Home | History | Annotate | Line # | Download | only in ic
atw.c revision 1.35
      1 /*	$NetBSD: atw.c,v 1.35 2004/06/23 09:05:50 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.35 2004/06/23 09:05:50 dyoung Exp $");
     45 
     46 #include "bpfilter.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/callout.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/malloc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/socket.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/errno.h>
     57 #include <sys/device.h>
     58 #include <sys/time.h>
     59 
     60 #include <machine/endian.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_media.h>
     67 #include <net/if_ether.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_compat.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #if NBPFILTER > 0
     74 #include <net/bpf.h>
     75 #endif
     76 
     77 #include <machine/bus.h>
     78 #include <machine/intr.h>
     79 
     80 #include <dev/ic/atwreg.h>
     81 #include <dev/ic/rf3000reg.h>
     82 #include <dev/ic/si4136reg.h>
     83 #include <dev/ic/atwvar.h>
     84 #include <dev/ic/smc93cx6var.h>
     85 
     86 /* XXX TBD open questions
     87  *
     88  *
     89  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
     90  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
     91  * handle this for me?
     92  *
     93  */
     94 /* device attachment
     95  *
     96  *    print TOFS[012]
     97  *
     98  * device initialization
     99  *
    100  *    clear ATW_FRCTL_MAXPSP to disable max power saving
    101  *    set ATW_TXBR_ALCUPDATE to enable ALC
    102  *    set TOFS[012]? (hope not)
    103  *    disable rx/tx
    104  *    set ATW_PAR_SWR (software reset)
    105  *    wait for ATW_PAR_SWR clear
    106  *    disable interrupts
    107  *    ack status register
    108  *    enable interrupts
    109  *
    110  * rx/tx initialization
    111  *
    112  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    113  *    allocate and init descriptor rings
    114  *    write ATW_PAR_DSL (descriptor skip length)
    115  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
    116  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    118  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    119  *
    120  * rx/tx end
    121  *
    122  *    stop DMA
    123  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    124  *    flush tx w/ ATW_NAR_HF
    125  *
    126  * scan
    127  *
    128  *    initialize rx/tx
    129  *
    130  * IBSS join/create
    131  *
    132  *    set ATW_NAR_EA (is set by ASIC?)
    133  *
    134  * BSS join: (re)association response
    135  *
    136  *    set ATW_FRCTL_AID
    137  *
    138  * optimizations ???
    139  *
    140  */
    141 
    142 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
    143 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
    144 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
    145 
    146 int atw_rfio_enable_delay = 20 * 1000;
    147 int atw_rfio_disable_delay = 2 * 1000;
    148 int atw_writewep_delay = 5;
    149 int atw_beacon_len_adjust = 4;
    150 int atw_dwelltime = 200;
    151 
    152 #ifdef ATW_DEBUG
    153 int atw_xhdrctl = 0;
    154 int atw_xrtylmt = ~0;
    155 int atw_xservice = IEEE80211_PLCP_SERVICE;
    156 int atw_xpaylen = 0;
    157 
    158 int atw_debug = 0;
    159 
    160 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
    161 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
    162 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
    163 #define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
    164 #define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
    165 #define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
    166 static void atw_print_regs(struct atw_softc *, const char *);
    167 static void atw_rf3000_print(struct atw_softc *);
    168 static void atw_si4126_print(struct atw_softc *);
    169 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
    170 #else
    171 #define ATW_DPRINTF(x)
    172 #define ATW_DPRINTF2(x)
    173 #define ATW_DPRINTF3(x)
    174 #define	DPRINTF(sc, x)	/* nothing */
    175 #define	DPRINTF2(sc, x)	/* nothing */
    176 #define	DPRINTF3(sc, x)	/* nothing */
    177 #endif
    178 
    179 #ifdef ATW_STATS
    180 void	atw_print_stats(struct atw_softc *);
    181 #endif
    182 
    183 void	atw_start(struct ifnet *);
    184 void	atw_watchdog(struct ifnet *);
    185 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
    186 int	atw_init(struct ifnet *);
    187 void	atw_stop(struct ifnet *, int);
    188 
    189 void	atw_reset(struct atw_softc *);
    190 int	atw_read_srom(struct atw_softc *);
    191 
    192 void	atw_shutdown(void *);
    193 
    194 void	atw_rxdrain(struct atw_softc *);
    195 int	atw_add_rxbuf(struct atw_softc *, int);
    196 void	atw_idle(struct atw_softc *, u_int32_t);
    197 
    198 int	atw_enable(struct atw_softc *);
    199 void	atw_disable(struct atw_softc *);
    200 void	atw_power(int, void *);
    201 
    202 void	atw_rxintr(struct atw_softc *);
    203 void	atw_txintr(struct atw_softc *);
    204 void	atw_linkintr(struct atw_softc *, u_int32_t);
    205 
    206 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
    207 static void atw_tsf(struct atw_softc *);
    208 static void atw_start_beacon(struct atw_softc *, int);
    209 static void atw_write_wep(struct atw_softc *);
    210 static void atw_write_bssid(struct atw_softc *);
    211 static void atw_write_bcn_thresh(struct atw_softc *);
    212 static void atw_write_ssid(struct atw_softc *);
    213 static void atw_write_sup_rates(struct atw_softc *);
    214 static void atw_clear_sram(struct atw_softc *);
    215 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
    216 static int atw_media_change(struct ifnet *);
    217 static void atw_media_status(struct ifnet *, struct ifmediareq *);
    218 static void atw_filter_setup(struct atw_softc *);
    219 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
    220 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
    221 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
    222     struct ieee80211_node *, int, int, u_int32_t);
    223 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
    224     struct ieee80211_node *, int, int, u_int32_t);
    225 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
    226 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
    227 
    228 static int atw_tune(struct atw_softc *);
    229 
    230 static void atw_rfio_enable(struct atw_softc *, int);
    231 
    232 /* RFMD RF3000 Baseband Processor */
    233 static int atw_rf3000_init(struct atw_softc *);
    234 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
    235 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
    236 #ifdef ATW_DEBUG
    237 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    238 #endif /* ATW_DEBUG */
    239 
    240 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
    241 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
    242 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
    243 #ifdef ATW_DEBUG
    244 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
    245 #endif /* ATW_DEBUG */
    246 
    247 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
    248 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
    249 
    250 const char *atw_tx_state[] = {
    251 	"STOPPED",
    252 	"RUNNING - read descriptor",
    253 	"RUNNING - transmitting",
    254 	"RUNNING - filling fifo",	/* XXX */
    255 	"SUSPENDED",
    256 	"RUNNING -- write descriptor",
    257 	"RUNNING -- write last descriptor",
    258 	"RUNNING - fifo full"
    259 };
    260 
    261 const char *atw_rx_state[] = {
    262 	"STOPPED",
    263 	"RUNNING - read descriptor",
    264 	"RUNNING - check this packet, pre-fetch next",
    265 	"RUNNING - wait for reception",
    266 	"SUSPENDED",
    267 	"RUNNING - write descriptor",
    268 	"RUNNING - flush fifo",
    269 	"RUNNING - fifo drain"
    270 };
    271 
    272 int
    273 atw_activate(struct device *self, enum devact act)
    274 {
    275 	struct atw_softc *sc = (struct atw_softc *)self;
    276 	int rv = 0, s;
    277 
    278 	s = splnet();
    279 	switch (act) {
    280 	case DVACT_ACTIVATE:
    281 		rv = EOPNOTSUPP;
    282 		break;
    283 
    284 	case DVACT_DEACTIVATE:
    285 		if_deactivate(&sc->sc_ic.ic_if);
    286 		break;
    287 	}
    288 	splx(s);
    289 	return rv;
    290 }
    291 
    292 /*
    293  * atw_enable:
    294  *
    295  *	Enable the ADM8211 chip.
    296  */
    297 int
    298 atw_enable(struct atw_softc *sc)
    299 {
    300 
    301 	if (ATW_IS_ENABLED(sc) == 0) {
    302 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    303 			printf("%s: device enable failed\n",
    304 			    sc->sc_dev.dv_xname);
    305 			return (EIO);
    306 		}
    307 		sc->sc_flags |= ATWF_ENABLED;
    308 	}
    309 	return (0);
    310 }
    311 
    312 /*
    313  * atw_disable:
    314  *
    315  *	Disable the ADM8211 chip.
    316  */
    317 void
    318 atw_disable(struct atw_softc *sc)
    319 {
    320 	if (!ATW_IS_ENABLED(sc))
    321 		return;
    322 	if (sc->sc_disable != NULL)
    323 		(*sc->sc_disable)(sc);
    324 	sc->sc_flags &= ~ATWF_ENABLED;
    325 }
    326 
    327 /* Returns -1 on failure. */
    328 int
    329 atw_read_srom(struct atw_softc *sc)
    330 {
    331 	struct seeprom_descriptor sd;
    332 	u_int32_t reg;
    333 
    334 	(void)memset(&sd, 0, sizeof(sd));
    335 
    336 	reg = ATW_READ(sc, ATW_TEST0);
    337 
    338 	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
    339 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
    340 		return -1;
    341 	}
    342 
    343 	switch (reg & ATW_TEST0_EPTYP_MASK) {
    344 	case ATW_TEST0_EPTYP_93c66:
    345 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
    346 		sc->sc_sromsz = 512;
    347 		sd.sd_chip = C56_66;
    348 		break;
    349 	case ATW_TEST0_EPTYP_93c46:
    350 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
    351 		sc->sc_sromsz = 128;
    352 		sd.sd_chip = C46;
    353 		break;
    354 	default:
    355 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
    356 		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
    357 		return -1;
    358 	}
    359 
    360 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
    361 
    362 	if (sc->sc_srom == NULL) {
    363 		printf("%s: unable to allocate SROM buffer\n",
    364 		    sc->sc_dev.dv_xname);
    365 		return -1;
    366 	}
    367 
    368 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
    369 
    370 	/* ADM8211 has a single 32-bit register for controlling the
    371 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
    372 	 * "ready" bit. The ADM8211 input/output sense is the reverse
    373 	 * of read_seeprom's.
    374 	 */
    375 	sd.sd_tag = sc->sc_st;
    376 	sd.sd_bsh = sc->sc_sh;
    377 	sd.sd_regsize = 4;
    378 	sd.sd_control_offset = ATW_SPR;
    379 	sd.sd_status_offset = ATW_SPR;
    380 	sd.sd_dataout_offset = ATW_SPR;
    381 	sd.sd_CK = ATW_SPR_SCLK;
    382 	sd.sd_CS = ATW_SPR_SCS;
    383 	sd.sd_DI = ATW_SPR_SDO;
    384 	sd.sd_DO = ATW_SPR_SDI;
    385 	sd.sd_MS = ATW_SPR_SRS;
    386 	sd.sd_RDY = 0;
    387 
    388 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
    389 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
    390 		free(sc->sc_srom, M_DEVBUF);
    391 		return -1;
    392 	}
    393 #ifdef ATW_DEBUG
    394 	{
    395 		int i;
    396 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
    397 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
    398 			if (((i % 8) == 0) && (i != 0)) {
    399 				ATW_DPRINTF(("\n\t"));
    400 			}
    401 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
    402 		}
    403 		ATW_DPRINTF(("\n"));
    404 	}
    405 #endif /* ATW_DEBUG */
    406 	return 0;
    407 }
    408 
    409 #ifdef ATW_DEBUG
    410 static void
    411 atw_print_regs(struct atw_softc *sc, const char *where)
    412 {
    413 #define PRINTREG(sc, reg) \
    414 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
    415 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
    416 
    417 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
    418 
    419 	PRINTREG(sc, ATW_PAR);
    420 	PRINTREG(sc, ATW_FRCTL);
    421 	PRINTREG(sc, ATW_TDR);
    422 	PRINTREG(sc, ATW_WTDP);
    423 	PRINTREG(sc, ATW_RDR);
    424 	PRINTREG(sc, ATW_WRDP);
    425 	PRINTREG(sc, ATW_RDB);
    426 	PRINTREG(sc, ATW_CSR3A);
    427 	PRINTREG(sc, ATW_TDBD);
    428 	PRINTREG(sc, ATW_TDBP);
    429 	PRINTREG(sc, ATW_STSR);
    430 	PRINTREG(sc, ATW_CSR5A);
    431 	PRINTREG(sc, ATW_NAR);
    432 	PRINTREG(sc, ATW_CSR6A);
    433 	PRINTREG(sc, ATW_IER);
    434 	PRINTREG(sc, ATW_CSR7A);
    435 	PRINTREG(sc, ATW_LPC);
    436 	PRINTREG(sc, ATW_TEST1);
    437 	PRINTREG(sc, ATW_SPR);
    438 	PRINTREG(sc, ATW_TEST0);
    439 	PRINTREG(sc, ATW_WCSR);
    440 	PRINTREG(sc, ATW_WPDR);
    441 	PRINTREG(sc, ATW_GPTMR);
    442 	PRINTREG(sc, ATW_GPIO);
    443 	PRINTREG(sc, ATW_BBPCTL);
    444 	PRINTREG(sc, ATW_SYNCTL);
    445 	PRINTREG(sc, ATW_PLCPHD);
    446 	PRINTREG(sc, ATW_MMIWADDR);
    447 	PRINTREG(sc, ATW_MMIRADDR1);
    448 	PRINTREG(sc, ATW_MMIRADDR2);
    449 	PRINTREG(sc, ATW_TXBR);
    450 	PRINTREG(sc, ATW_CSR15A);
    451 	PRINTREG(sc, ATW_ALCSTAT);
    452 	PRINTREG(sc, ATW_TOFS2);
    453 	PRINTREG(sc, ATW_CMDR);
    454 	PRINTREG(sc, ATW_PCIC);
    455 	PRINTREG(sc, ATW_PMCSR);
    456 	PRINTREG(sc, ATW_PAR0);
    457 	PRINTREG(sc, ATW_PAR1);
    458 	PRINTREG(sc, ATW_MAR0);
    459 	PRINTREG(sc, ATW_MAR1);
    460 	PRINTREG(sc, ATW_ATIMDA0);
    461 	PRINTREG(sc, ATW_ABDA1);
    462 	PRINTREG(sc, ATW_BSSID0);
    463 	PRINTREG(sc, ATW_TXLMT);
    464 	PRINTREG(sc, ATW_MIBCNT);
    465 	PRINTREG(sc, ATW_BCNT);
    466 	PRINTREG(sc, ATW_TSFTH);
    467 	PRINTREG(sc, ATW_TSC);
    468 	PRINTREG(sc, ATW_SYNRF);
    469 	PRINTREG(sc, ATW_BPLI);
    470 	PRINTREG(sc, ATW_CAP0);
    471 	PRINTREG(sc, ATW_CAP1);
    472 	PRINTREG(sc, ATW_RMD);
    473 	PRINTREG(sc, ATW_CFPP);
    474 	PRINTREG(sc, ATW_TOFS0);
    475 	PRINTREG(sc, ATW_TOFS1);
    476 	PRINTREG(sc, ATW_IFST);
    477 	PRINTREG(sc, ATW_RSPT);
    478 	PRINTREG(sc, ATW_TSFTL);
    479 	PRINTREG(sc, ATW_WEPCTL);
    480 	PRINTREG(sc, ATW_WESK);
    481 	PRINTREG(sc, ATW_WEPCNT);
    482 	PRINTREG(sc, ATW_MACTEST);
    483 	PRINTREG(sc, ATW_FER);
    484 	PRINTREG(sc, ATW_FEMR);
    485 	PRINTREG(sc, ATW_FPSR);
    486 	PRINTREG(sc, ATW_FFER);
    487 #undef PRINTREG
    488 }
    489 #endif /* ATW_DEBUG */
    490 
    491 /*
    492  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
    493  */
    494 void
    495 atw_attach(struct atw_softc *sc)
    496 {
    497 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
    498 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    499 	};
    500 	struct ieee80211com *ic = &sc->sc_ic;
    501 	struct ifnet *ifp = &ic->ic_if;
    502 	int country_code, error, i, nrate;
    503 	u_int32_t reg;
    504 	static const char *type_strings[] = {"Intersil (not supported)",
    505 	    "RFMD", "Marvel (not supported)"};
    506 
    507 	sc->sc_txth = atw_txthresh_tab_lo;
    508 
    509 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    510 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    511 
    512 #ifdef ATW_DEBUG
    513 	atw_print_regs(sc, "atw_attach");
    514 #endif /* ATW_DEBUG */
    515 
    516 	/*
    517 	 * Allocate the control data structures, and create and load the
    518 	 * DMA map for it.
    519 	 */
    520 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    521 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    522 	    1, &sc->sc_cdnseg, 0)) != 0) {
    523 		printf("%s: unable to allocate control data, error = %d\n",
    524 		    sc->sc_dev.dv_xname, error);
    525 		goto fail_0;
    526 	}
    527 
    528 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
    529 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
    530 	    BUS_DMA_COHERENT)) != 0) {
    531 		printf("%s: unable to map control data, error = %d\n",
    532 		    sc->sc_dev.dv_xname, error);
    533 		goto fail_1;
    534 	}
    535 
    536 	if ((error = bus_dmamap_create(sc->sc_dmat,
    537 	    sizeof(struct atw_control_data), 1,
    538 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    539 		printf("%s: unable to create control data DMA map, "
    540 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    541 		goto fail_2;
    542 	}
    543 
    544 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    545 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
    546 	    0)) != 0) {
    547 		printf("%s: unable to load control data DMA map, error = %d\n",
    548 		    sc->sc_dev.dv_xname, error);
    549 		goto fail_3;
    550 	}
    551 
    552 	/*
    553 	 * Create the transmit buffer DMA maps.
    554 	 */
    555 	sc->sc_ntxsegs = ATW_NTXSEGS;
    556 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    557 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    558 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
    559 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    560 			printf("%s: unable to create tx DMA map %d, "
    561 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    562 			goto fail_4;
    563 		}
    564 	}
    565 
    566 	/*
    567 	 * Create the receive buffer DMA maps.
    568 	 */
    569 	for (i = 0; i < ATW_NRXDESC; i++) {
    570 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    571 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    572 			printf("%s: unable to create rx DMA map %d, "
    573 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    574 			goto fail_5;
    575 		}
    576 	}
    577 	for (i = 0; i < ATW_NRXDESC; i++) {
    578 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    579 	}
    580 
    581 	/* Reset the chip to a known state. */
    582 	atw_reset(sc);
    583 
    584 	if (atw_read_srom(sc) == -1)
    585 		return;
    586 
    587 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    588 	    ATW_SR_RFTYPE_MASK);
    589 
    590 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    591 	    ATW_SR_BBPTYPE_MASK);
    592 
    593 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
    594 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
    595 		return;
    596 	}
    597 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
    598 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
    599 		return;
    600 	}
    601 
    602 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
    603 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
    604 
    605 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
    606 	 * MARVEL. My bug, or theirs?
    607 	 */
    608 
    609 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
    610 
    611 	switch (sc->sc_rftype) {
    612 	case ATW_RFTYPE_INTERSIL:
    613 		reg |= ATW_SYNCTL_CS1;
    614 		break;
    615 	case ATW_RFTYPE_RFMD:
    616 		reg |= ATW_SYNCTL_CS0;
    617 		break;
    618 	case ATW_RFTYPE_MARVEL:
    619 		break;
    620 	}
    621 
    622 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
    623 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
    624 
    625 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
    626 
    627 	switch (sc->sc_bbptype) {
    628 	case ATW_BBPTYPE_INTERSIL:
    629 		reg |= ATW_BBPCTL_TWI;
    630 		break;
    631 	case ATW_BBPTYPE_RFMD:
    632 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
    633 		    ATW_BBPCTL_CCA_ACTLO;
    634 		break;
    635 	case ATW_BBPTYPE_MARVEL:
    636 		break;
    637 	case ATW_C_BBPTYPE_RFMD:
    638 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
    639 		    sc->sc_dev.dv_xname);
    640 		break;
    641 	}
    642 
    643 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
    644 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
    645 
    646 	/*
    647 	 * From this point forward, the attachment cannot fail.  A failure
    648 	 * before this point releases all resources that may have been
    649 	 * allocated.
    650 	 */
    651 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
    652 
    653 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
    654 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
    655 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
    656 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
    657 
    658 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    659 	    ATW_SR_CTRY_MASK);
    660 
    661 #define ADD_CHANNEL(_ic, _chan) do {					\
    662 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
    663 	_ic->ic_channels[_chan].ic_freq =				\
    664 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
    665 } while (0)
    666 
    667 	/* Find available channels */
    668 	switch (country_code) {
    669 	case COUNTRY_MMK2:	/* 1-14 */
    670 		ADD_CHANNEL(ic, 14);
    671 		/*FALLTHROUGH*/
    672 	case COUNTRY_ETSI:	/* 1-13 */
    673 		for (i = 1; i <= 13; i++)
    674 			ADD_CHANNEL(ic, i);
    675 		break;
    676 	case COUNTRY_FCC:	/* 1-11 */
    677 	case COUNTRY_IC:	/* 1-11 */
    678 		for (i = 1; i <= 11; i++)
    679 			ADD_CHANNEL(ic, i);
    680 		break;
    681 	case COUNTRY_MMK:	/* 14 */
    682 		ADD_CHANNEL(ic, 14);
    683 		break;
    684 	case COUNTRY_FRANCE:	/* 10-13 */
    685 		for (i = 10; i <= 13; i++)
    686 			ADD_CHANNEL(ic, i);
    687 		break;
    688 	default:	/* assume channels 10-11 */
    689 	case COUNTRY_SPAIN:	/* 10-11 */
    690 		for (i = 10; i <= 11; i++)
    691 			ADD_CHANNEL(ic, i);
    692 		break;
    693 	}
    694 
    695 	/* Read the MAC address. */
    696 	reg = ATW_READ(sc, ATW_PAR0);
    697 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
    698 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
    699 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
    700 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
    701 	reg = ATW_READ(sc, ATW_PAR1);
    702 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
    703 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
    704 
    705 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
    706 		printf(" could not get mac address, attach failed\n");
    707 		return;
    708 	}
    709 
    710 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
    711 
    712 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    713 	ifp->if_softc = sc;
    714 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
    715 	    IFF_NOTRAILERS;
    716 	ifp->if_ioctl = atw_ioctl;
    717 	ifp->if_start = atw_start;
    718 	ifp->if_watchdog = atw_watchdog;
    719 	ifp->if_init = atw_init;
    720 	ifp->if_stop = atw_stop;
    721 	IFQ_SET_READY(&ifp->if_snd);
    722 
    723 	ic->ic_phytype = IEEE80211_T_DS;
    724 	ic->ic_opmode = IEEE80211_M_STA;
    725 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
    726 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
    727 
    728 	nrate = 0;
    729 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
    730 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
    731 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
    732 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
    733 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
    734 
    735 	/*
    736 	 * Call MI attach routines.
    737 	 */
    738 
    739 	if_attach(ifp);
    740 	ieee80211_ifattach(ifp);
    741 
    742 	sc->sc_newstate = ic->ic_newstate;
    743 	ic->ic_newstate = atw_newstate;
    744 
    745 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    746 	ic->ic_recv_mgmt = atw_recv_mgmt;
    747 
    748 	sc->sc_node_free = ic->ic_node_free;
    749 	ic->ic_node_free = atw_node_free;
    750 
    751 	sc->sc_node_alloc = ic->ic_node_alloc;
    752 	ic->ic_node_alloc = atw_node_alloc;
    753 
    754 	/* possibly we should fill in our own sc_send_prresp, since
    755 	 * the ADM8211 is probably sending probe responses in ad hoc
    756 	 * mode.
    757 	 */
    758 
    759 	/* complete initialization */
    760 	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
    761 	callout_init(&sc->sc_scan_ch);
    762 
    763 #if NBPFILTER > 0
    764 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    765 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
    766 #endif
    767 
    768 	/*
    769 	 * Make sure the interface is shutdown during reboot.
    770 	 */
    771 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
    772 	if (sc->sc_sdhook == NULL)
    773 		printf("%s: WARNING: unable to establish shutdown hook\n",
    774 		    sc->sc_dev.dv_xname);
    775 
    776 	/*
    777 	 * Add a suspend hook to make sure we come back up after a
    778 	 * resume.
    779 	 */
    780 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
    781 	if (sc->sc_powerhook == NULL)
    782 		printf("%s: WARNING: unable to establish power hook\n",
    783 		    sc->sc_dev.dv_xname);
    784 
    785 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
    786 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
    787 	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
    788 
    789 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
    790 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
    791 	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
    792 
    793 	return;
    794 
    795 	/*
    796 	 * Free any resources we've allocated during the failed attach
    797 	 * attempt.  Do this in reverse order and fall through.
    798 	 */
    799  fail_5:
    800 	for (i = 0; i < ATW_NRXDESC; i++) {
    801 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
    802 			continue;
    803 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
    804 	}
    805  fail_4:
    806 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    807 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
    808 			continue;
    809 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
    810 	}
    811 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    812  fail_3:
    813 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    814  fail_2:
    815 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    816 	    sizeof(struct atw_control_data));
    817  fail_1:
    818 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
    819  fail_0:
    820 	return;
    821 }
    822 
    823 static struct ieee80211_node *
    824 atw_node_alloc(struct ieee80211com *ic)
    825 {
    826 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    827 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
    828 
    829 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
    830 	return ni;
    831 }
    832 
    833 static void
    834 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
    835 {
    836 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    837 
    838 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
    839 	    ether_sprintf(ni->ni_bssid)));
    840 	(*sc->sc_node_free)(ic, ni);
    841 }
    842 
    843 /*
    844  * atw_reset:
    845  *
    846  *	Perform a soft reset on the ADM8211.
    847  */
    848 void
    849 atw_reset(struct atw_softc *sc)
    850 {
    851 	int i;
    852 
    853 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
    854 
    855 	for (i = 0; i < 10000; i++) {
    856 		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
    857 			break;
    858 		DELAY(1);
    859 	}
    860 
    861 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
    862 
    863 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
    864 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
    865 
    866 	/* Turn off maximum power saving. */
    867 	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
    868 
    869 	/* Recall EEPROM. */
    870 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
    871 
    872 	DELAY(10 * 1000);
    873 
    874 	/* A reset seems to affect the SRAM contents, so put them into
    875 	 * a known state.
    876 	 */
    877 	atw_clear_sram(sc);
    878 
    879 	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
    880 
    881 	sc->sc_lost_bcn_thresh = 0;
    882 }
    883 
    884 static void
    885 atw_clear_sram(struct atw_softc *sc)
    886 {
    887 #if 0
    888 	for (addr = 0; addr < 448; addr++) {
    889 		ATW_WRITE(sc, ATW_WEPCTL,
    890 		    ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0	| addr);
    891 		DELAY(1000);
    892 		ATW_WRITE(sc, ATW_WESK, 0);
    893 		DELAY(1000); /* paranoia */
    894 	}
    895 	return;
    896 #endif
    897 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
    898 	/* XXX not for revision 0x20. */
    899 	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
    900 }
    901 
    902 /* TBD atw_init
    903  *
    904  * set MAC based on ic->ic_bss->myaddr
    905  * write WEP keys
    906  * set TX rate
    907  */
    908 
    909 /*
    910  * atw_init:		[ ifnet interface function ]
    911  *
    912  *	Initialize the interface.  Must be called at splnet().
    913  */
    914 int
    915 atw_init(struct ifnet *ifp)
    916 {
    917 	struct atw_softc *sc = ifp->if_softc;
    918 	struct ieee80211com *ic = &sc->sc_ic;
    919 	struct atw_txsoft *txs;
    920 	struct atw_rxsoft *rxs;
    921 	u_int32_t reg;
    922 	int i, error = 0;
    923 
    924 	if ((error = atw_enable(sc)) != 0)
    925 		goto out;
    926 
    927 	/*
    928 	 * Cancel any pending I/O. This also resets.
    929 	 */
    930 	atw_stop(ifp, 0);
    931 
    932 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
    933 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
    934 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
    935 	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
    936 
    937 	/* Turn off APM??? (A binary-only driver does this.)
    938 	 *
    939 	 * Set Rx store-and-forward mode.
    940 	 */
    941 	reg = ATW_READ(sc, ATW_CMDR);
    942 	reg &= ~ATW_CMDR_APM;
    943 	reg &= ~ATW_CMDR_DRT_MASK;
    944 	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
    945 
    946 	ATW_WRITE(sc, ATW_CMDR, reg);
    947 
    948 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
    949 	 *
    950 	 * XXX a binary-only driver sets a different service field than
    951 	 * 0. why?
    952 	 */
    953 	reg = ATW_READ(sc, ATW_PLCPHD);
    954 	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
    955 	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
    956 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
    957 	ATW_WRITE(sc, ATW_PLCPHD, reg);
    958 
    959 	/* XXX this magic can probably be figured out from the RFMD docs */
    960 	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
    961 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
    962 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
    963 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
    964 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
    965 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
    966 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
    967 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
    968 	ATW_WRITE(sc, ATW_TOFS2, reg);
    969 
    970 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
    971 	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
    972 
    973 	/* XXX this resets an Intersil RF front-end? */
    974 	/* TBD condition on Intersil RFType? */
    975 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
    976 	DELAY(10 * 1000);
    977 	ATW_WRITE(sc, ATW_SYNRF, 0);
    978 	DELAY(5 * 1000);
    979 
    980 	/* 16 TU max duration for contention-free period */
    981 	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
    982 	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
    983 
    984 	/* XXX I guess that the Cardbus clock is 22MHz?
    985 	 * I am assuming that the role of ATW_TOFS0_USCNT is
    986 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
    987 	 * very clear on this point. It says in the datasheet that it is
    988 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
    989 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
    990 	 * these values. These values are also the power-on default.
    991 	 */
    992 	ATW_WRITE(sc, ATW_TOFS0,
    993 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
    994 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
    995 
    996 	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
    997 	 * driver. Go figure.
    998 	 */
    999 	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
   1000 	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
   1001 	             ATW_IFST_SIFS_MASK) |
   1002 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
   1003 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
   1004 
   1005 	ATW_WRITE(sc, ATW_IFST, reg);
   1006 
   1007 	/* XXX More magic. Might relate to ACK timing. */
   1008 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
   1009 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
   1010 
   1011 	/* Set up the MMI read/write addresses for the BBP.
   1012 	 *
   1013 	 * TBD find out the Marvel settings.
   1014 	 */
   1015 	switch (sc->sc_bbptype) {
   1016 	case ATW_BBPTYPE_INTERSIL:
   1017 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
   1018 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
   1019 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
   1020 		break;
   1021 	case ATW_BBPTYPE_MARVEL:
   1022 		break;
   1023 	case ATW_BBPTYPE_RFMD:
   1024 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
   1025 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
   1026 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
   1027 	default:
   1028 		break;
   1029 	}
   1030 
   1031 	sc->sc_wepctl = 0;
   1032 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
   1033 
   1034 	if ((error = atw_rf3000_init(sc)) != 0)
   1035 		goto out;
   1036 
   1037 	/*
   1038 	 * Initialize the PCI Access Register.
   1039 	 */
   1040 	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
   1041 
   1042 	/*
   1043 	 * If we're allowed to do so, use Memory Read Line
   1044 	 * and Memory Read Multiple.
   1045 	 *
   1046 	 * XXX Should we use Memory Write and Invalidate?
   1047 	 */
   1048 	if (sc->sc_flags & ATWF_MRL)
   1049 		sc->sc_busmode |= ATW_PAR_MRLE;
   1050 	if (sc->sc_flags & ATWF_MRM)
   1051 		sc->sc_busmode |= ATW_PAR_MRME;
   1052 	if (sc->sc_flags & ATWF_MWI)
   1053 		sc->sc_busmode |= ATW_PAR_MWIE;
   1054 	if (sc->sc_maxburst == 0)
   1055 		sc->sc_maxburst = 8;	/* ADM8211 default */
   1056 
   1057 	switch (sc->sc_cacheline) {
   1058 	default:
   1059 		/* Use burst length. */
   1060 		break;
   1061 	case 8:
   1062 		sc->sc_busmode |= ATW_PAR_CAL_8DW;
   1063 		break;
   1064 	case 16:
   1065 		sc->sc_busmode |= ATW_PAR_CAL_16DW;
   1066 		break;
   1067 	case 32:
   1068 		sc->sc_busmode |= ATW_PAR_CAL_32DW;
   1069 		break;
   1070 	}
   1071 	switch (sc->sc_maxburst) {
   1072 	case 1:
   1073 		sc->sc_busmode |= ATW_PAR_PBL_1DW;
   1074 		break;
   1075 	case 2:
   1076 		sc->sc_busmode |= ATW_PAR_PBL_2DW;
   1077 		break;
   1078 	case 4:
   1079 		sc->sc_busmode |= ATW_PAR_PBL_4DW;
   1080 		break;
   1081 	case 8:
   1082 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1083 		break;
   1084 	case 16:
   1085 		sc->sc_busmode |= ATW_PAR_PBL_16DW;
   1086 		break;
   1087 	case 32:
   1088 		sc->sc_busmode |= ATW_PAR_PBL_32DW;
   1089 		break;
   1090 	default:
   1091 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1092 		break;
   1093 	}
   1094 
   1095 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
   1096 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
   1097 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
   1098 
   1099 	/*
   1100 	 * Initialize the OPMODE register.  We don't write it until
   1101 	 * we're ready to begin the transmit and receive processes.
   1102 	 */
   1103 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
   1104 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
   1105 
   1106 	/*
   1107 	 * Initialize the transmit descriptor ring.
   1108 	 */
   1109 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1110 	for (i = 0; i < ATW_NTXDESC; i++) {
   1111 		/* no transmit chaining */
   1112 		sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
   1113 		sc->sc_txdescs[i].at_buf2 =
   1114 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
   1115 	}
   1116 	/* use ring mode */
   1117 	sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
   1118 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
   1119 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1120 	sc->sc_txfree = ATW_NTXDESC;
   1121 	sc->sc_txnext = 0;
   1122 
   1123 	/*
   1124 	 * Initialize the transmit job descriptors.
   1125 	 */
   1126 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1127 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1128 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   1129 		txs = &sc->sc_txsoft[i];
   1130 		txs->txs_mbuf = NULL;
   1131 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1132 	}
   1133 
   1134 	/*
   1135 	 * Initialize the receive descriptor and receive job
   1136 	 * descriptor rings.
   1137 	 */
   1138 	for (i = 0; i < ATW_NRXDESC; i++) {
   1139 		rxs = &sc->sc_rxsoft[i];
   1140 		if (rxs->rxs_mbuf == NULL) {
   1141 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
   1142 				printf("%s: unable to allocate or map rx "
   1143 				    "buffer %d, error = %d\n",
   1144 				    sc->sc_dev.dv_xname, i, error);
   1145 				/*
   1146 				 * XXX Should attempt to run with fewer receive
   1147 				 * XXX buffers instead of just failing.
   1148 				 */
   1149 				atw_rxdrain(sc);
   1150 				goto out;
   1151 			}
   1152 		} else
   1153 			ATW_INIT_RXDESC(sc, i);
   1154 	}
   1155 	sc->sc_rxptr = 0;
   1156 
   1157 	/* disable all wake-up events */
   1158 	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
   1159 	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
   1160 			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
   1161 			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
   1162 
   1163 	/* ack all wake-up events */
   1164 	ATW_SET(sc, ATW_WCSR, 0);
   1165 
   1166 	/*
   1167 	 * Initialize the interrupt mask and enable interrupts.
   1168 	 */
   1169 	/* normal interrupts */
   1170 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
   1171 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
   1172 
   1173 	/* abnormal interrupts */
   1174 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
   1175 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
   1176 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1177 
   1178 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
   1179 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1180 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
   1181 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
   1182 	    ATW_INTR_TRT;
   1183 
   1184 	sc->sc_linkint_mask &= sc->sc_inten;
   1185 	sc->sc_rxint_mask &= sc->sc_inten;
   1186 	sc->sc_txint_mask &= sc->sc_inten;
   1187 
   1188 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
   1189 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1190 	if (sc->sc_intr_ack != NULL)
   1191 		(*sc->sc_intr_ack)(sc);
   1192 
   1193 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
   1194 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
   1195 
   1196 	/*
   1197 	 * Give the transmit and receive rings to the ADM8211.
   1198 	 */
   1199 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
   1200 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
   1201 
   1202 	/* common 802.11 configuration */
   1203 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
   1204 	switch (ic->ic_opmode) {
   1205 	case IEEE80211_M_STA:
   1206 		sc->sc_opmode &= ~ATW_NAR_EA;
   1207 		break;
   1208 	case IEEE80211_M_AHDEMO: /* XXX */
   1209 	case IEEE80211_M_IBSS:
   1210 		ic->ic_flags |= IEEE80211_F_IBSSON;
   1211 		/*FALLTHROUGH*/
   1212 	case IEEE80211_M_HOSTAP: /* XXX */
   1213 		/* EA bit seems important for ad hoc reception. */
   1214 		sc->sc_opmode |= ATW_NAR_EA;
   1215 		break;
   1216 	case IEEE80211_M_MONITOR: /* XXX */
   1217 		break;
   1218 	}
   1219 
   1220 	atw_start_beacon(sc, 0);
   1221 
   1222 	switch (ic->ic_opmode) {
   1223 	case IEEE80211_M_AHDEMO:
   1224 	case IEEE80211_M_HOSTAP:
   1225 		ic->ic_bss->ni_intval = ic->ic_lintval;
   1226 		ic->ic_bss->ni_rssi = 0;
   1227 		ic->ic_bss->ni_rstamp = 0;
   1228 		break;
   1229 	default:					/* XXX */
   1230 		break;
   1231 	}
   1232 
   1233 	atw_write_ssid(sc);
   1234 	atw_write_sup_rates(sc);
   1235 	if (ic->ic_caps & IEEE80211_C_WEP)
   1236 		atw_write_wep(sc);
   1237 
   1238 	/*
   1239 	 * Set the receive filter.  This will start the transmit and
   1240 	 * receive processes.
   1241 	 */
   1242 	atw_filter_setup(sc);
   1243 
   1244 	/*
   1245 	 * Start the receive process.
   1246 	 */
   1247 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1248 
   1249 	/*
   1250 	 * Note that the interface is now running.
   1251 	 */
   1252 	ifp->if_flags |= IFF_RUNNING;
   1253 	ifp->if_flags &= ~IFF_OACTIVE;
   1254 	ic->ic_state = IEEE80211_S_INIT;
   1255 
   1256 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1257 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1258 	else
   1259 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1260  out:
   1261 	if (error) {
   1262 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1263 		ifp->if_timer = 0;
   1264 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1265 	}
   1266 #ifdef ATW_DEBUG
   1267 	atw_print_regs(sc, "end of init");
   1268 #endif /* ATW_DEBUG */
   1269 
   1270 	return (error);
   1271 }
   1272 
   1273 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
   1274  *           0: MAC control of RF3000/Si4126.
   1275  *
   1276  * Applies power, or selects RF front-end? Sets reset condition.
   1277  *
   1278  * TBD support non-RFMD BBP, non-SiLabs synth.
   1279  */
   1280 static void
   1281 atw_rfio_enable(struct atw_softc *sc, int enable)
   1282 {
   1283 	if (enable) {
   1284 		ATW_WRITE(sc, ATW_SYNRF,
   1285 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
   1286 		DELAY(atw_rfio_enable_delay);
   1287 	} else {
   1288 		ATW_WRITE(sc, ATW_SYNRF, 0);
   1289 		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
   1290 	}
   1291 }
   1292 
   1293 static int
   1294 atw_tune(struct atw_softc *sc)
   1295 {
   1296 	int rc;
   1297 	u_int32_t reg;
   1298 	int chan;
   1299 	struct ieee80211com *ic = &sc->sc_ic;
   1300 
   1301 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
   1302 	if (chan == IEEE80211_CHAN_ANY)
   1303 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
   1304 
   1305 	if (chan == sc->sc_cur_chan)
   1306 		return 0;
   1307 
   1308 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
   1309 	    sc->sc_cur_chan, chan));
   1310 
   1311 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1312 
   1313 	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
   1314 	    (rc = atw_rf3000_tune(sc, chan)) != 0)
   1315 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
   1316 		    chan);
   1317 
   1318 	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
   1319 	ATW_WRITE(sc, ATW_CAP0,
   1320 	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
   1321 
   1322 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1323 
   1324 	if (rc == 0)
   1325 		sc->sc_cur_chan = chan;
   1326 
   1327 	return rc;
   1328 }
   1329 
   1330 #ifdef ATW_DEBUG
   1331 static void
   1332 atw_si4126_print(struct atw_softc *sc)
   1333 {
   1334 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1335 	u_int addr, val;
   1336 
   1337 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1338 		return;
   1339 
   1340 	for (addr = 0; addr <= 8; addr++) {
   1341 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
   1342 		if (atw_si4126_read(sc, addr, &val) == 0) {
   1343 			printf("<unknown> (quitting print-out)\n");
   1344 			break;
   1345 		}
   1346 		printf("%05x\n", val);
   1347 	}
   1348 }
   1349 #endif /* ATW_DEBUG */
   1350 
   1351 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
   1352  *
   1353  * The RF/IF synthesizer produces two reference frequencies for
   1354  * the RF2948B transceiver.  The first frequency the RF2948B requires
   1355  * is two times the so-called "intermediate frequency" (IF). Since
   1356  * a SAW filter on the radio fixes the IF at 374MHz, I program the
   1357  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
   1358  * frequency required by the transceiver is the radio frequency
   1359  * (RF). This is a superheterodyne transceiver; for f(chan) the
   1360  * center frequency of the channel we are tuning, RF = f(chan) -
   1361  * IF.
   1362  *
   1363  * XXX I am told by SiLabs that the Si4126 will accept a broader range
   1364  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
   1365  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
   1366  * works, but I have still programmed for XINDIV2 = 1 to be safe.
   1367  */
   1368 static int
   1369 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
   1370 {
   1371 	int rc = 0;
   1372 	u_int mhz;
   1373 	u_int R;
   1374 	u_int32_t reg;
   1375 	u_int16_t gain;
   1376 
   1377 #ifdef ATW_DEBUG
   1378 	atw_si4126_print(sc);
   1379 #endif /* ATW_DEBUG */
   1380 
   1381 	if (chan == 14)
   1382 		mhz = 2484;
   1383 	else
   1384 		mhz = 2412 + 5 * (chan - 1);
   1385 
   1386 	/* Tune IF to 748MHz to suit the IF LO input of the
   1387 	 * RF2494B, which is 2 x IF. No need to set an IF divider
   1388          * because an IF in 526MHz - 952MHz is allowed.
   1389 	 *
   1390 	 * XIN is 44.000MHz, so divide it by two to get allowable
   1391 	 * range of 2-25MHz. SiLabs tells me that this is not
   1392 	 * strictly necessary.
   1393 	 */
   1394 
   1395 	R = 44;
   1396 
   1397 	atw_rfio_enable(sc, 1);
   1398 
   1399 	/* Power-up RF, IF synthesizers. */
   1400 	if ((rc = atw_si4126_write(sc, SI4126_POWER,
   1401 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
   1402 		goto out;
   1403 
   1404 	/* If RF2 N > 2047, then set KP2 to 1. */
   1405 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
   1406 
   1407 	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
   1408 		goto out;
   1409 
   1410 	/* set LPWR, too? */
   1411 	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
   1412 	    SI4126_MAIN_XINDIV2)) != 0)
   1413 		goto out;
   1414 
   1415 	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
   1416 	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
   1417 	 */
   1418 	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
   1419 		goto out;
   1420 
   1421 	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
   1422 		goto out;
   1423 
   1424 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
   1425 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
   1426 	 * which has no RF1!
   1427 	 */
   1428 	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
   1429 		goto out;
   1430 
   1431 	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
   1432 		goto out;
   1433 
   1434 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
   1435 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
   1436 	 * Now let's multiply it to mhz. So mhz - IF = N.
   1437 	 */
   1438 	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
   1439 		goto out;
   1440 
   1441 	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
   1442 		goto out;
   1443 
   1444 	/* wait 100us from power-up for RF, IF to settle */
   1445 	DELAY(100);
   1446 
   1447 	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
   1448 		/* XXX there is a binary driver which sends
   1449 		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
   1450 		 * that this enables the Si4126 by raising its PWDN#, but I
   1451 		 * think that it actually sets the Prism RF front-end
   1452 		 * to a special mode for channel 14.
   1453 		 */
   1454 		reg = ATW_READ(sc, ATW_GPIO);
   1455 		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
   1456 		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
   1457 		ATW_WRITE(sc, ATW_GPIO, reg);
   1458 	}
   1459 
   1460 #ifdef ATW_DEBUG
   1461 	atw_si4126_print(sc);
   1462 #endif /* ATW_DEBUG */
   1463 
   1464 out:
   1465 	atw_rfio_enable(sc, 0);
   1466 
   1467 	return rc;
   1468 }
   1469 
   1470 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
   1471  * diversity.
   1472  *
   1473  * Call this w/ Tx/Rx suspended.
   1474  */
   1475 static int
   1476 atw_rf3000_init(struct atw_softc *sc)
   1477 {
   1478 	int rc = 0;
   1479 
   1480 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1481 
   1482 	atw_rfio_enable(sc, 1);
   1483 
   1484 	/* enable diversity */
   1485 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
   1486 
   1487 	if (rc != 0)
   1488 		goto out;
   1489 
   1490 	/* sensible setting from a binary-only driver */
   1491 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1492 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
   1493 
   1494 	if (rc != 0)
   1495 		goto out;
   1496 
   1497 	/* magic from a binary-only driver */
   1498 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
   1499 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
   1500 
   1501 	if (rc != 0)
   1502 		goto out;
   1503 
   1504 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
   1505 
   1506 	if (rc != 0)
   1507 		goto out;
   1508 
   1509 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
   1510 
   1511 	if (rc != 0)
   1512 		goto out;
   1513 
   1514 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
   1515 
   1516 	if (rc != 0)
   1517 		goto out;
   1518 
   1519 	/* CCA is acquisition sensitive */
   1520 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
   1521 	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
   1522 
   1523 	if (rc != 0)
   1524 		goto out;
   1525 
   1526 out:
   1527 	atw_rfio_enable(sc, 0);
   1528 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1529 	return rc;
   1530 }
   1531 
   1532 #ifdef ATW_DEBUG
   1533 static void
   1534 atw_rf3000_print(struct atw_softc *sc)
   1535 {
   1536 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1537 	u_int addr, val;
   1538 
   1539 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1540 		return;
   1541 
   1542 	for (addr = 0x01; addr <= 0x15; addr++) {
   1543 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
   1544 		if (atw_rf3000_read(sc, addr, &val) != 0) {
   1545 			printf("<unknown> (quitting print-out)\n");
   1546 			break;
   1547 		}
   1548 		printf("%08x\n", val);
   1549 	}
   1550 }
   1551 #endif /* ATW_DEBUG */
   1552 
   1553 /* Set the power settings on the BBP for channel `chan'. */
   1554 static int
   1555 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
   1556 {
   1557 	int rc = 0;
   1558 	u_int32_t reg;
   1559 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
   1560 
   1561 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
   1562 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
   1563 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
   1564 
   1565 	/* odd channels: LSB, even channels: MSB */
   1566 	if (chan % 2 == 1) {
   1567 		txpower &= 0xFF;
   1568 		lpf_cutoff &= 0xFF;
   1569 		lna_gs_thresh &= 0xFF;
   1570 	} else {
   1571 		txpower >>= 8;
   1572 		lpf_cutoff >>= 8;
   1573 		lna_gs_thresh >>= 8;
   1574 	}
   1575 
   1576 #ifdef ATW_DEBUG
   1577 	atw_rf3000_print(sc);
   1578 #endif /* ATW_DEBUG */
   1579 
   1580 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
   1581 	    "lna_gs_thresh %02x\n",
   1582 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
   1583 
   1584 	atw_rfio_enable(sc, 1);
   1585 
   1586 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1587 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
   1588 		goto out;
   1589 
   1590 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
   1591 		goto out;
   1592 
   1593 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
   1594 		goto out;
   1595 
   1596 	/* from a binary-only driver. */
   1597 	reg = ATW_READ(sc, ATW_PLCPHD);
   1598 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
   1599 	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
   1600 	    ATW_PLCPHD_SERVICE_MASK);
   1601 	ATW_WRITE(sc, ATW_PLCPHD, reg);
   1602 
   1603 #ifdef ATW_DEBUG
   1604 	atw_rf3000_print(sc);
   1605 #endif /* ATW_DEBUG */
   1606 
   1607 out:
   1608 	atw_rfio_enable(sc, 0);
   1609 
   1610 	return rc;
   1611 }
   1612 
   1613 /* Write a register on the RF3000 baseband processor using the
   1614  * registers provided by the ADM8211 for this purpose.
   1615  *
   1616  * Return 0 on success.
   1617  */
   1618 static int
   1619 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
   1620 {
   1621 	u_int32_t reg;
   1622 	int i;
   1623 
   1624 	for (i = 1000; --i >= 0; ) {
   1625 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1626 			break;
   1627 		DELAY(100);
   1628 	}
   1629 
   1630 	if (i < 0) {
   1631 		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
   1632 		return ETIMEDOUT;
   1633 	}
   1634 
   1635 	reg = sc->sc_bbpctl_wr |
   1636 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
   1637 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1638 
   1639 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1640 
   1641 	for (i = 1000; --i >= 0; ) {
   1642 		DELAY(100);
   1643 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
   1644 			break;
   1645 	}
   1646 
   1647 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
   1648 
   1649 	if (i < 0) {
   1650 		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
   1651 		return ETIMEDOUT;
   1652 	}
   1653 	return 0;
   1654 }
   1655 
   1656 /* Read a register on the RF3000 baseband processor using the registers
   1657  * the ADM8211 provides for this purpose.
   1658  *
   1659  * The 7-bit register address is addr.  Record the 8-bit data in the register
   1660  * in *val.
   1661  *
   1662  * Return 0 on success.
   1663  *
   1664  * XXX This does not seem to work. The ADM8211 must require more or
   1665  * different magic to read the chip than to write it. Possibly some
   1666  * of the magic I have derived from a binary-only driver concerns
   1667  * the "chip address" (see the RF3000 manual).
   1668  */
   1669 #ifdef ATW_DEBUG
   1670 static int
   1671 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
   1672 {
   1673 	u_int32_t reg;
   1674 	int i;
   1675 
   1676 	for (i = 1000; --i >= 0; ) {
   1677 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1678 			break;
   1679 		DELAY(100);
   1680 	}
   1681 
   1682 	if (i < 0) {
   1683 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
   1684 		    sc->sc_dev.dv_xname);
   1685 		return ETIMEDOUT;
   1686 	}
   1687 
   1688 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1689 
   1690 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1691 
   1692 	for (i = 1000; --i >= 0; ) {
   1693 		DELAY(100);
   1694 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
   1695 			break;
   1696 	}
   1697 
   1698 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
   1699 
   1700 	if (i < 0) {
   1701 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
   1702 		    sc->sc_dev.dv_xname, reg);
   1703 		return ETIMEDOUT;
   1704 	}
   1705 	if (val != NULL)
   1706 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
   1707 	return 0;
   1708 }
   1709 #endif /* ATW_DEBUG */
   1710 
   1711 /* Write a register on the Si4126 RF/IF synthesizer using the registers
   1712  * provided by the ADM8211 for that purpose.
   1713  *
   1714  * val is 18 bits of data, and val is the 4-bit address of the register.
   1715  *
   1716  * Return 0 on success.
   1717  */
   1718 static int
   1719 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
   1720 {
   1721 	u_int32_t bits, reg;
   1722 	int i;
   1723 
   1724 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1725 	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
   1726 
   1727 	for (i = 1000; --i >= 0; ) {
   1728 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1729 			break;
   1730 		DELAY(100);
   1731 	}
   1732 
   1733 	if (i < 0) {
   1734 		printf("%s: start atw_si4126_write, SYNCTL busy\n",
   1735 		    sc->sc_dev.dv_xname);
   1736 		return ETIMEDOUT;
   1737 	}
   1738 
   1739 	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
   1740 	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
   1741 
   1742 	reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
   1743 
   1744 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1745 
   1746 	for (i = 1000; --i >= 0; ) {
   1747 		DELAY(100);
   1748 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
   1749 			break;
   1750 	}
   1751 
   1752 	/* restore to acceptable starting condition */
   1753 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
   1754 
   1755 	if (i < 0) {
   1756 		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
   1757 		    sc->sc_dev.dv_xname, reg);
   1758 		return ETIMEDOUT;
   1759 	}
   1760 	return 0;
   1761 }
   1762 
   1763 /* Read 18-bit data from the 4-bit address addr in Si4126
   1764  * RF synthesizer and write the data to *val. Return 0 on success.
   1765  *
   1766  * XXX This does not seem to work. The ADM8211 must require more or
   1767  * different magic to read the chip than to write it.
   1768  */
   1769 #ifdef ATW_DEBUG
   1770 static int
   1771 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
   1772 {
   1773 	u_int32_t reg;
   1774 	int i;
   1775 
   1776 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1777 
   1778 	for (i = 1000; --i >= 0; ) {
   1779 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1780 			break;
   1781 		DELAY(100);
   1782 	}
   1783 
   1784 	if (i < 0) {
   1785 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
   1786 		    sc->sc_dev.dv_xname);
   1787 		return ETIMEDOUT;
   1788 	}
   1789 
   1790 	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
   1791 
   1792 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1793 
   1794 	for (i = 1000; --i >= 0; ) {
   1795 		DELAY(100);
   1796 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
   1797 			break;
   1798 	}
   1799 
   1800 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
   1801 
   1802 	if (i < 0) {
   1803 		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
   1804 		    sc->sc_dev.dv_xname, reg);
   1805 		return ETIMEDOUT;
   1806 	}
   1807 	if (val != NULL)
   1808 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
   1809 		                       ATW_SYNCTL_DATA_MASK);
   1810 	return 0;
   1811 }
   1812 #endif /* ATW_DEBUG */
   1813 
   1814 /* XXX is the endianness correct? test. */
   1815 #define	atw_calchash(addr) \
   1816 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
   1817 
   1818 /*
   1819  * atw_filter_setup:
   1820  *
   1821  *	Set the ADM8211's receive filter.
   1822  */
   1823 static void
   1824 atw_filter_setup(struct atw_softc *sc)
   1825 {
   1826 	struct ieee80211com *ic = &sc->sc_ic;
   1827 	struct ethercom *ec = &ic->ic_ec;
   1828 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1829 	int hash;
   1830 	u_int32_t hashes[2] = { 0, 0 };
   1831 	struct ether_multi *enm;
   1832 	struct ether_multistep step;
   1833 
   1834 	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
   1835 	    sc->sc_dev.dv_xname, sc->sc_flags));
   1836 
   1837 	/*
   1838 	 * If we're running, idle the receive engine.  If we're NOT running,
   1839 	 * we're being called from atw_init(), and our writing ATW_NAR will
   1840 	 * start the transmit and receive processes in motion.
   1841 	 */
   1842 	if (ifp->if_flags & IFF_RUNNING)
   1843 		atw_idle(sc, ATW_NAR_SR);
   1844 
   1845 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
   1846 
   1847 	ifp->if_flags &= ~IFF_ALLMULTI;
   1848 
   1849 	if (ifp->if_flags & IFF_PROMISC) {
   1850 		sc->sc_opmode |= ATW_NAR_PR;
   1851 allmulti:
   1852 		ifp->if_flags |= IFF_ALLMULTI;
   1853 		goto setit;
   1854 	}
   1855 
   1856 	/*
   1857 	 * Program the 64-bit multicast hash filter.
   1858 	 */
   1859 	ETHER_FIRST_MULTI(step, ec, enm);
   1860 	while (enm != NULL) {
   1861 		/* XXX */
   1862 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1863 		    ETHER_ADDR_LEN) != 0)
   1864 			goto allmulti;
   1865 
   1866 		hash = atw_calchash(enm->enm_addrlo);
   1867 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1868 		ETHER_NEXT_MULTI(step, enm);
   1869 	}
   1870 
   1871 	if (ifp->if_flags & IFF_BROADCAST) {
   1872 		hash = atw_calchash(etherbroadcastaddr);
   1873 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1874 	}
   1875 
   1876 	/* all bits set => hash is useless */
   1877 	if (~(hashes[0] & hashes[1]) == 0)
   1878 		goto allmulti;
   1879 
   1880  setit:
   1881 	if (ifp->if_flags & IFF_ALLMULTI)
   1882 		sc->sc_opmode |= ATW_NAR_MM;
   1883 
   1884 	/* XXX in scan mode, do not filter packets. maybe this is
   1885 	 * unnecessary.
   1886 	 */
   1887 	if (ic->ic_state == IEEE80211_S_SCAN)
   1888 		sc->sc_opmode |= ATW_NAR_PR;
   1889 
   1890 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
   1891 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
   1892 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1893 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
   1894 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
   1895 
   1896 	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
   1897 }
   1898 
   1899 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
   1900  * a beacon's BSSID and SSID against the preferred BSSID and SSID
   1901  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
   1902  * no beacon with the preferred BSSID and SSID in the number of
   1903  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
   1904  */
   1905 static void
   1906 atw_write_bssid(struct atw_softc *sc)
   1907 {
   1908 	struct ieee80211com *ic = &sc->sc_ic;
   1909 	u_int8_t *bssid;
   1910 
   1911 	bssid = ic->ic_bss->ni_bssid;
   1912 
   1913 	ATW_WRITE(sc, ATW_ABDA1,
   1914 	    (ATW_READ(sc, ATW_ABDA1) &
   1915 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
   1916 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
   1917 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
   1918 
   1919 	ATW_WRITE(sc, ATW_BSSID0,
   1920 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
   1921 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
   1922 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
   1923 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
   1924 
   1925 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
   1926 	    ether_sprintf(sc->sc_bssid)));
   1927 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
   1928 
   1929 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
   1930 }
   1931 
   1932 /* Tell the ADM8211 how many beacon intervals must pass without
   1933  * receiving a beacon with the preferred BSSID & SSID set by
   1934  * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
   1935  * raised.
   1936  */
   1937 static void
   1938 atw_write_bcn_thresh(struct atw_softc *sc)
   1939 {
   1940 	struct ieee80211com *ic = &sc->sc_ic;
   1941 	int lost_bcn_thresh;
   1942 
   1943 	/* Lose link after one second or 7 beacons, whichever comes
   1944 	 * first, but do not lose link before 2 beacons are lost.
   1945 	 *
   1946 	 * In host AP mode, set the lost-beacon threshold to 0.
   1947 	 */
   1948 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1949 		lost_bcn_thresh = 0;
   1950 	else {
   1951 		int beacons_per_second =
   1952 		    1000000 / (IEEE80211_DUR_TU * MAX(1,ic->ic_bss->ni_intval));
   1953 		lost_bcn_thresh = MAX(2, MIN(7, beacons_per_second));
   1954 	}
   1955 
   1956 	/* XXX resets wake-up status bits */
   1957 	ATW_WRITE(sc, ATW_WCSR,
   1958 	    (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
   1959 	    (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
   1960 
   1961 	DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
   1962 	    sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
   1963 
   1964 	sc->sc_lost_bcn_thresh = lost_bcn_thresh;
   1965 
   1966 	DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
   1967 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
   1968 }
   1969 
   1970 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
   1971  * 16-bit word.
   1972  */
   1973 static void
   1974 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
   1975 {
   1976 	u_int i;
   1977 	u_int8_t *ptr;
   1978 
   1979 	memcpy(&sc->sc_sram[ofs], buf, buflen);
   1980 
   1981 	if (ofs % 2 != 0) {
   1982 		ofs--;
   1983 		buflen++;
   1984 	}
   1985 
   1986 	if (buflen % 2 != 0)
   1987 		buflen++;
   1988 
   1989 	assert(buflen + ofs <= ATW_SRAM_SIZE);
   1990 
   1991 	ptr = &sc->sc_sram[ofs];
   1992 
   1993 	for (i = 0; i < buflen; i += 2) {
   1994 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
   1995 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
   1996 		DELAY(atw_writewep_delay);
   1997 
   1998 		ATW_WRITE(sc, ATW_WESK,
   1999 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
   2000 		DELAY(atw_writewep_delay);
   2001 	}
   2002 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
   2003 
   2004 	if (sc->sc_if.if_flags & IFF_DEBUG) {
   2005 		int n_octets = 0;
   2006 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
   2007 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
   2008 		for (i = 0; i < buflen; i++) {
   2009 			printf(" %02x", ptr[i]);
   2010 			if (++n_octets % 24 == 0)
   2011 				printf("\n");
   2012 		}
   2013 		if (n_octets % 24 != 0)
   2014 			printf("\n");
   2015 	}
   2016 }
   2017 
   2018 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
   2019 static void
   2020 atw_write_wep(struct atw_softc *sc)
   2021 {
   2022 	struct ieee80211com *ic = &sc->sc_ic;
   2023 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
   2024 	u_int8_t buf[IEEE80211_WEP_NKID]
   2025 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
   2026 	u_int32_t reg;
   2027 	int i;
   2028 
   2029 	sc->sc_wepctl = 0;
   2030 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
   2031 
   2032 	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
   2033 		return;
   2034 
   2035 	memset(&buf[0][0], 0, sizeof(buf));
   2036 
   2037 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   2038 		if (ic->ic_nw_keys[i].wk_len > 5) {
   2039 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
   2040 		} else if (ic->ic_nw_keys[i].wk_len != 0) {
   2041 			buf[i][1] = ATW_WEP_ENABLED;
   2042 		} else {
   2043 			buf[i][1] = 0;
   2044 			continue;
   2045 		}
   2046 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
   2047 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
   2048 		    ic->ic_nw_keys[i].wk_len - 1);
   2049 	}
   2050 
   2051 	reg = ATW_READ(sc, ATW_MACTEST);
   2052 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
   2053 	reg &= ~ATW_MACTEST_KEYID_MASK;
   2054 	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
   2055 	ATW_WRITE(sc, ATW_MACTEST, reg);
   2056 
   2057 	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
   2058 	 * throughout.)
   2059 	 */
   2060 	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
   2061 	if (sc->sc_if.if_flags & IFF_LINK2)
   2062 		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
   2063 
   2064 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
   2065 	    sizeof(buf));
   2066 }
   2067 
   2068 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
   2069 
   2070 static void
   2071 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2072     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2073 {
   2074 	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
   2075 
   2076 	switch (subtype) {
   2077 	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
   2078 		/* do nothing: hardware answers probe request */
   2079 		break;
   2080 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2081 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2082 		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
   2083 		break;
   2084 	default:
   2085 		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
   2086 		break;
   2087 	}
   2088 	return;
   2089 }
   2090 
   2091 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
   2092  * of IBSSs with like SSID/channel but different BSSID. It joins the
   2093  * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
   2094  * convention. Possibly the ADMtek chip does this for us; I will have
   2095  * to test to find out.
   2096  *
   2097  * XXX we should add the duration field of the received beacon to
   2098  * the TSF time it contains before comparing it with the ADM8211's
   2099  * TSF.
   2100  */
   2101 static void
   2102 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
   2103     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2104 {
   2105 	struct atw_softc *sc;
   2106 	struct ieee80211_frame *wh;
   2107 	u_int64_t tsft, bcn_tsft;
   2108 	u_int32_t tsftl, tsfth;
   2109 	int do_print = 0;
   2110 
   2111 	sc = (struct atw_softc*)ic->ic_if.if_softc;
   2112 
   2113 	if (ic->ic_if.if_flags & IFF_DEBUG)
   2114 		do_print = (ic->ic_if.if_flags & IFF_LINK0)
   2115 		    ? 1 : ratecheck(&sc->sc_last_beacon,
   2116 		    &atw_beacon_mininterval);
   2117 
   2118 	wh = mtod(m0, struct ieee80211_frame *);
   2119 
   2120 	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
   2121 
   2122 	if (ic->ic_state != IEEE80211_S_RUN) {
   2123 		if (do_print)
   2124 			printf("%s: atw_recv_beacon: not running\n",
   2125 			    sc->sc_dev.dv_xname);
   2126 		return;
   2127 	}
   2128 
   2129 	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
   2130 	    ic->ic_bss->ni_chan)) == NULL) {
   2131 		if (do_print)
   2132 			printf("%s: atw_recv_beacon: no node %s\n",
   2133 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2134 		return;
   2135 	}
   2136 
   2137 	if (ieee80211_match_bss(ic, ni) != 0) {
   2138 		if (do_print)
   2139 			printf("%s: atw_recv_beacon: ssid mismatch %s\n",
   2140 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2141 		return;
   2142 	}
   2143 
   2144 	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
   2145 		return;
   2146 
   2147 	if (do_print)
   2148 		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
   2149 		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
   2150 
   2151 	if (ic->ic_opmode != IEEE80211_M_IBSS)
   2152 		return;
   2153 
   2154 	/* If we read TSFTL right before rollover, we read a TSF timer
   2155 	 * that is too high rather than too low. This prevents a spurious
   2156 	 * synchronization down the line, however, our IBSS could suffer
   2157 	 * from a creeping TSF....
   2158 	 */
   2159 	tsftl = ATW_READ(sc, ATW_TSFTL);
   2160 	tsfth = ATW_READ(sc, ATW_TSFTH);
   2161 
   2162 	tsft = (u_int64_t)tsfth << 32 | tsftl;
   2163 	bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
   2164 
   2165 	if (do_print)
   2166 		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
   2167 		    sc->sc_dev.dv_xname, tsft, bcn_tsft);
   2168 
   2169 	/* we are faster, let the other guy catch up */
   2170 	if (bcn_tsft < tsft)
   2171 		return;
   2172 
   2173 	if (do_print)
   2174 		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
   2175 		    ether_sprintf(wh->i_addr2));
   2176 
   2177 	ic->ic_flags &= ~IEEE80211_F_SIBSS;
   2178 
   2179 #if 0
   2180 	atw_tsf(sc);
   2181 #endif
   2182 
   2183 	/* negotiate rates with new IBSS */
   2184 	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
   2185 	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
   2186 	if (ni->ni_rates.rs_nrates == 0) {
   2187 		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
   2188 			ether_sprintf(ni->ni_bssid));
   2189 		return;
   2190 	}
   2191 
   2192 	if (do_print) {
   2193 		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
   2194 		    ether_sprintf(ic->ic_bss->ni_bssid));
   2195 		printf("%s ", ether_sprintf(ni->ni_bssid));
   2196 		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
   2197 	}
   2198 
   2199 	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
   2200 
   2201 	atw_write_bssid(sc);
   2202 	atw_write_bcn_thresh(sc);
   2203 	atw_start_beacon(sc, 1);
   2204 }
   2205 
   2206 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
   2207  * In ad hoc mode, the SSID is written to the beacons sent by the
   2208  * ADM8211. In both ad hoc and infrastructure mode, beacons received
   2209  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
   2210  * indications.
   2211  */
   2212 static void
   2213 atw_write_ssid(struct atw_softc *sc)
   2214 {
   2215 	struct ieee80211com *ic = &sc->sc_ic;
   2216 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID */
   2217 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
   2218 
   2219 	memset(buf, 0, sizeof(buf));
   2220 	buf[0] = ic->ic_bss->ni_esslen;
   2221 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
   2222 
   2223 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
   2224 }
   2225 
   2226 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
   2227  * In ad hoc mode, the supported rates are written to beacons sent by the
   2228  * ADM8211.
   2229  */
   2230 static void
   2231 atw_write_sup_rates(struct atw_softc *sc)
   2232 {
   2233 	struct ieee80211com *ic = &sc->sc_ic;
   2234 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
   2235 	 * supported rates
   2236 	 */
   2237 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
   2238 
   2239 	memset(buf, 0, sizeof(buf));
   2240 
   2241 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
   2242 
   2243 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
   2244 	    ic->ic_bss->ni_rates.rs_nrates);
   2245 
   2246 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
   2247 }
   2248 
   2249 /* Start/stop sending beacons. */
   2250 void
   2251 atw_start_beacon(struct atw_softc *sc, int start)
   2252 {
   2253 	struct ieee80211com *ic = &sc->sc_ic;
   2254 	u_int32_t len, capinfo, reg_bcnt, reg_cap1;
   2255 
   2256 	if (ATW_IS_ENABLED(sc) == 0)
   2257 		return;
   2258 
   2259 	len = capinfo = 0;
   2260 
   2261 	/* start beacons */
   2262 	len = sizeof(struct ieee80211_frame) +
   2263 	    8 /* timestamp */ + 2 /* beacon interval */ +
   2264 	    2 /* capability info */ +
   2265 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
   2266 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
   2267 	    3 /* DS parameters */ +
   2268 	    IEEE80211_CRC_LEN;
   2269 
   2270 	reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
   2271 
   2272 	reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
   2273 
   2274 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2275 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2276 
   2277 	if (!start)
   2278 		return;
   2279 
   2280 	/* TBD use ni_capinfo */
   2281 
   2282 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
   2283 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   2284 	if (ic->ic_flags & IEEE80211_F_WEPON)
   2285 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   2286 
   2287 	switch (ic->ic_opmode) {
   2288 	case IEEE80211_M_IBSS:
   2289 		len += 4; /* IBSS parameters */
   2290 		capinfo |= IEEE80211_CAPINFO_IBSS;
   2291 		break;
   2292 	case IEEE80211_M_HOSTAP:
   2293 		/* XXX 6-byte minimum TIM */
   2294 		len += atw_beacon_len_adjust;
   2295 		capinfo |= IEEE80211_CAPINFO_ESS;
   2296 		break;
   2297 	default:
   2298 		return;
   2299 	}
   2300 
   2301 	reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
   2302 	reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
   2303 
   2304 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2305 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2306 
   2307 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
   2308 	    sc->sc_dev.dv_xname, reg_bcnt));
   2309 
   2310 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
   2311 	    sc->sc_dev.dv_xname, reg_cap1));
   2312 }
   2313 
   2314 /* First beacon was sent at time 0 microseconds, current time is
   2315  * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
   2316  * microseconds.  Return the expected time in microseconds for the
   2317  * beacon after next.
   2318  */
   2319 static __inline u_int64_t
   2320 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
   2321 {
   2322 	return tsft + (tbtt - tsft % tbtt);
   2323 }
   2324 
   2325 /* If we've created an IBSS, write the TSF time in the ADM8211 to
   2326  * the ieee80211com.
   2327  *
   2328  * Predict the next target beacon transmission time (TBTT) and
   2329  * write it to the ADM8211.
   2330  */
   2331 static void
   2332 atw_tsf(struct atw_softc *sc)
   2333 {
   2334 #define TBTTOFS 20 /* TU */
   2335 
   2336 	struct ieee80211com *ic = &sc->sc_ic;
   2337 	u_int64_t tsft, tbtt;
   2338 
   2339 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
   2340 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
   2341 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
   2342 		tsft = ATW_READ(sc, ATW_TSFTH);
   2343 		tsft <<= 32;
   2344 		tsft |= ATW_READ(sc, ATW_TSFTL);
   2345 		*(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
   2346 	} else
   2347 		tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
   2348 
   2349 	tbtt = atw_predict_beacon(tsft,
   2350 	    ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
   2351 
   2352 	/* skip one more beacon so that the TBTT cannot pass before
   2353 	 * we've programmed it, and also so that we can subtract a
   2354 	 * few TU so that we wake a little before TBTT.
   2355 	 */
   2356 	tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
   2357 
   2358 	/* wake up a little early */
   2359 	tbtt -= TBTTOFS * IEEE80211_DUR_TU;
   2360 
   2361 	DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
   2362 	    sc->sc_dev.dv_xname, tsft, tbtt));
   2363 
   2364 	ATW_WRITE(sc, ATW_TOFS1,
   2365 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
   2366 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
   2367 	    LSHIFT(
   2368 		MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
   2369 		ATW_TOFS1_TBTTPRE_MASK));
   2370 #undef TBTTOFS
   2371 }
   2372 
   2373 static void
   2374 atw_next_scan(void *arg)
   2375 {
   2376 	struct atw_softc *sc = arg;
   2377 	struct ieee80211com *ic = &sc->sc_ic;
   2378 	struct ifnet *ifp = &ic->ic_if;
   2379 	int s;
   2380 
   2381 	/* don't call atw_start w/o network interrupts blocked */
   2382 	s = splnet();
   2383 	if (ic->ic_state == IEEE80211_S_SCAN)
   2384 		ieee80211_next_scan(ifp);
   2385 	splx(s);
   2386 }
   2387 
   2388 /* Synchronize the hardware state with the software state. */
   2389 static int
   2390 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   2391 {
   2392 	struct ifnet *ifp = &ic->ic_if;
   2393 	struct atw_softc *sc = ifp->if_softc;
   2394 	enum ieee80211_state ostate;
   2395 	int error;
   2396 
   2397 	ostate = ic->ic_state;
   2398 
   2399 	if (nstate == IEEE80211_S_INIT) {
   2400 		callout_stop(&sc->sc_scan_ch);
   2401 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
   2402 		atw_start_beacon(sc, 0);
   2403 		return (*sc->sc_newstate)(ic, nstate, arg);
   2404 	}
   2405 
   2406 	if ((error = atw_tune(sc)) != 0)
   2407 		return error;
   2408 
   2409 	switch (nstate) {
   2410 	case IEEE80211_S_ASSOC:
   2411 		break;
   2412 	case IEEE80211_S_INIT:
   2413 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
   2414 		break;
   2415 	case IEEE80211_S_SCAN:
   2416 		memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
   2417 		atw_write_bssid(sc);
   2418 
   2419 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
   2420 		    atw_next_scan, sc);
   2421 
   2422 		break;
   2423 	case IEEE80211_S_RUN:
   2424 		if (ic->ic_opmode == IEEE80211_M_STA)
   2425 			break;
   2426 		/*FALLTHROUGH*/
   2427 	case IEEE80211_S_AUTH:
   2428 		atw_write_bssid(sc);
   2429 		atw_write_bcn_thresh(sc);
   2430 		atw_write_ssid(sc);
   2431 		atw_write_sup_rates(sc);
   2432 
   2433 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
   2434 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   2435 			break;
   2436 
   2437 		/* set listen interval
   2438 		 * XXX do software units agree w/ hardware?
   2439 		 */
   2440 		ATW_WRITE(sc, ATW_BPLI,
   2441 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2442 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
   2443 			   ATW_BPLI_LI_MASK));
   2444 
   2445 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
   2446 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
   2447 
   2448 		atw_tsf(sc);
   2449 		break;
   2450 	}
   2451 
   2452 	if (nstate != IEEE80211_S_SCAN)
   2453 		callout_stop(&sc->sc_scan_ch);
   2454 
   2455 	if (nstate == IEEE80211_S_RUN &&
   2456 	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   2457 	     ic->ic_opmode == IEEE80211_M_IBSS))
   2458 		atw_start_beacon(sc, 1);
   2459 	else
   2460 		atw_start_beacon(sc, 0);
   2461 
   2462 	return (*sc->sc_newstate)(ic, nstate, arg);
   2463 }
   2464 
   2465 /*
   2466  * atw_add_rxbuf:
   2467  *
   2468  *	Add a receive buffer to the indicated descriptor.
   2469  */
   2470 int
   2471 atw_add_rxbuf(struct atw_softc *sc, int idx)
   2472 {
   2473 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2474 	struct mbuf *m;
   2475 	int error;
   2476 
   2477 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2478 	if (m == NULL)
   2479 		return (ENOBUFS);
   2480 
   2481 	MCLGET(m, M_DONTWAIT);
   2482 	if ((m->m_flags & M_EXT) == 0) {
   2483 		m_freem(m);
   2484 		return (ENOBUFS);
   2485 	}
   2486 
   2487 	if (rxs->rxs_mbuf != NULL)
   2488 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2489 
   2490 	rxs->rxs_mbuf = m;
   2491 
   2492 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2493 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2494 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2495 	if (error) {
   2496 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2497 		    sc->sc_dev.dv_xname, idx, error);
   2498 		panic("atw_add_rxbuf");	/* XXX */
   2499 	}
   2500 
   2501 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2502 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2503 
   2504 	ATW_INIT_RXDESC(sc, idx);
   2505 
   2506 	return (0);
   2507 }
   2508 
   2509 /*
   2510  * atw_stop:		[ ifnet interface function ]
   2511  *
   2512  *	Stop transmission on the interface.
   2513  */
   2514 void
   2515 atw_stop(struct ifnet *ifp, int disable)
   2516 {
   2517 	struct atw_softc *sc = ifp->if_softc;
   2518 	struct ieee80211com *ic = &sc->sc_ic;
   2519 	struct atw_txsoft *txs;
   2520 
   2521 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   2522 
   2523 	/* Disable interrupts. */
   2524 	ATW_WRITE(sc, ATW_IER, 0);
   2525 
   2526 	/* Stop the transmit and receive processes. */
   2527 	sc->sc_opmode = 0;
   2528 	ATW_WRITE(sc, ATW_NAR, 0);
   2529 	ATW_WRITE(sc, ATW_TDBD, 0);
   2530 	ATW_WRITE(sc, ATW_TDBP, 0);
   2531 	ATW_WRITE(sc, ATW_RDB, 0);
   2532 
   2533 	/*
   2534 	 * Release any queued transmit buffers.
   2535 	 */
   2536 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2537 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2538 		if (txs->txs_mbuf != NULL) {
   2539 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2540 			m_freem(txs->txs_mbuf);
   2541 			txs->txs_mbuf = NULL;
   2542 		}
   2543 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2544 	}
   2545 
   2546 	if (disable) {
   2547 		atw_rxdrain(sc);
   2548 		atw_disable(sc);
   2549 	}
   2550 
   2551 	/*
   2552 	 * Mark the interface down and cancel the watchdog timer.
   2553 	 */
   2554 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2555 	ifp->if_timer = 0;
   2556 
   2557 	/* XXX */
   2558 	atw_reset(sc);
   2559 }
   2560 
   2561 /*
   2562  * atw_rxdrain:
   2563  *
   2564  *	Drain the receive queue.
   2565  */
   2566 void
   2567 atw_rxdrain(struct atw_softc *sc)
   2568 {
   2569 	struct atw_rxsoft *rxs;
   2570 	int i;
   2571 
   2572 	for (i = 0; i < ATW_NRXDESC; i++) {
   2573 		rxs = &sc->sc_rxsoft[i];
   2574 		if (rxs->rxs_mbuf == NULL)
   2575 			continue;
   2576 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2577 		m_freem(rxs->rxs_mbuf);
   2578 		rxs->rxs_mbuf = NULL;
   2579 	}
   2580 }
   2581 
   2582 /*
   2583  * atw_detach:
   2584  *
   2585  *	Detach an ADM8211 interface.
   2586  */
   2587 int
   2588 atw_detach(struct atw_softc *sc)
   2589 {
   2590 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2591 	struct atw_rxsoft *rxs;
   2592 	struct atw_txsoft *txs;
   2593 	int i;
   2594 
   2595 	/*
   2596 	 * Succeed now if there isn't any work to do.
   2597 	 */
   2598 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
   2599 		return (0);
   2600 
   2601 	ieee80211_ifdetach(ifp);
   2602 	if_detach(ifp);
   2603 
   2604 	for (i = 0; i < ATW_NRXDESC; i++) {
   2605 		rxs = &sc->sc_rxsoft[i];
   2606 		if (rxs->rxs_mbuf != NULL) {
   2607 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2608 			m_freem(rxs->rxs_mbuf);
   2609 			rxs->rxs_mbuf = NULL;
   2610 		}
   2611 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
   2612 	}
   2613 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   2614 		txs = &sc->sc_txsoft[i];
   2615 		if (txs->txs_mbuf != NULL) {
   2616 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2617 			m_freem(txs->txs_mbuf);
   2618 			txs->txs_mbuf = NULL;
   2619 		}
   2620 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
   2621 	}
   2622 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2623 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2624 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2625 	    sizeof(struct atw_control_data));
   2626 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2627 
   2628 	shutdownhook_disestablish(sc->sc_sdhook);
   2629 	powerhook_disestablish(sc->sc_powerhook);
   2630 
   2631 	if (sc->sc_srom)
   2632 		free(sc->sc_srom, M_DEVBUF);
   2633 
   2634 	return (0);
   2635 }
   2636 
   2637 /* atw_shutdown: make sure the interface is stopped at reboot time. */
   2638 void
   2639 atw_shutdown(void *arg)
   2640 {
   2641 	struct atw_softc *sc = arg;
   2642 
   2643 	atw_stop(&sc->sc_ic.ic_if, 1);
   2644 }
   2645 
   2646 int
   2647 atw_intr(void *arg)
   2648 {
   2649 	struct atw_softc *sc = arg;
   2650 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2651 	u_int32_t status, rxstatus, txstatus, linkstatus;
   2652 	int handled = 0, txthresh;
   2653 
   2654 #ifdef DEBUG
   2655 	if (ATW_IS_ENABLED(sc) == 0)
   2656 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
   2657 #endif
   2658 
   2659 	/*
   2660 	 * If the interface isn't running, the interrupt couldn't
   2661 	 * possibly have come from us.
   2662 	 */
   2663 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   2664 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   2665 		return (0);
   2666 
   2667 	for (;;) {
   2668 		status = ATW_READ(sc, ATW_STSR);
   2669 
   2670 		if (status)
   2671 			ATW_WRITE(sc, ATW_STSR, status);
   2672 
   2673 		if (sc->sc_intr_ack != NULL)
   2674 			(*sc->sc_intr_ack)(sc);
   2675 
   2676 #ifdef ATW_DEBUG
   2677 #define PRINTINTR(flag) do { \
   2678 	if ((status & flag) != 0) { \
   2679 		printf("%s" #flag, delim); \
   2680 		delim = ","; \
   2681 	} \
   2682 } while (0)
   2683 
   2684 		if (atw_debug > 1 && status) {
   2685 			const char *delim = "<";
   2686 
   2687 			printf("%s: reg[STSR] = %x",
   2688 			    sc->sc_dev.dv_xname, status);
   2689 
   2690 			PRINTINTR(ATW_INTR_FBE);
   2691 			PRINTINTR(ATW_INTR_LINKOFF);
   2692 			PRINTINTR(ATW_INTR_LINKON);
   2693 			PRINTINTR(ATW_INTR_RCI);
   2694 			PRINTINTR(ATW_INTR_RDU);
   2695 			PRINTINTR(ATW_INTR_REIS);
   2696 			PRINTINTR(ATW_INTR_RPS);
   2697 			PRINTINTR(ATW_INTR_TCI);
   2698 			PRINTINTR(ATW_INTR_TDU);
   2699 			PRINTINTR(ATW_INTR_TLT);
   2700 			PRINTINTR(ATW_INTR_TPS);
   2701 			PRINTINTR(ATW_INTR_TRT);
   2702 			PRINTINTR(ATW_INTR_TUF);
   2703 			PRINTINTR(ATW_INTR_BCNTC);
   2704 			PRINTINTR(ATW_INTR_ATIME);
   2705 			PRINTINTR(ATW_INTR_TBTT);
   2706 			PRINTINTR(ATW_INTR_TSCZ);
   2707 			PRINTINTR(ATW_INTR_TSFTF);
   2708 			printf(">\n");
   2709 		}
   2710 #undef PRINTINTR
   2711 #endif /* ATW_DEBUG */
   2712 
   2713 		if ((status & sc->sc_inten) == 0)
   2714 			break;
   2715 
   2716 		handled = 1;
   2717 
   2718 		rxstatus = status & sc->sc_rxint_mask;
   2719 		txstatus = status & sc->sc_txint_mask;
   2720 		linkstatus = status & sc->sc_linkint_mask;
   2721 
   2722 		if (linkstatus) {
   2723 			atw_linkintr(sc, linkstatus);
   2724 		}
   2725 
   2726 		if (rxstatus) {
   2727 			/* Grab any new packets. */
   2728 			atw_rxintr(sc);
   2729 
   2730 			if (rxstatus & ATW_INTR_RDU) {
   2731 				printf("%s: receive ring overrun\n",
   2732 				    sc->sc_dev.dv_xname);
   2733 				/* Get the receive process going again. */
   2734 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2735 				break;
   2736 			}
   2737 		}
   2738 
   2739 		if (txstatus) {
   2740 			/* Sweep up transmit descriptors. */
   2741 			atw_txintr(sc);
   2742 
   2743 			if (txstatus & ATW_INTR_TLT)
   2744 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
   2745 				    sc->sc_dev.dv_xname));
   2746 
   2747 			if (txstatus & ATW_INTR_TRT)
   2748 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
   2749 				    sc->sc_dev.dv_xname));
   2750 
   2751 			/* If Tx under-run, increase our transmit threshold
   2752 			 * if another is available.
   2753 			 */
   2754 			txthresh = sc->sc_txthresh + 1;
   2755 			if ((txstatus & ATW_INTR_TUF) &&
   2756 			    sc->sc_txth[txthresh].txth_name != NULL) {
   2757 				/* Idle the transmit process. */
   2758 				atw_idle(sc, ATW_NAR_ST);
   2759 
   2760 				sc->sc_txthresh = txthresh;
   2761 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
   2762 				sc->sc_opmode |=
   2763 				    sc->sc_txth[txthresh].txth_opmode;
   2764 				printf("%s: transmit underrun; new "
   2765 				    "threshold: %s\n", sc->sc_dev.dv_xname,
   2766 				    sc->sc_txth[txthresh].txth_name);
   2767 
   2768 				/* Set the new threshold and restart
   2769 				 * the transmit process.
   2770 				 */
   2771 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2772 				/* XXX Log every Nth underrun from
   2773 				 * XXX now on?
   2774 				 */
   2775 			}
   2776 		}
   2777 
   2778 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
   2779 			if (status & ATW_INTR_TPS)
   2780 				printf("%s: transmit process stopped\n",
   2781 				    sc->sc_dev.dv_xname);
   2782 			if (status & ATW_INTR_RPS)
   2783 				printf("%s: receive process stopped\n",
   2784 				    sc->sc_dev.dv_xname);
   2785 			(void)atw_init(ifp);
   2786 			break;
   2787 		}
   2788 
   2789 		if (status & ATW_INTR_FBE) {
   2790 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
   2791 			(void)atw_init(ifp);
   2792 			break;
   2793 		}
   2794 
   2795 		/*
   2796 		 * Not handled:
   2797 		 *
   2798 		 *	Transmit buffer unavailable -- normal
   2799 		 *	condition, nothing to do, really.
   2800 		 *
   2801 		 *	Early receive interrupt -- not available on
   2802 		 *	all chips, we just use RI.  We also only
   2803 		 *	use single-segment receive DMA, so this
   2804 		 *	is mostly useless.
   2805 		 *
   2806 		 *      TBD others
   2807 		 */
   2808 	}
   2809 
   2810 	/* Try to get more packets going. */
   2811 	atw_start(ifp);
   2812 
   2813 	return (handled);
   2814 }
   2815 
   2816 /*
   2817  * atw_idle:
   2818  *
   2819  *	Cause the transmit and/or receive processes to go idle.
   2820  *
   2821  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
   2822  *	process in STSR if I clear SR or ST after the process has already
   2823  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
   2824  *      do not seem to be too reliable. Perhaps I have the sense of the
   2825  *	Rx bits switched with the Tx bits?
   2826  */
   2827 void
   2828 atw_idle(struct atw_softc *sc, u_int32_t bits)
   2829 {
   2830 	u_int32_t ackmask = 0, opmode, stsr, test0;
   2831 	int i, s;
   2832 
   2833 	/* without this, somehow we run concurrently w/ interrupt handler */
   2834 	s = splnet();
   2835 
   2836 	opmode = sc->sc_opmode & ~bits;
   2837 
   2838 	if (bits & ATW_NAR_SR)
   2839 		ackmask |= ATW_INTR_RPS;
   2840 
   2841 	if (bits & ATW_NAR_ST) {
   2842 		ackmask |= ATW_INTR_TPS;
   2843 		/* set ATW_NAR_HF to flush TX FIFO. */
   2844 		opmode |= ATW_NAR_HF;
   2845 	}
   2846 
   2847 	ATW_WRITE(sc, ATW_NAR, opmode);
   2848 
   2849 	for (i = 0; i < 1000; i++) {
   2850 		stsr = ATW_READ(sc, ATW_STSR);
   2851 		if ((stsr & ackmask) == ackmask)
   2852 			break;
   2853 		DELAY(10);
   2854 	}
   2855 
   2856 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
   2857 
   2858 	if ((stsr & ackmask) == ackmask)
   2859 		goto out;
   2860 
   2861 	test0 = ATW_READ(sc, ATW_TEST0);
   2862 
   2863 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
   2864 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
   2865 		printf("%s: transmit process not idle [%s]\n",
   2866 		    sc->sc_dev.dv_xname,
   2867 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
   2868 		printf("%s: bits %08x test0 %08x stsr %08x\n",
   2869 		    sc->sc_dev.dv_xname, bits, test0, stsr);
   2870 	}
   2871 
   2872 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
   2873 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
   2874 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
   2875 		    sc->sc_dev.dv_xname,
   2876 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
   2877 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
   2878 		    sc->sc_dev.dv_xname, bits, test0, stsr));
   2879 	}
   2880 out:
   2881 	splx(s);
   2882 	return;
   2883 }
   2884 
   2885 /*
   2886  * atw_linkintr:
   2887  *
   2888  *	Helper; handle link-status interrupts.
   2889  */
   2890 void
   2891 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
   2892 {
   2893 	struct ieee80211com *ic = &sc->sc_ic;
   2894 
   2895 	if (ic->ic_state != IEEE80211_S_RUN)
   2896 		return;
   2897 
   2898 	if (linkstatus & ATW_INTR_LINKON) {
   2899 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
   2900 		sc->sc_rescan_timer = 0;
   2901 	} else if (linkstatus & ATW_INTR_LINKOFF) {
   2902 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
   2903 		if (ic->ic_opmode != IEEE80211_M_STA)
   2904 			return;
   2905 		sc->sc_rescan_timer = 3;
   2906 		ic->ic_if.if_timer = 1;
   2907 	}
   2908 }
   2909 
   2910 /*
   2911  * atw_rxintr:
   2912  *
   2913  *	Helper; handle receive interrupts.
   2914  */
   2915 void
   2916 atw_rxintr(struct atw_softc *sc)
   2917 {
   2918 	static int rate_tbl[] = {2, 4, 11, 22, 44};
   2919 	struct ieee80211com *ic = &sc->sc_ic;
   2920 	struct ieee80211_node *ni;
   2921 	struct ieee80211_frame *wh;
   2922 	struct ifnet *ifp = &ic->ic_if;
   2923 	struct atw_rxsoft *rxs;
   2924 	struct mbuf *m;
   2925 	u_int32_t rxstat;
   2926 	int i, len, rate, rate0;
   2927 	u_int32_t rssi;
   2928 
   2929 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
   2930 		rxs = &sc->sc_rxsoft[i];
   2931 
   2932 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2933 
   2934 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
   2935 		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
   2936 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
   2937 
   2938 		if (rxstat & ATW_RXSTAT_OWN)
   2939 			break; /* We have processed all receive buffers. */
   2940 
   2941 		DPRINTF3(sc,
   2942 		    ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
   2943 		    sc->sc_dev.dv_xname,
   2944 		    sc->sc_rxdescs[i].ar_stat,
   2945 		    sc->sc_rxdescs[i].ar_rssi,
   2946 		    sc->sc_rxdescs[i].ar_buf1,
   2947 		    sc->sc_rxdescs[i].ar_buf2));
   2948 
   2949 		/*
   2950 		 * Make sure the packet fits in one buffer.  This should
   2951 		 * always be the case.
   2952 		 */
   2953 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
   2954 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
   2955 			printf("%s: incoming packet spilled, resetting\n",
   2956 			    sc->sc_dev.dv_xname);
   2957 			(void)atw_init(ifp);
   2958 			return;
   2959 		}
   2960 
   2961 		/*
   2962 		 * If an error occurred, update stats, clear the status
   2963 		 * word, and leave the packet buffer in place.  It will
   2964 		 * simply be reused the next time the ring comes around.
   2965 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
   2966 		 * error.
   2967 		 */
   2968 
   2969 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
   2970 		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
   2971 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
   2972 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
   2973 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
   2974 				ATW_RXSTAT_ICVE)) != 0)) {
   2975 #define	PRINTERR(bit, str)						\
   2976 			if (rxstat & (bit))				\
   2977 				printf("%s: receive error: %s\n",	\
   2978 				    sc->sc_dev.dv_xname, str)
   2979 			ifp->if_ierrors++;
   2980 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
   2981 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
   2982 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
   2983 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
   2984 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
   2985 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
   2986 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
   2987 #undef PRINTERR
   2988 			ATW_INIT_RXDESC(sc, i);
   2989 			continue;
   2990 		}
   2991 
   2992 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2993 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2994 
   2995 		/*
   2996 		 * No errors; receive the packet.  Note the ADM8211
   2997 		 * includes the CRC in promiscuous mode.
   2998 		 */
   2999 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
   3000 
   3001 		/*
   3002 		 * Allocate a new mbuf cluster.  If that fails, we are
   3003 		 * out of memory, and must drop the packet and recycle
   3004 		 * the buffer that's already attached to this descriptor.
   3005 		 */
   3006 		m = rxs->rxs_mbuf;
   3007 		if (atw_add_rxbuf(sc, i) != 0) {
   3008 			ifp->if_ierrors++;
   3009 			ATW_INIT_RXDESC(sc, i);
   3010 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3011 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3012 			continue;
   3013 		}
   3014 
   3015 		ifp->if_ipackets++;
   3016 		if (sc->sc_opmode & ATW_NAR_PR)
   3017 			m->m_flags |= M_HASFCS;
   3018 		m->m_pkthdr.rcvif = ifp;
   3019 		m->m_pkthdr.len = m->m_len = len;
   3020 
   3021 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
   3022 			rate = 0;
   3023 		else
   3024 			rate = rate_tbl[rate0];
   3025 
   3026  #if NBPFILTER > 0
   3027 		/* Pass this up to any BPF listeners. */
   3028 		if (sc->sc_radiobpf != NULL) {
   3029 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
   3030 
   3031 			tap->ar_rate = rate;
   3032 			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3033 			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3034 
   3035 			/* TBD verify units are dB */
   3036 			tap->ar_antsignal = (int)rssi;
   3037 			/* TBD tap->ar_flags */
   3038 
   3039 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3040 			    tap->ar_ihdr.it_len, m);
   3041  		}
   3042  #endif /* NPBFILTER > 0 */
   3043 
   3044 		wh = mtod(m, struct ieee80211_frame *);
   3045 		ni = ieee80211_find_rxnode(ic, wh);
   3046 		ieee80211_input(ifp, m, ni, (int)rssi, 0);
   3047 		/*
   3048 		 * The frame may have caused the node to be marked for
   3049 		 * reclamation (e.g. in response to a DEAUTH message)
   3050 		 * so use free_node here instead of unref_node.
   3051 		 */
   3052 		if (ni == ic->ic_bss)
   3053 			ieee80211_unref_node(&ni);
   3054 		else
   3055 			ieee80211_free_node(ic, ni);
   3056 	}
   3057 
   3058 	/* Update the receive pointer. */
   3059 	sc->sc_rxptr = i;
   3060 }
   3061 
   3062 /*
   3063  * atw_txintr:
   3064  *
   3065  *	Helper; handle transmit interrupts.
   3066  */
   3067 void
   3068 atw_txintr(struct atw_softc *sc)
   3069 {
   3070 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
   3071     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
   3072 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
   3073     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
   3074 
   3075 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
   3076 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3077 	struct atw_txsoft *txs;
   3078 	u_int32_t txstat;
   3079 
   3080 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
   3081 	    sc->sc_dev.dv_xname, sc->sc_flags));
   3082 
   3083 	ifp->if_flags &= ~IFF_OACTIVE;
   3084 
   3085 	/*
   3086 	 * Go through our Tx list and free mbufs for those
   3087 	 * frames that have been transmitted.
   3088 	 */
   3089 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   3090 		ATW_CDTXSYNC(sc, txs->txs_lastdesc,
   3091 		    txs->txs_ndescs,
   3092 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3093 
   3094 #ifdef ATW_DEBUG
   3095 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3096 			int i;
   3097 			printf("    txsoft %p transmit chain:\n", txs);
   3098 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
   3099 				printf("     descriptor %d:\n", i);
   3100 				printf("       at_status:   0x%08x\n",
   3101 				    le32toh(sc->sc_txdescs[i].at_stat));
   3102 				printf("       at_flags:      0x%08x\n",
   3103 				    le32toh(sc->sc_txdescs[i].at_flags));
   3104 				printf("       at_buf1: 0x%08x\n",
   3105 				    le32toh(sc->sc_txdescs[i].at_buf1));
   3106 				printf("       at_buf2: 0x%08x\n",
   3107 				    le32toh(sc->sc_txdescs[i].at_buf2));
   3108 				if (i == txs->txs_lastdesc)
   3109 					break;
   3110 			}
   3111 		}
   3112 #endif
   3113 
   3114 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
   3115 		if (txstat & ATW_TXSTAT_OWN)
   3116 			break;
   3117 
   3118 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   3119 
   3120 		sc->sc_txfree += txs->txs_ndescs;
   3121 
   3122 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   3123 		    0, txs->txs_dmamap->dm_mapsize,
   3124 		    BUS_DMASYNC_POSTWRITE);
   3125 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3126 		m_freem(txs->txs_mbuf);
   3127 		txs->txs_mbuf = NULL;
   3128 
   3129 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   3130 
   3131 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   3132 		    (txstat & TXSTAT_ERRMASK) != 0) {
   3133 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
   3134 			    txstat_buf, sizeof(txstat_buf));
   3135 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
   3136 			    txstat_buf,
   3137 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
   3138 		}
   3139 
   3140 		/*
   3141 		 * Check for errors and collisions.
   3142 		 */
   3143 		if (txstat & ATW_TXSTAT_TUF)
   3144 			sc->sc_stats.ts_tx_tuf++;
   3145 		if (txstat & ATW_TXSTAT_TLT)
   3146 			sc->sc_stats.ts_tx_tlt++;
   3147 		if (txstat & ATW_TXSTAT_TRT)
   3148 			sc->sc_stats.ts_tx_trt++;
   3149 		if (txstat & ATW_TXSTAT_TRO)
   3150 			sc->sc_stats.ts_tx_tro++;
   3151 		if (txstat & ATW_TXSTAT_SOFBR) {
   3152 			sc->sc_stats.ts_tx_sofbr++;
   3153 		}
   3154 
   3155 		if ((txstat & ATW_TXSTAT_ES) == 0)
   3156 			ifp->if_collisions +=
   3157 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
   3158 		else
   3159 			ifp->if_oerrors++;
   3160 
   3161 		ifp->if_opackets++;
   3162 	}
   3163 
   3164 	/*
   3165 	 * If there are no more pending transmissions, cancel the watchdog
   3166 	 * timer.
   3167 	 */
   3168 	if (txs == NULL)
   3169 		sc->sc_tx_timer = 0;
   3170 #undef TXSTAT_ERRMASK
   3171 #undef TXSTAT_FMT
   3172 }
   3173 
   3174 /*
   3175  * atw_watchdog:	[ifnet interface function]
   3176  *
   3177  *	Watchdog timer handler.
   3178  */
   3179 void
   3180 atw_watchdog(struct ifnet *ifp)
   3181 {
   3182 	struct atw_softc *sc = ifp->if_softc;
   3183 	struct ieee80211com *ic = &sc->sc_ic;
   3184 
   3185 	ifp->if_timer = 0;
   3186 	if (ATW_IS_ENABLED(sc) == 0)
   3187 		return;
   3188 
   3189 	if (sc->sc_rescan_timer) {
   3190 		if (--sc->sc_rescan_timer == 0)
   3191 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3192 	}
   3193 	if (sc->sc_tx_timer) {
   3194 		if (--sc->sc_tx_timer == 0 &&
   3195 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
   3196 			printf("%s: transmit timeout\n", ifp->if_xname);
   3197 			ifp->if_oerrors++;
   3198 			(void)atw_init(ifp);
   3199 			atw_start(ifp);
   3200 		}
   3201 	}
   3202 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
   3203 		ifp->if_timer = 1;
   3204 	ieee80211_watchdog(ifp);
   3205 }
   3206 
   3207 /* Compute the 802.11 Duration field and the PLCP Length fields for
   3208  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
   3209  * Write the fields to the ADM8211 Tx header, frm.
   3210  *
   3211  * TBD use the fragmentation threshold to find the right duration for
   3212  * the first & last fragments.
   3213  *
   3214  * TBD make certain of the duration fields applied by the ADM8211 to each
   3215  * fragment. I think that the ADM8211 knows how to subtract the CTS
   3216  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
   3217  * I also think that the ADM8211 does *some* arithmetic for us, because
   3218  * otherwise I think we would have to set a first duration for CTS/first
   3219  * fragment, a second duration for fragments between the first and the
   3220  * last, and a third duration for the last fragment.
   3221  *
   3222  * TBD make certain that duration fields reflect addition of FCS/WEP
   3223  * and correct duration arithmetic as necessary.
   3224  */
   3225 static void
   3226 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
   3227     int len)
   3228 {
   3229 	int remainder;
   3230 
   3231 	/* deal also with encrypted fragments */
   3232 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
   3233 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
   3234 		    sc->sc_dev.dv_xname));
   3235 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
   3236 		       IEEE80211_WEP_CRCLEN;
   3237 	}
   3238 
   3239 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
   3240 	 * duration (XXX added by MAC?).
   3241 	 */
   3242 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
   3243 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
   3244 
   3245 	if (rate <= 4)
   3246 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
   3247 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3248 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3249 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3250 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
   3251 	else
   3252 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
   3253 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3254 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3255 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3256 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
   3257 
   3258 	/* lengthen duration if long preamble */
   3259 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
   3260 		frm->atw_head_dur +=
   3261 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
   3262 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
   3263 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
   3264 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
   3265 
   3266 	if (remainder != 0)
   3267 		frm->atw_head_dur++;
   3268 
   3269 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
   3270 	    (rate == 2 || rate == 4)) {
   3271 		/* derived from Linux: how could this be right? */
   3272 		frm->atw_head_plcplen = frm->atw_head_dur;
   3273 	} else {
   3274 		frm->atw_head_plcplen = (16 * len) / rate;
   3275 		remainder = (80 * len) % (rate * 5);
   3276 
   3277 		if (remainder != 0) {
   3278 			frm->atw_head_plcplen++;
   3279 
   3280 			/* XXX magic */
   3281 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
   3282 			    rate == 22 && remainder <= 30)
   3283 				frm->atw_head_plcplen |= 0x8000;
   3284 		}
   3285 	}
   3286 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
   3287 	    htole16(frm->atw_head_plcplen);
   3288 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
   3289 }
   3290 
   3291 #ifdef ATW_DEBUG
   3292 static void
   3293 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
   3294 {
   3295 	struct atw_softc *sc = ifp->if_softc;
   3296 	struct mbuf *m;
   3297 	int i, noctets = 0;
   3298 
   3299 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
   3300 	    m0->m_pkthdr.len);
   3301 
   3302 	for (m = m0; m; m = m->m_next) {
   3303 		if (m->m_len == 0)
   3304 			continue;
   3305 		for (i = 0; i < m->m_len; i++) {
   3306 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
   3307 			if (++noctets % 24 == 0)
   3308 				printf("\n");
   3309 		}
   3310 	}
   3311 	printf("%s%s: %d bytes emitted\n",
   3312 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
   3313 }
   3314 #endif /* ATW_DEBUG */
   3315 
   3316 /*
   3317  * atw_start:		[ifnet interface function]
   3318  *
   3319  *	Start packet transmission on the interface.
   3320  */
   3321 void
   3322 atw_start(struct ifnet *ifp)
   3323 {
   3324 	struct atw_softc *sc = ifp->if_softc;
   3325 	struct ieee80211com *ic = &sc->sc_ic;
   3326 	struct ieee80211_node *ni;
   3327 	struct ieee80211_frame *wh;
   3328 	struct atw_frame *hh;
   3329 	struct mbuf *m0, *m;
   3330 	struct atw_txsoft *txs, *last_txs;
   3331 	struct atw_txdesc *txd;
   3332 	int do_encrypt, rate;
   3333 	bus_dmamap_t dmamap;
   3334 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
   3335 
   3336 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
   3337 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
   3338 
   3339 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3340 		return;
   3341 
   3342 #if 0 /* TBD ??? */
   3343 	if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
   3344 		return;
   3345 #endif
   3346 
   3347 	/*
   3348 	 * Remember the previous number of free descriptors and
   3349 	 * the first descriptor we'll use.
   3350 	 */
   3351 	ofree = sc->sc_txfree;
   3352 	firsttx = sc->sc_txnext;
   3353 
   3354 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
   3355 	    sc->sc_dev.dv_xname, ofree, firsttx));
   3356 
   3357 	/*
   3358 	 * Loop through the send queue, setting up transmit descriptors
   3359 	 * until we drain the queue, or use up all available transmit
   3360 	 * descriptors.
   3361 	 */
   3362 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   3363 	       sc->sc_txfree != 0) {
   3364 
   3365 		/*
   3366 		 * Grab a packet off the management queue, if it
   3367 		 * is not empty. Otherwise, from the data queue.
   3368 		 */
   3369 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   3370 		if (m0 != NULL) {
   3371 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   3372 			m0->m_pkthdr.rcvif = NULL;
   3373 		} else {
   3374 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   3375 			if (m0 == NULL)
   3376 				break;
   3377 #if NBPFILTER > 0
   3378 			if (ifp->if_bpf != NULL)
   3379 				bpf_mtap(ifp->if_bpf, m0);
   3380 #endif /* NBPFILTER > 0 */
   3381 			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
   3382 				ifp->if_oerrors++;
   3383 				break;
   3384 			}
   3385 		}
   3386 
   3387 		rate = MAX(ieee80211_get_rate(ic), 2);
   3388 
   3389 #if NBPFILTER > 0
   3390 		/*
   3391 		 * Pass the packet to any BPF listeners.
   3392 		 */
   3393 		if (ic->ic_rawbpf != NULL)
   3394 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
   3395 
   3396 		if (sc->sc_radiobpf != NULL) {
   3397 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
   3398 
   3399 			tap->at_rate = rate;
   3400 			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3401 			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3402 
   3403 			/* TBD tap->at_flags */
   3404 
   3405 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3406 			    tap->at_ihdr.it_len, m0);
   3407 		}
   3408 #endif /* NBPFILTER > 0 */
   3409 
   3410 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
   3411 
   3412 		if (ni != NULL && ni != ic->ic_bss)
   3413 			ieee80211_free_node(ic, ni);
   3414 
   3415 		if (m0 == NULL) {
   3416 			ifp->if_oerrors++;
   3417 			break;
   3418 		}
   3419 
   3420 		/* just to make sure. */
   3421 		m0 = m_pullup(m0, sizeof(struct atw_frame));
   3422 
   3423 		if (m0 == NULL) {
   3424 			ifp->if_oerrors++;
   3425 			break;
   3426 		}
   3427 
   3428 		hh = mtod(m0, struct atw_frame *);
   3429 		wh = &hh->atw_ihdr;
   3430 
   3431 		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
   3432 
   3433 		/* Copy everything we need from the 802.11 header:
   3434 		 * Frame Control; address 1, address 3, or addresses
   3435 		 * 3 and 4. NIC fills in BSSID, SA.
   3436 		 */
   3437 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
   3438 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
   3439 				panic("%s: illegal WDS frame",
   3440 				    sc->sc_dev.dv_xname);
   3441 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
   3442 		} else
   3443 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
   3444 
   3445 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
   3446 
   3447 		/* initialize remaining Tx parameters */
   3448 		memset(&hh->u, 0, sizeof(hh->u));
   3449 
   3450 		hh->atw_rate = rate * 5;
   3451 		/* XXX this could be incorrect if M_FCS. _encap should
   3452 		 * probably strip FCS just in case it sticks around in
   3453 		 * bridged packets.
   3454 		 */
   3455 		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
   3456 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
   3457 		    sizeof(struct atw_frame));
   3458 
   3459 #if 0
   3460 		/* this virtually guaranteed that WEP-encrypted frames
   3461 		 * are fragmented. oops.
   3462 		 */
   3463 		hh->atw_fragthr = htole16(m0->m_pkthdr.len -
   3464 		    sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
   3465 		hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3466 #else
   3467 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3468 #endif
   3469 
   3470 		hh->atw_rtylmt = 3;
   3471 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
   3472 		if (do_encrypt) {
   3473 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
   3474 			hh->atw_keyid = ic->ic_wep_txkey;
   3475 		}
   3476 
   3477 		/* TBD 4-addr frames */
   3478 		atw_frame_setdurs(sc, hh, rate,
   3479 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
   3480 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
   3481 
   3482 		/* never fragment multicast frames */
   3483 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
   3484 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3485 		} else if (sc->sc_flags & ATWF_RTSCTS) {
   3486 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
   3487 		}
   3488 
   3489 #ifdef ATW_DEBUG
   3490 		/* experimental stuff */
   3491 		if (atw_xrtylmt != ~0)
   3492 			hh->atw_rtylmt = atw_xrtylmt;
   3493 		if (atw_xhdrctl != 0)
   3494 			hh->atw_hdrctl |= htole16(atw_xhdrctl);
   3495 		if (atw_xservice != IEEE80211_PLCP_SERVICE)
   3496 			hh->atw_service = atw_xservice;
   3497 		if (atw_xpaylen != 0)
   3498 			hh->atw_paylen = htole16(atw_xpaylen);
   3499 		hh->atw_fragnum = 0;
   3500 
   3501 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3502 			printf("%s: dst = %s, rate = 0x%02x, "
   3503 			    "service = 0x%02x, paylen = 0x%04x\n",
   3504 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
   3505 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
   3506 
   3507 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
   3508 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
   3509 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
   3510 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
   3511 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
   3512 			    hh->atw_tail_dur, hh->atw_head_dur);
   3513 
   3514 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
   3515 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
   3516 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
   3517 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
   3518 
   3519 			printf("%s: keyid = %d\n",
   3520 			    sc->sc_dev.dv_xname, hh->atw_keyid);
   3521 
   3522 			atw_dump_pkt(ifp, m0);
   3523 		}
   3524 #endif /* ATW_DEBUG */
   3525 
   3526 		dmamap = txs->txs_dmamap;
   3527 
   3528 		/*
   3529 		 * Load the DMA map.  Copy and try (once) again if the packet
   3530 		 * didn't fit in the alloted number of segments.
   3531 		 */
   3532 		for (first = 1;
   3533 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   3534 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
   3535 		     first = 0) {
   3536 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   3537 			if (m == NULL) {
   3538 				printf("%s: unable to allocate Tx mbuf\n",
   3539 				    sc->sc_dev.dv_xname);
   3540 				break;
   3541 			}
   3542 			if (m0->m_pkthdr.len > MHLEN) {
   3543 				MCLGET(m, M_DONTWAIT);
   3544 				if ((m->m_flags & M_EXT) == 0) {
   3545 					printf("%s: unable to allocate Tx "
   3546 					    "cluster\n", sc->sc_dev.dv_xname);
   3547 					m_freem(m);
   3548 					break;
   3549 				}
   3550 			}
   3551 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   3552 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   3553 			m_freem(m0);
   3554 			m0 = m;
   3555 			m = NULL;
   3556 		}
   3557 		if (error != 0) {
   3558 			printf("%s: unable to load Tx buffer, "
   3559 			    "error = %d\n", sc->sc_dev.dv_xname, error);
   3560 			m_freem(m0);
   3561 			break;
   3562 		}
   3563 
   3564 		/*
   3565 		 * Ensure we have enough descriptors free to describe
   3566 		 * the packet.
   3567 		 */
   3568 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   3569 			/*
   3570 			 * Not enough free descriptors to transmit
   3571 			 * this packet.  Unload the DMA map and
   3572 			 * drop the packet.  Notify the upper layer
   3573 			 * that there are no more slots left.
   3574 			 *
   3575 			 * XXX We could allocate an mbuf and copy, but
   3576 			 * XXX it is worth it?
   3577 			 */
   3578 			ifp->if_flags |= IFF_OACTIVE;
   3579 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   3580 			m_freem(m0);
   3581 			break;
   3582 		}
   3583 
   3584 		/*
   3585 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   3586 		 */
   3587 
   3588 		/* Sync the DMA map. */
   3589 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   3590 		    BUS_DMASYNC_PREWRITE);
   3591 
   3592 		/* XXX arbitrary retry limit; 8 because I have seen it in
   3593 		 * use already and maybe 0 means "no tries" !
   3594 		 */
   3595 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
   3596 
   3597 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
   3598 		    sc->sc_dev.dv_xname, rate * 5));
   3599 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
   3600 
   3601 		/*
   3602 		 * Initialize the transmit descriptors.
   3603 		 */
   3604 		for (nexttx = sc->sc_txnext, seg = 0;
   3605 		     seg < dmamap->dm_nsegs;
   3606 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
   3607 			/*
   3608 			 * If this is the first descriptor we're
   3609 			 * enqueueing, don't set the OWN bit just
   3610 			 * yet.  That could cause a race condition.
   3611 			 * We'll do it below.
   3612 			 */
   3613 			txd = &sc->sc_txdescs[nexttx];
   3614 			txd->at_ctl = ctl |
   3615 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
   3616 
   3617 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
   3618 			txd->at_flags =
   3619 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
   3620 			                   ATW_TXFLAG_TBS1_MASK)) |
   3621 			    ((nexttx == (ATW_NTXDESC - 1))
   3622 			        ? htole32(ATW_TXFLAG_TER) : 0);
   3623 			lasttx = nexttx;
   3624 		}
   3625 
   3626 		IASSERT(lasttx != -1, ("bad lastx"));
   3627 		/* Set `first segment' and `last segment' appropriately. */
   3628 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
   3629 		    htole32(ATW_TXFLAG_FS);
   3630 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
   3631 
   3632 #ifdef ATW_DEBUG
   3633 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3634 			printf("     txsoft %p transmit chain:\n", txs);
   3635 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
   3636 				printf("     descriptor %d:\n", seg);
   3637 				printf("       at_ctl:   0x%08x\n",
   3638 				    le32toh(sc->sc_txdescs[seg].at_ctl));
   3639 				printf("       at_flags:      0x%08x\n",
   3640 				    le32toh(sc->sc_txdescs[seg].at_flags));
   3641 				printf("       at_buf1: 0x%08x\n",
   3642 				    le32toh(sc->sc_txdescs[seg].at_buf1));
   3643 				printf("       at_buf2: 0x%08x\n",
   3644 				    le32toh(sc->sc_txdescs[seg].at_buf2));
   3645 				if (seg == lasttx)
   3646 					break;
   3647 			}
   3648 		}
   3649 #endif
   3650 
   3651 		/* Sync the descriptors we're using. */
   3652 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   3653 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3654 
   3655 		/*
   3656 		 * Store a pointer to the packet so we can free it later,
   3657 		 * and remember what txdirty will be once the packet is
   3658 		 * done.
   3659 		 */
   3660 		txs->txs_mbuf = m0;
   3661 		txs->txs_firstdesc = sc->sc_txnext;
   3662 		txs->txs_lastdesc = lasttx;
   3663 		txs->txs_ndescs = dmamap->dm_nsegs;
   3664 
   3665 		/* Advance the tx pointer. */
   3666 		sc->sc_txfree -= dmamap->dm_nsegs;
   3667 		sc->sc_txnext = nexttx;
   3668 
   3669 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   3670 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   3671 
   3672 		last_txs = txs;
   3673 	}
   3674 
   3675 	if (txs == NULL || sc->sc_txfree == 0) {
   3676 		/* No more slots left; notify upper layer. */
   3677 		ifp->if_flags |= IFF_OACTIVE;
   3678 	}
   3679 
   3680 	if (sc->sc_txfree != ofree) {
   3681 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   3682 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   3683 		/*
   3684 		 * Cause a transmit interrupt to happen on the
   3685 		 * last packet we enqueued.
   3686 		 */
   3687 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
   3688 		ATW_CDTXSYNC(sc, lasttx, 1,
   3689 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3690 
   3691 		/*
   3692 		 * The entire packet chain is set up.  Give the
   3693 		 * first descriptor to the chip now.
   3694 		 */
   3695 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
   3696 		ATW_CDTXSYNC(sc, firsttx, 1,
   3697 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3698 
   3699 		/* Wake up the transmitter. */
   3700 		ATW_WRITE(sc, ATW_TDR, 0x1);
   3701 
   3702 		/* Set a watchdog timer in case the chip flakes out. */
   3703 		sc->sc_tx_timer = 5;
   3704 		ifp->if_timer = 1;
   3705 	}
   3706 }
   3707 
   3708 /*
   3709  * atw_power:
   3710  *
   3711  *	Power management (suspend/resume) hook.
   3712  */
   3713 void
   3714 atw_power(int why, void *arg)
   3715 {
   3716 	struct atw_softc *sc = arg;
   3717 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3718 	int s;
   3719 
   3720 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
   3721 
   3722 	s = splnet();
   3723 	switch (why) {
   3724 	case PWR_STANDBY:
   3725 		/* XXX do nothing. */
   3726 		break;
   3727 	case PWR_SUSPEND:
   3728 		atw_stop(ifp, 0);
   3729 		if (sc->sc_power != NULL)
   3730 			(*sc->sc_power)(sc, why);
   3731 		break;
   3732 	case PWR_RESUME:
   3733 		if (ifp->if_flags & IFF_UP) {
   3734 			if (sc->sc_power != NULL)
   3735 				(*sc->sc_power)(sc, why);
   3736 			atw_init(ifp);
   3737 		}
   3738 		break;
   3739 	case PWR_SOFTSUSPEND:
   3740 	case PWR_SOFTSTANDBY:
   3741 	case PWR_SOFTRESUME:
   3742 		break;
   3743 	}
   3744 	splx(s);
   3745 }
   3746 
   3747 /*
   3748  * atw_ioctl:		[ifnet interface function]
   3749  *
   3750  *	Handle control requests from the operator.
   3751  */
   3752 int
   3753 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   3754 {
   3755 	struct atw_softc *sc = ifp->if_softc;
   3756 	struct ifreq *ifr = (struct ifreq *)data;
   3757 	int s, error = 0;
   3758 
   3759 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
   3760 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   3761 		return ENXIO;
   3762 
   3763 	s = splnet();
   3764 
   3765 	switch (cmd) {
   3766 	case SIOCSIFFLAGS:
   3767 		if (ifp->if_flags & IFF_UP) {
   3768 			if (ATW_IS_ENABLED(sc)) {
   3769 				/*
   3770 				 * To avoid rescanning another access point,
   3771 				 * do not call atw_init() here.  Instead,
   3772 				 * only reflect media settings.
   3773 				 */
   3774 				atw_filter_setup(sc);
   3775 			} else
   3776 				error = atw_init(ifp);
   3777 		} else if (ATW_IS_ENABLED(sc))
   3778 			atw_stop(ifp, 1);
   3779 		break;
   3780 	case SIOCADDMULTI:
   3781 	case SIOCDELMULTI:
   3782 		error = (cmd == SIOCADDMULTI) ?
   3783 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
   3784 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
   3785 		if (error == ENETRESET) {
   3786 			if (ATW_IS_ENABLED(sc))
   3787 				atw_filter_setup(sc); /* do not rescan */
   3788 			error = 0;
   3789 		}
   3790 		break;
   3791 	default:
   3792 		error = ieee80211_ioctl(ifp, cmd, data);
   3793 		if (error == ENETRESET) {
   3794 			if (ATW_IS_ENABLED(sc))
   3795 				error = atw_init(ifp);
   3796 			else
   3797 				error = 0;
   3798 		}
   3799 		break;
   3800 	}
   3801 
   3802 	/* Try to get more packets going. */
   3803 	if (ATW_IS_ENABLED(sc))
   3804 		atw_start(ifp);
   3805 
   3806 	splx(s);
   3807 	return (error);
   3808 }
   3809 
   3810 static int
   3811 atw_media_change(struct ifnet *ifp)
   3812 {
   3813 	int error;
   3814 
   3815 	error = ieee80211_media_change(ifp);
   3816 	if (error == ENETRESET) {
   3817 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   3818 		    (IFF_RUNNING|IFF_UP))
   3819 			atw_init(ifp);		/* XXX lose error */
   3820 		error = 0;
   3821 	}
   3822 	return error;
   3823 }
   3824 
   3825 static void
   3826 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
   3827 {
   3828 	struct atw_softc *sc = ifp->if_softc;
   3829 
   3830 	if (ATW_IS_ENABLED(sc) == 0) {
   3831 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
   3832 		imr->ifm_status = 0;
   3833 		return;
   3834 	}
   3835 	ieee80211_media_status(ifp, imr);
   3836 }
   3837