atw.c revision 1.27 1 /* $NetBSD: atw.c,v 1.27 2004/05/31 09:05:01 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.27 2004/05/31 09:05:01 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * IBSS join/create
131 *
132 * set ATW_NAR_EA (is set by ASIC?)
133 *
134 * BSS join: (re)association response
135 *
136 * set ATW_FRCTL_AID
137 *
138 * optimizations ???
139 *
140 */
141
142 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
143 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
144 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
145
146 int atw_rfio_enable_delay = 20 * 1000;
147 int atw_rfio_disable_delay = 2 * 1000;
148 int atw_writewep_delay = 5;
149 int atw_beacon_len_adjust = 4;
150 int atw_dwelltime = 200;
151
152 #ifdef ATW_DEBUG
153 int atw_xhdrctl = 0;
154 int atw_xrtylmt = ~0;
155 int atw_xservice = IEEE80211_PLCP_SERVICE;
156 int atw_xpaylen = 0;
157
158 int atw_debug = 0;
159
160 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
161 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
162 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
163 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
164 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
165 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
166 static void atw_print_regs(struct atw_softc *, const char *);
167 static void atw_rf3000_print(struct atw_softc *);
168 static void atw_si4126_print(struct atw_softc *);
169 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
170 #else
171 #define ATW_DPRINTF(x)
172 #define ATW_DPRINTF2(x)
173 #define ATW_DPRINTF3(x)
174 #define DPRINTF(sc, x) /* nothing */
175 #define DPRINTF2(sc, x) /* nothing */
176 #define DPRINTF3(sc, x) /* nothing */
177 #endif
178
179 #ifdef ATW_STATS
180 void atw_print_stats(struct atw_softc *);
181 #endif
182
183 void atw_start(struct ifnet *);
184 void atw_watchdog(struct ifnet *);
185 int atw_ioctl(struct ifnet *, u_long, caddr_t);
186 int atw_init(struct ifnet *);
187 void atw_stop(struct ifnet *, int);
188
189 void atw_reset(struct atw_softc *);
190 int atw_read_srom(struct atw_softc *);
191
192 void atw_shutdown(void *);
193
194 void atw_rxdrain(struct atw_softc *);
195 int atw_add_rxbuf(struct atw_softc *, int);
196 void atw_idle(struct atw_softc *, u_int32_t);
197
198 int atw_enable(struct atw_softc *);
199 void atw_disable(struct atw_softc *);
200 void atw_power(int, void *);
201
202 void atw_rxintr(struct atw_softc *);
203 void atw_txintr(struct atw_softc *);
204 void atw_linkintr(struct atw_softc *, u_int32_t);
205
206 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
207 static void atw_tsf(struct atw_softc *);
208 static void atw_start_beacon(struct atw_softc *, int);
209 static void atw_write_wep(struct atw_softc *);
210 static void atw_write_bssid(struct atw_softc *);
211 static void atw_write_bcn_thresh(struct atw_softc *);
212 static void atw_write_ssid(struct atw_softc *);
213 static void atw_write_sup_rates(struct atw_softc *);
214 static void atw_clear_sram(struct atw_softc *);
215 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
216 static int atw_media_change(struct ifnet *);
217 static void atw_media_status(struct ifnet *, struct ifmediareq *);
218 static void atw_filter_setup(struct atw_softc *);
219 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
220 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
221 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
222 struct ieee80211_node *, int, int, u_int32_t);
223 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
224 struct ieee80211_node *, int, int, u_int32_t);
225 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
226 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
227
228 static int atw_tune(struct atw_softc *);
229
230 static void atw_rfio_enable(struct atw_softc *, int);
231
232 /* RFMD RF3000 Baseband Processor */
233 static int atw_rf3000_init(struct atw_softc *);
234 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
235 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
236 #ifdef ATW_DEBUG
237 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
238 #endif /* ATW_DEBUG */
239
240 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
241 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
242 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
243 #ifdef ATW_DEBUG
244 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
245 #endif /* ATW_DEBUG */
246
247 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
248 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
249
250 const char *atw_tx_state[] = {
251 "STOPPED",
252 "RUNNING - read descriptor",
253 "RUNNING - transmitting",
254 "RUNNING - filling fifo", /* XXX */
255 "SUSPENDED",
256 "RUNNING -- write descriptor",
257 "RUNNING -- write last descriptor",
258 "RUNNING - fifo full"
259 };
260
261 const char *atw_rx_state[] = {
262 "STOPPED",
263 "RUNNING - read descriptor",
264 "RUNNING - check this packet, pre-fetch next",
265 "RUNNING - wait for reception",
266 "SUSPENDED",
267 "RUNNING - write descriptor",
268 "RUNNING - flush fifo",
269 "RUNNING - fifo drain"
270 };
271
272 int
273 atw_activate(struct device *self, enum devact act)
274 {
275 struct atw_softc *sc = (struct atw_softc *)self;
276 int rv = 0, s;
277
278 s = splnet();
279 switch (act) {
280 case DVACT_ACTIVATE:
281 rv = EOPNOTSUPP;
282 break;
283
284 case DVACT_DEACTIVATE:
285 if_deactivate(&sc->sc_ic.ic_if);
286 break;
287 }
288 splx(s);
289 return rv;
290 }
291
292 /*
293 * atw_enable:
294 *
295 * Enable the ADM8211 chip.
296 */
297 int
298 atw_enable(struct atw_softc *sc)
299 {
300
301 if (ATW_IS_ENABLED(sc) == 0) {
302 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
303 printf("%s: device enable failed\n",
304 sc->sc_dev.dv_xname);
305 return (EIO);
306 }
307 sc->sc_flags |= ATWF_ENABLED;
308 }
309 return (0);
310 }
311
312 /*
313 * atw_disable:
314 *
315 * Disable the ADM8211 chip.
316 */
317 void
318 atw_disable(struct atw_softc *sc)
319 {
320 if (!ATW_IS_ENABLED(sc))
321 return;
322 if (sc->sc_disable != NULL)
323 (*sc->sc_disable)(sc);
324 sc->sc_flags &= ~ATWF_ENABLED;
325 }
326
327 /* Returns -1 on failure. */
328 int
329 atw_read_srom(struct atw_softc *sc)
330 {
331 struct seeprom_descriptor sd;
332 u_int32_t reg;
333
334 (void)memset(&sd, 0, sizeof(sd));
335
336 reg = ATW_READ(sc, ATW_TEST0);
337
338 if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
339 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
340 return -1;
341 }
342
343 switch (reg & ATW_TEST0_EPTYP_MASK) {
344 case ATW_TEST0_EPTYP_93c66:
345 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
346 sc->sc_sromsz = 512;
347 sd.sd_chip = C56_66;
348 break;
349 case ATW_TEST0_EPTYP_93c46:
350 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
351 sc->sc_sromsz = 128;
352 sd.sd_chip = C46;
353 break;
354 default:
355 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
356 MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
357 return -1;
358 }
359
360 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
361
362 if (sc->sc_srom == NULL) {
363 printf("%s: unable to allocate SROM buffer\n",
364 sc->sc_dev.dv_xname);
365 return -1;
366 }
367
368 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
369
370 /* ADM8211 has a single 32-bit register for controlling the
371 * 93cx6 SROM. Bit SRS enables the serial port. There is no
372 * "ready" bit. The ADM8211 input/output sense is the reverse
373 * of read_seeprom's.
374 */
375 sd.sd_tag = sc->sc_st;
376 sd.sd_bsh = sc->sc_sh;
377 sd.sd_regsize = 4;
378 sd.sd_control_offset = ATW_SPR;
379 sd.sd_status_offset = ATW_SPR;
380 sd.sd_dataout_offset = ATW_SPR;
381 sd.sd_CK = ATW_SPR_SCLK;
382 sd.sd_CS = ATW_SPR_SCS;
383 sd.sd_DI = ATW_SPR_SDO;
384 sd.sd_DO = ATW_SPR_SDI;
385 sd.sd_MS = ATW_SPR_SRS;
386 sd.sd_RDY = 0;
387
388 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
389 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
390 free(sc->sc_srom, M_DEVBUF);
391 return -1;
392 }
393 #ifdef ATW_DEBUG
394 {
395 int i;
396 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
397 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
398 if (((i % 8) == 0) && (i != 0)) {
399 ATW_DPRINTF(("\n\t"));
400 }
401 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
402 }
403 ATW_DPRINTF(("\n"));
404 }
405 #endif /* ATW_DEBUG */
406 return 0;
407 }
408
409 #ifdef ATW_DEBUG
410 static void
411 atw_print_regs(struct atw_softc *sc, const char *where)
412 {
413 #define PRINTREG(sc, reg) \
414 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
415 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
416
417 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
418
419 PRINTREG(sc, ATW_PAR);
420 PRINTREG(sc, ATW_FRCTL);
421 PRINTREG(sc, ATW_TDR);
422 PRINTREG(sc, ATW_WTDP);
423 PRINTREG(sc, ATW_RDR);
424 PRINTREG(sc, ATW_WRDP);
425 PRINTREG(sc, ATW_RDB);
426 PRINTREG(sc, ATW_CSR3A);
427 PRINTREG(sc, ATW_TDBD);
428 PRINTREG(sc, ATW_TDBP);
429 PRINTREG(sc, ATW_STSR);
430 PRINTREG(sc, ATW_CSR5A);
431 PRINTREG(sc, ATW_NAR);
432 PRINTREG(sc, ATW_CSR6A);
433 PRINTREG(sc, ATW_IER);
434 PRINTREG(sc, ATW_CSR7A);
435 PRINTREG(sc, ATW_LPC);
436 PRINTREG(sc, ATW_TEST1);
437 PRINTREG(sc, ATW_SPR);
438 PRINTREG(sc, ATW_TEST0);
439 PRINTREG(sc, ATW_WCSR);
440 PRINTREG(sc, ATW_WPDR);
441 PRINTREG(sc, ATW_GPTMR);
442 PRINTREG(sc, ATW_GPIO);
443 PRINTREG(sc, ATW_BBPCTL);
444 PRINTREG(sc, ATW_SYNCTL);
445 PRINTREG(sc, ATW_PLCPHD);
446 PRINTREG(sc, ATW_MMIWADDR);
447 PRINTREG(sc, ATW_MMIRADDR1);
448 PRINTREG(sc, ATW_MMIRADDR2);
449 PRINTREG(sc, ATW_TXBR);
450 PRINTREG(sc, ATW_CSR15A);
451 PRINTREG(sc, ATW_ALCSTAT);
452 PRINTREG(sc, ATW_TOFS2);
453 PRINTREG(sc, ATW_CMDR);
454 PRINTREG(sc, ATW_PCIC);
455 PRINTREG(sc, ATW_PMCSR);
456 PRINTREG(sc, ATW_PAR0);
457 PRINTREG(sc, ATW_PAR1);
458 PRINTREG(sc, ATW_MAR0);
459 PRINTREG(sc, ATW_MAR1);
460 PRINTREG(sc, ATW_ATIMDA0);
461 PRINTREG(sc, ATW_ABDA1);
462 PRINTREG(sc, ATW_BSSID0);
463 PRINTREG(sc, ATW_TXLMT);
464 PRINTREG(sc, ATW_MIBCNT);
465 PRINTREG(sc, ATW_BCNT);
466 PRINTREG(sc, ATW_TSFTH);
467 PRINTREG(sc, ATW_TSC);
468 PRINTREG(sc, ATW_SYNRF);
469 PRINTREG(sc, ATW_BPLI);
470 PRINTREG(sc, ATW_CAP0);
471 PRINTREG(sc, ATW_CAP1);
472 PRINTREG(sc, ATW_RMD);
473 PRINTREG(sc, ATW_CFPP);
474 PRINTREG(sc, ATW_TOFS0);
475 PRINTREG(sc, ATW_TOFS1);
476 PRINTREG(sc, ATW_IFST);
477 PRINTREG(sc, ATW_RSPT);
478 PRINTREG(sc, ATW_TSFTL);
479 PRINTREG(sc, ATW_WEPCTL);
480 PRINTREG(sc, ATW_WESK);
481 PRINTREG(sc, ATW_WEPCNT);
482 PRINTREG(sc, ATW_MACTEST);
483 PRINTREG(sc, ATW_FER);
484 PRINTREG(sc, ATW_FEMR);
485 PRINTREG(sc, ATW_FPSR);
486 PRINTREG(sc, ATW_FFER);
487 #undef PRINTREG
488 }
489 #endif /* ATW_DEBUG */
490
491 /*
492 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
493 */
494 void
495 atw_attach(struct atw_softc *sc)
496 {
497 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
498 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
499 };
500 struct ieee80211com *ic = &sc->sc_ic;
501 struct ifnet *ifp = &ic->ic_if;
502 int country_code, error, i, nrate;
503 u_int32_t reg;
504 static const char *type_strings[] = {"Intersil (not supported)",
505 "RFMD", "Marvel (not supported)"};
506
507 sc->sc_txth = atw_txthresh_tab_lo;
508
509 SIMPLEQ_INIT(&sc->sc_txfreeq);
510 SIMPLEQ_INIT(&sc->sc_txdirtyq);
511
512 #ifdef ATW_DEBUG
513 atw_print_regs(sc, "atw_attach");
514 #endif /* ATW_DEBUG */
515
516 /*
517 * Allocate the control data structures, and create and load the
518 * DMA map for it.
519 */
520 if ((error = bus_dmamem_alloc(sc->sc_dmat,
521 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
522 1, &sc->sc_cdnseg, 0)) != 0) {
523 printf("%s: unable to allocate control data, error = %d\n",
524 sc->sc_dev.dv_xname, error);
525 goto fail_0;
526 }
527
528 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
529 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
530 BUS_DMA_COHERENT)) != 0) {
531 printf("%s: unable to map control data, error = %d\n",
532 sc->sc_dev.dv_xname, error);
533 goto fail_1;
534 }
535
536 if ((error = bus_dmamap_create(sc->sc_dmat,
537 sizeof(struct atw_control_data), 1,
538 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
539 printf("%s: unable to create control data DMA map, "
540 "error = %d\n", sc->sc_dev.dv_xname, error);
541 goto fail_2;
542 }
543
544 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
545 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
546 0)) != 0) {
547 printf("%s: unable to load control data DMA map, error = %d\n",
548 sc->sc_dev.dv_xname, error);
549 goto fail_3;
550 }
551
552 /*
553 * Create the transmit buffer DMA maps.
554 */
555 sc->sc_ntxsegs = ATW_NTXSEGS;
556 for (i = 0; i < ATW_TXQUEUELEN; i++) {
557 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
558 sc->sc_ntxsegs, MCLBYTES, 0, 0,
559 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
560 printf("%s: unable to create tx DMA map %d, "
561 "error = %d\n", sc->sc_dev.dv_xname, i, error);
562 goto fail_4;
563 }
564 }
565
566 /*
567 * Create the receive buffer DMA maps.
568 */
569 for (i = 0; i < ATW_NRXDESC; i++) {
570 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
571 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
572 printf("%s: unable to create rx DMA map %d, "
573 "error = %d\n", sc->sc_dev.dv_xname, i, error);
574 goto fail_5;
575 }
576 }
577 for (i = 0; i < ATW_NRXDESC; i++) {
578 sc->sc_rxsoft[i].rxs_mbuf = NULL;
579 }
580
581 /* Reset the chip to a known state. */
582 atw_reset(sc);
583
584 if (atw_read_srom(sc) == -1)
585 return;
586
587 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
588 ATW_SR_RFTYPE_MASK);
589
590 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
591 ATW_SR_BBPTYPE_MASK);
592
593 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
594 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
595 return;
596 }
597 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
598 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
599 return;
600 }
601
602 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
603 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
604
605 /* XXX There exists a Linux driver which seems to use RFType = 0 for
606 * MARVEL. My bug, or theirs?
607 */
608
609 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
610
611 switch (sc->sc_rftype) {
612 case ATW_RFTYPE_INTERSIL:
613 reg |= ATW_SYNCTL_CS1;
614 break;
615 case ATW_RFTYPE_RFMD:
616 reg |= ATW_SYNCTL_CS0;
617 break;
618 case ATW_RFTYPE_MARVEL:
619 break;
620 }
621
622 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
623 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
624
625 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
626
627 switch (sc->sc_bbptype) {
628 case ATW_RFTYPE_INTERSIL:
629 reg |= ATW_BBPCTL_TWI;
630 break;
631 case ATW_RFTYPE_RFMD:
632 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
633 ATW_BBPCTL_CCA_ACTLO;
634 break;
635 case ATW_RFTYPE_MARVEL:
636 break;
637 }
638
639 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
640 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
641
642 /*
643 * From this point forward, the attachment cannot fail. A failure
644 * before this point releases all resources that may have been
645 * allocated.
646 */
647 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
648
649 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
650 htole16(sc->sc_srom[ATW_SR_MAC00]),
651 htole16(sc->sc_srom[ATW_SR_MAC01]),
652 htole16(sc->sc_srom[ATW_SR_MAC10])));
653
654 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
655 ATW_SR_CTRY_MASK);
656
657 #define ADD_CHANNEL(_ic, _chan) do { \
658 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
659 _ic->ic_channels[_chan].ic_freq = \
660 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
661 } while (0)
662
663 /* Find available channels */
664 switch (country_code) {
665 case COUNTRY_MMK2: /* 1-14 */
666 ADD_CHANNEL(ic, 14);
667 /*FALLTHROUGH*/
668 case COUNTRY_ETSI: /* 1-13 */
669 for (i = 1; i <= 13; i++)
670 ADD_CHANNEL(ic, i);
671 break;
672 case COUNTRY_FCC: /* 1-11 */
673 case COUNTRY_IC: /* 1-11 */
674 for (i = 1; i <= 11; i++)
675 ADD_CHANNEL(ic, i);
676 break;
677 case COUNTRY_MMK: /* 14 */
678 ADD_CHANNEL(ic, 14);
679 break;
680 case COUNTRY_FRANCE: /* 10-13 */
681 for (i = 10; i <= 13; i++)
682 ADD_CHANNEL(ic, i);
683 break;
684 default: /* assume channels 10-11 */
685 case COUNTRY_SPAIN: /* 10-11 */
686 for (i = 10; i <= 11; i++)
687 ADD_CHANNEL(ic, i);
688 break;
689 }
690
691 /* Read the MAC address. */
692 reg = ATW_READ(sc, ATW_PAR0);
693 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
694 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
695 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
696 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
697 reg = ATW_READ(sc, ATW_PAR1);
698 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
699 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
700
701 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
702 printf(" could not get mac address, attach failed\n");
703 return;
704 }
705
706 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
707
708 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
709 ifp->if_softc = sc;
710 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
711 IFF_NOTRAILERS;
712 ifp->if_ioctl = atw_ioctl;
713 ifp->if_start = atw_start;
714 ifp->if_watchdog = atw_watchdog;
715 ifp->if_init = atw_init;
716 ifp->if_stop = atw_stop;
717 IFQ_SET_READY(&ifp->if_snd);
718
719 ic->ic_phytype = IEEE80211_T_DS;
720 ic->ic_opmode = IEEE80211_M_STA;
721 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
722 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
723
724 nrate = 0;
725 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
726 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
727 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
728 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
729 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
730
731 /*
732 * Call MI attach routines.
733 */
734
735 if_attach(ifp);
736 ieee80211_ifattach(ifp);
737
738 sc->sc_newstate = ic->ic_newstate;
739 ic->ic_newstate = atw_newstate;
740
741 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
742 ic->ic_recv_mgmt = atw_recv_mgmt;
743
744 sc->sc_node_free = ic->ic_node_free;
745 ic->ic_node_free = atw_node_free;
746
747 sc->sc_node_alloc = ic->ic_node_alloc;
748 ic->ic_node_alloc = atw_node_alloc;
749
750 /* possibly we should fill in our own sc_send_prresp, since
751 * the ADM8211 is probably sending probe responses in ad hoc
752 * mode.
753 */
754
755 /* complete initialization */
756 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
757 callout_init(&sc->sc_scan_ch);
758
759 #if NBPFILTER > 0
760 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
761 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
762 #endif
763
764 /*
765 * Make sure the interface is shutdown during reboot.
766 */
767 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
768 if (sc->sc_sdhook == NULL)
769 printf("%s: WARNING: unable to establish shutdown hook\n",
770 sc->sc_dev.dv_xname);
771
772 /*
773 * Add a suspend hook to make sure we come back up after a
774 * resume.
775 */
776 sc->sc_powerhook = powerhook_establish(atw_power, sc);
777 if (sc->sc_powerhook == NULL)
778 printf("%s: WARNING: unable to establish power hook\n",
779 sc->sc_dev.dv_xname);
780
781 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
782 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
783 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
784
785 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
786 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
787 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
788
789 return;
790
791 /*
792 * Free any resources we've allocated during the failed attach
793 * attempt. Do this in reverse order and fall through.
794 */
795 fail_5:
796 for (i = 0; i < ATW_NRXDESC; i++) {
797 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
798 continue;
799 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
800 }
801 fail_4:
802 for (i = 0; i < ATW_TXQUEUELEN; i++) {
803 if (sc->sc_txsoft[i].txs_dmamap == NULL)
804 continue;
805 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
806 }
807 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
808 fail_3:
809 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
810 fail_2:
811 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
812 sizeof(struct atw_control_data));
813 fail_1:
814 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
815 fail_0:
816 return;
817 }
818
819 static struct ieee80211_node *
820 atw_node_alloc(struct ieee80211com *ic)
821 {
822 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
823 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
824
825 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
826 return ni;
827 }
828
829 static void
830 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
831 {
832 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
833
834 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
835 ether_sprintf(ni->ni_bssid)));
836 (*sc->sc_node_free)(ic, ni);
837 }
838
839 /*
840 * atw_reset:
841 *
842 * Perform a soft reset on the ADM8211.
843 */
844 void
845 atw_reset(struct atw_softc *sc)
846 {
847 int i;
848
849 if (ATW_IS_ENABLED(sc) == 0)
850 return;
851
852 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
853
854 for (i = 0; i < 10000; i++) {
855 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
856 break;
857 DELAY(1);
858 }
859
860 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
861
862 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
863 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
864
865 /* Turn off maximum power saving. */
866 ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
867
868 /* Recall EEPROM. */
869 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
870
871 DELAY(10 * 1000);
872
873 /* A reset seems to affect the SRAM contents, so put them into
874 * a known state.
875 */
876 atw_clear_sram(sc);
877
878 memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
879
880 sc->sc_lost_bcn_thresh = 0;
881 }
882
883 static void
884 atw_clear_sram(struct atw_softc *sc)
885 {
886 #if 0
887 for (addr = 0; addr < 448; addr++) {
888 ATW_WRITE(sc, ATW_WEPCTL,
889 ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0 | addr);
890 DELAY(1000);
891 ATW_WRITE(sc, ATW_WESK, 0);
892 DELAY(1000); /* paranoia */
893 }
894 return;
895 #endif
896 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
897 /* XXX not for revision 0x20. */
898 atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
899 }
900
901 /* TBD atw_init
902 *
903 * set MAC based on ic->ic_bss->myaddr
904 * write WEP keys
905 * set TX rate
906 */
907
908 /*
909 * atw_init: [ ifnet interface function ]
910 *
911 * Initialize the interface. Must be called at splnet().
912 */
913 int
914 atw_init(struct ifnet *ifp)
915 {
916 struct atw_softc *sc = ifp->if_softc;
917 struct ieee80211com *ic = &sc->sc_ic;
918 struct atw_txsoft *txs;
919 struct atw_rxsoft *rxs;
920 u_int32_t reg;
921 int i, error = 0;
922
923 if ((error = atw_enable(sc)) != 0)
924 goto out;
925
926 /*
927 * Cancel any pending I/O. This also resets.
928 */
929 atw_stop(ifp, 0);
930
931 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
932 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
933 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
934 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
935
936 /* Turn off APM??? (A binary-only driver does this.)
937 *
938 * Set Rx store-and-forward mode.
939 */
940 reg = ATW_READ(sc, ATW_CMDR);
941 reg &= ~ATW_CMDR_APM;
942 reg &= ~ATW_CMDR_DRT_MASK;
943 reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
944
945 ATW_WRITE(sc, ATW_CMDR, reg);
946
947 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
948 *
949 * XXX a binary-only driver sets a different service field than
950 * 0. why?
951 */
952 reg = ATW_READ(sc, ATW_PLCPHD);
953 reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
954 reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
955 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
956 ATW_WRITE(sc, ATW_PLCPHD, reg);
957
958 /* XXX this magic can probably be figured out from the RFMD docs */
959 reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
960 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
961 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
962 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
963 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
964 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
965 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
966 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
967 ATW_WRITE(sc, ATW_TOFS2, reg);
968
969 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
970 LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
971
972 /* XXX this resets an Intersil RF front-end? */
973 /* TBD condition on Intersil RFType? */
974 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
975 DELAY(10 * 1000);
976 ATW_WRITE(sc, ATW_SYNRF, 0);
977 DELAY(5 * 1000);
978
979 /* 16 TU max duration for contention-free period */
980 reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
981 ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
982
983 /* XXX I guess that the Cardbus clock is 22MHz?
984 * I am assuming that the role of ATW_TOFS0_USCNT is
985 * to divide the bus clock to get a 1MHz clock---the datasheet is not
986 * very clear on this point. It says in the datasheet that it is
987 * possible for the ADM8211 to accomodate bus speeds between 22MHz
988 * and 33MHz; maybe this is the way? I see a binary-only driver write
989 * these values. These values are also the power-on default.
990 */
991 ATW_WRITE(sc, ATW_TOFS0,
992 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
993 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
994
995 /* Initialize interframe spacing. EIFS=0x64 is used by a binary-only
996 * driver. Go figure.
997 */
998 reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
999 LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
1000 ATW_IFST_SIFS_MASK) |
1001 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1002 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1003
1004 ATW_WRITE(sc, ATW_IFST, reg);
1005
1006 /* XXX More magic. Might relate to ACK timing. */
1007 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1008 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1009
1010 /* Set up the MMI read/write addresses for the BBP.
1011 *
1012 * TBD find out the Marvel settings.
1013 */
1014 switch (sc->sc_bbptype) {
1015 case ATW_BBPTYPE_INTERSIL:
1016 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1017 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1018 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1019 break;
1020 case ATW_BBPTYPE_MARVEL:
1021 break;
1022 case ATW_BBPTYPE_RFMD:
1023 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1024 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1025 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1026 default:
1027 break;
1028 }
1029
1030 sc->sc_wepctl = 0;
1031 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1032
1033 if ((error = atw_rf3000_init(sc)) != 0)
1034 goto out;
1035
1036 /*
1037 * Initialize the PCI Access Register.
1038 */
1039 sc->sc_busmode = ATW_PAR_BAR; /* XXX what is this? */
1040
1041 /*
1042 * If we're allowed to do so, use Memory Read Line
1043 * and Memory Read Multiple.
1044 *
1045 * XXX Should we use Memory Write and Invalidate?
1046 */
1047 if (sc->sc_flags & ATWF_MRL)
1048 sc->sc_busmode |= ATW_PAR_MRLE;
1049 if (sc->sc_flags & ATWF_MRM)
1050 sc->sc_busmode |= ATW_PAR_MRME;
1051 if (sc->sc_flags & ATWF_MWI)
1052 sc->sc_busmode |= ATW_PAR_MWIE;
1053 if (sc->sc_maxburst == 0)
1054 sc->sc_maxburst = 8; /* ADM8211 default */
1055
1056 switch (sc->sc_cacheline) {
1057 default:
1058 /* Use burst length. */
1059 break;
1060 case 8:
1061 sc->sc_busmode |= ATW_PAR_CAL_8DW;
1062 break;
1063 case 16:
1064 sc->sc_busmode |= ATW_PAR_CAL_16DW;
1065 break;
1066 case 32:
1067 sc->sc_busmode |= ATW_PAR_CAL_32DW;
1068 break;
1069 }
1070 switch (sc->sc_maxburst) {
1071 case 1:
1072 sc->sc_busmode |= ATW_PAR_PBL_1DW;
1073 break;
1074 case 2:
1075 sc->sc_busmode |= ATW_PAR_PBL_2DW;
1076 break;
1077 case 4:
1078 sc->sc_busmode |= ATW_PAR_PBL_4DW;
1079 break;
1080 case 8:
1081 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1082 break;
1083 case 16:
1084 sc->sc_busmode |= ATW_PAR_PBL_16DW;
1085 break;
1086 case 32:
1087 sc->sc_busmode |= ATW_PAR_PBL_32DW;
1088 break;
1089 default:
1090 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1091 break;
1092 }
1093
1094 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1095 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1096 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1097
1098 /*
1099 * Initialize the OPMODE register. We don't write it until
1100 * we're ready to begin the transmit and receive processes.
1101 */
1102 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1103 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1104
1105 /*
1106 * Initialize the transmit descriptor ring.
1107 */
1108 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1109 for (i = 0; i < ATW_NTXDESC; i++) {
1110 /* no transmit chaining */
1111 sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1112 sc->sc_txdescs[i].at_buf2 =
1113 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1114 }
1115 /* use ring mode */
1116 sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1117 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1118 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1119 sc->sc_txfree = ATW_NTXDESC;
1120 sc->sc_txnext = 0;
1121
1122 /*
1123 * Initialize the transmit job descriptors.
1124 */
1125 SIMPLEQ_INIT(&sc->sc_txfreeq);
1126 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1127 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1128 txs = &sc->sc_txsoft[i];
1129 txs->txs_mbuf = NULL;
1130 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1131 }
1132
1133 /*
1134 * Initialize the receive descriptor and receive job
1135 * descriptor rings.
1136 */
1137 for (i = 0; i < ATW_NRXDESC; i++) {
1138 rxs = &sc->sc_rxsoft[i];
1139 if (rxs->rxs_mbuf == NULL) {
1140 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1141 printf("%s: unable to allocate or map rx "
1142 "buffer %d, error = %d\n",
1143 sc->sc_dev.dv_xname, i, error);
1144 /*
1145 * XXX Should attempt to run with fewer receive
1146 * XXX buffers instead of just failing.
1147 */
1148 atw_rxdrain(sc);
1149 goto out;
1150 }
1151 } else
1152 ATW_INIT_RXDESC(sc, i);
1153 }
1154 sc->sc_rxptr = 0;
1155
1156 /* disable all wake-up events */
1157 ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1158 ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1159 ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1160 ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1161
1162 /* ack all wake-up events */
1163 ATW_SET(sc, ATW_WCSR, 0);
1164
1165 /*
1166 * Initialize the interrupt mask and enable interrupts.
1167 */
1168 /* normal interrupts */
1169 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1170 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1171
1172 /* abnormal interrupts */
1173 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1174 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1175 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1176
1177 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1178 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1179 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1180 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1181 ATW_INTR_TRT;
1182
1183 sc->sc_linkint_mask &= sc->sc_inten;
1184 sc->sc_rxint_mask &= sc->sc_inten;
1185 sc->sc_txint_mask &= sc->sc_inten;
1186
1187 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1188 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1189 if (sc->sc_intr_ack != NULL)
1190 (*sc->sc_intr_ack)(sc);
1191
1192 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1193 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1194
1195 /*
1196 * Give the transmit and receive rings to the ADM8211.
1197 */
1198 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1199 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1200
1201 /* common 802.11 configuration */
1202 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1203 switch (ic->ic_opmode) {
1204 case IEEE80211_M_STA:
1205 sc->sc_opmode &= ~ATW_NAR_EA;
1206 break;
1207 case IEEE80211_M_AHDEMO: /* XXX */
1208 case IEEE80211_M_IBSS:
1209 ic->ic_flags |= IEEE80211_F_IBSSON;
1210 /*FALLTHROUGH*/
1211 case IEEE80211_M_HOSTAP: /* XXX */
1212 /* EA bit seems important for ad hoc reception. */
1213 sc->sc_opmode |= ATW_NAR_EA;
1214 break;
1215 case IEEE80211_M_MONITOR: /* XXX */
1216 break;
1217 }
1218
1219 atw_start_beacon(sc, 0);
1220
1221 switch (ic->ic_opmode) {
1222 case IEEE80211_M_AHDEMO:
1223 case IEEE80211_M_HOSTAP:
1224 ic->ic_bss->ni_intval = ic->ic_lintval;
1225 ic->ic_bss->ni_rssi = 0;
1226 ic->ic_bss->ni_rstamp = 0;
1227 break;
1228 default: /* XXX */
1229 break;
1230 }
1231
1232 atw_write_ssid(sc);
1233 atw_write_sup_rates(sc);
1234 if (ic->ic_caps & IEEE80211_C_WEP)
1235 atw_write_wep(sc);
1236
1237 /*
1238 * Set the receive filter. This will start the transmit and
1239 * receive processes.
1240 */
1241 atw_filter_setup(sc);
1242
1243 /*
1244 * Start the receive process.
1245 */
1246 ATW_WRITE(sc, ATW_RDR, 0x1);
1247
1248 /*
1249 * Note that the interface is now running.
1250 */
1251 ifp->if_flags |= IFF_RUNNING;
1252 ifp->if_flags &= ~IFF_OACTIVE;
1253 ic->ic_state = IEEE80211_S_INIT;
1254
1255 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1256 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1257 else
1258 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1259 out:
1260 if (error) {
1261 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1262 ifp->if_timer = 0;
1263 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1264 }
1265 #ifdef ATW_DEBUG
1266 atw_print_regs(sc, "end of init");
1267 #endif /* ATW_DEBUG */
1268
1269 return (error);
1270 }
1271
1272 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1273 * 0: MAC control of RF3000/Si4126.
1274 *
1275 * Applies power, or selects RF front-end? Sets reset condition.
1276 *
1277 * TBD support non-RFMD BBP, non-SiLabs synth.
1278 */
1279 static void
1280 atw_rfio_enable(struct atw_softc *sc, int enable)
1281 {
1282 if (enable) {
1283 ATW_WRITE(sc, ATW_SYNRF,
1284 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1285 DELAY(atw_rfio_enable_delay);
1286 } else {
1287 ATW_WRITE(sc, ATW_SYNRF, 0);
1288 DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1289 }
1290 }
1291
1292 static int
1293 atw_tune(struct atw_softc *sc)
1294 {
1295 int rc;
1296 u_int32_t reg;
1297 int chan;
1298 struct ieee80211com *ic = &sc->sc_ic;
1299
1300 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1301 if (chan == IEEE80211_CHAN_ANY)
1302 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1303
1304 if (chan == sc->sc_cur_chan)
1305 return 0;
1306
1307 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1308 sc->sc_cur_chan, chan));
1309
1310 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1311
1312 if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1313 (rc = atw_rf3000_tune(sc, chan)) != 0)
1314 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1315 chan);
1316
1317 reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1318 ATW_WRITE(sc, ATW_CAP0,
1319 reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1320
1321 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1322
1323 if (rc == 0)
1324 sc->sc_cur_chan = chan;
1325
1326 return rc;
1327 }
1328
1329 #ifdef ATW_DEBUG
1330 static void
1331 atw_si4126_print(struct atw_softc *sc)
1332 {
1333 struct ifnet *ifp = &sc->sc_ic.ic_if;
1334 u_int addr, val;
1335
1336 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1337 return;
1338
1339 for (addr = 0; addr <= 8; addr++) {
1340 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1341 if (atw_si4126_read(sc, addr, &val) == 0) {
1342 printf("<unknown> (quitting print-out)\n");
1343 break;
1344 }
1345 printf("%05x\n", val);
1346 }
1347 }
1348 #endif /* ATW_DEBUG */
1349
1350 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1351 *
1352 * The RF/IF synthesizer produces two reference frequencies for
1353 * the RF2948B transceiver. The first frequency the RF2948B requires
1354 * is two times the so-called "intermediate frequency" (IF). Since
1355 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1356 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1357 * frequency required by the transceiver is the radio frequency
1358 * (RF). This is a superheterodyne transceiver; for f(chan) the
1359 * center frequency of the channel we are tuning, RF = f(chan) -
1360 * IF.
1361 *
1362 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1363 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1364 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1365 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1366 */
1367 static int
1368 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
1369 {
1370 int rc = 0;
1371 u_int mhz;
1372 u_int R;
1373 u_int32_t reg;
1374 u_int16_t gain;
1375
1376 #ifdef ATW_DEBUG
1377 atw_si4126_print(sc);
1378 #endif /* ATW_DEBUG */
1379
1380 if (chan == 14)
1381 mhz = 2484;
1382 else
1383 mhz = 2412 + 5 * (chan - 1);
1384
1385 /* Tune IF to 748MHz to suit the IF LO input of the
1386 * RF2494B, which is 2 x IF. No need to set an IF divider
1387 * because an IF in 526MHz - 952MHz is allowed.
1388 *
1389 * XIN is 44.000MHz, so divide it by two to get allowable
1390 * range of 2-25MHz. SiLabs tells me that this is not
1391 * strictly necessary.
1392 */
1393
1394 R = 44;
1395
1396 atw_rfio_enable(sc, 1);
1397
1398 /* Power-up RF, IF synthesizers. */
1399 if ((rc = atw_si4126_write(sc, SI4126_POWER,
1400 SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1401 goto out;
1402
1403 /* If RF2 N > 2047, then set KP2 to 1. */
1404 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1405
1406 if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1407 goto out;
1408
1409 /* set LPWR, too? */
1410 if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1411 SI4126_MAIN_XINDIV2)) != 0)
1412 goto out;
1413
1414 /* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN. XIN = 44MHz.
1415 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1416 */
1417 if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1418 goto out;
1419
1420 if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1421 goto out;
1422
1423 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1424 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1425 * which has no RF1!
1426 */
1427 if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1428 goto out;
1429
1430 if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1431 goto out;
1432
1433 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1434 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1435 * Now let's multiply it to mhz. So mhz - IF = N.
1436 */
1437 if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1438 goto out;
1439
1440 if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1441 goto out;
1442
1443 /* wait 100us from power-up for RF, IF to settle */
1444 DELAY(100);
1445
1446 if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1447 /* XXX there is a binary driver which sends
1448 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1449 * that this enables the Si4126 by raising its PWDN#, but I
1450 * think that it actually sets the Prism RF front-end
1451 * to a special mode for channel 14.
1452 */
1453 reg = ATW_READ(sc, ATW_GPIO);
1454 reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1455 reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1456 ATW_WRITE(sc, ATW_GPIO, reg);
1457 }
1458
1459 #ifdef ATW_DEBUG
1460 atw_si4126_print(sc);
1461 #endif /* ATW_DEBUG */
1462
1463 out:
1464 atw_rfio_enable(sc, 0);
1465
1466 return rc;
1467 }
1468
1469 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1470 * diversity.
1471 *
1472 * Call this w/ Tx/Rx suspended.
1473 */
1474 static int
1475 atw_rf3000_init(struct atw_softc *sc)
1476 {
1477 int rc = 0;
1478
1479 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1480
1481 atw_rfio_enable(sc, 1);
1482
1483 /* enable diversity */
1484 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1485
1486 if (rc != 0)
1487 goto out;
1488
1489 /* sensible setting from a binary-only driver */
1490 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1491 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1492
1493 if (rc != 0)
1494 goto out;
1495
1496 /* magic from a binary-only driver */
1497 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1498 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1499
1500 if (rc != 0)
1501 goto out;
1502
1503 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1504
1505 if (rc != 0)
1506 goto out;
1507
1508 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1509
1510 if (rc != 0)
1511 goto out;
1512
1513 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1514
1515 if (rc != 0)
1516 goto out;
1517
1518 /* CCA is acquisition sensitive */
1519 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1520 LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1521
1522 if (rc != 0)
1523 goto out;
1524
1525 out:
1526 atw_rfio_enable(sc, 0);
1527 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1528 return rc;
1529 }
1530
1531 #ifdef ATW_DEBUG
1532 static void
1533 atw_rf3000_print(struct atw_softc *sc)
1534 {
1535 struct ifnet *ifp = &sc->sc_ic.ic_if;
1536 u_int addr, val;
1537
1538 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1539 return;
1540
1541 for (addr = 0x01; addr <= 0x15; addr++) {
1542 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1543 if (atw_rf3000_read(sc, addr, &val) != 0) {
1544 printf("<unknown> (quitting print-out)\n");
1545 break;
1546 }
1547 printf("%08x\n", val);
1548 }
1549 }
1550 #endif /* ATW_DEBUG */
1551
1552 /* Set the power settings on the BBP for channel `chan'. */
1553 static int
1554 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
1555 {
1556 int rc = 0;
1557 u_int32_t reg;
1558 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1559
1560 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1561 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1562 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1563
1564 /* odd channels: LSB, even channels: MSB */
1565 if (chan % 2 == 1) {
1566 txpower &= 0xFF;
1567 lpf_cutoff &= 0xFF;
1568 lna_gs_thresh &= 0xFF;
1569 } else {
1570 txpower >>= 8;
1571 lpf_cutoff >>= 8;
1572 lna_gs_thresh >>= 8;
1573 }
1574
1575 #ifdef ATW_DEBUG
1576 atw_rf3000_print(sc);
1577 #endif /* ATW_DEBUG */
1578
1579 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1580 "lna_gs_thresh %02x\n",
1581 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1582
1583 atw_rfio_enable(sc, 1);
1584
1585 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1586 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1587 goto out;
1588
1589 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1590 goto out;
1591
1592 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1593 goto out;
1594
1595 /* from a binary-only driver. */
1596 reg = ATW_READ(sc, ATW_PLCPHD);
1597 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1598 reg |= LSHIFT(txpower << 2, ATW_PLCPHD_SERVICE_MASK);
1599 ATW_WRITE(sc, ATW_PLCPHD, reg);
1600
1601 #ifdef ATW_DEBUG
1602 atw_rf3000_print(sc);
1603 #endif /* ATW_DEBUG */
1604
1605 out:
1606 atw_rfio_enable(sc, 0);
1607
1608 return rc;
1609 }
1610
1611 /* Write a register on the RF3000 baseband processor using the
1612 * registers provided by the ADM8211 for this purpose.
1613 *
1614 * Return 0 on success.
1615 */
1616 static int
1617 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1618 {
1619 u_int32_t reg;
1620 int i;
1621
1622 for (i = 1000; --i >= 0; ) {
1623 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1624 break;
1625 DELAY(100);
1626 }
1627
1628 if (i < 0) {
1629 printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1630 return ETIMEDOUT;
1631 }
1632
1633 reg = sc->sc_bbpctl_wr |
1634 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1635 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1636
1637 ATW_WRITE(sc, ATW_BBPCTL, reg);
1638
1639 for (i = 1000; --i >= 0; ) {
1640 DELAY(100);
1641 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1642 break;
1643 }
1644
1645 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1646
1647 if (i < 0) {
1648 printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1649 return ETIMEDOUT;
1650 }
1651 return 0;
1652 }
1653
1654 /* Read a register on the RF3000 baseband processor using the registers
1655 * the ADM8211 provides for this purpose.
1656 *
1657 * The 7-bit register address is addr. Record the 8-bit data in the register
1658 * in *val.
1659 *
1660 * Return 0 on success.
1661 *
1662 * XXX This does not seem to work. The ADM8211 must require more or
1663 * different magic to read the chip than to write it. Possibly some
1664 * of the magic I have derived from a binary-only driver concerns
1665 * the "chip address" (see the RF3000 manual).
1666 */
1667 #ifdef ATW_DEBUG
1668 static int
1669 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1670 {
1671 u_int32_t reg;
1672 int i;
1673
1674 for (i = 1000; --i >= 0; ) {
1675 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1676 break;
1677 DELAY(100);
1678 }
1679
1680 if (i < 0) {
1681 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1682 sc->sc_dev.dv_xname);
1683 return ETIMEDOUT;
1684 }
1685
1686 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1687
1688 ATW_WRITE(sc, ATW_BBPCTL, reg);
1689
1690 for (i = 1000; --i >= 0; ) {
1691 DELAY(100);
1692 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1693 break;
1694 }
1695
1696 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1697
1698 if (i < 0) {
1699 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1700 sc->sc_dev.dv_xname, reg);
1701 return ETIMEDOUT;
1702 }
1703 if (val != NULL)
1704 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1705 return 0;
1706 }
1707 #endif /* ATW_DEBUG */
1708
1709 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1710 * provided by the ADM8211 for that purpose.
1711 *
1712 * val is 18 bits of data, and val is the 4-bit address of the register.
1713 *
1714 * Return 0 on success.
1715 */
1716 static int
1717 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1718 {
1719 u_int32_t bits, reg;
1720 int i;
1721
1722 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1723 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1724
1725 for (i = 1000; --i >= 0; ) {
1726 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1727 break;
1728 DELAY(100);
1729 }
1730
1731 if (i < 0) {
1732 printf("%s: start atw_si4126_write, SYNCTL busy\n",
1733 sc->sc_dev.dv_xname);
1734 return ETIMEDOUT;
1735 }
1736
1737 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1738 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1739
1740 reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
1741
1742 ATW_WRITE(sc, ATW_SYNCTL, reg);
1743
1744 for (i = 1000; --i >= 0; ) {
1745 DELAY(100);
1746 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1747 break;
1748 }
1749
1750 /* restore to acceptable starting condition */
1751 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1752
1753 if (i < 0) {
1754 printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1755 sc->sc_dev.dv_xname, reg);
1756 return ETIMEDOUT;
1757 }
1758 return 0;
1759 }
1760
1761 /* Read 18-bit data from the 4-bit address addr in Si4126
1762 * RF synthesizer and write the data to *val. Return 0 on success.
1763 *
1764 * XXX This does not seem to work. The ADM8211 must require more or
1765 * different magic to read the chip than to write it.
1766 */
1767 #ifdef ATW_DEBUG
1768 static int
1769 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1770 {
1771 u_int32_t reg;
1772 int i;
1773
1774 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1775
1776 for (i = 1000; --i >= 0; ) {
1777 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1778 break;
1779 DELAY(100);
1780 }
1781
1782 if (i < 0) {
1783 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1784 sc->sc_dev.dv_xname);
1785 return ETIMEDOUT;
1786 }
1787
1788 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1789
1790 ATW_WRITE(sc, ATW_SYNCTL, reg);
1791
1792 for (i = 1000; --i >= 0; ) {
1793 DELAY(100);
1794 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1795 break;
1796 }
1797
1798 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1799
1800 if (i < 0) {
1801 printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1802 sc->sc_dev.dv_xname, reg);
1803 return ETIMEDOUT;
1804 }
1805 if (val != NULL)
1806 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1807 ATW_SYNCTL_DATA_MASK);
1808 return 0;
1809 }
1810 #endif /* ATW_DEBUG */
1811
1812 /* XXX is the endianness correct? test. */
1813 #define atw_calchash(addr) \
1814 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1815
1816 /*
1817 * atw_filter_setup:
1818 *
1819 * Set the ADM8211's receive filter.
1820 */
1821 static void
1822 atw_filter_setup(struct atw_softc *sc)
1823 {
1824 struct ieee80211com *ic = &sc->sc_ic;
1825 struct ethercom *ec = &ic->ic_ec;
1826 struct ifnet *ifp = &sc->sc_ic.ic_if;
1827 int hash;
1828 u_int32_t hashes[2] = { 0, 0 };
1829 struct ether_multi *enm;
1830 struct ether_multistep step;
1831
1832 DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1833 sc->sc_dev.dv_xname, sc->sc_flags));
1834
1835 /*
1836 * If we're running, idle the receive engine. If we're NOT running,
1837 * we're being called from atw_init(), and our writing ATW_NAR will
1838 * start the transmit and receive processes in motion.
1839 */
1840 if (ifp->if_flags & IFF_RUNNING)
1841 atw_idle(sc, ATW_NAR_SR);
1842
1843 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1844
1845 ifp->if_flags &= ~IFF_ALLMULTI;
1846
1847 if (ifp->if_flags & IFF_PROMISC) {
1848 sc->sc_opmode |= ATW_NAR_PR;
1849 allmulti:
1850 ifp->if_flags |= IFF_ALLMULTI;
1851 goto setit;
1852 }
1853
1854 /*
1855 * Program the 64-bit multicast hash filter.
1856 */
1857 ETHER_FIRST_MULTI(step, ec, enm);
1858 while (enm != NULL) {
1859 /* XXX */
1860 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1861 ETHER_ADDR_LEN) != 0)
1862 goto allmulti;
1863
1864 hash = atw_calchash(enm->enm_addrlo);
1865 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1866 ETHER_NEXT_MULTI(step, enm);
1867 }
1868
1869 if (ifp->if_flags & IFF_BROADCAST) {
1870 hash = atw_calchash(etherbroadcastaddr);
1871 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1872 }
1873
1874 /* all bits set => hash is useless */
1875 if (~(hashes[0] & hashes[1]) == 0)
1876 goto allmulti;
1877
1878 setit:
1879 if (ifp->if_flags & IFF_ALLMULTI)
1880 sc->sc_opmode |= ATW_NAR_MM;
1881
1882 /* XXX in scan mode, do not filter packets. maybe this is
1883 * unnecessary.
1884 */
1885 if (ic->ic_state == IEEE80211_S_SCAN)
1886 sc->sc_opmode |= ATW_NAR_PR;
1887
1888 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1889 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1890 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1891 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1892 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1893
1894 DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1895 }
1896
1897 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1898 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1899 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1900 * no beacon with the preferred BSSID and SSID in the number of
1901 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1902 */
1903 static void
1904 atw_write_bssid(struct atw_softc *sc)
1905 {
1906 struct ieee80211com *ic = &sc->sc_ic;
1907 u_int8_t *bssid;
1908
1909 bssid = ic->ic_bss->ni_bssid;
1910
1911 ATW_WRITE(sc, ATW_ABDA1,
1912 (ATW_READ(sc, ATW_ABDA1) &
1913 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1914 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1915 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1916
1917 ATW_WRITE(sc, ATW_BSSID0,
1918 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1919 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1920 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1921 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1922
1923 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1924 ether_sprintf(sc->sc_bssid)));
1925 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1926
1927 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1928 }
1929
1930 /* Tell the ADM8211 how many beacon intervals must pass without
1931 * receiving a beacon with the preferred BSSID & SSID set by
1932 * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
1933 * raised.
1934 */
1935 static void
1936 atw_write_bcn_thresh(struct atw_softc *sc)
1937 {
1938 struct ieee80211com *ic = &sc->sc_ic;
1939 int lost_bcn_thresh;
1940
1941 /* Lose link after one second or 7 beacons, whichever comes
1942 * first, but do not lose link before 2 beacons are lost.
1943 *
1944 * In host AP mode, set the lost-beacon threshold to 0.
1945 */
1946 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1947 lost_bcn_thresh = 0;
1948 else {
1949 int beacons_per_second =
1950 1000000 / (IEEE80211_DUR_TU * MAX(1,ic->ic_bss->ni_intval));
1951 lost_bcn_thresh = MAX(2, MIN(7, beacons_per_second));
1952 }
1953
1954 /* XXX resets wake-up status bits */
1955 ATW_WRITE(sc, ATW_WCSR,
1956 (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
1957 (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
1958
1959 DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
1960 sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
1961
1962 sc->sc_lost_bcn_thresh = lost_bcn_thresh;
1963
1964 DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
1965 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
1966 }
1967
1968 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1969 * 16-bit word.
1970 */
1971 static void
1972 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
1973 {
1974 u_int i;
1975 u_int8_t *ptr;
1976
1977 memcpy(&sc->sc_sram[ofs], buf, buflen);
1978
1979 if (ofs % 2 != 0) {
1980 ofs--;
1981 buflen++;
1982 }
1983
1984 if (buflen % 2 != 0)
1985 buflen++;
1986
1987 assert(buflen + ofs <= ATW_SRAM_SIZE);
1988
1989 ptr = &sc->sc_sram[ofs];
1990
1991 for (i = 0; i < buflen; i += 2) {
1992 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
1993 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
1994 DELAY(atw_writewep_delay);
1995
1996 ATW_WRITE(sc, ATW_WESK,
1997 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
1998 DELAY(atw_writewep_delay);
1999 }
2000 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2001
2002 if (sc->sc_if.if_flags & IFF_DEBUG) {
2003 int n_octets = 0;
2004 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2005 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2006 for (i = 0; i < buflen; i++) {
2007 printf(" %02x", ptr[i]);
2008 if (++n_octets % 24 == 0)
2009 printf("\n");
2010 }
2011 if (n_octets % 24 != 0)
2012 printf("\n");
2013 }
2014 }
2015
2016 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2017 static void
2018 atw_write_wep(struct atw_softc *sc)
2019 {
2020 struct ieee80211com *ic = &sc->sc_ic;
2021 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2022 u_int8_t buf[IEEE80211_WEP_NKID]
2023 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2024 u_int32_t reg;
2025 int i;
2026
2027 sc->sc_wepctl = 0;
2028 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2029
2030 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2031 return;
2032
2033 memset(&buf[0][0], 0, sizeof(buf));
2034
2035 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2036 if (ic->ic_nw_keys[i].wk_len > 5) {
2037 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2038 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2039 buf[i][1] = ATW_WEP_ENABLED;
2040 } else {
2041 buf[i][1] = 0;
2042 continue;
2043 }
2044 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2045 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2046 ic->ic_nw_keys[i].wk_len - 1);
2047 }
2048
2049 reg = ATW_READ(sc, ATW_MACTEST);
2050 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2051 reg &= ~ATW_MACTEST_KEYID_MASK;
2052 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2053 ATW_WRITE(sc, ATW_MACTEST, reg);
2054
2055 /* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2056 * throughout.)
2057 */
2058 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2059 if (sc->sc_if.if_flags & IFF_LINK2)
2060 sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2061
2062 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2063 sizeof(buf));
2064 }
2065
2066 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2067
2068 static void
2069 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2070 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2071 {
2072 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2073
2074 switch (subtype) {
2075 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2076 /* do nothing: hardware answers probe request */
2077 break;
2078 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2079 case IEEE80211_FC0_SUBTYPE_BEACON:
2080 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2081 break;
2082 default:
2083 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2084 break;
2085 }
2086 return;
2087 }
2088
2089 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2090 * of IBSSs with like SSID/channel but different BSSID. It joins the
2091 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2092 * convention. Possibly the ADMtek chip does this for us; I will have
2093 * to test to find out.
2094 *
2095 * XXX we should add the duration field of the received beacon to
2096 * the TSF time it contains before comparing it with the ADM8211's
2097 * TSF.
2098 */
2099 static void
2100 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2101 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2102 {
2103 struct atw_softc *sc;
2104 struct ieee80211_frame *wh;
2105 u_int64_t tsft, bcn_tsft;
2106 u_int32_t tsftl, tsfth;
2107 int do_print = 0;
2108
2109 sc = (struct atw_softc*)ic->ic_if.if_softc;
2110
2111 if (ic->ic_if.if_flags & IFF_DEBUG)
2112 do_print = (ic->ic_if.if_flags & IFF_LINK0)
2113 ? 1 : ratecheck(&sc->sc_last_beacon,
2114 &atw_beacon_mininterval);
2115
2116 wh = mtod(m0, struct ieee80211_frame *);
2117
2118 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2119
2120 if (ic->ic_state != IEEE80211_S_RUN) {
2121 if (do_print)
2122 printf("%s: atw_recv_beacon: not running\n",
2123 sc->sc_dev.dv_xname);
2124 return;
2125 }
2126
2127 if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2128 ic->ic_bss->ni_chan)) == NULL) {
2129 if (do_print)
2130 printf("%s: atw_recv_beacon: no node %s\n",
2131 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2132 return;
2133 }
2134
2135 if (ieee80211_match_bss(ic, ni) != 0) {
2136 if (do_print)
2137 printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2138 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2139 return;
2140 }
2141
2142 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2143 return;
2144
2145 if (do_print)
2146 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2147 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2148
2149 if (ic->ic_opmode != IEEE80211_M_IBSS)
2150 return;
2151
2152 /* If we read TSFTL right before rollover, we read a TSF timer
2153 * that is too high rather than too low. This prevents a spurious
2154 * synchronization down the line, however, our IBSS could suffer
2155 * from a creeping TSF....
2156 */
2157 tsftl = ATW_READ(sc, ATW_TSFTL);
2158 tsfth = ATW_READ(sc, ATW_TSFTH);
2159
2160 tsft = (u_int64_t)tsfth << 32 | tsftl;
2161 bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2162
2163 if (do_print)
2164 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2165 sc->sc_dev.dv_xname, tsft, bcn_tsft);
2166
2167 /* we are faster, let the other guy catch up */
2168 if (bcn_tsft < tsft)
2169 return;
2170
2171 if (do_print)
2172 printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2173 ether_sprintf(wh->i_addr2));
2174
2175 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2176
2177 #if 0
2178 atw_tsf(sc);
2179 #endif
2180
2181 /* negotiate rates with new IBSS */
2182 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2183 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2184 if (ni->ni_rates.rs_nrates == 0) {
2185 printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2186 ether_sprintf(ni->ni_bssid));
2187 return;
2188 }
2189
2190 if (do_print) {
2191 printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2192 ether_sprintf(ic->ic_bss->ni_bssid));
2193 printf("%s ", ether_sprintf(ni->ni_bssid));
2194 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2195 }
2196
2197 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2198
2199 atw_write_bssid(sc);
2200 atw_write_bcn_thresh(sc);
2201 atw_start_beacon(sc, 1);
2202 }
2203
2204 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2205 * In ad hoc mode, the SSID is written to the beacons sent by the
2206 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2207 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2208 * indications.
2209 */
2210 static void
2211 atw_write_ssid(struct atw_softc *sc)
2212 {
2213 struct ieee80211com *ic = &sc->sc_ic;
2214 /* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2215 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2216
2217 memset(buf, 0, sizeof(buf));
2218 buf[0] = ic->ic_bss->ni_esslen;
2219 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2220
2221 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2222 }
2223
2224 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2225 * In ad hoc mode, the supported rates are written to beacons sent by the
2226 * ADM8211.
2227 */
2228 static void
2229 atw_write_sup_rates(struct atw_softc *sc)
2230 {
2231 struct ieee80211com *ic = &sc->sc_ic;
2232 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2233 * supported rates
2234 */
2235 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2236
2237 memset(buf, 0, sizeof(buf));
2238
2239 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2240
2241 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2242 ic->ic_bss->ni_rates.rs_nrates);
2243
2244 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2245 }
2246
2247 /* Start/stop sending beacons. */
2248 void
2249 atw_start_beacon(struct atw_softc *sc, int start)
2250 {
2251 struct ieee80211com *ic = &sc->sc_ic;
2252 u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2253
2254 if (ATW_IS_ENABLED(sc) == 0)
2255 return;
2256
2257 len = capinfo = 0;
2258
2259 /* start beacons */
2260 len = sizeof(struct ieee80211_frame) +
2261 8 /* timestamp */ + 2 /* beacon interval */ +
2262 2 /* capability info */ +
2263 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2264 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2265 3 /* DS parameters */ +
2266 IEEE80211_CRC_LEN;
2267
2268 reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2269
2270 reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2271
2272 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2273 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2274
2275 if (!start)
2276 return;
2277
2278 /* TBD use ni_capinfo */
2279
2280 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2281 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2282 if (ic->ic_flags & IEEE80211_F_WEPON)
2283 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2284
2285 switch (ic->ic_opmode) {
2286 case IEEE80211_M_IBSS:
2287 len += 4; /* IBSS parameters */
2288 capinfo |= IEEE80211_CAPINFO_IBSS;
2289 break;
2290 case IEEE80211_M_HOSTAP:
2291 /* XXX 6-byte minimum TIM */
2292 len += atw_beacon_len_adjust;
2293 capinfo |= IEEE80211_CAPINFO_ESS;
2294 break;
2295 default:
2296 return;
2297 }
2298
2299 reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2300 reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2301
2302 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2303 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2304
2305 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2306 sc->sc_dev.dv_xname, reg_bcnt));
2307
2308 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2309 sc->sc_dev.dv_xname, reg_cap1));
2310 }
2311
2312 /* First beacon was sent at time 0 microseconds, current time is
2313 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2314 * microseconds. Return the expected time in microseconds for the
2315 * beacon after next.
2316 */
2317 static __inline u_int64_t
2318 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2319 {
2320 return tsft + (tbtt - tsft % tbtt);
2321 }
2322
2323 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2324 * the ieee80211com.
2325 *
2326 * Predict the next target beacon transmission time (TBTT) and
2327 * write it to the ADM8211.
2328 */
2329 static void
2330 atw_tsf(struct atw_softc *sc)
2331 {
2332 #define TBTTOFS 20 /* TU */
2333
2334 struct ieee80211com *ic = &sc->sc_ic;
2335 u_int64_t tsft, tbtt;
2336
2337 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2338 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2339 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2340 tsft = ATW_READ(sc, ATW_TSFTH);
2341 tsft <<= 32;
2342 tsft |= ATW_READ(sc, ATW_TSFTL);
2343 *(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2344 } else
2345 tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2346
2347 tbtt = atw_predict_beacon(tsft,
2348 ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2349
2350 /* skip one more beacon so that the TBTT cannot pass before
2351 * we've programmed it, and also so that we can subtract a
2352 * few TU so that we wake a little before TBTT.
2353 */
2354 tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2355
2356 /* wake up a little early */
2357 tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2358
2359 DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2360 sc->sc_dev.dv_xname, tsft, tbtt));
2361
2362 ATW_WRITE(sc, ATW_TOFS1,
2363 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2364 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2365 LSHIFT(
2366 MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2367 ATW_TOFS1_TBTTPRE_MASK));
2368 #undef TBTTOFS
2369 }
2370
2371 static void
2372 atw_next_scan(void *arg)
2373 {
2374 struct atw_softc *sc = arg;
2375 struct ieee80211com *ic = &sc->sc_ic;
2376 struct ifnet *ifp = &ic->ic_if;
2377 int s;
2378
2379 /* don't call atw_start w/o network interrupts blocked */
2380 s = splnet();
2381 if (ic->ic_state == IEEE80211_S_SCAN)
2382 ieee80211_next_scan(ifp);
2383 splx(s);
2384 }
2385
2386 /* Synchronize the hardware state with the software state. */
2387 static int
2388 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2389 {
2390 struct ifnet *ifp = &ic->ic_if;
2391 struct atw_softc *sc = ifp->if_softc;
2392 enum ieee80211_state ostate;
2393 int error;
2394
2395 ostate = ic->ic_state;
2396
2397 if (nstate == IEEE80211_S_INIT) {
2398 callout_stop(&sc->sc_scan_ch);
2399 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2400 atw_start_beacon(sc, 0);
2401 return (*sc->sc_newstate)(ic, nstate, arg);
2402 }
2403
2404 if ((error = atw_tune(sc)) != 0)
2405 return error;
2406
2407 switch (nstate) {
2408 case IEEE80211_S_ASSOC:
2409 break;
2410 case IEEE80211_S_INIT:
2411 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2412 break;
2413 case IEEE80211_S_SCAN:
2414 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2415 atw_write_bssid(sc);
2416
2417 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2418 atw_next_scan, sc);
2419
2420 break;
2421 case IEEE80211_S_RUN:
2422 if (ic->ic_opmode == IEEE80211_M_STA)
2423 break;
2424 /*FALLTHROUGH*/
2425 case IEEE80211_S_AUTH:
2426 atw_write_bssid(sc);
2427 atw_write_bcn_thresh(sc);
2428 atw_write_ssid(sc);
2429 atw_write_sup_rates(sc);
2430
2431 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2432 ic->ic_opmode == IEEE80211_M_MONITOR)
2433 break;
2434
2435 /* set listen interval
2436 * XXX do software units agree w/ hardware?
2437 */
2438 ATW_WRITE(sc, ATW_BPLI,
2439 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2440 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2441 ATW_BPLI_LI_MASK));
2442
2443 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2444 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2445
2446 atw_tsf(sc);
2447 break;
2448 }
2449
2450 if (nstate != IEEE80211_S_SCAN)
2451 callout_stop(&sc->sc_scan_ch);
2452
2453 if (nstate == IEEE80211_S_RUN &&
2454 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2455 ic->ic_opmode == IEEE80211_M_IBSS))
2456 atw_start_beacon(sc, 1);
2457 else
2458 atw_start_beacon(sc, 0);
2459
2460 return (*sc->sc_newstate)(ic, nstate, arg);
2461 }
2462
2463 /*
2464 * atw_add_rxbuf:
2465 *
2466 * Add a receive buffer to the indicated descriptor.
2467 */
2468 int
2469 atw_add_rxbuf(struct atw_softc *sc, int idx)
2470 {
2471 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2472 struct mbuf *m;
2473 int error;
2474
2475 MGETHDR(m, M_DONTWAIT, MT_DATA);
2476 if (m == NULL)
2477 return (ENOBUFS);
2478
2479 MCLGET(m, M_DONTWAIT);
2480 if ((m->m_flags & M_EXT) == 0) {
2481 m_freem(m);
2482 return (ENOBUFS);
2483 }
2484
2485 if (rxs->rxs_mbuf != NULL)
2486 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2487
2488 rxs->rxs_mbuf = m;
2489
2490 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2491 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2492 BUS_DMA_READ|BUS_DMA_NOWAIT);
2493 if (error) {
2494 printf("%s: can't load rx DMA map %d, error = %d\n",
2495 sc->sc_dev.dv_xname, idx, error);
2496 panic("atw_add_rxbuf"); /* XXX */
2497 }
2498
2499 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2500 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2501
2502 ATW_INIT_RXDESC(sc, idx);
2503
2504 return (0);
2505 }
2506
2507 /*
2508 * atw_stop: [ ifnet interface function ]
2509 *
2510 * Stop transmission on the interface.
2511 */
2512 void
2513 atw_stop(struct ifnet *ifp, int disable)
2514 {
2515 struct atw_softc *sc = ifp->if_softc;
2516 struct ieee80211com *ic = &sc->sc_ic;
2517 struct atw_txsoft *txs;
2518
2519 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2520
2521 /* Disable interrupts. */
2522 ATW_WRITE(sc, ATW_IER, 0);
2523
2524 /* Stop the transmit and receive processes. */
2525 sc->sc_opmode = 0;
2526 ATW_WRITE(sc, ATW_NAR, 0);
2527 ATW_WRITE(sc, ATW_TDBD, 0);
2528 ATW_WRITE(sc, ATW_TDBP, 0);
2529 ATW_WRITE(sc, ATW_RDB, 0);
2530
2531 /*
2532 * Release any queued transmit buffers.
2533 */
2534 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2535 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2536 if (txs->txs_mbuf != NULL) {
2537 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2538 m_freem(txs->txs_mbuf);
2539 txs->txs_mbuf = NULL;
2540 }
2541 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2542 }
2543
2544 if (disable) {
2545 atw_rxdrain(sc);
2546 atw_disable(sc);
2547 }
2548
2549 /*
2550 * Mark the interface down and cancel the watchdog timer.
2551 */
2552 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2553 ifp->if_timer = 0;
2554
2555 /* XXX */
2556 atw_reset(sc);
2557 }
2558
2559 /*
2560 * atw_rxdrain:
2561 *
2562 * Drain the receive queue.
2563 */
2564 void
2565 atw_rxdrain(struct atw_softc *sc)
2566 {
2567 struct atw_rxsoft *rxs;
2568 int i;
2569
2570 for (i = 0; i < ATW_NRXDESC; i++) {
2571 rxs = &sc->sc_rxsoft[i];
2572 if (rxs->rxs_mbuf == NULL)
2573 continue;
2574 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2575 m_freem(rxs->rxs_mbuf);
2576 rxs->rxs_mbuf = NULL;
2577 }
2578 }
2579
2580 /*
2581 * atw_detach:
2582 *
2583 * Detach an ADM8211 interface.
2584 */
2585 int
2586 atw_detach(struct atw_softc *sc)
2587 {
2588 struct ifnet *ifp = &sc->sc_ic.ic_if;
2589 struct atw_rxsoft *rxs;
2590 struct atw_txsoft *txs;
2591 int i;
2592
2593 /*
2594 * Succeed now if there isn't any work to do.
2595 */
2596 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2597 return (0);
2598
2599 ieee80211_ifdetach(ifp);
2600 if_detach(ifp);
2601
2602 for (i = 0; i < ATW_NRXDESC; i++) {
2603 rxs = &sc->sc_rxsoft[i];
2604 if (rxs->rxs_mbuf != NULL) {
2605 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2606 m_freem(rxs->rxs_mbuf);
2607 rxs->rxs_mbuf = NULL;
2608 }
2609 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2610 }
2611 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2612 txs = &sc->sc_txsoft[i];
2613 if (txs->txs_mbuf != NULL) {
2614 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2615 m_freem(txs->txs_mbuf);
2616 txs->txs_mbuf = NULL;
2617 }
2618 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2619 }
2620 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2621 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2622 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2623 sizeof(struct atw_control_data));
2624 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2625
2626 shutdownhook_disestablish(sc->sc_sdhook);
2627 powerhook_disestablish(sc->sc_powerhook);
2628
2629 if (sc->sc_srom)
2630 free(sc->sc_srom, M_DEVBUF);
2631
2632 return (0);
2633 }
2634
2635 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2636 void
2637 atw_shutdown(void *arg)
2638 {
2639 struct atw_softc *sc = arg;
2640
2641 atw_stop(&sc->sc_ic.ic_if, 1);
2642 }
2643
2644 int
2645 atw_intr(void *arg)
2646 {
2647 struct atw_softc *sc = arg;
2648 struct ifnet *ifp = &sc->sc_ic.ic_if;
2649 u_int32_t status, rxstatus, txstatus, linkstatus;
2650 int handled = 0, txthresh;
2651
2652 #ifdef DEBUG
2653 if (ATW_IS_ENABLED(sc) == 0)
2654 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2655 #endif
2656
2657 /*
2658 * If the interface isn't running, the interrupt couldn't
2659 * possibly have come from us.
2660 */
2661 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2662 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2663 return (0);
2664
2665 for (;;) {
2666 status = ATW_READ(sc, ATW_STSR);
2667
2668 if (status)
2669 ATW_WRITE(sc, ATW_STSR, status);
2670
2671 if (sc->sc_intr_ack != NULL)
2672 (*sc->sc_intr_ack)(sc);
2673
2674 #ifdef ATW_DEBUG
2675 #define PRINTINTR(flag) do { \
2676 if ((status & flag) != 0) { \
2677 printf("%s" #flag, delim); \
2678 delim = ","; \
2679 } \
2680 } while (0)
2681
2682 if (atw_debug > 1 && status) {
2683 const char *delim = "<";
2684
2685 printf("%s: reg[STSR] = %x",
2686 sc->sc_dev.dv_xname, status);
2687
2688 PRINTINTR(ATW_INTR_FBE);
2689 PRINTINTR(ATW_INTR_LINKOFF);
2690 PRINTINTR(ATW_INTR_LINKON);
2691 PRINTINTR(ATW_INTR_RCI);
2692 PRINTINTR(ATW_INTR_RDU);
2693 PRINTINTR(ATW_INTR_REIS);
2694 PRINTINTR(ATW_INTR_RPS);
2695 PRINTINTR(ATW_INTR_TCI);
2696 PRINTINTR(ATW_INTR_TDU);
2697 PRINTINTR(ATW_INTR_TLT);
2698 PRINTINTR(ATW_INTR_TPS);
2699 PRINTINTR(ATW_INTR_TRT);
2700 PRINTINTR(ATW_INTR_TUF);
2701 PRINTINTR(ATW_INTR_BCNTC);
2702 PRINTINTR(ATW_INTR_ATIME);
2703 PRINTINTR(ATW_INTR_TBTT);
2704 PRINTINTR(ATW_INTR_TSCZ);
2705 PRINTINTR(ATW_INTR_TSFTF);
2706 printf(">\n");
2707 }
2708 #undef PRINTINTR
2709 #endif /* ATW_DEBUG */
2710
2711 if ((status & sc->sc_inten) == 0)
2712 break;
2713
2714 handled = 1;
2715
2716 rxstatus = status & sc->sc_rxint_mask;
2717 txstatus = status & sc->sc_txint_mask;
2718 linkstatus = status & sc->sc_linkint_mask;
2719
2720 if (linkstatus) {
2721 atw_linkintr(sc, linkstatus);
2722 }
2723
2724 if (rxstatus) {
2725 /* Grab any new packets. */
2726 atw_rxintr(sc);
2727
2728 if (rxstatus & ATW_INTR_RDU) {
2729 printf("%s: receive ring overrun\n",
2730 sc->sc_dev.dv_xname);
2731 /* Get the receive process going again. */
2732 ATW_WRITE(sc, ATW_RDR, 0x1);
2733 break;
2734 }
2735 }
2736
2737 if (txstatus) {
2738 /* Sweep up transmit descriptors. */
2739 atw_txintr(sc);
2740
2741 if (txstatus & ATW_INTR_TLT)
2742 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2743 sc->sc_dev.dv_xname));
2744
2745 if (txstatus & ATW_INTR_TRT)
2746 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2747 sc->sc_dev.dv_xname));
2748
2749 /* If Tx under-run, increase our transmit threshold
2750 * if another is available.
2751 */
2752 txthresh = sc->sc_txthresh + 1;
2753 if ((txstatus & ATW_INTR_TUF) &&
2754 sc->sc_txth[txthresh].txth_name != NULL) {
2755 /* Idle the transmit process. */
2756 atw_idle(sc, ATW_NAR_ST);
2757
2758 sc->sc_txthresh = txthresh;
2759 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2760 sc->sc_opmode |=
2761 sc->sc_txth[txthresh].txth_opmode;
2762 printf("%s: transmit underrun; new "
2763 "threshold: %s\n", sc->sc_dev.dv_xname,
2764 sc->sc_txth[txthresh].txth_name);
2765
2766 /* Set the new threshold and restart
2767 * the transmit process.
2768 */
2769 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2770 /* XXX Log every Nth underrun from
2771 * XXX now on?
2772 */
2773 }
2774 }
2775
2776 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2777 if (status & ATW_INTR_TPS)
2778 printf("%s: transmit process stopped\n",
2779 sc->sc_dev.dv_xname);
2780 if (status & ATW_INTR_RPS)
2781 printf("%s: receive process stopped\n",
2782 sc->sc_dev.dv_xname);
2783 (void)atw_init(ifp);
2784 break;
2785 }
2786
2787 if (status & ATW_INTR_FBE) {
2788 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2789 (void)atw_init(ifp);
2790 break;
2791 }
2792
2793 /*
2794 * Not handled:
2795 *
2796 * Transmit buffer unavailable -- normal
2797 * condition, nothing to do, really.
2798 *
2799 * Early receive interrupt -- not available on
2800 * all chips, we just use RI. We also only
2801 * use single-segment receive DMA, so this
2802 * is mostly useless.
2803 *
2804 * TBD others
2805 */
2806 }
2807
2808 /* Try to get more packets going. */
2809 atw_start(ifp);
2810
2811 return (handled);
2812 }
2813
2814 /*
2815 * atw_idle:
2816 *
2817 * Cause the transmit and/or receive processes to go idle.
2818 *
2819 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2820 * process in STSR if I clear SR or ST after the process has already
2821 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2822 * do not seem to be too reliable. Perhaps I have the sense of the
2823 * Rx bits switched with the Tx bits?
2824 */
2825 void
2826 atw_idle(struct atw_softc *sc, u_int32_t bits)
2827 {
2828 u_int32_t ackmask = 0, opmode, stsr, test0;
2829 int i, s;
2830
2831 /* without this, somehow we run concurrently w/ interrupt handler */
2832 s = splnet();
2833
2834 opmode = sc->sc_opmode & ~bits;
2835
2836 if (bits & ATW_NAR_SR)
2837 ackmask |= ATW_INTR_RPS;
2838
2839 if (bits & ATW_NAR_ST) {
2840 ackmask |= ATW_INTR_TPS;
2841 /* set ATW_NAR_HF to flush TX FIFO. */
2842 opmode |= ATW_NAR_HF;
2843 }
2844
2845 ATW_WRITE(sc, ATW_NAR, opmode);
2846
2847 for (i = 0; i < 1000; i++) {
2848 stsr = ATW_READ(sc, ATW_STSR);
2849 if ((stsr & ackmask) == ackmask)
2850 break;
2851 DELAY(10);
2852 }
2853
2854 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2855
2856 if ((stsr & ackmask) == ackmask)
2857 goto out;
2858
2859 test0 = ATW_READ(sc, ATW_TEST0);
2860
2861 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2862 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2863 printf("%s: transmit process not idle [%s]\n",
2864 sc->sc_dev.dv_xname,
2865 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2866 printf("%s: bits %08x test0 %08x stsr %08x\n",
2867 sc->sc_dev.dv_xname, bits, test0, stsr);
2868 }
2869
2870 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2871 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2872 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2873 sc->sc_dev.dv_xname,
2874 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2875 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2876 sc->sc_dev.dv_xname, bits, test0, stsr));
2877 }
2878 out:
2879 splx(s);
2880 return;
2881 }
2882
2883 /*
2884 * atw_linkintr:
2885 *
2886 * Helper; handle link-status interrupts.
2887 */
2888 void
2889 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2890 {
2891 struct ieee80211com *ic = &sc->sc_ic;
2892
2893 if (ic->ic_state != IEEE80211_S_RUN)
2894 return;
2895
2896 if (linkstatus & ATW_INTR_LINKON) {
2897 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2898 sc->sc_rescan_timer = 0;
2899 } else if (linkstatus & ATW_INTR_LINKOFF) {
2900 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2901 switch (ic->ic_opmode) {
2902 case IEEE80211_M_HOSTAP:
2903 return;
2904 case IEEE80211_M_IBSS:
2905 if (ic->ic_flags & IEEE80211_F_SIBSS)
2906 return;
2907 /*FALLTHROUGH*/
2908 case IEEE80211_M_STA:
2909 sc->sc_rescan_timer = 3;
2910 ic->ic_if.if_timer = 1;
2911 break;
2912 default:
2913 break;
2914 }
2915 }
2916 }
2917
2918 /*
2919 * atw_rxintr:
2920 *
2921 * Helper; handle receive interrupts.
2922 */
2923 void
2924 atw_rxintr(struct atw_softc *sc)
2925 {
2926 static int rate_tbl[] = {2, 4, 11, 22, 44};
2927 struct ieee80211com *ic = &sc->sc_ic;
2928 struct ieee80211_node *ni;
2929 struct ieee80211_frame *wh;
2930 struct ifnet *ifp = &ic->ic_if;
2931 struct atw_rxsoft *rxs;
2932 struct mbuf *m;
2933 u_int32_t rxstat;
2934 int i, len, rate, rate0;
2935 u_int32_t rssi;
2936
2937 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2938 rxs = &sc->sc_rxsoft[i];
2939
2940 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2941
2942 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2943 rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2944 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2945
2946 if (rxstat & ATW_RXSTAT_OWN)
2947 break; /* We have processed all receive buffers. */
2948
2949 DPRINTF3(sc,
2950 ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2951 sc->sc_dev.dv_xname,
2952 sc->sc_rxdescs[i].ar_stat,
2953 sc->sc_rxdescs[i].ar_rssi,
2954 sc->sc_rxdescs[i].ar_buf1,
2955 sc->sc_rxdescs[i].ar_buf2));
2956
2957 /*
2958 * Make sure the packet fit in one buffer. This should
2959 * always be the case.
2960 */
2961 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2962 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2963 printf("%s: incoming packet spilled, resetting\n",
2964 sc->sc_dev.dv_xname);
2965 (void)atw_init(ifp);
2966 return;
2967 }
2968
2969 /*
2970 * If an error occurred, update stats, clear the status
2971 * word, and leave the packet buffer in place. It will
2972 * simply be reused the next time the ring comes around.
2973 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2974 * error.
2975 */
2976
2977 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
2978 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
2979 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
2980 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
2981 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
2982 ATW_RXSTAT_ICVE)) != 0)) {
2983 #define PRINTERR(bit, str) \
2984 if (rxstat & (bit)) \
2985 printf("%s: receive error: %s\n", \
2986 sc->sc_dev.dv_xname, str)
2987 ifp->if_ierrors++;
2988 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
2989 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
2990 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
2991 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
2992 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
2993 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
2994 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
2995 #undef PRINTERR
2996 ATW_INIT_RXDESC(sc, i);
2997 continue;
2998 }
2999
3000 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3001 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3002
3003 /*
3004 * No errors; receive the packet. Note the ADM8211
3005 * includes the CRC in promiscuous mode.
3006 */
3007 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3008
3009 /*
3010 * Allocate a new mbuf cluster. If that fails, we are
3011 * out of memory, and must drop the packet and recycle
3012 * the buffer that's already attached to this descriptor.
3013 */
3014 m = rxs->rxs_mbuf;
3015 if (atw_add_rxbuf(sc, i) != 0) {
3016 ifp->if_ierrors++;
3017 ATW_INIT_RXDESC(sc, i);
3018 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3019 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3020 continue;
3021 }
3022
3023 ifp->if_ipackets++;
3024 if (sc->sc_opmode & ATW_NAR_PR)
3025 m->m_flags |= M_HASFCS;
3026 m->m_pkthdr.rcvif = ifp;
3027 m->m_pkthdr.len = m->m_len = len;
3028
3029 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3030 rate = 0;
3031 else
3032 rate = rate_tbl[rate0];
3033
3034 #if NBPFILTER > 0
3035 /* Pass this up to any BPF listeners. */
3036 if (sc->sc_radiobpf != NULL) {
3037 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3038
3039 tap->ar_rate = rate;
3040 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3041 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3042
3043 /* TBD verify units are dB */
3044 tap->ar_antsignal = (int)rssi;
3045 /* TBD tap->ar_flags */
3046
3047 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3048 tap->ar_ihdr.it_len, m);
3049 }
3050 #endif /* NPBFILTER > 0 */
3051
3052 wh = mtod(m, struct ieee80211_frame *);
3053 ni = ieee80211_find_rxnode(ic, wh);
3054 if (m->m_pkthdr.len >= sizeof(struct ieee80211_frame_min) ||
3055 ic->ic_opmode == IEEE80211_M_MONITOR)
3056 ieee80211_input(ifp, m, ni, (int)rssi, 0);
3057 /*
3058 * The frame may have caused the node to be marked for
3059 * reclamation (e.g. in response to a DEAUTH message)
3060 * so use free_node here instead of unref_node.
3061 */
3062 if (ni == ic->ic_bss)
3063 ieee80211_unref_node(&ni);
3064 else
3065 ieee80211_free_node(ic, ni);
3066 }
3067
3068 /* Update the receive pointer. */
3069 sc->sc_rxptr = i;
3070 }
3071
3072 /*
3073 * atw_txintr:
3074 *
3075 * Helper; handle transmit interrupts.
3076 */
3077 void
3078 atw_txintr(struct atw_softc *sc)
3079 {
3080 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3081 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3082 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3083 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3084
3085 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3086 struct ifnet *ifp = &sc->sc_ic.ic_if;
3087 struct atw_txsoft *txs;
3088 u_int32_t txstat;
3089
3090 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3091 sc->sc_dev.dv_xname, sc->sc_flags));
3092
3093 ifp->if_flags &= ~IFF_OACTIVE;
3094
3095 /*
3096 * Go through our Tx list and free mbufs for those
3097 * frames that have been transmitted.
3098 */
3099 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3100 ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3101 txs->txs_ndescs,
3102 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3103
3104 #ifdef ATW_DEBUG
3105 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3106 int i;
3107 printf(" txsoft %p transmit chain:\n", txs);
3108 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3109 printf(" descriptor %d:\n", i);
3110 printf(" at_status: 0x%08x\n",
3111 le32toh(sc->sc_txdescs[i].at_stat));
3112 printf(" at_flags: 0x%08x\n",
3113 le32toh(sc->sc_txdescs[i].at_flags));
3114 printf(" at_buf1: 0x%08x\n",
3115 le32toh(sc->sc_txdescs[i].at_buf1));
3116 printf(" at_buf2: 0x%08x\n",
3117 le32toh(sc->sc_txdescs[i].at_buf2));
3118 if (i == txs->txs_lastdesc)
3119 break;
3120 }
3121 }
3122 #endif
3123
3124 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3125 if (txstat & ATW_TXSTAT_OWN)
3126 break;
3127
3128 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3129
3130 sc->sc_txfree += txs->txs_ndescs;
3131
3132 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3133 0, txs->txs_dmamap->dm_mapsize,
3134 BUS_DMASYNC_POSTWRITE);
3135 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3136 m_freem(txs->txs_mbuf);
3137 txs->txs_mbuf = NULL;
3138
3139 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3140
3141 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3142 (txstat & TXSTAT_ERRMASK) != 0) {
3143 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3144 txstat_buf, sizeof(txstat_buf));
3145 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3146 txstat_buf,
3147 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3148 }
3149
3150 /*
3151 * Check for errors and collisions.
3152 */
3153 if (txstat & ATW_TXSTAT_TUF)
3154 sc->sc_stats.ts_tx_tuf++;
3155 if (txstat & ATW_TXSTAT_TLT)
3156 sc->sc_stats.ts_tx_tlt++;
3157 if (txstat & ATW_TXSTAT_TRT)
3158 sc->sc_stats.ts_tx_trt++;
3159 if (txstat & ATW_TXSTAT_TRO)
3160 sc->sc_stats.ts_tx_tro++;
3161 if (txstat & ATW_TXSTAT_SOFBR) {
3162 sc->sc_stats.ts_tx_sofbr++;
3163 }
3164
3165 if ((txstat & ATW_TXSTAT_ES) == 0)
3166 ifp->if_collisions +=
3167 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3168 else
3169 ifp->if_oerrors++;
3170
3171 ifp->if_opackets++;
3172 }
3173
3174 /*
3175 * If there are no more pending transmissions, cancel the watchdog
3176 * timer.
3177 */
3178 if (txs == NULL)
3179 sc->sc_tx_timer = 0;
3180 #undef TXSTAT_ERRMASK
3181 #undef TXSTAT_FMT
3182 }
3183
3184 /*
3185 * atw_watchdog: [ifnet interface function]
3186 *
3187 * Watchdog timer handler.
3188 */
3189 void
3190 atw_watchdog(struct ifnet *ifp)
3191 {
3192 struct atw_softc *sc = ifp->if_softc;
3193 struct ieee80211com *ic = &sc->sc_ic;
3194
3195 ifp->if_timer = 0;
3196 if (ATW_IS_ENABLED(sc) == 0)
3197 return;
3198
3199 if (sc->sc_rescan_timer) {
3200 if (--sc->sc_rescan_timer == 0)
3201 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3202 }
3203 if (sc->sc_tx_timer) {
3204 if (--sc->sc_tx_timer == 0 &&
3205 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3206 printf("%s: transmit timeout\n", ifp->if_xname);
3207 ifp->if_oerrors++;
3208 (void)atw_init(ifp);
3209 atw_start(ifp);
3210 }
3211 }
3212 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3213 ifp->if_timer = 1;
3214 ieee80211_watchdog(ifp);
3215 }
3216
3217 /* Compute the 802.11 Duration field and the PLCP Length fields for
3218 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3219 * Write the fields to the ADM8211 Tx header, frm.
3220 *
3221 * TBD use the fragmentation threshold to find the right duration for
3222 * the first & last fragments.
3223 *
3224 * TBD make certain of the duration fields applied by the ADM8211 to each
3225 * fragment. I think that the ADM8211 knows how to subtract the CTS
3226 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3227 * I also think that the ADM8211 does *some* arithmetic for us, because
3228 * otherwise I think we would have to set a first duration for CTS/first
3229 * fragment, a second duration for fragments between the first and the
3230 * last, and a third duration for the last fragment.
3231 *
3232 * TBD make certain that duration fields reflect addition of FCS/WEP
3233 * and correct duration arithmetic as necessary.
3234 */
3235 static void
3236 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3237 int len)
3238 {
3239 int remainder;
3240
3241 /* deal also with encrypted fragments */
3242 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3243 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3244 sc->sc_dev.dv_xname));
3245 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3246 IEEE80211_WEP_CRCLEN;
3247 }
3248
3249 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3250 * duration (XXX added by MAC?).
3251 */
3252 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3253 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3254
3255 if (rate <= 4)
3256 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3257 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3258 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3259 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3260 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3261 else
3262 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3263 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3264 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3265 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3266 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3267
3268 /* lengthen duration if long preamble */
3269 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3270 frm->atw_head_dur +=
3271 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3272 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3273 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3274 IEEE80211_DUR_DS_FAST_PLCPHDR);
3275
3276 if (remainder != 0)
3277 frm->atw_head_dur++;
3278
3279 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3280 (rate == 2 || rate == 4)) {
3281 /* derived from Linux: how could this be right? */
3282 frm->atw_head_plcplen = frm->atw_head_dur;
3283 } else {
3284 frm->atw_head_plcplen = (16 * len) / rate;
3285 remainder = (80 * len) % (rate * 5);
3286
3287 if (remainder != 0) {
3288 frm->atw_head_plcplen++;
3289
3290 /* XXX magic */
3291 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3292 rate == 22 && remainder <= 30)
3293 frm->atw_head_plcplen |= 0x8000;
3294 }
3295 }
3296 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3297 htole16(frm->atw_head_plcplen);
3298 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3299 }
3300
3301 #ifdef ATW_DEBUG
3302 static void
3303 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3304 {
3305 struct atw_softc *sc = ifp->if_softc;
3306 struct mbuf *m;
3307 int i, noctets = 0;
3308
3309 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3310 m0->m_pkthdr.len);
3311
3312 for (m = m0; m; m = m->m_next) {
3313 if (m->m_len == 0)
3314 continue;
3315 for (i = 0; i < m->m_len; i++) {
3316 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3317 if (++noctets % 24 == 0)
3318 printf("\n");
3319 }
3320 }
3321 printf("%s%s: %d bytes emitted\n",
3322 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3323 }
3324 #endif /* ATW_DEBUG */
3325
3326 /*
3327 * atw_start: [ifnet interface function]
3328 *
3329 * Start packet transmission on the interface.
3330 */
3331 void
3332 atw_start(struct ifnet *ifp)
3333 {
3334 struct atw_softc *sc = ifp->if_softc;
3335 struct ieee80211com *ic = &sc->sc_ic;
3336 struct ieee80211_node *ni;
3337 struct ieee80211_frame *wh;
3338 struct atw_frame *hh;
3339 struct mbuf *m0, *m;
3340 struct atw_txsoft *txs, *last_txs;
3341 struct atw_txdesc *txd;
3342 int do_encrypt, rate;
3343 bus_dmamap_t dmamap;
3344 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3345
3346 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3347 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3348
3349 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3350 return;
3351
3352 #if 0 /* TBD ??? */
3353 if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3354 return;
3355 #endif
3356
3357 /*
3358 * Remember the previous number of free descriptors and
3359 * the first descriptor we'll use.
3360 */
3361 ofree = sc->sc_txfree;
3362 firsttx = sc->sc_txnext;
3363
3364 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3365 sc->sc_dev.dv_xname, ofree, firsttx));
3366
3367 /*
3368 * Loop through the send queue, setting up transmit descriptors
3369 * until we drain the queue, or use up all available transmit
3370 * descriptors.
3371 */
3372 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3373 sc->sc_txfree != 0) {
3374
3375 do_encrypt = 0;
3376 /*
3377 * Grab a packet off the management queue, if it
3378 * is not empty. Otherwise, from the data queue.
3379 */
3380 IF_DEQUEUE(&ic->ic_mgtq, m0);
3381 if (m0 != NULL) {
3382 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3383 m0->m_pkthdr.rcvif = NULL;
3384 } else {
3385 IFQ_DEQUEUE(&ifp->if_snd, m0);
3386 if (m0 == NULL)
3387 break;
3388 #if NBPFILTER > 0
3389 if (ifp->if_bpf != NULL)
3390 bpf_mtap(ifp->if_bpf, m0);
3391 #endif /* NBPFILTER > 0 */
3392 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3393 ifp->if_oerrors++;
3394 break;
3395 }
3396 }
3397
3398 rate = MAX(ieee80211_get_rate(ic), 2);
3399
3400 #if NBPFILTER > 0
3401 /*
3402 * Pass the packet to any BPF listeners.
3403 */
3404 if (ic->ic_rawbpf != NULL)
3405 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3406
3407 if (sc->sc_radiobpf != NULL) {
3408 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3409
3410 tap->at_rate = rate;
3411 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3412 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3413
3414 /* TBD tap->at_flags */
3415
3416 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3417 tap->at_ihdr.it_len, m0);
3418 }
3419 #endif /* NBPFILTER > 0 */
3420
3421 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3422
3423 if (ni != NULL && ni != ic->ic_bss)
3424 ieee80211_free_node(ic, ni);
3425
3426 if (m0 == NULL) {
3427 ifp->if_oerrors++;
3428 break;
3429 }
3430
3431 /* just to make sure. */
3432 m0 = m_pullup(m0, sizeof(struct atw_frame));
3433
3434 if (m0 == NULL) {
3435 ifp->if_oerrors++;
3436 break;
3437 }
3438
3439 hh = mtod(m0, struct atw_frame *);
3440 wh = &hh->atw_ihdr;
3441
3442 do_encrypt = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
3443
3444 /* Copy everything we need from the 802.11 header:
3445 * Frame Control; address 1, address 3, or addresses
3446 * 3 and 4. NIC fills in BSSID, SA.
3447 */
3448 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3449 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3450 panic("%s: illegal WDS frame",
3451 sc->sc_dev.dv_xname);
3452 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3453 } else
3454 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3455
3456 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3457
3458 /* initialize remaining Tx parameters */
3459 memset(&hh->u, 0, sizeof(hh->u));
3460
3461 hh->atw_rate = rate * 5;
3462 /* XXX this could be incorrect if M_FCS. _encap should
3463 * probably strip FCS just in case it sticks around in
3464 * bridged packets.
3465 */
3466 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3467 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3468 sizeof(struct atw_frame));
3469
3470 #if 0
3471 /* this virtually guaranteed that WEP-encrypted frames
3472 * are fragmented. oops.
3473 */
3474 hh->atw_fragthr = htole16(m0->m_pkthdr.len -
3475 sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
3476 hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3477 #else
3478 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3479 #endif
3480
3481 hh->atw_rtylmt = 3;
3482 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3483 if (do_encrypt) {
3484 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3485 hh->atw_keyid = ic->ic_wep_txkey;
3486 }
3487
3488 /* TBD 4-addr frames */
3489 atw_frame_setdurs(sc, hh, rate,
3490 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3491 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3492
3493 /* never fragment multicast frames */
3494 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3495 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3496 } else if (sc->sc_flags & ATWF_RTSCTS) {
3497 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3498 }
3499
3500 #ifdef ATW_DEBUG
3501 /* experimental stuff */
3502 if (atw_xrtylmt != ~0)
3503 hh->atw_rtylmt = atw_xrtylmt;
3504 if (atw_xhdrctl != 0)
3505 hh->atw_hdrctl |= htole16(atw_xhdrctl);
3506 if (atw_xservice != IEEE80211_PLCP_SERVICE)
3507 hh->atw_service = atw_xservice;
3508 if (atw_xpaylen != 0)
3509 hh->atw_paylen = htole16(atw_xpaylen);
3510 hh->atw_fragnum = 0;
3511
3512 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3513 printf("%s: dst = %s, rate = 0x%02x, "
3514 "service = 0x%02x, paylen = 0x%04x\n",
3515 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3516 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3517
3518 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3519 "dur1 = 0x%04x, dur2 = 0x%04x, "
3520 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3521 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3522 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3523 hh->atw_tail_dur, hh->atw_head_dur);
3524
3525 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3526 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3527 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3528 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3529
3530 printf("%s: keyid = %d\n",
3531 sc->sc_dev.dv_xname, hh->atw_keyid);
3532
3533 atw_dump_pkt(ifp, m0);
3534 }
3535 #endif /* ATW_DEBUG */
3536
3537 dmamap = txs->txs_dmamap;
3538
3539 /*
3540 * Load the DMA map. Copy and try (once) again if the packet
3541 * didn't fit in the alloted number of segments.
3542 */
3543 for (first = 1;
3544 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3545 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3546 first = 0) {
3547 MGETHDR(m, M_DONTWAIT, MT_DATA);
3548 if (m == NULL) {
3549 printf("%s: unable to allocate Tx mbuf\n",
3550 sc->sc_dev.dv_xname);
3551 break;
3552 }
3553 if (m0->m_pkthdr.len > MHLEN) {
3554 MCLGET(m, M_DONTWAIT);
3555 if ((m->m_flags & M_EXT) == 0) {
3556 printf("%s: unable to allocate Tx "
3557 "cluster\n", sc->sc_dev.dv_xname);
3558 m_freem(m);
3559 break;
3560 }
3561 }
3562 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3563 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3564 m_freem(m0);
3565 m0 = m;
3566 m = NULL;
3567 }
3568 if (error != 0) {
3569 printf("%s: unable to load Tx buffer, "
3570 "error = %d\n", sc->sc_dev.dv_xname, error);
3571 m_freem(m0);
3572 break;
3573 }
3574
3575 /*
3576 * Ensure we have enough descriptors free to describe
3577 * the packet.
3578 */
3579 if (dmamap->dm_nsegs > sc->sc_txfree) {
3580 /*
3581 * Not enough free descriptors to transmit
3582 * this packet. Unload the DMA map and
3583 * drop the packet. Notify the upper layer
3584 * that there are no more slots left.
3585 *
3586 * XXX We could allocate an mbuf and copy, but
3587 * XXX it is worth it?
3588 */
3589 ifp->if_flags |= IFF_OACTIVE;
3590 bus_dmamap_unload(sc->sc_dmat, dmamap);
3591 m_freem(m0);
3592 break;
3593 }
3594
3595 /*
3596 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3597 */
3598
3599 /* Sync the DMA map. */
3600 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3601 BUS_DMASYNC_PREWRITE);
3602
3603 /* XXX arbitrary retry limit; 8 because I have seen it in
3604 * use already and maybe 0 means "no tries" !
3605 */
3606 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3607
3608 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3609 sc->sc_dev.dv_xname, rate * 5));
3610 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3611
3612 /*
3613 * Initialize the transmit descriptors.
3614 */
3615 for (nexttx = sc->sc_txnext, seg = 0;
3616 seg < dmamap->dm_nsegs;
3617 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3618 /*
3619 * If this is the first descriptor we're
3620 * enqueueing, don't set the OWN bit just
3621 * yet. That could cause a race condition.
3622 * We'll do it below.
3623 */
3624 txd = &sc->sc_txdescs[nexttx];
3625 txd->at_ctl = ctl |
3626 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3627
3628 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3629 txd->at_flags =
3630 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3631 ATW_TXFLAG_TBS1_MASK)) |
3632 ((nexttx == (ATW_NTXDESC - 1))
3633 ? htole32(ATW_TXFLAG_TER) : 0);
3634 lasttx = nexttx;
3635 }
3636
3637 IASSERT(lasttx != -1, ("bad lastx"));
3638 /* Set `first segment' and `last segment' appropriately. */
3639 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3640 htole32(ATW_TXFLAG_FS);
3641 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3642
3643 #ifdef ATW_DEBUG
3644 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3645 printf(" txsoft %p transmit chain:\n", txs);
3646 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3647 printf(" descriptor %d:\n", seg);
3648 printf(" at_ctl: 0x%08x\n",
3649 le32toh(sc->sc_txdescs[seg].at_ctl));
3650 printf(" at_flags: 0x%08x\n",
3651 le32toh(sc->sc_txdescs[seg].at_flags));
3652 printf(" at_buf1: 0x%08x\n",
3653 le32toh(sc->sc_txdescs[seg].at_buf1));
3654 printf(" at_buf2: 0x%08x\n",
3655 le32toh(sc->sc_txdescs[seg].at_buf2));
3656 if (seg == lasttx)
3657 break;
3658 }
3659 }
3660 #endif
3661
3662 /* Sync the descriptors we're using. */
3663 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3664 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3665
3666 /*
3667 * Store a pointer to the packet so we can free it later,
3668 * and remember what txdirty will be once the packet is
3669 * done.
3670 */
3671 txs->txs_mbuf = m0;
3672 txs->txs_firstdesc = sc->sc_txnext;
3673 txs->txs_lastdesc = lasttx;
3674 txs->txs_ndescs = dmamap->dm_nsegs;
3675
3676 /* Advance the tx pointer. */
3677 sc->sc_txfree -= dmamap->dm_nsegs;
3678 sc->sc_txnext = nexttx;
3679
3680 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3681 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3682
3683 last_txs = txs;
3684 }
3685
3686 if (txs == NULL || sc->sc_txfree == 0) {
3687 /* No more slots left; notify upper layer. */
3688 ifp->if_flags |= IFF_OACTIVE;
3689 }
3690
3691 if (sc->sc_txfree != ofree) {
3692 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3693 sc->sc_dev.dv_xname, lasttx, firsttx));
3694 /*
3695 * Cause a transmit interrupt to happen on the
3696 * last packet we enqueued.
3697 */
3698 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3699 ATW_CDTXSYNC(sc, lasttx, 1,
3700 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3701
3702 /*
3703 * The entire packet chain is set up. Give the
3704 * first descriptor to the chip now.
3705 */
3706 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3707 ATW_CDTXSYNC(sc, firsttx, 1,
3708 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3709
3710 /* Wake up the transmitter. */
3711 ATW_WRITE(sc, ATW_TDR, 0x1);
3712
3713 /* Set a watchdog timer in case the chip flakes out. */
3714 sc->sc_tx_timer = 5;
3715 ifp->if_timer = 1;
3716 }
3717 }
3718
3719 /*
3720 * atw_power:
3721 *
3722 * Power management (suspend/resume) hook.
3723 */
3724 void
3725 atw_power(int why, void *arg)
3726 {
3727 struct atw_softc *sc = arg;
3728 struct ifnet *ifp = &sc->sc_ic.ic_if;
3729 int s;
3730
3731 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3732
3733 s = splnet();
3734 switch (why) {
3735 case PWR_STANDBY:
3736 /* XXX do nothing. */
3737 break;
3738 case PWR_SUSPEND:
3739 atw_stop(ifp, 0);
3740 if (sc->sc_power != NULL)
3741 (*sc->sc_power)(sc, why);
3742 break;
3743 case PWR_RESUME:
3744 if (ifp->if_flags & IFF_UP) {
3745 if (sc->sc_power != NULL)
3746 (*sc->sc_power)(sc, why);
3747 atw_init(ifp);
3748 }
3749 break;
3750 case PWR_SOFTSUSPEND:
3751 case PWR_SOFTSTANDBY:
3752 case PWR_SOFTRESUME:
3753 break;
3754 }
3755 splx(s);
3756 }
3757
3758 /*
3759 * atw_ioctl: [ifnet interface function]
3760 *
3761 * Handle control requests from the operator.
3762 */
3763 int
3764 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3765 {
3766 struct atw_softc *sc = ifp->if_softc;
3767 struct ifreq *ifr = (struct ifreq *)data;
3768 int s, error = 0;
3769
3770 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3771 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3772 return ENXIO;
3773
3774 s = splnet();
3775
3776 switch (cmd) {
3777 case SIOCSIFFLAGS:
3778 if (ifp->if_flags & IFF_UP) {
3779 if (ATW_IS_ENABLED(sc)) {
3780 /*
3781 * To avoid rescanning another access point,
3782 * do not call atw_init() here. Instead,
3783 * only reflect media settings.
3784 */
3785 atw_filter_setup(sc);
3786 } else
3787 error = atw_init(ifp);
3788 } else if (ATW_IS_ENABLED(sc))
3789 atw_stop(ifp, 1);
3790 break;
3791 case SIOCADDMULTI:
3792 case SIOCDELMULTI:
3793 error = (cmd == SIOCADDMULTI) ?
3794 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3795 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3796 if (error == ENETRESET) {
3797 if (ATW_IS_ENABLED(sc))
3798 atw_filter_setup(sc); /* do not rescan */
3799 error = 0;
3800 }
3801 break;
3802 default:
3803 error = ieee80211_ioctl(ifp, cmd, data);
3804 if (error == ENETRESET) {
3805 if (ATW_IS_ENABLED(sc))
3806 error = atw_init(ifp);
3807 else
3808 error = 0;
3809 }
3810 break;
3811 }
3812
3813 /* Try to get more packets going. */
3814 if (ATW_IS_ENABLED(sc))
3815 atw_start(ifp);
3816
3817 splx(s);
3818 return (error);
3819 }
3820
3821 static int
3822 atw_media_change(struct ifnet *ifp)
3823 {
3824 int error;
3825
3826 error = ieee80211_media_change(ifp);
3827 if (error == ENETRESET) {
3828 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3829 (IFF_RUNNING|IFF_UP))
3830 atw_init(ifp); /* XXX lose error */
3831 error = 0;
3832 }
3833 return error;
3834 }
3835
3836 static void
3837 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3838 {
3839 struct atw_softc *sc = ifp->if_softc;
3840
3841 if (ATW_IS_ENABLED(sc) == 0) {
3842 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3843 imr->ifm_status = 0;
3844 return;
3845 }
3846 ieee80211_media_status(ifp, imr);
3847 }
3848