atw.c revision 1.33 1 /* $NetBSD: atw.c,v 1.33 2004/06/23 08:05:01 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.33 2004/06/23 08:05:01 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * IBSS join/create
131 *
132 * set ATW_NAR_EA (is set by ASIC?)
133 *
134 * BSS join: (re)association response
135 *
136 * set ATW_FRCTL_AID
137 *
138 * optimizations ???
139 *
140 */
141
142 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
143 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
144 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
145
146 int atw_rfio_enable_delay = 20 * 1000;
147 int atw_rfio_disable_delay = 2 * 1000;
148 int atw_writewep_delay = 5;
149 int atw_beacon_len_adjust = 4;
150 int atw_dwelltime = 200;
151
152 #ifdef ATW_DEBUG
153 int atw_xhdrctl = 0;
154 int atw_xrtylmt = ~0;
155 int atw_xservice = IEEE80211_PLCP_SERVICE;
156 int atw_xpaylen = 0;
157
158 int atw_debug = 0;
159
160 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
161 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
162 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
163 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
164 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
165 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
166 static void atw_print_regs(struct atw_softc *, const char *);
167 static void atw_rf3000_print(struct atw_softc *);
168 static void atw_si4126_print(struct atw_softc *);
169 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
170 #else
171 #define ATW_DPRINTF(x)
172 #define ATW_DPRINTF2(x)
173 #define ATW_DPRINTF3(x)
174 #define DPRINTF(sc, x) /* nothing */
175 #define DPRINTF2(sc, x) /* nothing */
176 #define DPRINTF3(sc, x) /* nothing */
177 #endif
178
179 #ifdef ATW_STATS
180 void atw_print_stats(struct atw_softc *);
181 #endif
182
183 void atw_start(struct ifnet *);
184 void atw_watchdog(struct ifnet *);
185 int atw_ioctl(struct ifnet *, u_long, caddr_t);
186 int atw_init(struct ifnet *);
187 void atw_stop(struct ifnet *, int);
188
189 void atw_reset(struct atw_softc *);
190 int atw_read_srom(struct atw_softc *);
191
192 void atw_shutdown(void *);
193
194 void atw_rxdrain(struct atw_softc *);
195 int atw_add_rxbuf(struct atw_softc *, int);
196 void atw_idle(struct atw_softc *, u_int32_t);
197
198 int atw_enable(struct atw_softc *);
199 void atw_disable(struct atw_softc *);
200 void atw_power(int, void *);
201
202 void atw_rxintr(struct atw_softc *);
203 void atw_txintr(struct atw_softc *);
204 void atw_linkintr(struct atw_softc *, u_int32_t);
205
206 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
207 static void atw_tsf(struct atw_softc *);
208 static void atw_start_beacon(struct atw_softc *, int);
209 static void atw_write_wep(struct atw_softc *);
210 static void atw_write_bssid(struct atw_softc *);
211 static void atw_write_bcn_thresh(struct atw_softc *);
212 static void atw_write_ssid(struct atw_softc *);
213 static void atw_write_sup_rates(struct atw_softc *);
214 static void atw_clear_sram(struct atw_softc *);
215 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
216 static int atw_media_change(struct ifnet *);
217 static void atw_media_status(struct ifnet *, struct ifmediareq *);
218 static void atw_filter_setup(struct atw_softc *);
219 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
220 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
221 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
222 struct ieee80211_node *, int, int, u_int32_t);
223 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
224 struct ieee80211_node *, int, int, u_int32_t);
225 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
226 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
227
228 static int atw_tune(struct atw_softc *);
229
230 static void atw_rfio_enable(struct atw_softc *, int);
231
232 /* RFMD RF3000 Baseband Processor */
233 static int atw_rf3000_init(struct atw_softc *);
234 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
235 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
236 #ifdef ATW_DEBUG
237 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
238 #endif /* ATW_DEBUG */
239
240 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
241 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
242 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
243 #ifdef ATW_DEBUG
244 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
245 #endif /* ATW_DEBUG */
246
247 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
248 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
249
250 const char *atw_tx_state[] = {
251 "STOPPED",
252 "RUNNING - read descriptor",
253 "RUNNING - transmitting",
254 "RUNNING - filling fifo", /* XXX */
255 "SUSPENDED",
256 "RUNNING -- write descriptor",
257 "RUNNING -- write last descriptor",
258 "RUNNING - fifo full"
259 };
260
261 const char *atw_rx_state[] = {
262 "STOPPED",
263 "RUNNING - read descriptor",
264 "RUNNING - check this packet, pre-fetch next",
265 "RUNNING - wait for reception",
266 "SUSPENDED",
267 "RUNNING - write descriptor",
268 "RUNNING - flush fifo",
269 "RUNNING - fifo drain"
270 };
271
272 int
273 atw_activate(struct device *self, enum devact act)
274 {
275 struct atw_softc *sc = (struct atw_softc *)self;
276 int rv = 0, s;
277
278 s = splnet();
279 switch (act) {
280 case DVACT_ACTIVATE:
281 rv = EOPNOTSUPP;
282 break;
283
284 case DVACT_DEACTIVATE:
285 if_deactivate(&sc->sc_ic.ic_if);
286 break;
287 }
288 splx(s);
289 return rv;
290 }
291
292 /*
293 * atw_enable:
294 *
295 * Enable the ADM8211 chip.
296 */
297 int
298 atw_enable(struct atw_softc *sc)
299 {
300
301 if (ATW_IS_ENABLED(sc) == 0) {
302 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
303 printf("%s: device enable failed\n",
304 sc->sc_dev.dv_xname);
305 return (EIO);
306 }
307 sc->sc_flags |= ATWF_ENABLED;
308 }
309 return (0);
310 }
311
312 /*
313 * atw_disable:
314 *
315 * Disable the ADM8211 chip.
316 */
317 void
318 atw_disable(struct atw_softc *sc)
319 {
320 if (!ATW_IS_ENABLED(sc))
321 return;
322 if (sc->sc_disable != NULL)
323 (*sc->sc_disable)(sc);
324 sc->sc_flags &= ~ATWF_ENABLED;
325 }
326
327 /* Returns -1 on failure. */
328 int
329 atw_read_srom(struct atw_softc *sc)
330 {
331 struct seeprom_descriptor sd;
332 u_int32_t reg;
333
334 (void)memset(&sd, 0, sizeof(sd));
335
336 reg = ATW_READ(sc, ATW_TEST0);
337
338 if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
339 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
340 return -1;
341 }
342
343 switch (reg & ATW_TEST0_EPTYP_MASK) {
344 case ATW_TEST0_EPTYP_93c66:
345 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
346 sc->sc_sromsz = 512;
347 sd.sd_chip = C56_66;
348 break;
349 case ATW_TEST0_EPTYP_93c46:
350 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
351 sc->sc_sromsz = 128;
352 sd.sd_chip = C46;
353 break;
354 default:
355 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
356 MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
357 return -1;
358 }
359
360 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
361
362 if (sc->sc_srom == NULL) {
363 printf("%s: unable to allocate SROM buffer\n",
364 sc->sc_dev.dv_xname);
365 return -1;
366 }
367
368 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
369
370 /* ADM8211 has a single 32-bit register for controlling the
371 * 93cx6 SROM. Bit SRS enables the serial port. There is no
372 * "ready" bit. The ADM8211 input/output sense is the reverse
373 * of read_seeprom's.
374 */
375 sd.sd_tag = sc->sc_st;
376 sd.sd_bsh = sc->sc_sh;
377 sd.sd_regsize = 4;
378 sd.sd_control_offset = ATW_SPR;
379 sd.sd_status_offset = ATW_SPR;
380 sd.sd_dataout_offset = ATW_SPR;
381 sd.sd_CK = ATW_SPR_SCLK;
382 sd.sd_CS = ATW_SPR_SCS;
383 sd.sd_DI = ATW_SPR_SDO;
384 sd.sd_DO = ATW_SPR_SDI;
385 sd.sd_MS = ATW_SPR_SRS;
386 sd.sd_RDY = 0;
387
388 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
389 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
390 free(sc->sc_srom, M_DEVBUF);
391 return -1;
392 }
393 #ifdef ATW_DEBUG
394 {
395 int i;
396 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
397 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
398 if (((i % 8) == 0) && (i != 0)) {
399 ATW_DPRINTF(("\n\t"));
400 }
401 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
402 }
403 ATW_DPRINTF(("\n"));
404 }
405 #endif /* ATW_DEBUG */
406 return 0;
407 }
408
409 #ifdef ATW_DEBUG
410 static void
411 atw_print_regs(struct atw_softc *sc, const char *where)
412 {
413 #define PRINTREG(sc, reg) \
414 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
415 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
416
417 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
418
419 PRINTREG(sc, ATW_PAR);
420 PRINTREG(sc, ATW_FRCTL);
421 PRINTREG(sc, ATW_TDR);
422 PRINTREG(sc, ATW_WTDP);
423 PRINTREG(sc, ATW_RDR);
424 PRINTREG(sc, ATW_WRDP);
425 PRINTREG(sc, ATW_RDB);
426 PRINTREG(sc, ATW_CSR3A);
427 PRINTREG(sc, ATW_TDBD);
428 PRINTREG(sc, ATW_TDBP);
429 PRINTREG(sc, ATW_STSR);
430 PRINTREG(sc, ATW_CSR5A);
431 PRINTREG(sc, ATW_NAR);
432 PRINTREG(sc, ATW_CSR6A);
433 PRINTREG(sc, ATW_IER);
434 PRINTREG(sc, ATW_CSR7A);
435 PRINTREG(sc, ATW_LPC);
436 PRINTREG(sc, ATW_TEST1);
437 PRINTREG(sc, ATW_SPR);
438 PRINTREG(sc, ATW_TEST0);
439 PRINTREG(sc, ATW_WCSR);
440 PRINTREG(sc, ATW_WPDR);
441 PRINTREG(sc, ATW_GPTMR);
442 PRINTREG(sc, ATW_GPIO);
443 PRINTREG(sc, ATW_BBPCTL);
444 PRINTREG(sc, ATW_SYNCTL);
445 PRINTREG(sc, ATW_PLCPHD);
446 PRINTREG(sc, ATW_MMIWADDR);
447 PRINTREG(sc, ATW_MMIRADDR1);
448 PRINTREG(sc, ATW_MMIRADDR2);
449 PRINTREG(sc, ATW_TXBR);
450 PRINTREG(sc, ATW_CSR15A);
451 PRINTREG(sc, ATW_ALCSTAT);
452 PRINTREG(sc, ATW_TOFS2);
453 PRINTREG(sc, ATW_CMDR);
454 PRINTREG(sc, ATW_PCIC);
455 PRINTREG(sc, ATW_PMCSR);
456 PRINTREG(sc, ATW_PAR0);
457 PRINTREG(sc, ATW_PAR1);
458 PRINTREG(sc, ATW_MAR0);
459 PRINTREG(sc, ATW_MAR1);
460 PRINTREG(sc, ATW_ATIMDA0);
461 PRINTREG(sc, ATW_ABDA1);
462 PRINTREG(sc, ATW_BSSID0);
463 PRINTREG(sc, ATW_TXLMT);
464 PRINTREG(sc, ATW_MIBCNT);
465 PRINTREG(sc, ATW_BCNT);
466 PRINTREG(sc, ATW_TSFTH);
467 PRINTREG(sc, ATW_TSC);
468 PRINTREG(sc, ATW_SYNRF);
469 PRINTREG(sc, ATW_BPLI);
470 PRINTREG(sc, ATW_CAP0);
471 PRINTREG(sc, ATW_CAP1);
472 PRINTREG(sc, ATW_RMD);
473 PRINTREG(sc, ATW_CFPP);
474 PRINTREG(sc, ATW_TOFS0);
475 PRINTREG(sc, ATW_TOFS1);
476 PRINTREG(sc, ATW_IFST);
477 PRINTREG(sc, ATW_RSPT);
478 PRINTREG(sc, ATW_TSFTL);
479 PRINTREG(sc, ATW_WEPCTL);
480 PRINTREG(sc, ATW_WESK);
481 PRINTREG(sc, ATW_WEPCNT);
482 PRINTREG(sc, ATW_MACTEST);
483 PRINTREG(sc, ATW_FER);
484 PRINTREG(sc, ATW_FEMR);
485 PRINTREG(sc, ATW_FPSR);
486 PRINTREG(sc, ATW_FFER);
487 #undef PRINTREG
488 }
489 #endif /* ATW_DEBUG */
490
491 /*
492 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
493 */
494 void
495 atw_attach(struct atw_softc *sc)
496 {
497 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
498 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
499 };
500 struct ieee80211com *ic = &sc->sc_ic;
501 struct ifnet *ifp = &ic->ic_if;
502 int country_code, error, i, nrate;
503 u_int32_t reg;
504 static const char *type_strings[] = {"Intersil (not supported)",
505 "RFMD", "Marvel (not supported)"};
506
507 sc->sc_txth = atw_txthresh_tab_lo;
508
509 SIMPLEQ_INIT(&sc->sc_txfreeq);
510 SIMPLEQ_INIT(&sc->sc_txdirtyq);
511
512 #ifdef ATW_DEBUG
513 atw_print_regs(sc, "atw_attach");
514 #endif /* ATW_DEBUG */
515
516 /*
517 * Allocate the control data structures, and create and load the
518 * DMA map for it.
519 */
520 if ((error = bus_dmamem_alloc(sc->sc_dmat,
521 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
522 1, &sc->sc_cdnseg, 0)) != 0) {
523 printf("%s: unable to allocate control data, error = %d\n",
524 sc->sc_dev.dv_xname, error);
525 goto fail_0;
526 }
527
528 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
529 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
530 BUS_DMA_COHERENT)) != 0) {
531 printf("%s: unable to map control data, error = %d\n",
532 sc->sc_dev.dv_xname, error);
533 goto fail_1;
534 }
535
536 if ((error = bus_dmamap_create(sc->sc_dmat,
537 sizeof(struct atw_control_data), 1,
538 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
539 printf("%s: unable to create control data DMA map, "
540 "error = %d\n", sc->sc_dev.dv_xname, error);
541 goto fail_2;
542 }
543
544 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
545 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
546 0)) != 0) {
547 printf("%s: unable to load control data DMA map, error = %d\n",
548 sc->sc_dev.dv_xname, error);
549 goto fail_3;
550 }
551
552 /*
553 * Create the transmit buffer DMA maps.
554 */
555 sc->sc_ntxsegs = ATW_NTXSEGS;
556 for (i = 0; i < ATW_TXQUEUELEN; i++) {
557 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
558 sc->sc_ntxsegs, MCLBYTES, 0, 0,
559 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
560 printf("%s: unable to create tx DMA map %d, "
561 "error = %d\n", sc->sc_dev.dv_xname, i, error);
562 goto fail_4;
563 }
564 }
565
566 /*
567 * Create the receive buffer DMA maps.
568 */
569 for (i = 0; i < ATW_NRXDESC; i++) {
570 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
571 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
572 printf("%s: unable to create rx DMA map %d, "
573 "error = %d\n", sc->sc_dev.dv_xname, i, error);
574 goto fail_5;
575 }
576 }
577 for (i = 0; i < ATW_NRXDESC; i++) {
578 sc->sc_rxsoft[i].rxs_mbuf = NULL;
579 }
580
581 /* Reset the chip to a known state. */
582 atw_reset(sc);
583
584 if (atw_read_srom(sc) == -1)
585 return;
586
587 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
588 ATW_SR_RFTYPE_MASK);
589
590 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
591 ATW_SR_BBPTYPE_MASK);
592
593 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
594 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
595 return;
596 }
597 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
598 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
599 return;
600 }
601
602 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
603 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
604
605 /* XXX There exists a Linux driver which seems to use RFType = 0 for
606 * MARVEL. My bug, or theirs?
607 */
608
609 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
610
611 switch (sc->sc_rftype) {
612 case ATW_RFTYPE_INTERSIL:
613 reg |= ATW_SYNCTL_CS1;
614 break;
615 case ATW_RFTYPE_RFMD:
616 reg |= ATW_SYNCTL_CS0;
617 break;
618 case ATW_RFTYPE_MARVEL:
619 break;
620 }
621
622 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
623 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
624
625 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
626
627 switch (sc->sc_bbptype) {
628 case ATW_BBPTYPE_INTERSIL:
629 reg |= ATW_BBPCTL_TWI;
630 break;
631 case ATW_BBPTYPE_RFMD:
632 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
633 ATW_BBPCTL_CCA_ACTLO;
634 break;
635 case ATW_BBPTYPE_MARVEL:
636 break;
637 }
638
639 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
640 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
641
642 /*
643 * From this point forward, the attachment cannot fail. A failure
644 * before this point releases all resources that may have been
645 * allocated.
646 */
647 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
648
649 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
650 htole16(sc->sc_srom[ATW_SR_MAC00]),
651 htole16(sc->sc_srom[ATW_SR_MAC01]),
652 htole16(sc->sc_srom[ATW_SR_MAC10])));
653
654 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
655 ATW_SR_CTRY_MASK);
656
657 #define ADD_CHANNEL(_ic, _chan) do { \
658 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
659 _ic->ic_channels[_chan].ic_freq = \
660 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
661 } while (0)
662
663 /* Find available channels */
664 switch (country_code) {
665 case COUNTRY_MMK2: /* 1-14 */
666 ADD_CHANNEL(ic, 14);
667 /*FALLTHROUGH*/
668 case COUNTRY_ETSI: /* 1-13 */
669 for (i = 1; i <= 13; i++)
670 ADD_CHANNEL(ic, i);
671 break;
672 case COUNTRY_FCC: /* 1-11 */
673 case COUNTRY_IC: /* 1-11 */
674 for (i = 1; i <= 11; i++)
675 ADD_CHANNEL(ic, i);
676 break;
677 case COUNTRY_MMK: /* 14 */
678 ADD_CHANNEL(ic, 14);
679 break;
680 case COUNTRY_FRANCE: /* 10-13 */
681 for (i = 10; i <= 13; i++)
682 ADD_CHANNEL(ic, i);
683 break;
684 default: /* assume channels 10-11 */
685 case COUNTRY_SPAIN: /* 10-11 */
686 for (i = 10; i <= 11; i++)
687 ADD_CHANNEL(ic, i);
688 break;
689 }
690
691 /* Read the MAC address. */
692 reg = ATW_READ(sc, ATW_PAR0);
693 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
694 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
695 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
696 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
697 reg = ATW_READ(sc, ATW_PAR1);
698 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
699 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
700
701 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
702 printf(" could not get mac address, attach failed\n");
703 return;
704 }
705
706 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
707
708 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
709 ifp->if_softc = sc;
710 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
711 IFF_NOTRAILERS;
712 ifp->if_ioctl = atw_ioctl;
713 ifp->if_start = atw_start;
714 ifp->if_watchdog = atw_watchdog;
715 ifp->if_init = atw_init;
716 ifp->if_stop = atw_stop;
717 IFQ_SET_READY(&ifp->if_snd);
718
719 ic->ic_phytype = IEEE80211_T_DS;
720 ic->ic_opmode = IEEE80211_M_STA;
721 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
722 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
723
724 nrate = 0;
725 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
726 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
727 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
728 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
729 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
730
731 /*
732 * Call MI attach routines.
733 */
734
735 if_attach(ifp);
736 ieee80211_ifattach(ifp);
737
738 sc->sc_newstate = ic->ic_newstate;
739 ic->ic_newstate = atw_newstate;
740
741 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
742 ic->ic_recv_mgmt = atw_recv_mgmt;
743
744 sc->sc_node_free = ic->ic_node_free;
745 ic->ic_node_free = atw_node_free;
746
747 sc->sc_node_alloc = ic->ic_node_alloc;
748 ic->ic_node_alloc = atw_node_alloc;
749
750 /* possibly we should fill in our own sc_send_prresp, since
751 * the ADM8211 is probably sending probe responses in ad hoc
752 * mode.
753 */
754
755 /* complete initialization */
756 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
757 callout_init(&sc->sc_scan_ch);
758
759 #if NBPFILTER > 0
760 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
761 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
762 #endif
763
764 /*
765 * Make sure the interface is shutdown during reboot.
766 */
767 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
768 if (sc->sc_sdhook == NULL)
769 printf("%s: WARNING: unable to establish shutdown hook\n",
770 sc->sc_dev.dv_xname);
771
772 /*
773 * Add a suspend hook to make sure we come back up after a
774 * resume.
775 */
776 sc->sc_powerhook = powerhook_establish(atw_power, sc);
777 if (sc->sc_powerhook == NULL)
778 printf("%s: WARNING: unable to establish power hook\n",
779 sc->sc_dev.dv_xname);
780
781 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
782 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
783 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
784
785 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
786 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
787 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
788
789 return;
790
791 /*
792 * Free any resources we've allocated during the failed attach
793 * attempt. Do this in reverse order and fall through.
794 */
795 fail_5:
796 for (i = 0; i < ATW_NRXDESC; i++) {
797 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
798 continue;
799 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
800 }
801 fail_4:
802 for (i = 0; i < ATW_TXQUEUELEN; i++) {
803 if (sc->sc_txsoft[i].txs_dmamap == NULL)
804 continue;
805 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
806 }
807 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
808 fail_3:
809 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
810 fail_2:
811 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
812 sizeof(struct atw_control_data));
813 fail_1:
814 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
815 fail_0:
816 return;
817 }
818
819 static struct ieee80211_node *
820 atw_node_alloc(struct ieee80211com *ic)
821 {
822 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
823 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
824
825 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
826 return ni;
827 }
828
829 static void
830 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
831 {
832 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
833
834 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
835 ether_sprintf(ni->ni_bssid)));
836 (*sc->sc_node_free)(ic, ni);
837 }
838
839 /*
840 * atw_reset:
841 *
842 * Perform a soft reset on the ADM8211.
843 */
844 void
845 atw_reset(struct atw_softc *sc)
846 {
847 int i;
848
849 if (ATW_IS_ENABLED(sc) == 0)
850 return;
851
852 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
853
854 for (i = 0; i < 10000; i++) {
855 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
856 break;
857 DELAY(1);
858 }
859
860 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
861
862 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
863 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
864
865 /* Turn off maximum power saving. */
866 ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
867
868 /* Recall EEPROM. */
869 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
870
871 DELAY(10 * 1000);
872
873 /* A reset seems to affect the SRAM contents, so put them into
874 * a known state.
875 */
876 atw_clear_sram(sc);
877
878 memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
879
880 sc->sc_lost_bcn_thresh = 0;
881 }
882
883 static void
884 atw_clear_sram(struct atw_softc *sc)
885 {
886 #if 0
887 for (addr = 0; addr < 448; addr++) {
888 ATW_WRITE(sc, ATW_WEPCTL,
889 ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0 | addr);
890 DELAY(1000);
891 ATW_WRITE(sc, ATW_WESK, 0);
892 DELAY(1000); /* paranoia */
893 }
894 return;
895 #endif
896 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
897 /* XXX not for revision 0x20. */
898 atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
899 }
900
901 /* TBD atw_init
902 *
903 * set MAC based on ic->ic_bss->myaddr
904 * write WEP keys
905 * set TX rate
906 */
907
908 /*
909 * atw_init: [ ifnet interface function ]
910 *
911 * Initialize the interface. Must be called at splnet().
912 */
913 int
914 atw_init(struct ifnet *ifp)
915 {
916 struct atw_softc *sc = ifp->if_softc;
917 struct ieee80211com *ic = &sc->sc_ic;
918 struct atw_txsoft *txs;
919 struct atw_rxsoft *rxs;
920 u_int32_t reg;
921 int i, error = 0;
922
923 if ((error = atw_enable(sc)) != 0)
924 goto out;
925
926 /*
927 * Cancel any pending I/O. This also resets.
928 */
929 atw_stop(ifp, 0);
930
931 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
932 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
933 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
934 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
935
936 /* Turn off APM??? (A binary-only driver does this.)
937 *
938 * Set Rx store-and-forward mode.
939 */
940 reg = ATW_READ(sc, ATW_CMDR);
941 reg &= ~ATW_CMDR_APM;
942 reg &= ~ATW_CMDR_DRT_MASK;
943 reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
944
945 ATW_WRITE(sc, ATW_CMDR, reg);
946
947 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
948 *
949 * XXX a binary-only driver sets a different service field than
950 * 0. why?
951 */
952 reg = ATW_READ(sc, ATW_PLCPHD);
953 reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
954 reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
955 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
956 ATW_WRITE(sc, ATW_PLCPHD, reg);
957
958 /* XXX this magic can probably be figured out from the RFMD docs */
959 reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
960 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
961 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
962 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
963 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
964 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
965 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
966 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
967 ATW_WRITE(sc, ATW_TOFS2, reg);
968
969 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
970 LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
971
972 /* XXX this resets an Intersil RF front-end? */
973 /* TBD condition on Intersil RFType? */
974 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
975 DELAY(10 * 1000);
976 ATW_WRITE(sc, ATW_SYNRF, 0);
977 DELAY(5 * 1000);
978
979 /* 16 TU max duration for contention-free period */
980 reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
981 ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
982
983 /* XXX I guess that the Cardbus clock is 22MHz?
984 * I am assuming that the role of ATW_TOFS0_USCNT is
985 * to divide the bus clock to get a 1MHz clock---the datasheet is not
986 * very clear on this point. It says in the datasheet that it is
987 * possible for the ADM8211 to accomodate bus speeds between 22MHz
988 * and 33MHz; maybe this is the way? I see a binary-only driver write
989 * these values. These values are also the power-on default.
990 */
991 ATW_WRITE(sc, ATW_TOFS0,
992 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
993 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
994
995 /* Initialize interframe spacing. EIFS=0x64 is used by a binary-only
996 * driver. Go figure.
997 */
998 reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
999 LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
1000 ATW_IFST_SIFS_MASK) |
1001 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1002 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1003
1004 ATW_WRITE(sc, ATW_IFST, reg);
1005
1006 /* XXX More magic. Might relate to ACK timing. */
1007 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1008 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1009
1010 /* Set up the MMI read/write addresses for the BBP.
1011 *
1012 * TBD find out the Marvel settings.
1013 */
1014 switch (sc->sc_bbptype) {
1015 case ATW_BBPTYPE_INTERSIL:
1016 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1017 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1018 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1019 break;
1020 case ATW_BBPTYPE_MARVEL:
1021 break;
1022 case ATW_BBPTYPE_RFMD:
1023 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1024 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1025 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1026 default:
1027 break;
1028 }
1029
1030 sc->sc_wepctl = 0;
1031 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1032
1033 if ((error = atw_rf3000_init(sc)) != 0)
1034 goto out;
1035
1036 /*
1037 * Initialize the PCI Access Register.
1038 */
1039 sc->sc_busmode = ATW_PAR_BAR; /* XXX what is this? */
1040
1041 /*
1042 * If we're allowed to do so, use Memory Read Line
1043 * and Memory Read Multiple.
1044 *
1045 * XXX Should we use Memory Write and Invalidate?
1046 */
1047 if (sc->sc_flags & ATWF_MRL)
1048 sc->sc_busmode |= ATW_PAR_MRLE;
1049 if (sc->sc_flags & ATWF_MRM)
1050 sc->sc_busmode |= ATW_PAR_MRME;
1051 if (sc->sc_flags & ATWF_MWI)
1052 sc->sc_busmode |= ATW_PAR_MWIE;
1053 if (sc->sc_maxburst == 0)
1054 sc->sc_maxburst = 8; /* ADM8211 default */
1055
1056 switch (sc->sc_cacheline) {
1057 default:
1058 /* Use burst length. */
1059 break;
1060 case 8:
1061 sc->sc_busmode |= ATW_PAR_CAL_8DW;
1062 break;
1063 case 16:
1064 sc->sc_busmode |= ATW_PAR_CAL_16DW;
1065 break;
1066 case 32:
1067 sc->sc_busmode |= ATW_PAR_CAL_32DW;
1068 break;
1069 }
1070 switch (sc->sc_maxburst) {
1071 case 1:
1072 sc->sc_busmode |= ATW_PAR_PBL_1DW;
1073 break;
1074 case 2:
1075 sc->sc_busmode |= ATW_PAR_PBL_2DW;
1076 break;
1077 case 4:
1078 sc->sc_busmode |= ATW_PAR_PBL_4DW;
1079 break;
1080 case 8:
1081 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1082 break;
1083 case 16:
1084 sc->sc_busmode |= ATW_PAR_PBL_16DW;
1085 break;
1086 case 32:
1087 sc->sc_busmode |= ATW_PAR_PBL_32DW;
1088 break;
1089 default:
1090 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1091 break;
1092 }
1093
1094 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1095 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1096 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1097
1098 /*
1099 * Initialize the OPMODE register. We don't write it until
1100 * we're ready to begin the transmit and receive processes.
1101 */
1102 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1103 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1104
1105 /*
1106 * Initialize the transmit descriptor ring.
1107 */
1108 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1109 for (i = 0; i < ATW_NTXDESC; i++) {
1110 /* no transmit chaining */
1111 sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1112 sc->sc_txdescs[i].at_buf2 =
1113 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1114 }
1115 /* use ring mode */
1116 sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1117 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1118 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1119 sc->sc_txfree = ATW_NTXDESC;
1120 sc->sc_txnext = 0;
1121
1122 /*
1123 * Initialize the transmit job descriptors.
1124 */
1125 SIMPLEQ_INIT(&sc->sc_txfreeq);
1126 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1127 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1128 txs = &sc->sc_txsoft[i];
1129 txs->txs_mbuf = NULL;
1130 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1131 }
1132
1133 /*
1134 * Initialize the receive descriptor and receive job
1135 * descriptor rings.
1136 */
1137 for (i = 0; i < ATW_NRXDESC; i++) {
1138 rxs = &sc->sc_rxsoft[i];
1139 if (rxs->rxs_mbuf == NULL) {
1140 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1141 printf("%s: unable to allocate or map rx "
1142 "buffer %d, error = %d\n",
1143 sc->sc_dev.dv_xname, i, error);
1144 /*
1145 * XXX Should attempt to run with fewer receive
1146 * XXX buffers instead of just failing.
1147 */
1148 atw_rxdrain(sc);
1149 goto out;
1150 }
1151 } else
1152 ATW_INIT_RXDESC(sc, i);
1153 }
1154 sc->sc_rxptr = 0;
1155
1156 /* disable all wake-up events */
1157 ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1158 ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1159 ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1160 ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1161
1162 /* ack all wake-up events */
1163 ATW_SET(sc, ATW_WCSR, 0);
1164
1165 /*
1166 * Initialize the interrupt mask and enable interrupts.
1167 */
1168 /* normal interrupts */
1169 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1170 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1171
1172 /* abnormal interrupts */
1173 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1174 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1175 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1176
1177 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1178 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1179 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1180 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1181 ATW_INTR_TRT;
1182
1183 sc->sc_linkint_mask &= sc->sc_inten;
1184 sc->sc_rxint_mask &= sc->sc_inten;
1185 sc->sc_txint_mask &= sc->sc_inten;
1186
1187 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1188 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1189 if (sc->sc_intr_ack != NULL)
1190 (*sc->sc_intr_ack)(sc);
1191
1192 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1193 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1194
1195 /*
1196 * Give the transmit and receive rings to the ADM8211.
1197 */
1198 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1199 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1200
1201 /* common 802.11 configuration */
1202 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1203 switch (ic->ic_opmode) {
1204 case IEEE80211_M_STA:
1205 sc->sc_opmode &= ~ATW_NAR_EA;
1206 break;
1207 case IEEE80211_M_AHDEMO: /* XXX */
1208 case IEEE80211_M_IBSS:
1209 ic->ic_flags |= IEEE80211_F_IBSSON;
1210 /*FALLTHROUGH*/
1211 case IEEE80211_M_HOSTAP: /* XXX */
1212 /* EA bit seems important for ad hoc reception. */
1213 sc->sc_opmode |= ATW_NAR_EA;
1214 break;
1215 case IEEE80211_M_MONITOR: /* XXX */
1216 break;
1217 }
1218
1219 atw_start_beacon(sc, 0);
1220
1221 switch (ic->ic_opmode) {
1222 case IEEE80211_M_AHDEMO:
1223 case IEEE80211_M_HOSTAP:
1224 ic->ic_bss->ni_intval = ic->ic_lintval;
1225 ic->ic_bss->ni_rssi = 0;
1226 ic->ic_bss->ni_rstamp = 0;
1227 break;
1228 default: /* XXX */
1229 break;
1230 }
1231
1232 atw_write_ssid(sc);
1233 atw_write_sup_rates(sc);
1234 if (ic->ic_caps & IEEE80211_C_WEP)
1235 atw_write_wep(sc);
1236
1237 /*
1238 * Set the receive filter. This will start the transmit and
1239 * receive processes.
1240 */
1241 atw_filter_setup(sc);
1242
1243 /*
1244 * Start the receive process.
1245 */
1246 ATW_WRITE(sc, ATW_RDR, 0x1);
1247
1248 /*
1249 * Note that the interface is now running.
1250 */
1251 ifp->if_flags |= IFF_RUNNING;
1252 ifp->if_flags &= ~IFF_OACTIVE;
1253 ic->ic_state = IEEE80211_S_INIT;
1254
1255 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1256 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1257 else
1258 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1259 out:
1260 if (error) {
1261 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1262 ifp->if_timer = 0;
1263 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1264 }
1265 #ifdef ATW_DEBUG
1266 atw_print_regs(sc, "end of init");
1267 #endif /* ATW_DEBUG */
1268
1269 return (error);
1270 }
1271
1272 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1273 * 0: MAC control of RF3000/Si4126.
1274 *
1275 * Applies power, or selects RF front-end? Sets reset condition.
1276 *
1277 * TBD support non-RFMD BBP, non-SiLabs synth.
1278 */
1279 static void
1280 atw_rfio_enable(struct atw_softc *sc, int enable)
1281 {
1282 if (enable) {
1283 ATW_WRITE(sc, ATW_SYNRF,
1284 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1285 DELAY(atw_rfio_enable_delay);
1286 } else {
1287 ATW_WRITE(sc, ATW_SYNRF, 0);
1288 DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1289 }
1290 }
1291
1292 static int
1293 atw_tune(struct atw_softc *sc)
1294 {
1295 int rc;
1296 u_int32_t reg;
1297 int chan;
1298 struct ieee80211com *ic = &sc->sc_ic;
1299
1300 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1301 if (chan == IEEE80211_CHAN_ANY)
1302 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1303
1304 if (chan == sc->sc_cur_chan)
1305 return 0;
1306
1307 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1308 sc->sc_cur_chan, chan));
1309
1310 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1311
1312 if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1313 (rc = atw_rf3000_tune(sc, chan)) != 0)
1314 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1315 chan);
1316
1317 reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1318 ATW_WRITE(sc, ATW_CAP0,
1319 reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1320
1321 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1322
1323 if (rc == 0)
1324 sc->sc_cur_chan = chan;
1325
1326 return rc;
1327 }
1328
1329 #ifdef ATW_DEBUG
1330 static void
1331 atw_si4126_print(struct atw_softc *sc)
1332 {
1333 struct ifnet *ifp = &sc->sc_ic.ic_if;
1334 u_int addr, val;
1335
1336 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1337 return;
1338
1339 for (addr = 0; addr <= 8; addr++) {
1340 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1341 if (atw_si4126_read(sc, addr, &val) == 0) {
1342 printf("<unknown> (quitting print-out)\n");
1343 break;
1344 }
1345 printf("%05x\n", val);
1346 }
1347 }
1348 #endif /* ATW_DEBUG */
1349
1350 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1351 *
1352 * The RF/IF synthesizer produces two reference frequencies for
1353 * the RF2948B transceiver. The first frequency the RF2948B requires
1354 * is two times the so-called "intermediate frequency" (IF). Since
1355 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1356 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1357 * frequency required by the transceiver is the radio frequency
1358 * (RF). This is a superheterodyne transceiver; for f(chan) the
1359 * center frequency of the channel we are tuning, RF = f(chan) -
1360 * IF.
1361 *
1362 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1363 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1364 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1365 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1366 */
1367 static int
1368 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
1369 {
1370 int rc = 0;
1371 u_int mhz;
1372 u_int R;
1373 u_int32_t reg;
1374 u_int16_t gain;
1375
1376 #ifdef ATW_DEBUG
1377 atw_si4126_print(sc);
1378 #endif /* ATW_DEBUG */
1379
1380 if (chan == 14)
1381 mhz = 2484;
1382 else
1383 mhz = 2412 + 5 * (chan - 1);
1384
1385 /* Tune IF to 748MHz to suit the IF LO input of the
1386 * RF2494B, which is 2 x IF. No need to set an IF divider
1387 * because an IF in 526MHz - 952MHz is allowed.
1388 *
1389 * XIN is 44.000MHz, so divide it by two to get allowable
1390 * range of 2-25MHz. SiLabs tells me that this is not
1391 * strictly necessary.
1392 */
1393
1394 R = 44;
1395
1396 atw_rfio_enable(sc, 1);
1397
1398 /* Power-up RF, IF synthesizers. */
1399 if ((rc = atw_si4126_write(sc, SI4126_POWER,
1400 SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1401 goto out;
1402
1403 /* If RF2 N > 2047, then set KP2 to 1. */
1404 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1405
1406 if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1407 goto out;
1408
1409 /* set LPWR, too? */
1410 if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1411 SI4126_MAIN_XINDIV2)) != 0)
1412 goto out;
1413
1414 /* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN. XIN = 44MHz.
1415 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1416 */
1417 if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1418 goto out;
1419
1420 if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1421 goto out;
1422
1423 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1424 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1425 * which has no RF1!
1426 */
1427 if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1428 goto out;
1429
1430 if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1431 goto out;
1432
1433 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1434 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1435 * Now let's multiply it to mhz. So mhz - IF = N.
1436 */
1437 if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1438 goto out;
1439
1440 if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1441 goto out;
1442
1443 /* wait 100us from power-up for RF, IF to settle */
1444 DELAY(100);
1445
1446 if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1447 /* XXX there is a binary driver which sends
1448 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1449 * that this enables the Si4126 by raising its PWDN#, but I
1450 * think that it actually sets the Prism RF front-end
1451 * to a special mode for channel 14.
1452 */
1453 reg = ATW_READ(sc, ATW_GPIO);
1454 reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1455 reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1456 ATW_WRITE(sc, ATW_GPIO, reg);
1457 }
1458
1459 #ifdef ATW_DEBUG
1460 atw_si4126_print(sc);
1461 #endif /* ATW_DEBUG */
1462
1463 out:
1464 atw_rfio_enable(sc, 0);
1465
1466 return rc;
1467 }
1468
1469 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1470 * diversity.
1471 *
1472 * Call this w/ Tx/Rx suspended.
1473 */
1474 static int
1475 atw_rf3000_init(struct atw_softc *sc)
1476 {
1477 int rc = 0;
1478
1479 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1480
1481 atw_rfio_enable(sc, 1);
1482
1483 /* enable diversity */
1484 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1485
1486 if (rc != 0)
1487 goto out;
1488
1489 /* sensible setting from a binary-only driver */
1490 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1491 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1492
1493 if (rc != 0)
1494 goto out;
1495
1496 /* magic from a binary-only driver */
1497 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1498 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1499
1500 if (rc != 0)
1501 goto out;
1502
1503 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1504
1505 if (rc != 0)
1506 goto out;
1507
1508 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1509
1510 if (rc != 0)
1511 goto out;
1512
1513 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1514
1515 if (rc != 0)
1516 goto out;
1517
1518 /* CCA is acquisition sensitive */
1519 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1520 LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1521
1522 if (rc != 0)
1523 goto out;
1524
1525 out:
1526 atw_rfio_enable(sc, 0);
1527 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1528 return rc;
1529 }
1530
1531 #ifdef ATW_DEBUG
1532 static void
1533 atw_rf3000_print(struct atw_softc *sc)
1534 {
1535 struct ifnet *ifp = &sc->sc_ic.ic_if;
1536 u_int addr, val;
1537
1538 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1539 return;
1540
1541 for (addr = 0x01; addr <= 0x15; addr++) {
1542 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1543 if (atw_rf3000_read(sc, addr, &val) != 0) {
1544 printf("<unknown> (quitting print-out)\n");
1545 break;
1546 }
1547 printf("%08x\n", val);
1548 }
1549 }
1550 #endif /* ATW_DEBUG */
1551
1552 /* Set the power settings on the BBP for channel `chan'. */
1553 static int
1554 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
1555 {
1556 int rc = 0;
1557 u_int32_t reg;
1558 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1559
1560 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1561 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1562 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1563
1564 /* odd channels: LSB, even channels: MSB */
1565 if (chan % 2 == 1) {
1566 txpower &= 0xFF;
1567 lpf_cutoff &= 0xFF;
1568 lna_gs_thresh &= 0xFF;
1569 } else {
1570 txpower >>= 8;
1571 lpf_cutoff >>= 8;
1572 lna_gs_thresh >>= 8;
1573 }
1574
1575 #ifdef ATW_DEBUG
1576 atw_rf3000_print(sc);
1577 #endif /* ATW_DEBUG */
1578
1579 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1580 "lna_gs_thresh %02x\n",
1581 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1582
1583 atw_rfio_enable(sc, 1);
1584
1585 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1586 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1587 goto out;
1588
1589 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1590 goto out;
1591
1592 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1593 goto out;
1594
1595 /* from a binary-only driver. */
1596 reg = ATW_READ(sc, ATW_PLCPHD);
1597 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1598 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1599 ATW_PLCPHD_SERVICE_MASK);
1600 ATW_WRITE(sc, ATW_PLCPHD, reg);
1601
1602 #ifdef ATW_DEBUG
1603 atw_rf3000_print(sc);
1604 #endif /* ATW_DEBUG */
1605
1606 out:
1607 atw_rfio_enable(sc, 0);
1608
1609 return rc;
1610 }
1611
1612 /* Write a register on the RF3000 baseband processor using the
1613 * registers provided by the ADM8211 for this purpose.
1614 *
1615 * Return 0 on success.
1616 */
1617 static int
1618 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1619 {
1620 u_int32_t reg;
1621 int i;
1622
1623 for (i = 1000; --i >= 0; ) {
1624 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1625 break;
1626 DELAY(100);
1627 }
1628
1629 if (i < 0) {
1630 printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1631 return ETIMEDOUT;
1632 }
1633
1634 reg = sc->sc_bbpctl_wr |
1635 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1636 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1637
1638 ATW_WRITE(sc, ATW_BBPCTL, reg);
1639
1640 for (i = 1000; --i >= 0; ) {
1641 DELAY(100);
1642 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1643 break;
1644 }
1645
1646 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1647
1648 if (i < 0) {
1649 printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1650 return ETIMEDOUT;
1651 }
1652 return 0;
1653 }
1654
1655 /* Read a register on the RF3000 baseband processor using the registers
1656 * the ADM8211 provides for this purpose.
1657 *
1658 * The 7-bit register address is addr. Record the 8-bit data in the register
1659 * in *val.
1660 *
1661 * Return 0 on success.
1662 *
1663 * XXX This does not seem to work. The ADM8211 must require more or
1664 * different magic to read the chip than to write it. Possibly some
1665 * of the magic I have derived from a binary-only driver concerns
1666 * the "chip address" (see the RF3000 manual).
1667 */
1668 #ifdef ATW_DEBUG
1669 static int
1670 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1671 {
1672 u_int32_t reg;
1673 int i;
1674
1675 for (i = 1000; --i >= 0; ) {
1676 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1677 break;
1678 DELAY(100);
1679 }
1680
1681 if (i < 0) {
1682 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1683 sc->sc_dev.dv_xname);
1684 return ETIMEDOUT;
1685 }
1686
1687 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1688
1689 ATW_WRITE(sc, ATW_BBPCTL, reg);
1690
1691 for (i = 1000; --i >= 0; ) {
1692 DELAY(100);
1693 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1694 break;
1695 }
1696
1697 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1698
1699 if (i < 0) {
1700 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1701 sc->sc_dev.dv_xname, reg);
1702 return ETIMEDOUT;
1703 }
1704 if (val != NULL)
1705 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1706 return 0;
1707 }
1708 #endif /* ATW_DEBUG */
1709
1710 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1711 * provided by the ADM8211 for that purpose.
1712 *
1713 * val is 18 bits of data, and val is the 4-bit address of the register.
1714 *
1715 * Return 0 on success.
1716 */
1717 static int
1718 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1719 {
1720 u_int32_t bits, reg;
1721 int i;
1722
1723 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1724 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1725
1726 for (i = 1000; --i >= 0; ) {
1727 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1728 break;
1729 DELAY(100);
1730 }
1731
1732 if (i < 0) {
1733 printf("%s: start atw_si4126_write, SYNCTL busy\n",
1734 sc->sc_dev.dv_xname);
1735 return ETIMEDOUT;
1736 }
1737
1738 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1739 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1740
1741 reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
1742
1743 ATW_WRITE(sc, ATW_SYNCTL, reg);
1744
1745 for (i = 1000; --i >= 0; ) {
1746 DELAY(100);
1747 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1748 break;
1749 }
1750
1751 /* restore to acceptable starting condition */
1752 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1753
1754 if (i < 0) {
1755 printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1756 sc->sc_dev.dv_xname, reg);
1757 return ETIMEDOUT;
1758 }
1759 return 0;
1760 }
1761
1762 /* Read 18-bit data from the 4-bit address addr in Si4126
1763 * RF synthesizer and write the data to *val. Return 0 on success.
1764 *
1765 * XXX This does not seem to work. The ADM8211 must require more or
1766 * different magic to read the chip than to write it.
1767 */
1768 #ifdef ATW_DEBUG
1769 static int
1770 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1771 {
1772 u_int32_t reg;
1773 int i;
1774
1775 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1776
1777 for (i = 1000; --i >= 0; ) {
1778 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1779 break;
1780 DELAY(100);
1781 }
1782
1783 if (i < 0) {
1784 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1785 sc->sc_dev.dv_xname);
1786 return ETIMEDOUT;
1787 }
1788
1789 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1790
1791 ATW_WRITE(sc, ATW_SYNCTL, reg);
1792
1793 for (i = 1000; --i >= 0; ) {
1794 DELAY(100);
1795 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1796 break;
1797 }
1798
1799 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1800
1801 if (i < 0) {
1802 printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1803 sc->sc_dev.dv_xname, reg);
1804 return ETIMEDOUT;
1805 }
1806 if (val != NULL)
1807 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1808 ATW_SYNCTL_DATA_MASK);
1809 return 0;
1810 }
1811 #endif /* ATW_DEBUG */
1812
1813 /* XXX is the endianness correct? test. */
1814 #define atw_calchash(addr) \
1815 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1816
1817 /*
1818 * atw_filter_setup:
1819 *
1820 * Set the ADM8211's receive filter.
1821 */
1822 static void
1823 atw_filter_setup(struct atw_softc *sc)
1824 {
1825 struct ieee80211com *ic = &sc->sc_ic;
1826 struct ethercom *ec = &ic->ic_ec;
1827 struct ifnet *ifp = &sc->sc_ic.ic_if;
1828 int hash;
1829 u_int32_t hashes[2] = { 0, 0 };
1830 struct ether_multi *enm;
1831 struct ether_multistep step;
1832
1833 DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1834 sc->sc_dev.dv_xname, sc->sc_flags));
1835
1836 /*
1837 * If we're running, idle the receive engine. If we're NOT running,
1838 * we're being called from atw_init(), and our writing ATW_NAR will
1839 * start the transmit and receive processes in motion.
1840 */
1841 if (ifp->if_flags & IFF_RUNNING)
1842 atw_idle(sc, ATW_NAR_SR);
1843
1844 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1845
1846 ifp->if_flags &= ~IFF_ALLMULTI;
1847
1848 if (ifp->if_flags & IFF_PROMISC) {
1849 sc->sc_opmode |= ATW_NAR_PR;
1850 allmulti:
1851 ifp->if_flags |= IFF_ALLMULTI;
1852 goto setit;
1853 }
1854
1855 /*
1856 * Program the 64-bit multicast hash filter.
1857 */
1858 ETHER_FIRST_MULTI(step, ec, enm);
1859 while (enm != NULL) {
1860 /* XXX */
1861 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1862 ETHER_ADDR_LEN) != 0)
1863 goto allmulti;
1864
1865 hash = atw_calchash(enm->enm_addrlo);
1866 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1867 ETHER_NEXT_MULTI(step, enm);
1868 }
1869
1870 if (ifp->if_flags & IFF_BROADCAST) {
1871 hash = atw_calchash(etherbroadcastaddr);
1872 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1873 }
1874
1875 /* all bits set => hash is useless */
1876 if (~(hashes[0] & hashes[1]) == 0)
1877 goto allmulti;
1878
1879 setit:
1880 if (ifp->if_flags & IFF_ALLMULTI)
1881 sc->sc_opmode |= ATW_NAR_MM;
1882
1883 /* XXX in scan mode, do not filter packets. maybe this is
1884 * unnecessary.
1885 */
1886 if (ic->ic_state == IEEE80211_S_SCAN)
1887 sc->sc_opmode |= ATW_NAR_PR;
1888
1889 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1890 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1891 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1892 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1893 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1894
1895 DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1896 }
1897
1898 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1899 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1900 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1901 * no beacon with the preferred BSSID and SSID in the number of
1902 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1903 */
1904 static void
1905 atw_write_bssid(struct atw_softc *sc)
1906 {
1907 struct ieee80211com *ic = &sc->sc_ic;
1908 u_int8_t *bssid;
1909
1910 bssid = ic->ic_bss->ni_bssid;
1911
1912 ATW_WRITE(sc, ATW_ABDA1,
1913 (ATW_READ(sc, ATW_ABDA1) &
1914 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1915 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1916 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1917
1918 ATW_WRITE(sc, ATW_BSSID0,
1919 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1920 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1921 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1922 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1923
1924 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1925 ether_sprintf(sc->sc_bssid)));
1926 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1927
1928 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1929 }
1930
1931 /* Tell the ADM8211 how many beacon intervals must pass without
1932 * receiving a beacon with the preferred BSSID & SSID set by
1933 * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
1934 * raised.
1935 */
1936 static void
1937 atw_write_bcn_thresh(struct atw_softc *sc)
1938 {
1939 struct ieee80211com *ic = &sc->sc_ic;
1940 int lost_bcn_thresh;
1941
1942 /* Lose link after one second or 7 beacons, whichever comes
1943 * first, but do not lose link before 2 beacons are lost.
1944 *
1945 * In host AP mode, set the lost-beacon threshold to 0.
1946 */
1947 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1948 lost_bcn_thresh = 0;
1949 else {
1950 int beacons_per_second =
1951 1000000 / (IEEE80211_DUR_TU * MAX(1,ic->ic_bss->ni_intval));
1952 lost_bcn_thresh = MAX(2, MIN(7, beacons_per_second));
1953 }
1954
1955 /* XXX resets wake-up status bits */
1956 ATW_WRITE(sc, ATW_WCSR,
1957 (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
1958 (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
1959
1960 DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
1961 sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
1962
1963 sc->sc_lost_bcn_thresh = lost_bcn_thresh;
1964
1965 DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
1966 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
1967 }
1968
1969 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1970 * 16-bit word.
1971 */
1972 static void
1973 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
1974 {
1975 u_int i;
1976 u_int8_t *ptr;
1977
1978 memcpy(&sc->sc_sram[ofs], buf, buflen);
1979
1980 if (ofs % 2 != 0) {
1981 ofs--;
1982 buflen++;
1983 }
1984
1985 if (buflen % 2 != 0)
1986 buflen++;
1987
1988 assert(buflen + ofs <= ATW_SRAM_SIZE);
1989
1990 ptr = &sc->sc_sram[ofs];
1991
1992 for (i = 0; i < buflen; i += 2) {
1993 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
1994 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
1995 DELAY(atw_writewep_delay);
1996
1997 ATW_WRITE(sc, ATW_WESK,
1998 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
1999 DELAY(atw_writewep_delay);
2000 }
2001 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2002
2003 if (sc->sc_if.if_flags & IFF_DEBUG) {
2004 int n_octets = 0;
2005 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2006 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2007 for (i = 0; i < buflen; i++) {
2008 printf(" %02x", ptr[i]);
2009 if (++n_octets % 24 == 0)
2010 printf("\n");
2011 }
2012 if (n_octets % 24 != 0)
2013 printf("\n");
2014 }
2015 }
2016
2017 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2018 static void
2019 atw_write_wep(struct atw_softc *sc)
2020 {
2021 struct ieee80211com *ic = &sc->sc_ic;
2022 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2023 u_int8_t buf[IEEE80211_WEP_NKID]
2024 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2025 u_int32_t reg;
2026 int i;
2027
2028 sc->sc_wepctl = 0;
2029 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2030
2031 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2032 return;
2033
2034 memset(&buf[0][0], 0, sizeof(buf));
2035
2036 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2037 if (ic->ic_nw_keys[i].wk_len > 5) {
2038 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2039 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2040 buf[i][1] = ATW_WEP_ENABLED;
2041 } else {
2042 buf[i][1] = 0;
2043 continue;
2044 }
2045 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2046 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2047 ic->ic_nw_keys[i].wk_len - 1);
2048 }
2049
2050 reg = ATW_READ(sc, ATW_MACTEST);
2051 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2052 reg &= ~ATW_MACTEST_KEYID_MASK;
2053 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2054 ATW_WRITE(sc, ATW_MACTEST, reg);
2055
2056 /* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2057 * throughout.)
2058 */
2059 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2060 if (sc->sc_if.if_flags & IFF_LINK2)
2061 sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2062
2063 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2064 sizeof(buf));
2065 }
2066
2067 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2068
2069 static void
2070 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2071 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2072 {
2073 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2074
2075 switch (subtype) {
2076 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2077 /* do nothing: hardware answers probe request */
2078 break;
2079 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2080 case IEEE80211_FC0_SUBTYPE_BEACON:
2081 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2082 break;
2083 default:
2084 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2085 break;
2086 }
2087 return;
2088 }
2089
2090 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2091 * of IBSSs with like SSID/channel but different BSSID. It joins the
2092 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2093 * convention. Possibly the ADMtek chip does this for us; I will have
2094 * to test to find out.
2095 *
2096 * XXX we should add the duration field of the received beacon to
2097 * the TSF time it contains before comparing it with the ADM8211's
2098 * TSF.
2099 */
2100 static void
2101 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2102 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2103 {
2104 struct atw_softc *sc;
2105 struct ieee80211_frame *wh;
2106 u_int64_t tsft, bcn_tsft;
2107 u_int32_t tsftl, tsfth;
2108 int do_print = 0;
2109
2110 sc = (struct atw_softc*)ic->ic_if.if_softc;
2111
2112 if (ic->ic_if.if_flags & IFF_DEBUG)
2113 do_print = (ic->ic_if.if_flags & IFF_LINK0)
2114 ? 1 : ratecheck(&sc->sc_last_beacon,
2115 &atw_beacon_mininterval);
2116
2117 wh = mtod(m0, struct ieee80211_frame *);
2118
2119 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2120
2121 if (ic->ic_state != IEEE80211_S_RUN) {
2122 if (do_print)
2123 printf("%s: atw_recv_beacon: not running\n",
2124 sc->sc_dev.dv_xname);
2125 return;
2126 }
2127
2128 if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2129 ic->ic_bss->ni_chan)) == NULL) {
2130 if (do_print)
2131 printf("%s: atw_recv_beacon: no node %s\n",
2132 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2133 return;
2134 }
2135
2136 if (ieee80211_match_bss(ic, ni) != 0) {
2137 if (do_print)
2138 printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2139 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2140 return;
2141 }
2142
2143 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2144 return;
2145
2146 if (do_print)
2147 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2148 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2149
2150 if (ic->ic_opmode != IEEE80211_M_IBSS)
2151 return;
2152
2153 /* If we read TSFTL right before rollover, we read a TSF timer
2154 * that is too high rather than too low. This prevents a spurious
2155 * synchronization down the line, however, our IBSS could suffer
2156 * from a creeping TSF....
2157 */
2158 tsftl = ATW_READ(sc, ATW_TSFTL);
2159 tsfth = ATW_READ(sc, ATW_TSFTH);
2160
2161 tsft = (u_int64_t)tsfth << 32 | tsftl;
2162 bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2163
2164 if (do_print)
2165 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2166 sc->sc_dev.dv_xname, tsft, bcn_tsft);
2167
2168 /* we are faster, let the other guy catch up */
2169 if (bcn_tsft < tsft)
2170 return;
2171
2172 if (do_print)
2173 printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2174 ether_sprintf(wh->i_addr2));
2175
2176 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2177
2178 #if 0
2179 atw_tsf(sc);
2180 #endif
2181
2182 /* negotiate rates with new IBSS */
2183 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2184 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2185 if (ni->ni_rates.rs_nrates == 0) {
2186 printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2187 ether_sprintf(ni->ni_bssid));
2188 return;
2189 }
2190
2191 if (do_print) {
2192 printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2193 ether_sprintf(ic->ic_bss->ni_bssid));
2194 printf("%s ", ether_sprintf(ni->ni_bssid));
2195 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2196 }
2197
2198 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2199
2200 atw_write_bssid(sc);
2201 atw_write_bcn_thresh(sc);
2202 atw_start_beacon(sc, 1);
2203 }
2204
2205 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2206 * In ad hoc mode, the SSID is written to the beacons sent by the
2207 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2208 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2209 * indications.
2210 */
2211 static void
2212 atw_write_ssid(struct atw_softc *sc)
2213 {
2214 struct ieee80211com *ic = &sc->sc_ic;
2215 /* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2216 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2217
2218 memset(buf, 0, sizeof(buf));
2219 buf[0] = ic->ic_bss->ni_esslen;
2220 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2221
2222 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2223 }
2224
2225 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2226 * In ad hoc mode, the supported rates are written to beacons sent by the
2227 * ADM8211.
2228 */
2229 static void
2230 atw_write_sup_rates(struct atw_softc *sc)
2231 {
2232 struct ieee80211com *ic = &sc->sc_ic;
2233 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2234 * supported rates
2235 */
2236 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2237
2238 memset(buf, 0, sizeof(buf));
2239
2240 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2241
2242 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2243 ic->ic_bss->ni_rates.rs_nrates);
2244
2245 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2246 }
2247
2248 /* Start/stop sending beacons. */
2249 void
2250 atw_start_beacon(struct atw_softc *sc, int start)
2251 {
2252 struct ieee80211com *ic = &sc->sc_ic;
2253 u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2254
2255 if (ATW_IS_ENABLED(sc) == 0)
2256 return;
2257
2258 len = capinfo = 0;
2259
2260 /* start beacons */
2261 len = sizeof(struct ieee80211_frame) +
2262 8 /* timestamp */ + 2 /* beacon interval */ +
2263 2 /* capability info */ +
2264 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2265 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2266 3 /* DS parameters */ +
2267 IEEE80211_CRC_LEN;
2268
2269 reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2270
2271 reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2272
2273 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2274 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2275
2276 if (!start)
2277 return;
2278
2279 /* TBD use ni_capinfo */
2280
2281 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2282 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2283 if (ic->ic_flags & IEEE80211_F_WEPON)
2284 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2285
2286 switch (ic->ic_opmode) {
2287 case IEEE80211_M_IBSS:
2288 len += 4; /* IBSS parameters */
2289 capinfo |= IEEE80211_CAPINFO_IBSS;
2290 break;
2291 case IEEE80211_M_HOSTAP:
2292 /* XXX 6-byte minimum TIM */
2293 len += atw_beacon_len_adjust;
2294 capinfo |= IEEE80211_CAPINFO_ESS;
2295 break;
2296 default:
2297 return;
2298 }
2299
2300 reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2301 reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2302
2303 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2304 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2305
2306 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2307 sc->sc_dev.dv_xname, reg_bcnt));
2308
2309 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2310 sc->sc_dev.dv_xname, reg_cap1));
2311 }
2312
2313 /* First beacon was sent at time 0 microseconds, current time is
2314 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2315 * microseconds. Return the expected time in microseconds for the
2316 * beacon after next.
2317 */
2318 static __inline u_int64_t
2319 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2320 {
2321 return tsft + (tbtt - tsft % tbtt);
2322 }
2323
2324 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2325 * the ieee80211com.
2326 *
2327 * Predict the next target beacon transmission time (TBTT) and
2328 * write it to the ADM8211.
2329 */
2330 static void
2331 atw_tsf(struct atw_softc *sc)
2332 {
2333 #define TBTTOFS 20 /* TU */
2334
2335 struct ieee80211com *ic = &sc->sc_ic;
2336 u_int64_t tsft, tbtt;
2337
2338 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2339 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2340 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2341 tsft = ATW_READ(sc, ATW_TSFTH);
2342 tsft <<= 32;
2343 tsft |= ATW_READ(sc, ATW_TSFTL);
2344 *(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2345 } else
2346 tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2347
2348 tbtt = atw_predict_beacon(tsft,
2349 ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2350
2351 /* skip one more beacon so that the TBTT cannot pass before
2352 * we've programmed it, and also so that we can subtract a
2353 * few TU so that we wake a little before TBTT.
2354 */
2355 tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2356
2357 /* wake up a little early */
2358 tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2359
2360 DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2361 sc->sc_dev.dv_xname, tsft, tbtt));
2362
2363 ATW_WRITE(sc, ATW_TOFS1,
2364 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2365 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2366 LSHIFT(
2367 MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2368 ATW_TOFS1_TBTTPRE_MASK));
2369 #undef TBTTOFS
2370 }
2371
2372 static void
2373 atw_next_scan(void *arg)
2374 {
2375 struct atw_softc *sc = arg;
2376 struct ieee80211com *ic = &sc->sc_ic;
2377 struct ifnet *ifp = &ic->ic_if;
2378 int s;
2379
2380 /* don't call atw_start w/o network interrupts blocked */
2381 s = splnet();
2382 if (ic->ic_state == IEEE80211_S_SCAN)
2383 ieee80211_next_scan(ifp);
2384 splx(s);
2385 }
2386
2387 /* Synchronize the hardware state with the software state. */
2388 static int
2389 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2390 {
2391 struct ifnet *ifp = &ic->ic_if;
2392 struct atw_softc *sc = ifp->if_softc;
2393 enum ieee80211_state ostate;
2394 int error;
2395
2396 ostate = ic->ic_state;
2397
2398 if (nstate == IEEE80211_S_INIT) {
2399 callout_stop(&sc->sc_scan_ch);
2400 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2401 atw_start_beacon(sc, 0);
2402 return (*sc->sc_newstate)(ic, nstate, arg);
2403 }
2404
2405 if ((error = atw_tune(sc)) != 0)
2406 return error;
2407
2408 switch (nstate) {
2409 case IEEE80211_S_ASSOC:
2410 break;
2411 case IEEE80211_S_INIT:
2412 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2413 break;
2414 case IEEE80211_S_SCAN:
2415 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2416 atw_write_bssid(sc);
2417
2418 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2419 atw_next_scan, sc);
2420
2421 break;
2422 case IEEE80211_S_RUN:
2423 if (ic->ic_opmode == IEEE80211_M_STA)
2424 break;
2425 /*FALLTHROUGH*/
2426 case IEEE80211_S_AUTH:
2427 atw_write_bssid(sc);
2428 atw_write_bcn_thresh(sc);
2429 atw_write_ssid(sc);
2430 atw_write_sup_rates(sc);
2431
2432 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2433 ic->ic_opmode == IEEE80211_M_MONITOR)
2434 break;
2435
2436 /* set listen interval
2437 * XXX do software units agree w/ hardware?
2438 */
2439 ATW_WRITE(sc, ATW_BPLI,
2440 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2441 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2442 ATW_BPLI_LI_MASK));
2443
2444 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2445 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2446
2447 atw_tsf(sc);
2448 break;
2449 }
2450
2451 if (nstate != IEEE80211_S_SCAN)
2452 callout_stop(&sc->sc_scan_ch);
2453
2454 if (nstate == IEEE80211_S_RUN &&
2455 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2456 ic->ic_opmode == IEEE80211_M_IBSS))
2457 atw_start_beacon(sc, 1);
2458 else
2459 atw_start_beacon(sc, 0);
2460
2461 return (*sc->sc_newstate)(ic, nstate, arg);
2462 }
2463
2464 /*
2465 * atw_add_rxbuf:
2466 *
2467 * Add a receive buffer to the indicated descriptor.
2468 */
2469 int
2470 atw_add_rxbuf(struct atw_softc *sc, int idx)
2471 {
2472 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2473 struct mbuf *m;
2474 int error;
2475
2476 MGETHDR(m, M_DONTWAIT, MT_DATA);
2477 if (m == NULL)
2478 return (ENOBUFS);
2479
2480 MCLGET(m, M_DONTWAIT);
2481 if ((m->m_flags & M_EXT) == 0) {
2482 m_freem(m);
2483 return (ENOBUFS);
2484 }
2485
2486 if (rxs->rxs_mbuf != NULL)
2487 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2488
2489 rxs->rxs_mbuf = m;
2490
2491 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2492 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2493 BUS_DMA_READ|BUS_DMA_NOWAIT);
2494 if (error) {
2495 printf("%s: can't load rx DMA map %d, error = %d\n",
2496 sc->sc_dev.dv_xname, idx, error);
2497 panic("atw_add_rxbuf"); /* XXX */
2498 }
2499
2500 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2501 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2502
2503 ATW_INIT_RXDESC(sc, idx);
2504
2505 return (0);
2506 }
2507
2508 /*
2509 * atw_stop: [ ifnet interface function ]
2510 *
2511 * Stop transmission on the interface.
2512 */
2513 void
2514 atw_stop(struct ifnet *ifp, int disable)
2515 {
2516 struct atw_softc *sc = ifp->if_softc;
2517 struct ieee80211com *ic = &sc->sc_ic;
2518 struct atw_txsoft *txs;
2519
2520 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2521
2522 /* Disable interrupts. */
2523 ATW_WRITE(sc, ATW_IER, 0);
2524
2525 /* Stop the transmit and receive processes. */
2526 sc->sc_opmode = 0;
2527 ATW_WRITE(sc, ATW_NAR, 0);
2528 ATW_WRITE(sc, ATW_TDBD, 0);
2529 ATW_WRITE(sc, ATW_TDBP, 0);
2530 ATW_WRITE(sc, ATW_RDB, 0);
2531
2532 /*
2533 * Release any queued transmit buffers.
2534 */
2535 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2536 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2537 if (txs->txs_mbuf != NULL) {
2538 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2539 m_freem(txs->txs_mbuf);
2540 txs->txs_mbuf = NULL;
2541 }
2542 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2543 }
2544
2545 if (disable) {
2546 atw_rxdrain(sc);
2547 atw_disable(sc);
2548 }
2549
2550 /*
2551 * Mark the interface down and cancel the watchdog timer.
2552 */
2553 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2554 ifp->if_timer = 0;
2555
2556 /* XXX */
2557 atw_reset(sc);
2558 }
2559
2560 /*
2561 * atw_rxdrain:
2562 *
2563 * Drain the receive queue.
2564 */
2565 void
2566 atw_rxdrain(struct atw_softc *sc)
2567 {
2568 struct atw_rxsoft *rxs;
2569 int i;
2570
2571 for (i = 0; i < ATW_NRXDESC; i++) {
2572 rxs = &sc->sc_rxsoft[i];
2573 if (rxs->rxs_mbuf == NULL)
2574 continue;
2575 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2576 m_freem(rxs->rxs_mbuf);
2577 rxs->rxs_mbuf = NULL;
2578 }
2579 }
2580
2581 /*
2582 * atw_detach:
2583 *
2584 * Detach an ADM8211 interface.
2585 */
2586 int
2587 atw_detach(struct atw_softc *sc)
2588 {
2589 struct ifnet *ifp = &sc->sc_ic.ic_if;
2590 struct atw_rxsoft *rxs;
2591 struct atw_txsoft *txs;
2592 int i;
2593
2594 /*
2595 * Succeed now if there isn't any work to do.
2596 */
2597 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2598 return (0);
2599
2600 ieee80211_ifdetach(ifp);
2601 if_detach(ifp);
2602
2603 for (i = 0; i < ATW_NRXDESC; i++) {
2604 rxs = &sc->sc_rxsoft[i];
2605 if (rxs->rxs_mbuf != NULL) {
2606 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2607 m_freem(rxs->rxs_mbuf);
2608 rxs->rxs_mbuf = NULL;
2609 }
2610 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2611 }
2612 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2613 txs = &sc->sc_txsoft[i];
2614 if (txs->txs_mbuf != NULL) {
2615 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2616 m_freem(txs->txs_mbuf);
2617 txs->txs_mbuf = NULL;
2618 }
2619 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2620 }
2621 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2622 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2623 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2624 sizeof(struct atw_control_data));
2625 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2626
2627 shutdownhook_disestablish(sc->sc_sdhook);
2628 powerhook_disestablish(sc->sc_powerhook);
2629
2630 if (sc->sc_srom)
2631 free(sc->sc_srom, M_DEVBUF);
2632
2633 return (0);
2634 }
2635
2636 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2637 void
2638 atw_shutdown(void *arg)
2639 {
2640 struct atw_softc *sc = arg;
2641
2642 atw_stop(&sc->sc_ic.ic_if, 1);
2643 }
2644
2645 int
2646 atw_intr(void *arg)
2647 {
2648 struct atw_softc *sc = arg;
2649 struct ifnet *ifp = &sc->sc_ic.ic_if;
2650 u_int32_t status, rxstatus, txstatus, linkstatus;
2651 int handled = 0, txthresh;
2652
2653 #ifdef DEBUG
2654 if (ATW_IS_ENABLED(sc) == 0)
2655 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2656 #endif
2657
2658 /*
2659 * If the interface isn't running, the interrupt couldn't
2660 * possibly have come from us.
2661 */
2662 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2663 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2664 return (0);
2665
2666 for (;;) {
2667 status = ATW_READ(sc, ATW_STSR);
2668
2669 if (status)
2670 ATW_WRITE(sc, ATW_STSR, status);
2671
2672 if (sc->sc_intr_ack != NULL)
2673 (*sc->sc_intr_ack)(sc);
2674
2675 #ifdef ATW_DEBUG
2676 #define PRINTINTR(flag) do { \
2677 if ((status & flag) != 0) { \
2678 printf("%s" #flag, delim); \
2679 delim = ","; \
2680 } \
2681 } while (0)
2682
2683 if (atw_debug > 1 && status) {
2684 const char *delim = "<";
2685
2686 printf("%s: reg[STSR] = %x",
2687 sc->sc_dev.dv_xname, status);
2688
2689 PRINTINTR(ATW_INTR_FBE);
2690 PRINTINTR(ATW_INTR_LINKOFF);
2691 PRINTINTR(ATW_INTR_LINKON);
2692 PRINTINTR(ATW_INTR_RCI);
2693 PRINTINTR(ATW_INTR_RDU);
2694 PRINTINTR(ATW_INTR_REIS);
2695 PRINTINTR(ATW_INTR_RPS);
2696 PRINTINTR(ATW_INTR_TCI);
2697 PRINTINTR(ATW_INTR_TDU);
2698 PRINTINTR(ATW_INTR_TLT);
2699 PRINTINTR(ATW_INTR_TPS);
2700 PRINTINTR(ATW_INTR_TRT);
2701 PRINTINTR(ATW_INTR_TUF);
2702 PRINTINTR(ATW_INTR_BCNTC);
2703 PRINTINTR(ATW_INTR_ATIME);
2704 PRINTINTR(ATW_INTR_TBTT);
2705 PRINTINTR(ATW_INTR_TSCZ);
2706 PRINTINTR(ATW_INTR_TSFTF);
2707 printf(">\n");
2708 }
2709 #undef PRINTINTR
2710 #endif /* ATW_DEBUG */
2711
2712 if ((status & sc->sc_inten) == 0)
2713 break;
2714
2715 handled = 1;
2716
2717 rxstatus = status & sc->sc_rxint_mask;
2718 txstatus = status & sc->sc_txint_mask;
2719 linkstatus = status & sc->sc_linkint_mask;
2720
2721 if (linkstatus) {
2722 atw_linkintr(sc, linkstatus);
2723 }
2724
2725 if (rxstatus) {
2726 /* Grab any new packets. */
2727 atw_rxintr(sc);
2728
2729 if (rxstatus & ATW_INTR_RDU) {
2730 printf("%s: receive ring overrun\n",
2731 sc->sc_dev.dv_xname);
2732 /* Get the receive process going again. */
2733 ATW_WRITE(sc, ATW_RDR, 0x1);
2734 break;
2735 }
2736 }
2737
2738 if (txstatus) {
2739 /* Sweep up transmit descriptors. */
2740 atw_txintr(sc);
2741
2742 if (txstatus & ATW_INTR_TLT)
2743 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2744 sc->sc_dev.dv_xname));
2745
2746 if (txstatus & ATW_INTR_TRT)
2747 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2748 sc->sc_dev.dv_xname));
2749
2750 /* If Tx under-run, increase our transmit threshold
2751 * if another is available.
2752 */
2753 txthresh = sc->sc_txthresh + 1;
2754 if ((txstatus & ATW_INTR_TUF) &&
2755 sc->sc_txth[txthresh].txth_name != NULL) {
2756 /* Idle the transmit process. */
2757 atw_idle(sc, ATW_NAR_ST);
2758
2759 sc->sc_txthresh = txthresh;
2760 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2761 sc->sc_opmode |=
2762 sc->sc_txth[txthresh].txth_opmode;
2763 printf("%s: transmit underrun; new "
2764 "threshold: %s\n", sc->sc_dev.dv_xname,
2765 sc->sc_txth[txthresh].txth_name);
2766
2767 /* Set the new threshold and restart
2768 * the transmit process.
2769 */
2770 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2771 /* XXX Log every Nth underrun from
2772 * XXX now on?
2773 */
2774 }
2775 }
2776
2777 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2778 if (status & ATW_INTR_TPS)
2779 printf("%s: transmit process stopped\n",
2780 sc->sc_dev.dv_xname);
2781 if (status & ATW_INTR_RPS)
2782 printf("%s: receive process stopped\n",
2783 sc->sc_dev.dv_xname);
2784 (void)atw_init(ifp);
2785 break;
2786 }
2787
2788 if (status & ATW_INTR_FBE) {
2789 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2790 (void)atw_init(ifp);
2791 break;
2792 }
2793
2794 /*
2795 * Not handled:
2796 *
2797 * Transmit buffer unavailable -- normal
2798 * condition, nothing to do, really.
2799 *
2800 * Early receive interrupt -- not available on
2801 * all chips, we just use RI. We also only
2802 * use single-segment receive DMA, so this
2803 * is mostly useless.
2804 *
2805 * TBD others
2806 */
2807 }
2808
2809 /* Try to get more packets going. */
2810 atw_start(ifp);
2811
2812 return (handled);
2813 }
2814
2815 /*
2816 * atw_idle:
2817 *
2818 * Cause the transmit and/or receive processes to go idle.
2819 *
2820 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2821 * process in STSR if I clear SR or ST after the process has already
2822 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2823 * do not seem to be too reliable. Perhaps I have the sense of the
2824 * Rx bits switched with the Tx bits?
2825 */
2826 void
2827 atw_idle(struct atw_softc *sc, u_int32_t bits)
2828 {
2829 u_int32_t ackmask = 0, opmode, stsr, test0;
2830 int i, s;
2831
2832 /* without this, somehow we run concurrently w/ interrupt handler */
2833 s = splnet();
2834
2835 opmode = sc->sc_opmode & ~bits;
2836
2837 if (bits & ATW_NAR_SR)
2838 ackmask |= ATW_INTR_RPS;
2839
2840 if (bits & ATW_NAR_ST) {
2841 ackmask |= ATW_INTR_TPS;
2842 /* set ATW_NAR_HF to flush TX FIFO. */
2843 opmode |= ATW_NAR_HF;
2844 }
2845
2846 ATW_WRITE(sc, ATW_NAR, opmode);
2847
2848 for (i = 0; i < 1000; i++) {
2849 stsr = ATW_READ(sc, ATW_STSR);
2850 if ((stsr & ackmask) == ackmask)
2851 break;
2852 DELAY(10);
2853 }
2854
2855 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2856
2857 if ((stsr & ackmask) == ackmask)
2858 goto out;
2859
2860 test0 = ATW_READ(sc, ATW_TEST0);
2861
2862 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2863 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2864 printf("%s: transmit process not idle [%s]\n",
2865 sc->sc_dev.dv_xname,
2866 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2867 printf("%s: bits %08x test0 %08x stsr %08x\n",
2868 sc->sc_dev.dv_xname, bits, test0, stsr);
2869 }
2870
2871 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2872 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2873 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2874 sc->sc_dev.dv_xname,
2875 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2876 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2877 sc->sc_dev.dv_xname, bits, test0, stsr));
2878 }
2879 out:
2880 splx(s);
2881 return;
2882 }
2883
2884 /*
2885 * atw_linkintr:
2886 *
2887 * Helper; handle link-status interrupts.
2888 */
2889 void
2890 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2891 {
2892 struct ieee80211com *ic = &sc->sc_ic;
2893
2894 if (ic->ic_state != IEEE80211_S_RUN)
2895 return;
2896
2897 if (linkstatus & ATW_INTR_LINKON) {
2898 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2899 sc->sc_rescan_timer = 0;
2900 } else if (linkstatus & ATW_INTR_LINKOFF) {
2901 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2902 if (ic->ic_opmode != IEEE80211_M_STA)
2903 return;
2904 sc->sc_rescan_timer = 3;
2905 ic->ic_if.if_timer = 1;
2906 }
2907 }
2908
2909 /*
2910 * atw_rxintr:
2911 *
2912 * Helper; handle receive interrupts.
2913 */
2914 void
2915 atw_rxintr(struct atw_softc *sc)
2916 {
2917 static int rate_tbl[] = {2, 4, 11, 22, 44};
2918 struct ieee80211com *ic = &sc->sc_ic;
2919 struct ieee80211_node *ni;
2920 struct ieee80211_frame *wh;
2921 struct ifnet *ifp = &ic->ic_if;
2922 struct atw_rxsoft *rxs;
2923 struct mbuf *m;
2924 u_int32_t rxstat;
2925 int i, len, rate, rate0;
2926 u_int32_t rssi;
2927
2928 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2929 rxs = &sc->sc_rxsoft[i];
2930
2931 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2932
2933 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2934 rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2935 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2936
2937 if (rxstat & ATW_RXSTAT_OWN)
2938 break; /* We have processed all receive buffers. */
2939
2940 DPRINTF3(sc,
2941 ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2942 sc->sc_dev.dv_xname,
2943 sc->sc_rxdescs[i].ar_stat,
2944 sc->sc_rxdescs[i].ar_rssi,
2945 sc->sc_rxdescs[i].ar_buf1,
2946 sc->sc_rxdescs[i].ar_buf2));
2947
2948 /*
2949 * Make sure the packet fits in one buffer. This should
2950 * always be the case.
2951 */
2952 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2953 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2954 printf("%s: incoming packet spilled, resetting\n",
2955 sc->sc_dev.dv_xname);
2956 (void)atw_init(ifp);
2957 return;
2958 }
2959
2960 /*
2961 * If an error occurred, update stats, clear the status
2962 * word, and leave the packet buffer in place. It will
2963 * simply be reused the next time the ring comes around.
2964 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2965 * error.
2966 */
2967
2968 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
2969 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
2970 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
2971 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
2972 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
2973 ATW_RXSTAT_ICVE)) != 0)) {
2974 #define PRINTERR(bit, str) \
2975 if (rxstat & (bit)) \
2976 printf("%s: receive error: %s\n", \
2977 sc->sc_dev.dv_xname, str)
2978 ifp->if_ierrors++;
2979 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
2980 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
2981 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
2982 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
2983 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
2984 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
2985 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
2986 #undef PRINTERR
2987 ATW_INIT_RXDESC(sc, i);
2988 continue;
2989 }
2990
2991 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2992 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2993
2994 /*
2995 * No errors; receive the packet. Note the ADM8211
2996 * includes the CRC in promiscuous mode.
2997 */
2998 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
2999
3000 /*
3001 * Allocate a new mbuf cluster. If that fails, we are
3002 * out of memory, and must drop the packet and recycle
3003 * the buffer that's already attached to this descriptor.
3004 */
3005 m = rxs->rxs_mbuf;
3006 if (atw_add_rxbuf(sc, i) != 0) {
3007 ifp->if_ierrors++;
3008 ATW_INIT_RXDESC(sc, i);
3009 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3010 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3011 continue;
3012 }
3013
3014 ifp->if_ipackets++;
3015 if (sc->sc_opmode & ATW_NAR_PR)
3016 m->m_flags |= M_HASFCS;
3017 m->m_pkthdr.rcvif = ifp;
3018 m->m_pkthdr.len = m->m_len = len;
3019
3020 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3021 rate = 0;
3022 else
3023 rate = rate_tbl[rate0];
3024
3025 #if NBPFILTER > 0
3026 /* Pass this up to any BPF listeners. */
3027 if (sc->sc_radiobpf != NULL) {
3028 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3029
3030 tap->ar_rate = rate;
3031 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3032 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3033
3034 /* TBD verify units are dB */
3035 tap->ar_antsignal = (int)rssi;
3036 /* TBD tap->ar_flags */
3037
3038 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3039 tap->ar_ihdr.it_len, m);
3040 }
3041 #endif /* NPBFILTER > 0 */
3042
3043 wh = mtod(m, struct ieee80211_frame *);
3044 ni = ieee80211_find_rxnode(ic, wh);
3045 ieee80211_input(ifp, m, ni, (int)rssi, 0);
3046 /*
3047 * The frame may have caused the node to be marked for
3048 * reclamation (e.g. in response to a DEAUTH message)
3049 * so use free_node here instead of unref_node.
3050 */
3051 if (ni == ic->ic_bss)
3052 ieee80211_unref_node(&ni);
3053 else
3054 ieee80211_free_node(ic, ni);
3055 }
3056
3057 /* Update the receive pointer. */
3058 sc->sc_rxptr = i;
3059 }
3060
3061 /*
3062 * atw_txintr:
3063 *
3064 * Helper; handle transmit interrupts.
3065 */
3066 void
3067 atw_txintr(struct atw_softc *sc)
3068 {
3069 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3070 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3071 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3072 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3073
3074 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3075 struct ifnet *ifp = &sc->sc_ic.ic_if;
3076 struct atw_txsoft *txs;
3077 u_int32_t txstat;
3078
3079 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3080 sc->sc_dev.dv_xname, sc->sc_flags));
3081
3082 ifp->if_flags &= ~IFF_OACTIVE;
3083
3084 /*
3085 * Go through our Tx list and free mbufs for those
3086 * frames that have been transmitted.
3087 */
3088 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3089 ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3090 txs->txs_ndescs,
3091 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3092
3093 #ifdef ATW_DEBUG
3094 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3095 int i;
3096 printf(" txsoft %p transmit chain:\n", txs);
3097 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3098 printf(" descriptor %d:\n", i);
3099 printf(" at_status: 0x%08x\n",
3100 le32toh(sc->sc_txdescs[i].at_stat));
3101 printf(" at_flags: 0x%08x\n",
3102 le32toh(sc->sc_txdescs[i].at_flags));
3103 printf(" at_buf1: 0x%08x\n",
3104 le32toh(sc->sc_txdescs[i].at_buf1));
3105 printf(" at_buf2: 0x%08x\n",
3106 le32toh(sc->sc_txdescs[i].at_buf2));
3107 if (i == txs->txs_lastdesc)
3108 break;
3109 }
3110 }
3111 #endif
3112
3113 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3114 if (txstat & ATW_TXSTAT_OWN)
3115 break;
3116
3117 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3118
3119 sc->sc_txfree += txs->txs_ndescs;
3120
3121 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3122 0, txs->txs_dmamap->dm_mapsize,
3123 BUS_DMASYNC_POSTWRITE);
3124 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3125 m_freem(txs->txs_mbuf);
3126 txs->txs_mbuf = NULL;
3127
3128 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3129
3130 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3131 (txstat & TXSTAT_ERRMASK) != 0) {
3132 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3133 txstat_buf, sizeof(txstat_buf));
3134 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3135 txstat_buf,
3136 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3137 }
3138
3139 /*
3140 * Check for errors and collisions.
3141 */
3142 if (txstat & ATW_TXSTAT_TUF)
3143 sc->sc_stats.ts_tx_tuf++;
3144 if (txstat & ATW_TXSTAT_TLT)
3145 sc->sc_stats.ts_tx_tlt++;
3146 if (txstat & ATW_TXSTAT_TRT)
3147 sc->sc_stats.ts_tx_trt++;
3148 if (txstat & ATW_TXSTAT_TRO)
3149 sc->sc_stats.ts_tx_tro++;
3150 if (txstat & ATW_TXSTAT_SOFBR) {
3151 sc->sc_stats.ts_tx_sofbr++;
3152 }
3153
3154 if ((txstat & ATW_TXSTAT_ES) == 0)
3155 ifp->if_collisions +=
3156 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3157 else
3158 ifp->if_oerrors++;
3159
3160 ifp->if_opackets++;
3161 }
3162
3163 /*
3164 * If there are no more pending transmissions, cancel the watchdog
3165 * timer.
3166 */
3167 if (txs == NULL)
3168 sc->sc_tx_timer = 0;
3169 #undef TXSTAT_ERRMASK
3170 #undef TXSTAT_FMT
3171 }
3172
3173 /*
3174 * atw_watchdog: [ifnet interface function]
3175 *
3176 * Watchdog timer handler.
3177 */
3178 void
3179 atw_watchdog(struct ifnet *ifp)
3180 {
3181 struct atw_softc *sc = ifp->if_softc;
3182 struct ieee80211com *ic = &sc->sc_ic;
3183
3184 ifp->if_timer = 0;
3185 if (ATW_IS_ENABLED(sc) == 0)
3186 return;
3187
3188 if (sc->sc_rescan_timer) {
3189 if (--sc->sc_rescan_timer == 0)
3190 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3191 }
3192 if (sc->sc_tx_timer) {
3193 if (--sc->sc_tx_timer == 0 &&
3194 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3195 printf("%s: transmit timeout\n", ifp->if_xname);
3196 ifp->if_oerrors++;
3197 (void)atw_init(ifp);
3198 atw_start(ifp);
3199 }
3200 }
3201 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3202 ifp->if_timer = 1;
3203 ieee80211_watchdog(ifp);
3204 }
3205
3206 /* Compute the 802.11 Duration field and the PLCP Length fields for
3207 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3208 * Write the fields to the ADM8211 Tx header, frm.
3209 *
3210 * TBD use the fragmentation threshold to find the right duration for
3211 * the first & last fragments.
3212 *
3213 * TBD make certain of the duration fields applied by the ADM8211 to each
3214 * fragment. I think that the ADM8211 knows how to subtract the CTS
3215 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3216 * I also think that the ADM8211 does *some* arithmetic for us, because
3217 * otherwise I think we would have to set a first duration for CTS/first
3218 * fragment, a second duration for fragments between the first and the
3219 * last, and a third duration for the last fragment.
3220 *
3221 * TBD make certain that duration fields reflect addition of FCS/WEP
3222 * and correct duration arithmetic as necessary.
3223 */
3224 static void
3225 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3226 int len)
3227 {
3228 int remainder;
3229
3230 /* deal also with encrypted fragments */
3231 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3232 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3233 sc->sc_dev.dv_xname));
3234 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3235 IEEE80211_WEP_CRCLEN;
3236 }
3237
3238 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3239 * duration (XXX added by MAC?).
3240 */
3241 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3242 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3243
3244 if (rate <= 4)
3245 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3246 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3247 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3248 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3249 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3250 else
3251 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3252 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3253 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3254 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3255 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3256
3257 /* lengthen duration if long preamble */
3258 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3259 frm->atw_head_dur +=
3260 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3261 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3262 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3263 IEEE80211_DUR_DS_FAST_PLCPHDR);
3264
3265 if (remainder != 0)
3266 frm->atw_head_dur++;
3267
3268 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3269 (rate == 2 || rate == 4)) {
3270 /* derived from Linux: how could this be right? */
3271 frm->atw_head_plcplen = frm->atw_head_dur;
3272 } else {
3273 frm->atw_head_plcplen = (16 * len) / rate;
3274 remainder = (80 * len) % (rate * 5);
3275
3276 if (remainder != 0) {
3277 frm->atw_head_plcplen++;
3278
3279 /* XXX magic */
3280 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3281 rate == 22 && remainder <= 30)
3282 frm->atw_head_plcplen |= 0x8000;
3283 }
3284 }
3285 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3286 htole16(frm->atw_head_plcplen);
3287 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3288 }
3289
3290 #ifdef ATW_DEBUG
3291 static void
3292 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3293 {
3294 struct atw_softc *sc = ifp->if_softc;
3295 struct mbuf *m;
3296 int i, noctets = 0;
3297
3298 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3299 m0->m_pkthdr.len);
3300
3301 for (m = m0; m; m = m->m_next) {
3302 if (m->m_len == 0)
3303 continue;
3304 for (i = 0; i < m->m_len; i++) {
3305 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3306 if (++noctets % 24 == 0)
3307 printf("\n");
3308 }
3309 }
3310 printf("%s%s: %d bytes emitted\n",
3311 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3312 }
3313 #endif /* ATW_DEBUG */
3314
3315 /*
3316 * atw_start: [ifnet interface function]
3317 *
3318 * Start packet transmission on the interface.
3319 */
3320 void
3321 atw_start(struct ifnet *ifp)
3322 {
3323 struct atw_softc *sc = ifp->if_softc;
3324 struct ieee80211com *ic = &sc->sc_ic;
3325 struct ieee80211_node *ni;
3326 struct ieee80211_frame *wh;
3327 struct atw_frame *hh;
3328 struct mbuf *m0, *m;
3329 struct atw_txsoft *txs, *last_txs;
3330 struct atw_txdesc *txd;
3331 int do_encrypt, rate;
3332 bus_dmamap_t dmamap;
3333 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3334
3335 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3336 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3337
3338 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3339 return;
3340
3341 #if 0 /* TBD ??? */
3342 if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3343 return;
3344 #endif
3345
3346 /*
3347 * Remember the previous number of free descriptors and
3348 * the first descriptor we'll use.
3349 */
3350 ofree = sc->sc_txfree;
3351 firsttx = sc->sc_txnext;
3352
3353 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3354 sc->sc_dev.dv_xname, ofree, firsttx));
3355
3356 /*
3357 * Loop through the send queue, setting up transmit descriptors
3358 * until we drain the queue, or use up all available transmit
3359 * descriptors.
3360 */
3361 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3362 sc->sc_txfree != 0) {
3363
3364 /*
3365 * Grab a packet off the management queue, if it
3366 * is not empty. Otherwise, from the data queue.
3367 */
3368 IF_DEQUEUE(&ic->ic_mgtq, m0);
3369 if (m0 != NULL) {
3370 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3371 m0->m_pkthdr.rcvif = NULL;
3372 } else {
3373 IFQ_DEQUEUE(&ifp->if_snd, m0);
3374 if (m0 == NULL)
3375 break;
3376 #if NBPFILTER > 0
3377 if (ifp->if_bpf != NULL)
3378 bpf_mtap(ifp->if_bpf, m0);
3379 #endif /* NBPFILTER > 0 */
3380 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3381 ifp->if_oerrors++;
3382 break;
3383 }
3384 }
3385
3386 rate = MAX(ieee80211_get_rate(ic), 2);
3387
3388 #if NBPFILTER > 0
3389 /*
3390 * Pass the packet to any BPF listeners.
3391 */
3392 if (ic->ic_rawbpf != NULL)
3393 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3394
3395 if (sc->sc_radiobpf != NULL) {
3396 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3397
3398 tap->at_rate = rate;
3399 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3400 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3401
3402 /* TBD tap->at_flags */
3403
3404 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3405 tap->at_ihdr.it_len, m0);
3406 }
3407 #endif /* NBPFILTER > 0 */
3408
3409 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3410
3411 if (ni != NULL && ni != ic->ic_bss)
3412 ieee80211_free_node(ic, ni);
3413
3414 if (m0 == NULL) {
3415 ifp->if_oerrors++;
3416 break;
3417 }
3418
3419 /* just to make sure. */
3420 m0 = m_pullup(m0, sizeof(struct atw_frame));
3421
3422 if (m0 == NULL) {
3423 ifp->if_oerrors++;
3424 break;
3425 }
3426
3427 hh = mtod(m0, struct atw_frame *);
3428 wh = &hh->atw_ihdr;
3429
3430 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3431
3432 /* Copy everything we need from the 802.11 header:
3433 * Frame Control; address 1, address 3, or addresses
3434 * 3 and 4. NIC fills in BSSID, SA.
3435 */
3436 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3437 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3438 panic("%s: illegal WDS frame",
3439 sc->sc_dev.dv_xname);
3440 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3441 } else
3442 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3443
3444 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3445
3446 /* initialize remaining Tx parameters */
3447 memset(&hh->u, 0, sizeof(hh->u));
3448
3449 hh->atw_rate = rate * 5;
3450 /* XXX this could be incorrect if M_FCS. _encap should
3451 * probably strip FCS just in case it sticks around in
3452 * bridged packets.
3453 */
3454 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3455 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3456 sizeof(struct atw_frame));
3457
3458 #if 0
3459 /* this virtually guaranteed that WEP-encrypted frames
3460 * are fragmented. oops.
3461 */
3462 hh->atw_fragthr = htole16(m0->m_pkthdr.len -
3463 sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
3464 hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3465 #else
3466 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3467 #endif
3468
3469 hh->atw_rtylmt = 3;
3470 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3471 if (do_encrypt) {
3472 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3473 hh->atw_keyid = ic->ic_wep_txkey;
3474 }
3475
3476 /* TBD 4-addr frames */
3477 atw_frame_setdurs(sc, hh, rate,
3478 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3479 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3480
3481 /* never fragment multicast frames */
3482 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3483 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3484 } else if (sc->sc_flags & ATWF_RTSCTS) {
3485 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3486 }
3487
3488 #ifdef ATW_DEBUG
3489 /* experimental stuff */
3490 if (atw_xrtylmt != ~0)
3491 hh->atw_rtylmt = atw_xrtylmt;
3492 if (atw_xhdrctl != 0)
3493 hh->atw_hdrctl |= htole16(atw_xhdrctl);
3494 if (atw_xservice != IEEE80211_PLCP_SERVICE)
3495 hh->atw_service = atw_xservice;
3496 if (atw_xpaylen != 0)
3497 hh->atw_paylen = htole16(atw_xpaylen);
3498 hh->atw_fragnum = 0;
3499
3500 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3501 printf("%s: dst = %s, rate = 0x%02x, "
3502 "service = 0x%02x, paylen = 0x%04x\n",
3503 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3504 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3505
3506 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3507 "dur1 = 0x%04x, dur2 = 0x%04x, "
3508 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3509 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3510 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3511 hh->atw_tail_dur, hh->atw_head_dur);
3512
3513 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3514 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3515 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3516 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3517
3518 printf("%s: keyid = %d\n",
3519 sc->sc_dev.dv_xname, hh->atw_keyid);
3520
3521 atw_dump_pkt(ifp, m0);
3522 }
3523 #endif /* ATW_DEBUG */
3524
3525 dmamap = txs->txs_dmamap;
3526
3527 /*
3528 * Load the DMA map. Copy and try (once) again if the packet
3529 * didn't fit in the alloted number of segments.
3530 */
3531 for (first = 1;
3532 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3533 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3534 first = 0) {
3535 MGETHDR(m, M_DONTWAIT, MT_DATA);
3536 if (m == NULL) {
3537 printf("%s: unable to allocate Tx mbuf\n",
3538 sc->sc_dev.dv_xname);
3539 break;
3540 }
3541 if (m0->m_pkthdr.len > MHLEN) {
3542 MCLGET(m, M_DONTWAIT);
3543 if ((m->m_flags & M_EXT) == 0) {
3544 printf("%s: unable to allocate Tx "
3545 "cluster\n", sc->sc_dev.dv_xname);
3546 m_freem(m);
3547 break;
3548 }
3549 }
3550 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3551 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3552 m_freem(m0);
3553 m0 = m;
3554 m = NULL;
3555 }
3556 if (error != 0) {
3557 printf("%s: unable to load Tx buffer, "
3558 "error = %d\n", sc->sc_dev.dv_xname, error);
3559 m_freem(m0);
3560 break;
3561 }
3562
3563 /*
3564 * Ensure we have enough descriptors free to describe
3565 * the packet.
3566 */
3567 if (dmamap->dm_nsegs > sc->sc_txfree) {
3568 /*
3569 * Not enough free descriptors to transmit
3570 * this packet. Unload the DMA map and
3571 * drop the packet. Notify the upper layer
3572 * that there are no more slots left.
3573 *
3574 * XXX We could allocate an mbuf and copy, but
3575 * XXX it is worth it?
3576 */
3577 ifp->if_flags |= IFF_OACTIVE;
3578 bus_dmamap_unload(sc->sc_dmat, dmamap);
3579 m_freem(m0);
3580 break;
3581 }
3582
3583 /*
3584 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3585 */
3586
3587 /* Sync the DMA map. */
3588 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3589 BUS_DMASYNC_PREWRITE);
3590
3591 /* XXX arbitrary retry limit; 8 because I have seen it in
3592 * use already and maybe 0 means "no tries" !
3593 */
3594 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3595
3596 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3597 sc->sc_dev.dv_xname, rate * 5));
3598 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3599
3600 /*
3601 * Initialize the transmit descriptors.
3602 */
3603 for (nexttx = sc->sc_txnext, seg = 0;
3604 seg < dmamap->dm_nsegs;
3605 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3606 /*
3607 * If this is the first descriptor we're
3608 * enqueueing, don't set the OWN bit just
3609 * yet. That could cause a race condition.
3610 * We'll do it below.
3611 */
3612 txd = &sc->sc_txdescs[nexttx];
3613 txd->at_ctl = ctl |
3614 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3615
3616 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3617 txd->at_flags =
3618 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3619 ATW_TXFLAG_TBS1_MASK)) |
3620 ((nexttx == (ATW_NTXDESC - 1))
3621 ? htole32(ATW_TXFLAG_TER) : 0);
3622 lasttx = nexttx;
3623 }
3624
3625 IASSERT(lasttx != -1, ("bad lastx"));
3626 /* Set `first segment' and `last segment' appropriately. */
3627 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3628 htole32(ATW_TXFLAG_FS);
3629 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3630
3631 #ifdef ATW_DEBUG
3632 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3633 printf(" txsoft %p transmit chain:\n", txs);
3634 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3635 printf(" descriptor %d:\n", seg);
3636 printf(" at_ctl: 0x%08x\n",
3637 le32toh(sc->sc_txdescs[seg].at_ctl));
3638 printf(" at_flags: 0x%08x\n",
3639 le32toh(sc->sc_txdescs[seg].at_flags));
3640 printf(" at_buf1: 0x%08x\n",
3641 le32toh(sc->sc_txdescs[seg].at_buf1));
3642 printf(" at_buf2: 0x%08x\n",
3643 le32toh(sc->sc_txdescs[seg].at_buf2));
3644 if (seg == lasttx)
3645 break;
3646 }
3647 }
3648 #endif
3649
3650 /* Sync the descriptors we're using. */
3651 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3652 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3653
3654 /*
3655 * Store a pointer to the packet so we can free it later,
3656 * and remember what txdirty will be once the packet is
3657 * done.
3658 */
3659 txs->txs_mbuf = m0;
3660 txs->txs_firstdesc = sc->sc_txnext;
3661 txs->txs_lastdesc = lasttx;
3662 txs->txs_ndescs = dmamap->dm_nsegs;
3663
3664 /* Advance the tx pointer. */
3665 sc->sc_txfree -= dmamap->dm_nsegs;
3666 sc->sc_txnext = nexttx;
3667
3668 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3669 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3670
3671 last_txs = txs;
3672 }
3673
3674 if (txs == NULL || sc->sc_txfree == 0) {
3675 /* No more slots left; notify upper layer. */
3676 ifp->if_flags |= IFF_OACTIVE;
3677 }
3678
3679 if (sc->sc_txfree != ofree) {
3680 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3681 sc->sc_dev.dv_xname, lasttx, firsttx));
3682 /*
3683 * Cause a transmit interrupt to happen on the
3684 * last packet we enqueued.
3685 */
3686 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3687 ATW_CDTXSYNC(sc, lasttx, 1,
3688 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3689
3690 /*
3691 * The entire packet chain is set up. Give the
3692 * first descriptor to the chip now.
3693 */
3694 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3695 ATW_CDTXSYNC(sc, firsttx, 1,
3696 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3697
3698 /* Wake up the transmitter. */
3699 ATW_WRITE(sc, ATW_TDR, 0x1);
3700
3701 /* Set a watchdog timer in case the chip flakes out. */
3702 sc->sc_tx_timer = 5;
3703 ifp->if_timer = 1;
3704 }
3705 }
3706
3707 /*
3708 * atw_power:
3709 *
3710 * Power management (suspend/resume) hook.
3711 */
3712 void
3713 atw_power(int why, void *arg)
3714 {
3715 struct atw_softc *sc = arg;
3716 struct ifnet *ifp = &sc->sc_ic.ic_if;
3717 int s;
3718
3719 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3720
3721 s = splnet();
3722 switch (why) {
3723 case PWR_STANDBY:
3724 /* XXX do nothing. */
3725 break;
3726 case PWR_SUSPEND:
3727 atw_stop(ifp, 0);
3728 if (sc->sc_power != NULL)
3729 (*sc->sc_power)(sc, why);
3730 break;
3731 case PWR_RESUME:
3732 if (ifp->if_flags & IFF_UP) {
3733 if (sc->sc_power != NULL)
3734 (*sc->sc_power)(sc, why);
3735 atw_init(ifp);
3736 }
3737 break;
3738 case PWR_SOFTSUSPEND:
3739 case PWR_SOFTSTANDBY:
3740 case PWR_SOFTRESUME:
3741 break;
3742 }
3743 splx(s);
3744 }
3745
3746 /*
3747 * atw_ioctl: [ifnet interface function]
3748 *
3749 * Handle control requests from the operator.
3750 */
3751 int
3752 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3753 {
3754 struct atw_softc *sc = ifp->if_softc;
3755 struct ifreq *ifr = (struct ifreq *)data;
3756 int s, error = 0;
3757
3758 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3759 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3760 return ENXIO;
3761
3762 s = splnet();
3763
3764 switch (cmd) {
3765 case SIOCSIFFLAGS:
3766 if (ifp->if_flags & IFF_UP) {
3767 if (ATW_IS_ENABLED(sc)) {
3768 /*
3769 * To avoid rescanning another access point,
3770 * do not call atw_init() here. Instead,
3771 * only reflect media settings.
3772 */
3773 atw_filter_setup(sc);
3774 } else
3775 error = atw_init(ifp);
3776 } else if (ATW_IS_ENABLED(sc))
3777 atw_stop(ifp, 1);
3778 break;
3779 case SIOCADDMULTI:
3780 case SIOCDELMULTI:
3781 error = (cmd == SIOCADDMULTI) ?
3782 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3783 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3784 if (error == ENETRESET) {
3785 if (ATW_IS_ENABLED(sc))
3786 atw_filter_setup(sc); /* do not rescan */
3787 error = 0;
3788 }
3789 break;
3790 default:
3791 error = ieee80211_ioctl(ifp, cmd, data);
3792 if (error == ENETRESET) {
3793 if (ATW_IS_ENABLED(sc))
3794 error = atw_init(ifp);
3795 else
3796 error = 0;
3797 }
3798 break;
3799 }
3800
3801 /* Try to get more packets going. */
3802 if (ATW_IS_ENABLED(sc))
3803 atw_start(ifp);
3804
3805 splx(s);
3806 return (error);
3807 }
3808
3809 static int
3810 atw_media_change(struct ifnet *ifp)
3811 {
3812 int error;
3813
3814 error = ieee80211_media_change(ifp);
3815 if (error == ENETRESET) {
3816 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3817 (IFF_RUNNING|IFF_UP))
3818 atw_init(ifp); /* XXX lose error */
3819 error = 0;
3820 }
3821 return error;
3822 }
3823
3824 static void
3825 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3826 {
3827 struct atw_softc *sc = ifp->if_softc;
3828
3829 if (ATW_IS_ENABLED(sc) == 0) {
3830 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3831 imr->ifm_status = 0;
3832 return;
3833 }
3834 ieee80211_media_status(ifp, imr);
3835 }
3836