Home | History | Annotate | Line # | Download | only in ic
atw.c revision 1.24.2.2
      1 /*	$NetBSD: atw.c,v 1.24.2.2 2004/06/27 08:30:49 jdc Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.24.2.2 2004/06/27 08:30:49 jdc Exp $");
     45 
     46 #include "bpfilter.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/callout.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/malloc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/socket.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/errno.h>
     57 #include <sys/device.h>
     58 #include <sys/time.h>
     59 
     60 #include <machine/endian.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_media.h>
     67 #include <net/if_ether.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_compat.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #if NBPFILTER > 0
     74 #include <net/bpf.h>
     75 #endif
     76 
     77 #include <machine/bus.h>
     78 #include <machine/intr.h>
     79 
     80 #include <dev/ic/atwreg.h>
     81 #include <dev/ic/rf3000reg.h>
     82 #include <dev/ic/si4136reg.h>
     83 #include <dev/ic/atwvar.h>
     84 #include <dev/ic/smc93cx6var.h>
     85 
     86 /* XXX TBD open questions
     87  *
     88  *
     89  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
     90  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
     91  * handle this for me?
     92  *
     93  */
     94 /* device attachment
     95  *
     96  *    print TOFS[012]
     97  *
     98  * device initialization
     99  *
    100  *    clear ATW_FRCTL_MAXPSP to disable max power saving
    101  *    set ATW_TXBR_ALCUPDATE to enable ALC
    102  *    set TOFS[012]? (hope not)
    103  *    disable rx/tx
    104  *    set ATW_PAR_SWR (software reset)
    105  *    wait for ATW_PAR_SWR clear
    106  *    disable interrupts
    107  *    ack status register
    108  *    enable interrupts
    109  *
    110  * rx/tx initialization
    111  *
    112  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    113  *    allocate and init descriptor rings
    114  *    write ATW_PAR_DSL (descriptor skip length)
    115  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
    116  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    118  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    119  *
    120  * rx/tx end
    121  *
    122  *    stop DMA
    123  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    124  *    flush tx w/ ATW_NAR_HF
    125  *
    126  * scan
    127  *
    128  *    initialize rx/tx
    129  *
    130  * IBSS join/create
    131  *
    132  *    set ATW_NAR_EA (is set by ASIC?)
    133  *
    134  * BSS join: (re)association response
    135  *
    136  *    set ATW_FRCTL_AID
    137  *
    138  * optimizations ???
    139  *
    140  */
    141 
    142 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
    143 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
    144 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
    145 
    146 int atw_rfio_enable_delay = 20 * 1000;
    147 int atw_rfio_disable_delay = 2 * 1000;
    148 int atw_writewep_delay = 5;
    149 int atw_beacon_len_adjust = 4;
    150 int atw_dwelltime = 200;
    151 
    152 #ifdef ATW_DEBUG
    153 int atw_xhdrctl = 0;
    154 int atw_xrtylmt = ~0;
    155 int atw_xservice = IEEE80211_PLCP_SERVICE;
    156 int atw_xpaylen = 0;
    157 
    158 int atw_debug = 0;
    159 
    160 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
    161 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
    162 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
    163 #define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
    164 #define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
    165 #define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
    166 static void atw_print_regs(struct atw_softc *, const char *);
    167 static void atw_rf3000_print(struct atw_softc *);
    168 static void atw_si4126_print(struct atw_softc *);
    169 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
    170 #else
    171 #define ATW_DPRINTF(x)
    172 #define ATW_DPRINTF2(x)
    173 #define ATW_DPRINTF3(x)
    174 #define	DPRINTF(sc, x)	/* nothing */
    175 #define	DPRINTF2(sc, x)	/* nothing */
    176 #define	DPRINTF3(sc, x)	/* nothing */
    177 #endif
    178 
    179 #ifdef ATW_STATS
    180 void	atw_print_stats(struct atw_softc *);
    181 #endif
    182 
    183 void	atw_start(struct ifnet *);
    184 void	atw_watchdog(struct ifnet *);
    185 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
    186 int	atw_init(struct ifnet *);
    187 void	atw_txdrain(struct atw_softc *);
    188 void	atw_stop(struct ifnet *, int);
    189 
    190 void	atw_reset(struct atw_softc *);
    191 int	atw_read_srom(struct atw_softc *);
    192 
    193 void	atw_shutdown(void *);
    194 
    195 void	atw_rxdrain(struct atw_softc *);
    196 int	atw_add_rxbuf(struct atw_softc *, int);
    197 void	atw_idle(struct atw_softc *, u_int32_t);
    198 
    199 int	atw_enable(struct atw_softc *);
    200 void	atw_disable(struct atw_softc *);
    201 void	atw_power(int, void *);
    202 
    203 void	atw_rxintr(struct atw_softc *);
    204 void	atw_txintr(struct atw_softc *);
    205 void	atw_linkintr(struct atw_softc *, u_int32_t);
    206 
    207 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
    208 static void atw_tsf(struct atw_softc *);
    209 static void atw_start_beacon(struct atw_softc *, int);
    210 static void atw_write_wep(struct atw_softc *);
    211 static void atw_write_bssid(struct atw_softc *);
    212 static void atw_write_bcn_thresh(struct atw_softc *);
    213 static void atw_write_ssid(struct atw_softc *);
    214 static void atw_write_sup_rates(struct atw_softc *);
    215 static void atw_clear_sram(struct atw_softc *);
    216 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
    217 static int atw_media_change(struct ifnet *);
    218 static void atw_media_status(struct ifnet *, struct ifmediareq *);
    219 static void atw_filter_setup(struct atw_softc *);
    220 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
    221 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
    222 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
    223     struct ieee80211_node *, int, int, u_int32_t);
    224 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
    225     struct ieee80211_node *, int, int, u_int32_t);
    226 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
    227 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
    228 
    229 static int atw_tune(struct atw_softc *);
    230 
    231 static void atw_rfio_enable(struct atw_softc *, int);
    232 
    233 /* RFMD RF3000 Baseband Processor */
    234 static int atw_rf3000_init(struct atw_softc *);
    235 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
    236 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
    237 #ifdef ATW_DEBUG
    238 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    239 #endif /* ATW_DEBUG */
    240 
    241 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
    242 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
    243 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
    244 #ifdef ATW_DEBUG
    245 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
    246 #endif /* ATW_DEBUG */
    247 
    248 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
    249 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
    250 
    251 const char *atw_tx_state[] = {
    252 	"STOPPED",
    253 	"RUNNING - FETCH",
    254 	"RUNNING - WAIT",
    255 	"RUNNING - READING",
    256 	"-- RESERVED1 --",
    257 	"-- RESERVED2 --",
    258 	"SUSPENDED",
    259 	"RUNNING - CLOSE"
    260 };
    261 
    262 const char *atw_rx_state[] = {
    263 	"STOPPED",
    264 	"RUNNING - FETCH",
    265 	"RUNNING - CHECK",
    266 	"RUNNING - WAIT",
    267 	"SUSPENDED",
    268 	"RUNNING - CLOSE",
    269 	"RUNNING - FLUSH",
    270 	"RUNNING - QUEUE"
    271 };
    272 
    273 int
    274 atw_activate(struct device *self, enum devact act)
    275 {
    276 	struct atw_softc *sc = (struct atw_softc *)self;
    277 	int rv = 0, s;
    278 
    279 	s = splnet();
    280 	switch (act) {
    281 	case DVACT_ACTIVATE:
    282 		rv = EOPNOTSUPP;
    283 		break;
    284 
    285 	case DVACT_DEACTIVATE:
    286 		if_deactivate(&sc->sc_ic.ic_if);
    287 		break;
    288 	}
    289 	splx(s);
    290 	return rv;
    291 }
    292 
    293 /*
    294  * atw_enable:
    295  *
    296  *	Enable the ADM8211 chip.
    297  */
    298 int
    299 atw_enable(struct atw_softc *sc)
    300 {
    301 
    302 	if (ATW_IS_ENABLED(sc) == 0) {
    303 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    304 			printf("%s: device enable failed\n",
    305 			    sc->sc_dev.dv_xname);
    306 			return (EIO);
    307 		}
    308 		sc->sc_flags |= ATWF_ENABLED;
    309 	}
    310 	return (0);
    311 }
    312 
    313 /*
    314  * atw_disable:
    315  *
    316  *	Disable the ADM8211 chip.
    317  */
    318 void
    319 atw_disable(struct atw_softc *sc)
    320 {
    321 	if (!ATW_IS_ENABLED(sc))
    322 		return;
    323 	if (sc->sc_disable != NULL)
    324 		(*sc->sc_disable)(sc);
    325 	sc->sc_flags &= ~ATWF_ENABLED;
    326 }
    327 
    328 /* Returns -1 on failure. */
    329 int
    330 atw_read_srom(struct atw_softc *sc)
    331 {
    332 	struct seeprom_descriptor sd;
    333 	u_int32_t reg;
    334 
    335 	(void)memset(&sd, 0, sizeof(sd));
    336 
    337 	reg = ATW_READ(sc, ATW_TEST0);
    338 
    339 	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
    340 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
    341 		return -1;
    342 	}
    343 
    344 	switch (reg & ATW_TEST0_EPTYP_MASK) {
    345 	case ATW_TEST0_EPTYP_93c66:
    346 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
    347 		sc->sc_sromsz = 512;
    348 		sd.sd_chip = C56_66;
    349 		break;
    350 	case ATW_TEST0_EPTYP_93c46:
    351 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
    352 		sc->sc_sromsz = 128;
    353 		sd.sd_chip = C46;
    354 		break;
    355 	default:
    356 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
    357 		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
    358 		return -1;
    359 	}
    360 
    361 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
    362 
    363 	if (sc->sc_srom == NULL) {
    364 		printf("%s: unable to allocate SROM buffer\n",
    365 		    sc->sc_dev.dv_xname);
    366 		return -1;
    367 	}
    368 
    369 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
    370 
    371 	/* ADM8211 has a single 32-bit register for controlling the
    372 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
    373 	 * "ready" bit. The ADM8211 input/output sense is the reverse
    374 	 * of read_seeprom's.
    375 	 */
    376 	sd.sd_tag = sc->sc_st;
    377 	sd.sd_bsh = sc->sc_sh;
    378 	sd.sd_regsize = 4;
    379 	sd.sd_control_offset = ATW_SPR;
    380 	sd.sd_status_offset = ATW_SPR;
    381 	sd.sd_dataout_offset = ATW_SPR;
    382 	sd.sd_CK = ATW_SPR_SCLK;
    383 	sd.sd_CS = ATW_SPR_SCS;
    384 	sd.sd_DI = ATW_SPR_SDO;
    385 	sd.sd_DO = ATW_SPR_SDI;
    386 	sd.sd_MS = ATW_SPR_SRS;
    387 	sd.sd_RDY = 0;
    388 
    389 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
    390 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
    391 		free(sc->sc_srom, M_DEVBUF);
    392 		return -1;
    393 	}
    394 #ifdef ATW_DEBUG
    395 	{
    396 		int i;
    397 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
    398 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
    399 			if (((i % 8) == 0) && (i != 0)) {
    400 				ATW_DPRINTF(("\n\t"));
    401 			}
    402 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
    403 		}
    404 		ATW_DPRINTF(("\n"));
    405 	}
    406 #endif /* ATW_DEBUG */
    407 	return 0;
    408 }
    409 
    410 #ifdef ATW_DEBUG
    411 static void
    412 atw_print_regs(struct atw_softc *sc, const char *where)
    413 {
    414 #define PRINTREG(sc, reg) \
    415 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
    416 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
    417 
    418 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
    419 
    420 	PRINTREG(sc, ATW_PAR);
    421 	PRINTREG(sc, ATW_FRCTL);
    422 	PRINTREG(sc, ATW_TDR);
    423 	PRINTREG(sc, ATW_WTDP);
    424 	PRINTREG(sc, ATW_RDR);
    425 	PRINTREG(sc, ATW_WRDP);
    426 	PRINTREG(sc, ATW_RDB);
    427 	PRINTREG(sc, ATW_CSR3A);
    428 	PRINTREG(sc, ATW_TDBD);
    429 	PRINTREG(sc, ATW_TDBP);
    430 	PRINTREG(sc, ATW_STSR);
    431 	PRINTREG(sc, ATW_CSR5A);
    432 	PRINTREG(sc, ATW_NAR);
    433 	PRINTREG(sc, ATW_CSR6A);
    434 	PRINTREG(sc, ATW_IER);
    435 	PRINTREG(sc, ATW_CSR7A);
    436 	PRINTREG(sc, ATW_LPC);
    437 	PRINTREG(sc, ATW_TEST1);
    438 	PRINTREG(sc, ATW_SPR);
    439 	PRINTREG(sc, ATW_TEST0);
    440 	PRINTREG(sc, ATW_WCSR);
    441 	PRINTREG(sc, ATW_WPDR);
    442 	PRINTREG(sc, ATW_GPTMR);
    443 	PRINTREG(sc, ATW_GPIO);
    444 	PRINTREG(sc, ATW_BBPCTL);
    445 	PRINTREG(sc, ATW_SYNCTL);
    446 	PRINTREG(sc, ATW_PLCPHD);
    447 	PRINTREG(sc, ATW_MMIWADDR);
    448 	PRINTREG(sc, ATW_MMIRADDR1);
    449 	PRINTREG(sc, ATW_MMIRADDR2);
    450 	PRINTREG(sc, ATW_TXBR);
    451 	PRINTREG(sc, ATW_CSR15A);
    452 	PRINTREG(sc, ATW_ALCSTAT);
    453 	PRINTREG(sc, ATW_TOFS2);
    454 	PRINTREG(sc, ATW_CMDR);
    455 	PRINTREG(sc, ATW_PCIC);
    456 	PRINTREG(sc, ATW_PMCSR);
    457 	PRINTREG(sc, ATW_PAR0);
    458 	PRINTREG(sc, ATW_PAR1);
    459 	PRINTREG(sc, ATW_MAR0);
    460 	PRINTREG(sc, ATW_MAR1);
    461 	PRINTREG(sc, ATW_ATIMDA0);
    462 	PRINTREG(sc, ATW_ABDA1);
    463 	PRINTREG(sc, ATW_BSSID0);
    464 	PRINTREG(sc, ATW_TXLMT);
    465 	PRINTREG(sc, ATW_MIBCNT);
    466 	PRINTREG(sc, ATW_BCNT);
    467 	PRINTREG(sc, ATW_TSFTH);
    468 	PRINTREG(sc, ATW_TSC);
    469 	PRINTREG(sc, ATW_SYNRF);
    470 	PRINTREG(sc, ATW_BPLI);
    471 	PRINTREG(sc, ATW_CAP0);
    472 	PRINTREG(sc, ATW_CAP1);
    473 	PRINTREG(sc, ATW_RMD);
    474 	PRINTREG(sc, ATW_CFPP);
    475 	PRINTREG(sc, ATW_TOFS0);
    476 	PRINTREG(sc, ATW_TOFS1);
    477 	PRINTREG(sc, ATW_IFST);
    478 	PRINTREG(sc, ATW_RSPT);
    479 	PRINTREG(sc, ATW_TSFTL);
    480 	PRINTREG(sc, ATW_WEPCTL);
    481 	PRINTREG(sc, ATW_WESK);
    482 	PRINTREG(sc, ATW_WEPCNT);
    483 	PRINTREG(sc, ATW_MACTEST);
    484 	PRINTREG(sc, ATW_FER);
    485 	PRINTREG(sc, ATW_FEMR);
    486 	PRINTREG(sc, ATW_FPSR);
    487 	PRINTREG(sc, ATW_FFER);
    488 #undef PRINTREG
    489 }
    490 #endif /* ATW_DEBUG */
    491 
    492 /*
    493  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
    494  */
    495 void
    496 atw_attach(struct atw_softc *sc)
    497 {
    498 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
    499 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    500 	};
    501 	struct ieee80211com *ic = &sc->sc_ic;
    502 	struct ifnet *ifp = &ic->ic_if;
    503 	int country_code, error, i, nrate;
    504 	u_int32_t reg;
    505 	static const char *type_strings[] = {"Intersil (not supported)",
    506 	    "RFMD", "Marvel (not supported)"};
    507 
    508 	sc->sc_txth = atw_txthresh_tab_lo;
    509 
    510 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    511 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    512 
    513 #ifdef ATW_DEBUG
    514 	atw_print_regs(sc, "atw_attach");
    515 #endif /* ATW_DEBUG */
    516 
    517 	/*
    518 	 * Allocate the control data structures, and create and load the
    519 	 * DMA map for it.
    520 	 */
    521 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    522 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    523 	    1, &sc->sc_cdnseg, 0)) != 0) {
    524 		printf("%s: unable to allocate control data, error = %d\n",
    525 		    sc->sc_dev.dv_xname, error);
    526 		goto fail_0;
    527 	}
    528 
    529 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
    530 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
    531 	    BUS_DMA_COHERENT)) != 0) {
    532 		printf("%s: unable to map control data, error = %d\n",
    533 		    sc->sc_dev.dv_xname, error);
    534 		goto fail_1;
    535 	}
    536 
    537 	if ((error = bus_dmamap_create(sc->sc_dmat,
    538 	    sizeof(struct atw_control_data), 1,
    539 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    540 		printf("%s: unable to create control data DMA map, "
    541 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    542 		goto fail_2;
    543 	}
    544 
    545 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    546 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
    547 	    0)) != 0) {
    548 		printf("%s: unable to load control data DMA map, error = %d\n",
    549 		    sc->sc_dev.dv_xname, error);
    550 		goto fail_3;
    551 	}
    552 
    553 	/*
    554 	 * Create the transmit buffer DMA maps.
    555 	 */
    556 	sc->sc_ntxsegs = ATW_NTXSEGS;
    557 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    558 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    559 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
    560 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    561 			printf("%s: unable to create tx DMA map %d, "
    562 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    563 			goto fail_4;
    564 		}
    565 	}
    566 
    567 	/*
    568 	 * Create the receive buffer DMA maps.
    569 	 */
    570 	for (i = 0; i < ATW_NRXDESC; i++) {
    571 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    572 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    573 			printf("%s: unable to create rx DMA map %d, "
    574 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    575 			goto fail_5;
    576 		}
    577 	}
    578 	for (i = 0; i < ATW_NRXDESC; i++) {
    579 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    580 	}
    581 
    582 	/* Reset the chip to a known state. */
    583 	atw_reset(sc);
    584 
    585 	if (atw_read_srom(sc) == -1)
    586 		return;
    587 
    588 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    589 	    ATW_SR_RFTYPE_MASK);
    590 
    591 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    592 	    ATW_SR_BBPTYPE_MASK);
    593 
    594 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
    595 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
    596 		return;
    597 	}
    598 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
    599 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
    600 		return;
    601 	}
    602 
    603 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
    604 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
    605 
    606 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
    607 	 * MARVEL. My bug, or theirs?
    608 	 */
    609 
    610 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
    611 
    612 	switch (sc->sc_rftype) {
    613 	case ATW_RFTYPE_INTERSIL:
    614 		reg |= ATW_SYNCTL_CS1;
    615 		break;
    616 	case ATW_RFTYPE_RFMD:
    617 		reg |= ATW_SYNCTL_CS0;
    618 		break;
    619 	case ATW_RFTYPE_MARVEL:
    620 		break;
    621 	}
    622 
    623 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
    624 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
    625 
    626 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
    627 
    628 	switch (sc->sc_bbptype) {
    629 	case ATW_RFTYPE_INTERSIL:
    630 		reg |= ATW_BBPCTL_TWI;
    631 		break;
    632 	case ATW_RFTYPE_RFMD:
    633 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
    634 		    ATW_BBPCTL_CCA_ACTLO;
    635 		break;
    636 	case ATW_RFTYPE_MARVEL:
    637 		break;
    638 	}
    639 
    640 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
    641 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
    642 
    643 	/*
    644 	 * From this point forward, the attachment cannot fail.  A failure
    645 	 * before this point releases all resources that may have been
    646 	 * allocated.
    647 	 */
    648 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
    649 
    650 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
    651 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
    652 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
    653 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
    654 
    655 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    656 	    ATW_SR_CTRY_MASK);
    657 
    658 #define ADD_CHANNEL(_ic, _chan) do {					\
    659 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
    660 	_ic->ic_channels[_chan].ic_freq =				\
    661 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
    662 } while (0)
    663 
    664 	/* Find available channels */
    665 	switch (country_code) {
    666 	case COUNTRY_MMK2:	/* 1-14 */
    667 		ADD_CHANNEL(ic, 14);
    668 		/*FALLTHROUGH*/
    669 	case COUNTRY_ETSI:	/* 1-13 */
    670 		for (i = 1; i <= 13; i++)
    671 			ADD_CHANNEL(ic, i);
    672 		break;
    673 	case COUNTRY_FCC:	/* 1-11 */
    674 	case COUNTRY_IC:	/* 1-11 */
    675 		for (i = 1; i <= 11; i++)
    676 			ADD_CHANNEL(ic, i);
    677 		break;
    678 	case COUNTRY_MMK:	/* 14 */
    679 		ADD_CHANNEL(ic, 14);
    680 		break;
    681 	case COUNTRY_FRANCE:	/* 10-13 */
    682 		for (i = 10; i <= 13; i++)
    683 			ADD_CHANNEL(ic, i);
    684 		break;
    685 	default:	/* assume channels 10-11 */
    686 	case COUNTRY_SPAIN:	/* 10-11 */
    687 		for (i = 10; i <= 11; i++)
    688 			ADD_CHANNEL(ic, i);
    689 		break;
    690 	}
    691 
    692 	/* Read the MAC address. */
    693 	reg = ATW_READ(sc, ATW_PAR0);
    694 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
    695 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
    696 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
    697 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
    698 	reg = ATW_READ(sc, ATW_PAR1);
    699 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
    700 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
    701 
    702 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
    703 		printf(" could not get mac address, attach failed\n");
    704 		return;
    705 	}
    706 
    707 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
    708 
    709 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    710 	ifp->if_softc = sc;
    711 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
    712 	    IFF_NOTRAILERS;
    713 	ifp->if_ioctl = atw_ioctl;
    714 	ifp->if_start = atw_start;
    715 	ifp->if_watchdog = atw_watchdog;
    716 	ifp->if_init = atw_init;
    717 	ifp->if_stop = atw_stop;
    718 	IFQ_SET_READY(&ifp->if_snd);
    719 
    720 	ic->ic_phytype = IEEE80211_T_DS;
    721 	ic->ic_opmode = IEEE80211_M_STA;
    722 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
    723 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
    724 
    725 	nrate = 0;
    726 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
    727 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
    728 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
    729 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
    730 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
    731 
    732 	/*
    733 	 * Call MI attach routines.
    734 	 */
    735 
    736 	if_attach(ifp);
    737 	ieee80211_ifattach(ifp);
    738 
    739 	sc->sc_newstate = ic->ic_newstate;
    740 	ic->ic_newstate = atw_newstate;
    741 
    742 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    743 	ic->ic_recv_mgmt = atw_recv_mgmt;
    744 
    745 	sc->sc_node_free = ic->ic_node_free;
    746 	ic->ic_node_free = atw_node_free;
    747 
    748 	sc->sc_node_alloc = ic->ic_node_alloc;
    749 	ic->ic_node_alloc = atw_node_alloc;
    750 
    751 	/* possibly we should fill in our own sc_send_prresp, since
    752 	 * the ADM8211 is probably sending probe responses in ad hoc
    753 	 * mode.
    754 	 */
    755 
    756 	/* complete initialization */
    757 	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
    758 	callout_init(&sc->sc_scan_ch);
    759 
    760 #if NBPFILTER > 0
    761 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    762 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
    763 #endif
    764 
    765 	/*
    766 	 * Make sure the interface is shutdown during reboot.
    767 	 */
    768 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
    769 	if (sc->sc_sdhook == NULL)
    770 		printf("%s: WARNING: unable to establish shutdown hook\n",
    771 		    sc->sc_dev.dv_xname);
    772 
    773 	/*
    774 	 * Add a suspend hook to make sure we come back up after a
    775 	 * resume.
    776 	 */
    777 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
    778 	if (sc->sc_powerhook == NULL)
    779 		printf("%s: WARNING: unable to establish power hook\n",
    780 		    sc->sc_dev.dv_xname);
    781 
    782 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
    783 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
    784 	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
    785 
    786 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
    787 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
    788 	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
    789 
    790 	return;
    791 
    792 	/*
    793 	 * Free any resources we've allocated during the failed attach
    794 	 * attempt.  Do this in reverse order and fall through.
    795 	 */
    796  fail_5:
    797 	for (i = 0; i < ATW_NRXDESC; i++) {
    798 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
    799 			continue;
    800 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
    801 	}
    802  fail_4:
    803 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    804 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
    805 			continue;
    806 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
    807 	}
    808 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    809  fail_3:
    810 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    811  fail_2:
    812 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    813 	    sizeof(struct atw_control_data));
    814  fail_1:
    815 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
    816  fail_0:
    817 	return;
    818 }
    819 
    820 static struct ieee80211_node *
    821 atw_node_alloc(struct ieee80211com *ic)
    822 {
    823 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    824 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
    825 
    826 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
    827 	return ni;
    828 }
    829 
    830 static void
    831 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
    832 {
    833 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    834 
    835 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
    836 	    ether_sprintf(ni->ni_bssid)));
    837 	(*sc->sc_node_free)(ic, ni);
    838 }
    839 
    840 /*
    841  * atw_reset:
    842  *
    843  *	Perform a soft reset on the ADM8211.
    844  */
    845 void
    846 atw_reset(struct atw_softc *sc)
    847 {
    848 	int i;
    849 
    850 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
    851 
    852 	for (i = 0; i < 10000; i++) {
    853 		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
    854 			break;
    855 		DELAY(1);
    856 	}
    857 
    858 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
    859 
    860 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
    861 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
    862 
    863 	/* Turn off maximum power saving. */
    864 	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
    865 
    866 	/* Recall EEPROM. */
    867 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
    868 
    869 	DELAY(10 * 1000);
    870 
    871 	/* A reset seems to affect the SRAM contents, so put them into
    872 	 * a known state.
    873 	 */
    874 	atw_clear_sram(sc);
    875 
    876 	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
    877 
    878 	sc->sc_lost_bcn_thresh = 0;
    879 }
    880 
    881 static void
    882 atw_clear_sram(struct atw_softc *sc)
    883 {
    884 #if 0
    885 	for (addr = 0; addr < 448; addr++) {
    886 		ATW_WRITE(sc, ATW_WEPCTL,
    887 		    ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0	| addr);
    888 		DELAY(1000);
    889 		ATW_WRITE(sc, ATW_WESK, 0);
    890 		DELAY(1000); /* paranoia */
    891 	}
    892 	return;
    893 #endif
    894 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
    895 	/* XXX not for revision 0x20. */
    896 	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
    897 }
    898 
    899 /* TBD atw_init
    900  *
    901  * set MAC based on ic->ic_bss->myaddr
    902  * write WEP keys
    903  * set TX rate
    904  */
    905 
    906 /*
    907  * atw_init:		[ ifnet interface function ]
    908  *
    909  *	Initialize the interface.  Must be called at splnet().
    910  */
    911 int
    912 atw_init(struct ifnet *ifp)
    913 {
    914 	struct atw_softc *sc = ifp->if_softc;
    915 	struct ieee80211com *ic = &sc->sc_ic;
    916 	struct atw_txsoft *txs;
    917 	struct atw_rxsoft *rxs;
    918 	u_int32_t reg;
    919 	int i, error = 0;
    920 
    921 	if ((error = atw_enable(sc)) != 0)
    922 		goto out;
    923 
    924 	/*
    925 	 * Cancel any pending I/O. This also resets.
    926 	 */
    927 	atw_stop(ifp, 0);
    928 
    929 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
    930 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
    931 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
    932 	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
    933 
    934 	/* Turn off APM??? (A binary-only driver does this.)
    935 	 *
    936 	 * Set Rx store-and-forward mode.
    937 	 */
    938 	reg = ATW_READ(sc, ATW_CMDR);
    939 	reg &= ~ATW_CMDR_APM;
    940 	reg &= ~ATW_CMDR_DRT_MASK;
    941 	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
    942 
    943 	ATW_WRITE(sc, ATW_CMDR, reg);
    944 
    945 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
    946 	 *
    947 	 * XXX a binary-only driver sets a different service field than
    948 	 * 0. why?
    949 	 */
    950 	reg = ATW_READ(sc, ATW_PLCPHD);
    951 	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
    952 	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
    953 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
    954 	ATW_WRITE(sc, ATW_PLCPHD, reg);
    955 
    956 	/* XXX this magic can probably be figured out from the RFMD docs */
    957 	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
    958 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
    959 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
    960 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
    961 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
    962 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
    963 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
    964 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
    965 	ATW_WRITE(sc, ATW_TOFS2, reg);
    966 
    967 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
    968 	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
    969 
    970 	/* XXX this resets an Intersil RF front-end? */
    971 	/* TBD condition on Intersil RFType? */
    972 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
    973 	DELAY(10 * 1000);
    974 	ATW_WRITE(sc, ATW_SYNRF, 0);
    975 	DELAY(5 * 1000);
    976 
    977 	/* 16 TU max duration for contention-free period */
    978 	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
    979 	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
    980 
    981 	/* XXX I guess that the Cardbus clock is 22MHz?
    982 	 * I am assuming that the role of ATW_TOFS0_USCNT is
    983 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
    984 	 * very clear on this point. It says in the datasheet that it is
    985 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
    986 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
    987 	 * these values. These values are also the power-on default.
    988 	 */
    989 	ATW_WRITE(sc, ATW_TOFS0,
    990 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
    991 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
    992 
    993 	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
    994 	 * driver. Go figure.
    995 	 */
    996 	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
    997 	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
    998 	             ATW_IFST_SIFS_MASK) |
    999 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
   1000 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
   1001 
   1002 	ATW_WRITE(sc, ATW_IFST, reg);
   1003 
   1004 	/* XXX More magic. Might relate to ACK timing. */
   1005 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
   1006 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
   1007 
   1008 	/* Set up the MMI read/write addresses for the BBP.
   1009 	 *
   1010 	 * TBD find out the Marvel settings.
   1011 	 */
   1012 	switch (sc->sc_bbptype) {
   1013 	case ATW_BBPTYPE_INTERSIL:
   1014 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
   1015 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
   1016 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
   1017 		break;
   1018 	case ATW_BBPTYPE_MARVEL:
   1019 		break;
   1020 	case ATW_BBPTYPE_RFMD:
   1021 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
   1022 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
   1023 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
   1024 	default:
   1025 		break;
   1026 	}
   1027 
   1028 	sc->sc_wepctl = 0;
   1029 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
   1030 
   1031 	if ((error = atw_rf3000_init(sc)) != 0)
   1032 		goto out;
   1033 
   1034 	/*
   1035 	 * Initialize the PCI Access Register.
   1036 	 */
   1037 	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
   1038 
   1039 	/*
   1040 	 * If we're allowed to do so, use Memory Read Line
   1041 	 * and Memory Read Multiple.
   1042 	 *
   1043 	 * XXX Should we use Memory Write and Invalidate?
   1044 	 */
   1045 	if (sc->sc_flags & ATWF_MRL)
   1046 		sc->sc_busmode |= ATW_PAR_MRLE;
   1047 	if (sc->sc_flags & ATWF_MRM)
   1048 		sc->sc_busmode |= ATW_PAR_MRME;
   1049 	if (sc->sc_flags & ATWF_MWI)
   1050 		sc->sc_busmode |= ATW_PAR_MWIE;
   1051 	if (sc->sc_maxburst == 0)
   1052 		sc->sc_maxburst = 8;	/* ADM8211 default */
   1053 
   1054 	switch (sc->sc_cacheline) {
   1055 	default:
   1056 		/* Use burst length. */
   1057 		break;
   1058 	case 8:
   1059 		sc->sc_busmode |= ATW_PAR_CAL_8DW;
   1060 		break;
   1061 	case 16:
   1062 		sc->sc_busmode |= ATW_PAR_CAL_16DW;
   1063 		break;
   1064 	case 32:
   1065 		sc->sc_busmode |= ATW_PAR_CAL_32DW;
   1066 		break;
   1067 	}
   1068 	switch (sc->sc_maxburst) {
   1069 	case 1:
   1070 		sc->sc_busmode |= ATW_PAR_PBL_1DW;
   1071 		break;
   1072 	case 2:
   1073 		sc->sc_busmode |= ATW_PAR_PBL_2DW;
   1074 		break;
   1075 	case 4:
   1076 		sc->sc_busmode |= ATW_PAR_PBL_4DW;
   1077 		break;
   1078 	case 8:
   1079 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1080 		break;
   1081 	case 16:
   1082 		sc->sc_busmode |= ATW_PAR_PBL_16DW;
   1083 		break;
   1084 	case 32:
   1085 		sc->sc_busmode |= ATW_PAR_PBL_32DW;
   1086 		break;
   1087 	default:
   1088 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1089 		break;
   1090 	}
   1091 
   1092 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
   1093 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
   1094 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
   1095 
   1096 	/*
   1097 	 * Initialize the OPMODE register.  We don't write it until
   1098 	 * we're ready to begin the transmit and receive processes.
   1099 	 */
   1100 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
   1101 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
   1102 
   1103 	/*
   1104 	 * Initialize the transmit descriptor ring.
   1105 	 */
   1106 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1107 	for (i = 0; i < ATW_NTXDESC; i++) {
   1108 		/* no transmit chaining */
   1109 		sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
   1110 		sc->sc_txdescs[i].at_buf2 =
   1111 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
   1112 	}
   1113 	/* use ring mode */
   1114 	sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
   1115 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
   1116 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1117 	sc->sc_txfree = ATW_NTXDESC;
   1118 	sc->sc_txnext = 0;
   1119 
   1120 	/*
   1121 	 * Initialize the transmit job descriptors.
   1122 	 */
   1123 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1124 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1125 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   1126 		txs = &sc->sc_txsoft[i];
   1127 		txs->txs_mbuf = NULL;
   1128 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1129 	}
   1130 
   1131 	/*
   1132 	 * Initialize the receive descriptor and receive job
   1133 	 * descriptor rings.
   1134 	 */
   1135 	for (i = 0; i < ATW_NRXDESC; i++) {
   1136 		rxs = &sc->sc_rxsoft[i];
   1137 		if (rxs->rxs_mbuf == NULL) {
   1138 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
   1139 				printf("%s: unable to allocate or map rx "
   1140 				    "buffer %d, error = %d\n",
   1141 				    sc->sc_dev.dv_xname, i, error);
   1142 				/*
   1143 				 * XXX Should attempt to run with fewer receive
   1144 				 * XXX buffers instead of just failing.
   1145 				 */
   1146 				atw_rxdrain(sc);
   1147 				goto out;
   1148 			}
   1149 		} else
   1150 			ATW_INIT_RXDESC(sc, i);
   1151 	}
   1152 	sc->sc_rxptr = 0;
   1153 
   1154 	/* disable all wake-up events */
   1155 	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
   1156 	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
   1157 			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
   1158 			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
   1159 
   1160 	/* ack all wake-up events */
   1161 	ATW_SET(sc, ATW_WCSR, 0);
   1162 
   1163 	/*
   1164 	 * Initialize the interrupt mask and enable interrupts.
   1165 	 */
   1166 	/* normal interrupts */
   1167 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
   1168 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
   1169 
   1170 	/* abnormal interrupts */
   1171 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
   1172 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
   1173 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1174 
   1175 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
   1176 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1177 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
   1178 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
   1179 	    ATW_INTR_TRT;
   1180 
   1181 	sc->sc_linkint_mask &= sc->sc_inten;
   1182 	sc->sc_rxint_mask &= sc->sc_inten;
   1183 	sc->sc_txint_mask &= sc->sc_inten;
   1184 
   1185 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
   1186 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1187 	if (sc->sc_intr_ack != NULL)
   1188 		(*sc->sc_intr_ack)(sc);
   1189 
   1190 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
   1191 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
   1192 
   1193 	/*
   1194 	 * Give the transmit and receive rings to the ADM8211.
   1195 	 */
   1196 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
   1197 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
   1198 
   1199 	/* common 802.11 configuration */
   1200 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
   1201 	switch (ic->ic_opmode) {
   1202 	case IEEE80211_M_STA:
   1203 		sc->sc_opmode &= ~ATW_NAR_EA;
   1204 		break;
   1205 	case IEEE80211_M_AHDEMO: /* XXX */
   1206 	case IEEE80211_M_IBSS:
   1207 		ic->ic_flags |= IEEE80211_F_IBSSON;
   1208 		/*FALLTHROUGH*/
   1209 	case IEEE80211_M_HOSTAP: /* XXX */
   1210 		/* EA bit seems important for ad hoc reception. */
   1211 		sc->sc_opmode |= ATW_NAR_EA;
   1212 		break;
   1213 	case IEEE80211_M_MONITOR: /* XXX */
   1214 		break;
   1215 	}
   1216 
   1217 	atw_start_beacon(sc, 0);
   1218 
   1219 	switch (ic->ic_opmode) {
   1220 	case IEEE80211_M_AHDEMO:
   1221 	case IEEE80211_M_HOSTAP:
   1222 		ic->ic_bss->ni_intval = ic->ic_lintval;
   1223 		ic->ic_bss->ni_rssi = 0;
   1224 		ic->ic_bss->ni_rstamp = 0;
   1225 		break;
   1226 	default:					/* XXX */
   1227 		break;
   1228 	}
   1229 
   1230 	atw_write_ssid(sc);
   1231 	atw_write_sup_rates(sc);
   1232 	if (ic->ic_caps & IEEE80211_C_WEP)
   1233 		atw_write_wep(sc);
   1234 
   1235 	/*
   1236 	 * Set the receive filter.  This will start the transmit and
   1237 	 * receive processes.
   1238 	 */
   1239 	atw_filter_setup(sc);
   1240 
   1241 	/*
   1242 	 * Start the receive process.
   1243 	 */
   1244 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1245 
   1246 	/*
   1247 	 * Note that the interface is now running.
   1248 	 */
   1249 	ifp->if_flags |= IFF_RUNNING;
   1250 	ifp->if_flags &= ~IFF_OACTIVE;
   1251 	ic->ic_state = IEEE80211_S_INIT;
   1252 
   1253 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1254 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1255 	else
   1256 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1257  out:
   1258 	if (error) {
   1259 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1260 		ifp->if_timer = 0;
   1261 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1262 	}
   1263 #ifdef ATW_DEBUG
   1264 	atw_print_regs(sc, "end of init");
   1265 #endif /* ATW_DEBUG */
   1266 
   1267 	return (error);
   1268 }
   1269 
   1270 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
   1271  *           0: MAC control of RF3000/Si4126.
   1272  *
   1273  * Applies power, or selects RF front-end? Sets reset condition.
   1274  *
   1275  * TBD support non-RFMD BBP, non-SiLabs synth.
   1276  */
   1277 static void
   1278 atw_rfio_enable(struct atw_softc *sc, int enable)
   1279 {
   1280 	if (enable) {
   1281 		ATW_WRITE(sc, ATW_SYNRF,
   1282 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
   1283 		DELAY(atw_rfio_enable_delay);
   1284 	} else {
   1285 		ATW_WRITE(sc, ATW_SYNRF, 0);
   1286 		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
   1287 	}
   1288 }
   1289 
   1290 static int
   1291 atw_tune(struct atw_softc *sc)
   1292 {
   1293 	int rc;
   1294 	u_int32_t reg;
   1295 	int chan;
   1296 	struct ieee80211com *ic = &sc->sc_ic;
   1297 
   1298 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
   1299 	if (chan == IEEE80211_CHAN_ANY)
   1300 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
   1301 
   1302 	if (chan == sc->sc_cur_chan)
   1303 		return 0;
   1304 
   1305 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
   1306 	    sc->sc_cur_chan, chan));
   1307 
   1308 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1309 
   1310 	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
   1311 	    (rc = atw_rf3000_tune(sc, chan)) != 0)
   1312 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
   1313 		    chan);
   1314 
   1315 	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
   1316 	ATW_WRITE(sc, ATW_CAP0,
   1317 	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
   1318 
   1319 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1320 
   1321 	if (rc == 0)
   1322 		sc->sc_cur_chan = chan;
   1323 
   1324 	return rc;
   1325 }
   1326 
   1327 #ifdef ATW_DEBUG
   1328 static void
   1329 atw_si4126_print(struct atw_softc *sc)
   1330 {
   1331 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1332 	u_int addr, val;
   1333 
   1334 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1335 		return;
   1336 
   1337 	for (addr = 0; addr <= 8; addr++) {
   1338 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
   1339 		if (atw_si4126_read(sc, addr, &val) == 0) {
   1340 			printf("<unknown> (quitting print-out)\n");
   1341 			break;
   1342 		}
   1343 		printf("%05x\n", val);
   1344 	}
   1345 }
   1346 #endif /* ATW_DEBUG */
   1347 
   1348 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
   1349  *
   1350  * The RF/IF synthesizer produces two reference frequencies for
   1351  * the RF2948B transceiver.  The first frequency the RF2948B requires
   1352  * is two times the so-called "intermediate frequency" (IF). Since
   1353  * a SAW filter on the radio fixes the IF at 374MHz, I program the
   1354  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
   1355  * frequency required by the transceiver is the radio frequency
   1356  * (RF). This is a superheterodyne transceiver; for f(chan) the
   1357  * center frequency of the channel we are tuning, RF = f(chan) -
   1358  * IF.
   1359  *
   1360  * XXX I am told by SiLabs that the Si4126 will accept a broader range
   1361  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
   1362  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
   1363  * works, but I have still programmed for XINDIV2 = 1 to be safe.
   1364  */
   1365 static int
   1366 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
   1367 {
   1368 	int rc = 0;
   1369 	u_int mhz;
   1370 	u_int R;
   1371 	u_int32_t reg;
   1372 	u_int16_t gain;
   1373 
   1374 #ifdef ATW_DEBUG
   1375 	atw_si4126_print(sc);
   1376 #endif /* ATW_DEBUG */
   1377 
   1378 	if (chan == 14)
   1379 		mhz = 2484;
   1380 	else
   1381 		mhz = 2412 + 5 * (chan - 1);
   1382 
   1383 	/* Tune IF to 748MHz to suit the IF LO input of the
   1384 	 * RF2494B, which is 2 x IF. No need to set an IF divider
   1385          * because an IF in 526MHz - 952MHz is allowed.
   1386 	 *
   1387 	 * XIN is 44.000MHz, so divide it by two to get allowable
   1388 	 * range of 2-25MHz. SiLabs tells me that this is not
   1389 	 * strictly necessary.
   1390 	 */
   1391 
   1392 	R = 44;
   1393 
   1394 	atw_rfio_enable(sc, 1);
   1395 
   1396 	/* Power-up RF, IF synthesizers. */
   1397 	if ((rc = atw_si4126_write(sc, SI4126_POWER,
   1398 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
   1399 		goto out;
   1400 
   1401 	/* If RF2 N > 2047, then set KP2 to 1. */
   1402 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
   1403 
   1404 	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
   1405 		goto out;
   1406 
   1407 	/* set LPWR, too? */
   1408 	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
   1409 	    SI4126_MAIN_XINDIV2)) != 0)
   1410 		goto out;
   1411 
   1412 	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
   1413 	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
   1414 	 */
   1415 	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
   1416 		goto out;
   1417 
   1418 	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
   1419 		goto out;
   1420 
   1421 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
   1422 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
   1423 	 * which has no RF1!
   1424 	 */
   1425 	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
   1426 		goto out;
   1427 
   1428 	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
   1429 		goto out;
   1430 
   1431 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
   1432 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
   1433 	 * Now let's multiply it to mhz. So mhz - IF = N.
   1434 	 */
   1435 	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
   1436 		goto out;
   1437 
   1438 	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
   1439 		goto out;
   1440 
   1441 	/* wait 100us from power-up for RF, IF to settle */
   1442 	DELAY(100);
   1443 
   1444 	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
   1445 		/* XXX there is a binary driver which sends
   1446 		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
   1447 		 * that this enables the Si4126 by raising its PWDN#, but I
   1448 		 * think that it actually sets the Prism RF front-end
   1449 		 * to a special mode for channel 14.
   1450 		 */
   1451 		reg = ATW_READ(sc, ATW_GPIO);
   1452 		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
   1453 		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
   1454 		ATW_WRITE(sc, ATW_GPIO, reg);
   1455 	}
   1456 
   1457 #ifdef ATW_DEBUG
   1458 	atw_si4126_print(sc);
   1459 #endif /* ATW_DEBUG */
   1460 
   1461 out:
   1462 	atw_rfio_enable(sc, 0);
   1463 
   1464 	return rc;
   1465 }
   1466 
   1467 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
   1468  * diversity.
   1469  *
   1470  * Call this w/ Tx/Rx suspended.
   1471  */
   1472 static int
   1473 atw_rf3000_init(struct atw_softc *sc)
   1474 {
   1475 	int rc = 0;
   1476 
   1477 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1478 
   1479 	atw_rfio_enable(sc, 1);
   1480 
   1481 	/* enable diversity */
   1482 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
   1483 
   1484 	if (rc != 0)
   1485 		goto out;
   1486 
   1487 	/* sensible setting from a binary-only driver */
   1488 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1489 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
   1490 
   1491 	if (rc != 0)
   1492 		goto out;
   1493 
   1494 	/* magic from a binary-only driver */
   1495 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
   1496 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
   1497 
   1498 	if (rc != 0)
   1499 		goto out;
   1500 
   1501 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
   1502 
   1503 	if (rc != 0)
   1504 		goto out;
   1505 
   1506 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
   1507 
   1508 	if (rc != 0)
   1509 		goto out;
   1510 
   1511 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
   1512 
   1513 	if (rc != 0)
   1514 		goto out;
   1515 
   1516 	/* CCA is acquisition sensitive */
   1517 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
   1518 	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
   1519 
   1520 	if (rc != 0)
   1521 		goto out;
   1522 
   1523 out:
   1524 	atw_rfio_enable(sc, 0);
   1525 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1526 	return rc;
   1527 }
   1528 
   1529 #ifdef ATW_DEBUG
   1530 static void
   1531 atw_rf3000_print(struct atw_softc *sc)
   1532 {
   1533 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1534 	u_int addr, val;
   1535 
   1536 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1537 		return;
   1538 
   1539 	for (addr = 0x01; addr <= 0x15; addr++) {
   1540 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
   1541 		if (atw_rf3000_read(sc, addr, &val) != 0) {
   1542 			printf("<unknown> (quitting print-out)\n");
   1543 			break;
   1544 		}
   1545 		printf("%08x\n", val);
   1546 	}
   1547 }
   1548 #endif /* ATW_DEBUG */
   1549 
   1550 /* Set the power settings on the BBP for channel `chan'. */
   1551 static int
   1552 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
   1553 {
   1554 	int rc = 0;
   1555 	u_int32_t reg;
   1556 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
   1557 
   1558 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
   1559 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
   1560 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
   1561 
   1562 	/* odd channels: LSB, even channels: MSB */
   1563 	if (chan % 2 == 1) {
   1564 		txpower &= 0xFF;
   1565 		lpf_cutoff &= 0xFF;
   1566 		lna_gs_thresh &= 0xFF;
   1567 	} else {
   1568 		txpower >>= 8;
   1569 		lpf_cutoff >>= 8;
   1570 		lna_gs_thresh >>= 8;
   1571 	}
   1572 
   1573 #ifdef ATW_DEBUG
   1574 	atw_rf3000_print(sc);
   1575 #endif /* ATW_DEBUG */
   1576 
   1577 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
   1578 	    "lna_gs_thresh %02x\n",
   1579 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
   1580 
   1581 	atw_rfio_enable(sc, 1);
   1582 
   1583 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1584 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
   1585 		goto out;
   1586 
   1587 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
   1588 		goto out;
   1589 
   1590 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
   1591 		goto out;
   1592 
   1593 	/* from a binary-only driver. */
   1594 	reg = ATW_READ(sc, ATW_PLCPHD);
   1595 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
   1596 	reg |= LSHIFT(txpower << 2, ATW_PLCPHD_SERVICE_MASK);
   1597 	ATW_WRITE(sc, ATW_PLCPHD, reg);
   1598 
   1599 #ifdef ATW_DEBUG
   1600 	atw_rf3000_print(sc);
   1601 #endif /* ATW_DEBUG */
   1602 
   1603 out:
   1604 	atw_rfio_enable(sc, 0);
   1605 
   1606 	return rc;
   1607 }
   1608 
   1609 /* Write a register on the RF3000 baseband processor using the
   1610  * registers provided by the ADM8211 for this purpose.
   1611  *
   1612  * Return 0 on success.
   1613  */
   1614 static int
   1615 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
   1616 {
   1617 	u_int32_t reg;
   1618 	int i;
   1619 
   1620 	for (i = 1000; --i >= 0; ) {
   1621 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1622 			break;
   1623 		DELAY(100);
   1624 	}
   1625 
   1626 	if (i < 0) {
   1627 		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
   1628 		return ETIMEDOUT;
   1629 	}
   1630 
   1631 	reg = sc->sc_bbpctl_wr |
   1632 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
   1633 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1634 
   1635 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1636 
   1637 	for (i = 1000; --i >= 0; ) {
   1638 		DELAY(100);
   1639 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
   1640 			break;
   1641 	}
   1642 
   1643 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
   1644 
   1645 	if (i < 0) {
   1646 		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
   1647 		return ETIMEDOUT;
   1648 	}
   1649 	return 0;
   1650 }
   1651 
   1652 /* Read a register on the RF3000 baseband processor using the registers
   1653  * the ADM8211 provides for this purpose.
   1654  *
   1655  * The 7-bit register address is addr.  Record the 8-bit data in the register
   1656  * in *val.
   1657  *
   1658  * Return 0 on success.
   1659  *
   1660  * XXX This does not seem to work. The ADM8211 must require more or
   1661  * different magic to read the chip than to write it. Possibly some
   1662  * of the magic I have derived from a binary-only driver concerns
   1663  * the "chip address" (see the RF3000 manual).
   1664  */
   1665 #ifdef ATW_DEBUG
   1666 static int
   1667 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
   1668 {
   1669 	u_int32_t reg;
   1670 	int i;
   1671 
   1672 	for (i = 1000; --i >= 0; ) {
   1673 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1674 			break;
   1675 		DELAY(100);
   1676 	}
   1677 
   1678 	if (i < 0) {
   1679 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
   1680 		    sc->sc_dev.dv_xname);
   1681 		return ETIMEDOUT;
   1682 	}
   1683 
   1684 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1685 
   1686 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1687 
   1688 	for (i = 1000; --i >= 0; ) {
   1689 		DELAY(100);
   1690 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
   1691 			break;
   1692 	}
   1693 
   1694 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
   1695 
   1696 	if (i < 0) {
   1697 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
   1698 		    sc->sc_dev.dv_xname, reg);
   1699 		return ETIMEDOUT;
   1700 	}
   1701 	if (val != NULL)
   1702 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
   1703 	return 0;
   1704 }
   1705 #endif /* ATW_DEBUG */
   1706 
   1707 /* Write a register on the Si4126 RF/IF synthesizer using the registers
   1708  * provided by the ADM8211 for that purpose.
   1709  *
   1710  * val is 18 bits of data, and val is the 4-bit address of the register.
   1711  *
   1712  * Return 0 on success.
   1713  */
   1714 static int
   1715 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
   1716 {
   1717 	u_int32_t bits, reg;
   1718 	int i;
   1719 
   1720 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1721 	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
   1722 
   1723 	for (i = 1000; --i >= 0; ) {
   1724 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1725 			break;
   1726 		DELAY(100);
   1727 	}
   1728 
   1729 	if (i < 0) {
   1730 		printf("%s: start atw_si4126_write, SYNCTL busy\n",
   1731 		    sc->sc_dev.dv_xname);
   1732 		return ETIMEDOUT;
   1733 	}
   1734 
   1735 	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
   1736 	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
   1737 
   1738 	reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
   1739 
   1740 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1741 
   1742 	for (i = 1000; --i >= 0; ) {
   1743 		DELAY(100);
   1744 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
   1745 			break;
   1746 	}
   1747 
   1748 	/* restore to acceptable starting condition */
   1749 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
   1750 
   1751 	if (i < 0) {
   1752 		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
   1753 		    sc->sc_dev.dv_xname, reg);
   1754 		return ETIMEDOUT;
   1755 	}
   1756 	return 0;
   1757 }
   1758 
   1759 /* Read 18-bit data from the 4-bit address addr in Si4126
   1760  * RF synthesizer and write the data to *val. Return 0 on success.
   1761  *
   1762  * XXX This does not seem to work. The ADM8211 must require more or
   1763  * different magic to read the chip than to write it.
   1764  */
   1765 #ifdef ATW_DEBUG
   1766 static int
   1767 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
   1768 {
   1769 	u_int32_t reg;
   1770 	int i;
   1771 
   1772 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1773 
   1774 	for (i = 1000; --i >= 0; ) {
   1775 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1776 			break;
   1777 		DELAY(100);
   1778 	}
   1779 
   1780 	if (i < 0) {
   1781 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
   1782 		    sc->sc_dev.dv_xname);
   1783 		return ETIMEDOUT;
   1784 	}
   1785 
   1786 	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
   1787 
   1788 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1789 
   1790 	for (i = 1000; --i >= 0; ) {
   1791 		DELAY(100);
   1792 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
   1793 			break;
   1794 	}
   1795 
   1796 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
   1797 
   1798 	if (i < 0) {
   1799 		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
   1800 		    sc->sc_dev.dv_xname, reg);
   1801 		return ETIMEDOUT;
   1802 	}
   1803 	if (val != NULL)
   1804 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
   1805 		                       ATW_SYNCTL_DATA_MASK);
   1806 	return 0;
   1807 }
   1808 #endif /* ATW_DEBUG */
   1809 
   1810 /* XXX is the endianness correct? test. */
   1811 #define	atw_calchash(addr) \
   1812 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
   1813 
   1814 /*
   1815  * atw_filter_setup:
   1816  *
   1817  *	Set the ADM8211's receive filter.
   1818  */
   1819 static void
   1820 atw_filter_setup(struct atw_softc *sc)
   1821 {
   1822 	struct ieee80211com *ic = &sc->sc_ic;
   1823 	struct ethercom *ec = &ic->ic_ec;
   1824 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1825 	int hash;
   1826 	u_int32_t hashes[2] = { 0, 0 };
   1827 	struct ether_multi *enm;
   1828 	struct ether_multistep step;
   1829 
   1830 	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
   1831 	    sc->sc_dev.dv_xname, sc->sc_flags));
   1832 
   1833 	/*
   1834 	 * If we're running, idle the receive engine.  If we're NOT running,
   1835 	 * we're being called from atw_init(), and our writing ATW_NAR will
   1836 	 * start the transmit and receive processes in motion.
   1837 	 */
   1838 	if (ifp->if_flags & IFF_RUNNING)
   1839 		atw_idle(sc, ATW_NAR_SR);
   1840 
   1841 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
   1842 
   1843 	ifp->if_flags &= ~IFF_ALLMULTI;
   1844 
   1845 	if (ifp->if_flags & IFF_PROMISC) {
   1846 		sc->sc_opmode |= ATW_NAR_PR;
   1847 allmulti:
   1848 		ifp->if_flags |= IFF_ALLMULTI;
   1849 		goto setit;
   1850 	}
   1851 
   1852 	/*
   1853 	 * Program the 64-bit multicast hash filter.
   1854 	 */
   1855 	ETHER_FIRST_MULTI(step, ec, enm);
   1856 	while (enm != NULL) {
   1857 		/* XXX */
   1858 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1859 		    ETHER_ADDR_LEN) != 0)
   1860 			goto allmulti;
   1861 
   1862 		hash = atw_calchash(enm->enm_addrlo);
   1863 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1864 		ETHER_NEXT_MULTI(step, enm);
   1865 	}
   1866 
   1867 	if (ifp->if_flags & IFF_BROADCAST) {
   1868 		hash = atw_calchash(etherbroadcastaddr);
   1869 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1870 	}
   1871 
   1872 	/* all bits set => hash is useless */
   1873 	if (~(hashes[0] & hashes[1]) == 0)
   1874 		goto allmulti;
   1875 
   1876  setit:
   1877 	if (ifp->if_flags & IFF_ALLMULTI)
   1878 		sc->sc_opmode |= ATW_NAR_MM;
   1879 
   1880 	/* XXX in scan mode, do not filter packets. maybe this is
   1881 	 * unnecessary.
   1882 	 */
   1883 	if (ic->ic_state == IEEE80211_S_SCAN)
   1884 		sc->sc_opmode |= ATW_NAR_PR;
   1885 
   1886 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
   1887 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
   1888 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1889 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
   1890 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
   1891 
   1892 	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
   1893 }
   1894 
   1895 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
   1896  * a beacon's BSSID and SSID against the preferred BSSID and SSID
   1897  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
   1898  * no beacon with the preferred BSSID and SSID in the number of
   1899  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
   1900  */
   1901 static void
   1902 atw_write_bssid(struct atw_softc *sc)
   1903 {
   1904 	struct ieee80211com *ic = &sc->sc_ic;
   1905 	u_int8_t *bssid;
   1906 
   1907 	bssid = ic->ic_bss->ni_bssid;
   1908 
   1909 	ATW_WRITE(sc, ATW_ABDA1,
   1910 	    (ATW_READ(sc, ATW_ABDA1) &
   1911 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
   1912 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
   1913 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
   1914 
   1915 	ATW_WRITE(sc, ATW_BSSID0,
   1916 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
   1917 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
   1918 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
   1919 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
   1920 
   1921 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
   1922 	    ether_sprintf(sc->sc_bssid)));
   1923 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
   1924 
   1925 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
   1926 }
   1927 
   1928 /* Tell the ADM8211 how many beacon intervals must pass without
   1929  * receiving a beacon with the preferred BSSID & SSID set by
   1930  * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
   1931  * raised.
   1932  */
   1933 static void
   1934 atw_write_bcn_thresh(struct atw_softc *sc)
   1935 {
   1936 	struct ieee80211com *ic = &sc->sc_ic;
   1937 	int lost_bcn_thresh;
   1938 
   1939 	/* Lose link after one second or 7 beacons, whichever comes
   1940 	 * first, but do not lose link before 2 beacons are lost.
   1941 	 *
   1942 	 * In host AP mode, set the lost-beacon threshold to 0.
   1943 	 */
   1944 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1945 		lost_bcn_thresh = 0;
   1946 	else {
   1947 		int beacons_per_second =
   1948 		    1000000 / (IEEE80211_DUR_TU * MAX(1,ic->ic_bss->ni_intval));
   1949 		lost_bcn_thresh = MAX(2, MIN(7, beacons_per_second));
   1950 	}
   1951 
   1952 	/* XXX resets wake-up status bits */
   1953 	ATW_WRITE(sc, ATW_WCSR,
   1954 	    (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
   1955 	    (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
   1956 
   1957 	DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
   1958 	    sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
   1959 
   1960 	sc->sc_lost_bcn_thresh = lost_bcn_thresh;
   1961 
   1962 	DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
   1963 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
   1964 }
   1965 
   1966 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
   1967  * 16-bit word.
   1968  */
   1969 static void
   1970 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
   1971 {
   1972 	u_int i;
   1973 	u_int8_t *ptr;
   1974 
   1975 	memcpy(&sc->sc_sram[ofs], buf, buflen);
   1976 
   1977 	if (ofs % 2 != 0) {
   1978 		ofs--;
   1979 		buflen++;
   1980 	}
   1981 
   1982 	if (buflen % 2 != 0)
   1983 		buflen++;
   1984 
   1985 	assert(buflen + ofs <= ATW_SRAM_SIZE);
   1986 
   1987 	ptr = &sc->sc_sram[ofs];
   1988 
   1989 	for (i = 0; i < buflen; i += 2) {
   1990 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
   1991 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
   1992 		DELAY(atw_writewep_delay);
   1993 
   1994 		ATW_WRITE(sc, ATW_WESK,
   1995 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
   1996 		DELAY(atw_writewep_delay);
   1997 	}
   1998 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
   1999 
   2000 	if (sc->sc_if.if_flags & IFF_DEBUG) {
   2001 		int n_octets = 0;
   2002 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
   2003 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
   2004 		for (i = 0; i < buflen; i++) {
   2005 			printf(" %02x", ptr[i]);
   2006 			if (++n_octets % 24 == 0)
   2007 				printf("\n");
   2008 		}
   2009 		if (n_octets % 24 != 0)
   2010 			printf("\n");
   2011 	}
   2012 }
   2013 
   2014 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
   2015 static void
   2016 atw_write_wep(struct atw_softc *sc)
   2017 {
   2018 	struct ieee80211com *ic = &sc->sc_ic;
   2019 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
   2020 	u_int8_t buf[IEEE80211_WEP_NKID]
   2021 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
   2022 	u_int32_t reg;
   2023 	int i;
   2024 
   2025 	sc->sc_wepctl = 0;
   2026 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
   2027 
   2028 	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
   2029 		return;
   2030 
   2031 	memset(&buf[0][0], 0, sizeof(buf));
   2032 
   2033 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   2034 		if (ic->ic_nw_keys[i].wk_len > 5) {
   2035 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
   2036 		} else if (ic->ic_nw_keys[i].wk_len != 0) {
   2037 			buf[i][1] = ATW_WEP_ENABLED;
   2038 		} else {
   2039 			buf[i][1] = 0;
   2040 			continue;
   2041 		}
   2042 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
   2043 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
   2044 		    ic->ic_nw_keys[i].wk_len - 1);
   2045 	}
   2046 
   2047 	reg = ATW_READ(sc, ATW_MACTEST);
   2048 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
   2049 	reg &= ~ATW_MACTEST_KEYID_MASK;
   2050 	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
   2051 	ATW_WRITE(sc, ATW_MACTEST, reg);
   2052 
   2053 	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
   2054 	 * throughout.)
   2055 	 */
   2056 	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
   2057 	if (sc->sc_if.if_flags & IFF_LINK2)
   2058 		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
   2059 
   2060 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
   2061 	    sizeof(buf));
   2062 }
   2063 
   2064 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
   2065 
   2066 static void
   2067 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2068     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2069 {
   2070 	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
   2071 
   2072 	switch (subtype) {
   2073 	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
   2074 		/* do nothing: hardware answers probe request */
   2075 		break;
   2076 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2077 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2078 		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
   2079 		break;
   2080 	default:
   2081 		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
   2082 		break;
   2083 	}
   2084 	return;
   2085 }
   2086 
   2087 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
   2088  * of IBSSs with like SSID/channel but different BSSID. It joins the
   2089  * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
   2090  * convention. Possibly the ADMtek chip does this for us; I will have
   2091  * to test to find out.
   2092  *
   2093  * XXX we should add the duration field of the received beacon to
   2094  * the TSF time it contains before comparing it with the ADM8211's
   2095  * TSF.
   2096  */
   2097 static void
   2098 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
   2099     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2100 {
   2101 	struct atw_softc *sc;
   2102 	struct ieee80211_frame *wh;
   2103 	u_int64_t tsft, bcn_tsft;
   2104 	u_int32_t tsftl, tsfth;
   2105 	int do_print = 0;
   2106 
   2107 	sc = (struct atw_softc*)ic->ic_if.if_softc;
   2108 
   2109 	if (ic->ic_if.if_flags & IFF_DEBUG)
   2110 		do_print = (ic->ic_if.if_flags & IFF_LINK0)
   2111 		    ? 1 : ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval);
   2112 
   2113 	wh = mtod(m0, struct ieee80211_frame *);
   2114 
   2115 	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
   2116 
   2117 	if (ic->ic_state != IEEE80211_S_RUN) {
   2118 		if (do_print)
   2119 			printf("%s: atw_recv_beacon: not running\n",
   2120 			    sc->sc_dev.dv_xname);
   2121 		return;
   2122 	}
   2123 
   2124 	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
   2125 	    ic->ic_bss->ni_chan)) == NULL) {
   2126 		if (do_print)
   2127 			printf("%s: atw_recv_beacon: no node %s\n",
   2128 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2129 		return;
   2130 	}
   2131 
   2132 	if (ieee80211_match_bss(ic, ni) != 0) {
   2133 		if (do_print)
   2134 			printf("%s: atw_recv_beacon: ssid mismatch %s\n",
   2135 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2136 		return;
   2137 	}
   2138 
   2139 	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
   2140 		return;
   2141 
   2142 	if (do_print)
   2143 		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
   2144 		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
   2145 
   2146 	if (ic->ic_opmode != IEEE80211_M_IBSS)
   2147 		return;
   2148 
   2149 	/* If we read TSFTL right before rollover, we read a TSF timer
   2150 	 * that is too high rather than too low. This prevents a spurious
   2151 	 * synchronization down the line, however, our IBSS could suffer
   2152 	 * from a creeping TSF....
   2153 	 */
   2154 	tsftl = ATW_READ(sc, ATW_TSFTL);
   2155 	tsfth = ATW_READ(sc, ATW_TSFTH);
   2156 
   2157 	tsft = (u_int64_t)tsfth << 32 | tsftl;
   2158 	bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
   2159 
   2160 	if (do_print)
   2161 		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
   2162 		    sc->sc_dev.dv_xname, tsft, bcn_tsft);
   2163 
   2164 	/* we are faster, let the other guy catch up */
   2165 	if (bcn_tsft < tsft)
   2166 		return;
   2167 
   2168 	if (do_print)
   2169 		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
   2170 		    ether_sprintf(wh->i_addr2));
   2171 
   2172 	ic->ic_flags &= ~IEEE80211_F_SIBSS;
   2173 
   2174 #if 0
   2175 	atw_tsf(sc);
   2176 #endif
   2177 
   2178 	/* negotiate rates with new IBSS */
   2179 	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
   2180 	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
   2181 	if (ni->ni_rates.rs_nrates == 0) {
   2182 		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
   2183 			ether_sprintf(ni->ni_bssid));
   2184 		return;
   2185 	}
   2186 
   2187 	if (do_print) {
   2188 		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
   2189 		    ether_sprintf(ic->ic_bss->ni_bssid));
   2190 		printf("%s ", ether_sprintf(ni->ni_bssid));
   2191 		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
   2192 	}
   2193 
   2194 	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
   2195 
   2196 	atw_write_bssid(sc);
   2197 	atw_write_bcn_thresh(sc);
   2198 	atw_start_beacon(sc, 1);
   2199 }
   2200 
   2201 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
   2202  * In ad hoc mode, the SSID is written to the beacons sent by the
   2203  * ADM8211. In both ad hoc and infrastructure mode, beacons received
   2204  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
   2205  * indications.
   2206  */
   2207 static void
   2208 atw_write_ssid(struct atw_softc *sc)
   2209 {
   2210 	struct ieee80211com *ic = &sc->sc_ic;
   2211 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID */
   2212 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
   2213 
   2214 	memset(buf, 0, sizeof(buf));
   2215 	buf[0] = ic->ic_bss->ni_esslen;
   2216 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
   2217 
   2218 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
   2219 }
   2220 
   2221 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
   2222  * In ad hoc mode, the supported rates are written to beacons sent by the
   2223  * ADM8211.
   2224  */
   2225 static void
   2226 atw_write_sup_rates(struct atw_softc *sc)
   2227 {
   2228 	struct ieee80211com *ic = &sc->sc_ic;
   2229 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
   2230 	 * supported rates
   2231 	 */
   2232 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
   2233 
   2234 	memset(buf, 0, sizeof(buf));
   2235 
   2236 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
   2237 
   2238 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
   2239 	    ic->ic_bss->ni_rates.rs_nrates);
   2240 
   2241 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
   2242 }
   2243 
   2244 /* Start/stop sending beacons. */
   2245 void
   2246 atw_start_beacon(struct atw_softc *sc, int start)
   2247 {
   2248 	struct ieee80211com *ic = &sc->sc_ic;
   2249 	u_int32_t len, capinfo, reg_bcnt, reg_cap1;
   2250 
   2251 	if (ATW_IS_ENABLED(sc) == 0)
   2252 		return;
   2253 
   2254 	len = capinfo = 0;
   2255 
   2256 	/* start beacons */
   2257 	len = sizeof(struct ieee80211_frame) +
   2258 	    8 /* timestamp */ + 2 /* beacon interval */ +
   2259 	    2 /* capability info */ +
   2260 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
   2261 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
   2262 	    3 /* DS parameters */ +
   2263 	    IEEE80211_CRC_LEN;
   2264 
   2265 	reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
   2266 
   2267 	reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
   2268 
   2269 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2270 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2271 
   2272 	if (!start)
   2273 		return;
   2274 
   2275 	/* TBD use ni_capinfo */
   2276 
   2277 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
   2278 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   2279 	if (ic->ic_flags & IEEE80211_F_WEPON)
   2280 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   2281 
   2282 	switch (ic->ic_opmode) {
   2283 	case IEEE80211_M_IBSS:
   2284 		len += 4; /* IBSS parameters */
   2285 		capinfo |= IEEE80211_CAPINFO_IBSS;
   2286 		break;
   2287 	case IEEE80211_M_HOSTAP:
   2288 		/* XXX 6-byte minimum TIM */
   2289 		len += atw_beacon_len_adjust;
   2290 		capinfo |= IEEE80211_CAPINFO_ESS;
   2291 		break;
   2292 	default:
   2293 		return;
   2294 	}
   2295 
   2296 	reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
   2297 	reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
   2298 
   2299 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2300 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2301 
   2302 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
   2303 	    sc->sc_dev.dv_xname, reg_bcnt));
   2304 
   2305 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
   2306 	    sc->sc_dev.dv_xname, reg_cap1));
   2307 }
   2308 
   2309 /* First beacon was sent at time 0 microseconds, current time is
   2310  * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
   2311  * microseconds.  Return the expected time in microseconds for the
   2312  * beacon after next.
   2313  */
   2314 static __inline u_int64_t
   2315 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
   2316 {
   2317 	return tsft + (tbtt - tsft % tbtt);
   2318 }
   2319 
   2320 /* If we've created an IBSS, write the TSF time in the ADM8211 to
   2321  * the ieee80211com.
   2322  *
   2323  * Predict the next target beacon transmission time (TBTT) and
   2324  * write it to the ADM8211.
   2325  */
   2326 static void
   2327 atw_tsf(struct atw_softc *sc)
   2328 {
   2329 #define TBTTOFS 20 /* TU */
   2330 
   2331 	struct ieee80211com *ic = &sc->sc_ic;
   2332 	u_int64_t tsft, tbtt;
   2333 
   2334 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
   2335 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
   2336 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
   2337 		tsft = ATW_READ(sc, ATW_TSFTH);
   2338 		tsft <<= 32;
   2339 		tsft |= ATW_READ(sc, ATW_TSFTL);
   2340 		*(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
   2341 	} else
   2342 		tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
   2343 
   2344 	tbtt = atw_predict_beacon(tsft,
   2345 	    ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
   2346 
   2347 	/* skip one more beacon so that the TBTT cannot pass before
   2348 	 * we've programmed it, and also so that we can subtract a
   2349 	 * few TU so that we wake a little before TBTT.
   2350 	 */
   2351 	tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
   2352 
   2353 	/* wake up a little early */
   2354 	tbtt -= TBTTOFS * IEEE80211_DUR_TU;
   2355 
   2356 	DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
   2357 	    sc->sc_dev.dv_xname, tsft, tbtt));
   2358 
   2359 	ATW_WRITE(sc, ATW_TOFS1,
   2360 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
   2361 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
   2362 	    LSHIFT(
   2363 		MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
   2364 		ATW_TOFS1_TBTTPRE_MASK));
   2365 #undef TBTTOFS
   2366 }
   2367 
   2368 static void
   2369 atw_next_scan(void *arg)
   2370 {
   2371 	struct atw_softc *sc = arg;
   2372 	struct ieee80211com *ic = &sc->sc_ic;
   2373 	struct ifnet *ifp = &ic->ic_if;
   2374 	int s;
   2375 
   2376 	/* don't call atw_start w/o network interrupts blocked */
   2377 	s = splnet();
   2378 	if (ic->ic_state == IEEE80211_S_SCAN)
   2379 		ieee80211_next_scan(ifp);
   2380 	splx(s);
   2381 }
   2382 
   2383 /* Synchronize the hardware state with the software state. */
   2384 static int
   2385 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   2386 {
   2387 	struct ifnet *ifp = &ic->ic_if;
   2388 	struct atw_softc *sc = ifp->if_softc;
   2389 	enum ieee80211_state ostate;
   2390 	int error;
   2391 
   2392 	ostate = ic->ic_state;
   2393 
   2394 	if (nstate == IEEE80211_S_INIT) {
   2395 		callout_stop(&sc->sc_scan_ch);
   2396 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
   2397 		atw_start_beacon(sc, 0);
   2398 		return (*sc->sc_newstate)(ic, nstate, arg);
   2399 	}
   2400 
   2401 	if ((error = atw_tune(sc)) != 0)
   2402 		return error;
   2403 
   2404 	switch (nstate) {
   2405 	case IEEE80211_S_ASSOC:
   2406 		break;
   2407 	case IEEE80211_S_INIT:
   2408 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
   2409 		break;
   2410 	case IEEE80211_S_SCAN:
   2411 		memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
   2412 		atw_write_bssid(sc);
   2413 
   2414 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
   2415 		    atw_next_scan, sc);
   2416 
   2417 		break;
   2418 	case IEEE80211_S_RUN:
   2419 		if (ic->ic_opmode == IEEE80211_M_STA)
   2420 			break;
   2421 		/*FALLTHROUGH*/
   2422 	case IEEE80211_S_AUTH:
   2423 		atw_write_bssid(sc);
   2424 		atw_write_bcn_thresh(sc);
   2425 		atw_write_ssid(sc);
   2426 		atw_write_sup_rates(sc);
   2427 
   2428 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
   2429 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   2430 			break;
   2431 
   2432 		/* set listen interval
   2433 		 * XXX do software units agree w/ hardware?
   2434 		 */
   2435 		ATW_WRITE(sc, ATW_BPLI,
   2436 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2437 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
   2438 			   ATW_BPLI_LI_MASK));
   2439 
   2440 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
   2441 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
   2442 
   2443 		atw_tsf(sc);
   2444 		break;
   2445 	}
   2446 
   2447 	if (nstate != IEEE80211_S_SCAN)
   2448 		callout_stop(&sc->sc_scan_ch);
   2449 
   2450 	if (nstate == IEEE80211_S_RUN &&
   2451 	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   2452 	     ic->ic_opmode == IEEE80211_M_IBSS))
   2453 		atw_start_beacon(sc, 1);
   2454 	else
   2455 		atw_start_beacon(sc, 0);
   2456 
   2457 	return (*sc->sc_newstate)(ic, nstate, arg);
   2458 }
   2459 
   2460 /*
   2461  * atw_add_rxbuf:
   2462  *
   2463  *	Add a receive buffer to the indicated descriptor.
   2464  */
   2465 int
   2466 atw_add_rxbuf(struct atw_softc *sc, int idx)
   2467 {
   2468 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2469 	struct mbuf *m;
   2470 	int error;
   2471 
   2472 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2473 	if (m == NULL)
   2474 		return (ENOBUFS);
   2475 
   2476 	MCLGET(m, M_DONTWAIT);
   2477 	if ((m->m_flags & M_EXT) == 0) {
   2478 		m_freem(m);
   2479 		return (ENOBUFS);
   2480 	}
   2481 
   2482 	if (rxs->rxs_mbuf != NULL)
   2483 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2484 
   2485 	rxs->rxs_mbuf = m;
   2486 
   2487 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2488 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2489 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2490 	if (error) {
   2491 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2492 		    sc->sc_dev.dv_xname, idx, error);
   2493 		panic("atw_add_rxbuf");	/* XXX */
   2494 	}
   2495 
   2496 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2497 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2498 
   2499 	ATW_INIT_RXDESC(sc, idx);
   2500 
   2501 	return (0);
   2502 }
   2503 
   2504 /*
   2505  * Release any queued transmit buffers.
   2506  */
   2507 void
   2508 atw_txdrain(struct atw_softc *sc)
   2509 {
   2510 	struct atw_txsoft *txs;
   2511 
   2512 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2513 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2514 		if (txs->txs_mbuf != NULL) {
   2515 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2516 			m_freem(txs->txs_mbuf);
   2517 			txs->txs_mbuf = NULL;
   2518 		}
   2519 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2520 	}
   2521 	sc->sc_tx_timer = 0;
   2522 }
   2523 
   2524 /*
   2525  * atw_stop:		[ ifnet interface function ]
   2526  *
   2527  *	Stop transmission on the interface.
   2528  */
   2529 void
   2530 atw_stop(struct ifnet *ifp, int disable)
   2531 {
   2532 	struct atw_softc *sc = ifp->if_softc;
   2533 	struct ieee80211com *ic = &sc->sc_ic;
   2534 
   2535 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   2536 
   2537 	/* Disable interrupts. */
   2538 	ATW_WRITE(sc, ATW_IER, 0);
   2539 
   2540 	/* Stop the transmit and receive processes. */
   2541 	sc->sc_opmode = 0;
   2542 	ATW_WRITE(sc, ATW_NAR, 0);
   2543 	ATW_WRITE(sc, ATW_TDBD, 0);
   2544 	ATW_WRITE(sc, ATW_TDBP, 0);
   2545 	ATW_WRITE(sc, ATW_RDB, 0);
   2546 
   2547 	atw_txdrain(sc);
   2548 
   2549 	if (disable) {
   2550 		atw_rxdrain(sc);
   2551 		atw_disable(sc);
   2552 	}
   2553 
   2554 	/*
   2555 	 * Mark the interface down and cancel the watchdog timer.
   2556 	 */
   2557 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2558 	ifp->if_timer = 0;
   2559 
   2560 	if (!disable)
   2561 		atw_reset(sc);
   2562 }
   2563 
   2564 /*
   2565  * atw_rxdrain:
   2566  *
   2567  *	Drain the receive queue.
   2568  */
   2569 void
   2570 atw_rxdrain(struct atw_softc *sc)
   2571 {
   2572 	struct atw_rxsoft *rxs;
   2573 	int i;
   2574 
   2575 	for (i = 0; i < ATW_NRXDESC; i++) {
   2576 		rxs = &sc->sc_rxsoft[i];
   2577 		if (rxs->rxs_mbuf == NULL)
   2578 			continue;
   2579 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2580 		m_freem(rxs->rxs_mbuf);
   2581 		rxs->rxs_mbuf = NULL;
   2582 	}
   2583 }
   2584 
   2585 /*
   2586  * atw_detach:
   2587  *
   2588  *	Detach an ADM8211 interface.
   2589  */
   2590 int
   2591 atw_detach(struct atw_softc *sc)
   2592 {
   2593 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2594 	struct atw_rxsoft *rxs;
   2595 	struct atw_txsoft *txs;
   2596 	int i;
   2597 
   2598 	/*
   2599 	 * Succeed now if there isn't any work to do.
   2600 	 */
   2601 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
   2602 		return (0);
   2603 
   2604 	ieee80211_ifdetach(ifp);
   2605 	if_detach(ifp);
   2606 
   2607 	for (i = 0; i < ATW_NRXDESC; i++) {
   2608 		rxs = &sc->sc_rxsoft[i];
   2609 		if (rxs->rxs_mbuf != NULL) {
   2610 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2611 			m_freem(rxs->rxs_mbuf);
   2612 			rxs->rxs_mbuf = NULL;
   2613 		}
   2614 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
   2615 	}
   2616 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   2617 		txs = &sc->sc_txsoft[i];
   2618 		if (txs->txs_mbuf != NULL) {
   2619 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2620 			m_freem(txs->txs_mbuf);
   2621 			txs->txs_mbuf = NULL;
   2622 		}
   2623 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
   2624 	}
   2625 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2626 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2627 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2628 	    sizeof(struct atw_control_data));
   2629 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2630 
   2631 	shutdownhook_disestablish(sc->sc_sdhook);
   2632 	powerhook_disestablish(sc->sc_powerhook);
   2633 
   2634 	if (sc->sc_srom)
   2635 		free(sc->sc_srom, M_DEVBUF);
   2636 
   2637 	return (0);
   2638 }
   2639 
   2640 /* atw_shutdown: make sure the interface is stopped at reboot time. */
   2641 void
   2642 atw_shutdown(void *arg)
   2643 {
   2644 	struct atw_softc *sc = arg;
   2645 
   2646 	atw_stop(&sc->sc_ic.ic_if, 1);
   2647 }
   2648 
   2649 int
   2650 atw_intr(void *arg)
   2651 {
   2652 	struct atw_softc *sc = arg;
   2653 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2654 	u_int32_t status, rxstatus, txstatus, linkstatus;
   2655 	int handled = 0, txthresh;
   2656 
   2657 #ifdef DEBUG
   2658 	if (ATW_IS_ENABLED(sc) == 0)
   2659 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
   2660 #endif
   2661 
   2662 	/*
   2663 	 * If the interface isn't running, the interrupt couldn't
   2664 	 * possibly have come from us.
   2665 	 */
   2666 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   2667 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   2668 		return (0);
   2669 
   2670 	for (;;) {
   2671 		status = ATW_READ(sc, ATW_STSR);
   2672 
   2673 		if (status)
   2674 			ATW_WRITE(sc, ATW_STSR, status);
   2675 
   2676 		if (sc->sc_intr_ack != NULL)
   2677 			(*sc->sc_intr_ack)(sc);
   2678 
   2679 #ifdef ATW_DEBUG
   2680 #define PRINTINTR(flag) do { \
   2681 	if ((status & flag) != 0) { \
   2682 		printf("%s" #flag, delim); \
   2683 		delim = ","; \
   2684 	} \
   2685 } while (0)
   2686 
   2687 		if (atw_debug > 1 && status) {
   2688 			const char *delim = "<";
   2689 
   2690 			printf("%s: reg[STSR] = %x",
   2691 			    sc->sc_dev.dv_xname, status);
   2692 
   2693 			PRINTINTR(ATW_INTR_FBE);
   2694 			PRINTINTR(ATW_INTR_LINKOFF);
   2695 			PRINTINTR(ATW_INTR_LINKON);
   2696 			PRINTINTR(ATW_INTR_RCI);
   2697 			PRINTINTR(ATW_INTR_RDU);
   2698 			PRINTINTR(ATW_INTR_REIS);
   2699 			PRINTINTR(ATW_INTR_RPS);
   2700 			PRINTINTR(ATW_INTR_TCI);
   2701 			PRINTINTR(ATW_INTR_TDU);
   2702 			PRINTINTR(ATW_INTR_TLT);
   2703 			PRINTINTR(ATW_INTR_TPS);
   2704 			PRINTINTR(ATW_INTR_TRT);
   2705 			PRINTINTR(ATW_INTR_TUF);
   2706 			PRINTINTR(ATW_INTR_BCNTC);
   2707 			PRINTINTR(ATW_INTR_ATIME);
   2708 			PRINTINTR(ATW_INTR_TBTT);
   2709 			PRINTINTR(ATW_INTR_TSCZ);
   2710 			PRINTINTR(ATW_INTR_TSFTF);
   2711 			printf(">\n");
   2712 		}
   2713 #undef PRINTINTR
   2714 #endif /* ATW_DEBUG */
   2715 
   2716 		if ((status & sc->sc_inten) == 0)
   2717 			break;
   2718 
   2719 		handled = 1;
   2720 
   2721 		rxstatus = status & sc->sc_rxint_mask;
   2722 		txstatus = status & sc->sc_txint_mask;
   2723 		linkstatus = status & sc->sc_linkint_mask;
   2724 
   2725 		if (linkstatus) {
   2726 			atw_linkintr(sc, linkstatus);
   2727 		}
   2728 
   2729 		if (rxstatus) {
   2730 			/* Grab any new packets. */
   2731 			atw_rxintr(sc);
   2732 
   2733 			if (rxstatus & ATW_INTR_RDU) {
   2734 				printf("%s: receive ring overrun\n",
   2735 				    sc->sc_dev.dv_xname);
   2736 				/* Get the receive process going again. */
   2737 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2738 				break;
   2739 			}
   2740 		}
   2741 
   2742 		if (txstatus) {
   2743 			/* Sweep up transmit descriptors. */
   2744 			atw_txintr(sc);
   2745 
   2746 			if (txstatus & ATW_INTR_TLT)
   2747 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
   2748 				    sc->sc_dev.dv_xname));
   2749 
   2750 			if (txstatus & ATW_INTR_TRT)
   2751 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
   2752 				    sc->sc_dev.dv_xname));
   2753 
   2754 			/* If Tx under-run, increase our transmit threshold
   2755 			 * if another is available.
   2756 			 */
   2757 			txthresh = sc->sc_txthresh + 1;
   2758 			if ((txstatus & ATW_INTR_TUF) &&
   2759 			    sc->sc_txth[txthresh].txth_name != NULL) {
   2760 				/* Idle the transmit process. */
   2761 				atw_idle(sc, ATW_NAR_ST);
   2762 
   2763 				sc->sc_txthresh = txthresh;
   2764 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
   2765 				sc->sc_opmode |=
   2766 				    sc->sc_txth[txthresh].txth_opmode;
   2767 				printf("%s: transmit underrun; new "
   2768 				    "threshold: %s\n", sc->sc_dev.dv_xname,
   2769 				    sc->sc_txth[txthresh].txth_name);
   2770 
   2771 				/* Set the new threshold and restart
   2772 				 * the transmit process.
   2773 				 */
   2774 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2775 				/* XXX Log every Nth underrun from
   2776 				 * XXX now on?
   2777 				 */
   2778 			}
   2779 		}
   2780 
   2781 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
   2782 			if (status & ATW_INTR_TPS)
   2783 				printf("%s: transmit process stopped\n",
   2784 				    sc->sc_dev.dv_xname);
   2785 			if (status & ATW_INTR_RPS)
   2786 				printf("%s: receive process stopped\n",
   2787 				    sc->sc_dev.dv_xname);
   2788 			(void)atw_init(ifp);
   2789 			break;
   2790 		}
   2791 
   2792 		if (status & ATW_INTR_FBE) {
   2793 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
   2794 			(void)atw_init(ifp);
   2795 			break;
   2796 		}
   2797 
   2798 		/*
   2799 		 * Not handled:
   2800 		 *
   2801 		 *	Transmit buffer unavailable -- normal
   2802 		 *	condition, nothing to do, really.
   2803 		 *
   2804 		 *	Early receive interrupt -- not available on
   2805 		 *	all chips, we just use RI.  We also only
   2806 		 *	use single-segment receive DMA, so this
   2807 		 *	is mostly useless.
   2808 		 *
   2809 		 *      TBD others
   2810 		 */
   2811 	}
   2812 
   2813 	/* Try to get more packets going. */
   2814 	atw_start(ifp);
   2815 
   2816 	return (handled);
   2817 }
   2818 
   2819 /*
   2820  * atw_idle:
   2821  *
   2822  *	Cause the transmit and/or receive processes to go idle.
   2823  *
   2824  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
   2825  *	process in STSR if I clear SR or ST after the process has already
   2826  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
   2827  *      do not seem to be too reliable. Perhaps I have the sense of the
   2828  *	Rx bits switched with the Tx bits?
   2829  */
   2830 void
   2831 atw_idle(struct atw_softc *sc, u_int32_t bits)
   2832 {
   2833 	u_int32_t ackmask = 0, opmode, stsr, test0;
   2834 	int i, s;
   2835 
   2836 	/* without this, somehow we run concurrently w/ interrupt handler */
   2837 	s = splnet();
   2838 
   2839 	opmode = sc->sc_opmode & ~bits;
   2840 
   2841 	if (bits & ATW_NAR_SR)
   2842 		ackmask |= ATW_INTR_RPS;
   2843 
   2844 	if (bits & ATW_NAR_ST) {
   2845 		ackmask |= ATW_INTR_TPS;
   2846 		/* set ATW_NAR_HF to flush TX FIFO. */
   2847 		opmode |= ATW_NAR_HF;
   2848 	}
   2849 
   2850 	ATW_WRITE(sc, ATW_NAR, opmode);
   2851 
   2852 	for (i = 0; i < 1000; i++) {
   2853 		stsr = ATW_READ(sc, ATW_STSR);
   2854 		if ((stsr & ackmask) == ackmask)
   2855 			break;
   2856 		DELAY(10);
   2857 	}
   2858 
   2859 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
   2860 
   2861 	if ((stsr & ackmask) == ackmask)
   2862 		goto out;
   2863 
   2864 	test0 = ATW_READ(sc, ATW_TEST0);
   2865 
   2866 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
   2867 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
   2868 		printf("%s: transmit process not idle [%s]\n",
   2869 		    sc->sc_dev.dv_xname,
   2870 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
   2871 		printf("%s: bits %08x test0 %08x stsr %08x\n",
   2872 		    sc->sc_dev.dv_xname, bits, test0, stsr);
   2873 	}
   2874 
   2875 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
   2876 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
   2877 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
   2878 		    sc->sc_dev.dv_xname,
   2879 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
   2880 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
   2881 		    sc->sc_dev.dv_xname, bits, test0, stsr));
   2882 	}
   2883 out:
   2884 	if ((bits & ATW_NAR_ST) != 0)
   2885 		atw_txdrain(sc);
   2886 	splx(s);
   2887 	return;
   2888 }
   2889 
   2890 /*
   2891  * atw_linkintr:
   2892  *
   2893  *	Helper; handle link-status interrupts.
   2894  */
   2895 void
   2896 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
   2897 {
   2898 	struct ieee80211com *ic = &sc->sc_ic;
   2899 
   2900 	if (ic->ic_state != IEEE80211_S_RUN)
   2901 		return;
   2902 
   2903 	if (linkstatus & ATW_INTR_LINKON) {
   2904 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
   2905 		sc->sc_rescan_timer = 0;
   2906 	} else if (linkstatus & ATW_INTR_LINKOFF) {
   2907 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
   2908 		switch (ic->ic_opmode) {
   2909 		case IEEE80211_M_HOSTAP:
   2910 			return;
   2911 		case IEEE80211_M_IBSS:
   2912 			if (ic->ic_flags & IEEE80211_F_SIBSS)
   2913 				return;
   2914 			/*FALLTHROUGH*/
   2915 		case IEEE80211_M_STA:
   2916 			sc->sc_rescan_timer = 3;
   2917 			ic->ic_if.if_timer = 1;
   2918 			break;
   2919 		default:
   2920 			break;
   2921 		}
   2922 	}
   2923 }
   2924 
   2925 /*
   2926  * atw_rxintr:
   2927  *
   2928  *	Helper; handle receive interrupts.
   2929  */
   2930 void
   2931 atw_rxintr(struct atw_softc *sc)
   2932 {
   2933 	static int rate_tbl[] = {2, 4, 11, 22, 44};
   2934 	struct ieee80211com *ic = &sc->sc_ic;
   2935 	struct ieee80211_node *ni;
   2936 	struct ieee80211_frame *wh;
   2937 	struct ifnet *ifp = &ic->ic_if;
   2938 	struct atw_rxsoft *rxs;
   2939 	struct mbuf *m;
   2940 	u_int32_t rxstat;
   2941 	int i, len, rate, rate0;
   2942 	u_int32_t rssi;
   2943 
   2944 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
   2945 		rxs = &sc->sc_rxsoft[i];
   2946 
   2947 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2948 
   2949 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
   2950 		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
   2951 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
   2952 
   2953 		if (rxstat & ATW_RXSTAT_OWN)
   2954 			break; /* We have processed all receive buffers. */
   2955 
   2956 		DPRINTF3(sc,
   2957 		    ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
   2958 		    sc->sc_dev.dv_xname,
   2959 		    sc->sc_rxdescs[i].ar_stat,
   2960 		    sc->sc_rxdescs[i].ar_rssi,
   2961 		    sc->sc_rxdescs[i].ar_buf1,
   2962 		    sc->sc_rxdescs[i].ar_buf2));
   2963 
   2964 		/*
   2965 		 * Make sure the packet fit in one buffer.  This should
   2966 		 * always be the case.
   2967 		 */
   2968 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
   2969 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
   2970 			printf("%s: incoming packet spilled, resetting\n",
   2971 			    sc->sc_dev.dv_xname);
   2972 			(void)atw_init(ifp);
   2973 			return;
   2974 		}
   2975 
   2976 		/*
   2977 		 * If an error occurred, update stats, clear the status
   2978 		 * word, and leave the packet buffer in place.  It will
   2979 		 * simply be reused the next time the ring comes around.
   2980 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
   2981 		 * error.
   2982 		 */
   2983 
   2984 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
   2985 		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
   2986 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
   2987 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
   2988 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
   2989 				ATW_RXSTAT_ICVE)) != 0)) {
   2990 #define	PRINTERR(bit, str)						\
   2991 			if (rxstat & (bit))				\
   2992 				printf("%s: receive error: %s\n",	\
   2993 				    sc->sc_dev.dv_xname, str)
   2994 			ifp->if_ierrors++;
   2995 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
   2996 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
   2997 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
   2998 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
   2999 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
   3000 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
   3001 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
   3002 #undef PRINTERR
   3003 			ATW_INIT_RXDESC(sc, i);
   3004 			continue;
   3005 		}
   3006 
   3007 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3008 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3009 
   3010 		/*
   3011 		 * No errors; receive the packet.  Note the ADM8211
   3012 		 * includes the CRC in promiscuous mode.
   3013 		 */
   3014 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
   3015 
   3016 		/*
   3017 		 * Allocate a new mbuf cluster.  If that fails, we are
   3018 		 * out of memory, and must drop the packet and recycle
   3019 		 * the buffer that's already attached to this descriptor.
   3020 		 */
   3021 		m = rxs->rxs_mbuf;
   3022 		if (atw_add_rxbuf(sc, i) != 0) {
   3023 			ifp->if_ierrors++;
   3024 			ATW_INIT_RXDESC(sc, i);
   3025 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3026 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3027 			continue;
   3028 		}
   3029 
   3030 		ifp->if_ipackets++;
   3031 		if (sc->sc_opmode & ATW_NAR_PR)
   3032 			m->m_flags |= M_HASFCS;
   3033 		m->m_pkthdr.rcvif = ifp;
   3034 		m->m_pkthdr.len = m->m_len = len;
   3035 
   3036 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
   3037 			rate = 0;
   3038 		else
   3039 			rate = rate_tbl[rate0];
   3040 
   3041  #if NBPFILTER > 0
   3042 		/* Pass this up to any BPF listeners. */
   3043 		if (sc->sc_radiobpf != NULL) {
   3044 			struct mbuf mb;
   3045 
   3046 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
   3047 
   3048 			tap->ar_rate = rate;
   3049 			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3050 			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3051 
   3052 			/* TBD verify units are dB */
   3053 			tap->ar_antsignal = (int)rssi;
   3054 			/* TBD tap->ar_flags */
   3055 
   3056 			M_COPY_PKTHDR(&mb, m);
   3057 			mb.m_data = (caddr_t)tap;
   3058 			mb.m_len = tap->ar_ihdr.it_len;
   3059 			mb.m_next = m;
   3060 			mb.m_pkthdr.len += mb.m_len;
   3061 			bpf_mtap(sc->sc_radiobpf, &mb);
   3062  		}
   3063  #endif /* NPBFILTER > 0 */
   3064 
   3065 		wh = mtod(m, struct ieee80211_frame *);
   3066 		ni = ieee80211_find_rxnode(ic, wh);
   3067 		if (m->m_pkthdr.len >= sizeof(struct ieee80211_frame_min) ||
   3068 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   3069 			ieee80211_input(ifp, m, ni, (int)rssi, 0);
   3070 		/*
   3071 		 * The frame may have caused the node to be marked for
   3072 		 * reclamation (e.g. in response to a DEAUTH message)
   3073 		 * so use free_node here instead of unref_node.
   3074 		 */
   3075 		if (ni == ic->ic_bss)
   3076 			ieee80211_unref_node(&ni);
   3077 		else
   3078 			ieee80211_free_node(ic, ni);
   3079 	}
   3080 
   3081 	/* Update the receive pointer. */
   3082 	sc->sc_rxptr = i;
   3083 }
   3084 
   3085 /*
   3086  * atw_txintr:
   3087  *
   3088  *	Helper; handle transmit interrupts.
   3089  */
   3090 void
   3091 atw_txintr(struct atw_softc *sc)
   3092 {
   3093 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
   3094     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
   3095 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
   3096     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
   3097 
   3098 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
   3099 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3100 	struct atw_txsoft *txs;
   3101 	u_int32_t txstat;
   3102 
   3103 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
   3104 	    sc->sc_dev.dv_xname, sc->sc_flags));
   3105 
   3106 	ifp->if_flags &= ~IFF_OACTIVE;
   3107 
   3108 	/*
   3109 	 * Go through our Tx list and free mbufs for those
   3110 	 * frames that have been transmitted.
   3111 	 */
   3112 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   3113 		ATW_CDTXSYNC(sc, txs->txs_lastdesc,
   3114 		    txs->txs_ndescs,
   3115 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3116 
   3117 #ifdef ATW_DEBUG
   3118 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3119 			int i;
   3120 			printf("    txsoft %p transmit chain:\n", txs);
   3121 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
   3122 				printf("     descriptor %d:\n", i);
   3123 				printf("       at_status:   0x%08x\n",
   3124 				    le32toh(sc->sc_txdescs[i].at_stat));
   3125 				printf("       at_flags:      0x%08x\n",
   3126 				    le32toh(sc->sc_txdescs[i].at_flags));
   3127 				printf("       at_buf1: 0x%08x\n",
   3128 				    le32toh(sc->sc_txdescs[i].at_buf1));
   3129 				printf("       at_buf2: 0x%08x\n",
   3130 				    le32toh(sc->sc_txdescs[i].at_buf2));
   3131 				if (i == txs->txs_lastdesc)
   3132 					break;
   3133 			}
   3134 		}
   3135 #endif
   3136 
   3137 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
   3138 		if (txstat & ATW_TXSTAT_OWN)
   3139 			break;
   3140 
   3141 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   3142 
   3143 		sc->sc_txfree += txs->txs_ndescs;
   3144 
   3145 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   3146 		    0, txs->txs_dmamap->dm_mapsize,
   3147 		    BUS_DMASYNC_POSTWRITE);
   3148 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3149 		m_freem(txs->txs_mbuf);
   3150 		txs->txs_mbuf = NULL;
   3151 
   3152 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   3153 
   3154 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   3155 		    (txstat & TXSTAT_ERRMASK) != 0) {
   3156 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
   3157 			    txstat_buf, sizeof(txstat_buf));
   3158 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
   3159 			    txstat_buf,
   3160 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
   3161 		}
   3162 
   3163 		/*
   3164 		 * Check for errors and collisions.
   3165 		 */
   3166 		if (txstat & ATW_TXSTAT_TUF)
   3167 			sc->sc_stats.ts_tx_tuf++;
   3168 		if (txstat & ATW_TXSTAT_TLT)
   3169 			sc->sc_stats.ts_tx_tlt++;
   3170 		if (txstat & ATW_TXSTAT_TRT)
   3171 			sc->sc_stats.ts_tx_trt++;
   3172 		if (txstat & ATW_TXSTAT_TRO)
   3173 			sc->sc_stats.ts_tx_tro++;
   3174 		if (txstat & ATW_TXSTAT_SOFBR) {
   3175 			sc->sc_stats.ts_tx_sofbr++;
   3176 		}
   3177 
   3178 		if ((txstat & ATW_TXSTAT_ES) == 0)
   3179 			ifp->if_collisions +=
   3180 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
   3181 		else
   3182 			ifp->if_oerrors++;
   3183 
   3184 		ifp->if_opackets++;
   3185 	}
   3186 
   3187 	/*
   3188 	 * If there are no more pending transmissions, cancel the watchdog
   3189 	 * timer.
   3190 	 */
   3191 	if (txs == NULL)
   3192 		sc->sc_tx_timer = 0;
   3193 #undef TXSTAT_ERRMASK
   3194 #undef TXSTAT_FMT
   3195 }
   3196 
   3197 /*
   3198  * atw_watchdog:	[ifnet interface function]
   3199  *
   3200  *	Watchdog timer handler.
   3201  */
   3202 void
   3203 atw_watchdog(struct ifnet *ifp)
   3204 {
   3205 	struct atw_softc *sc = ifp->if_softc;
   3206 	struct ieee80211com *ic = &sc->sc_ic;
   3207 
   3208 	ifp->if_timer = 0;
   3209 	if (ATW_IS_ENABLED(sc) == 0)
   3210 		return;
   3211 
   3212 	if (sc->sc_rescan_timer) {
   3213 		if (--sc->sc_rescan_timer == 0)
   3214 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3215 	}
   3216 	if (sc->sc_tx_timer) {
   3217 		if (--sc->sc_tx_timer == 0 &&
   3218 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
   3219 			printf("%s: transmit timeout\n", ifp->if_xname);
   3220 			ifp->if_oerrors++;
   3221 			(void)atw_init(ifp);
   3222 			atw_start(ifp);
   3223 		}
   3224 	}
   3225 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
   3226 		ifp->if_timer = 1;
   3227 	ieee80211_watchdog(ifp);
   3228 }
   3229 
   3230 /* Compute the 802.11 Duration field and the PLCP Length fields for
   3231  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
   3232  * Write the fields to the ADM8211 Tx header, frm.
   3233  *
   3234  * TBD use the fragmentation threshold to find the right duration for
   3235  * the first & last fragments.
   3236  *
   3237  * TBD make certain of the duration fields applied by the ADM8211 to each
   3238  * fragment. I think that the ADM8211 knows how to subtract the CTS
   3239  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
   3240  * I also think that the ADM8211 does *some* arithmetic for us, because
   3241  * otherwise I think we would have to set a first duration for CTS/first
   3242  * fragment, a second duration for fragments between the first and the
   3243  * last, and a third duration for the last fragment.
   3244  *
   3245  * TBD make certain that duration fields reflect addition of FCS/WEP
   3246  * and correct duration arithmetic as necessary.
   3247  */
   3248 static void
   3249 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
   3250     int len)
   3251 {
   3252 	int remainder;
   3253 
   3254 	/* deal also with encrypted fragments */
   3255 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
   3256 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
   3257 		    sc->sc_dev.dv_xname));
   3258 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
   3259 		       IEEE80211_WEP_CRCLEN;
   3260 	}
   3261 
   3262 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
   3263 	 * duration (XXX added by MAC?).
   3264 	 */
   3265 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
   3266 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
   3267 
   3268 	if (rate <= 4)
   3269 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
   3270 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3271 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3272 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3273 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
   3274 	else
   3275 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
   3276 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3277 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3278 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3279 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
   3280 
   3281 	/* lengthen duration if long preamble */
   3282 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
   3283 		frm->atw_head_dur +=
   3284 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
   3285 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
   3286 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
   3287 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
   3288 
   3289 	if (remainder != 0)
   3290 		frm->atw_head_dur++;
   3291 
   3292 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
   3293 	    (rate == 2 || rate == 4)) {
   3294 		/* derived from Linux: how could this be right? */
   3295 		frm->atw_head_plcplen = frm->atw_head_dur;
   3296 	} else {
   3297 		frm->atw_head_plcplen = (16 * len) / rate;
   3298 		remainder = (80 * len) % (rate * 5);
   3299 
   3300 		if (remainder != 0) {
   3301 			frm->atw_head_plcplen++;
   3302 
   3303 			/* XXX magic */
   3304 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
   3305 			    rate == 22 && remainder <= 30)
   3306 				frm->atw_head_plcplen |= 0x8000;
   3307 		}
   3308 	}
   3309 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
   3310 	    htole16(frm->atw_head_plcplen);
   3311 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
   3312 }
   3313 
   3314 #ifdef ATW_DEBUG
   3315 static void
   3316 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
   3317 {
   3318 	struct atw_softc *sc = ifp->if_softc;
   3319 	struct mbuf *m;
   3320 	int i, noctets = 0;
   3321 
   3322 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
   3323 	    m0->m_pkthdr.len);
   3324 
   3325 	for (m = m0; m; m = m->m_next) {
   3326 		if (m->m_len == 0)
   3327 			continue;
   3328 		for (i = 0; i < m->m_len; i++) {
   3329 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
   3330 			if (++noctets % 24 == 0)
   3331 				printf("\n");
   3332 		}
   3333 	}
   3334 	printf("%s%s: %d bytes emitted\n",
   3335 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
   3336 }
   3337 #endif /* ATW_DEBUG */
   3338 
   3339 /*
   3340  * atw_start:		[ifnet interface function]
   3341  *
   3342  *	Start packet transmission on the interface.
   3343  */
   3344 void
   3345 atw_start(struct ifnet *ifp)
   3346 {
   3347 	struct atw_softc *sc = ifp->if_softc;
   3348 	struct ieee80211com *ic = &sc->sc_ic;
   3349 	struct ieee80211_node *ni;
   3350 	struct ieee80211_frame *wh;
   3351 	struct atw_frame *hh;
   3352 	struct mbuf *m0, *m;
   3353 	struct atw_txsoft *txs, *last_txs;
   3354 	struct atw_txdesc *txd;
   3355 	int do_encrypt, rate;
   3356 	bus_dmamap_t dmamap;
   3357 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
   3358 
   3359 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
   3360 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
   3361 
   3362 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3363 		return;
   3364 
   3365 #if 0 /* TBD ??? */
   3366 	if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
   3367 		return;
   3368 #endif
   3369 
   3370 	/*
   3371 	 * Remember the previous number of free descriptors and
   3372 	 * the first descriptor we'll use.
   3373 	 */
   3374 	ofree = sc->sc_txfree;
   3375 	firsttx = sc->sc_txnext;
   3376 
   3377 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
   3378 	    sc->sc_dev.dv_xname, ofree, firsttx));
   3379 
   3380 	/*
   3381 	 * Loop through the send queue, setting up transmit descriptors
   3382 	 * until we drain the queue, or use up all available transmit
   3383 	 * descriptors.
   3384 	 */
   3385 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   3386 	       sc->sc_txfree != 0) {
   3387 
   3388 		do_encrypt = 0;
   3389 		/*
   3390 		 * Grab a packet off the management queue, if it
   3391 		 * is not empty. Otherwise, from the data queue.
   3392 		 */
   3393 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   3394 		if (m0 != NULL) {
   3395 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   3396 			m0->m_pkthdr.rcvif = NULL;
   3397 		} else {
   3398 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   3399 			if (m0 == NULL)
   3400 				break;
   3401 #if NBPFILTER > 0
   3402 			if (ifp->if_bpf != NULL)
   3403 				bpf_mtap(ifp->if_bpf, m0);
   3404 #endif /* NBPFILTER > 0 */
   3405 			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
   3406 				ifp->if_oerrors++;
   3407 				break;
   3408 			}
   3409 		}
   3410 
   3411 		rate = MAX(ieee80211_get_rate(ic), 2);
   3412 
   3413 #if NBPFILTER > 0
   3414 		/*
   3415 		 * Pass the packet to any BPF listeners.
   3416 		 */
   3417 		if (ic->ic_rawbpf != NULL)
   3418 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
   3419 
   3420 		if (sc->sc_radiobpf != NULL) {
   3421 			struct mbuf mb;
   3422 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
   3423 
   3424 			tap->at_rate = rate;
   3425 			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3426 			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3427 
   3428 			/* TBD tap->at_flags */
   3429 
   3430 			M_COPY_PKTHDR(&mb, m0);
   3431 			mb.m_data = (caddr_t)tap;
   3432 			mb.m_len = tap->at_ihdr.it_len;
   3433 			mb.m_next = m0;
   3434 			mb.m_pkthdr.len += mb.m_len;
   3435 			bpf_mtap(sc->sc_radiobpf, &mb);
   3436 		}
   3437 #endif /* NBPFILTER > 0 */
   3438 
   3439 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
   3440 
   3441 		if (ni != NULL && ni != ic->ic_bss)
   3442 			ieee80211_free_node(ic, ni);
   3443 
   3444 		if (m0 == NULL) {
   3445 			ifp->if_oerrors++;
   3446 			break;
   3447 		}
   3448 
   3449 		/* just to make sure. */
   3450 		m0 = m_pullup(m0, sizeof(struct atw_frame));
   3451 
   3452 		if (m0 == NULL) {
   3453 			ifp->if_oerrors++;
   3454 			break;
   3455 		}
   3456 
   3457 		hh = mtod(m0, struct atw_frame *);
   3458 		wh = &hh->atw_ihdr;
   3459 
   3460 		do_encrypt = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
   3461 
   3462 		/* Copy everything we need from the 802.11 header:
   3463 		 * Frame Control; address 1, address 3, or addresses
   3464 		 * 3 and 4. NIC fills in BSSID, SA.
   3465 		 */
   3466 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
   3467 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
   3468 				panic("%s: illegal WDS frame",
   3469 				    sc->sc_dev.dv_xname);
   3470 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
   3471 		} else
   3472 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
   3473 
   3474 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
   3475 
   3476 		/* initialize remaining Tx parameters */
   3477 		memset(&hh->u, 0, sizeof(hh->u));
   3478 
   3479 		hh->atw_rate = rate * 5;
   3480 		/* XXX this could be incorrect if M_FCS. _encap should
   3481 		 * probably strip FCS just in case it sticks around in
   3482 		 * bridged packets.
   3483 		 */
   3484 		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
   3485 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
   3486 		    sizeof(struct atw_frame));
   3487 
   3488 #if 0
   3489 		/* this virtually guaranteed that WEP-encrypted frames
   3490 		 * are fragmented. oops.
   3491 		 */
   3492 		hh->atw_fragthr = htole16(m0->m_pkthdr.len -
   3493 		    sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
   3494 		hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3495 #else
   3496 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3497 #endif
   3498 
   3499 		hh->atw_rtylmt = 3;
   3500 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
   3501 		if (do_encrypt) {
   3502 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
   3503 			hh->atw_keyid = ic->ic_wep_txkey;
   3504 		}
   3505 
   3506 		/* TBD 4-addr frames */
   3507 		atw_frame_setdurs(sc, hh, rate,
   3508 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
   3509 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
   3510 
   3511 		/* never fragment multicast frames */
   3512 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
   3513 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3514 		} else if (sc->sc_flags & ATWF_RTSCTS) {
   3515 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
   3516 		}
   3517 
   3518 #ifdef ATW_DEBUG
   3519 		/* experimental stuff */
   3520 		if (atw_xrtylmt != ~0)
   3521 			hh->atw_rtylmt = atw_xrtylmt;
   3522 		if (atw_xhdrctl != 0)
   3523 			hh->atw_hdrctl |= htole16(atw_xhdrctl);
   3524 		if (atw_xservice != IEEE80211_PLCP_SERVICE)
   3525 			hh->atw_service = atw_xservice;
   3526 		if (atw_xpaylen != 0)
   3527 			hh->atw_paylen = htole16(atw_xpaylen);
   3528 		hh->atw_fragnum = 0;
   3529 
   3530 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3531 			printf("%s: dst = %s, rate = 0x%02x, "
   3532 			    "service = 0x%02x, paylen = 0x%04x\n",
   3533 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
   3534 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
   3535 
   3536 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
   3537 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
   3538 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
   3539 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
   3540 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
   3541 			    hh->atw_tail_dur, hh->atw_head_dur);
   3542 
   3543 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
   3544 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
   3545 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
   3546 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
   3547 
   3548 			printf("%s: keyid = %d\n",
   3549 			    sc->sc_dev.dv_xname, hh->atw_keyid);
   3550 
   3551 			atw_dump_pkt(ifp, m0);
   3552 		}
   3553 #endif /* ATW_DEBUG */
   3554 
   3555 		dmamap = txs->txs_dmamap;
   3556 
   3557 		/*
   3558 		 * Load the DMA map.  Copy and try (once) again if the packet
   3559 		 * didn't fit in the alloted number of segments.
   3560 		 */
   3561 		for (first = 1;
   3562 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   3563 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
   3564 		     first = 0) {
   3565 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   3566 			if (m == NULL) {
   3567 				printf("%s: unable to allocate Tx mbuf\n",
   3568 				    sc->sc_dev.dv_xname);
   3569 				break;
   3570 			}
   3571 			if (m0->m_pkthdr.len > MHLEN) {
   3572 				MCLGET(m, M_DONTWAIT);
   3573 				if ((m->m_flags & M_EXT) == 0) {
   3574 					printf("%s: unable to allocate Tx "
   3575 					    "cluster\n", sc->sc_dev.dv_xname);
   3576 					m_freem(m);
   3577 					break;
   3578 				}
   3579 			}
   3580 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   3581 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   3582 			m_freem(m0);
   3583 			m0 = m;
   3584 			m = NULL;
   3585 		}
   3586 		if (error != 0) {
   3587 			printf("%s: unable to load Tx buffer, "
   3588 			    "error = %d\n", sc->sc_dev.dv_xname, error);
   3589 			m_freem(m0);
   3590 			break;
   3591 		}
   3592 
   3593 		/*
   3594 		 * Ensure we have enough descriptors free to describe
   3595 		 * the packet.
   3596 		 */
   3597 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   3598 			/*
   3599 			 * Not enough free descriptors to transmit
   3600 			 * this packet.  Unload the DMA map and
   3601 			 * drop the packet.  Notify the upper layer
   3602 			 * that there are no more slots left.
   3603 			 *
   3604 			 * XXX We could allocate an mbuf and copy, but
   3605 			 * XXX it is worth it?
   3606 			 */
   3607 			ifp->if_flags |= IFF_OACTIVE;
   3608 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   3609 			m_freem(m0);
   3610 			break;
   3611 		}
   3612 
   3613 		/*
   3614 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   3615 		 */
   3616 
   3617 		/* Sync the DMA map. */
   3618 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   3619 		    BUS_DMASYNC_PREWRITE);
   3620 
   3621 		/* XXX arbitrary retry limit; 8 because I have seen it in
   3622 		 * use already and maybe 0 means "no tries" !
   3623 		 */
   3624 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
   3625 
   3626 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
   3627 		    sc->sc_dev.dv_xname, rate * 5));
   3628 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
   3629 
   3630 		/*
   3631 		 * Initialize the transmit descriptors.
   3632 		 */
   3633 		for (nexttx = sc->sc_txnext, seg = 0;
   3634 		     seg < dmamap->dm_nsegs;
   3635 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
   3636 			/*
   3637 			 * If this is the first descriptor we're
   3638 			 * enqueueing, don't set the OWN bit just
   3639 			 * yet.  That could cause a race condition.
   3640 			 * We'll do it below.
   3641 			 */
   3642 			txd = &sc->sc_txdescs[nexttx];
   3643 			txd->at_ctl = ctl |
   3644 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
   3645 
   3646 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
   3647 			txd->at_flags =
   3648 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
   3649 			                   ATW_TXFLAG_TBS1_MASK)) |
   3650 			    ((nexttx == (ATW_NTXDESC - 1))
   3651 			        ? htole32(ATW_TXFLAG_TER) : 0);
   3652 			lasttx = nexttx;
   3653 		}
   3654 
   3655 		IASSERT(lasttx != -1, ("bad lastx"));
   3656 		/* Set `first segment' and `last segment' appropriately. */
   3657 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
   3658 		    htole32(ATW_TXFLAG_FS);
   3659 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
   3660 
   3661 #ifdef ATW_DEBUG
   3662 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3663 			printf("     txsoft %p transmit chain:\n", txs);
   3664 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
   3665 				printf("     descriptor %d:\n", seg);
   3666 				printf("       at_ctl:   0x%08x\n",
   3667 				    le32toh(sc->sc_txdescs[seg].at_ctl));
   3668 				printf("       at_flags:      0x%08x\n",
   3669 				    le32toh(sc->sc_txdescs[seg].at_flags));
   3670 				printf("       at_buf1: 0x%08x\n",
   3671 				    le32toh(sc->sc_txdescs[seg].at_buf1));
   3672 				printf("       at_buf2: 0x%08x\n",
   3673 				    le32toh(sc->sc_txdescs[seg].at_buf2));
   3674 				if (seg == lasttx)
   3675 					break;
   3676 			}
   3677 		}
   3678 #endif
   3679 
   3680 		/* Sync the descriptors we're using. */
   3681 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   3682 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3683 
   3684 		/*
   3685 		 * Store a pointer to the packet so we can free it later,
   3686 		 * and remember what txdirty will be once the packet is
   3687 		 * done.
   3688 		 */
   3689 		txs->txs_mbuf = m0;
   3690 		txs->txs_firstdesc = sc->sc_txnext;
   3691 		txs->txs_lastdesc = lasttx;
   3692 		txs->txs_ndescs = dmamap->dm_nsegs;
   3693 
   3694 		/* Advance the tx pointer. */
   3695 		sc->sc_txfree -= dmamap->dm_nsegs;
   3696 		sc->sc_txnext = nexttx;
   3697 
   3698 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   3699 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   3700 
   3701 		last_txs = txs;
   3702 	}
   3703 
   3704 	if (txs == NULL || sc->sc_txfree == 0) {
   3705 		/* No more slots left; notify upper layer. */
   3706 		ifp->if_flags |= IFF_OACTIVE;
   3707 	}
   3708 
   3709 	if (sc->sc_txfree != ofree) {
   3710 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   3711 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   3712 		/*
   3713 		 * Cause a transmit interrupt to happen on the
   3714 		 * last packet we enqueued.
   3715 		 */
   3716 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
   3717 		ATW_CDTXSYNC(sc, lasttx, 1,
   3718 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3719 
   3720 		/*
   3721 		 * The entire packet chain is set up.  Give the
   3722 		 * first descriptor to the chip now.
   3723 		 */
   3724 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
   3725 		ATW_CDTXSYNC(sc, firsttx, 1,
   3726 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3727 
   3728 		/* Wake up the transmitter. */
   3729 		/* XXX USE AUTOPOLLING? */
   3730 		ATW_WRITE(sc, ATW_TDR, 0x1);
   3731 
   3732 		/* Set a watchdog timer in case the chip flakes out. */
   3733 		sc->sc_tx_timer = 5;
   3734 		ifp->if_timer = 1;
   3735 	}
   3736 }
   3737 
   3738 /*
   3739  * atw_power:
   3740  *
   3741  *	Power management (suspend/resume) hook.
   3742  */
   3743 void
   3744 atw_power(int why, void *arg)
   3745 {
   3746 	struct atw_softc *sc = arg;
   3747 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3748 	int s;
   3749 
   3750 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
   3751 
   3752 	s = splnet();
   3753 	switch (why) {
   3754 	case PWR_STANDBY:
   3755 		/* XXX do nothing. */
   3756 		break;
   3757 	case PWR_SUSPEND:
   3758 		atw_stop(ifp, 0);
   3759 		if (sc->sc_power != NULL)
   3760 			(*sc->sc_power)(sc, why);
   3761 		break;
   3762 	case PWR_RESUME:
   3763 		if (ifp->if_flags & IFF_UP) {
   3764 			if (sc->sc_power != NULL)
   3765 				(*sc->sc_power)(sc, why);
   3766 			atw_init(ifp);
   3767 		}
   3768 		break;
   3769 	case PWR_SOFTSUSPEND:
   3770 	case PWR_SOFTSTANDBY:
   3771 	case PWR_SOFTRESUME:
   3772 		break;
   3773 	}
   3774 	splx(s);
   3775 }
   3776 
   3777 /*
   3778  * atw_ioctl:		[ifnet interface function]
   3779  *
   3780  *	Handle control requests from the operator.
   3781  */
   3782 int
   3783 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   3784 {
   3785 	struct atw_softc *sc = ifp->if_softc;
   3786 	struct ifreq *ifr = (struct ifreq *)data;
   3787 	int s, error = 0;
   3788 
   3789 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
   3790 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   3791 		return ENXIO;
   3792 
   3793 	s = splnet();
   3794 
   3795 	switch (cmd) {
   3796 	case SIOCSIFFLAGS:
   3797 		if (ifp->if_flags & IFF_UP) {
   3798 			if (ATW_IS_ENABLED(sc)) {
   3799 				/*
   3800 				 * To avoid rescanning another access point,
   3801 				 * do not call atw_init() here.  Instead,
   3802 				 * only reflect media settings.
   3803 				 */
   3804 				atw_filter_setup(sc);
   3805 			} else
   3806 				error = atw_init(ifp);
   3807 		} else if (ATW_IS_ENABLED(sc))
   3808 			atw_stop(ifp, 1);
   3809 		break;
   3810 	case SIOCADDMULTI:
   3811 	case SIOCDELMULTI:
   3812 		error = (cmd == SIOCADDMULTI) ?
   3813 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
   3814 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
   3815 		if (error == ENETRESET) {
   3816 			if (ATW_IS_ENABLED(sc))
   3817 				atw_filter_setup(sc); /* do not rescan */
   3818 			error = 0;
   3819 		}
   3820 		break;
   3821 	default:
   3822 		error = ieee80211_ioctl(ifp, cmd, data);
   3823 		if (error == ENETRESET) {
   3824 			if (ATW_IS_ENABLED(sc))
   3825 				error = atw_init(ifp);
   3826 			else
   3827 				error = 0;
   3828 		}
   3829 		break;
   3830 	}
   3831 
   3832 	/* Try to get more packets going. */
   3833 	if (ATW_IS_ENABLED(sc))
   3834 		atw_start(ifp);
   3835 
   3836 	splx(s);
   3837 	return (error);
   3838 }
   3839 
   3840 static int
   3841 atw_media_change(struct ifnet *ifp)
   3842 {
   3843 	int error;
   3844 
   3845 	error = ieee80211_media_change(ifp);
   3846 	if (error == ENETRESET) {
   3847 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   3848 		    (IFF_RUNNING|IFF_UP))
   3849 			atw_init(ifp);		/* XXX lose error */
   3850 		error = 0;
   3851 	}
   3852 	return error;
   3853 }
   3854 
   3855 static void
   3856 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
   3857 {
   3858 	struct atw_softc *sc = ifp->if_softc;
   3859 
   3860 	if (ATW_IS_ENABLED(sc) == 0) {
   3861 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
   3862 		imr->ifm_status = 0;
   3863 		return;
   3864 	}
   3865 	ieee80211_media_status(ifp, imr);
   3866 }
   3867