atw.c revision 1.35 1 /* $NetBSD: atw.c,v 1.35 2004/06/23 09:05:50 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.35 2004/06/23 09:05:50 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * IBSS join/create
131 *
132 * set ATW_NAR_EA (is set by ASIC?)
133 *
134 * BSS join: (re)association response
135 *
136 * set ATW_FRCTL_AID
137 *
138 * optimizations ???
139 *
140 */
141
142 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
143 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
144 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
145
146 int atw_rfio_enable_delay = 20 * 1000;
147 int atw_rfio_disable_delay = 2 * 1000;
148 int atw_writewep_delay = 5;
149 int atw_beacon_len_adjust = 4;
150 int atw_dwelltime = 200;
151
152 #ifdef ATW_DEBUG
153 int atw_xhdrctl = 0;
154 int atw_xrtylmt = ~0;
155 int atw_xservice = IEEE80211_PLCP_SERVICE;
156 int atw_xpaylen = 0;
157
158 int atw_debug = 0;
159
160 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
161 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
162 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
163 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
164 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
165 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
166 static void atw_print_regs(struct atw_softc *, const char *);
167 static void atw_rf3000_print(struct atw_softc *);
168 static void atw_si4126_print(struct atw_softc *);
169 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
170 #else
171 #define ATW_DPRINTF(x)
172 #define ATW_DPRINTF2(x)
173 #define ATW_DPRINTF3(x)
174 #define DPRINTF(sc, x) /* nothing */
175 #define DPRINTF2(sc, x) /* nothing */
176 #define DPRINTF3(sc, x) /* nothing */
177 #endif
178
179 #ifdef ATW_STATS
180 void atw_print_stats(struct atw_softc *);
181 #endif
182
183 void atw_start(struct ifnet *);
184 void atw_watchdog(struct ifnet *);
185 int atw_ioctl(struct ifnet *, u_long, caddr_t);
186 int atw_init(struct ifnet *);
187 void atw_stop(struct ifnet *, int);
188
189 void atw_reset(struct atw_softc *);
190 int atw_read_srom(struct atw_softc *);
191
192 void atw_shutdown(void *);
193
194 void atw_rxdrain(struct atw_softc *);
195 int atw_add_rxbuf(struct atw_softc *, int);
196 void atw_idle(struct atw_softc *, u_int32_t);
197
198 int atw_enable(struct atw_softc *);
199 void atw_disable(struct atw_softc *);
200 void atw_power(int, void *);
201
202 void atw_rxintr(struct atw_softc *);
203 void atw_txintr(struct atw_softc *);
204 void atw_linkintr(struct atw_softc *, u_int32_t);
205
206 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
207 static void atw_tsf(struct atw_softc *);
208 static void atw_start_beacon(struct atw_softc *, int);
209 static void atw_write_wep(struct atw_softc *);
210 static void atw_write_bssid(struct atw_softc *);
211 static void atw_write_bcn_thresh(struct atw_softc *);
212 static void atw_write_ssid(struct atw_softc *);
213 static void atw_write_sup_rates(struct atw_softc *);
214 static void atw_clear_sram(struct atw_softc *);
215 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
216 static int atw_media_change(struct ifnet *);
217 static void atw_media_status(struct ifnet *, struct ifmediareq *);
218 static void atw_filter_setup(struct atw_softc *);
219 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
220 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
221 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
222 struct ieee80211_node *, int, int, u_int32_t);
223 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
224 struct ieee80211_node *, int, int, u_int32_t);
225 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
226 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
227
228 static int atw_tune(struct atw_softc *);
229
230 static void atw_rfio_enable(struct atw_softc *, int);
231
232 /* RFMD RF3000 Baseband Processor */
233 static int atw_rf3000_init(struct atw_softc *);
234 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
235 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
236 #ifdef ATW_DEBUG
237 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
238 #endif /* ATW_DEBUG */
239
240 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
241 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
242 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
243 #ifdef ATW_DEBUG
244 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
245 #endif /* ATW_DEBUG */
246
247 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
248 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
249
250 const char *atw_tx_state[] = {
251 "STOPPED",
252 "RUNNING - read descriptor",
253 "RUNNING - transmitting",
254 "RUNNING - filling fifo", /* XXX */
255 "SUSPENDED",
256 "RUNNING -- write descriptor",
257 "RUNNING -- write last descriptor",
258 "RUNNING - fifo full"
259 };
260
261 const char *atw_rx_state[] = {
262 "STOPPED",
263 "RUNNING - read descriptor",
264 "RUNNING - check this packet, pre-fetch next",
265 "RUNNING - wait for reception",
266 "SUSPENDED",
267 "RUNNING - write descriptor",
268 "RUNNING - flush fifo",
269 "RUNNING - fifo drain"
270 };
271
272 int
273 atw_activate(struct device *self, enum devact act)
274 {
275 struct atw_softc *sc = (struct atw_softc *)self;
276 int rv = 0, s;
277
278 s = splnet();
279 switch (act) {
280 case DVACT_ACTIVATE:
281 rv = EOPNOTSUPP;
282 break;
283
284 case DVACT_DEACTIVATE:
285 if_deactivate(&sc->sc_ic.ic_if);
286 break;
287 }
288 splx(s);
289 return rv;
290 }
291
292 /*
293 * atw_enable:
294 *
295 * Enable the ADM8211 chip.
296 */
297 int
298 atw_enable(struct atw_softc *sc)
299 {
300
301 if (ATW_IS_ENABLED(sc) == 0) {
302 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
303 printf("%s: device enable failed\n",
304 sc->sc_dev.dv_xname);
305 return (EIO);
306 }
307 sc->sc_flags |= ATWF_ENABLED;
308 }
309 return (0);
310 }
311
312 /*
313 * atw_disable:
314 *
315 * Disable the ADM8211 chip.
316 */
317 void
318 atw_disable(struct atw_softc *sc)
319 {
320 if (!ATW_IS_ENABLED(sc))
321 return;
322 if (sc->sc_disable != NULL)
323 (*sc->sc_disable)(sc);
324 sc->sc_flags &= ~ATWF_ENABLED;
325 }
326
327 /* Returns -1 on failure. */
328 int
329 atw_read_srom(struct atw_softc *sc)
330 {
331 struct seeprom_descriptor sd;
332 u_int32_t reg;
333
334 (void)memset(&sd, 0, sizeof(sd));
335
336 reg = ATW_READ(sc, ATW_TEST0);
337
338 if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
339 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
340 return -1;
341 }
342
343 switch (reg & ATW_TEST0_EPTYP_MASK) {
344 case ATW_TEST0_EPTYP_93c66:
345 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
346 sc->sc_sromsz = 512;
347 sd.sd_chip = C56_66;
348 break;
349 case ATW_TEST0_EPTYP_93c46:
350 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
351 sc->sc_sromsz = 128;
352 sd.sd_chip = C46;
353 break;
354 default:
355 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
356 MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
357 return -1;
358 }
359
360 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
361
362 if (sc->sc_srom == NULL) {
363 printf("%s: unable to allocate SROM buffer\n",
364 sc->sc_dev.dv_xname);
365 return -1;
366 }
367
368 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
369
370 /* ADM8211 has a single 32-bit register for controlling the
371 * 93cx6 SROM. Bit SRS enables the serial port. There is no
372 * "ready" bit. The ADM8211 input/output sense is the reverse
373 * of read_seeprom's.
374 */
375 sd.sd_tag = sc->sc_st;
376 sd.sd_bsh = sc->sc_sh;
377 sd.sd_regsize = 4;
378 sd.sd_control_offset = ATW_SPR;
379 sd.sd_status_offset = ATW_SPR;
380 sd.sd_dataout_offset = ATW_SPR;
381 sd.sd_CK = ATW_SPR_SCLK;
382 sd.sd_CS = ATW_SPR_SCS;
383 sd.sd_DI = ATW_SPR_SDO;
384 sd.sd_DO = ATW_SPR_SDI;
385 sd.sd_MS = ATW_SPR_SRS;
386 sd.sd_RDY = 0;
387
388 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
389 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
390 free(sc->sc_srom, M_DEVBUF);
391 return -1;
392 }
393 #ifdef ATW_DEBUG
394 {
395 int i;
396 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
397 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
398 if (((i % 8) == 0) && (i != 0)) {
399 ATW_DPRINTF(("\n\t"));
400 }
401 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
402 }
403 ATW_DPRINTF(("\n"));
404 }
405 #endif /* ATW_DEBUG */
406 return 0;
407 }
408
409 #ifdef ATW_DEBUG
410 static void
411 atw_print_regs(struct atw_softc *sc, const char *where)
412 {
413 #define PRINTREG(sc, reg) \
414 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
415 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
416
417 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
418
419 PRINTREG(sc, ATW_PAR);
420 PRINTREG(sc, ATW_FRCTL);
421 PRINTREG(sc, ATW_TDR);
422 PRINTREG(sc, ATW_WTDP);
423 PRINTREG(sc, ATW_RDR);
424 PRINTREG(sc, ATW_WRDP);
425 PRINTREG(sc, ATW_RDB);
426 PRINTREG(sc, ATW_CSR3A);
427 PRINTREG(sc, ATW_TDBD);
428 PRINTREG(sc, ATW_TDBP);
429 PRINTREG(sc, ATW_STSR);
430 PRINTREG(sc, ATW_CSR5A);
431 PRINTREG(sc, ATW_NAR);
432 PRINTREG(sc, ATW_CSR6A);
433 PRINTREG(sc, ATW_IER);
434 PRINTREG(sc, ATW_CSR7A);
435 PRINTREG(sc, ATW_LPC);
436 PRINTREG(sc, ATW_TEST1);
437 PRINTREG(sc, ATW_SPR);
438 PRINTREG(sc, ATW_TEST0);
439 PRINTREG(sc, ATW_WCSR);
440 PRINTREG(sc, ATW_WPDR);
441 PRINTREG(sc, ATW_GPTMR);
442 PRINTREG(sc, ATW_GPIO);
443 PRINTREG(sc, ATW_BBPCTL);
444 PRINTREG(sc, ATW_SYNCTL);
445 PRINTREG(sc, ATW_PLCPHD);
446 PRINTREG(sc, ATW_MMIWADDR);
447 PRINTREG(sc, ATW_MMIRADDR1);
448 PRINTREG(sc, ATW_MMIRADDR2);
449 PRINTREG(sc, ATW_TXBR);
450 PRINTREG(sc, ATW_CSR15A);
451 PRINTREG(sc, ATW_ALCSTAT);
452 PRINTREG(sc, ATW_TOFS2);
453 PRINTREG(sc, ATW_CMDR);
454 PRINTREG(sc, ATW_PCIC);
455 PRINTREG(sc, ATW_PMCSR);
456 PRINTREG(sc, ATW_PAR0);
457 PRINTREG(sc, ATW_PAR1);
458 PRINTREG(sc, ATW_MAR0);
459 PRINTREG(sc, ATW_MAR1);
460 PRINTREG(sc, ATW_ATIMDA0);
461 PRINTREG(sc, ATW_ABDA1);
462 PRINTREG(sc, ATW_BSSID0);
463 PRINTREG(sc, ATW_TXLMT);
464 PRINTREG(sc, ATW_MIBCNT);
465 PRINTREG(sc, ATW_BCNT);
466 PRINTREG(sc, ATW_TSFTH);
467 PRINTREG(sc, ATW_TSC);
468 PRINTREG(sc, ATW_SYNRF);
469 PRINTREG(sc, ATW_BPLI);
470 PRINTREG(sc, ATW_CAP0);
471 PRINTREG(sc, ATW_CAP1);
472 PRINTREG(sc, ATW_RMD);
473 PRINTREG(sc, ATW_CFPP);
474 PRINTREG(sc, ATW_TOFS0);
475 PRINTREG(sc, ATW_TOFS1);
476 PRINTREG(sc, ATW_IFST);
477 PRINTREG(sc, ATW_RSPT);
478 PRINTREG(sc, ATW_TSFTL);
479 PRINTREG(sc, ATW_WEPCTL);
480 PRINTREG(sc, ATW_WESK);
481 PRINTREG(sc, ATW_WEPCNT);
482 PRINTREG(sc, ATW_MACTEST);
483 PRINTREG(sc, ATW_FER);
484 PRINTREG(sc, ATW_FEMR);
485 PRINTREG(sc, ATW_FPSR);
486 PRINTREG(sc, ATW_FFER);
487 #undef PRINTREG
488 }
489 #endif /* ATW_DEBUG */
490
491 /*
492 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
493 */
494 void
495 atw_attach(struct atw_softc *sc)
496 {
497 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
498 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
499 };
500 struct ieee80211com *ic = &sc->sc_ic;
501 struct ifnet *ifp = &ic->ic_if;
502 int country_code, error, i, nrate;
503 u_int32_t reg;
504 static const char *type_strings[] = {"Intersil (not supported)",
505 "RFMD", "Marvel (not supported)"};
506
507 sc->sc_txth = atw_txthresh_tab_lo;
508
509 SIMPLEQ_INIT(&sc->sc_txfreeq);
510 SIMPLEQ_INIT(&sc->sc_txdirtyq);
511
512 #ifdef ATW_DEBUG
513 atw_print_regs(sc, "atw_attach");
514 #endif /* ATW_DEBUG */
515
516 /*
517 * Allocate the control data structures, and create and load the
518 * DMA map for it.
519 */
520 if ((error = bus_dmamem_alloc(sc->sc_dmat,
521 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
522 1, &sc->sc_cdnseg, 0)) != 0) {
523 printf("%s: unable to allocate control data, error = %d\n",
524 sc->sc_dev.dv_xname, error);
525 goto fail_0;
526 }
527
528 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
529 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
530 BUS_DMA_COHERENT)) != 0) {
531 printf("%s: unable to map control data, error = %d\n",
532 sc->sc_dev.dv_xname, error);
533 goto fail_1;
534 }
535
536 if ((error = bus_dmamap_create(sc->sc_dmat,
537 sizeof(struct atw_control_data), 1,
538 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
539 printf("%s: unable to create control data DMA map, "
540 "error = %d\n", sc->sc_dev.dv_xname, error);
541 goto fail_2;
542 }
543
544 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
545 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
546 0)) != 0) {
547 printf("%s: unable to load control data DMA map, error = %d\n",
548 sc->sc_dev.dv_xname, error);
549 goto fail_3;
550 }
551
552 /*
553 * Create the transmit buffer DMA maps.
554 */
555 sc->sc_ntxsegs = ATW_NTXSEGS;
556 for (i = 0; i < ATW_TXQUEUELEN; i++) {
557 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
558 sc->sc_ntxsegs, MCLBYTES, 0, 0,
559 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
560 printf("%s: unable to create tx DMA map %d, "
561 "error = %d\n", sc->sc_dev.dv_xname, i, error);
562 goto fail_4;
563 }
564 }
565
566 /*
567 * Create the receive buffer DMA maps.
568 */
569 for (i = 0; i < ATW_NRXDESC; i++) {
570 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
571 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
572 printf("%s: unable to create rx DMA map %d, "
573 "error = %d\n", sc->sc_dev.dv_xname, i, error);
574 goto fail_5;
575 }
576 }
577 for (i = 0; i < ATW_NRXDESC; i++) {
578 sc->sc_rxsoft[i].rxs_mbuf = NULL;
579 }
580
581 /* Reset the chip to a known state. */
582 atw_reset(sc);
583
584 if (atw_read_srom(sc) == -1)
585 return;
586
587 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
588 ATW_SR_RFTYPE_MASK);
589
590 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
591 ATW_SR_BBPTYPE_MASK);
592
593 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
594 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
595 return;
596 }
597 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
598 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
599 return;
600 }
601
602 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
603 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
604
605 /* XXX There exists a Linux driver which seems to use RFType = 0 for
606 * MARVEL. My bug, or theirs?
607 */
608
609 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
610
611 switch (sc->sc_rftype) {
612 case ATW_RFTYPE_INTERSIL:
613 reg |= ATW_SYNCTL_CS1;
614 break;
615 case ATW_RFTYPE_RFMD:
616 reg |= ATW_SYNCTL_CS0;
617 break;
618 case ATW_RFTYPE_MARVEL:
619 break;
620 }
621
622 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
623 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
624
625 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
626
627 switch (sc->sc_bbptype) {
628 case ATW_BBPTYPE_INTERSIL:
629 reg |= ATW_BBPCTL_TWI;
630 break;
631 case ATW_BBPTYPE_RFMD:
632 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
633 ATW_BBPCTL_CCA_ACTLO;
634 break;
635 case ATW_BBPTYPE_MARVEL:
636 break;
637 case ATW_C_BBPTYPE_RFMD:
638 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
639 sc->sc_dev.dv_xname);
640 break;
641 }
642
643 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
644 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
645
646 /*
647 * From this point forward, the attachment cannot fail. A failure
648 * before this point releases all resources that may have been
649 * allocated.
650 */
651 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
652
653 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
654 htole16(sc->sc_srom[ATW_SR_MAC00]),
655 htole16(sc->sc_srom[ATW_SR_MAC01]),
656 htole16(sc->sc_srom[ATW_SR_MAC10])));
657
658 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
659 ATW_SR_CTRY_MASK);
660
661 #define ADD_CHANNEL(_ic, _chan) do { \
662 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
663 _ic->ic_channels[_chan].ic_freq = \
664 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
665 } while (0)
666
667 /* Find available channels */
668 switch (country_code) {
669 case COUNTRY_MMK2: /* 1-14 */
670 ADD_CHANNEL(ic, 14);
671 /*FALLTHROUGH*/
672 case COUNTRY_ETSI: /* 1-13 */
673 for (i = 1; i <= 13; i++)
674 ADD_CHANNEL(ic, i);
675 break;
676 case COUNTRY_FCC: /* 1-11 */
677 case COUNTRY_IC: /* 1-11 */
678 for (i = 1; i <= 11; i++)
679 ADD_CHANNEL(ic, i);
680 break;
681 case COUNTRY_MMK: /* 14 */
682 ADD_CHANNEL(ic, 14);
683 break;
684 case COUNTRY_FRANCE: /* 10-13 */
685 for (i = 10; i <= 13; i++)
686 ADD_CHANNEL(ic, i);
687 break;
688 default: /* assume channels 10-11 */
689 case COUNTRY_SPAIN: /* 10-11 */
690 for (i = 10; i <= 11; i++)
691 ADD_CHANNEL(ic, i);
692 break;
693 }
694
695 /* Read the MAC address. */
696 reg = ATW_READ(sc, ATW_PAR0);
697 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
698 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
699 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
700 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
701 reg = ATW_READ(sc, ATW_PAR1);
702 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
703 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
704
705 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
706 printf(" could not get mac address, attach failed\n");
707 return;
708 }
709
710 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
711
712 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
713 ifp->if_softc = sc;
714 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
715 IFF_NOTRAILERS;
716 ifp->if_ioctl = atw_ioctl;
717 ifp->if_start = atw_start;
718 ifp->if_watchdog = atw_watchdog;
719 ifp->if_init = atw_init;
720 ifp->if_stop = atw_stop;
721 IFQ_SET_READY(&ifp->if_snd);
722
723 ic->ic_phytype = IEEE80211_T_DS;
724 ic->ic_opmode = IEEE80211_M_STA;
725 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
726 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
727
728 nrate = 0;
729 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
730 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
731 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
732 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
733 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
734
735 /*
736 * Call MI attach routines.
737 */
738
739 if_attach(ifp);
740 ieee80211_ifattach(ifp);
741
742 sc->sc_newstate = ic->ic_newstate;
743 ic->ic_newstate = atw_newstate;
744
745 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
746 ic->ic_recv_mgmt = atw_recv_mgmt;
747
748 sc->sc_node_free = ic->ic_node_free;
749 ic->ic_node_free = atw_node_free;
750
751 sc->sc_node_alloc = ic->ic_node_alloc;
752 ic->ic_node_alloc = atw_node_alloc;
753
754 /* possibly we should fill in our own sc_send_prresp, since
755 * the ADM8211 is probably sending probe responses in ad hoc
756 * mode.
757 */
758
759 /* complete initialization */
760 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
761 callout_init(&sc->sc_scan_ch);
762
763 #if NBPFILTER > 0
764 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
765 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
766 #endif
767
768 /*
769 * Make sure the interface is shutdown during reboot.
770 */
771 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
772 if (sc->sc_sdhook == NULL)
773 printf("%s: WARNING: unable to establish shutdown hook\n",
774 sc->sc_dev.dv_xname);
775
776 /*
777 * Add a suspend hook to make sure we come back up after a
778 * resume.
779 */
780 sc->sc_powerhook = powerhook_establish(atw_power, sc);
781 if (sc->sc_powerhook == NULL)
782 printf("%s: WARNING: unable to establish power hook\n",
783 sc->sc_dev.dv_xname);
784
785 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
786 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
787 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
788
789 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
790 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
791 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
792
793 return;
794
795 /*
796 * Free any resources we've allocated during the failed attach
797 * attempt. Do this in reverse order and fall through.
798 */
799 fail_5:
800 for (i = 0; i < ATW_NRXDESC; i++) {
801 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
802 continue;
803 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
804 }
805 fail_4:
806 for (i = 0; i < ATW_TXQUEUELEN; i++) {
807 if (sc->sc_txsoft[i].txs_dmamap == NULL)
808 continue;
809 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
810 }
811 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
812 fail_3:
813 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
814 fail_2:
815 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
816 sizeof(struct atw_control_data));
817 fail_1:
818 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
819 fail_0:
820 return;
821 }
822
823 static struct ieee80211_node *
824 atw_node_alloc(struct ieee80211com *ic)
825 {
826 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
827 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
828
829 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
830 return ni;
831 }
832
833 static void
834 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
835 {
836 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
837
838 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
839 ether_sprintf(ni->ni_bssid)));
840 (*sc->sc_node_free)(ic, ni);
841 }
842
843 /*
844 * atw_reset:
845 *
846 * Perform a soft reset on the ADM8211.
847 */
848 void
849 atw_reset(struct atw_softc *sc)
850 {
851 int i;
852
853 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
854
855 for (i = 0; i < 10000; i++) {
856 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
857 break;
858 DELAY(1);
859 }
860
861 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
862
863 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
864 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
865
866 /* Turn off maximum power saving. */
867 ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
868
869 /* Recall EEPROM. */
870 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
871
872 DELAY(10 * 1000);
873
874 /* A reset seems to affect the SRAM contents, so put them into
875 * a known state.
876 */
877 atw_clear_sram(sc);
878
879 memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
880
881 sc->sc_lost_bcn_thresh = 0;
882 }
883
884 static void
885 atw_clear_sram(struct atw_softc *sc)
886 {
887 #if 0
888 for (addr = 0; addr < 448; addr++) {
889 ATW_WRITE(sc, ATW_WEPCTL,
890 ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0 | addr);
891 DELAY(1000);
892 ATW_WRITE(sc, ATW_WESK, 0);
893 DELAY(1000); /* paranoia */
894 }
895 return;
896 #endif
897 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
898 /* XXX not for revision 0x20. */
899 atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
900 }
901
902 /* TBD atw_init
903 *
904 * set MAC based on ic->ic_bss->myaddr
905 * write WEP keys
906 * set TX rate
907 */
908
909 /*
910 * atw_init: [ ifnet interface function ]
911 *
912 * Initialize the interface. Must be called at splnet().
913 */
914 int
915 atw_init(struct ifnet *ifp)
916 {
917 struct atw_softc *sc = ifp->if_softc;
918 struct ieee80211com *ic = &sc->sc_ic;
919 struct atw_txsoft *txs;
920 struct atw_rxsoft *rxs;
921 u_int32_t reg;
922 int i, error = 0;
923
924 if ((error = atw_enable(sc)) != 0)
925 goto out;
926
927 /*
928 * Cancel any pending I/O. This also resets.
929 */
930 atw_stop(ifp, 0);
931
932 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
933 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
934 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
935 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
936
937 /* Turn off APM??? (A binary-only driver does this.)
938 *
939 * Set Rx store-and-forward mode.
940 */
941 reg = ATW_READ(sc, ATW_CMDR);
942 reg &= ~ATW_CMDR_APM;
943 reg &= ~ATW_CMDR_DRT_MASK;
944 reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
945
946 ATW_WRITE(sc, ATW_CMDR, reg);
947
948 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
949 *
950 * XXX a binary-only driver sets a different service field than
951 * 0. why?
952 */
953 reg = ATW_READ(sc, ATW_PLCPHD);
954 reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
955 reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
956 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
957 ATW_WRITE(sc, ATW_PLCPHD, reg);
958
959 /* XXX this magic can probably be figured out from the RFMD docs */
960 reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
961 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
962 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
963 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
964 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
965 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
966 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
967 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
968 ATW_WRITE(sc, ATW_TOFS2, reg);
969
970 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
971 LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
972
973 /* XXX this resets an Intersil RF front-end? */
974 /* TBD condition on Intersil RFType? */
975 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
976 DELAY(10 * 1000);
977 ATW_WRITE(sc, ATW_SYNRF, 0);
978 DELAY(5 * 1000);
979
980 /* 16 TU max duration for contention-free period */
981 reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
982 ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
983
984 /* XXX I guess that the Cardbus clock is 22MHz?
985 * I am assuming that the role of ATW_TOFS0_USCNT is
986 * to divide the bus clock to get a 1MHz clock---the datasheet is not
987 * very clear on this point. It says in the datasheet that it is
988 * possible for the ADM8211 to accomodate bus speeds between 22MHz
989 * and 33MHz; maybe this is the way? I see a binary-only driver write
990 * these values. These values are also the power-on default.
991 */
992 ATW_WRITE(sc, ATW_TOFS0,
993 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
994 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
995
996 /* Initialize interframe spacing. EIFS=0x64 is used by a binary-only
997 * driver. Go figure.
998 */
999 reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1000 LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
1001 ATW_IFST_SIFS_MASK) |
1002 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1003 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1004
1005 ATW_WRITE(sc, ATW_IFST, reg);
1006
1007 /* XXX More magic. Might relate to ACK timing. */
1008 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1009 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1010
1011 /* Set up the MMI read/write addresses for the BBP.
1012 *
1013 * TBD find out the Marvel settings.
1014 */
1015 switch (sc->sc_bbptype) {
1016 case ATW_BBPTYPE_INTERSIL:
1017 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1018 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1019 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1020 break;
1021 case ATW_BBPTYPE_MARVEL:
1022 break;
1023 case ATW_BBPTYPE_RFMD:
1024 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1025 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1026 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1027 default:
1028 break;
1029 }
1030
1031 sc->sc_wepctl = 0;
1032 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1033
1034 if ((error = atw_rf3000_init(sc)) != 0)
1035 goto out;
1036
1037 /*
1038 * Initialize the PCI Access Register.
1039 */
1040 sc->sc_busmode = ATW_PAR_BAR; /* XXX what is this? */
1041
1042 /*
1043 * If we're allowed to do so, use Memory Read Line
1044 * and Memory Read Multiple.
1045 *
1046 * XXX Should we use Memory Write and Invalidate?
1047 */
1048 if (sc->sc_flags & ATWF_MRL)
1049 sc->sc_busmode |= ATW_PAR_MRLE;
1050 if (sc->sc_flags & ATWF_MRM)
1051 sc->sc_busmode |= ATW_PAR_MRME;
1052 if (sc->sc_flags & ATWF_MWI)
1053 sc->sc_busmode |= ATW_PAR_MWIE;
1054 if (sc->sc_maxburst == 0)
1055 sc->sc_maxburst = 8; /* ADM8211 default */
1056
1057 switch (sc->sc_cacheline) {
1058 default:
1059 /* Use burst length. */
1060 break;
1061 case 8:
1062 sc->sc_busmode |= ATW_PAR_CAL_8DW;
1063 break;
1064 case 16:
1065 sc->sc_busmode |= ATW_PAR_CAL_16DW;
1066 break;
1067 case 32:
1068 sc->sc_busmode |= ATW_PAR_CAL_32DW;
1069 break;
1070 }
1071 switch (sc->sc_maxburst) {
1072 case 1:
1073 sc->sc_busmode |= ATW_PAR_PBL_1DW;
1074 break;
1075 case 2:
1076 sc->sc_busmode |= ATW_PAR_PBL_2DW;
1077 break;
1078 case 4:
1079 sc->sc_busmode |= ATW_PAR_PBL_4DW;
1080 break;
1081 case 8:
1082 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1083 break;
1084 case 16:
1085 sc->sc_busmode |= ATW_PAR_PBL_16DW;
1086 break;
1087 case 32:
1088 sc->sc_busmode |= ATW_PAR_PBL_32DW;
1089 break;
1090 default:
1091 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1092 break;
1093 }
1094
1095 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1096 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1097 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1098
1099 /*
1100 * Initialize the OPMODE register. We don't write it until
1101 * we're ready to begin the transmit and receive processes.
1102 */
1103 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1104 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1105
1106 /*
1107 * Initialize the transmit descriptor ring.
1108 */
1109 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1110 for (i = 0; i < ATW_NTXDESC; i++) {
1111 /* no transmit chaining */
1112 sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1113 sc->sc_txdescs[i].at_buf2 =
1114 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1115 }
1116 /* use ring mode */
1117 sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1118 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1119 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1120 sc->sc_txfree = ATW_NTXDESC;
1121 sc->sc_txnext = 0;
1122
1123 /*
1124 * Initialize the transmit job descriptors.
1125 */
1126 SIMPLEQ_INIT(&sc->sc_txfreeq);
1127 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1128 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1129 txs = &sc->sc_txsoft[i];
1130 txs->txs_mbuf = NULL;
1131 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1132 }
1133
1134 /*
1135 * Initialize the receive descriptor and receive job
1136 * descriptor rings.
1137 */
1138 for (i = 0; i < ATW_NRXDESC; i++) {
1139 rxs = &sc->sc_rxsoft[i];
1140 if (rxs->rxs_mbuf == NULL) {
1141 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1142 printf("%s: unable to allocate or map rx "
1143 "buffer %d, error = %d\n",
1144 sc->sc_dev.dv_xname, i, error);
1145 /*
1146 * XXX Should attempt to run with fewer receive
1147 * XXX buffers instead of just failing.
1148 */
1149 atw_rxdrain(sc);
1150 goto out;
1151 }
1152 } else
1153 ATW_INIT_RXDESC(sc, i);
1154 }
1155 sc->sc_rxptr = 0;
1156
1157 /* disable all wake-up events */
1158 ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1159 ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1160 ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1161 ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1162
1163 /* ack all wake-up events */
1164 ATW_SET(sc, ATW_WCSR, 0);
1165
1166 /*
1167 * Initialize the interrupt mask and enable interrupts.
1168 */
1169 /* normal interrupts */
1170 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1171 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1172
1173 /* abnormal interrupts */
1174 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1175 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1176 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1177
1178 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1179 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1180 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1181 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1182 ATW_INTR_TRT;
1183
1184 sc->sc_linkint_mask &= sc->sc_inten;
1185 sc->sc_rxint_mask &= sc->sc_inten;
1186 sc->sc_txint_mask &= sc->sc_inten;
1187
1188 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1189 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1190 if (sc->sc_intr_ack != NULL)
1191 (*sc->sc_intr_ack)(sc);
1192
1193 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1194 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1195
1196 /*
1197 * Give the transmit and receive rings to the ADM8211.
1198 */
1199 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1200 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1201
1202 /* common 802.11 configuration */
1203 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1204 switch (ic->ic_opmode) {
1205 case IEEE80211_M_STA:
1206 sc->sc_opmode &= ~ATW_NAR_EA;
1207 break;
1208 case IEEE80211_M_AHDEMO: /* XXX */
1209 case IEEE80211_M_IBSS:
1210 ic->ic_flags |= IEEE80211_F_IBSSON;
1211 /*FALLTHROUGH*/
1212 case IEEE80211_M_HOSTAP: /* XXX */
1213 /* EA bit seems important for ad hoc reception. */
1214 sc->sc_opmode |= ATW_NAR_EA;
1215 break;
1216 case IEEE80211_M_MONITOR: /* XXX */
1217 break;
1218 }
1219
1220 atw_start_beacon(sc, 0);
1221
1222 switch (ic->ic_opmode) {
1223 case IEEE80211_M_AHDEMO:
1224 case IEEE80211_M_HOSTAP:
1225 ic->ic_bss->ni_intval = ic->ic_lintval;
1226 ic->ic_bss->ni_rssi = 0;
1227 ic->ic_bss->ni_rstamp = 0;
1228 break;
1229 default: /* XXX */
1230 break;
1231 }
1232
1233 atw_write_ssid(sc);
1234 atw_write_sup_rates(sc);
1235 if (ic->ic_caps & IEEE80211_C_WEP)
1236 atw_write_wep(sc);
1237
1238 /*
1239 * Set the receive filter. This will start the transmit and
1240 * receive processes.
1241 */
1242 atw_filter_setup(sc);
1243
1244 /*
1245 * Start the receive process.
1246 */
1247 ATW_WRITE(sc, ATW_RDR, 0x1);
1248
1249 /*
1250 * Note that the interface is now running.
1251 */
1252 ifp->if_flags |= IFF_RUNNING;
1253 ifp->if_flags &= ~IFF_OACTIVE;
1254 ic->ic_state = IEEE80211_S_INIT;
1255
1256 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1257 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1258 else
1259 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1260 out:
1261 if (error) {
1262 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1263 ifp->if_timer = 0;
1264 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1265 }
1266 #ifdef ATW_DEBUG
1267 atw_print_regs(sc, "end of init");
1268 #endif /* ATW_DEBUG */
1269
1270 return (error);
1271 }
1272
1273 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1274 * 0: MAC control of RF3000/Si4126.
1275 *
1276 * Applies power, or selects RF front-end? Sets reset condition.
1277 *
1278 * TBD support non-RFMD BBP, non-SiLabs synth.
1279 */
1280 static void
1281 atw_rfio_enable(struct atw_softc *sc, int enable)
1282 {
1283 if (enable) {
1284 ATW_WRITE(sc, ATW_SYNRF,
1285 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1286 DELAY(atw_rfio_enable_delay);
1287 } else {
1288 ATW_WRITE(sc, ATW_SYNRF, 0);
1289 DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1290 }
1291 }
1292
1293 static int
1294 atw_tune(struct atw_softc *sc)
1295 {
1296 int rc;
1297 u_int32_t reg;
1298 int chan;
1299 struct ieee80211com *ic = &sc->sc_ic;
1300
1301 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1302 if (chan == IEEE80211_CHAN_ANY)
1303 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1304
1305 if (chan == sc->sc_cur_chan)
1306 return 0;
1307
1308 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1309 sc->sc_cur_chan, chan));
1310
1311 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1312
1313 if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1314 (rc = atw_rf3000_tune(sc, chan)) != 0)
1315 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1316 chan);
1317
1318 reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1319 ATW_WRITE(sc, ATW_CAP0,
1320 reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1321
1322 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1323
1324 if (rc == 0)
1325 sc->sc_cur_chan = chan;
1326
1327 return rc;
1328 }
1329
1330 #ifdef ATW_DEBUG
1331 static void
1332 atw_si4126_print(struct atw_softc *sc)
1333 {
1334 struct ifnet *ifp = &sc->sc_ic.ic_if;
1335 u_int addr, val;
1336
1337 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1338 return;
1339
1340 for (addr = 0; addr <= 8; addr++) {
1341 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1342 if (atw_si4126_read(sc, addr, &val) == 0) {
1343 printf("<unknown> (quitting print-out)\n");
1344 break;
1345 }
1346 printf("%05x\n", val);
1347 }
1348 }
1349 #endif /* ATW_DEBUG */
1350
1351 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1352 *
1353 * The RF/IF synthesizer produces two reference frequencies for
1354 * the RF2948B transceiver. The first frequency the RF2948B requires
1355 * is two times the so-called "intermediate frequency" (IF). Since
1356 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1357 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1358 * frequency required by the transceiver is the radio frequency
1359 * (RF). This is a superheterodyne transceiver; for f(chan) the
1360 * center frequency of the channel we are tuning, RF = f(chan) -
1361 * IF.
1362 *
1363 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1364 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1365 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1366 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1367 */
1368 static int
1369 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
1370 {
1371 int rc = 0;
1372 u_int mhz;
1373 u_int R;
1374 u_int32_t reg;
1375 u_int16_t gain;
1376
1377 #ifdef ATW_DEBUG
1378 atw_si4126_print(sc);
1379 #endif /* ATW_DEBUG */
1380
1381 if (chan == 14)
1382 mhz = 2484;
1383 else
1384 mhz = 2412 + 5 * (chan - 1);
1385
1386 /* Tune IF to 748MHz to suit the IF LO input of the
1387 * RF2494B, which is 2 x IF. No need to set an IF divider
1388 * because an IF in 526MHz - 952MHz is allowed.
1389 *
1390 * XIN is 44.000MHz, so divide it by two to get allowable
1391 * range of 2-25MHz. SiLabs tells me that this is not
1392 * strictly necessary.
1393 */
1394
1395 R = 44;
1396
1397 atw_rfio_enable(sc, 1);
1398
1399 /* Power-up RF, IF synthesizers. */
1400 if ((rc = atw_si4126_write(sc, SI4126_POWER,
1401 SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1402 goto out;
1403
1404 /* If RF2 N > 2047, then set KP2 to 1. */
1405 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1406
1407 if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1408 goto out;
1409
1410 /* set LPWR, too? */
1411 if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1412 SI4126_MAIN_XINDIV2)) != 0)
1413 goto out;
1414
1415 /* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN. XIN = 44MHz.
1416 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1417 */
1418 if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1419 goto out;
1420
1421 if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1422 goto out;
1423
1424 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1425 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1426 * which has no RF1!
1427 */
1428 if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1429 goto out;
1430
1431 if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1432 goto out;
1433
1434 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1435 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1436 * Now let's multiply it to mhz. So mhz - IF = N.
1437 */
1438 if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1439 goto out;
1440
1441 if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1442 goto out;
1443
1444 /* wait 100us from power-up for RF, IF to settle */
1445 DELAY(100);
1446
1447 if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1448 /* XXX there is a binary driver which sends
1449 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1450 * that this enables the Si4126 by raising its PWDN#, but I
1451 * think that it actually sets the Prism RF front-end
1452 * to a special mode for channel 14.
1453 */
1454 reg = ATW_READ(sc, ATW_GPIO);
1455 reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1456 reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1457 ATW_WRITE(sc, ATW_GPIO, reg);
1458 }
1459
1460 #ifdef ATW_DEBUG
1461 atw_si4126_print(sc);
1462 #endif /* ATW_DEBUG */
1463
1464 out:
1465 atw_rfio_enable(sc, 0);
1466
1467 return rc;
1468 }
1469
1470 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1471 * diversity.
1472 *
1473 * Call this w/ Tx/Rx suspended.
1474 */
1475 static int
1476 atw_rf3000_init(struct atw_softc *sc)
1477 {
1478 int rc = 0;
1479
1480 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1481
1482 atw_rfio_enable(sc, 1);
1483
1484 /* enable diversity */
1485 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1486
1487 if (rc != 0)
1488 goto out;
1489
1490 /* sensible setting from a binary-only driver */
1491 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1492 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1493
1494 if (rc != 0)
1495 goto out;
1496
1497 /* magic from a binary-only driver */
1498 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1499 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1500
1501 if (rc != 0)
1502 goto out;
1503
1504 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1505
1506 if (rc != 0)
1507 goto out;
1508
1509 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1510
1511 if (rc != 0)
1512 goto out;
1513
1514 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1515
1516 if (rc != 0)
1517 goto out;
1518
1519 /* CCA is acquisition sensitive */
1520 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1521 LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1522
1523 if (rc != 0)
1524 goto out;
1525
1526 out:
1527 atw_rfio_enable(sc, 0);
1528 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1529 return rc;
1530 }
1531
1532 #ifdef ATW_DEBUG
1533 static void
1534 atw_rf3000_print(struct atw_softc *sc)
1535 {
1536 struct ifnet *ifp = &sc->sc_ic.ic_if;
1537 u_int addr, val;
1538
1539 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1540 return;
1541
1542 for (addr = 0x01; addr <= 0x15; addr++) {
1543 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1544 if (atw_rf3000_read(sc, addr, &val) != 0) {
1545 printf("<unknown> (quitting print-out)\n");
1546 break;
1547 }
1548 printf("%08x\n", val);
1549 }
1550 }
1551 #endif /* ATW_DEBUG */
1552
1553 /* Set the power settings on the BBP for channel `chan'. */
1554 static int
1555 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
1556 {
1557 int rc = 0;
1558 u_int32_t reg;
1559 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1560
1561 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1562 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1563 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1564
1565 /* odd channels: LSB, even channels: MSB */
1566 if (chan % 2 == 1) {
1567 txpower &= 0xFF;
1568 lpf_cutoff &= 0xFF;
1569 lna_gs_thresh &= 0xFF;
1570 } else {
1571 txpower >>= 8;
1572 lpf_cutoff >>= 8;
1573 lna_gs_thresh >>= 8;
1574 }
1575
1576 #ifdef ATW_DEBUG
1577 atw_rf3000_print(sc);
1578 #endif /* ATW_DEBUG */
1579
1580 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1581 "lna_gs_thresh %02x\n",
1582 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1583
1584 atw_rfio_enable(sc, 1);
1585
1586 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1587 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1588 goto out;
1589
1590 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1591 goto out;
1592
1593 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1594 goto out;
1595
1596 /* from a binary-only driver. */
1597 reg = ATW_READ(sc, ATW_PLCPHD);
1598 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1599 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1600 ATW_PLCPHD_SERVICE_MASK);
1601 ATW_WRITE(sc, ATW_PLCPHD, reg);
1602
1603 #ifdef ATW_DEBUG
1604 atw_rf3000_print(sc);
1605 #endif /* ATW_DEBUG */
1606
1607 out:
1608 atw_rfio_enable(sc, 0);
1609
1610 return rc;
1611 }
1612
1613 /* Write a register on the RF3000 baseband processor using the
1614 * registers provided by the ADM8211 for this purpose.
1615 *
1616 * Return 0 on success.
1617 */
1618 static int
1619 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1620 {
1621 u_int32_t reg;
1622 int i;
1623
1624 for (i = 1000; --i >= 0; ) {
1625 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1626 break;
1627 DELAY(100);
1628 }
1629
1630 if (i < 0) {
1631 printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1632 return ETIMEDOUT;
1633 }
1634
1635 reg = sc->sc_bbpctl_wr |
1636 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1637 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1638
1639 ATW_WRITE(sc, ATW_BBPCTL, reg);
1640
1641 for (i = 1000; --i >= 0; ) {
1642 DELAY(100);
1643 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1644 break;
1645 }
1646
1647 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1648
1649 if (i < 0) {
1650 printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1651 return ETIMEDOUT;
1652 }
1653 return 0;
1654 }
1655
1656 /* Read a register on the RF3000 baseband processor using the registers
1657 * the ADM8211 provides for this purpose.
1658 *
1659 * The 7-bit register address is addr. Record the 8-bit data in the register
1660 * in *val.
1661 *
1662 * Return 0 on success.
1663 *
1664 * XXX This does not seem to work. The ADM8211 must require more or
1665 * different magic to read the chip than to write it. Possibly some
1666 * of the magic I have derived from a binary-only driver concerns
1667 * the "chip address" (see the RF3000 manual).
1668 */
1669 #ifdef ATW_DEBUG
1670 static int
1671 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1672 {
1673 u_int32_t reg;
1674 int i;
1675
1676 for (i = 1000; --i >= 0; ) {
1677 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1678 break;
1679 DELAY(100);
1680 }
1681
1682 if (i < 0) {
1683 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1684 sc->sc_dev.dv_xname);
1685 return ETIMEDOUT;
1686 }
1687
1688 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1689
1690 ATW_WRITE(sc, ATW_BBPCTL, reg);
1691
1692 for (i = 1000; --i >= 0; ) {
1693 DELAY(100);
1694 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1695 break;
1696 }
1697
1698 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1699
1700 if (i < 0) {
1701 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1702 sc->sc_dev.dv_xname, reg);
1703 return ETIMEDOUT;
1704 }
1705 if (val != NULL)
1706 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1707 return 0;
1708 }
1709 #endif /* ATW_DEBUG */
1710
1711 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1712 * provided by the ADM8211 for that purpose.
1713 *
1714 * val is 18 bits of data, and val is the 4-bit address of the register.
1715 *
1716 * Return 0 on success.
1717 */
1718 static int
1719 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1720 {
1721 u_int32_t bits, reg;
1722 int i;
1723
1724 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1725 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1726
1727 for (i = 1000; --i >= 0; ) {
1728 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1729 break;
1730 DELAY(100);
1731 }
1732
1733 if (i < 0) {
1734 printf("%s: start atw_si4126_write, SYNCTL busy\n",
1735 sc->sc_dev.dv_xname);
1736 return ETIMEDOUT;
1737 }
1738
1739 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1740 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1741
1742 reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
1743
1744 ATW_WRITE(sc, ATW_SYNCTL, reg);
1745
1746 for (i = 1000; --i >= 0; ) {
1747 DELAY(100);
1748 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1749 break;
1750 }
1751
1752 /* restore to acceptable starting condition */
1753 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1754
1755 if (i < 0) {
1756 printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1757 sc->sc_dev.dv_xname, reg);
1758 return ETIMEDOUT;
1759 }
1760 return 0;
1761 }
1762
1763 /* Read 18-bit data from the 4-bit address addr in Si4126
1764 * RF synthesizer and write the data to *val. Return 0 on success.
1765 *
1766 * XXX This does not seem to work. The ADM8211 must require more or
1767 * different magic to read the chip than to write it.
1768 */
1769 #ifdef ATW_DEBUG
1770 static int
1771 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1772 {
1773 u_int32_t reg;
1774 int i;
1775
1776 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1777
1778 for (i = 1000; --i >= 0; ) {
1779 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1780 break;
1781 DELAY(100);
1782 }
1783
1784 if (i < 0) {
1785 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1786 sc->sc_dev.dv_xname);
1787 return ETIMEDOUT;
1788 }
1789
1790 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1791
1792 ATW_WRITE(sc, ATW_SYNCTL, reg);
1793
1794 for (i = 1000; --i >= 0; ) {
1795 DELAY(100);
1796 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1797 break;
1798 }
1799
1800 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1801
1802 if (i < 0) {
1803 printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1804 sc->sc_dev.dv_xname, reg);
1805 return ETIMEDOUT;
1806 }
1807 if (val != NULL)
1808 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1809 ATW_SYNCTL_DATA_MASK);
1810 return 0;
1811 }
1812 #endif /* ATW_DEBUG */
1813
1814 /* XXX is the endianness correct? test. */
1815 #define atw_calchash(addr) \
1816 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1817
1818 /*
1819 * atw_filter_setup:
1820 *
1821 * Set the ADM8211's receive filter.
1822 */
1823 static void
1824 atw_filter_setup(struct atw_softc *sc)
1825 {
1826 struct ieee80211com *ic = &sc->sc_ic;
1827 struct ethercom *ec = &ic->ic_ec;
1828 struct ifnet *ifp = &sc->sc_ic.ic_if;
1829 int hash;
1830 u_int32_t hashes[2] = { 0, 0 };
1831 struct ether_multi *enm;
1832 struct ether_multistep step;
1833
1834 DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1835 sc->sc_dev.dv_xname, sc->sc_flags));
1836
1837 /*
1838 * If we're running, idle the receive engine. If we're NOT running,
1839 * we're being called from atw_init(), and our writing ATW_NAR will
1840 * start the transmit and receive processes in motion.
1841 */
1842 if (ifp->if_flags & IFF_RUNNING)
1843 atw_idle(sc, ATW_NAR_SR);
1844
1845 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1846
1847 ifp->if_flags &= ~IFF_ALLMULTI;
1848
1849 if (ifp->if_flags & IFF_PROMISC) {
1850 sc->sc_opmode |= ATW_NAR_PR;
1851 allmulti:
1852 ifp->if_flags |= IFF_ALLMULTI;
1853 goto setit;
1854 }
1855
1856 /*
1857 * Program the 64-bit multicast hash filter.
1858 */
1859 ETHER_FIRST_MULTI(step, ec, enm);
1860 while (enm != NULL) {
1861 /* XXX */
1862 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1863 ETHER_ADDR_LEN) != 0)
1864 goto allmulti;
1865
1866 hash = atw_calchash(enm->enm_addrlo);
1867 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1868 ETHER_NEXT_MULTI(step, enm);
1869 }
1870
1871 if (ifp->if_flags & IFF_BROADCAST) {
1872 hash = atw_calchash(etherbroadcastaddr);
1873 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1874 }
1875
1876 /* all bits set => hash is useless */
1877 if (~(hashes[0] & hashes[1]) == 0)
1878 goto allmulti;
1879
1880 setit:
1881 if (ifp->if_flags & IFF_ALLMULTI)
1882 sc->sc_opmode |= ATW_NAR_MM;
1883
1884 /* XXX in scan mode, do not filter packets. maybe this is
1885 * unnecessary.
1886 */
1887 if (ic->ic_state == IEEE80211_S_SCAN)
1888 sc->sc_opmode |= ATW_NAR_PR;
1889
1890 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1891 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1892 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1893 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1894 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1895
1896 DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1897 }
1898
1899 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1900 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1901 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1902 * no beacon with the preferred BSSID and SSID in the number of
1903 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1904 */
1905 static void
1906 atw_write_bssid(struct atw_softc *sc)
1907 {
1908 struct ieee80211com *ic = &sc->sc_ic;
1909 u_int8_t *bssid;
1910
1911 bssid = ic->ic_bss->ni_bssid;
1912
1913 ATW_WRITE(sc, ATW_ABDA1,
1914 (ATW_READ(sc, ATW_ABDA1) &
1915 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1916 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1917 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1918
1919 ATW_WRITE(sc, ATW_BSSID0,
1920 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1921 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1922 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1923 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1924
1925 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1926 ether_sprintf(sc->sc_bssid)));
1927 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1928
1929 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1930 }
1931
1932 /* Tell the ADM8211 how many beacon intervals must pass without
1933 * receiving a beacon with the preferred BSSID & SSID set by
1934 * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
1935 * raised.
1936 */
1937 static void
1938 atw_write_bcn_thresh(struct atw_softc *sc)
1939 {
1940 struct ieee80211com *ic = &sc->sc_ic;
1941 int lost_bcn_thresh;
1942
1943 /* Lose link after one second or 7 beacons, whichever comes
1944 * first, but do not lose link before 2 beacons are lost.
1945 *
1946 * In host AP mode, set the lost-beacon threshold to 0.
1947 */
1948 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1949 lost_bcn_thresh = 0;
1950 else {
1951 int beacons_per_second =
1952 1000000 / (IEEE80211_DUR_TU * MAX(1,ic->ic_bss->ni_intval));
1953 lost_bcn_thresh = MAX(2, MIN(7, beacons_per_second));
1954 }
1955
1956 /* XXX resets wake-up status bits */
1957 ATW_WRITE(sc, ATW_WCSR,
1958 (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
1959 (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
1960
1961 DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
1962 sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
1963
1964 sc->sc_lost_bcn_thresh = lost_bcn_thresh;
1965
1966 DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
1967 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
1968 }
1969
1970 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1971 * 16-bit word.
1972 */
1973 static void
1974 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
1975 {
1976 u_int i;
1977 u_int8_t *ptr;
1978
1979 memcpy(&sc->sc_sram[ofs], buf, buflen);
1980
1981 if (ofs % 2 != 0) {
1982 ofs--;
1983 buflen++;
1984 }
1985
1986 if (buflen % 2 != 0)
1987 buflen++;
1988
1989 assert(buflen + ofs <= ATW_SRAM_SIZE);
1990
1991 ptr = &sc->sc_sram[ofs];
1992
1993 for (i = 0; i < buflen; i += 2) {
1994 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
1995 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
1996 DELAY(atw_writewep_delay);
1997
1998 ATW_WRITE(sc, ATW_WESK,
1999 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2000 DELAY(atw_writewep_delay);
2001 }
2002 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2003
2004 if (sc->sc_if.if_flags & IFF_DEBUG) {
2005 int n_octets = 0;
2006 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2007 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2008 for (i = 0; i < buflen; i++) {
2009 printf(" %02x", ptr[i]);
2010 if (++n_octets % 24 == 0)
2011 printf("\n");
2012 }
2013 if (n_octets % 24 != 0)
2014 printf("\n");
2015 }
2016 }
2017
2018 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2019 static void
2020 atw_write_wep(struct atw_softc *sc)
2021 {
2022 struct ieee80211com *ic = &sc->sc_ic;
2023 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2024 u_int8_t buf[IEEE80211_WEP_NKID]
2025 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2026 u_int32_t reg;
2027 int i;
2028
2029 sc->sc_wepctl = 0;
2030 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2031
2032 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2033 return;
2034
2035 memset(&buf[0][0], 0, sizeof(buf));
2036
2037 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2038 if (ic->ic_nw_keys[i].wk_len > 5) {
2039 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2040 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2041 buf[i][1] = ATW_WEP_ENABLED;
2042 } else {
2043 buf[i][1] = 0;
2044 continue;
2045 }
2046 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2047 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2048 ic->ic_nw_keys[i].wk_len - 1);
2049 }
2050
2051 reg = ATW_READ(sc, ATW_MACTEST);
2052 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2053 reg &= ~ATW_MACTEST_KEYID_MASK;
2054 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2055 ATW_WRITE(sc, ATW_MACTEST, reg);
2056
2057 /* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2058 * throughout.)
2059 */
2060 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2061 if (sc->sc_if.if_flags & IFF_LINK2)
2062 sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2063
2064 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2065 sizeof(buf));
2066 }
2067
2068 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2069
2070 static void
2071 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2072 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2073 {
2074 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2075
2076 switch (subtype) {
2077 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2078 /* do nothing: hardware answers probe request */
2079 break;
2080 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2081 case IEEE80211_FC0_SUBTYPE_BEACON:
2082 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2083 break;
2084 default:
2085 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2086 break;
2087 }
2088 return;
2089 }
2090
2091 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2092 * of IBSSs with like SSID/channel but different BSSID. It joins the
2093 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2094 * convention. Possibly the ADMtek chip does this for us; I will have
2095 * to test to find out.
2096 *
2097 * XXX we should add the duration field of the received beacon to
2098 * the TSF time it contains before comparing it with the ADM8211's
2099 * TSF.
2100 */
2101 static void
2102 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2103 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2104 {
2105 struct atw_softc *sc;
2106 struct ieee80211_frame *wh;
2107 u_int64_t tsft, bcn_tsft;
2108 u_int32_t tsftl, tsfth;
2109 int do_print = 0;
2110
2111 sc = (struct atw_softc*)ic->ic_if.if_softc;
2112
2113 if (ic->ic_if.if_flags & IFF_DEBUG)
2114 do_print = (ic->ic_if.if_flags & IFF_LINK0)
2115 ? 1 : ratecheck(&sc->sc_last_beacon,
2116 &atw_beacon_mininterval);
2117
2118 wh = mtod(m0, struct ieee80211_frame *);
2119
2120 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2121
2122 if (ic->ic_state != IEEE80211_S_RUN) {
2123 if (do_print)
2124 printf("%s: atw_recv_beacon: not running\n",
2125 sc->sc_dev.dv_xname);
2126 return;
2127 }
2128
2129 if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2130 ic->ic_bss->ni_chan)) == NULL) {
2131 if (do_print)
2132 printf("%s: atw_recv_beacon: no node %s\n",
2133 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2134 return;
2135 }
2136
2137 if (ieee80211_match_bss(ic, ni) != 0) {
2138 if (do_print)
2139 printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2140 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2141 return;
2142 }
2143
2144 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2145 return;
2146
2147 if (do_print)
2148 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2149 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2150
2151 if (ic->ic_opmode != IEEE80211_M_IBSS)
2152 return;
2153
2154 /* If we read TSFTL right before rollover, we read a TSF timer
2155 * that is too high rather than too low. This prevents a spurious
2156 * synchronization down the line, however, our IBSS could suffer
2157 * from a creeping TSF....
2158 */
2159 tsftl = ATW_READ(sc, ATW_TSFTL);
2160 tsfth = ATW_READ(sc, ATW_TSFTH);
2161
2162 tsft = (u_int64_t)tsfth << 32 | tsftl;
2163 bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2164
2165 if (do_print)
2166 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2167 sc->sc_dev.dv_xname, tsft, bcn_tsft);
2168
2169 /* we are faster, let the other guy catch up */
2170 if (bcn_tsft < tsft)
2171 return;
2172
2173 if (do_print)
2174 printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2175 ether_sprintf(wh->i_addr2));
2176
2177 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2178
2179 #if 0
2180 atw_tsf(sc);
2181 #endif
2182
2183 /* negotiate rates with new IBSS */
2184 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2185 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2186 if (ni->ni_rates.rs_nrates == 0) {
2187 printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2188 ether_sprintf(ni->ni_bssid));
2189 return;
2190 }
2191
2192 if (do_print) {
2193 printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2194 ether_sprintf(ic->ic_bss->ni_bssid));
2195 printf("%s ", ether_sprintf(ni->ni_bssid));
2196 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2197 }
2198
2199 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2200
2201 atw_write_bssid(sc);
2202 atw_write_bcn_thresh(sc);
2203 atw_start_beacon(sc, 1);
2204 }
2205
2206 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2207 * In ad hoc mode, the SSID is written to the beacons sent by the
2208 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2209 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2210 * indications.
2211 */
2212 static void
2213 atw_write_ssid(struct atw_softc *sc)
2214 {
2215 struct ieee80211com *ic = &sc->sc_ic;
2216 /* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2217 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2218
2219 memset(buf, 0, sizeof(buf));
2220 buf[0] = ic->ic_bss->ni_esslen;
2221 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2222
2223 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2224 }
2225
2226 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2227 * In ad hoc mode, the supported rates are written to beacons sent by the
2228 * ADM8211.
2229 */
2230 static void
2231 atw_write_sup_rates(struct atw_softc *sc)
2232 {
2233 struct ieee80211com *ic = &sc->sc_ic;
2234 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2235 * supported rates
2236 */
2237 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2238
2239 memset(buf, 0, sizeof(buf));
2240
2241 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2242
2243 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2244 ic->ic_bss->ni_rates.rs_nrates);
2245
2246 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2247 }
2248
2249 /* Start/stop sending beacons. */
2250 void
2251 atw_start_beacon(struct atw_softc *sc, int start)
2252 {
2253 struct ieee80211com *ic = &sc->sc_ic;
2254 u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2255
2256 if (ATW_IS_ENABLED(sc) == 0)
2257 return;
2258
2259 len = capinfo = 0;
2260
2261 /* start beacons */
2262 len = sizeof(struct ieee80211_frame) +
2263 8 /* timestamp */ + 2 /* beacon interval */ +
2264 2 /* capability info */ +
2265 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2266 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2267 3 /* DS parameters */ +
2268 IEEE80211_CRC_LEN;
2269
2270 reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2271
2272 reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2273
2274 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2275 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2276
2277 if (!start)
2278 return;
2279
2280 /* TBD use ni_capinfo */
2281
2282 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2283 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2284 if (ic->ic_flags & IEEE80211_F_WEPON)
2285 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2286
2287 switch (ic->ic_opmode) {
2288 case IEEE80211_M_IBSS:
2289 len += 4; /* IBSS parameters */
2290 capinfo |= IEEE80211_CAPINFO_IBSS;
2291 break;
2292 case IEEE80211_M_HOSTAP:
2293 /* XXX 6-byte minimum TIM */
2294 len += atw_beacon_len_adjust;
2295 capinfo |= IEEE80211_CAPINFO_ESS;
2296 break;
2297 default:
2298 return;
2299 }
2300
2301 reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2302 reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2303
2304 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2305 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2306
2307 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2308 sc->sc_dev.dv_xname, reg_bcnt));
2309
2310 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2311 sc->sc_dev.dv_xname, reg_cap1));
2312 }
2313
2314 /* First beacon was sent at time 0 microseconds, current time is
2315 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2316 * microseconds. Return the expected time in microseconds for the
2317 * beacon after next.
2318 */
2319 static __inline u_int64_t
2320 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2321 {
2322 return tsft + (tbtt - tsft % tbtt);
2323 }
2324
2325 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2326 * the ieee80211com.
2327 *
2328 * Predict the next target beacon transmission time (TBTT) and
2329 * write it to the ADM8211.
2330 */
2331 static void
2332 atw_tsf(struct atw_softc *sc)
2333 {
2334 #define TBTTOFS 20 /* TU */
2335
2336 struct ieee80211com *ic = &sc->sc_ic;
2337 u_int64_t tsft, tbtt;
2338
2339 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2340 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2341 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2342 tsft = ATW_READ(sc, ATW_TSFTH);
2343 tsft <<= 32;
2344 tsft |= ATW_READ(sc, ATW_TSFTL);
2345 *(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2346 } else
2347 tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2348
2349 tbtt = atw_predict_beacon(tsft,
2350 ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2351
2352 /* skip one more beacon so that the TBTT cannot pass before
2353 * we've programmed it, and also so that we can subtract a
2354 * few TU so that we wake a little before TBTT.
2355 */
2356 tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2357
2358 /* wake up a little early */
2359 tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2360
2361 DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2362 sc->sc_dev.dv_xname, tsft, tbtt));
2363
2364 ATW_WRITE(sc, ATW_TOFS1,
2365 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2366 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2367 LSHIFT(
2368 MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2369 ATW_TOFS1_TBTTPRE_MASK));
2370 #undef TBTTOFS
2371 }
2372
2373 static void
2374 atw_next_scan(void *arg)
2375 {
2376 struct atw_softc *sc = arg;
2377 struct ieee80211com *ic = &sc->sc_ic;
2378 struct ifnet *ifp = &ic->ic_if;
2379 int s;
2380
2381 /* don't call atw_start w/o network interrupts blocked */
2382 s = splnet();
2383 if (ic->ic_state == IEEE80211_S_SCAN)
2384 ieee80211_next_scan(ifp);
2385 splx(s);
2386 }
2387
2388 /* Synchronize the hardware state with the software state. */
2389 static int
2390 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2391 {
2392 struct ifnet *ifp = &ic->ic_if;
2393 struct atw_softc *sc = ifp->if_softc;
2394 enum ieee80211_state ostate;
2395 int error;
2396
2397 ostate = ic->ic_state;
2398
2399 if (nstate == IEEE80211_S_INIT) {
2400 callout_stop(&sc->sc_scan_ch);
2401 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2402 atw_start_beacon(sc, 0);
2403 return (*sc->sc_newstate)(ic, nstate, arg);
2404 }
2405
2406 if ((error = atw_tune(sc)) != 0)
2407 return error;
2408
2409 switch (nstate) {
2410 case IEEE80211_S_ASSOC:
2411 break;
2412 case IEEE80211_S_INIT:
2413 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2414 break;
2415 case IEEE80211_S_SCAN:
2416 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2417 atw_write_bssid(sc);
2418
2419 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2420 atw_next_scan, sc);
2421
2422 break;
2423 case IEEE80211_S_RUN:
2424 if (ic->ic_opmode == IEEE80211_M_STA)
2425 break;
2426 /*FALLTHROUGH*/
2427 case IEEE80211_S_AUTH:
2428 atw_write_bssid(sc);
2429 atw_write_bcn_thresh(sc);
2430 atw_write_ssid(sc);
2431 atw_write_sup_rates(sc);
2432
2433 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2434 ic->ic_opmode == IEEE80211_M_MONITOR)
2435 break;
2436
2437 /* set listen interval
2438 * XXX do software units agree w/ hardware?
2439 */
2440 ATW_WRITE(sc, ATW_BPLI,
2441 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2442 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2443 ATW_BPLI_LI_MASK));
2444
2445 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2446 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2447
2448 atw_tsf(sc);
2449 break;
2450 }
2451
2452 if (nstate != IEEE80211_S_SCAN)
2453 callout_stop(&sc->sc_scan_ch);
2454
2455 if (nstate == IEEE80211_S_RUN &&
2456 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2457 ic->ic_opmode == IEEE80211_M_IBSS))
2458 atw_start_beacon(sc, 1);
2459 else
2460 atw_start_beacon(sc, 0);
2461
2462 return (*sc->sc_newstate)(ic, nstate, arg);
2463 }
2464
2465 /*
2466 * atw_add_rxbuf:
2467 *
2468 * Add a receive buffer to the indicated descriptor.
2469 */
2470 int
2471 atw_add_rxbuf(struct atw_softc *sc, int idx)
2472 {
2473 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2474 struct mbuf *m;
2475 int error;
2476
2477 MGETHDR(m, M_DONTWAIT, MT_DATA);
2478 if (m == NULL)
2479 return (ENOBUFS);
2480
2481 MCLGET(m, M_DONTWAIT);
2482 if ((m->m_flags & M_EXT) == 0) {
2483 m_freem(m);
2484 return (ENOBUFS);
2485 }
2486
2487 if (rxs->rxs_mbuf != NULL)
2488 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2489
2490 rxs->rxs_mbuf = m;
2491
2492 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2493 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2494 BUS_DMA_READ|BUS_DMA_NOWAIT);
2495 if (error) {
2496 printf("%s: can't load rx DMA map %d, error = %d\n",
2497 sc->sc_dev.dv_xname, idx, error);
2498 panic("atw_add_rxbuf"); /* XXX */
2499 }
2500
2501 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2502 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2503
2504 ATW_INIT_RXDESC(sc, idx);
2505
2506 return (0);
2507 }
2508
2509 /*
2510 * atw_stop: [ ifnet interface function ]
2511 *
2512 * Stop transmission on the interface.
2513 */
2514 void
2515 atw_stop(struct ifnet *ifp, int disable)
2516 {
2517 struct atw_softc *sc = ifp->if_softc;
2518 struct ieee80211com *ic = &sc->sc_ic;
2519 struct atw_txsoft *txs;
2520
2521 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2522
2523 /* Disable interrupts. */
2524 ATW_WRITE(sc, ATW_IER, 0);
2525
2526 /* Stop the transmit and receive processes. */
2527 sc->sc_opmode = 0;
2528 ATW_WRITE(sc, ATW_NAR, 0);
2529 ATW_WRITE(sc, ATW_TDBD, 0);
2530 ATW_WRITE(sc, ATW_TDBP, 0);
2531 ATW_WRITE(sc, ATW_RDB, 0);
2532
2533 /*
2534 * Release any queued transmit buffers.
2535 */
2536 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2537 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2538 if (txs->txs_mbuf != NULL) {
2539 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2540 m_freem(txs->txs_mbuf);
2541 txs->txs_mbuf = NULL;
2542 }
2543 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2544 }
2545
2546 if (disable) {
2547 atw_rxdrain(sc);
2548 atw_disable(sc);
2549 }
2550
2551 /*
2552 * Mark the interface down and cancel the watchdog timer.
2553 */
2554 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2555 ifp->if_timer = 0;
2556
2557 /* XXX */
2558 atw_reset(sc);
2559 }
2560
2561 /*
2562 * atw_rxdrain:
2563 *
2564 * Drain the receive queue.
2565 */
2566 void
2567 atw_rxdrain(struct atw_softc *sc)
2568 {
2569 struct atw_rxsoft *rxs;
2570 int i;
2571
2572 for (i = 0; i < ATW_NRXDESC; i++) {
2573 rxs = &sc->sc_rxsoft[i];
2574 if (rxs->rxs_mbuf == NULL)
2575 continue;
2576 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2577 m_freem(rxs->rxs_mbuf);
2578 rxs->rxs_mbuf = NULL;
2579 }
2580 }
2581
2582 /*
2583 * atw_detach:
2584 *
2585 * Detach an ADM8211 interface.
2586 */
2587 int
2588 atw_detach(struct atw_softc *sc)
2589 {
2590 struct ifnet *ifp = &sc->sc_ic.ic_if;
2591 struct atw_rxsoft *rxs;
2592 struct atw_txsoft *txs;
2593 int i;
2594
2595 /*
2596 * Succeed now if there isn't any work to do.
2597 */
2598 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2599 return (0);
2600
2601 ieee80211_ifdetach(ifp);
2602 if_detach(ifp);
2603
2604 for (i = 0; i < ATW_NRXDESC; i++) {
2605 rxs = &sc->sc_rxsoft[i];
2606 if (rxs->rxs_mbuf != NULL) {
2607 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2608 m_freem(rxs->rxs_mbuf);
2609 rxs->rxs_mbuf = NULL;
2610 }
2611 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2612 }
2613 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2614 txs = &sc->sc_txsoft[i];
2615 if (txs->txs_mbuf != NULL) {
2616 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2617 m_freem(txs->txs_mbuf);
2618 txs->txs_mbuf = NULL;
2619 }
2620 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2621 }
2622 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2623 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2624 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2625 sizeof(struct atw_control_data));
2626 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2627
2628 shutdownhook_disestablish(sc->sc_sdhook);
2629 powerhook_disestablish(sc->sc_powerhook);
2630
2631 if (sc->sc_srom)
2632 free(sc->sc_srom, M_DEVBUF);
2633
2634 return (0);
2635 }
2636
2637 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2638 void
2639 atw_shutdown(void *arg)
2640 {
2641 struct atw_softc *sc = arg;
2642
2643 atw_stop(&sc->sc_ic.ic_if, 1);
2644 }
2645
2646 int
2647 atw_intr(void *arg)
2648 {
2649 struct atw_softc *sc = arg;
2650 struct ifnet *ifp = &sc->sc_ic.ic_if;
2651 u_int32_t status, rxstatus, txstatus, linkstatus;
2652 int handled = 0, txthresh;
2653
2654 #ifdef DEBUG
2655 if (ATW_IS_ENABLED(sc) == 0)
2656 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2657 #endif
2658
2659 /*
2660 * If the interface isn't running, the interrupt couldn't
2661 * possibly have come from us.
2662 */
2663 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2664 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2665 return (0);
2666
2667 for (;;) {
2668 status = ATW_READ(sc, ATW_STSR);
2669
2670 if (status)
2671 ATW_WRITE(sc, ATW_STSR, status);
2672
2673 if (sc->sc_intr_ack != NULL)
2674 (*sc->sc_intr_ack)(sc);
2675
2676 #ifdef ATW_DEBUG
2677 #define PRINTINTR(flag) do { \
2678 if ((status & flag) != 0) { \
2679 printf("%s" #flag, delim); \
2680 delim = ","; \
2681 } \
2682 } while (0)
2683
2684 if (atw_debug > 1 && status) {
2685 const char *delim = "<";
2686
2687 printf("%s: reg[STSR] = %x",
2688 sc->sc_dev.dv_xname, status);
2689
2690 PRINTINTR(ATW_INTR_FBE);
2691 PRINTINTR(ATW_INTR_LINKOFF);
2692 PRINTINTR(ATW_INTR_LINKON);
2693 PRINTINTR(ATW_INTR_RCI);
2694 PRINTINTR(ATW_INTR_RDU);
2695 PRINTINTR(ATW_INTR_REIS);
2696 PRINTINTR(ATW_INTR_RPS);
2697 PRINTINTR(ATW_INTR_TCI);
2698 PRINTINTR(ATW_INTR_TDU);
2699 PRINTINTR(ATW_INTR_TLT);
2700 PRINTINTR(ATW_INTR_TPS);
2701 PRINTINTR(ATW_INTR_TRT);
2702 PRINTINTR(ATW_INTR_TUF);
2703 PRINTINTR(ATW_INTR_BCNTC);
2704 PRINTINTR(ATW_INTR_ATIME);
2705 PRINTINTR(ATW_INTR_TBTT);
2706 PRINTINTR(ATW_INTR_TSCZ);
2707 PRINTINTR(ATW_INTR_TSFTF);
2708 printf(">\n");
2709 }
2710 #undef PRINTINTR
2711 #endif /* ATW_DEBUG */
2712
2713 if ((status & sc->sc_inten) == 0)
2714 break;
2715
2716 handled = 1;
2717
2718 rxstatus = status & sc->sc_rxint_mask;
2719 txstatus = status & sc->sc_txint_mask;
2720 linkstatus = status & sc->sc_linkint_mask;
2721
2722 if (linkstatus) {
2723 atw_linkintr(sc, linkstatus);
2724 }
2725
2726 if (rxstatus) {
2727 /* Grab any new packets. */
2728 atw_rxintr(sc);
2729
2730 if (rxstatus & ATW_INTR_RDU) {
2731 printf("%s: receive ring overrun\n",
2732 sc->sc_dev.dv_xname);
2733 /* Get the receive process going again. */
2734 ATW_WRITE(sc, ATW_RDR, 0x1);
2735 break;
2736 }
2737 }
2738
2739 if (txstatus) {
2740 /* Sweep up transmit descriptors. */
2741 atw_txintr(sc);
2742
2743 if (txstatus & ATW_INTR_TLT)
2744 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2745 sc->sc_dev.dv_xname));
2746
2747 if (txstatus & ATW_INTR_TRT)
2748 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2749 sc->sc_dev.dv_xname));
2750
2751 /* If Tx under-run, increase our transmit threshold
2752 * if another is available.
2753 */
2754 txthresh = sc->sc_txthresh + 1;
2755 if ((txstatus & ATW_INTR_TUF) &&
2756 sc->sc_txth[txthresh].txth_name != NULL) {
2757 /* Idle the transmit process. */
2758 atw_idle(sc, ATW_NAR_ST);
2759
2760 sc->sc_txthresh = txthresh;
2761 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2762 sc->sc_opmode |=
2763 sc->sc_txth[txthresh].txth_opmode;
2764 printf("%s: transmit underrun; new "
2765 "threshold: %s\n", sc->sc_dev.dv_xname,
2766 sc->sc_txth[txthresh].txth_name);
2767
2768 /* Set the new threshold and restart
2769 * the transmit process.
2770 */
2771 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2772 /* XXX Log every Nth underrun from
2773 * XXX now on?
2774 */
2775 }
2776 }
2777
2778 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2779 if (status & ATW_INTR_TPS)
2780 printf("%s: transmit process stopped\n",
2781 sc->sc_dev.dv_xname);
2782 if (status & ATW_INTR_RPS)
2783 printf("%s: receive process stopped\n",
2784 sc->sc_dev.dv_xname);
2785 (void)atw_init(ifp);
2786 break;
2787 }
2788
2789 if (status & ATW_INTR_FBE) {
2790 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2791 (void)atw_init(ifp);
2792 break;
2793 }
2794
2795 /*
2796 * Not handled:
2797 *
2798 * Transmit buffer unavailable -- normal
2799 * condition, nothing to do, really.
2800 *
2801 * Early receive interrupt -- not available on
2802 * all chips, we just use RI. We also only
2803 * use single-segment receive DMA, so this
2804 * is mostly useless.
2805 *
2806 * TBD others
2807 */
2808 }
2809
2810 /* Try to get more packets going. */
2811 atw_start(ifp);
2812
2813 return (handled);
2814 }
2815
2816 /*
2817 * atw_idle:
2818 *
2819 * Cause the transmit and/or receive processes to go idle.
2820 *
2821 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2822 * process in STSR if I clear SR or ST after the process has already
2823 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2824 * do not seem to be too reliable. Perhaps I have the sense of the
2825 * Rx bits switched with the Tx bits?
2826 */
2827 void
2828 atw_idle(struct atw_softc *sc, u_int32_t bits)
2829 {
2830 u_int32_t ackmask = 0, opmode, stsr, test0;
2831 int i, s;
2832
2833 /* without this, somehow we run concurrently w/ interrupt handler */
2834 s = splnet();
2835
2836 opmode = sc->sc_opmode & ~bits;
2837
2838 if (bits & ATW_NAR_SR)
2839 ackmask |= ATW_INTR_RPS;
2840
2841 if (bits & ATW_NAR_ST) {
2842 ackmask |= ATW_INTR_TPS;
2843 /* set ATW_NAR_HF to flush TX FIFO. */
2844 opmode |= ATW_NAR_HF;
2845 }
2846
2847 ATW_WRITE(sc, ATW_NAR, opmode);
2848
2849 for (i = 0; i < 1000; i++) {
2850 stsr = ATW_READ(sc, ATW_STSR);
2851 if ((stsr & ackmask) == ackmask)
2852 break;
2853 DELAY(10);
2854 }
2855
2856 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2857
2858 if ((stsr & ackmask) == ackmask)
2859 goto out;
2860
2861 test0 = ATW_READ(sc, ATW_TEST0);
2862
2863 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2864 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2865 printf("%s: transmit process not idle [%s]\n",
2866 sc->sc_dev.dv_xname,
2867 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2868 printf("%s: bits %08x test0 %08x stsr %08x\n",
2869 sc->sc_dev.dv_xname, bits, test0, stsr);
2870 }
2871
2872 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2873 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2874 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2875 sc->sc_dev.dv_xname,
2876 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2877 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2878 sc->sc_dev.dv_xname, bits, test0, stsr));
2879 }
2880 out:
2881 splx(s);
2882 return;
2883 }
2884
2885 /*
2886 * atw_linkintr:
2887 *
2888 * Helper; handle link-status interrupts.
2889 */
2890 void
2891 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2892 {
2893 struct ieee80211com *ic = &sc->sc_ic;
2894
2895 if (ic->ic_state != IEEE80211_S_RUN)
2896 return;
2897
2898 if (linkstatus & ATW_INTR_LINKON) {
2899 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2900 sc->sc_rescan_timer = 0;
2901 } else if (linkstatus & ATW_INTR_LINKOFF) {
2902 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2903 if (ic->ic_opmode != IEEE80211_M_STA)
2904 return;
2905 sc->sc_rescan_timer = 3;
2906 ic->ic_if.if_timer = 1;
2907 }
2908 }
2909
2910 /*
2911 * atw_rxintr:
2912 *
2913 * Helper; handle receive interrupts.
2914 */
2915 void
2916 atw_rxintr(struct atw_softc *sc)
2917 {
2918 static int rate_tbl[] = {2, 4, 11, 22, 44};
2919 struct ieee80211com *ic = &sc->sc_ic;
2920 struct ieee80211_node *ni;
2921 struct ieee80211_frame *wh;
2922 struct ifnet *ifp = &ic->ic_if;
2923 struct atw_rxsoft *rxs;
2924 struct mbuf *m;
2925 u_int32_t rxstat;
2926 int i, len, rate, rate0;
2927 u_int32_t rssi;
2928
2929 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2930 rxs = &sc->sc_rxsoft[i];
2931
2932 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2933
2934 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2935 rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2936 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2937
2938 if (rxstat & ATW_RXSTAT_OWN)
2939 break; /* We have processed all receive buffers. */
2940
2941 DPRINTF3(sc,
2942 ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2943 sc->sc_dev.dv_xname,
2944 sc->sc_rxdescs[i].ar_stat,
2945 sc->sc_rxdescs[i].ar_rssi,
2946 sc->sc_rxdescs[i].ar_buf1,
2947 sc->sc_rxdescs[i].ar_buf2));
2948
2949 /*
2950 * Make sure the packet fits in one buffer. This should
2951 * always be the case.
2952 */
2953 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2954 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2955 printf("%s: incoming packet spilled, resetting\n",
2956 sc->sc_dev.dv_xname);
2957 (void)atw_init(ifp);
2958 return;
2959 }
2960
2961 /*
2962 * If an error occurred, update stats, clear the status
2963 * word, and leave the packet buffer in place. It will
2964 * simply be reused the next time the ring comes around.
2965 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2966 * error.
2967 */
2968
2969 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
2970 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
2971 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
2972 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
2973 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
2974 ATW_RXSTAT_ICVE)) != 0)) {
2975 #define PRINTERR(bit, str) \
2976 if (rxstat & (bit)) \
2977 printf("%s: receive error: %s\n", \
2978 sc->sc_dev.dv_xname, str)
2979 ifp->if_ierrors++;
2980 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
2981 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
2982 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
2983 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
2984 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
2985 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
2986 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
2987 #undef PRINTERR
2988 ATW_INIT_RXDESC(sc, i);
2989 continue;
2990 }
2991
2992 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2993 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2994
2995 /*
2996 * No errors; receive the packet. Note the ADM8211
2997 * includes the CRC in promiscuous mode.
2998 */
2999 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3000
3001 /*
3002 * Allocate a new mbuf cluster. If that fails, we are
3003 * out of memory, and must drop the packet and recycle
3004 * the buffer that's already attached to this descriptor.
3005 */
3006 m = rxs->rxs_mbuf;
3007 if (atw_add_rxbuf(sc, i) != 0) {
3008 ifp->if_ierrors++;
3009 ATW_INIT_RXDESC(sc, i);
3010 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3011 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3012 continue;
3013 }
3014
3015 ifp->if_ipackets++;
3016 if (sc->sc_opmode & ATW_NAR_PR)
3017 m->m_flags |= M_HASFCS;
3018 m->m_pkthdr.rcvif = ifp;
3019 m->m_pkthdr.len = m->m_len = len;
3020
3021 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3022 rate = 0;
3023 else
3024 rate = rate_tbl[rate0];
3025
3026 #if NBPFILTER > 0
3027 /* Pass this up to any BPF listeners. */
3028 if (sc->sc_radiobpf != NULL) {
3029 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3030
3031 tap->ar_rate = rate;
3032 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3033 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3034
3035 /* TBD verify units are dB */
3036 tap->ar_antsignal = (int)rssi;
3037 /* TBD tap->ar_flags */
3038
3039 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3040 tap->ar_ihdr.it_len, m);
3041 }
3042 #endif /* NPBFILTER > 0 */
3043
3044 wh = mtod(m, struct ieee80211_frame *);
3045 ni = ieee80211_find_rxnode(ic, wh);
3046 ieee80211_input(ifp, m, ni, (int)rssi, 0);
3047 /*
3048 * The frame may have caused the node to be marked for
3049 * reclamation (e.g. in response to a DEAUTH message)
3050 * so use free_node here instead of unref_node.
3051 */
3052 if (ni == ic->ic_bss)
3053 ieee80211_unref_node(&ni);
3054 else
3055 ieee80211_free_node(ic, ni);
3056 }
3057
3058 /* Update the receive pointer. */
3059 sc->sc_rxptr = i;
3060 }
3061
3062 /*
3063 * atw_txintr:
3064 *
3065 * Helper; handle transmit interrupts.
3066 */
3067 void
3068 atw_txintr(struct atw_softc *sc)
3069 {
3070 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3071 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3072 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3073 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3074
3075 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3076 struct ifnet *ifp = &sc->sc_ic.ic_if;
3077 struct atw_txsoft *txs;
3078 u_int32_t txstat;
3079
3080 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3081 sc->sc_dev.dv_xname, sc->sc_flags));
3082
3083 ifp->if_flags &= ~IFF_OACTIVE;
3084
3085 /*
3086 * Go through our Tx list and free mbufs for those
3087 * frames that have been transmitted.
3088 */
3089 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3090 ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3091 txs->txs_ndescs,
3092 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3093
3094 #ifdef ATW_DEBUG
3095 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3096 int i;
3097 printf(" txsoft %p transmit chain:\n", txs);
3098 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3099 printf(" descriptor %d:\n", i);
3100 printf(" at_status: 0x%08x\n",
3101 le32toh(sc->sc_txdescs[i].at_stat));
3102 printf(" at_flags: 0x%08x\n",
3103 le32toh(sc->sc_txdescs[i].at_flags));
3104 printf(" at_buf1: 0x%08x\n",
3105 le32toh(sc->sc_txdescs[i].at_buf1));
3106 printf(" at_buf2: 0x%08x\n",
3107 le32toh(sc->sc_txdescs[i].at_buf2));
3108 if (i == txs->txs_lastdesc)
3109 break;
3110 }
3111 }
3112 #endif
3113
3114 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3115 if (txstat & ATW_TXSTAT_OWN)
3116 break;
3117
3118 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3119
3120 sc->sc_txfree += txs->txs_ndescs;
3121
3122 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3123 0, txs->txs_dmamap->dm_mapsize,
3124 BUS_DMASYNC_POSTWRITE);
3125 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3126 m_freem(txs->txs_mbuf);
3127 txs->txs_mbuf = NULL;
3128
3129 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3130
3131 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3132 (txstat & TXSTAT_ERRMASK) != 0) {
3133 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3134 txstat_buf, sizeof(txstat_buf));
3135 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3136 txstat_buf,
3137 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3138 }
3139
3140 /*
3141 * Check for errors and collisions.
3142 */
3143 if (txstat & ATW_TXSTAT_TUF)
3144 sc->sc_stats.ts_tx_tuf++;
3145 if (txstat & ATW_TXSTAT_TLT)
3146 sc->sc_stats.ts_tx_tlt++;
3147 if (txstat & ATW_TXSTAT_TRT)
3148 sc->sc_stats.ts_tx_trt++;
3149 if (txstat & ATW_TXSTAT_TRO)
3150 sc->sc_stats.ts_tx_tro++;
3151 if (txstat & ATW_TXSTAT_SOFBR) {
3152 sc->sc_stats.ts_tx_sofbr++;
3153 }
3154
3155 if ((txstat & ATW_TXSTAT_ES) == 0)
3156 ifp->if_collisions +=
3157 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3158 else
3159 ifp->if_oerrors++;
3160
3161 ifp->if_opackets++;
3162 }
3163
3164 /*
3165 * If there are no more pending transmissions, cancel the watchdog
3166 * timer.
3167 */
3168 if (txs == NULL)
3169 sc->sc_tx_timer = 0;
3170 #undef TXSTAT_ERRMASK
3171 #undef TXSTAT_FMT
3172 }
3173
3174 /*
3175 * atw_watchdog: [ifnet interface function]
3176 *
3177 * Watchdog timer handler.
3178 */
3179 void
3180 atw_watchdog(struct ifnet *ifp)
3181 {
3182 struct atw_softc *sc = ifp->if_softc;
3183 struct ieee80211com *ic = &sc->sc_ic;
3184
3185 ifp->if_timer = 0;
3186 if (ATW_IS_ENABLED(sc) == 0)
3187 return;
3188
3189 if (sc->sc_rescan_timer) {
3190 if (--sc->sc_rescan_timer == 0)
3191 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3192 }
3193 if (sc->sc_tx_timer) {
3194 if (--sc->sc_tx_timer == 0 &&
3195 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3196 printf("%s: transmit timeout\n", ifp->if_xname);
3197 ifp->if_oerrors++;
3198 (void)atw_init(ifp);
3199 atw_start(ifp);
3200 }
3201 }
3202 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3203 ifp->if_timer = 1;
3204 ieee80211_watchdog(ifp);
3205 }
3206
3207 /* Compute the 802.11 Duration field and the PLCP Length fields for
3208 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3209 * Write the fields to the ADM8211 Tx header, frm.
3210 *
3211 * TBD use the fragmentation threshold to find the right duration for
3212 * the first & last fragments.
3213 *
3214 * TBD make certain of the duration fields applied by the ADM8211 to each
3215 * fragment. I think that the ADM8211 knows how to subtract the CTS
3216 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3217 * I also think that the ADM8211 does *some* arithmetic for us, because
3218 * otherwise I think we would have to set a first duration for CTS/first
3219 * fragment, a second duration for fragments between the first and the
3220 * last, and a third duration for the last fragment.
3221 *
3222 * TBD make certain that duration fields reflect addition of FCS/WEP
3223 * and correct duration arithmetic as necessary.
3224 */
3225 static void
3226 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3227 int len)
3228 {
3229 int remainder;
3230
3231 /* deal also with encrypted fragments */
3232 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3233 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3234 sc->sc_dev.dv_xname));
3235 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3236 IEEE80211_WEP_CRCLEN;
3237 }
3238
3239 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3240 * duration (XXX added by MAC?).
3241 */
3242 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3243 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3244
3245 if (rate <= 4)
3246 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3247 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3248 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3249 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3250 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3251 else
3252 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3253 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3254 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3255 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3256 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3257
3258 /* lengthen duration if long preamble */
3259 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3260 frm->atw_head_dur +=
3261 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3262 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3263 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3264 IEEE80211_DUR_DS_FAST_PLCPHDR);
3265
3266 if (remainder != 0)
3267 frm->atw_head_dur++;
3268
3269 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3270 (rate == 2 || rate == 4)) {
3271 /* derived from Linux: how could this be right? */
3272 frm->atw_head_plcplen = frm->atw_head_dur;
3273 } else {
3274 frm->atw_head_plcplen = (16 * len) / rate;
3275 remainder = (80 * len) % (rate * 5);
3276
3277 if (remainder != 0) {
3278 frm->atw_head_plcplen++;
3279
3280 /* XXX magic */
3281 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3282 rate == 22 && remainder <= 30)
3283 frm->atw_head_plcplen |= 0x8000;
3284 }
3285 }
3286 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3287 htole16(frm->atw_head_plcplen);
3288 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3289 }
3290
3291 #ifdef ATW_DEBUG
3292 static void
3293 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3294 {
3295 struct atw_softc *sc = ifp->if_softc;
3296 struct mbuf *m;
3297 int i, noctets = 0;
3298
3299 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3300 m0->m_pkthdr.len);
3301
3302 for (m = m0; m; m = m->m_next) {
3303 if (m->m_len == 0)
3304 continue;
3305 for (i = 0; i < m->m_len; i++) {
3306 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3307 if (++noctets % 24 == 0)
3308 printf("\n");
3309 }
3310 }
3311 printf("%s%s: %d bytes emitted\n",
3312 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3313 }
3314 #endif /* ATW_DEBUG */
3315
3316 /*
3317 * atw_start: [ifnet interface function]
3318 *
3319 * Start packet transmission on the interface.
3320 */
3321 void
3322 atw_start(struct ifnet *ifp)
3323 {
3324 struct atw_softc *sc = ifp->if_softc;
3325 struct ieee80211com *ic = &sc->sc_ic;
3326 struct ieee80211_node *ni;
3327 struct ieee80211_frame *wh;
3328 struct atw_frame *hh;
3329 struct mbuf *m0, *m;
3330 struct atw_txsoft *txs, *last_txs;
3331 struct atw_txdesc *txd;
3332 int do_encrypt, rate;
3333 bus_dmamap_t dmamap;
3334 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3335
3336 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3337 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3338
3339 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3340 return;
3341
3342 #if 0 /* TBD ??? */
3343 if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3344 return;
3345 #endif
3346
3347 /*
3348 * Remember the previous number of free descriptors and
3349 * the first descriptor we'll use.
3350 */
3351 ofree = sc->sc_txfree;
3352 firsttx = sc->sc_txnext;
3353
3354 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3355 sc->sc_dev.dv_xname, ofree, firsttx));
3356
3357 /*
3358 * Loop through the send queue, setting up transmit descriptors
3359 * until we drain the queue, or use up all available transmit
3360 * descriptors.
3361 */
3362 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3363 sc->sc_txfree != 0) {
3364
3365 /*
3366 * Grab a packet off the management queue, if it
3367 * is not empty. Otherwise, from the data queue.
3368 */
3369 IF_DEQUEUE(&ic->ic_mgtq, m0);
3370 if (m0 != NULL) {
3371 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3372 m0->m_pkthdr.rcvif = NULL;
3373 } else {
3374 IFQ_DEQUEUE(&ifp->if_snd, m0);
3375 if (m0 == NULL)
3376 break;
3377 #if NBPFILTER > 0
3378 if (ifp->if_bpf != NULL)
3379 bpf_mtap(ifp->if_bpf, m0);
3380 #endif /* NBPFILTER > 0 */
3381 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3382 ifp->if_oerrors++;
3383 break;
3384 }
3385 }
3386
3387 rate = MAX(ieee80211_get_rate(ic), 2);
3388
3389 #if NBPFILTER > 0
3390 /*
3391 * Pass the packet to any BPF listeners.
3392 */
3393 if (ic->ic_rawbpf != NULL)
3394 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3395
3396 if (sc->sc_radiobpf != NULL) {
3397 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3398
3399 tap->at_rate = rate;
3400 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3401 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3402
3403 /* TBD tap->at_flags */
3404
3405 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3406 tap->at_ihdr.it_len, m0);
3407 }
3408 #endif /* NBPFILTER > 0 */
3409
3410 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3411
3412 if (ni != NULL && ni != ic->ic_bss)
3413 ieee80211_free_node(ic, ni);
3414
3415 if (m0 == NULL) {
3416 ifp->if_oerrors++;
3417 break;
3418 }
3419
3420 /* just to make sure. */
3421 m0 = m_pullup(m0, sizeof(struct atw_frame));
3422
3423 if (m0 == NULL) {
3424 ifp->if_oerrors++;
3425 break;
3426 }
3427
3428 hh = mtod(m0, struct atw_frame *);
3429 wh = &hh->atw_ihdr;
3430
3431 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3432
3433 /* Copy everything we need from the 802.11 header:
3434 * Frame Control; address 1, address 3, or addresses
3435 * 3 and 4. NIC fills in BSSID, SA.
3436 */
3437 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3438 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3439 panic("%s: illegal WDS frame",
3440 sc->sc_dev.dv_xname);
3441 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3442 } else
3443 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3444
3445 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3446
3447 /* initialize remaining Tx parameters */
3448 memset(&hh->u, 0, sizeof(hh->u));
3449
3450 hh->atw_rate = rate * 5;
3451 /* XXX this could be incorrect if M_FCS. _encap should
3452 * probably strip FCS just in case it sticks around in
3453 * bridged packets.
3454 */
3455 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3456 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3457 sizeof(struct atw_frame));
3458
3459 #if 0
3460 /* this virtually guaranteed that WEP-encrypted frames
3461 * are fragmented. oops.
3462 */
3463 hh->atw_fragthr = htole16(m0->m_pkthdr.len -
3464 sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
3465 hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3466 #else
3467 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3468 #endif
3469
3470 hh->atw_rtylmt = 3;
3471 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3472 if (do_encrypt) {
3473 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3474 hh->atw_keyid = ic->ic_wep_txkey;
3475 }
3476
3477 /* TBD 4-addr frames */
3478 atw_frame_setdurs(sc, hh, rate,
3479 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3480 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3481
3482 /* never fragment multicast frames */
3483 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3484 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3485 } else if (sc->sc_flags & ATWF_RTSCTS) {
3486 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3487 }
3488
3489 #ifdef ATW_DEBUG
3490 /* experimental stuff */
3491 if (atw_xrtylmt != ~0)
3492 hh->atw_rtylmt = atw_xrtylmt;
3493 if (atw_xhdrctl != 0)
3494 hh->atw_hdrctl |= htole16(atw_xhdrctl);
3495 if (atw_xservice != IEEE80211_PLCP_SERVICE)
3496 hh->atw_service = atw_xservice;
3497 if (atw_xpaylen != 0)
3498 hh->atw_paylen = htole16(atw_xpaylen);
3499 hh->atw_fragnum = 0;
3500
3501 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3502 printf("%s: dst = %s, rate = 0x%02x, "
3503 "service = 0x%02x, paylen = 0x%04x\n",
3504 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3505 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3506
3507 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3508 "dur1 = 0x%04x, dur2 = 0x%04x, "
3509 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3510 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3511 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3512 hh->atw_tail_dur, hh->atw_head_dur);
3513
3514 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3515 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3516 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3517 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3518
3519 printf("%s: keyid = %d\n",
3520 sc->sc_dev.dv_xname, hh->atw_keyid);
3521
3522 atw_dump_pkt(ifp, m0);
3523 }
3524 #endif /* ATW_DEBUG */
3525
3526 dmamap = txs->txs_dmamap;
3527
3528 /*
3529 * Load the DMA map. Copy and try (once) again if the packet
3530 * didn't fit in the alloted number of segments.
3531 */
3532 for (first = 1;
3533 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3534 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3535 first = 0) {
3536 MGETHDR(m, M_DONTWAIT, MT_DATA);
3537 if (m == NULL) {
3538 printf("%s: unable to allocate Tx mbuf\n",
3539 sc->sc_dev.dv_xname);
3540 break;
3541 }
3542 if (m0->m_pkthdr.len > MHLEN) {
3543 MCLGET(m, M_DONTWAIT);
3544 if ((m->m_flags & M_EXT) == 0) {
3545 printf("%s: unable to allocate Tx "
3546 "cluster\n", sc->sc_dev.dv_xname);
3547 m_freem(m);
3548 break;
3549 }
3550 }
3551 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3552 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3553 m_freem(m0);
3554 m0 = m;
3555 m = NULL;
3556 }
3557 if (error != 0) {
3558 printf("%s: unable to load Tx buffer, "
3559 "error = %d\n", sc->sc_dev.dv_xname, error);
3560 m_freem(m0);
3561 break;
3562 }
3563
3564 /*
3565 * Ensure we have enough descriptors free to describe
3566 * the packet.
3567 */
3568 if (dmamap->dm_nsegs > sc->sc_txfree) {
3569 /*
3570 * Not enough free descriptors to transmit
3571 * this packet. Unload the DMA map and
3572 * drop the packet. Notify the upper layer
3573 * that there are no more slots left.
3574 *
3575 * XXX We could allocate an mbuf and copy, but
3576 * XXX it is worth it?
3577 */
3578 ifp->if_flags |= IFF_OACTIVE;
3579 bus_dmamap_unload(sc->sc_dmat, dmamap);
3580 m_freem(m0);
3581 break;
3582 }
3583
3584 /*
3585 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3586 */
3587
3588 /* Sync the DMA map. */
3589 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3590 BUS_DMASYNC_PREWRITE);
3591
3592 /* XXX arbitrary retry limit; 8 because I have seen it in
3593 * use already and maybe 0 means "no tries" !
3594 */
3595 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3596
3597 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3598 sc->sc_dev.dv_xname, rate * 5));
3599 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3600
3601 /*
3602 * Initialize the transmit descriptors.
3603 */
3604 for (nexttx = sc->sc_txnext, seg = 0;
3605 seg < dmamap->dm_nsegs;
3606 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3607 /*
3608 * If this is the first descriptor we're
3609 * enqueueing, don't set the OWN bit just
3610 * yet. That could cause a race condition.
3611 * We'll do it below.
3612 */
3613 txd = &sc->sc_txdescs[nexttx];
3614 txd->at_ctl = ctl |
3615 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3616
3617 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3618 txd->at_flags =
3619 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3620 ATW_TXFLAG_TBS1_MASK)) |
3621 ((nexttx == (ATW_NTXDESC - 1))
3622 ? htole32(ATW_TXFLAG_TER) : 0);
3623 lasttx = nexttx;
3624 }
3625
3626 IASSERT(lasttx != -1, ("bad lastx"));
3627 /* Set `first segment' and `last segment' appropriately. */
3628 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3629 htole32(ATW_TXFLAG_FS);
3630 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3631
3632 #ifdef ATW_DEBUG
3633 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3634 printf(" txsoft %p transmit chain:\n", txs);
3635 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3636 printf(" descriptor %d:\n", seg);
3637 printf(" at_ctl: 0x%08x\n",
3638 le32toh(sc->sc_txdescs[seg].at_ctl));
3639 printf(" at_flags: 0x%08x\n",
3640 le32toh(sc->sc_txdescs[seg].at_flags));
3641 printf(" at_buf1: 0x%08x\n",
3642 le32toh(sc->sc_txdescs[seg].at_buf1));
3643 printf(" at_buf2: 0x%08x\n",
3644 le32toh(sc->sc_txdescs[seg].at_buf2));
3645 if (seg == lasttx)
3646 break;
3647 }
3648 }
3649 #endif
3650
3651 /* Sync the descriptors we're using. */
3652 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3653 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3654
3655 /*
3656 * Store a pointer to the packet so we can free it later,
3657 * and remember what txdirty will be once the packet is
3658 * done.
3659 */
3660 txs->txs_mbuf = m0;
3661 txs->txs_firstdesc = sc->sc_txnext;
3662 txs->txs_lastdesc = lasttx;
3663 txs->txs_ndescs = dmamap->dm_nsegs;
3664
3665 /* Advance the tx pointer. */
3666 sc->sc_txfree -= dmamap->dm_nsegs;
3667 sc->sc_txnext = nexttx;
3668
3669 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3670 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3671
3672 last_txs = txs;
3673 }
3674
3675 if (txs == NULL || sc->sc_txfree == 0) {
3676 /* No more slots left; notify upper layer. */
3677 ifp->if_flags |= IFF_OACTIVE;
3678 }
3679
3680 if (sc->sc_txfree != ofree) {
3681 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3682 sc->sc_dev.dv_xname, lasttx, firsttx));
3683 /*
3684 * Cause a transmit interrupt to happen on the
3685 * last packet we enqueued.
3686 */
3687 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3688 ATW_CDTXSYNC(sc, lasttx, 1,
3689 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3690
3691 /*
3692 * The entire packet chain is set up. Give the
3693 * first descriptor to the chip now.
3694 */
3695 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3696 ATW_CDTXSYNC(sc, firsttx, 1,
3697 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3698
3699 /* Wake up the transmitter. */
3700 ATW_WRITE(sc, ATW_TDR, 0x1);
3701
3702 /* Set a watchdog timer in case the chip flakes out. */
3703 sc->sc_tx_timer = 5;
3704 ifp->if_timer = 1;
3705 }
3706 }
3707
3708 /*
3709 * atw_power:
3710 *
3711 * Power management (suspend/resume) hook.
3712 */
3713 void
3714 atw_power(int why, void *arg)
3715 {
3716 struct atw_softc *sc = arg;
3717 struct ifnet *ifp = &sc->sc_ic.ic_if;
3718 int s;
3719
3720 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3721
3722 s = splnet();
3723 switch (why) {
3724 case PWR_STANDBY:
3725 /* XXX do nothing. */
3726 break;
3727 case PWR_SUSPEND:
3728 atw_stop(ifp, 0);
3729 if (sc->sc_power != NULL)
3730 (*sc->sc_power)(sc, why);
3731 break;
3732 case PWR_RESUME:
3733 if (ifp->if_flags & IFF_UP) {
3734 if (sc->sc_power != NULL)
3735 (*sc->sc_power)(sc, why);
3736 atw_init(ifp);
3737 }
3738 break;
3739 case PWR_SOFTSUSPEND:
3740 case PWR_SOFTSTANDBY:
3741 case PWR_SOFTRESUME:
3742 break;
3743 }
3744 splx(s);
3745 }
3746
3747 /*
3748 * atw_ioctl: [ifnet interface function]
3749 *
3750 * Handle control requests from the operator.
3751 */
3752 int
3753 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3754 {
3755 struct atw_softc *sc = ifp->if_softc;
3756 struct ifreq *ifr = (struct ifreq *)data;
3757 int s, error = 0;
3758
3759 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3760 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3761 return ENXIO;
3762
3763 s = splnet();
3764
3765 switch (cmd) {
3766 case SIOCSIFFLAGS:
3767 if (ifp->if_flags & IFF_UP) {
3768 if (ATW_IS_ENABLED(sc)) {
3769 /*
3770 * To avoid rescanning another access point,
3771 * do not call atw_init() here. Instead,
3772 * only reflect media settings.
3773 */
3774 atw_filter_setup(sc);
3775 } else
3776 error = atw_init(ifp);
3777 } else if (ATW_IS_ENABLED(sc))
3778 atw_stop(ifp, 1);
3779 break;
3780 case SIOCADDMULTI:
3781 case SIOCDELMULTI:
3782 error = (cmd == SIOCADDMULTI) ?
3783 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3784 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3785 if (error == ENETRESET) {
3786 if (ATW_IS_ENABLED(sc))
3787 atw_filter_setup(sc); /* do not rescan */
3788 error = 0;
3789 }
3790 break;
3791 default:
3792 error = ieee80211_ioctl(ifp, cmd, data);
3793 if (error == ENETRESET) {
3794 if (ATW_IS_ENABLED(sc))
3795 error = atw_init(ifp);
3796 else
3797 error = 0;
3798 }
3799 break;
3800 }
3801
3802 /* Try to get more packets going. */
3803 if (ATW_IS_ENABLED(sc))
3804 atw_start(ifp);
3805
3806 splx(s);
3807 return (error);
3808 }
3809
3810 static int
3811 atw_media_change(struct ifnet *ifp)
3812 {
3813 int error;
3814
3815 error = ieee80211_media_change(ifp);
3816 if (error == ENETRESET) {
3817 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3818 (IFF_RUNNING|IFF_UP))
3819 atw_init(ifp); /* XXX lose error */
3820 error = 0;
3821 }
3822 return error;
3823 }
3824
3825 static void
3826 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3827 {
3828 struct atw_softc *sc = ifp->if_softc;
3829
3830 if (ATW_IS_ENABLED(sc) == 0) {
3831 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3832 imr->ifm_status = 0;
3833 return;
3834 }
3835 ieee80211_media_status(ifp, imr);
3836 }
3837