsz = 512;
    347 		sd.sd_chip = C56_66;
    348 		break;
    349 	case ATW_TEST0_EPTYP_93c46:
    350 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
    351 		sc->sc_sromsz = 128;
    352 		sd.sd_chip = C46;
    353 		break;
    354 	default:
    355 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
    356 		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
    357 		return -1;
    358 	}
    359 
    360 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
    361 
    362 	if (sc->sc_srom == NULL) {
    363 		printf("%s: unable to allocate SROM buffer\n",
    364 		    sc->sc_dev.dv_xname);
    365 		return -1;
    366 	}
    367 
    368 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
    369 
    370 	/* ADM8211 has a single 32-bit register for controlling the
    371 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
    372 	 * "ready" bit. The ADM8211 input/output sense is the reverse
    373 	 * of read_seeprom's.
    374 	 */
    375 	sd.sd_tag = sc->sc_st;
    376 	sd.sd_bsh = sc->sc_sh;
    377 	sd.sd_regsize = 4;
    378 	sd.sd_control_offset = ATW_SPR;
    379 	sd.sd_status_offset = ATW_SPR;
    380 	sd.sd_dataout_offset = ATW_SPR;
    381 	sd.sd_CK = ATW_SPR_SCLK;
    382 	sd.sd_CS = ATW_SPR_SCS;
    383 	sd.sd_DI = ATW_SPR_SDO;
    384 	sd.sd_DO = ATW_SPR_SDI;
    385 	sd.sd_MS = ATW_SPR_SRS;
    386 	sd.sd_RDY = 0;
    387 
    388 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
    389 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
    390 		free(sc->sc_srom, M_DEVBUF);
    391 		return -1;
    392 	}
    393 #ifdef ATW_DEBUG
    394 	{
    395 		int i;
    396 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
    397 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
    398 			if (((i % 8) == 0) && (i != 0)) {
    399 				ATW_DPRINTF(("\n\t"));
    400 			}
    401 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
    402 		}
    403 		ATW_DPRINTF(("\n"));
    404 	}
    405 #endif /* ATW_DEBUG */
    406 	return 0;
    407 }
    408 
    409 #ifdef ATW_DEBUG
    410 static void
    411 atw_print_regs(struct atw_softc *sc, const char *where)
    412 {
    413 #define PRINTREG(sc, reg) \
    414 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
    415 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
    416 
    417 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
    418 
    419 	PRINTREG(sc, ATW_PAR);
    420 	PRINTREG(sc, ATW_FRCTL);
    421 	PRINTREG(sc, ATW_TDR);
    422 	PRINTREG(sc, ATW_WTDP);
    423 	PRINTREG(sc, ATW_RDR);
    424 	PRINTREG(sc, ATW_WRDP);
    425 	PRINTREG(sc, ATW_RDB);
    426 	PRINTREG(sc, ATW_CSR3A);
    427 	PRINTREG(sc, ATW_TDBD);
    428 	PRINTREG(sc, ATW_TDBP);
    429 	PRINTREG(sc, ATW_STSR);
    430 	PRINTREG(sc, ATW_CSR5A);
    431 	PRINTREG(sc, ATW_NAR);
    432 	PRINTREG(sc, ATW_CSR6A);
    433 	PRINTREG(sc, ATW_IER);
    434 	PRINTREG(sc, ATW_CSR7A);
    435 	PRINTREG(sc, ATW_LPC);
    436 	PRINTREG(sc, ATW_TEST1);
    437 	PRINTREG(sc, ATW_SPR);
    438 	PRINTREG(sc, ATW_TEST0);
    439 	PRINTREG(sc, ATW_WCSR);
    440 	PRINTREG(sc, ATW_WPDR);
    441 	PRINTREG(sc, ATW_GPTMR);
    442 	PRINTREG(sc, ATW_GPIO);
    443 	PRINTREG(sc, ATW_BBPCTL);
    444 	PRINTREG(sc, ATW_SYNCTL);
    445 	PRINTREG(sc, ATW_PLCPHD);
    446 	PRINTREG(sc, ATW_MMIWADDR);
    447 	PRINTREG(sc, ATW_MMIRADDR1);
    448 	PRINTREG(sc, ATW_MMIRADDR2);
    449 	PRINTREG(sc, ATW_TXBR);
    450 	PRINTREG(sc, ATW_CSR15A);
    451 	PRINTREG(sc, ATW_ALCSTAT);
    452 	PRINTREG(sc, ATW_TOFS2);
    453 	PRINTREG(sc, ATW_CMDR);
    454 	PRINTREG(sc, ATW_PCIC);
    455 	PRINTREG(sc, ATW_PMCSR);
    456 	PRINTREG(sc, ATW_PAR0);
    457 	PRINTREG(sc, ATW_PAR1);
    458 	PRINTREG(sc, ATW_MAR0);
    459 	PRINTREG(sc, ATW_MAR1);
    460 	PRINTREG(sc, ATW_ATIMDA0);
    461 	PRINTREG(sc, ATW_ABDA1);
    462 	PRINTREG(sc, ATW_BSSID0);
    463 	PRINTREG(sc, ATW_TXLMT);
    464 	PRINTREG(sc, ATW_MIBCNT);
    465 	PRINTREG(sc, ATW_BCNT);
    466 	PRINTREG(sc, ATW_TSFTH);
    467 	PRINTREG(sc, ATW_TSC);
    468 	PRINTREG(sc, ATW_SYNRF);
    469 	PRINTREG(sc, ATW_BPLI);
    470 	PRINTREG(sc, ATW_CAP0);
    471 	PRINTREG(sc, ATW_CAP1);
    472 	PRINTREG(sc, ATW_RMD);
    473 	PRINTREG(sc, ATW_CFPP);
    474 	PRINTREG(sc, ATW_TOFS0);
    475 	PRINTREG(sc, ATW_TOFS1);
    476 	PRINTREG(sc, ATW_IFST);
    477 	PRINTREG(sc, ATW_RSPT);
    478 	PRINTREG(sc, ATW_TSFTL);
    479 	PRINTREG(sc, ATW_WEPCTL);
    480 	PRINTREG(sc, ATW_WESK);
    481 	PRINTREG(sc, ATW_WEPCNT);
    482 	PRINTREG(sc, ATW_MACTEST);
    483 	PRINTREG(sc, ATW_FER);
    484 	PRINTREG(sc, ATW_FEMR);
    485 	PRINTREG(sc, ATW_FPSR);
    486 	PRINTREG(sc, ATW_FFER);
    487 #undef PRINTREG
    488 }
    489 #endif /* ATW_DEBUG */
    490 
    491 /*
    492  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
    493  */
    494 void
    495 atw_attach(struct atw_softc *sc)
    496 {
    497 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
    498 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    499 	};
    500 	struct ieee80211com *ic = &sc->sc_ic;
    501 	struct ifnet *ifp = &ic->ic_if;
    502 	int country_code, error, i, nrate;
    503 	u_int32_t reg;
    504 	static const char *type_strings[] = {"Intersil (not supported)",
    505 	    "RFMD", "Marvel (not supported)"};
    506 
    507 	sc->sc_txth = atw_txthresh_tab_lo;
    508 
    509 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    510 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    511 
    512 #ifdef ATW_DEBUG
    513 	atw_print_regs(sc, "atw_attach");
    514 #endif /* ATW_DEBUG */
    515 
    516 	/*
    517 	 * Allocate the control data structures, and create and load the
    518 	 * DMA map for it.
    519 	 */
    520 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    521 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    522 	    1, &sc->sc_cdnseg, 0)) != 0) {
    523 		printf("%s: unable to allocate control data, error = %d\n",
    524 		    sc->sc_dev.dv_xname, error);
    525 		goto fail_0;
    526 	}
    527 
    528 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
    529 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
    530 	    BUS_DMA_COHERENT)) != 0) {
    531 		printf("%s: unable to map control data, error = %d\n",
    532 		    sc->sc_dev.dv_xname, error);
    533 		goto fail_1;
    534 	}
    535 
    536 	if ((error = bus_dmamap_create(sc->sc_dmat,
    537 	    sizeof(struct atw_control_data), 1,
    538 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    539 		printf("%s: unable to create control data DMA map, "
    540 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    541 		goto fail_2;
    542 	}
    543 
    544 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    545 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
    546 	    0)) != 0) {
    547 		printf("%s: unable to load control data DMA map, error = %d\n",
    548 		    sc->sc_dev.dv_xname, error);
    549 		goto fail_3;
    550 	}
    551 
    552 	/*
    553 	 * Create the transmit buffer DMA maps.
    554 	 */
    555 	sc->sc_ntxsegs = ATW_NTXSEGS;
    556 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    557 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    558 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
    559 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    560 			printf("%s: unable to create tx DMA map %d, "
    561 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    562 			goto fail_4;
    563 		}
    564 	}
    565 
    566 	/*
    567 	 * Create the receive buffer DMA maps.
    568 	 */
    569 	for (i = 0; i < ATW_NRXDESC; i++) {
    570 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    571 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    572 			printf("%s: unable to create rx DMA map %d, "
    573 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    574 			goto fail_5;
    575 		}
    576 	}
    577 	for (i = 0; i < ATW_NRXDESC; i++) {
    578 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    579 	}
    580 
    581 	/* Reset the chip to a known state. */
    582 	atw_reset(sc);
    583 
    584 	if (atw_read_srom(sc) == -1)
    585 		return;
    586 
    587 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    588 	    ATW_SR_RFTYPE_MASK);
    589 
    590 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    591 	    ATW_SR_BBPTYPE_MASK);
    592 
    593 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
    594 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
    595 		return;
    596 	}
    597 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
    598 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
    599 		return;
    600 	}
    601 
    602 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
    603 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
    604 
    605 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
    606 	 * MARVEL. My bug, or theirs?
    607 	 */
    608 
    609 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
    610 
    611 	switch (sc->sc_rftype) {
    612 	case ATW_RFTYPE_INTERSIL:
    613 		reg |= ATW_SYNCTL_CS1;
    614 		break;
    615 	case ATW_RFTYPE_RFMD:
    616 		reg |= ATW_SYNCTL_CS0;
    617 		break;
    618 	case ATW_RFTYPE_MARVEL:
    619 		break;
    620 	}
    621 
    622 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
    623 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
    624 
    625 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
    626 
    627 	switch (sc->sc_bbptype) {
    628 	case ATW_RFTYPE_INTERSIL:
    629 		reg |= ATW_BBPCTL_TWI;
    630 		break;
    631 	case ATW_RFTYPE_RFMD:
    632 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
    633 		    ATW_BBPCTL_CCA_ACTLO;
    634 		break;
    635 	case ATW_RFTYPE_MARVEL:
    636 		break;
    637 	}
    638 
    639 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
    640 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
    641 
    642 	/*
    643 	 * From this point forward, the attachment cannot fail.  A failure
    644 	 * before this point releases all resources that may have been
    645 	 * allocated.
    646 	 */
    647 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
    648 
    649 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
    650 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
    651 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
    652 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
    653 
    654 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    655 	    ATW_SR_CTRY_MASK);
    656 
    657 #define ADD_CHANNEL(_ic, _chan) do {					\
    658 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
    659 	_ic->ic_channels[_chan].ic_freq =				\
    660 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
    661 } while (0)
    662 
    663 	/* Find available channels */
    664 	switch (country_code) {
    665 	case COUNTRY_MMK2:	/* 1-14 */
    666 		ADD_CHANNEL(ic, 14);
    667 		/*FALLTHROUGH*/
    668 	case COUNTRY_ETSI:	/* 1-13 */
    669 		for (i = 1; i <= 13; i++)
    670 			ADD_CHANNEL(ic, i);
    671 		break;
    672 	case COUNTRY_FCC:	/* 1-11 */
    673 	case COUNTRY_IC:	/* 1-11 */
    674 		for (i = 1; i <= 11; i++)
    675 			ADD_CHANNEL(ic, i);
    676 		break;
    677 	case COUNTRY_MMK:	/* 14 */
    678 		ADD_CHANNEL(ic, 14);
    679 		break;
    680 	case COUNTRY_FRANCE:	/* 10-13 */
    681 		for (i = 10; i <= 13; i++)
    682 			ADD_CHANNEL(ic, i);
    683 		break;
    684 	default:	/* assume channels 10-11 */
    685 	case COUNTRY_SPAIN:	/* 10-11 */
    686 		for (i = 10; i <= 11; i++)
    687 			ADD_CHANNEL(ic, i);
    688 		break;
    689 	}
    690 
    691 	/* Read the MAC address. */
    692 	reg = ATW_READ(sc, ATW_PAR0);
    693 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
    694 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
    695 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
    696 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
    697 	reg = ATW_READ(sc, ATW_PAR1);
    698 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
    699 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
    700 
    701 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
    702 		printf(" could not get mac address, attach failed\n");
    703 		return;
    704 	}
    705 
    706 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
    707 
    708 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    709 	ifp->if_softc = sc;
    710 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
    711 	    IFF_NOTRAILERS;
    712 	ifp->if_ioctl = atw_ioctl;
    713 	ifp->if_start = atw_start;
    714 	ifp->if_watchdog = atw_watchdog;
    715 	ifp->if_init = atw_init;
    716 	ifp->if_stop = atw_stop;
    717 	IFQ_SET_READY(&ifp->if_snd);
    718 
    719 	ic->ic_phytype = IEEE80211_T_DS;
    720 	ic->ic_opmode = IEEE80211_M_STA;
    721 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
    722 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
    723 
    724 	nrate = 0;
    725 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
    726 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
    727 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
    728 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
    729 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
    730 
    731 	/*
    732 	 * Call MI attach routines.
    733 	 */
    734 
    735 	if_attach(ifp);
    736 	ieee80211_ifattach(ifp);
    737 
    738 	sc->sc_newstate = ic->ic_newstate;
    739 	ic->ic_newstate = atw_newstate;
    740 
    741 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    742 	ic->ic_recv_mgmt = atw_recv_mgmt;
    743 
    744 	sc->sc_node_free = ic->ic_node_free;
    745 	ic->ic_node_free = atw_node_free;
    746 
    747 	sc->sc_node_alloc = ic->ic_node_alloc;
    748 	ic->ic_node_alloc = atw_node_alloc;
    749 
    750 	/* possibly we should fill in our own sc_send_prresp, since
    751 	 * the ADM8211 is probably sending probe responses in ad hoc
    752 	 * mode.
    753 	 */
    754 
    755 	/* complete initialization */
    756 	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
    757 	callout_init(&sc->sc_scan_ch);
    758 
    759 #if NBPFILTER > 0
    760 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    761 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
    762 #endif
    763 
    764 	/*
    765 	 * Make sure the interface is shutdown during reboot.
    766 	 */
    767 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
    768 	if (sc->sc_sdhook == NULL)
    769 		printf("%s: WARNING: unable to establish shutdown hook\n",
    770 		    sc->sc_dev.dv_xname);
    771 
    772 	/*
    773 	 * Add a suspend hook to make sure we come back up after a
    774 	 * resume.
    775 	 */
    776 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
    777 	if (sc->sc_powerhook == NULL)
    778 		printf("%s: WARNING: unable to establish power hook\n",
    779 		    sc->sc_dev.dv_xname);
    780 
    781 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
    782 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
    783 	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
    784 
    785 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
    786 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
    787 	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
    788 
    789 	return;
    790 
    791 	/*
    792 	 * Free any resources we've allocated during the failed attach
    793 	 * attempt.  Do this in reverse order and fall through.
    794 	 */
    795  fail_5:
    796 	for (i = 0; i < ATW_NRXDESC; i++) {
    797 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
    798 			continue;
    799 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
    800 	}
    801  fail_4:
    802 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    803 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
    804 			continue;
    805 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
    806 	}
    807 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    808  fail_3:
    809 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    810  fail_2:
    811 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    812 	    sizeof(struct atw_control_data));
    813  fail_1:
    814 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
    815  fail_0:
    816 	return;
    817 }
    818 
    819 static struct ieee80211_node *
    820 atw_node_alloc(struct ieee80211com *ic)
    821 {
    822 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    823 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
    824 
    825 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
    826 	return ni;
    827 }
    828 
    829 static void
    830 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
    831 {
    832 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    833 
    834 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
    835 	    ether_sprintf(ni->ni_bssid)));
    836 	(*sc->sc_node_free)(ic, ni);
    837 }
    838 
    839 /*
    840  * atw_reset:
    841  *
    842  *	Perform a soft reset on the ADM8211.
    843  */
    844 void
    845 atw_reset(struct atw_softc *sc)
    846 {
    847 	int i;
    848 
    849 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
    850 
    851 	for (i = 0; i < 10000; i++) {
    852 		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
    853 			break;
    854 		DELAY(1);
    855 	}
    856 
    857 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
    858 
    859 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
    860 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
    861 
    862 	/* Turn off maximum power saving. */
    863 	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
    864 
    865 	/* Recall EEPROM. */
    866 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
    867 
    868 	DELAY(10 * 1000);
    869 
    870 	/* A reset seems to affect the SRAM contents, so put them into
    871 	 * a known state.
    872 	 */
    873 	atw_clear_sram(sc);
    874 
    875 	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
    876 
    877 	sc->sc_lost_bcn_thresh = 0;
    878 }
    879 
    880 static void
    881 atw_clear_sram(struct atw_softc *sc)
    882 {
    883 #if 0
    884 	for (addr = 0; addr < 448; addr++) {
    885 		ATW_WRITE(sc, ATW_WEPCTL,
    886 		    ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0	| addr);
    887 		DELAY(1000);
    888 		ATW_WRITE(sc, ATW_WESK, 0);
    889 		DELAY(1000); /* paranoia */
    890 	}
    891 	return;
    892 #endif
    893 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
    894 	/* XXX not for revision 0x20. */
    895 	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
    896 }
    897 
    898 /* TBD atw_init
    899  *
    900  * set MAC based on ic->ic_bss->myaddr
    901  * write WEP keys
    902  * set TX rate
    903  */
    904 
    905 /*
    906  * atw_init:		[ ifnet interface function ]
    907  *
    908  *	Initialize the interface.  Must be called at splnet().
    909  */
    910 int
    911 atw_init(struct ifnet *ifp)
    912 {
    913 	struct atw_softc *sc = ifp->if_softc;
    914 	struct ieee80211com *ic = &sc->sc_ic;
    915 	struct atw_txsoft *txs;
    916 	struct atw_rxsoft *rxs;
    917 	u_int32_t reg;
    918 	int i, error = 0;
    919 
    920 	if ((error = atw_enable(sc)) != 0)
    921 		goto out;
    922 
    923 	/*
    924 	 * Cancel any pending I/O. This also resets.
    925 	 */
    926 	atw_stop(ifp, 0);
    927 
    928 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
    929 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
    930 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
    931 	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
    932 
    933 	/* Turn off APM??? (A binary-only driver does this.)
    934 	 *
    935 	 * Set Rx store-and-forward mode.
    936 	 */
    937 	reg = ATW_READ(sc, ATW_CMDR);
    938 	reg &= ~ATW_CMDR_APM;
    939 	reg &= ~ATW_CMDR_DRT_MASK;
    940 	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
    941 
    942 	ATW_WRITE(sc, ATW_CMDR, reg);
    943 
    944 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
    945 	 *
    946 	 * XXX a binary-only driver sets a different service field than
    947 	 * 0. why?
    948 	 */
    949 	reg = ATW_READ(sc, ATW_PLCPHD);
    950 	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
    951 	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
    952 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
    953 	ATW_WRITE(sc, ATW_PLCPHD, reg);
    954 
    955 	/* XXX this magic can probably be figured out from the RFMD docs */
    956 	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
    957 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
    958 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
    959 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
    960 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
    961 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
    962 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
    963 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
    964 	ATW_WRITE(sc, ATW_TOFS2, reg);
    965 
    966 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
    967 	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
    968 
    969 	/* XXX this resets an Intersil RF front-end? */
    970 	/* TBD condition on Intersil RFType? */
    971 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
    972 	DELAY(10 * 1000);
    973 	ATW_WRITE(sc, ATW_SYNRF, 0);
    974 	DELAY(5 * 1000);
    975 
    976 	/* 16 TU max duration for contention-free period */
    977 	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
    978 	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
    979 
    980 	/* XXX I guess that the Cardbus clock is 22MHz?
    981 	 * I am assuming that the role of ATW_TOFS0_USCNT is
    982 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
    983 	 * very clear on this point. It says in the datasheet that it is
    984 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
    985 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
    986 	 * these values. These values are also the power-on default.
    987 	 */
    988 	ATW_WRITE(sc, ATW_TOFS0,
    989 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
    990 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
    991 
    992 	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
    993 	 * driver. Go figure.
    994 	 */
    995 	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
    996 	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
    997 	             ATW_IFST_SIFS_MASK) |
    998 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
    999 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
   1000 
   1001 	ATW_WRITE(sc, ATW_IFST, reg);
   1002 
   1003 	/* XXX More magic. Might relate to ACK timing. */
   1004 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
   1005 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
   1006 
   1007 	/* Set up the MMI read/write addresses for the BBP.
   1008 	 *
   1009 	 * TBD find out the Marvel settings.
   1010 	 */
   1011 	switch (sc->sc_bbptype) {
   1012 	case ATW_BBPTYPE_INTERSIL:
   1013 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
   1014 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
   1015 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
   1016 		break;
   1017 	case ATW_BBPTYPE_MARVEL:
   1018 		break;
   1019 	case ATW_BBPTYPE_RFMD:
   1020 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
   1021 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
   1022 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
   1023 	default:
   1024 		break;
   1025 	}
   1026 
   1027 	sc->sc_wepctl = 0;
   1028 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
   1029 
   1030 	if ((error = atw_rf3000_init(sc)) != 0)
   1031 		goto out;
   1032 
   1033 	/*
   1034 	 * Initialize the PCI Access Register.
   1035 	 */
   1036 	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
   1037 
   1038 	/*
   1039 	 * If we're allowed to do so, use Memory Read Line
   1040 	 * and Memory Read Multiple.
   1041 	 *
   1042 	 * XXX Should we use Memory Write and Invalidate?
   1043 	 */
   1044 	if (sc->sc_flags & ATWF_MRL)
   1045 		sc->sc_busmode |= ATW_PAR_MRLE;
   1046 	if (sc->sc_flags & ATWF_MRM)
   1047 		sc->sc_busmode |= ATW_PAR_MRME;
   1048 	if (sc->sc_flags & ATWF_MWI)
   1049 		sc->sc_busmode |= ATW_PAR_MWIE;
   1050 	if (sc->sc_maxburst == 0)
   1051 		sc->sc_maxburst = 8;	/* ADM8211 default */
   1052 
   1053 	switch (sc->sc_cacheline) {
   1054 	default:
   1055 		/* Use burst length. */
   1056 		break;
   1057 	case 8:
   1058 		sc->sc_busmode |= ATW_PAR_CAL_8DW;
   1059 		break;
   1060 	case 16:
   1061 		sc->sc_busmode |= ATW_PAR_CAL_16DW;
   1062 		break;
   1063 	case 32:
   1064 		sc->sc_busmode |= ATW_PAR_CAL_32DW;
   1065 		break;
   1066 	}
   1067 	switch (sc->sc_maxburst) {
   1068 	case 1:
   1069 		sc->sc_busmode |= ATW_PAR_PBL_1DW;
   1070 		break;
   1071 	case 2:
   1072 		sc->sc_busmode |= ATW_PAR_PBL_2DW;
   1073 		break;
   1074 	case 4:
   1075 		sc->sc_busmode |= ATW_PAR_PBL_4DW;
   1076 		break;
   1077 	case 8:
   1078 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1079 		break;
   1080 	case 16:
   1081 		sc->sc_busmode |= ATW_PAR_PBL_16DW;
   1082 		break;
   1083 	case 32:
   1084 		sc->sc_busmode |= ATW_PAR_PBL_32DW;
   1085 		break;
   1086 	default:
   1087 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1088 		break;
   1089 	}
   1090 
   1091 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
   1092 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
   1093 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
   1094 
   1095 	/*
   1096 	 * Initialize the OPMODE register.  We don't write it until
   1097 	 * we're ready to begin the transmit and receive processes.
   1098 	 */
   1099 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
   1100 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
   1101 
   1102 	/*
   1103 	 * Initialize the transmit descriptor ring.
   1104 	 */
   1105 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1106 	for (i = 0; i < ATW_NTXDESC; i++) {
   1107 		/* no transmit chaining */
   1108 		sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
   1109 		sc->sc_txdescs[i].at_buf2 =
   1110 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
   1111 	}
   1112 	/* use ring mode */
   1113 	sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
   1114 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
   1115 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1116 	sc->sc_txfree = ATW_NTXDESC;
   1117 	sc->sc_txnext = 0;
   1118 
   1119 	/*
   1120 	 * Initialize the transmit job descriptors.
   1121 	 */
   1122 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1123 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1124 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   1125 		txs = &sc->sc_txsoft[i];
   1126 		txs->txs_mbuf = NULL;
   1127 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1128 	}
   1129 
   1130 	/*
   1131 	 * Initialize the receive descriptor and receive job
   1132 	 * descriptor rings.
   1133 	 */
   1134 	for (i = 0; i < ATW_NRXDESC; i++) {
   1135 		rxs = &sc->sc_rxsoft[i];
   1136 		if (rxs->rxs_mbuf == NULL) {
   1137 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
   1138 				printf("%s: unable to allocate or map rx "
   1139 				    "buffer %d, error = %d\n",
   1140 				    sc->sc_dev.dv_xname, i, error);
   1141 				/*
   1142 				 * XXX Should attempt to run with fewer receive
   1143 				 * XXX buffers instead of just failing.
   1144 				 */
   1145 				atw_rxdrain(sc);
   1146 				goto out;
   1147 			}
   1148 		} else
   1149 			ATW_INIT_RXDESC(sc, i);
   1150 	}
   1151 	sc->sc_rxptr = 0;
   1152 
   1153 	/* disable all wake-up events */
   1154 	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
   1155 	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
   1156 			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
   1157 			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
   1158 
   1159 	/* ack all wake-up events */
   1160 	ATW_SET(sc, ATW_WCSR, 0);
   1161 
   1162 	/*
   1163 	 * Initialize the interrupt mask and enable interrupts.
   1164 	 */
   1165 	/* normal interrupts */
   1166 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
   1167 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
   1168 
   1169 	/* abnormal interrupts */
   1170 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
   1171 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
   1172 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1173 
   1174 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
   1175 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1176 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
   1177 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
   1178 	    ATW_INTR_TRT;
   1179 
   1180 	sc->sc_linkint_mask &= sc->sc_inten;
   1181 	sc->sc_rxint_mask &= sc->sc_inten;
   1182 	sc->sc_txint_mask &= sc->sc_inten;
   1183 
   1184 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
   1185 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1186 	if (sc->sc_intr_ack != NULL)
   1187 		(*sc->sc_intr_ack)(sc);
   1188 
   1189 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
   1190 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
   1191 
   1192 	/*
   1193 	 * Give the transmit and receive rings to the ADM8211.
   1194 	 */
   1195 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
   1196 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
   1197 
   1198 	/* common 802.11 configuration */
   1199 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
   1200 	switch (ic->ic_opmode) {
   1201 	case IEEE80211_M_STA:
   1202 		sc->sc_opmode &= ~ATW_NAR_EA;
   1203 		break;
   1204 	case IEEE80211_M_AHDEMO: /* XXX */
   1205 	case IEEE80211_M_IBSS:
   1206 		ic->ic_flags |= IEEE80211_F_IBSSON;
   1207 		/*FALLTHROUGH*/
   1208 	case IEEE80211_M_HOSTAP: /* XXX */
   1209 		/* EA bit seems important for ad hoc reception. */
   1210 		sc->sc_opmode |= ATW_NAR_EA;
   1211 		break;
   1212 	case IEEE80211_M_MONITOR: /* XXX */
   1213 		break;
   1214 	}
   1215 
   1216 	atw_start_beacon(sc, 0);
   1217 
   1218 	switch (ic->ic_opmode) {
   1219 	case IEEE80211_M_AHDEMO:
   1220 	case IEEE80211_M_HOSTAP:
   1221 		ic->ic_bss->ni_intval = ic->ic_lintval;
   1222 		ic->ic_bss->ni_rssi = 0;
   1223 		ic->ic_bss->ni_rstamp = 0;
   1224 		break;
   1225 	default:					/* XXX */
   1226 		break;
   1227 	}
   1228 
   1229 	atw_write_ssid(sc);
   1230 	atw_write_sup_rates(sc);
   1231 	if (ic->ic_caps & IEEE80211_C_WEP)
   1232 		atw_write_wep(sc);
   1233 
   1234 	/*
   1235 	 * Set the receive filter.  This will start the transmit and
   1236 	 * receive processes.
   1237 	 */
   1238 	atw_filter_setup(sc);
   1239 
   1240 	/*
   1241 	 * Start the receive process.
   1242 	 */
   1243 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1244 
   1245 	/*
   1246 	 * Note that the interface is now running.
   1247 	 */
   1248 	ifp->if_flags |= IFF_RUNNING;
   1249 	ifp->if_flags &= ~IFF_OACTIVE;
   1250 	ic->ic_state = IEEE80211_S_INIT;
   1251 
   1252 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1253 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1254 	else
   1255 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1256  out:
   1257 	if (error) {
   1258 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1259 		ifp->if_timer = 0;
   1260 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1261 	}
   1262 #ifdef ATW_DEBUG
   1263 	atw_print_regs(sc, "end of init");
   1264 #endif /* ATW_DEBUG */
   1265 
   1266 	return (error);
   1267 }
   1268 
   1269 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
   1270  *           0: MAC control of RF3000/Si4126.
   1271  *
   1272  * Applies power, or selects RF front-end? Sets reset condition.
   1273  *
   1274  * TBD support non-RFMD BBP, non-SiLabs synth.
   1275  */
   1276 static void
   1277 atw_rfio_enable(struct atw_softc *sc, int enable)
   1278 {
   1279 	if (enable) {
   1280 		ATW_WRITE(sc, ATW_SYNRF,
   1281 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
   1282 		DELAY(atw_rfio_enable_delay);
   1283 	} else {
   1284 		ATW_WRITE(sc, ATW_SYNRF, 0);
   1285 		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
   1286 	}
   1287 }
   1288 
   1289 static int
   1290 atw_tune(struct atw_softc *sc)
   1291 {
   1292 	int rc;
   1293 	u_int32_t reg;
   1294 	int chan;
   1295 	struct ieee80211com *ic = &sc->sc_ic;
   1296 
   1297 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
   1298 	if (chan == IEEE80211_CHAN_ANY)
   1299 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
   1300 
   1301 	if (chan == sc->sc_cur_chan)
   1302 		return 0;
   1303 
   1304 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
   1305 	    sc->sc_cur_chan, chan));
   1306 
   1307 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1308 
   1309 	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
   1310 	    (rc = atw_rf3000_tune(sc, chan)) != 0)
   1311 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
   1312 		    chan);
   1313 
   1314 	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
   1315 	ATW_WRITE(sc, ATW_CAP0,
   1316 	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
   1317 
   1318 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1319 
   1320 	if (rc == 0)
   1321 		sc->sc_cur_chan = chan;
   1322 
   1323 	return rc;
   1324 }
   1325 
   1326 #ifdef ATW_DEBUG
   1327 static void
   1328 atw_si4126_print(struct atw_softc *sc)
   1329 {
   1330 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1331 	u_int addr, val;
   1332 
   1333 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1334 		return;
   1335 
   1336 	for (addr = 0; addr <= 8; addr++) {
   1337 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
   1338 		if (atw_si4126_read(sc, addr, &val) == 0) {
   1339 			printf("<unknown> (quitting print-out)\n");
   1340 			break;
   1341 		}
   1342 		printf("%05x\n", val);
   1343 	}
   1344 }
   1345 #endif /* ATW_DEBUG */
   1346 
   1347 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
   1348  *
   1349  * The RF/IF synthesizer produces two reference frequencies for
   1350  * the RF2948B transceiver.  The first frequency the RF2948B requires
   1351  * is two times the so-called "intermediate frequency" (IF). Since
   1352  * a SAW filter on the radio fixes the IF at 374MHz, I program the
   1353  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
   1354  * frequency required by the transceiver is the radio frequency
   1355  * (RF). This is a superheterodyne transceiver; for f(chan) the
   1356  * center frequency of the channel we are tuning, RF = f(chan) -
   1357  * IF.
   1358  *
   1359  * XXX I am told by SiLabs that the Si4126 will accept a broader range
   1360  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
   1361  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
   1362  * works, but I have still programmed for XINDIV2 = 1 to be safe.
   1363  */
   1364 static int
   1365 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
   1366 {
   1367 	int rc = 0;
   1368 	u_int mhz;
   1369 	u_int R;
   1370 	u_int32_t reg;
   1371 	u_int16_t gain;
   1372 
   1373 #ifdef ATW_DEBUG
   1374 	atw_si4126_print(sc);
   1375 #endif /* ATW_DEBUG */
   1376 
   1377 	if (chan == 14)
   1378 		mhz = 2484;
   1379 	else
   1380 		mhz = 2412 + 5 * (chan - 1);
   1381 
   1382 	/* Tune IF to 748MHz to suit the IF LO input of the
   1383 	 * RF2494B, which is 2 x IF. No need to set an IF divider
   1384          * because an IF in 526MHz - 952MHz is allowed.
   1385 	 *
   1386 	 * XIN is 44.000MHz, so divide it by two to get allowable
   1387 	 * range of 2-25MHz. SiLabs tells me that this is not
   1388 	 * strictly necessary.
   1389 	 */
   1390 
   1391 	R = 44;
   1392 
   1393 	atw_rfio_enable(sc, 1);
   1394 
   1395 	/* Power-up RF, IF synthesizers. */
   1396 	if ((rc = atw_si4126_write(sc, SI4126_POWER,
   1397 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
   1398 		goto out;
   1399 
   1400 	/* If RF2 N > 2047, then set KP2 to 1. */
   1401 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
   1402 
   1403 	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
   1404 		goto out;
   1405 
   1406 	/* set LPWR, too? */
   1407 	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
   1408 	    SI4126_MAIN_XINDIV2)) != 0)
   1409 		goto out;
   1410 
   1411 	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
   1412 	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
   1413 	 */
   1414 	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
   1415 		goto out;
   1416 
   1417 	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
   1418 		goto out;
   1419 
   1420 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
   1421 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
   1422 	 * which has no RF1!
   1423 	 */
   1424 	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
   1425 		goto out;
   1426 
   1427 	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
   1428 		goto out;
   1429 
   1430 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
   1431 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
   1432 	 * Now let's multiply it to mhz. So mhz - IF = N.
   1433 	 */
   1434 	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
   1435 		goto out;
   1436 
   1437 	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
   1438 		goto out;
   1439 
   1440 	/* wait 100us from power-up for RF, IF to settle */
   1441 	DELAY(100);
   1442 
   1443 	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
   1444 		/* XXX there is a binary driver which sends
   1445 		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
   1446 		 * that this enables the Si4126 by raising its PWDN#, but I
   1447 		 * think that it actually sets the Prism RF front-end
   1448 		 * to a special mode for channel 14.
   1449 		 */
   1450 		reg = ATW_READ(sc, ATW_GPIO);
   1451 		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
   1452 		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
   1453 		ATW_WRITE(sc, ATW_GPIO, reg);
   1454 	}
   1455 
   1456 #ifdef ATW_DEBUG
   1457 	atw_si4126_print(sc);
   1458 #endif /* ATW_DEBUG */
   1459 
   1460 out:
   1461 	atw_rfio_enable(sc, 0);
   1462 
   1463 	return rc;
   1464 }
   1465 
   1466 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
   1467  * diversity.
   1468  *
   1469  * Call this w/ Tx/Rx suspended.
   1470  */
   1471 static int
   1472 atw_rf3000_init(struct atw_softc *sc)
   1473 {
   1474 	int rc = 0;
   1475 
   1476 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1477 
   1478 	atw_rfio_enable(sc, 1);
   1479 
   1480 	/* enable diversity */
   1481 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
   1482 
   1483 	if (rc != 0)
   1484 		goto out;
   1485 
   1486 	/* sensible setting from a binary-only driver */
   1487 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1488 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
   1489 
   1490 	if (rc != 0)
   1491 		goto out;
   1492 
   1493 	/* magic from a binary-only driver */
   1494 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
   1495 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
   1496 
   1497 	if (rc != 0)
   1498 		goto out;
   1499 
   1500 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
   1501 
   1502 	if (rc != 0)
   1503 		goto out;
   1504 
   1505 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
   1506 
   1507 	if (rc != 0)
   1508 		goto out;
   1509 
   1510 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
   1511 
   1512 	if (rc != 0)
   1513 		goto out;
   1514 
   1515 	/* CCA is acquisition sensitive */
   1516 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
   1517 	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
   1518 
   1519 	if (rc != 0)
   1520 		goto out;
   1521 
   1522 out:
   1523 	atw_rfio_enable(sc, 0);
   1524 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1525 	return rc;
   1526 }
   1527 
   1528 #ifdef ATW_DEBUG
   1529 static void
   1530 atw_rf3000_print(struct atw_softc *sc)
   1531 {
   1532 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1533 	u_int addr, val;
   1534 
   1535 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1536 		return;
   1537 
   1538 	for (addr = 0x01; addr <= 0x15; addr++) {
   1539 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
   1540 		if (atw_rf3000_read(sc, addr, &val) != 0) {
   1541 			printf("<unknown> (quitting print-out)\n");
   1542 			break;
   1543 		}
   1544 		printf("%08x\n", val);
   1545 	}
   1546 }
   1547 #endif /* ATW_DEBUG */
   1548 
   1549 /* Set the power settings on the BBP for channel `chan'. */
   1550 static int
   1551 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
   1552 {
   1553 	int rc = 0;
   1554 	u_int32_t reg;
   1555 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
   1556 
   1557 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
   1558 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
   1559 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
   1560 
   1561 	/* odd channels: LSB, even channels: MSB */
   1562 	if (chan % 2 == 1) {
   1563 		txpower &= 0xFF;
   1564 		lpf_cutoff &= 0xFF;
   1565 		lna_gs_thresh &= 0xFF;
   1566 	} else {
   1567 		txpower >>= 8;
   1568 		lpf_cutoff >>= 8;
   1569 		lna_gs_thresh >>= 8;
   1570 	}
   1571 
   1572 #ifdef ATW_DEBUG
   1573 	atw_rf3000_print(sc);
   1574 #endif /* ATW_DEBUG */
   1575 
   1576 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
   1577 	    "lna_gs_thresh %02x\n",
   1578 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
   1579 
   1580 	atw_rfio_enable(sc, 1);
   1581 
   1582 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1583 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
   1584 		goto out;
   1585 
   1586 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
   1587 		goto out;
   1588 
   1589 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
   1590 		goto out;
   1591 
   1592 	/* from a binary-only driver. */
   1593 	reg = ATW_READ(sc, ATW_PLCPHD);
   1594 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
   1595 	reg |= LSHIFT(txpower << 2, ATW_PLCPHD_SERVICE_MASK);
   1596 	ATW_WRITE(sc, ATW_PLCPHD, reg);
   1597 
   1598 #ifdef ATW_DEBUG
   1599 	atw_rf3000_print(sc);
   1600 #endif /* ATW_DEBUG */
   1601 
   1602 out:
   1603 	atw_rfio_enable(sc, 0);
   1604 
   1605 	return rc;
   1606 }
   1607 
   1608 /* Write a register on the RF3000 baseband processor using the
   1609  * registers provided by the ADM8211 for this purpose.
   1610  *
   1611  * Return 0 on success.
   1612  */
   1613 static int
   1614 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
   1615 {
   1616 	u_int32_t reg;
   1617 	int i;
   1618 
   1619 	for (i = 1000; --i >= 0; ) {
   1620 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1621 			break;
   1622 		DELAY(100);
   1623 	}
   1624 
   1625 	if (i < 0) {
   1626 		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
   1627 		return ETIMEDOUT;
   1628 	}
   1629 
   1630 	reg = sc->sc_bbpctl_wr |
   1631 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
   1632 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1633 
   1634 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1635 
   1636 	for (i = 1000; --i >= 0; ) {
   1637 		DELAY(100);
   1638 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
   1639 			break;
   1640 	}
   1641 
   1642 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
   1643 
   1644 	if (i < 0) {
   1645 		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
   1646 		return ETIMEDOUT;
   1647 	}
   1648 	return 0;
   1649 }
   1650 
   1651 /* Read a register on the RF3000 baseband processor using the registers
   1652  * the ADM8211 provides for this purpose.
   1653  *
   1654  * The 7-bit register address is addr.  Record the 8-bit data in the register
   1655  * in *val.
   1656  *
   1657  * Return 0 on success.
   1658  *
   1659  * XXX This does not seem to work. The ADM8211 must require more or
   1660  * different magic to read the chip than to write it. Possibly some
   1661  * of the magic I have derived from a binary-only driver concerns
   1662  * the "chip address" (see the RF3000 manual).
   1663  */
   1664 #ifdef ATW_DEBUG
   1665 static int
   1666 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
   1667 {
   1668 	u_int32_t reg;
   1669 	int i;
   1670 
   1671 	for (i = 1000; --i >= 0; ) {
   1672 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1673 			break;
   1674 		DELAY(100);
   1675 	}
   1676 
   1677 	if (i < 0) {
   1678 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
   1679 		    sc->sc_dev.dv_xname);
   1680 		return ETIMEDOUT;
   1681 	}
   1682 
   1683 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1684 
   1685 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1686 
   1687 	for (i = 1000; --i >= 0; ) {
   1688 		DELAY(100);
   1689 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
   1690 			break;
   1691 	}
   1692 
   1693 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
   1694 
   1695 	if (i < 0) {
   1696 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
   1697 		    sc->sc_dev.dv_xname, reg);
   1698 		return ETIMEDOUT;
   1699 	}
   1700 	if (val != NULL)
   1701 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
   1702 	return 0;
   1703 }
   1704 #endif /* ATW_DEBUG */
   1705 
   1706 /* Write a register on the Si4126 RF/IF synthesizer using the registers
   1707  * provided by the ADM8211 for that purpose.
   1708  *
   1709  * val is 18 bits of data, and val is the 4-bit address of the register.
   1710  *
   1711  * Return 0 on success.
   1712  */
   1713 static int
   1714 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
   1715 {
   1716 	u_int32_t bits, reg;
   1717 	int i;
   1718 
   1719 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1720 	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
   1721 
   1722 	for (i = 1000; --i >= 0; ) {
   1723 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1724 			break;
   1725 		DELAY(100);
   1726 	}
   1727 
   1728 	if (i < 0) {
   1729 		printf("%s: start atw_si4126_write, SYNCTL busy\n",
   1730 		    sc->sc_dev.dv_xname);
   1731 		return ETIMEDOUT;
   1732 	}
   1733 
   1734 	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
   1735 	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
   1736 
   1737 	reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
   1738 
   1739 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1740 
   1741 	for (i = 1000; --i >= 0; ) {
   1742 		DELAY(100);
   1743 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
   1744 			break;
   1745 	}
   1746 
   1747 	/* restore to acceptable starting condition */
   1748 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
   1749 
   1750 	if (i < 0) {
   1751 		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
   1752 		    sc->sc_dev.dv_xname, reg);
   1753 		return ETIMEDOUT;
   1754 	}
   1755 	return 0;
   1756 }
   1757 
   1758 /* Read 18-bit data from the 4-bit address addr in Si4126
   1759  * RF synthesizer and write the data to *val. Return 0 on success.
   1760  *
   1761  * XXX This does not seem to work. The ADM8211 must require more or
   1762  * different magic to read the chip than to write it.
   1763  */
   1764 #ifdef ATW_DEBUG
   1765 static int
   1766 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
   1767 {
   1768 	u_int32_t reg;
   1769 	int i;
   1770 
   1771 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1772 
   1773 	for (i = 1000; --i >= 0; ) {
   1774 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1775 			break;
   1776 		DELAY(100);
   1777 	}
   1778 
   1779 	if (i < 0) {
   1780 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
   1781 		    sc->sc_dev.dv_xname);
   1782 		return ETIMEDOUT;
   1783 	}
   1784 
   1785 	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
   1786 
   1787 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1788 
   1789 	for (i = 1000; --i >= 0; ) {
   1790 		DELAY(100);
   1791 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
   1792 			break;
   1793 	}
   1794 
   1795 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
   1796 
   1797 	if (i < 0) {
   1798 		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
   1799 		    sc->sc_dev.dv_xname, reg);
   1800 		return ETIMEDOUT;
   1801 	}
   1802 	if (val != NULL)
   1803 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
   1804 		                       ATW_SYNCTL_DATA_MASK);
   1805 	return 0;
   1806 }
   1807 #endif /* ATW_DEBUG */
   1808 
   1809 /* XXX is the endianness correct? test. */
   1810 #define	atw_calchash(addr) \
   1811 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
   1812 
   1813 /*
   1814  * atw_filter_setup:
   1815  *
   1816  *	Set the ADM8211's receive filter.
   1817  */
   1818 static void
   1819 atw_filter_setup(struct atw_softc *sc)
   1820 {
   1821 	struct ieee80211com *ic = &sc->sc_ic;
   1822 	struct ethercom *ec = &ic->ic_ec;
   1823 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1824 	int hash;
   1825 	u_int32_t hashes[2] = { 0, 0 };
   1826 	struct ether_multi *enm;
   1827 	struct ether_multistep step;
   1828 
   1829 	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
   1830 	    sc->sc_dev.dv_xname, sc->sc_flags));
   1831 
   1832 	/*
   1833 	 * If we're running, idle the receive engine.  If we're NOT running,
   1834 	 * we're being called from atw_init(), and our writing ATW_NAR will
   1835 	 * start the transmit and receive processes in motion.
   1836 	 */
   1837 	if (ifp->if_flags & IFF_RUNNING)
   1838 		atw_idle(sc, ATW_NAR_SR);
   1839 
   1840 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
   1841 
   1842 	ifp->if_flags &= ~IFF_ALLMULTI;
   1843 
   1844 	if (ifp->if_flags & IFF_PROMISC) {
   1845 		sc->sc_opmode |= ATW_NAR_PR;
   1846 allmulti:
   1847 		ifp->if_flags |= IFF_ALLMULTI;
   1848 		goto setit;
   1849 	}
   1850 
   1851 	/*
   1852 	 * Program the 64-bit multicast hash filter.
   1853 	 */
   1854 	ETHER_FIRST_MULTI(step, ec, enm);
   1855 	while (enm != NULL) {
   1856 		/* XXX */
   1857 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1858 		    ETHER_ADDR_LEN) != 0)
   1859 			goto allmulti;
   1860 
   1861 		hash = atw_calchash(enm->enm_addrlo);
   1862 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1863 		ETHER_NEXT_MULTI(step, enm);
   1864 	}
   1865 
   1866 	if (ifp->if_flags & IFF_BROADCAST) {
   1867 		hash = atw_calchash(etherbroadcastaddr);
   1868 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1869 	}
   1870 
   1871 	/* all bits set => hash is useless */
   1872 	if (~(hashes[0] & hashes[1]) == 0)
   1873 		goto allmulti;
   1874 
   1875  setit:
   1876 	if (ifp->if_flags & IFF_ALLMULTI)
   1877 		sc->sc_opmode |= ATW_NAR_MM;
   1878 
   1879 	/* XXX in scan mode, do not filter packets. maybe this is
   1880 	 * unnecessary.
   1881 	 */
   1882 	if (ic->ic_state == IEEE80211_S_SCAN)
   1883 		sc->sc_opmode |= ATW_NAR_PR;
   1884 
   1885 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
   1886 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
   1887 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1888 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
   1889 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
   1890 
   1891 	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
   1892 }
   1893 
   1894 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
   1895  * a beacon's BSSID and SSID against the preferred BSSID and SSID
   1896  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
   1897  * no beacon with the preferred BSSID and SSID in the number of
   1898  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
   1899  */
   1900 static void
   1901 atw_write_bssid(struct atw_softc *sc)
   1902 {
   1903 	struct ieee80211com *ic = &sc->sc_ic;
   1904 	u_int8_t *bssid;
   1905 
   1906 	bssid = ic->ic_bss->ni_bssid;
   1907 
   1908 	ATW_WRITE(sc, ATW_ABDA1,
   1909 	    (ATW_READ(sc, ATW_ABDA1) &
   1910 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
   1911 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
   1912 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
   1913 
   1914 	ATW_WRITE(sc, ATW_BSSID0,
   1915 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
   1916 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
   1917 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
   1918 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
   1919 
   1920 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
   1921 	    ether_sprintf(sc->sc_bssid)));
   1922 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
   1923 
   1924 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
   1925 }
   1926 
   1927 /* Tell the ADM8211 how many beacon intervals must pass without
   1928  * receiving a beacon with the preferred BSSID & SSID set by
   1929  * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
   1930  * raised.
   1931  */
   1932 static void
   1933 atw_write_bcn_thresh(struct atw_softc *sc)
   1934 {
   1935 	struct ieee80211com *ic = &sc->sc_ic;
   1936 	int lost_bcn_thresh;
   1937 
   1938 	/* Lose link after one second or 7 beacons, whichever comes
   1939 	 * first, but do not lose link before 2 beacons are lost.
   1940 	 *
   1941 	 * In host AP mode, set the lost-beacon threshold to 0.
   1942 	 */
   1943 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1944 		lost_bcn_thresh = 0;
   1945 	else {
   1946 		int beacons_per_second =
   1947 		    1000000 / (IEEE80211_DUR_TU * MAX(1,ic->ic_bss->ni_intval));
   1948 		lost_bcn_thresh = MAX(2, MIN(7, beacons_per_second));
   1949 	}
   1950 
   1951 	/* XXX resets wake-up status bits */
   1952 	ATW_WRITE(sc, ATW_WCSR,
   1953 	    (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
   1954 	    (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
   1955 
   1956 	DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
   1957 	    sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
   1958 
   1959 	sc->sc_lost_bcn_thresh = lost_bcn_thresh;
   1960 
   1961 	DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
   1962 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
   1963 }
   1964 
   1965 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
   1966  * 16-bit word.
   1967  */
   1968 static void
   1969 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
   1970 {
   1971 	u_int i;
   1972 	u_int8_t *ptr;
   1973 
   1974 	memcpy(&sc->sc_sram[ofs], buf, buflen);
   1975 
   1976 	if (ofs % 2 != 0) {
   1977 		ofs--;
   1978 		buflen++;
   1979 	}
   1980 
   1981 	if (buflen % 2 != 0)
   1982 		buflen++;
   1983 
   1984 	assert(buflen + ofs <= ATW_SRAM_SIZE);
   1985 
   1986 	ptr = &sc->sc_sram[ofs];
   1987 
   1988 	for (i = 0; i < buflen; i += 2) {
   1989 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
   1990 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
   1991 		DELAY(atw_writewep_delay);
   1992 
   1993 		ATW_WRITE(sc, ATW_WESK,
   1994 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
   1995 		DELAY(atw_writewep_delay);
   1996 	}
   1997 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
   1998 
   1999 	if (sc->sc_if.if_flags & IFF_DEBUG) {
   2000 		int n_octets = 0;
   2001 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
   2002 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
   2003 		for (i = 0; i < buflen; i++) {
   2004 			printf(" %02x", ptr[i]);
   2005 			if (++n_octets % 24 == 0)
   2006 				printf("\n");
   2007 		}
   2008 		if (n_octets % 24 != 0)
   2009 			printf("\n");
   2010 	}
   2011 }
   2012 
   2013 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
   2014 static void
   2015 atw_write_wep(struct atw_softc *sc)
   2016 {
   2017 	struct ieee80211com *ic = &sc->sc_ic;
   2018 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
   2019 	u_int8_t buf[IEEE80211_WEP_NKID]
   2020 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
   2021 	u_int32_t reg;
   2022 	int i;
   2023 
   2024 	sc->sc_wepctl = 0;
   2025 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
   2026 
   2027 	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
   2028 		return;
   2029 
   2030 	memset(&buf[0][0], 0, sizeof(buf));
   2031 
   2032 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   2033 		if (ic->ic_nw_keys[i].wk_len > 5) {
   2034 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
   2035 		} else if (ic->ic_nw_keys[i].wk_len != 0) {
   2036 			buf[i][1] = ATW_WEP_ENABLED;
   2037 		} else {
   2038 			buf[i][1] = 0;
   2039 			continue;
   2040 		}
   2041 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
   2042 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
   2043 		    ic->ic_nw_keys[i].wk_len - 1);
   2044 	}
   2045 
   2046 	reg = ATW_READ(sc, ATW_MACTEST);
   2047 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
   2048 	reg &= ~ATW_MACTEST_KEYID_MASK;
   2049 	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
   2050 	ATW_WRITE(sc, ATW_MACTEST, reg);
   2051 
   2052 	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
   2053 	 * throughout.)
   2054 	 */
   2055 	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
   2056 	if (sc->sc_if.if_flags & IFF_LINK2)
   2057 		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
   2058 
   2059 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
   2060 	    sizeof(buf));
   2061 }
   2062 
   2063 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
   2064 
   2065 static void
   2066 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2067     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2068 {
   2069 	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
   2070 
   2071 	switch (subtype) {
   2072 	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
   2073 		/* do nothing: hardware answers probe request */
   2074 		break;
   2075 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2076 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2077 		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
   2078 		break;
   2079 	default:
   2080 		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
   2081 		break;
   2082 	}
   2083 	return;
   2084 }
   2085 
   2086 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
   2087  * of IBSSs with like SSID/channel but different BSSID. It joins the
   2088  * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
   2089  * convention. Possibly the ADMtek chip does this for us; I will have
   2090  * to test to find out.
   2091  *
   2092  * XXX we should add the duration field of the received beacon to
   2093  * the TSF time it contains before comparing it with the ADM8211's
   2094  * TSF.
   2095  */
   2096 static void
   2097 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
   2098     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2099 {
   2100 	struct atw_softc *sc;
   2101 	struct ieee80211_frame *wh;
   2102 	u_int64_t tsft, bcn_tsft;
   2103 	u_int32_t tsftl, tsfth;
   2104 	int do_print = 0;
   2105 
   2106 	sc = (struct atw_softc*)ic->ic_if.if_softc;
   2107 
   2108 	if (ic->ic_if.if_flags & IFF_DEBUG)
   2109 		do_print = (ic->ic_if.if_flags & IFF_LINK0)
   2110 		    ? 1 : ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval);
   2111 
   2112 	wh = mtod(m0, struct ieee80211_frame *);
   2113 
   2114 	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
   2115 
   2116 	if (ic->ic_state != IEEE80211_S_RUN) {
   2117 		if (do_print)
   2118 			printf("%s: atw_recv_beacon: not running\n",
   2119 			    sc->sc_dev.dv_xname);
   2120 		return;
   2121 	}
   2122 
   2123 	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
   2124 	    ic->ic_bss->ni_chan)) == NULL) {
   2125 		if (do_print)
   2126 			printf("%s: atw_recv_beacon: no node %s\n",
   2127 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2128 		return;
   2129 	}
   2130 
   2131 	if (ieee80211_match_bss(ic, ni) != 0) {
   2132 		if (do_print)
   2133 			printf("%s: atw_recv_beacon: ssid mismatch %s\n",
   2134 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2135 		return;
   2136 	}
   2137 
   2138 	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
   2139 		return;
   2140 
   2141 	if (do_print)
   2142 		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
   2143 		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
   2144 
   2145 	if (ic->ic_opmode != IEEE80211_M_IBSS)
   2146 		return;
   2147 
   2148 	/* If we read TSFTL right before rollover, we read a TSF timer
   2149 	 * that is too high rather than too low. This prevents a spurious
   2150 	 * synchronization down the line, however, our IBSS could suffer
   2151 	 * from a creeping TSF....
   2152 	 */
   2153 	tsftl = ATW_READ(sc, ATW_TSFTL);
   2154 	tsfth = ATW_READ(sc, ATW_TSFTH);
   2155 
   2156 	tsft = (u_int64_t)tsfth << 32 | tsftl;
   2157 	bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
   2158 
   2159 	if (do_print)
   2160 		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
   2161 		    sc->sc_dev.dv_xname, tsft, bcn_tsft);
   2162 
   2163 	/* we are faster, let the other guy catch up */
   2164 	if (bcn_tsft < tsft)
   2165 		return;
   2166 
   2167 	if (do_print)
   2168 		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
   2169 		    ether_sprintf(wh->i_addr2));
   2170 
   2171 	ic->ic_flags &= ~IEEE80211_F_SIBSS;
   2172 
   2173 #if 0
   2174 	atw_tsf(sc);
   2175 #endif
   2176 
   2177 	/* negotiate rates with new IBSS */
   2178 	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
   2179 	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
   2180 	if (ni->ni_rates.rs_nrates == 0) {
   2181 		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
   2182 			ether_sprintf(ni->ni_bssid));
   2183 		return;
   2184 	}
   2185 
   2186 	if (do_print) {
   2187 		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
   2188 		    ether_sprintf(ic->ic_bss->ni_bssid));
   2189 		printf("%s ", ether_sprintf(ni->ni_bssid));
   2190 		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
   2191 	}
   2192 
   2193 	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
   2194 
   2195 	atw_write_bssid(sc);
   2196 	atw_write_bcn_thresh(sc);
   2197 	atw_start_beacon(sc, 1);
   2198 }
   2199 
   2200 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
   2201  * In ad hoc mode, the SSID is written to the beacons sent by the
   2202  * ADM8211. In both ad hoc and infrastructure mode, beacons received
   2203  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
   2204  * indications.
   2205  */
   2206 static void
   2207 atw_write_ssid(struct atw_softc *sc)
   2208 {
   2209 	struct ieee80211com *ic = &sc->sc_ic;
   2210 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID */
   2211 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
   2212 
   2213 	memset(buf, 0, sizeof(buf));
   2214 	buf[0] = ic->ic_bss->ni_esslen;
   2215 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
   2216 
   2217 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
   2218 }
   2219 
   2220 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
   2221  * In ad hoc mode, the supported rates are written to beacons sent by the
   2222  * ADM8211.
   2223  */
   2224 static void
   2225 atw_write_sup_rates(struct atw_softc *sc)
   2226 {
   2227 	struct ieee80211com *ic = &sc->sc_ic;
   2228 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
   2229 	 * supported rates
   2230 	 */
   2231 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
   2232 
   2233 	memset(buf, 0, sizeof(buf));
   2234 
   2235 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
   2236 
   2237 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
   2238 	    ic->ic_bss->ni_rates.rs_nrates);
   2239 
   2240 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
   2241 }
   2242 
   2243 /* Start/stop sending beacons. */
   2244 void
   2245 atw_start_beacon(struct atw_softc *sc, int start)
   2246 {
   2247 	struct ieee80211com *ic = &sc->sc_ic;
   2248 	u_int32_t len, capinfo, reg_bcnt, reg_cap1;
   2249 
   2250 	if (ATW_IS_ENABLED(sc) == 0)
   2251 		return;
   2252 
   2253 	len = capinfo = 0;
   2254 
   2255 	/* start beacons */
   2256 	len = sizeof(struct ieee80211_frame) +
   2257 	    8 /* timestamp */ + 2 /* beacon interval */ +
   2258 	    2 /* capability info */ +
   2259 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
   2260 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
   2261 	    3 /* DS parameters */ +
   2262 	    IEEE80211_CRC_LEN;
   2263 
   2264 	reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
   2265 
   2266 	reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
   2267 
   2268 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2269 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2270 
   2271 	if (!start)
   2272 		return;
   2273 
   2274 	/* TBD use ni_capinfo */
   2275 
   2276 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
   2277 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   2278 	if (ic->ic_flags & IEEE80211_F_WEPON)
   2279 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   2280 
   2281 	switch (ic->ic_opmode) {
   2282 	case IEEE80211_M_IBSS:
   2283 		len += 4; /* IBSS parameters */
   2284 		capinfo |= IEEE80211_CAPINFO_IBSS;
   2285 		break;
   2286 	case IEEE80211_M_HOSTAP:
   2287 		/* XXX 6-byte minimum TIM */
   2288 		len += atw_beacon_len_adjust;
   2289 		capinfo |= IEEE80211_CAPINFO_ESS;
   2290 		break;
   2291 	default:
   2292 		return;
   2293 	}
   2294 
   2295 	reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
   2296 	reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
   2297 
   2298 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2299 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2300 
   2301 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
   2302 	    sc->sc_dev.dv_xname, reg_bcnt));
   2303 
   2304 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
   2305 	    sc->sc_dev.dv_xname, reg_cap1));
   2306 }
   2307 
   2308 /* First beacon was sent at time 0 microseconds, current time is
   2309  * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
   2310  * microseconds.  Return the expected time in microseconds for the
   2311  * beacon after next.
   2312  */
   2313 static __inline u_int64_t
   2314 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
   2315 {
   2316 	return tsft + (tbtt - tsft % tbtt);
   2317 }
   2318 
   2319 /* If we've created an IBSS, write the TSF time in the ADM8211 to
   2320  * the ieee80211com.
   2321  *
   2322  * Predict the next target beacon transmission time (TBTT) and
   2323  * write it to the ADM8211.
   2324  */
   2325 static void
   2326 atw_tsf(struct atw_softc *sc)
   2327 {
   2328 #define TBTTOFS 20 /* TU */
   2329 
   2330 	struct ieee80211com *ic = &sc->sc_ic;
   2331 	u_int64_t tsft, tbtt;
   2332 
   2333 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
   2334 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
   2335 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
   2336 		tsft = ATW_READ(sc, ATW_TSFTH);
   2337 		tsft <<= 32;
   2338 		tsft |= ATW_READ(sc, ATW_TSFTL);
   2339 		*(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
   2340 	} else
   2341 		tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
   2342 
   2343 	tbtt = atw_predict_beacon(tsft,
   2344 	    ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
   2345 
   2346 	/* skip one more beacon so that the TBTT cannot pass before
   2347 	 * we've programmed it, and also so that we can subtract a
   2348 	 * few TU so that we wake a little before TBTT.
   2349 	 */
   2350 	tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
   2351 
   2352 	/* wake up a little early */
   2353 	tbtt -= TBTTOFS * IEEE80211_DUR_TU;
   2354 
   2355 	DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
   2356 	    sc->sc_dev.dv_xname, tsft, tbtt));
   2357 
   2358 	ATW_WRITE(sc, ATW_TOFS1,
   2359 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
   2360 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
   2361 	    LSHIFT(
   2362 		MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
   2363 		ATW_TOFS1_TBTTPRE_MASK));
   2364 #undef TBTTOFS
   2365 }
   2366 
   2367 static void
   2368 atw_next_scan(void *arg)
   2369 {
   2370 	struct atw_softc *sc = arg;
   2371 	struct ieee80211com *ic = &sc->sc_ic;
   2372 	struct ifnet *ifp = &ic->ic_if;
   2373 	int s;
   2374 
   2375 	/* don't call atw_start w/o network interrupts blocked */
   2376 	s = splnet();
   2377 	if (ic->ic_state == IEEE80211_S_SCAN)
   2378 		ieee80211_next_scan(ifp);
   2379 	splx(s);
   2380 }
   2381 
   2382 /* Synchronize the hardware state with the software state. */
   2383 static int
   2384 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   2385 {
   2386 	struct ifnet *ifp = &ic->ic_if;
   2387 	struct atw_softc *sc = ifp->if_softc;
   2388 	enum ieee80211_state ostate;
   2389 	int error;
   2390 
   2391 	ostate = ic->ic_state;
   2392 
   2393 	if (nstate == IEEE80211_S_INIT) {
   2394 		callout_stop(&sc->sc_scan_ch);
   2395 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
   2396 		atw_start_beacon(sc, 0);
   2397 		return (*sc->sc_newstate)(ic, nstate, arg);
   2398 	}
   2399 
   2400 	if ((error = atw_tune(sc)) != 0)
   2401 		return error;
   2402 
   2403 	switch (nstate) {
   2404 	case IEEE80211_S_ASSOC:
   2405 		break;
   2406 	case IEEE80211_S_INIT:
   2407 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
   2408 		break;
   2409 	case IEEE80211_S_SCAN:
   2410 		memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
   2411 		atw_write_bssid(sc);
   2412 
   2413 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
   2414 		    atw_next_scan, sc);
   2415 
   2416 		break;
   2417 	case IEEE80211_S_RUN:
   2418 		if (ic->ic_opmode == IEEE80211_M_STA)
   2419 			break;
   2420 		/*FALLTHROUGH*/
   2421 	case IEEE80211_S_AUTH:
   2422 		atw_write_bssid(sc);
   2423 		atw_write_bcn_thresh(sc);
   2424 		atw_write_ssid(sc);
   2425 		atw_write_sup_rates(sc);
   2426 
   2427 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
   2428 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   2429 			break;
   2430 
   2431 		/* set listen interval
   2432 		 * XXX do software units agree w/ hardware?
   2433 		 */
   2434 		ATW_WRITE(sc, ATW_BPLI,
   2435 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2436 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
   2437 			   ATW_BPLI_LI_MASK));
   2438 
   2439 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
   2440 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
   2441 
   2442 		atw_tsf(sc);
   2443 		break;
   2444 	}
   2445 
   2446 	if (nstate != IEEE80211_S_SCAN)
   2447 		callout_stop(&sc->sc_scan_ch);
   2448 
   2449 	if (nstate == IEEE80211_S_RUN &&
   2450 	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   2451 	     ic->ic_opmode == IEEE80211_M_IBSS))
   2452 		atw_start_beacon(sc, 1);
   2453 	else
   2454 		atw_start_beacon(sc, 0);
   2455 
   2456 	return (*sc->sc_newstate)(ic, nstate, arg);
   2457 }
   2458 
   2459 /*
   2460  * atw_add_rxbuf:
   2461  *
   2462  *	Add a receive buffer to the indicated descriptor.
   2463  */
   2464 int
   2465 atw_add_rxbuf(struct atw_softc *sc, int idx)
   2466 {
   2467 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2468 	struct mbuf *m;
   2469 	int error;
   2470 
   2471 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2472 	if (m == NULL)
   2473 		return (ENOBUFS);
   2474 
   2475 	MCLGET(m, M_DONTWAIT);
   2476 	if ((m->m_flags & M_EXT) == 0) {
   2477 		m_freem(m);
   2478 		return (ENOBUFS);
   2479 	}
   2480 
   2481 	if (rxs->rxs_mbuf != NULL)
   2482 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2483 
   2484 	rxs->rxs_mbuf = m;
   2485 
   2486 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2487 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2488 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2489 	if (error) {
   2490 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2491 		    sc->sc_dev.dv_xname, idx, error);
   2492 		panic("atw_add_rxbuf");	/* XXX */
   2493 	}
   2494 
   2495 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2496 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2497 
   2498 	ATW_INIT_RXDESC(sc, idx);
   2499 
   2500 	return (0);
   2501 }
   2502 
   2503 /*
   2504  * atw_stop:		[ ifnet interface function ]
   2505  *
   2506  *	Stop transmission on the interface.
   2507  */
   2508 void
   2509 atw_stop(struct ifnet *ifp, int disable)
   2510 {
   2511 	struct atw_softc *sc = ifp->if_softc;
   2512 	struct ieee80211com *ic = &sc->sc_ic;
   2513 	struct atw_txsoft *txs;
   2514 
   2515 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   2516 
   2517 	/* Disable interrupts. */
   2518 	ATW_WRITE(sc, ATW_IER, 0);
   2519 
   2520 	/* Stop the transmit and receive processes. */
   2521 	sc->sc_opmode = 0;
   2522 	ATW_WRITE(sc, ATW_NAR, 0);
   2523 	ATW_WRITE(sc, ATW_TDBD, 0);
   2524 	ATW_WRITE(sc, ATW_TDBP, 0);
   2525 	ATW_WRITE(sc, ATW_RDB, 0);
   2526 
   2527 	/*
   2528 	 * Release any queued transmit buffers.
   2529 	 */
   2530 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2531 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2532 		if (txs->txs_mbuf != NULL) {
   2533 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2534 			m_freem(txs->txs_mbuf);
   2535 			txs->txs_mbuf = NULL;
   2536 		}
   2537 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2538 	}
   2539 
   2540 	if (disable) {
   2541 		atw_rxdrain(sc);
   2542 		atw_disable(sc);
   2543 	}
   2544 
   2545 	/*
   2546 	 * Mark the interface down and cancel the watchdog timer.
   2547 	 */
   2548 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2549 	ifp->if_timer = 0;
   2550 
   2551 	/* XXX */
   2552 	atw_reset(sc);
   2553 }
   2554 
   2555 /*
   2556  * atw_rxdrain:
   2557  *
   2558  *	Drain the receive queue.
   2559  */
   2560 void
   2561 atw_rxdrain(struct atw_softc *sc)
   2562 {
   2563 	struct atw_rxsoft *rxs;
   2564 	int i;
   2565 
   2566 	for (i = 0; i < ATW_NRXDESC; i++) {
   2567 		rxs = &sc->sc_rxsoft[i];
   2568 		if (rxs->rxs_mbuf == NULL)
   2569 			continue;
   2570 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2571 		m_freem(rxs->rxs_mbuf);
   2572 		rxs->rxs_mbuf = NULL;
   2573 	}
   2574 }
   2575 
   2576 /*
   2577  * atw_detach:
   2578  *
   2579  *	Detach an ADM8211 interface.
   2580  */
   2581 int
   2582 atw_detach(struct atw_softc *sc)
   2583 {
   2584 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2585 	struct atw_rxsoft *rxs;
   2586 	struct atw_txsoft *txs;
   2587 	int i;
   2588 
   2589 	/*
   2590 	 * Succeed now if there isn't any work to do.
   2591 	 */
   2592 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
   2593 		return (0);
   2594 
   2595 	ieee80211_ifdetach(ifp);
   2596 	if_detach(ifp);
   2597 
   2598 	for (i = 0; i < ATW_NRXDESC; i++) {
   2599 		rxs = &sc->sc_rxsoft[i];
   2600 		if (rxs->rxs_mbuf != NULL) {
   2601 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2602 			m_freem(rxs->rxs_mbuf);
   2603 			rxs->rxs_mbuf = NULL;
   2604 		}
   2605 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
   2606 	}
   2607 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   2608 		txs = &sc->sc_txsoft[i];
   2609 		if (txs->txs_mbuf != NULL) {
   2610 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2611 			m_freem(txs->txs_mbuf);
   2612 			txs->txs_mbuf = NULL;
   2613 		}
   2614 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
   2615 	}
   2616 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2617 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2618 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2619 	    sizeof(struct atw_control_data));
   2620 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2621 
   2622 	shutdownhook_disestablish(sc->sc_sdhook);
   2623 	powerhook_disestablish(sc->sc_powerhook);
   2624 
   2625 	if (sc->sc_srom)
   2626 		free(sc->sc_srom, M_DEVBUF);
   2627 
   2628 	return (0);
   2629 }
   2630 
   2631 /* atw_shutdown: make sure the interface is stopped at reboot time. */
   2632 void
   2633 atw_shutdown(void *arg)
   2634 {
   2635 	struct atw_softc *sc = arg;
   2636 
   2637 	atw_stop(&sc->sc_ic.ic_if, 1);
   2638 }
   2639 
   2640 int
   2641 atw_intr(void *arg)
   2642 {
   2643 	struct atw_softc *sc = arg;
   2644 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2645 	u_int32_t status, rxstatus, txstatus, linkstatus;
   2646 	int handled = 0, txthresh;
   2647 
   2648 #ifdef DEBUG
   2649 	if (ATW_IS_ENABLED(sc) == 0)
   2650 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
   2651 #endif
   2652 
   2653 	/*
   2654 	 * If the interface isn't running, the interrupt couldn't
   2655 	 * possibly have come from us.
   2656 	 */
   2657 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   2658 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   2659 		return (0);
   2660 
   2661 	for (;;) {
   2662 		status = ATW_READ(sc, ATW_STSR);
   2663 
   2664 		if (status)
   2665 			ATW_WRITE(sc, ATW_STSR, status);
   2666 
   2667 		if (sc->sc_intr_ack != NULL)
   2668 			(*sc->sc_intr_ack)(sc);
   2669 
   2670 #ifdef ATW_DEBUG
   2671 #define PRINTINTR(flag) do { \
   2672 	if ((status & flag) != 0) { \
   2673 		printf("%s" #flag, delim); \
   2674 		delim = ","; \
   2675 	} \
   2676 } while (0)
   2677 
   2678 		if (atw_debug > 1 && status) {
   2679 			const char *delim = "<";
   2680 
   2681 			printf("%s: reg[STSR] = %x",
   2682 			    sc->sc_dev.dv_xname, status);
   2683 
   2684 			PRINTINTR(ATW_INTR_FBE);
   2685 			PRINTINTR(ATW_INTR_LINKOFF);
   2686 			PRINTINTR(ATW_INTR_LINKON);
   2687 			PRINTINTR(ATW_INTR_RCI);
   2688 			PRINTINTR(ATW_INTR_RDU);
   2689 			PRINTINTR(ATW_INTR_REIS);
   2690 			PRINTINTR(ATW_INTR_RPS);
   2691 			PRINTINTR(ATW_INTR_TCI);
   2692 			PRINTINTR(ATW_INTR_TDU);
   2693 			PRINTINTR(ATW_INTR_TLT);
   2694 			PRINTINTR(ATW_INTR_TPS);
   2695 			PRINTINTR(ATW_INTR_TRT);
   2696 			PRINTINTR(ATW_INTR_TUF);
   2697 			PRINTINTR(ATW_INTR_BCNTC);
   2698 			PRINTINTR(ATW_INTR_ATIME);
   2699 			PRINTINTR(ATW_INTR_TBTT);
   2700 			PRINTINTR(ATW_INTR_TSCZ);
   2701 			PRINTINTR(ATW_INTR_TSFTF);
   2702 			printf(">\n");
   2703 		}
   2704 #undef PRINTINTR
   2705 #endif /* ATW_DEBUG */
   2706 
   2707 		if ((status & sc->sc_inten) == 0)
   2708 			break;
   2709 
   2710 		handled = 1;
   2711 
   2712 		rxstatus = status & sc->sc_rxint_mask;
   2713 		txstatus = status & sc->sc_txint_mask;
   2714 		linkstatus = status & sc->sc_linkint_mask;
   2715 
   2716 		if (linkstatus) {
   2717 			atw_linkintr(sc, linkstatus);
   2718 		}
   2719 
   2720 		if (rxstatus) {
   2721 			/* Grab any new packets. */
   2722 			atw_rxintr(sc);
   2723 
   2724 			if (rxstatus & ATW_INTR_RDU) {
   2725 				printf("%s: receive ring overrun\n",
   2726 				    sc->sc_dev.dv_xname);
   2727 				/* Get the receive process going again. */
   2728 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2729 				break;
   2730 			}
   2731 		}
   2732 
   2733 		if (txstatus) {
   2734 			/* Sweep up transmit descriptors. */
   2735 			atw_txintr(sc);
   2736 
   2737 			if (txstatus & ATW_INTR_TLT)
   2738 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
   2739 				    sc->sc_dev.dv_xname));
   2740 
   2741 			if (txstatus & ATW_INTR_TRT)
   2742 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
   2743 				    sc->sc_dev.dv_xname));
   2744 
   2745 			/* If Tx under-run, increase our transmit threshold
   2746 			 * if another is available.
   2747 			 */
   2748 			txthresh = sc->sc_txthresh + 1;
   2749 			if ((txstatus & ATW_INTR_TUF) &&
   2750 			    sc->sc_txth[txthresh].txth_name != NULL) {
   2751 				/* Idle the transmit process. */
   2752 				atw_idle(sc, ATW_NAR_ST);
   2753 
   2754 				sc->sc_txthresh = txthresh;
   2755 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
   2756 				sc->sc_opmode |=
   2757 				    sc->sc_txth[txthresh].txth_opmode;
   2758 				printf("%s: transmit underrun; new "
   2759 				    "threshold: %s\n", sc->sc_dev.dv_xname,
   2760 				    sc->sc_txth[txthresh].txth_name);
   2761 
   2762 				/* Set the new threshold and restart
   2763 				 * the transmit process.
   2764 				 */
   2765 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2766 				/* XXX Log every Nth underrun from
   2767 				 * XXX now on?
   2768 				 */
   2769 			}
   2770 		}
   2771 
   2772 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
   2773 			if (status & ATW_INTR_TPS)
   2774 				printf("%s: transmit process stopped\n",
   2775 				    sc->sc_dev.dv_xname);
   2776 			if (status & ATW_INTR_RPS)
   2777 				printf("%s: receive process stopped\n",
   2778 				    sc->sc_dev.dv_xname);
   2779 			(void)atw_init(ifp);
   2780 			break;
   2781 		}
   2782 
   2783 		if (status & ATW_INTR_FBE) {
   2784 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
   2785 			(void)atw_init(ifp);
   2786 			break;
   2787 		}
   2788 
   2789 		/*
   2790 		 * Not handled:
   2791 		 *
   2792 		 *	Transmit buffer unavailable -- normal
   2793 		 *	condition, nothing to do, really.
   2794 		 *
   2795 		 *	Early receive interrupt -- not available on
   2796 		 *	all chips, we just use RI.  We also only
   2797 		 *	use single-segment receive DMA, so this
   2798 		 *	is mostly useless.
   2799 		 *
   2800 		 *      TBD others
   2801 		 */
   2802 	}
   2803 
   2804 	/* Try to get more packets going. */
   2805 	atw_start(ifp);
   2806 
   2807 	return (handled);
   2808 }
   2809 
   2810 /*
   2811  * atw_idle:
   2812  *
   2813  *	Cause the transmit and/or receive processes to go idle.
   2814  *
   2815  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
   2816  *	process in STSR if I clear SR or ST after the process has already
   2817  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
   2818  *      do not seem to be too reliable. Perhaps I have the sense of the
   2819  *	Rx bits switched with the Tx bits?
   2820  */
   2821 void
   2822 atw_idle(struct atw_softc *sc, u_int32_t bits)
   2823 {
   2824 	u_int32_t ackmask = 0, opmode, stsr, test0;
   2825 	int i, s;
   2826 
   2827 	/* without this, somehow we run concurrently w/ interrupt handler */
   2828 	s = splnet();
   2829 
   2830 	opmode = sc->sc_opmode & ~bits;
   2831 
   2832 	if (bits & ATW_NAR_SR)
   2833 		ackmask |= ATW_INTR_RPS;
   2834 
   2835 	if (bits & ATW_NAR_ST) {
   2836 		ackmask |= ATW_INTR_TPS;
   2837 		/* set ATW_NAR_HF to flush TX FIFO. */
   2838 		opmode |= ATW_NAR_HF;
   2839 	}
   2840 
   2841 	ATW_WRITE(sc, ATW_NAR, opmode);
   2842 
   2843 	for (i = 0; i < 1000; i++) {
   2844 		stsr = ATW_READ(sc, ATW_STSR);
   2845 		if ((stsr & ackmask) == ackmask)
   2846 			break;
   2847 		DELAY(10);
   2848 	}
   2849 
   2850 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
   2851 
   2852 	if ((stsr & ackmask) == ackmask)
   2853 		goto out;
   2854 
   2855 	test0 = ATW_READ(sc, ATW_TEST0);
   2856 
   2857 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
   2858 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
   2859 		printf("%s: transmit process not idle [%s]\n",
   2860 		    sc->sc_dev.dv_xname,
   2861 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
   2862 		printf("%s: bits %08x test0 %08x stsr %08x\n",
   2863 		    sc->sc_dev.dv_xname, bits, test0, stsr);
   2864 	}
   2865 
   2866 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
   2867 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
   2868 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
   2869 		    sc->sc_dev.dv_xname,
   2870 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
   2871 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
   2872 		    sc->sc_dev.dv_xname, bits, test0, stsr));
   2873 	}
   2874 out:
   2875 	splx(s);
   2876 	return;
   2877 }
   2878 
   2879 /*
   2880  * atw_linkintr:
   2881  *
   2882  *	Helper; handle link-status interrupts.
   2883  */
   2884 void
   2885 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
   2886 {
   2887 	struct ieee80211com *ic = &sc->sc_ic;
   2888 
   2889 	if (ic->ic_state != IEEE80211_S_RUN)
   2890 		return;
   2891 
   2892 	if (linkstatus & ATW_INTR_LINKON) {
   2893 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
   2894 		sc->sc_rescan_timer = 0;
   2895 	} else if (linkstatus & ATW_INTR_LINKOFF) {
   2896 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
   2897 		switch (ic->ic_opmode) {
   2898 		case IEEE80211_M_HOSTAP:
   2899 			return;
   2900 		case IEEE80211_M_IBSS:
   2901 			if (ic->ic_flags & IEEE80211_F_SIBSS)
   2902 				return;
   2903 			/*FALLTHROUGH*/
   2904 		case IEEE80211_M_STA:
   2905 			sc->sc_rescan_timer = 3;
   2906 			ic->ic_if.if_timer = 1;
   2907 			break;
   2908 		default:
   2909 			break;
   2910 		}
   2911 	}
   2912 }
   2913 
   2914 /*
   2915  * atw_rxintr:
   2916  *
   2917  *	Helper; handle receive interrupts.
   2918  */
   2919 void
   2920 atw_rxintr(struct atw_softc *sc)
   2921 {
   2922 	static int rate_tbl[] = {2, 4, 11, 22, 44};
   2923 	struct ieee80211com *ic = &sc->sc_ic;
   2924 	struct ieee80211_node *ni;
   2925 	struct ieee80211_frame *wh;
   2926 	struct ifnet *ifp = &ic->ic_if;
   2927 	struct atw_rxsoft *rxs;
   2928 	struct mbuf *m;
   2929 	u_int32_t rxstat;
   2930 	int i, len, rate, rate0;
   2931 	u_int32_t rssi;
   2932 
   2933 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
   2934 		rxs = &sc->sc_rxsoft[i];
   2935 
   2936 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2937 
   2938 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
   2939 		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
   2940 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
   2941 
   2942 		if (rxstat & ATW_RXSTAT_OWN)
   2943 			break; /* We have processed all receive buffers. */
   2944 
   2945 		DPRINTF3(sc,
   2946 		    ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
   2947 		    sc->sc_dev.dv_xname,
   2948 		    sc->sc_rxdescs[i].ar_stat,
   2949 		    sc->sc_rxdescs[i].ar_rssi,
   2950 		    sc->sc_rxdescs[i].ar_buf1,
   2951 		    sc->sc_rxdescs[i].ar_buf2));
   2952 
   2953 		/*
   2954 		 * Make sure the packet fit in one buffer.  This should
   2955 		 * always be the case.
   2956 		 */
   2957 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
   2958 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
   2959 			printf("%s: incoming packet spilled, resetting\n",
   2960 			    sc->sc_dev.dv_xname);
   2961 			(void)atw_init(ifp);
   2962 			return;
   2963 		}
   2964 
   2965 		/*
   2966 		 * If an error occurred, update stats, clear the status
   2967 		 * word, and leave the packet buffer in place.  It will
   2968 		 * simply be reused the next time the ring comes around.
   2969 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
   2970 		 * error.
   2971 		 */
   2972 
   2973 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
   2974 		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
   2975 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
   2976 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
   2977 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
   2978 				ATW_RXSTAT_ICVE)) != 0)) {
   2979 #define	PRINTERR(bit, str)						\
   2980 			if (rxstat & (bit))				\
   2981 				printf("%s: receive error: %s\n",	\
   2982 				    sc->sc_dev.dv_xname, str)
   2983 			ifp->if_ierrors++;
   2984 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
   2985 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
   2986 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
   2987 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
   2988 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
   2989 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
   2990 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
   2991 #undef PRINTERR
   2992 			ATW_INIT_RXDESC(sc, i);
   2993 			continue;
   2994 		}
   2995 
   2996 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2997 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2998 
   2999 		/*
   3000 		 * No errors; receive the packet.  Note the ADM8211
   3001 		 * includes the CRC in promiscuous mode.
   3002 		 */
   3003 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
   3004 
   3005 		/*
   3006 		 * Allocate a new mbuf cluster.  If that fails, we are
   3007 		 * out of memory, and must drop the packet and recycle
   3008 		 * the buffer that's already attached to this descriptor.
   3009 		 */
   3010 		m = rxs->rxs_mbuf;
   3011 		if (atw_add_rxbuf(sc, i) != 0) {
   3012 			ifp->if_ierrors++;
   3013 			ATW_INIT_RXDESC(sc, i);
   3014 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3015 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3016 			continue;
   3017 		}
   3018 
   3019 		ifp->if_ipackets++;
   3020 		if (sc->sc_opmode & ATW_NAR_PR)
   3021 			m->m_flags |= M_HASFCS;
   3022 		m->m_pkthdr.rcvif = ifp;
   3023 		m->m_pkthdr.len = m->m_len = len;
   3024 
   3025 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
   3026 			rate = 0;
   3027 		else
   3028 			rate = rate_tbl[rate0];
   3029 
   3030  #if NBPFILTER > 0
   3031 		/* Pass this up to any BPF listeners. */
   3032 		if (sc->sc_radiobpf != NULL) {
   3033 			struct mbuf mb;
   3034 
   3035 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
   3036 
   3037 			tap->ar_rate = rate;
   3038 			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3039 			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3040 
   3041 			/* TBD verify units are dB */
   3042 			tap->ar_antsignal = (int)rssi;
   3043 			/* TBD tap->ar_flags */
   3044 
   3045 			M_COPY_PKTHDR(&mb, m);
   3046 			mb.m_data = (caddr_t)tap;
   3047 			mb.m_len = tap->ar_ihdr.it_len;
   3048 			mb.m_next = m;
   3049 			mb.m_pkthdr.len += mb.m_len;
   3050 			bpf_mtap(sc->sc_radiobpf, &mb);
   3051  		}
   3052  #endif /* NPBFILTER > 0 */
   3053 
   3054 		wh = mtod(m, struct ieee80211_frame *);
   3055 		ni = ieee80211_find_rxnode(ic, wh);
   3056 		if (m->m_pkthdr.len >= sizeof(struct ieee80211_frame_min) ||
   3057 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   3058 			ieee80211_input(ifp, m, ni, (int)rssi, 0);
   3059 		/*
   3060 		 * The frame may have caused the node to be marked for
   3061 		 * reclamation (e.g. in response to a DEAUTH message)
   3062 		 * so use free_node here instead of unref_node.
   3063 		 */
   3064 		if (ni == ic->ic_bss)
   3065 			ieee80211_unref_node(&ni);
   3066 		else
   3067 			ieee80211_free_node(ic, ni);
   3068 	}
   3069 
   3070 	/* Update the receive pointer. */
   3071 	sc->sc_rxptr = i;
   3072 }
   3073 
   3074 /*
   3075  * atw_txintr:
   3076  *
   3077  *	Helper; handle transmit interrupts.
   3078  */
   3079 void
   3080 atw_txintr(struct atw_softc *sc)
   3081 {
   3082 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
   3083     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
   3084 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
   3085     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
   3086 
   3087 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
   3088 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3089 	struct atw_txsoft *txs;
   3090 	u_int32_t txstat;
   3091 
   3092 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
   3093 	    sc->sc_dev.dv_xname, sc->sc_flags));
   3094 
   3095 	ifp->if_flags &= ~IFF_OACTIVE;
   3096 
   3097 	/*
   3098 	 * Go through our Tx list and free mbufs for those
   3099 	 * frames that have been transmitted.
   3100 	 */
   3101 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   3102 		ATW_CDTXSYNC(sc, txs->txs_lastdesc,
   3103 		    txs->txs_ndescs,
   3104 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3105 
   3106 #ifdef ATW_DEBUG
   3107 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3108 			int i;
   3109 			printf("    txsoft %p transmit chain:\n", txs);
   3110 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
   3111 				printf("     descriptor %d:\n", i);
   3112 				printf("       at_status:   0x%08x\n",
   3113 				    le32toh(sc->sc_txdescs[i].at_stat));
   3114 				printf("       at_flags:      0x%08x\n",
   3115 				    le32toh(sc->sc_txdescs[i].at_flags));
   3116 				printf("       at_buf1: 0x%08x\n",
   3117 				    le32toh(sc->sc_txdescs[i].at_buf1));
   3118 				printf("       at_buf2: 0x%08x\n",
   3119 				    le32toh(sc->sc_txdescs[i].at_buf2));
   3120 				if (i == txs->txs_lastdesc)
   3121 					break;
   3122 			}
   3123 		}
   3124 #endif
   3125 
   3126 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
   3127 		if (txstat & ATW_TXSTAT_OWN)
   3128 			break;
   3129 
   3130 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   3131 
   3132 		sc->sc_txfree += txs->txs_ndescs;
   3133 
   3134 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   3135 		    0, txs->txs_dmamap->dm_mapsize,
   3136 		    BUS_DMASYNC_POSTWRITE);
   3137 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3138 		m_freem(txs->txs_mbuf);
   3139 		txs->txs_mbuf = NULL;
   3140 
   3141 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   3142 
   3143 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   3144 		    (txstat & TXSTAT_ERRMASK) != 0) {
   3145 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
   3146 			    txstat_buf, sizeof(txstat_buf));
   3147 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
   3148 			    txstat_buf,
   3149 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
   3150 		}
   3151 
   3152 		/*
   3153 		 * Check for errors and collisions.
   3154 		 */
   3155 		if (txstat & ATW_TXSTAT_TUF)
   3156 			sc->sc_stats.ts_tx_tuf++;
   3157 		if (txstat & ATW_TXSTAT_TLT)
   3158 			sc->sc_stats.ts_tx_tlt++;
   3159 		if (txstat & ATW_TXSTAT_TRT)
   3160 			sc->sc_stats.ts_tx_trt++;
   3161 		if (txstat & ATW_TXSTAT_TRO)
   3162 			sc->sc_stats.ts_tx_tro++;
   3163 		if (txstat & ATW_TXSTAT_SOFBR) {
   3164 			sc->sc_stats.ts_tx_sofbr++;
   3165 		}
   3166 
   3167 		if ((txstat & ATW_TXSTAT_ES) == 0)
   3168 			ifp->if_collisions +=
   3169 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
   3170 		else
   3171 			ifp->if_oerrors++;
   3172 
   3173 		ifp->if_opackets++;
   3174 	}
   3175 
   3176 	/*
   3177 	 * If there are no more pending transmissions, cancel the watchdog
   3178 	 * timer.
   3179 	 */
   3180 	if (txs == NULL)
   3181 		sc->sc_tx_timer = 0;
   3182 #undef TXSTAT_ERRMASK
   3183 #undef TXSTAT_FMT
   3184 }
   3185 
   3186 /*
   3187  * atw_watchdog:	[ifnet interface function]
   3188  *
   3189  *	Watchdog timer handler.
   3190  */
   3191 void
   3192 atw_watchdog(struct ifnet *ifp)
   3193 {
   3194 	struct atw_softc *sc = ifp->if_softc;
   3195 	struct ieee80211com *ic = &sc->sc_ic;
   3196 
   3197 	ifp->if_timer = 0;
   3198 	if (ATW_IS_ENABLED(sc) == 0)
   3199 		return;
   3200 
   3201 	if (sc->sc_rescan_timer) {
   3202 		if (--sc->sc_rescan_timer == 0)
   3203 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3204 	}
   3205 	if (sc->sc_tx_timer) {
   3206 		if (--sc->sc_tx_timer == 0 &&
   3207 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
   3208 			printf("%s: transmit timeout\n", ifp->if_xname);
   3209 			ifp->if_oerrors++;
   3210 			(void)atw_init(ifp);
   3211 			atw_start(ifp);
   3212 		}
   3213 	}
   3214 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
   3215 		ifp->if_timer = 1;
   3216 	ieee80211_watchdog(ifp);
   3217 }
   3218 
   3219 /* Compute the 802.11 Duration field and the PLCP Length fields for
   3220  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
   3221  * Write the fields to the ADM8211 Tx header, frm.
   3222  *
   3223  * TBD use the fragmentation threshold to find the right duration for
   3224  * the first & last fragments.
   3225  *
   3226  * TBD make certain of the duration fields applied by the ADM8211 to each
   3227  * fragment. I think that the ADM8211 knows how to subtract the CTS
   3228  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
   3229  * I also think that the ADM8211 does *some* arithmetic for us, because
   3230  * otherwise I think we would have to set a first duration for CTS/first
   3231  * fragment, a second duration for fragments between the first and the
   3232  * last, and a third duration for the last fragment.
   3233  *
   3234  * TBD make certain that duration fields reflect addition of FCS/WEP
   3235  * and correct duration arithmetic as necessary.
   3236  */
   3237 static void
   3238 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
   3239     int len)
   3240 {
   3241 	int remainder;
   3242 
   3243 	/* deal also with encrypted fragments */
   3244 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
   3245 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
   3246 		    sc->sc_dev.dv_xname));
   3247 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
   3248 		       IEEE80211_WEP_CRCLEN;
   3249 	}
   3250 
   3251 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
   3252 	 * duration (XXX added by MAC?).
   3253 	 */
   3254 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
   3255 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
   3256 
   3257 	if (rate <= 4)
   3258 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
   3259 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3260 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3261 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3262 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
   3263 	else
   3264 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
   3265 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3266 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3267 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3268 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
   3269 
   3270 	/* lengthen duration if long preamble */
   3271 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
   3272 		frm->atw_head_dur +=
   3273 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
   3274 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
   3275 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
   3276 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
   3277 
   3278 	if (remainder != 0)
   3279 		frm->atw_head_dur++;
   3280 
   3281 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
   3282 	    (rate == 2 || rate == 4)) {
   3283 		/* derived from Linux: how could this be right? */
   3284 		frm->atw_head_plcplen = frm->atw_head_dur;
   3285 	} else {
   3286 		frm->atw_head_plcplen = (16 * len) / rate;
   3287 		remainder = (80 * len) % (rate * 5);
   3288 
   3289 		if (remainder != 0) {
   3290 			frm->atw_head_plcplen++;
   3291 
   3292 			/* XXX magic */
   3293 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
   3294 			    rate == 22 && remainder <= 30)
   3295 				frm->atw_head_plcplen |= 0x8000;
   3296 		}
   3297 	}
   3298 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
   3299 	    htole16(frm->atw_head_plcplen);
   3300 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
   3301 }
   3302 
   3303 #ifdef ATW_DEBUG
   3304 static void
   3305 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
   3306 {
   3307 	struct atw_softc *sc = ifp->if_softc;
   3308 	struct mbuf *m;
   3309 	int i, noctets = 0;
   3310 
   3311 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
   3312 	    m0->m_pkthdr.len);
   3313 
   3314 	for (m = m0; m; m = m->m_next) {
   3315 		if (m->m_len == 0)
   3316 			continue;
   3317 		for (i = 0; i < m->m_len; i++) {
   3318 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
   3319 			if (++noctets % 24 == 0)
   3320 				printf("\n");
   3321 		}
   3322 	}
   3323 	printf("%s%s: %d bytes emitted\n",
   3324 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
   3325 }
   3326 #endif /* ATW_DEBUG */
   3327 
   3328 /*
   3329  * atw_start:		[ifnet interface function]
   3330  *
   3331  *	Start packet transmission on the interface.
   3332  */
   3333 void
   3334 atw_start(struct ifnet *ifp)
   3335 {
   3336 	struct atw_softc *sc = ifp->if_softc;
   3337 	struct ieee80211com *ic = &sc->sc_ic;
   3338 	struct ieee80211_node *ni;
   3339 	struct ieee80211_frame *wh;
   3340 	struct atw_frame *hh;
   3341 	struct mbuf *m0, *m;
   3342 	struct atw_txsoft *txs, *last_txs;
   3343 	struct atw_txdesc *txd;
   3344 	int do_encrypt, rate;
   3345 	bus_dmamap_t dmamap;
   3346 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
   3347 
   3348 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
   3349 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
   3350 
   3351 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3352 		return;
   3353 
   3354 #if 0 /* TBD ??? */
   3355 	if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
   3356 		return;
   3357 #endif
   3358 
   3359 	/*
   3360 	 * Remember the previous number of free descriptors and
   3361 	 * the first descriptor we'll use.
   3362 	 */
   3363 	ofree = sc->sc_txfree;
   3364 	firsttx = sc->sc_txnext;
   3365 
   3366 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
   3367 	    sc->sc_dev.dv_xname, ofree, firsttx));
   3368 
   3369 	/*
   3370 	 * Loop through the send queue, setting up transmit descriptors
   3371 	 * until we drain the queue, or use up all available transmit
   3372 	 * descriptors.
   3373 	 */
   3374 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   3375 	       sc->sc_txfree != 0) {
   3376 
   3377 		do_encrypt = 0;
   3378 		/*
   3379 		 * Grab a packet off the management queue, if it
   3380 		 * is not empty. Otherwise, from the data queue.
   3381 		 */
   3382 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   3383 		if (m0 != NULL) {
   3384 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   3385 			m0->m_pkthdr.rcvif = NULL;
   3386 		} else {
   3387 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   3388 			if (m0 == NULL)
   3389 				break;
   3390 #if NBPFILTER > 0
   3391 			if (ifp->if_bpf != NULL)
   3392 				bpf_mtap(ifp->if_bpf, m0);
   3393 #endif /* NBPFILTER > 0 */
   3394 			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
   3395 				ifp->if_oerrors++;
   3396 				break;
   3397 			}
   3398 		}
   3399 
   3400 		rate = MAX(ieee80211_get_rate(ic), 2);
   3401 
   3402 #if NBPFILTER > 0
   3403 		/*
   3404 		 * Pass the packet to any BPF listeners.
   3405 		 */
   3406 		if (ic->ic_rawbpf != NULL)
   3407 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
   3408 
   3409 		if (sc->sc_radiobpf != NULL) {
   3410 			struct mbuf mb;
   3411 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
   3412 
   3413 			tap->at_rate = rate;
   3414 			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3415 			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3416 
   3417 			/* TBD tap->at_flags */
   3418 
   3419 			M_COPY_PKTHDR(&mb, m0);
   3420 			mb.m_data = (caddr_t)tap;
   3421 			mb.m_len = tap->at_ihdr.it_len;
   3422 			mb.m_next = m0;
   3423 			mb.m_pkthdr.len += mb.m_len;
   3424 			bpf_mtap(sc->sc_radiobpf, &mb);
   3425 		}
   3426 #endif /* NBPFILTER > 0 */
   3427 
   3428 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
   3429 
   3430 		if (ni != NULL && ni != ic->ic_bss)
   3431 			ieee80211_free_node(ic, ni);
   3432 
   3433 		if (m0 == NULL) {
   3434 			ifp->if_oerrors++;
   3435 			break;
   3436 		}
   3437 
   3438 		/* just to make sure. */
   3439 		m0 = m_pullup(m0, sizeof(struct atw_frame));
   3440 
   3441 		if (m0 == NULL) {
   3442 			ifp->if_oerrors++;
   3443 			break;
   3444 		}
   3445 
   3446 		hh = mtod(m0, struct atw_frame *);
   3447 		wh = &hh->atw_ihdr;
   3448 
   3449 		do_encrypt = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
   3450 
   3451 		/* Copy everything we need from the 802.11 header:
   3452 		 * Frame Control; address 1, address 3, or addresses
   3453 		 * 3 and 4. NIC fills in BSSID, SA.
   3454 		 */
   3455 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
   3456 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
   3457 				panic("%s: illegal WDS frame",
   3458 				    sc->sc_dev.dv_xname);
   3459 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
   3460 		} else
   3461 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
   3462 
   3463 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
   3464 
   3465 		/* initialize remaining Tx parameters */
   3466 		memset(&hh->u, 0, sizeof(hh->u));
   3467 
   3468 		hh->atw_rate = rate * 5;
   3469 		/* XXX this could be incorrect if M_FCS. _encap should
   3470 		 * probably strip FCS just in case it sticks around in
   3471 		 * bridged packets.
   3472 		 */
   3473 		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
   3474 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
   3475 		    sizeof(struct atw_frame));
   3476 
   3477 #if 0
   3478 		/* this virtually guaranteed that WEP-encrypted frames
   3479 		 * are fragmented. oops.
   3480 		 */
   3481 		hh->atw_fragthr = htole16(m0->m_pkthdr.len -
   3482 		    sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
   3483 		hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3484 #else
   3485 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3486 #endif
   3487 
   3488 		hh->atw_rtylmt = 3;
   3489 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
   3490 		if (do_encrypt) {
   3491 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
   3492 			hh->atw_keyid = ic->ic_wep_txkey;
   3493 		}
   3494 
   3495 		/* TBD 4-addr frames */
   3496 		atw_frame_setdurs(sc, hh, rate,
   3497 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
   3498 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
   3499 
   3500 		/* never fragment multicast frames */
   3501 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
   3502 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3503 		} else if (sc->sc_flags & ATWF_RTSCTS) {
   3504 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
   3505 		}
   3506 
   3507 #ifdef ATW_DEBUG
   3508 		/* experimental stuff */
   3509 		if (atw_xrtylmt != ~0)
   3510 			hh->atw_rtylmt = atw_xrtylmt;
   3511 		if (atw_xhdrctl != 0)
   3512 			hh->atw_hdrctl |= htole16(atw_xhdrctl);
   3513 		if (atw_xservice != IEEE80211_PLCP_SERVICE)
   3514 			hh->atw_service = atw_xservice;
   3515 		if (atw_xpaylen != 0)
   3516 			hh->atw_paylen = htole16(atw_xpaylen);
   3517 		hh->atw_fragnum = 0;
   3518 
   3519 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3520 			printf("%s: dst = %s, rate = 0x%02x, "
   3521 			    "service = 0x%02x, paylen = 0x%04x\n",
   3522 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
   3523 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
   3524 
   3525 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
   3526 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
   3527 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
   3528 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
   3529 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
   3530 			    hh->atw_tail_dur, hh->atw_head_dur);
   3531 
   3532 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
   3533 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
   3534 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
   3535 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
   3536 
   3537 			printf("%s: keyid = %d\n",
   3538 			    sc->sc_dev.dv_xname, hh->atw_keyid);
   3539 
   3540 			atw_dump_pkt(ifp, m0);
   3541 		}
   3542 #endif /* ATW_DEBUG */
   3543 
   3544 		dmamap = txs->txs_dmamap;
   3545 
   3546 		/*
   3547 		 * Load the DMA map.  Copy and try (once) again if the packet
   3548 		 * didn't fit in the alloted number of segments.
   3549 		 */
   3550 		for (first = 1;
   3551 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   3552 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
   3553 		     first = 0) {
   3554 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   3555 			if (m == NULL) {
   3556 				printf("%s: unable to allocate Tx mbuf\n",
   3557 				    sc->sc_dev.dv_xname);
   3558 				break;
   3559 			}
   3560 			if (m0->m_pkthdr.len > MHLEN) {
   3561 				MCLGET(m, M_DONTWAIT);
   3562 				if ((m->m_flags & M_EXT) == 0) {
   3563 					printf("%s: unable to allocate Tx "
   3564 					    "cluster\n", sc->sc_dev.dv_xname);
   3565 					m_freem(m);
   3566 					break;
   3567 				}
   3568 			}
   3569 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   3570 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   3571 			m_freem(m0);
   3572 			m0 = m;
   3573 			m = NULL;
   3574 		}
   3575 		if (error != 0) {
   3576 			printf("%s: unable to load Tx buffer, "
   3577 			    "error = %d\n", sc->sc_dev.dv_xname, error);
   3578 			m_freem(m0);
   3579 			break;
   3580 		}
   3581 
   3582 		/*
   3583 		 * Ensure we have enough descriptors free to describe
   3584 		 * the packet.
   3585 		 */
   3586 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   3587 			/*
   3588 			 * Not enough free descriptors to transmit
   3589 			 * this packet.  Unload the DMA map and
   3590 			 * drop the packet.  Notify the upper layer
   3591 			 * that there are no more slots left.
   3592 			 *
   3593 			 * XXX We could allocate an mbuf and copy, but
   3594 			 * XXX it is worth it?
   3595 			 */
   3596 			ifp->if_flags |= IFF_OACTIVE;
   3597 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   3598 			m_freem(m0);
   3599 			break;
   3600 		}
   3601 
   3602 		/*
   3603 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   3604 		 */
   3605 
   3606 		/* Sync the DMA map. */
   3607 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   3608 		    BUS_DMASYNC_PREWRITE);
   3609 
   3610 		/* XXX arbitrary retry limit; 8 because I have seen it in
   3611 		 * use already and maybe 0 means "no tries" !
   3612 		 */
   3613 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
   3614 
   3615 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
   3616 		    sc->sc_dev.dv_xname, rate * 5));
   3617 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
   3618 
   3619 		/*
   3620 		 * Initialize the transmit descriptors.
   3621 		 */
   3622 		for (nexttx = sc->sc_txnext, seg = 0;
   3623 		     seg < dmamap->dm_nsegs;
   3624 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
   3625 			/*
   3626 			 * If this is the first descriptor we're
   3627 			 * enqueueing, don't set the OWN bit just
   3628 			 * yet.  That could cause a race condition.
   3629 			 * We'll do it below.
   3630 			 */
   3631 			txd = &sc->sc_txdescs[nexttx];
   3632 			txd->at_ctl = ctl |
   3633 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
   3634 
   3635 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
   3636 			txd->at_flags =
   3637 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
   3638 			                   ATW_TXFLAG_TBS1_MASK)) |
   3639 			    ((nexttx == (ATW_NTXDESC - 1))
   3640 			        ? htole32(ATW_TXFLAG_TER) : 0);
   3641 			lasttx = nexttx;
   3642 		}
   3643 
   3644 		IASSERT(lasttx != -1, ("bad lastx"));
   3645 		/* Set `first segment' and `last segment' appropriately. */
   3646 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
   3647 		    htole32(ATW_TXFLAG_FS);
   3648 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
   3649 
   3650 #ifdef ATW_DEBUG
   3651 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3652 			printf("     txsoft %p transmit chain:\n", txs);
   3653 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
   3654 				printf("     descriptor %d:\n", seg);
   3655 				printf("       at_ctl:   0x%08x\n",
   3656 				    le32toh(sc->sc_txdescs[seg].at_ctl));
   3657 				printf("       at_flags:      0x%08x\n",
   3658 				    le32toh(sc->sc_txdescs[seg].at_flags));
   3659 				printf("       at_buf1: 0x%08x\n",
   3660 				    le32toh(sc->sc_txdescs[seg].at_buf1));
   3661 				printf("       at_buf2: 0x%08x\n",
   3662 				    le32toh(sc->sc_txdescs[seg].at_buf2));
   3663 				if (seg == lasttx)
   3664 					break;
   3665 			}
   3666 		}
   3667 #endif
   3668 
   3669 		/* Sync the descriptors we're using. */
   3670 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   3671 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3672 
   3673 		/*
   3674 		 * Store a pointer to the packet so we can free it later,
   3675 		 * and remember what txdirty will be once the packet is
   3676 		 * done.
   3677 		 */
   3678 		txs->txs_mbuf = m0;
   3679 		txs->txs_firstdesc = sc->sc_txnext;
   3680 		txs->txs_lastdesc = lasttx;
   3681 		txs->txs_ndescs = dmamap->dm_nsegs;
   3682 
   3683 		/* Advance the tx pointer. */
   3684 		sc->sc_txfree -= dmamap->dm_nsegs;
   3685 		sc->sc_txnext = nexttx;
   3686 
   3687 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   3688 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   3689 
   3690 		last_txs = txs;
   3691 	}
   3692 
   3693 	if (txs == NULL || sc->sc_txfree == 0) {
   3694 		/* No more slots left; notify upper layer. */
   3695 		ifp->if_flags |= IFF_OACTIVE;
   3696 	}
   3697 
   3698 	if (sc->sc_txfree != ofree) {
   3699 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   3700 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   3701 		/*
   3702 		 * Cause a transmit interrupt to happen on the
   3703 		 * last packet we enqueued.
   3704 		 */
   3705 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
   3706 		ATW_CDTXSYNC(sc, lasttx, 1,
   3707 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3708 
   3709 		/*
   3710 		 * The entire packet chain is set up.  Give the
   3711 		 * first descriptor to the chip now.
   3712 		 */
   3713 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
   3714 		ATW_CDTXSYNC(sc, firsttx, 1,
   3715 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3716 
   3717 		/* Wake up the transmitter. */
   3718 		/* XXX USE AUTOPOLLING? */
   3719 		ATW_WRITE(sc, ATW_TDR, 0x1);
   3720 
   3721 		/* Set a watchdog timer in case the chip flakes out. */
   3722 		sc->sc_tx_timer = 5;
   3723 		ifp->if_timer = 1;
   3724 	}
   3725 }
   3726 
   3727 /*
   3728  * atw_power:
   3729  *
   3730  *	Power management (suspend/resume) hook.
   3731  */
   3732 void
   3733 atw_power(int why, void *arg)
   3734 {
   3735 	struct atw_softc *sc = arg;
   3736 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3737 	int s;
   3738 
   3739 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
   3740 
   3741 	s = splnet();
   3742 	switch (why) {
   3743 	case PWR_STANDBY:
   3744 		/* XXX do nothing. */
   3745 		break;
   3746 	case PWR_SUSPEND:
   3747 		atw_stop(ifp, 0);
   3748 		if (sc->sc_power != NULL)
   3749 			(*sc->sc_power)(sc, why);
   3750 		break;
   3751 	case PWR_RESUME:
   3752 		if (ifp->if_flags & IFF_UP) {
   3753 			if (sc->sc_power != NULL)
   3754 				(*sc->sc_power)(sc, why);
   3755 			atw_init(ifp);
   3756 		}
   3757 		break;
   3758 	case PWR_SOFTSUSPEND:
   3759 	case PWR_SOFTSTANDBY:
   3760 	case PWR_SOFTRESUME:
   3761 		break;
   3762 	}
   3763 	splx(s);
   3764 }
   3765 
   3766 /*
   3767  * atw_ioctl:		[ifnet interface function]
   3768  *
   3769  *	Handle control requests from the operator.
   3770  */
   3771 int
   3772 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   3773 {
   3774 	struct atw_softc *sc = ifp->if_softc;
   3775 	struct ifreq *ifr = (struct ifreq *)data;
   3776 	int s, error = 0;
   3777 
   3778 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
   3779 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   3780 		return ENXIO;
   3781 
   3782 	s = splnet();
   3783 
   3784 	switch (cmd) {
   3785 	case SIOCSIFFLAGS:
   3786 		if (ifp->if_flags & IFF_UP) {
   3787 			if (ATW_IS_ENABLED(sc)) {
   3788 				/*
   3789 				 * To avoid rescanning another access point,
   3790 				 * do not call atw_init() here.  Instead,
   3791 				 * only reflect media settings.
   3792 				 */
   3793 				atw_filter_setup(sc);
   3794 			} else
   3795 				error = atw_init(ifp);
   3796 		} else if (ATW_IS_ENABLED(sc))
   3797 			atw_stop(ifp, 1);
   3798 		break;
   3799 	case SIOCADDMULTI:
   3800 	case SIOCDELMULTI:
   3801 		error = (cmd == SIOCADDMULTI) ?
   3802 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
   3803 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
   3804 		if (error == ENETRESET) {
   3805 			if (ATW_IS_ENABLED(sc))
   3806 				atw_filter_setup(sc); /* do not rescan */
   3807 			error = 0;
   3808 		}
   3809 		break;
   3810 	default:
   3811 		error = ieee80211_ioctl(ifp, cmd, data);
   3812 		if (error == ENETRESET) {
   3813 			if (ATW_IS_ENABLED(sc))
   3814 				error = atw_init(ifp);
   3815 			else
   3816 				error = 0;
   3817 		}
   3818 		break;
   3819 	}
   3820 
   3821 	/* Try to get more packets going. */
   3822 	if (ATW_IS_ENABLED(sc))
   3823 		atw_start(ifp);
   3824 
   3825 	splx(s);
   3826 	return (error);
   3827 }
   3828 
   3829 static int
   3830 atw_media_change(struct ifnet *ifp)
   3831 {
   3832 	int error;
   3833 
   3834 	error = ieee80211_media_change(ifp);
   3835 	if (error == ENETRESET) {
   3836 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   3837 		    (IFF_RUNNING|IFF_UP))
   3838 			atw_init(ifp);		/* XXX lose error */
   3839 		error = 0;
   3840 	}
   3841 	return error;
   3842 }
   3843 
   3844 static void
   3845 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
   3846 {
   3847 	struct atw_softc *sc = ifp->if_softc;
   3848 
   3849 	if (ATW_IS_ENABLED(sc) == 0) {
   3850 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
   3851 		imr->ifm_status = 0;
   3852 		return;
   3853 	}
   3854 	ieee80211_media_status(ifp, imr);
   3855 }
   3856