atw.c revision 1.37 1 /* $NetBSD: atw.c,v 1.37 2004/06/23 09:41:54 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.37 2004/06/23 09:41:54 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * IBSS join/create
131 *
132 * set ATW_NAR_EA (is set by ASIC?)
133 *
134 * BSS join: (re)association response
135 *
136 * set ATW_FRCTL_AID
137 *
138 * optimizations ???
139 *
140 */
141
142 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
143 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
144 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
145
146 int atw_rfio_enable_delay = 20 * 1000;
147 int atw_rfio_disable_delay = 2 * 1000;
148 int atw_writewep_delay = 5;
149 int atw_beacon_len_adjust = 4;
150 int atw_dwelltime = 200;
151
152 #ifdef ATW_DEBUG
153 int atw_xhdrctl = 0;
154 int atw_xrtylmt = ~0;
155 int atw_xservice = IEEE80211_PLCP_SERVICE;
156 int atw_xpaylen = 0;
157
158 int atw_debug = 0;
159
160 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
161 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
162 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
163 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
164 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
165 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
166 static void atw_print_regs(struct atw_softc *, const char *);
167 static void atw_rf3000_print(struct atw_softc *);
168 static void atw_si4126_print(struct atw_softc *);
169 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
170 #else
171 #define ATW_DPRINTF(x)
172 #define ATW_DPRINTF2(x)
173 #define ATW_DPRINTF3(x)
174 #define DPRINTF(sc, x) /* nothing */
175 #define DPRINTF2(sc, x) /* nothing */
176 #define DPRINTF3(sc, x) /* nothing */
177 #endif
178
179 #ifdef ATW_STATS
180 void atw_print_stats(struct atw_softc *);
181 #endif
182
183 void atw_start(struct ifnet *);
184 void atw_watchdog(struct ifnet *);
185 int atw_ioctl(struct ifnet *, u_long, caddr_t);
186 int atw_init(struct ifnet *);
187 void atw_txdrain(struct atw_softc *);
188 void atw_stop(struct ifnet *, int);
189
190 void atw_reset(struct atw_softc *);
191 int atw_read_srom(struct atw_softc *);
192
193 void atw_shutdown(void *);
194
195 void atw_rxdrain(struct atw_softc *);
196 int atw_add_rxbuf(struct atw_softc *, int);
197 void atw_idle(struct atw_softc *, u_int32_t);
198
199 int atw_enable(struct atw_softc *);
200 void atw_disable(struct atw_softc *);
201 void atw_power(int, void *);
202
203 void atw_rxintr(struct atw_softc *);
204 void atw_txintr(struct atw_softc *);
205 void atw_linkintr(struct atw_softc *, u_int32_t);
206
207 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
208 static void atw_tsf(struct atw_softc *);
209 static void atw_start_beacon(struct atw_softc *, int);
210 static void atw_write_wep(struct atw_softc *);
211 static void atw_write_bssid(struct atw_softc *);
212 static void atw_write_bcn_thresh(struct atw_softc *);
213 static void atw_write_ssid(struct atw_softc *);
214 static void atw_write_sup_rates(struct atw_softc *);
215 static void atw_clear_sram(struct atw_softc *);
216 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
217 static int atw_media_change(struct ifnet *);
218 static void atw_media_status(struct ifnet *, struct ifmediareq *);
219 static void atw_filter_setup(struct atw_softc *);
220 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
221 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
222 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
223 struct ieee80211_node *, int, int, u_int32_t);
224 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
225 struct ieee80211_node *, int, int, u_int32_t);
226 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
227 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
228
229 static int atw_tune(struct atw_softc *);
230
231 static void atw_rfio_enable(struct atw_softc *, int);
232
233 /* RFMD RF3000 Baseband Processor */
234 static int atw_rf3000_init(struct atw_softc *);
235 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
236 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
237 #ifdef ATW_DEBUG
238 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
239 #endif /* ATW_DEBUG */
240
241 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
242 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
243 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
244 #ifdef ATW_DEBUG
245 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
246 #endif /* ATW_DEBUG */
247
248 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
249 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
250
251 const char *atw_tx_state[] = {
252 "STOPPED",
253 "RUNNING - read descriptor",
254 "RUNNING - transmitting",
255 "RUNNING - filling fifo", /* XXX */
256 "SUSPENDED",
257 "RUNNING -- write descriptor",
258 "RUNNING -- write last descriptor",
259 "RUNNING - fifo full"
260 };
261
262 const char *atw_rx_state[] = {
263 "STOPPED",
264 "RUNNING - read descriptor",
265 "RUNNING - check this packet, pre-fetch next",
266 "RUNNING - wait for reception",
267 "SUSPENDED",
268 "RUNNING - write descriptor",
269 "RUNNING - flush fifo",
270 "RUNNING - fifo drain"
271 };
272
273 int
274 atw_activate(struct device *self, enum devact act)
275 {
276 struct atw_softc *sc = (struct atw_softc *)self;
277 int rv = 0, s;
278
279 s = splnet();
280 switch (act) {
281 case DVACT_ACTIVATE:
282 rv = EOPNOTSUPP;
283 break;
284
285 case DVACT_DEACTIVATE:
286 if_deactivate(&sc->sc_ic.ic_if);
287 break;
288 }
289 splx(s);
290 return rv;
291 }
292
293 /*
294 * atw_enable:
295 *
296 * Enable the ADM8211 chip.
297 */
298 int
299 atw_enable(struct atw_softc *sc)
300 {
301
302 if (ATW_IS_ENABLED(sc) == 0) {
303 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
304 printf("%s: device enable failed\n",
305 sc->sc_dev.dv_xname);
306 return (EIO);
307 }
308 sc->sc_flags |= ATWF_ENABLED;
309 }
310 return (0);
311 }
312
313 /*
314 * atw_disable:
315 *
316 * Disable the ADM8211 chip.
317 */
318 void
319 atw_disable(struct atw_softc *sc)
320 {
321 if (!ATW_IS_ENABLED(sc))
322 return;
323 if (sc->sc_disable != NULL)
324 (*sc->sc_disable)(sc);
325 sc->sc_flags &= ~ATWF_ENABLED;
326 }
327
328 /* Returns -1 on failure. */
329 int
330 atw_read_srom(struct atw_softc *sc)
331 {
332 struct seeprom_descriptor sd;
333 u_int32_t reg;
334
335 (void)memset(&sd, 0, sizeof(sd));
336
337 reg = ATW_READ(sc, ATW_TEST0);
338
339 if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
340 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
341 return -1;
342 }
343
344 switch (reg & ATW_TEST0_EPTYP_MASK) {
345 case ATW_TEST0_EPTYP_93c66:
346 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
347 sc->sc_sromsz = 512;
348 sd.sd_chip = C56_66;
349 break;
350 case ATW_TEST0_EPTYP_93c46:
351 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
352 sc->sc_sromsz = 128;
353 sd.sd_chip = C46;
354 break;
355 default:
356 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
357 MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
358 return -1;
359 }
360
361 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
362
363 if (sc->sc_srom == NULL) {
364 printf("%s: unable to allocate SROM buffer\n",
365 sc->sc_dev.dv_xname);
366 return -1;
367 }
368
369 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
370
371 /* ADM8211 has a single 32-bit register for controlling the
372 * 93cx6 SROM. Bit SRS enables the serial port. There is no
373 * "ready" bit. The ADM8211 input/output sense is the reverse
374 * of read_seeprom's.
375 */
376 sd.sd_tag = sc->sc_st;
377 sd.sd_bsh = sc->sc_sh;
378 sd.sd_regsize = 4;
379 sd.sd_control_offset = ATW_SPR;
380 sd.sd_status_offset = ATW_SPR;
381 sd.sd_dataout_offset = ATW_SPR;
382 sd.sd_CK = ATW_SPR_SCLK;
383 sd.sd_CS = ATW_SPR_SCS;
384 sd.sd_DI = ATW_SPR_SDO;
385 sd.sd_DO = ATW_SPR_SDI;
386 sd.sd_MS = ATW_SPR_SRS;
387 sd.sd_RDY = 0;
388
389 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
390 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
391 free(sc->sc_srom, M_DEVBUF);
392 return -1;
393 }
394 #ifdef ATW_DEBUG
395 {
396 int i;
397 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
398 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
399 if (((i % 8) == 0) && (i != 0)) {
400 ATW_DPRINTF(("\n\t"));
401 }
402 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
403 }
404 ATW_DPRINTF(("\n"));
405 }
406 #endif /* ATW_DEBUG */
407 return 0;
408 }
409
410 #ifdef ATW_DEBUG
411 static void
412 atw_print_regs(struct atw_softc *sc, const char *where)
413 {
414 #define PRINTREG(sc, reg) \
415 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
416 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
417
418 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
419
420 PRINTREG(sc, ATW_PAR);
421 PRINTREG(sc, ATW_FRCTL);
422 PRINTREG(sc, ATW_TDR);
423 PRINTREG(sc, ATW_WTDP);
424 PRINTREG(sc, ATW_RDR);
425 PRINTREG(sc, ATW_WRDP);
426 PRINTREG(sc, ATW_RDB);
427 PRINTREG(sc, ATW_CSR3A);
428 PRINTREG(sc, ATW_TDBD);
429 PRINTREG(sc, ATW_TDBP);
430 PRINTREG(sc, ATW_STSR);
431 PRINTREG(sc, ATW_CSR5A);
432 PRINTREG(sc, ATW_NAR);
433 PRINTREG(sc, ATW_CSR6A);
434 PRINTREG(sc, ATW_IER);
435 PRINTREG(sc, ATW_CSR7A);
436 PRINTREG(sc, ATW_LPC);
437 PRINTREG(sc, ATW_TEST1);
438 PRINTREG(sc, ATW_SPR);
439 PRINTREG(sc, ATW_TEST0);
440 PRINTREG(sc, ATW_WCSR);
441 PRINTREG(sc, ATW_WPDR);
442 PRINTREG(sc, ATW_GPTMR);
443 PRINTREG(sc, ATW_GPIO);
444 PRINTREG(sc, ATW_BBPCTL);
445 PRINTREG(sc, ATW_SYNCTL);
446 PRINTREG(sc, ATW_PLCPHD);
447 PRINTREG(sc, ATW_MMIWADDR);
448 PRINTREG(sc, ATW_MMIRADDR1);
449 PRINTREG(sc, ATW_MMIRADDR2);
450 PRINTREG(sc, ATW_TXBR);
451 PRINTREG(sc, ATW_CSR15A);
452 PRINTREG(sc, ATW_ALCSTAT);
453 PRINTREG(sc, ATW_TOFS2);
454 PRINTREG(sc, ATW_CMDR);
455 PRINTREG(sc, ATW_PCIC);
456 PRINTREG(sc, ATW_PMCSR);
457 PRINTREG(sc, ATW_PAR0);
458 PRINTREG(sc, ATW_PAR1);
459 PRINTREG(sc, ATW_MAR0);
460 PRINTREG(sc, ATW_MAR1);
461 PRINTREG(sc, ATW_ATIMDA0);
462 PRINTREG(sc, ATW_ABDA1);
463 PRINTREG(sc, ATW_BSSID0);
464 PRINTREG(sc, ATW_TXLMT);
465 PRINTREG(sc, ATW_MIBCNT);
466 PRINTREG(sc, ATW_BCNT);
467 PRINTREG(sc, ATW_TSFTH);
468 PRINTREG(sc, ATW_TSC);
469 PRINTREG(sc, ATW_SYNRF);
470 PRINTREG(sc, ATW_BPLI);
471 PRINTREG(sc, ATW_CAP0);
472 PRINTREG(sc, ATW_CAP1);
473 PRINTREG(sc, ATW_RMD);
474 PRINTREG(sc, ATW_CFPP);
475 PRINTREG(sc, ATW_TOFS0);
476 PRINTREG(sc, ATW_TOFS1);
477 PRINTREG(sc, ATW_IFST);
478 PRINTREG(sc, ATW_RSPT);
479 PRINTREG(sc, ATW_TSFTL);
480 PRINTREG(sc, ATW_WEPCTL);
481 PRINTREG(sc, ATW_WESK);
482 PRINTREG(sc, ATW_WEPCNT);
483 PRINTREG(sc, ATW_MACTEST);
484 PRINTREG(sc, ATW_FER);
485 PRINTREG(sc, ATW_FEMR);
486 PRINTREG(sc, ATW_FPSR);
487 PRINTREG(sc, ATW_FFER);
488 #undef PRINTREG
489 }
490 #endif /* ATW_DEBUG */
491
492 /*
493 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
494 */
495 void
496 atw_attach(struct atw_softc *sc)
497 {
498 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
499 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
500 };
501 struct ieee80211com *ic = &sc->sc_ic;
502 struct ifnet *ifp = &ic->ic_if;
503 int country_code, error, i, nrate;
504 u_int32_t reg;
505 static const char *type_strings[] = {"Intersil (not supported)",
506 "RFMD", "Marvel (not supported)"};
507
508 sc->sc_txth = atw_txthresh_tab_lo;
509
510 SIMPLEQ_INIT(&sc->sc_txfreeq);
511 SIMPLEQ_INIT(&sc->sc_txdirtyq);
512
513 #ifdef ATW_DEBUG
514 atw_print_regs(sc, "atw_attach");
515 #endif /* ATW_DEBUG */
516
517 /*
518 * Allocate the control data structures, and create and load the
519 * DMA map for it.
520 */
521 if ((error = bus_dmamem_alloc(sc->sc_dmat,
522 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
523 1, &sc->sc_cdnseg, 0)) != 0) {
524 printf("%s: unable to allocate control data, error = %d\n",
525 sc->sc_dev.dv_xname, error);
526 goto fail_0;
527 }
528
529 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
530 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
531 BUS_DMA_COHERENT)) != 0) {
532 printf("%s: unable to map control data, error = %d\n",
533 sc->sc_dev.dv_xname, error);
534 goto fail_1;
535 }
536
537 if ((error = bus_dmamap_create(sc->sc_dmat,
538 sizeof(struct atw_control_data), 1,
539 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
540 printf("%s: unable to create control data DMA map, "
541 "error = %d\n", sc->sc_dev.dv_xname, error);
542 goto fail_2;
543 }
544
545 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
546 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
547 0)) != 0) {
548 printf("%s: unable to load control data DMA map, error = %d\n",
549 sc->sc_dev.dv_xname, error);
550 goto fail_3;
551 }
552
553 /*
554 * Create the transmit buffer DMA maps.
555 */
556 sc->sc_ntxsegs = ATW_NTXSEGS;
557 for (i = 0; i < ATW_TXQUEUELEN; i++) {
558 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
559 sc->sc_ntxsegs, MCLBYTES, 0, 0,
560 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
561 printf("%s: unable to create tx DMA map %d, "
562 "error = %d\n", sc->sc_dev.dv_xname, i, error);
563 goto fail_4;
564 }
565 }
566
567 /*
568 * Create the receive buffer DMA maps.
569 */
570 for (i = 0; i < ATW_NRXDESC; i++) {
571 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
572 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
573 printf("%s: unable to create rx DMA map %d, "
574 "error = %d\n", sc->sc_dev.dv_xname, i, error);
575 goto fail_5;
576 }
577 }
578 for (i = 0; i < ATW_NRXDESC; i++) {
579 sc->sc_rxsoft[i].rxs_mbuf = NULL;
580 }
581
582 /* Reset the chip to a known state. */
583 atw_reset(sc);
584
585 if (atw_read_srom(sc) == -1)
586 return;
587
588 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
589 ATW_SR_RFTYPE_MASK);
590
591 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
592 ATW_SR_BBPTYPE_MASK);
593
594 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
595 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
596 return;
597 }
598 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
599 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
600 return;
601 }
602
603 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
604 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
605
606 /* XXX There exists a Linux driver which seems to use RFType = 0 for
607 * MARVEL. My bug, or theirs?
608 */
609
610 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
611
612 switch (sc->sc_rftype) {
613 case ATW_RFTYPE_INTERSIL:
614 reg |= ATW_SYNCTL_CS1;
615 break;
616 case ATW_RFTYPE_RFMD:
617 reg |= ATW_SYNCTL_CS0;
618 break;
619 case ATW_RFTYPE_MARVEL:
620 break;
621 }
622
623 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
624 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
625
626 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
627
628 switch (sc->sc_bbptype) {
629 case ATW_BBPTYPE_INTERSIL:
630 reg |= ATW_BBPCTL_TWI;
631 break;
632 case ATW_BBPTYPE_RFMD:
633 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
634 ATW_BBPCTL_CCA_ACTLO;
635 break;
636 case ATW_BBPTYPE_MARVEL:
637 break;
638 case ATW_C_BBPTYPE_RFMD:
639 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
640 sc->sc_dev.dv_xname);
641 break;
642 }
643
644 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
645 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
646
647 /*
648 * From this point forward, the attachment cannot fail. A failure
649 * before this point releases all resources that may have been
650 * allocated.
651 */
652 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
653
654 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
655 htole16(sc->sc_srom[ATW_SR_MAC00]),
656 htole16(sc->sc_srom[ATW_SR_MAC01]),
657 htole16(sc->sc_srom[ATW_SR_MAC10])));
658
659 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
660 ATW_SR_CTRY_MASK);
661
662 #define ADD_CHANNEL(_ic, _chan) do { \
663 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
664 _ic->ic_channels[_chan].ic_freq = \
665 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
666 } while (0)
667
668 /* Find available channels */
669 switch (country_code) {
670 case COUNTRY_MMK2: /* 1-14 */
671 ADD_CHANNEL(ic, 14);
672 /*FALLTHROUGH*/
673 case COUNTRY_ETSI: /* 1-13 */
674 for (i = 1; i <= 13; i++)
675 ADD_CHANNEL(ic, i);
676 break;
677 case COUNTRY_FCC: /* 1-11 */
678 case COUNTRY_IC: /* 1-11 */
679 for (i = 1; i <= 11; i++)
680 ADD_CHANNEL(ic, i);
681 break;
682 case COUNTRY_MMK: /* 14 */
683 ADD_CHANNEL(ic, 14);
684 break;
685 case COUNTRY_FRANCE: /* 10-13 */
686 for (i = 10; i <= 13; i++)
687 ADD_CHANNEL(ic, i);
688 break;
689 default: /* assume channels 10-11 */
690 case COUNTRY_SPAIN: /* 10-11 */
691 for (i = 10; i <= 11; i++)
692 ADD_CHANNEL(ic, i);
693 break;
694 }
695
696 /* Read the MAC address. */
697 reg = ATW_READ(sc, ATW_PAR0);
698 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
699 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
700 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
701 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
702 reg = ATW_READ(sc, ATW_PAR1);
703 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
704 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
705
706 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
707 printf(" could not get mac address, attach failed\n");
708 return;
709 }
710
711 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
712
713 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
714 ifp->if_softc = sc;
715 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
716 IFF_NOTRAILERS;
717 ifp->if_ioctl = atw_ioctl;
718 ifp->if_start = atw_start;
719 ifp->if_watchdog = atw_watchdog;
720 ifp->if_init = atw_init;
721 ifp->if_stop = atw_stop;
722 IFQ_SET_READY(&ifp->if_snd);
723
724 ic->ic_phytype = IEEE80211_T_DS;
725 ic->ic_opmode = IEEE80211_M_STA;
726 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
727 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
728
729 nrate = 0;
730 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
731 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
732 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
733 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
734 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
735
736 /*
737 * Call MI attach routines.
738 */
739
740 if_attach(ifp);
741 ieee80211_ifattach(ifp);
742
743 sc->sc_newstate = ic->ic_newstate;
744 ic->ic_newstate = atw_newstate;
745
746 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
747 ic->ic_recv_mgmt = atw_recv_mgmt;
748
749 sc->sc_node_free = ic->ic_node_free;
750 ic->ic_node_free = atw_node_free;
751
752 sc->sc_node_alloc = ic->ic_node_alloc;
753 ic->ic_node_alloc = atw_node_alloc;
754
755 /* possibly we should fill in our own sc_send_prresp, since
756 * the ADM8211 is probably sending probe responses in ad hoc
757 * mode.
758 */
759
760 /* complete initialization */
761 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
762 callout_init(&sc->sc_scan_ch);
763
764 #if NBPFILTER > 0
765 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
766 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
767 #endif
768
769 /*
770 * Make sure the interface is shutdown during reboot.
771 */
772 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
773 if (sc->sc_sdhook == NULL)
774 printf("%s: WARNING: unable to establish shutdown hook\n",
775 sc->sc_dev.dv_xname);
776
777 /*
778 * Add a suspend hook to make sure we come back up after a
779 * resume.
780 */
781 sc->sc_powerhook = powerhook_establish(atw_power, sc);
782 if (sc->sc_powerhook == NULL)
783 printf("%s: WARNING: unable to establish power hook\n",
784 sc->sc_dev.dv_xname);
785
786 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
787 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
788 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
789
790 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
791 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
792 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
793
794 return;
795
796 /*
797 * Free any resources we've allocated during the failed attach
798 * attempt. Do this in reverse order and fall through.
799 */
800 fail_5:
801 for (i = 0; i < ATW_NRXDESC; i++) {
802 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
803 continue;
804 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
805 }
806 fail_4:
807 for (i = 0; i < ATW_TXQUEUELEN; i++) {
808 if (sc->sc_txsoft[i].txs_dmamap == NULL)
809 continue;
810 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
811 }
812 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
813 fail_3:
814 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
815 fail_2:
816 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
817 sizeof(struct atw_control_data));
818 fail_1:
819 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
820 fail_0:
821 return;
822 }
823
824 static struct ieee80211_node *
825 atw_node_alloc(struct ieee80211com *ic)
826 {
827 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
828 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
829
830 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
831 return ni;
832 }
833
834 static void
835 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
836 {
837 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
838
839 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
840 ether_sprintf(ni->ni_bssid)));
841 (*sc->sc_node_free)(ic, ni);
842 }
843
844 /*
845 * atw_reset:
846 *
847 * Perform a soft reset on the ADM8211.
848 */
849 void
850 atw_reset(struct atw_softc *sc)
851 {
852 int i;
853
854 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
855
856 for (i = 0; i < 10000; i++) {
857 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
858 break;
859 DELAY(1);
860 }
861
862 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
863
864 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
865 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
866
867 /* Turn off maximum power saving. */
868 ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
869
870 /* Recall EEPROM. */
871 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
872
873 DELAY(10 * 1000);
874
875 /* A reset seems to affect the SRAM contents, so put them into
876 * a known state.
877 */
878 atw_clear_sram(sc);
879
880 memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
881
882 sc->sc_lost_bcn_thresh = 0;
883 }
884
885 static void
886 atw_clear_sram(struct atw_softc *sc)
887 {
888 #if 0
889 for (addr = 0; addr < 448; addr++) {
890 ATW_WRITE(sc, ATW_WEPCTL,
891 ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0 | addr);
892 DELAY(1000);
893 ATW_WRITE(sc, ATW_WESK, 0);
894 DELAY(1000); /* paranoia */
895 }
896 return;
897 #endif
898 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
899 /* XXX not for revision 0x20. */
900 atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
901 }
902
903 /* TBD atw_init
904 *
905 * set MAC based on ic->ic_bss->myaddr
906 * write WEP keys
907 * set TX rate
908 */
909
910 /*
911 * atw_init: [ ifnet interface function ]
912 *
913 * Initialize the interface. Must be called at splnet().
914 */
915 int
916 atw_init(struct ifnet *ifp)
917 {
918 struct atw_softc *sc = ifp->if_softc;
919 struct ieee80211com *ic = &sc->sc_ic;
920 struct atw_txsoft *txs;
921 struct atw_rxsoft *rxs;
922 u_int32_t reg;
923 int i, error = 0;
924
925 if ((error = atw_enable(sc)) != 0)
926 goto out;
927
928 /*
929 * Cancel any pending I/O. This also resets.
930 */
931 atw_stop(ifp, 0);
932
933 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
934 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
935 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
936 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
937
938 /* Turn off APM??? (A binary-only driver does this.)
939 *
940 * Set Rx store-and-forward mode.
941 */
942 reg = ATW_READ(sc, ATW_CMDR);
943 reg &= ~ATW_CMDR_APM;
944 reg &= ~ATW_CMDR_DRT_MASK;
945 reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
946
947 ATW_WRITE(sc, ATW_CMDR, reg);
948
949 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
950 *
951 * XXX a binary-only driver sets a different service field than
952 * 0. why?
953 */
954 reg = ATW_READ(sc, ATW_PLCPHD);
955 reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
956 reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
957 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
958 ATW_WRITE(sc, ATW_PLCPHD, reg);
959
960 /* XXX this magic can probably be figured out from the RFMD docs */
961 reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
962 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
963 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
964 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
965 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
966 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
967 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
968 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
969 ATW_WRITE(sc, ATW_TOFS2, reg);
970
971 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
972 LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
973
974 /* XXX this resets an Intersil RF front-end? */
975 /* TBD condition on Intersil RFType? */
976 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
977 DELAY(10 * 1000);
978 ATW_WRITE(sc, ATW_SYNRF, 0);
979 DELAY(5 * 1000);
980
981 /* 16 TU max duration for contention-free period */
982 reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
983 ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
984
985 /* XXX I guess that the Cardbus clock is 22MHz?
986 * I am assuming that the role of ATW_TOFS0_USCNT is
987 * to divide the bus clock to get a 1MHz clock---the datasheet is not
988 * very clear on this point. It says in the datasheet that it is
989 * possible for the ADM8211 to accomodate bus speeds between 22MHz
990 * and 33MHz; maybe this is the way? I see a binary-only driver write
991 * these values. These values are also the power-on default.
992 */
993 ATW_WRITE(sc, ATW_TOFS0,
994 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
995 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
996
997 /* Initialize interframe spacing. EIFS=0x64 is used by a binary-only
998 * driver. Go figure.
999 */
1000 reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1001 LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
1002 ATW_IFST_SIFS_MASK) |
1003 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1004 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1005
1006 ATW_WRITE(sc, ATW_IFST, reg);
1007
1008 /* XXX More magic. Might relate to ACK timing. */
1009 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1010 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1011
1012 /* Set up the MMI read/write addresses for the BBP.
1013 *
1014 * TBD find out the Marvel settings.
1015 */
1016 switch (sc->sc_bbptype) {
1017 case ATW_BBPTYPE_INTERSIL:
1018 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1019 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1020 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1021 break;
1022 case ATW_BBPTYPE_MARVEL:
1023 break;
1024 case ATW_BBPTYPE_RFMD:
1025 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1026 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1027 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1028 default:
1029 break;
1030 }
1031
1032 sc->sc_wepctl = 0;
1033 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1034
1035 if ((error = atw_rf3000_init(sc)) != 0)
1036 goto out;
1037
1038 /*
1039 * Initialize the PCI Access Register.
1040 */
1041 sc->sc_busmode = ATW_PAR_BAR; /* XXX what is this? */
1042
1043 /*
1044 * If we're allowed to do so, use Memory Read Line
1045 * and Memory Read Multiple.
1046 *
1047 * XXX Should we use Memory Write and Invalidate?
1048 */
1049 if (sc->sc_flags & ATWF_MRL)
1050 sc->sc_busmode |= ATW_PAR_MRLE;
1051 if (sc->sc_flags & ATWF_MRM)
1052 sc->sc_busmode |= ATW_PAR_MRME;
1053 if (sc->sc_flags & ATWF_MWI)
1054 sc->sc_busmode |= ATW_PAR_MWIE;
1055 if (sc->sc_maxburst == 0)
1056 sc->sc_maxburst = 8; /* ADM8211 default */
1057
1058 switch (sc->sc_cacheline) {
1059 default:
1060 /* Use burst length. */
1061 break;
1062 case 8:
1063 sc->sc_busmode |= ATW_PAR_CAL_8DW;
1064 break;
1065 case 16:
1066 sc->sc_busmode |= ATW_PAR_CAL_16DW;
1067 break;
1068 case 32:
1069 sc->sc_busmode |= ATW_PAR_CAL_32DW;
1070 break;
1071 }
1072 switch (sc->sc_maxburst) {
1073 case 1:
1074 sc->sc_busmode |= ATW_PAR_PBL_1DW;
1075 break;
1076 case 2:
1077 sc->sc_busmode |= ATW_PAR_PBL_2DW;
1078 break;
1079 case 4:
1080 sc->sc_busmode |= ATW_PAR_PBL_4DW;
1081 break;
1082 case 8:
1083 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1084 break;
1085 case 16:
1086 sc->sc_busmode |= ATW_PAR_PBL_16DW;
1087 break;
1088 case 32:
1089 sc->sc_busmode |= ATW_PAR_PBL_32DW;
1090 break;
1091 default:
1092 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1093 break;
1094 }
1095
1096 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1097 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1098 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1099
1100 /*
1101 * Initialize the OPMODE register. We don't write it until
1102 * we're ready to begin the transmit and receive processes.
1103 */
1104 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1105 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1106
1107 /*
1108 * Initialize the transmit descriptor ring.
1109 */
1110 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1111 for (i = 0; i < ATW_NTXDESC; i++) {
1112 /* no transmit chaining */
1113 sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1114 sc->sc_txdescs[i].at_buf2 =
1115 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1116 }
1117 /* use ring mode */
1118 sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1119 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1120 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1121 sc->sc_txfree = ATW_NTXDESC;
1122 sc->sc_txnext = 0;
1123
1124 /*
1125 * Initialize the transmit job descriptors.
1126 */
1127 SIMPLEQ_INIT(&sc->sc_txfreeq);
1128 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1129 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1130 txs = &sc->sc_txsoft[i];
1131 txs->txs_mbuf = NULL;
1132 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1133 }
1134
1135 /*
1136 * Initialize the receive descriptor and receive job
1137 * descriptor rings.
1138 */
1139 for (i = 0; i < ATW_NRXDESC; i++) {
1140 rxs = &sc->sc_rxsoft[i];
1141 if (rxs->rxs_mbuf == NULL) {
1142 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1143 printf("%s: unable to allocate or map rx "
1144 "buffer %d, error = %d\n",
1145 sc->sc_dev.dv_xname, i, error);
1146 /*
1147 * XXX Should attempt to run with fewer receive
1148 * XXX buffers instead of just failing.
1149 */
1150 atw_rxdrain(sc);
1151 goto out;
1152 }
1153 } else
1154 ATW_INIT_RXDESC(sc, i);
1155 }
1156 sc->sc_rxptr = 0;
1157
1158 /* disable all wake-up events */
1159 ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1160 ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1161 ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1162 ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1163
1164 /* ack all wake-up events */
1165 ATW_SET(sc, ATW_WCSR, 0);
1166
1167 /*
1168 * Initialize the interrupt mask and enable interrupts.
1169 */
1170 /* normal interrupts */
1171 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1172 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1173
1174 /* abnormal interrupts */
1175 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1176 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1177 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1178
1179 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1180 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1181 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1182 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1183 ATW_INTR_TRT;
1184
1185 sc->sc_linkint_mask &= sc->sc_inten;
1186 sc->sc_rxint_mask &= sc->sc_inten;
1187 sc->sc_txint_mask &= sc->sc_inten;
1188
1189 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1190 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1191 if (sc->sc_intr_ack != NULL)
1192 (*sc->sc_intr_ack)(sc);
1193
1194 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1195 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1196
1197 /*
1198 * Give the transmit and receive rings to the ADM8211.
1199 */
1200 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1201 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1202
1203 /* common 802.11 configuration */
1204 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1205 switch (ic->ic_opmode) {
1206 case IEEE80211_M_STA:
1207 sc->sc_opmode &= ~ATW_NAR_EA;
1208 break;
1209 case IEEE80211_M_AHDEMO: /* XXX */
1210 case IEEE80211_M_IBSS:
1211 ic->ic_flags |= IEEE80211_F_IBSSON;
1212 /*FALLTHROUGH*/
1213 case IEEE80211_M_HOSTAP: /* XXX */
1214 /* EA bit seems important for ad hoc reception. */
1215 sc->sc_opmode |= ATW_NAR_EA;
1216 break;
1217 case IEEE80211_M_MONITOR: /* XXX */
1218 break;
1219 }
1220
1221 atw_start_beacon(sc, 0);
1222
1223 switch (ic->ic_opmode) {
1224 case IEEE80211_M_AHDEMO:
1225 case IEEE80211_M_HOSTAP:
1226 ic->ic_bss->ni_intval = ic->ic_lintval;
1227 ic->ic_bss->ni_rssi = 0;
1228 ic->ic_bss->ni_rstamp = 0;
1229 break;
1230 default: /* XXX */
1231 break;
1232 }
1233
1234 atw_write_ssid(sc);
1235 atw_write_sup_rates(sc);
1236 if (ic->ic_caps & IEEE80211_C_WEP)
1237 atw_write_wep(sc);
1238
1239 /*
1240 * Set the receive filter. This will start the transmit and
1241 * receive processes.
1242 */
1243 atw_filter_setup(sc);
1244
1245 /*
1246 * Start the receive process.
1247 */
1248 ATW_WRITE(sc, ATW_RDR, 0x1);
1249
1250 /*
1251 * Note that the interface is now running.
1252 */
1253 ifp->if_flags |= IFF_RUNNING;
1254 ifp->if_flags &= ~IFF_OACTIVE;
1255 ic->ic_state = IEEE80211_S_INIT;
1256
1257 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1258 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1259 else
1260 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1261 out:
1262 if (error) {
1263 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1264 ifp->if_timer = 0;
1265 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1266 }
1267 #ifdef ATW_DEBUG
1268 atw_print_regs(sc, "end of init");
1269 #endif /* ATW_DEBUG */
1270
1271 return (error);
1272 }
1273
1274 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1275 * 0: MAC control of RF3000/Si4126.
1276 *
1277 * Applies power, or selects RF front-end? Sets reset condition.
1278 *
1279 * TBD support non-RFMD BBP, non-SiLabs synth.
1280 */
1281 static void
1282 atw_rfio_enable(struct atw_softc *sc, int enable)
1283 {
1284 if (enable) {
1285 ATW_WRITE(sc, ATW_SYNRF,
1286 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1287 DELAY(atw_rfio_enable_delay);
1288 } else {
1289 ATW_WRITE(sc, ATW_SYNRF, 0);
1290 DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1291 }
1292 }
1293
1294 static int
1295 atw_tune(struct atw_softc *sc)
1296 {
1297 int rc;
1298 u_int32_t reg;
1299 int chan;
1300 struct ieee80211com *ic = &sc->sc_ic;
1301
1302 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1303 if (chan == IEEE80211_CHAN_ANY)
1304 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1305
1306 if (chan == sc->sc_cur_chan)
1307 return 0;
1308
1309 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1310 sc->sc_cur_chan, chan));
1311
1312 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1313
1314 if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1315 (rc = atw_rf3000_tune(sc, chan)) != 0)
1316 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1317 chan);
1318
1319 reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1320 ATW_WRITE(sc, ATW_CAP0,
1321 reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1322
1323 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1324
1325 if (rc == 0)
1326 sc->sc_cur_chan = chan;
1327
1328 return rc;
1329 }
1330
1331 #ifdef ATW_DEBUG
1332 static void
1333 atw_si4126_print(struct atw_softc *sc)
1334 {
1335 struct ifnet *ifp = &sc->sc_ic.ic_if;
1336 u_int addr, val;
1337
1338 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1339 return;
1340
1341 for (addr = 0; addr <= 8; addr++) {
1342 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1343 if (atw_si4126_read(sc, addr, &val) == 0) {
1344 printf("<unknown> (quitting print-out)\n");
1345 break;
1346 }
1347 printf("%05x\n", val);
1348 }
1349 }
1350 #endif /* ATW_DEBUG */
1351
1352 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1353 *
1354 * The RF/IF synthesizer produces two reference frequencies for
1355 * the RF2948B transceiver. The first frequency the RF2948B requires
1356 * is two times the so-called "intermediate frequency" (IF). Since
1357 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1358 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1359 * frequency required by the transceiver is the radio frequency
1360 * (RF). This is a superheterodyne transceiver; for f(chan) the
1361 * center frequency of the channel we are tuning, RF = f(chan) -
1362 * IF.
1363 *
1364 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1365 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1366 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1367 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1368 */
1369 static int
1370 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
1371 {
1372 int rc = 0;
1373 u_int mhz;
1374 u_int R;
1375 u_int32_t reg;
1376 u_int16_t gain;
1377
1378 #ifdef ATW_DEBUG
1379 atw_si4126_print(sc);
1380 #endif /* ATW_DEBUG */
1381
1382 if (chan == 14)
1383 mhz = 2484;
1384 else
1385 mhz = 2412 + 5 * (chan - 1);
1386
1387 /* Tune IF to 748MHz to suit the IF LO input of the
1388 * RF2494B, which is 2 x IF. No need to set an IF divider
1389 * because an IF in 526MHz - 952MHz is allowed.
1390 *
1391 * XIN is 44.000MHz, so divide it by two to get allowable
1392 * range of 2-25MHz. SiLabs tells me that this is not
1393 * strictly necessary.
1394 */
1395
1396 R = 44;
1397
1398 atw_rfio_enable(sc, 1);
1399
1400 /* Power-up RF, IF synthesizers. */
1401 if ((rc = atw_si4126_write(sc, SI4126_POWER,
1402 SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1403 goto out;
1404
1405 /* If RF2 N > 2047, then set KP2 to 1. */
1406 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1407
1408 if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1409 goto out;
1410
1411 /* set LPWR, too? */
1412 if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1413 SI4126_MAIN_XINDIV2)) != 0)
1414 goto out;
1415
1416 /* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN. XIN = 44MHz.
1417 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1418 */
1419 if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1420 goto out;
1421
1422 if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1423 goto out;
1424
1425 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1426 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1427 * which has no RF1!
1428 */
1429 if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1430 goto out;
1431
1432 if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1433 goto out;
1434
1435 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1436 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1437 * Now let's multiply it to mhz. So mhz - IF = N.
1438 */
1439 if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1440 goto out;
1441
1442 if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1443 goto out;
1444
1445 /* wait 100us from power-up for RF, IF to settle */
1446 DELAY(100);
1447
1448 if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1449 /* XXX there is a binary driver which sends
1450 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1451 * that this enables the Si4126 by raising its PWDN#, but I
1452 * think that it actually sets the Prism RF front-end
1453 * to a special mode for channel 14.
1454 */
1455 reg = ATW_READ(sc, ATW_GPIO);
1456 reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1457 reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1458 ATW_WRITE(sc, ATW_GPIO, reg);
1459 }
1460
1461 #ifdef ATW_DEBUG
1462 atw_si4126_print(sc);
1463 #endif /* ATW_DEBUG */
1464
1465 out:
1466 atw_rfio_enable(sc, 0);
1467
1468 return rc;
1469 }
1470
1471 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1472 * diversity.
1473 *
1474 * Call this w/ Tx/Rx suspended.
1475 */
1476 static int
1477 atw_rf3000_init(struct atw_softc *sc)
1478 {
1479 int rc = 0;
1480
1481 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1482
1483 atw_rfio_enable(sc, 1);
1484
1485 /* enable diversity */
1486 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1487
1488 if (rc != 0)
1489 goto out;
1490
1491 /* sensible setting from a binary-only driver */
1492 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1493 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1494
1495 if (rc != 0)
1496 goto out;
1497
1498 /* magic from a binary-only driver */
1499 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1500 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1501
1502 if (rc != 0)
1503 goto out;
1504
1505 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1506
1507 if (rc != 0)
1508 goto out;
1509
1510 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1511
1512 if (rc != 0)
1513 goto out;
1514
1515 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1516
1517 if (rc != 0)
1518 goto out;
1519
1520 /* CCA is acquisition sensitive */
1521 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1522 LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1523
1524 if (rc != 0)
1525 goto out;
1526
1527 out:
1528 atw_rfio_enable(sc, 0);
1529 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1530 return rc;
1531 }
1532
1533 #ifdef ATW_DEBUG
1534 static void
1535 atw_rf3000_print(struct atw_softc *sc)
1536 {
1537 struct ifnet *ifp = &sc->sc_ic.ic_if;
1538 u_int addr, val;
1539
1540 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1541 return;
1542
1543 for (addr = 0x01; addr <= 0x15; addr++) {
1544 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1545 if (atw_rf3000_read(sc, addr, &val) != 0) {
1546 printf("<unknown> (quitting print-out)\n");
1547 break;
1548 }
1549 printf("%08x\n", val);
1550 }
1551 }
1552 #endif /* ATW_DEBUG */
1553
1554 /* Set the power settings on the BBP for channel `chan'. */
1555 static int
1556 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
1557 {
1558 int rc = 0;
1559 u_int32_t reg;
1560 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1561
1562 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1563 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1564 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1565
1566 /* odd channels: LSB, even channels: MSB */
1567 if (chan % 2 == 1) {
1568 txpower &= 0xFF;
1569 lpf_cutoff &= 0xFF;
1570 lna_gs_thresh &= 0xFF;
1571 } else {
1572 txpower >>= 8;
1573 lpf_cutoff >>= 8;
1574 lna_gs_thresh >>= 8;
1575 }
1576
1577 #ifdef ATW_DEBUG
1578 atw_rf3000_print(sc);
1579 #endif /* ATW_DEBUG */
1580
1581 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1582 "lna_gs_thresh %02x\n",
1583 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1584
1585 atw_rfio_enable(sc, 1);
1586
1587 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1588 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1589 goto out;
1590
1591 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1592 goto out;
1593
1594 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1595 goto out;
1596
1597 /* from a binary-only driver. */
1598 reg = ATW_READ(sc, ATW_PLCPHD);
1599 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1600 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1601 ATW_PLCPHD_SERVICE_MASK);
1602 ATW_WRITE(sc, ATW_PLCPHD, reg);
1603
1604 #ifdef ATW_DEBUG
1605 atw_rf3000_print(sc);
1606 #endif /* ATW_DEBUG */
1607
1608 out:
1609 atw_rfio_enable(sc, 0);
1610
1611 return rc;
1612 }
1613
1614 /* Write a register on the RF3000 baseband processor using the
1615 * registers provided by the ADM8211 for this purpose.
1616 *
1617 * Return 0 on success.
1618 */
1619 static int
1620 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1621 {
1622 u_int32_t reg;
1623 int i;
1624
1625 for (i = 1000; --i >= 0; ) {
1626 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1627 break;
1628 DELAY(100);
1629 }
1630
1631 if (i < 0) {
1632 printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1633 return ETIMEDOUT;
1634 }
1635
1636 reg = sc->sc_bbpctl_wr |
1637 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1638 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1639
1640 ATW_WRITE(sc, ATW_BBPCTL, reg);
1641
1642 for (i = 1000; --i >= 0; ) {
1643 DELAY(100);
1644 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1645 break;
1646 }
1647
1648 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1649
1650 if (i < 0) {
1651 printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1652 return ETIMEDOUT;
1653 }
1654 return 0;
1655 }
1656
1657 /* Read a register on the RF3000 baseband processor using the registers
1658 * the ADM8211 provides for this purpose.
1659 *
1660 * The 7-bit register address is addr. Record the 8-bit data in the register
1661 * in *val.
1662 *
1663 * Return 0 on success.
1664 *
1665 * XXX This does not seem to work. The ADM8211 must require more or
1666 * different magic to read the chip than to write it. Possibly some
1667 * of the magic I have derived from a binary-only driver concerns
1668 * the "chip address" (see the RF3000 manual).
1669 */
1670 #ifdef ATW_DEBUG
1671 static int
1672 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1673 {
1674 u_int32_t reg;
1675 int i;
1676
1677 for (i = 1000; --i >= 0; ) {
1678 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1679 break;
1680 DELAY(100);
1681 }
1682
1683 if (i < 0) {
1684 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1685 sc->sc_dev.dv_xname);
1686 return ETIMEDOUT;
1687 }
1688
1689 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1690
1691 ATW_WRITE(sc, ATW_BBPCTL, reg);
1692
1693 for (i = 1000; --i >= 0; ) {
1694 DELAY(100);
1695 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1696 break;
1697 }
1698
1699 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1700
1701 if (i < 0) {
1702 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1703 sc->sc_dev.dv_xname, reg);
1704 return ETIMEDOUT;
1705 }
1706 if (val != NULL)
1707 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1708 return 0;
1709 }
1710 #endif /* ATW_DEBUG */
1711
1712 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1713 * provided by the ADM8211 for that purpose.
1714 *
1715 * val is 18 bits of data, and val is the 4-bit address of the register.
1716 *
1717 * Return 0 on success.
1718 */
1719 static int
1720 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1721 {
1722 u_int32_t bits, reg;
1723 int i;
1724
1725 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1726 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1727
1728 for (i = 1000; --i >= 0; ) {
1729 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1730 break;
1731 DELAY(100);
1732 }
1733
1734 if (i < 0) {
1735 printf("%s: start atw_si4126_write, SYNCTL busy\n",
1736 sc->sc_dev.dv_xname);
1737 return ETIMEDOUT;
1738 }
1739
1740 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1741 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1742
1743 reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
1744
1745 ATW_WRITE(sc, ATW_SYNCTL, reg);
1746
1747 for (i = 1000; --i >= 0; ) {
1748 DELAY(100);
1749 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1750 break;
1751 }
1752
1753 /* restore to acceptable starting condition */
1754 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1755
1756 if (i < 0) {
1757 printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1758 sc->sc_dev.dv_xname, reg);
1759 return ETIMEDOUT;
1760 }
1761 return 0;
1762 }
1763
1764 /* Read 18-bit data from the 4-bit address addr in Si4126
1765 * RF synthesizer and write the data to *val. Return 0 on success.
1766 *
1767 * XXX This does not seem to work. The ADM8211 must require more or
1768 * different magic to read the chip than to write it.
1769 */
1770 #ifdef ATW_DEBUG
1771 static int
1772 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1773 {
1774 u_int32_t reg;
1775 int i;
1776
1777 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1778
1779 for (i = 1000; --i >= 0; ) {
1780 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1781 break;
1782 DELAY(100);
1783 }
1784
1785 if (i < 0) {
1786 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1787 sc->sc_dev.dv_xname);
1788 return ETIMEDOUT;
1789 }
1790
1791 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1792
1793 ATW_WRITE(sc, ATW_SYNCTL, reg);
1794
1795 for (i = 1000; --i >= 0; ) {
1796 DELAY(100);
1797 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1798 break;
1799 }
1800
1801 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1802
1803 if (i < 0) {
1804 printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1805 sc->sc_dev.dv_xname, reg);
1806 return ETIMEDOUT;
1807 }
1808 if (val != NULL)
1809 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1810 ATW_SYNCTL_DATA_MASK);
1811 return 0;
1812 }
1813 #endif /* ATW_DEBUG */
1814
1815 /* XXX is the endianness correct? test. */
1816 #define atw_calchash(addr) \
1817 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1818
1819 /*
1820 * atw_filter_setup:
1821 *
1822 * Set the ADM8211's receive filter.
1823 */
1824 static void
1825 atw_filter_setup(struct atw_softc *sc)
1826 {
1827 struct ieee80211com *ic = &sc->sc_ic;
1828 struct ethercom *ec = &ic->ic_ec;
1829 struct ifnet *ifp = &sc->sc_ic.ic_if;
1830 int hash;
1831 u_int32_t hashes[2] = { 0, 0 };
1832 struct ether_multi *enm;
1833 struct ether_multistep step;
1834
1835 DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1836 sc->sc_dev.dv_xname, sc->sc_flags));
1837
1838 /*
1839 * If we're running, idle the receive engine. If we're NOT running,
1840 * we're being called from atw_init(), and our writing ATW_NAR will
1841 * start the transmit and receive processes in motion.
1842 */
1843 if (ifp->if_flags & IFF_RUNNING)
1844 atw_idle(sc, ATW_NAR_SR);
1845
1846 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1847
1848 ifp->if_flags &= ~IFF_ALLMULTI;
1849
1850 if (ifp->if_flags & IFF_PROMISC) {
1851 sc->sc_opmode |= ATW_NAR_PR;
1852 allmulti:
1853 ifp->if_flags |= IFF_ALLMULTI;
1854 goto setit;
1855 }
1856
1857 /*
1858 * Program the 64-bit multicast hash filter.
1859 */
1860 ETHER_FIRST_MULTI(step, ec, enm);
1861 while (enm != NULL) {
1862 /* XXX */
1863 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1864 ETHER_ADDR_LEN) != 0)
1865 goto allmulti;
1866
1867 hash = atw_calchash(enm->enm_addrlo);
1868 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1869 ETHER_NEXT_MULTI(step, enm);
1870 }
1871
1872 if (ifp->if_flags & IFF_BROADCAST) {
1873 hash = atw_calchash(etherbroadcastaddr);
1874 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1875 }
1876
1877 /* all bits set => hash is useless */
1878 if (~(hashes[0] & hashes[1]) == 0)
1879 goto allmulti;
1880
1881 setit:
1882 if (ifp->if_flags & IFF_ALLMULTI)
1883 sc->sc_opmode |= ATW_NAR_MM;
1884
1885 /* XXX in scan mode, do not filter packets. maybe this is
1886 * unnecessary.
1887 */
1888 if (ic->ic_state == IEEE80211_S_SCAN)
1889 sc->sc_opmode |= ATW_NAR_PR;
1890
1891 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1892 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1893 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1894 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1895 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1896
1897 DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1898 }
1899
1900 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1901 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1902 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1903 * no beacon with the preferred BSSID and SSID in the number of
1904 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1905 */
1906 static void
1907 atw_write_bssid(struct atw_softc *sc)
1908 {
1909 struct ieee80211com *ic = &sc->sc_ic;
1910 u_int8_t *bssid;
1911
1912 bssid = ic->ic_bss->ni_bssid;
1913
1914 ATW_WRITE(sc, ATW_ABDA1,
1915 (ATW_READ(sc, ATW_ABDA1) &
1916 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1917 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1918 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1919
1920 ATW_WRITE(sc, ATW_BSSID0,
1921 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1922 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1923 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1924 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1925
1926 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1927 ether_sprintf(sc->sc_bssid)));
1928 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1929
1930 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1931 }
1932
1933 /* Tell the ADM8211 how many beacon intervals must pass without
1934 * receiving a beacon with the preferred BSSID & SSID set by
1935 * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
1936 * raised.
1937 */
1938 static void
1939 atw_write_bcn_thresh(struct atw_softc *sc)
1940 {
1941 struct ieee80211com *ic = &sc->sc_ic;
1942 int lost_bcn_thresh;
1943
1944 /* Lose link after one second or 7 beacons, whichever comes
1945 * first, but do not lose link before 2 beacons are lost.
1946 *
1947 * In host AP mode, set the lost-beacon threshold to 0.
1948 */
1949 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1950 lost_bcn_thresh = 0;
1951 else {
1952 int beacons_per_second =
1953 1000000 / (IEEE80211_DUR_TU * MAX(1,ic->ic_bss->ni_intval));
1954 lost_bcn_thresh = MAX(2, MIN(7, beacons_per_second));
1955 }
1956
1957 /* XXX resets wake-up status bits */
1958 ATW_WRITE(sc, ATW_WCSR,
1959 (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
1960 (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
1961
1962 DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
1963 sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
1964
1965 sc->sc_lost_bcn_thresh = lost_bcn_thresh;
1966
1967 DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
1968 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
1969 }
1970
1971 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1972 * 16-bit word.
1973 */
1974 static void
1975 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
1976 {
1977 u_int i;
1978 u_int8_t *ptr;
1979
1980 memcpy(&sc->sc_sram[ofs], buf, buflen);
1981
1982 if (ofs % 2 != 0) {
1983 ofs--;
1984 buflen++;
1985 }
1986
1987 if (buflen % 2 != 0)
1988 buflen++;
1989
1990 assert(buflen + ofs <= ATW_SRAM_SIZE);
1991
1992 ptr = &sc->sc_sram[ofs];
1993
1994 for (i = 0; i < buflen; i += 2) {
1995 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
1996 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
1997 DELAY(atw_writewep_delay);
1998
1999 ATW_WRITE(sc, ATW_WESK,
2000 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2001 DELAY(atw_writewep_delay);
2002 }
2003 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2004
2005 if (sc->sc_if.if_flags & IFF_DEBUG) {
2006 int n_octets = 0;
2007 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2008 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2009 for (i = 0; i < buflen; i++) {
2010 printf(" %02x", ptr[i]);
2011 if (++n_octets % 24 == 0)
2012 printf("\n");
2013 }
2014 if (n_octets % 24 != 0)
2015 printf("\n");
2016 }
2017 }
2018
2019 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2020 static void
2021 atw_write_wep(struct atw_softc *sc)
2022 {
2023 struct ieee80211com *ic = &sc->sc_ic;
2024 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2025 u_int8_t buf[IEEE80211_WEP_NKID]
2026 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2027 u_int32_t reg;
2028 int i;
2029
2030 sc->sc_wepctl = 0;
2031 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2032
2033 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2034 return;
2035
2036 memset(&buf[0][0], 0, sizeof(buf));
2037
2038 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2039 if (ic->ic_nw_keys[i].wk_len > 5) {
2040 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2041 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2042 buf[i][1] = ATW_WEP_ENABLED;
2043 } else {
2044 buf[i][1] = 0;
2045 continue;
2046 }
2047 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2048 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2049 ic->ic_nw_keys[i].wk_len - 1);
2050 }
2051
2052 reg = ATW_READ(sc, ATW_MACTEST);
2053 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2054 reg &= ~ATW_MACTEST_KEYID_MASK;
2055 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2056 ATW_WRITE(sc, ATW_MACTEST, reg);
2057
2058 /* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2059 * throughout.)
2060 */
2061 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2062 if (sc->sc_if.if_flags & IFF_LINK2)
2063 sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2064
2065 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2066 sizeof(buf));
2067 }
2068
2069 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2070
2071 static void
2072 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2073 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2074 {
2075 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2076
2077 switch (subtype) {
2078 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2079 /* do nothing: hardware answers probe request */
2080 break;
2081 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2082 case IEEE80211_FC0_SUBTYPE_BEACON:
2083 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2084 break;
2085 default:
2086 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2087 break;
2088 }
2089 return;
2090 }
2091
2092 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2093 * of IBSSs with like SSID/channel but different BSSID. It joins the
2094 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2095 * convention. Possibly the ADMtek chip does this for us; I will have
2096 * to test to find out.
2097 *
2098 * XXX we should add the duration field of the received beacon to
2099 * the TSF time it contains before comparing it with the ADM8211's
2100 * TSF.
2101 */
2102 static void
2103 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2104 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2105 {
2106 struct atw_softc *sc;
2107 struct ieee80211_frame *wh;
2108 u_int64_t tsft, bcn_tsft;
2109 u_int32_t tsftl, tsfth;
2110 int do_print = 0;
2111
2112 sc = (struct atw_softc*)ic->ic_if.if_softc;
2113
2114 if (ic->ic_if.if_flags & IFF_DEBUG)
2115 do_print = (ic->ic_if.if_flags & IFF_LINK0)
2116 ? 1 : ratecheck(&sc->sc_last_beacon,
2117 &atw_beacon_mininterval);
2118
2119 wh = mtod(m0, struct ieee80211_frame *);
2120
2121 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2122
2123 if (ic->ic_state != IEEE80211_S_RUN) {
2124 if (do_print)
2125 printf("%s: atw_recv_beacon: not running\n",
2126 sc->sc_dev.dv_xname);
2127 return;
2128 }
2129
2130 if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2131 ic->ic_bss->ni_chan)) == NULL) {
2132 if (do_print)
2133 printf("%s: atw_recv_beacon: no node %s\n",
2134 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2135 return;
2136 }
2137
2138 if (ieee80211_match_bss(ic, ni) != 0) {
2139 if (do_print)
2140 printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2141 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2142 return;
2143 }
2144
2145 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2146 return;
2147
2148 if (do_print)
2149 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2150 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2151
2152 if (ic->ic_opmode != IEEE80211_M_IBSS)
2153 return;
2154
2155 /* If we read TSFTL right before rollover, we read a TSF timer
2156 * that is too high rather than too low. This prevents a spurious
2157 * synchronization down the line, however, our IBSS could suffer
2158 * from a creeping TSF....
2159 */
2160 tsftl = ATW_READ(sc, ATW_TSFTL);
2161 tsfth = ATW_READ(sc, ATW_TSFTH);
2162
2163 tsft = (u_int64_t)tsfth << 32 | tsftl;
2164 bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2165
2166 if (do_print)
2167 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2168 sc->sc_dev.dv_xname, tsft, bcn_tsft);
2169
2170 /* we are faster, let the other guy catch up */
2171 if (bcn_tsft < tsft)
2172 return;
2173
2174 if (do_print)
2175 printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2176 ether_sprintf(wh->i_addr2));
2177
2178 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2179
2180 #if 0
2181 atw_tsf(sc);
2182 #endif
2183
2184 /* negotiate rates with new IBSS */
2185 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2186 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2187 if (ni->ni_rates.rs_nrates == 0) {
2188 printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2189 ether_sprintf(ni->ni_bssid));
2190 return;
2191 }
2192
2193 if (do_print) {
2194 printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2195 ether_sprintf(ic->ic_bss->ni_bssid));
2196 printf("%s ", ether_sprintf(ni->ni_bssid));
2197 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2198 }
2199
2200 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2201
2202 atw_write_bssid(sc);
2203 atw_write_bcn_thresh(sc);
2204 atw_start_beacon(sc, 1);
2205 }
2206
2207 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2208 * In ad hoc mode, the SSID is written to the beacons sent by the
2209 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2210 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2211 * indications.
2212 */
2213 static void
2214 atw_write_ssid(struct atw_softc *sc)
2215 {
2216 struct ieee80211com *ic = &sc->sc_ic;
2217 /* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2218 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2219
2220 memset(buf, 0, sizeof(buf));
2221 buf[0] = ic->ic_bss->ni_esslen;
2222 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2223
2224 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2225 }
2226
2227 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2228 * In ad hoc mode, the supported rates are written to beacons sent by the
2229 * ADM8211.
2230 */
2231 static void
2232 atw_write_sup_rates(struct atw_softc *sc)
2233 {
2234 struct ieee80211com *ic = &sc->sc_ic;
2235 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2236 * supported rates
2237 */
2238 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2239
2240 memset(buf, 0, sizeof(buf));
2241
2242 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2243
2244 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2245 ic->ic_bss->ni_rates.rs_nrates);
2246
2247 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2248 }
2249
2250 /* Start/stop sending beacons. */
2251 void
2252 atw_start_beacon(struct atw_softc *sc, int start)
2253 {
2254 struct ieee80211com *ic = &sc->sc_ic;
2255 u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2256
2257 if (ATW_IS_ENABLED(sc) == 0)
2258 return;
2259
2260 len = capinfo = 0;
2261
2262 /* start beacons */
2263 len = sizeof(struct ieee80211_frame) +
2264 8 /* timestamp */ + 2 /* beacon interval */ +
2265 2 /* capability info */ +
2266 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2267 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2268 3 /* DS parameters */ +
2269 IEEE80211_CRC_LEN;
2270
2271 reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2272
2273 reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2274
2275 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2276 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2277
2278 if (!start)
2279 return;
2280
2281 /* TBD use ni_capinfo */
2282
2283 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2284 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2285 if (ic->ic_flags & IEEE80211_F_WEPON)
2286 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2287
2288 switch (ic->ic_opmode) {
2289 case IEEE80211_M_IBSS:
2290 len += 4; /* IBSS parameters */
2291 capinfo |= IEEE80211_CAPINFO_IBSS;
2292 break;
2293 case IEEE80211_M_HOSTAP:
2294 /* XXX 6-byte minimum TIM */
2295 len += atw_beacon_len_adjust;
2296 capinfo |= IEEE80211_CAPINFO_ESS;
2297 break;
2298 default:
2299 return;
2300 }
2301
2302 reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2303 reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2304
2305 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2306 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2307
2308 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2309 sc->sc_dev.dv_xname, reg_bcnt));
2310
2311 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2312 sc->sc_dev.dv_xname, reg_cap1));
2313 }
2314
2315 /* First beacon was sent at time 0 microseconds, current time is
2316 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2317 * microseconds. Return the expected time in microseconds for the
2318 * beacon after next.
2319 */
2320 static __inline u_int64_t
2321 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2322 {
2323 return tsft + (tbtt - tsft % tbtt);
2324 }
2325
2326 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2327 * the ieee80211com.
2328 *
2329 * Predict the next target beacon transmission time (TBTT) and
2330 * write it to the ADM8211.
2331 */
2332 static void
2333 atw_tsf(struct atw_softc *sc)
2334 {
2335 #define TBTTOFS 20 /* TU */
2336
2337 struct ieee80211com *ic = &sc->sc_ic;
2338 u_int64_t tsft, tbtt;
2339
2340 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2341 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2342 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2343 tsft = ATW_READ(sc, ATW_TSFTH);
2344 tsft <<= 32;
2345 tsft |= ATW_READ(sc, ATW_TSFTL);
2346 *(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2347 } else
2348 tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2349
2350 tbtt = atw_predict_beacon(tsft,
2351 ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2352
2353 /* skip one more beacon so that the TBTT cannot pass before
2354 * we've programmed it, and also so that we can subtract a
2355 * few TU so that we wake a little before TBTT.
2356 */
2357 tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2358
2359 /* wake up a little early */
2360 tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2361
2362 DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2363 sc->sc_dev.dv_xname, tsft, tbtt));
2364
2365 ATW_WRITE(sc, ATW_TOFS1,
2366 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2367 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2368 LSHIFT(
2369 MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2370 ATW_TOFS1_TBTTPRE_MASK));
2371 #undef TBTTOFS
2372 }
2373
2374 static void
2375 atw_next_scan(void *arg)
2376 {
2377 struct atw_softc *sc = arg;
2378 struct ieee80211com *ic = &sc->sc_ic;
2379 struct ifnet *ifp = &ic->ic_if;
2380 int s;
2381
2382 /* don't call atw_start w/o network interrupts blocked */
2383 s = splnet();
2384 if (ic->ic_state == IEEE80211_S_SCAN)
2385 ieee80211_next_scan(ifp);
2386 splx(s);
2387 }
2388
2389 /* Synchronize the hardware state with the software state. */
2390 static int
2391 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2392 {
2393 struct ifnet *ifp = &ic->ic_if;
2394 struct atw_softc *sc = ifp->if_softc;
2395 enum ieee80211_state ostate;
2396 int error;
2397
2398 ostate = ic->ic_state;
2399
2400 if (nstate == IEEE80211_S_INIT) {
2401 callout_stop(&sc->sc_scan_ch);
2402 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2403 atw_start_beacon(sc, 0);
2404 return (*sc->sc_newstate)(ic, nstate, arg);
2405 }
2406
2407 if ((error = atw_tune(sc)) != 0)
2408 return error;
2409
2410 switch (nstate) {
2411 case IEEE80211_S_ASSOC:
2412 break;
2413 case IEEE80211_S_INIT:
2414 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2415 break;
2416 case IEEE80211_S_SCAN:
2417 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2418 atw_write_bssid(sc);
2419
2420 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2421 atw_next_scan, sc);
2422
2423 break;
2424 case IEEE80211_S_RUN:
2425 if (ic->ic_opmode == IEEE80211_M_STA)
2426 break;
2427 /*FALLTHROUGH*/
2428 case IEEE80211_S_AUTH:
2429 atw_write_bssid(sc);
2430 atw_write_bcn_thresh(sc);
2431 atw_write_ssid(sc);
2432 atw_write_sup_rates(sc);
2433
2434 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2435 ic->ic_opmode == IEEE80211_M_MONITOR)
2436 break;
2437
2438 /* set listen interval
2439 * XXX do software units agree w/ hardware?
2440 */
2441 ATW_WRITE(sc, ATW_BPLI,
2442 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2443 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2444 ATW_BPLI_LI_MASK));
2445
2446 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2447 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2448
2449 atw_tsf(sc);
2450 break;
2451 }
2452
2453 if (nstate != IEEE80211_S_SCAN)
2454 callout_stop(&sc->sc_scan_ch);
2455
2456 if (nstate == IEEE80211_S_RUN &&
2457 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2458 ic->ic_opmode == IEEE80211_M_IBSS))
2459 atw_start_beacon(sc, 1);
2460 else
2461 atw_start_beacon(sc, 0);
2462
2463 return (*sc->sc_newstate)(ic, nstate, arg);
2464 }
2465
2466 /*
2467 * atw_add_rxbuf:
2468 *
2469 * Add a receive buffer to the indicated descriptor.
2470 */
2471 int
2472 atw_add_rxbuf(struct atw_softc *sc, int idx)
2473 {
2474 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2475 struct mbuf *m;
2476 int error;
2477
2478 MGETHDR(m, M_DONTWAIT, MT_DATA);
2479 if (m == NULL)
2480 return (ENOBUFS);
2481
2482 MCLGET(m, M_DONTWAIT);
2483 if ((m->m_flags & M_EXT) == 0) {
2484 m_freem(m);
2485 return (ENOBUFS);
2486 }
2487
2488 if (rxs->rxs_mbuf != NULL)
2489 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2490
2491 rxs->rxs_mbuf = m;
2492
2493 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2494 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2495 BUS_DMA_READ|BUS_DMA_NOWAIT);
2496 if (error) {
2497 printf("%s: can't load rx DMA map %d, error = %d\n",
2498 sc->sc_dev.dv_xname, idx, error);
2499 panic("atw_add_rxbuf"); /* XXX */
2500 }
2501
2502 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2503 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2504
2505 ATW_INIT_RXDESC(sc, idx);
2506
2507 return (0);
2508 }
2509
2510 /*
2511 * Release any queued transmit buffers.
2512 */
2513 void
2514 atw_txdrain(struct atw_softc *sc)
2515 {
2516 struct atw_txsoft *txs;
2517
2518 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2519 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2520 if (txs->txs_mbuf != NULL) {
2521 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2522 m_freem(txs->txs_mbuf);
2523 txs->txs_mbuf = NULL;
2524 }
2525 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2526 }
2527 sc->sc_tx_timer = 0;
2528 }
2529
2530 /*
2531 * atw_stop: [ ifnet interface function ]
2532 *
2533 * Stop transmission on the interface.
2534 */
2535 void
2536 atw_stop(struct ifnet *ifp, int disable)
2537 {
2538 struct atw_softc *sc = ifp->if_softc;
2539 struct ieee80211com *ic = &sc->sc_ic;
2540
2541 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2542
2543 /* Disable interrupts. */
2544 ATW_WRITE(sc, ATW_IER, 0);
2545
2546 /* Stop the transmit and receive processes. */
2547 sc->sc_opmode = 0;
2548 ATW_WRITE(sc, ATW_NAR, 0);
2549 ATW_WRITE(sc, ATW_TDBD, 0);
2550 ATW_WRITE(sc, ATW_TDBP, 0);
2551 ATW_WRITE(sc, ATW_RDB, 0);
2552
2553 atw_txdrain(sc);
2554
2555 if (disable) {
2556 atw_rxdrain(sc);
2557 atw_disable(sc);
2558 }
2559
2560 /*
2561 * Mark the interface down and cancel the watchdog timer.
2562 */
2563 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2564 ifp->if_timer = 0;
2565
2566 if (!disable)
2567 atw_reset(sc);
2568 }
2569
2570 /*
2571 * atw_rxdrain:
2572 *
2573 * Drain the receive queue.
2574 */
2575 void
2576 atw_rxdrain(struct atw_softc *sc)
2577 {
2578 struct atw_rxsoft *rxs;
2579 int i;
2580
2581 for (i = 0; i < ATW_NRXDESC; i++) {
2582 rxs = &sc->sc_rxsoft[i];
2583 if (rxs->rxs_mbuf == NULL)
2584 continue;
2585 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2586 m_freem(rxs->rxs_mbuf);
2587 rxs->rxs_mbuf = NULL;
2588 }
2589 }
2590
2591 /*
2592 * atw_detach:
2593 *
2594 * Detach an ADM8211 interface.
2595 */
2596 int
2597 atw_detach(struct atw_softc *sc)
2598 {
2599 struct ifnet *ifp = &sc->sc_ic.ic_if;
2600 struct atw_rxsoft *rxs;
2601 struct atw_txsoft *txs;
2602 int i;
2603
2604 /*
2605 * Succeed now if there isn't any work to do.
2606 */
2607 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2608 return (0);
2609
2610 ieee80211_ifdetach(ifp);
2611 if_detach(ifp);
2612
2613 for (i = 0; i < ATW_NRXDESC; i++) {
2614 rxs = &sc->sc_rxsoft[i];
2615 if (rxs->rxs_mbuf != NULL) {
2616 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2617 m_freem(rxs->rxs_mbuf);
2618 rxs->rxs_mbuf = NULL;
2619 }
2620 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2621 }
2622 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2623 txs = &sc->sc_txsoft[i];
2624 if (txs->txs_mbuf != NULL) {
2625 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2626 m_freem(txs->txs_mbuf);
2627 txs->txs_mbuf = NULL;
2628 }
2629 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2630 }
2631 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2632 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2633 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2634 sizeof(struct atw_control_data));
2635 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2636
2637 shutdownhook_disestablish(sc->sc_sdhook);
2638 powerhook_disestablish(sc->sc_powerhook);
2639
2640 if (sc->sc_srom)
2641 free(sc->sc_srom, M_DEVBUF);
2642
2643 return (0);
2644 }
2645
2646 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2647 void
2648 atw_shutdown(void *arg)
2649 {
2650 struct atw_softc *sc = arg;
2651
2652 atw_stop(&sc->sc_ic.ic_if, 1);
2653 }
2654
2655 int
2656 atw_intr(void *arg)
2657 {
2658 struct atw_softc *sc = arg;
2659 struct ifnet *ifp = &sc->sc_ic.ic_if;
2660 u_int32_t status, rxstatus, txstatus, linkstatus;
2661 int handled = 0, txthresh;
2662
2663 #ifdef DEBUG
2664 if (ATW_IS_ENABLED(sc) == 0)
2665 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2666 #endif
2667
2668 /*
2669 * If the interface isn't running, the interrupt couldn't
2670 * possibly have come from us.
2671 */
2672 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2673 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2674 return (0);
2675
2676 for (;;) {
2677 status = ATW_READ(sc, ATW_STSR);
2678
2679 if (status)
2680 ATW_WRITE(sc, ATW_STSR, status);
2681
2682 if (sc->sc_intr_ack != NULL)
2683 (*sc->sc_intr_ack)(sc);
2684
2685 #ifdef ATW_DEBUG
2686 #define PRINTINTR(flag) do { \
2687 if ((status & flag) != 0) { \
2688 printf("%s" #flag, delim); \
2689 delim = ","; \
2690 } \
2691 } while (0)
2692
2693 if (atw_debug > 1 && status) {
2694 const char *delim = "<";
2695
2696 printf("%s: reg[STSR] = %x",
2697 sc->sc_dev.dv_xname, status);
2698
2699 PRINTINTR(ATW_INTR_FBE);
2700 PRINTINTR(ATW_INTR_LINKOFF);
2701 PRINTINTR(ATW_INTR_LINKON);
2702 PRINTINTR(ATW_INTR_RCI);
2703 PRINTINTR(ATW_INTR_RDU);
2704 PRINTINTR(ATW_INTR_REIS);
2705 PRINTINTR(ATW_INTR_RPS);
2706 PRINTINTR(ATW_INTR_TCI);
2707 PRINTINTR(ATW_INTR_TDU);
2708 PRINTINTR(ATW_INTR_TLT);
2709 PRINTINTR(ATW_INTR_TPS);
2710 PRINTINTR(ATW_INTR_TRT);
2711 PRINTINTR(ATW_INTR_TUF);
2712 PRINTINTR(ATW_INTR_BCNTC);
2713 PRINTINTR(ATW_INTR_ATIME);
2714 PRINTINTR(ATW_INTR_TBTT);
2715 PRINTINTR(ATW_INTR_TSCZ);
2716 PRINTINTR(ATW_INTR_TSFTF);
2717 printf(">\n");
2718 }
2719 #undef PRINTINTR
2720 #endif /* ATW_DEBUG */
2721
2722 if ((status & sc->sc_inten) == 0)
2723 break;
2724
2725 handled = 1;
2726
2727 rxstatus = status & sc->sc_rxint_mask;
2728 txstatus = status & sc->sc_txint_mask;
2729 linkstatus = status & sc->sc_linkint_mask;
2730
2731 if (linkstatus) {
2732 atw_linkintr(sc, linkstatus);
2733 }
2734
2735 if (rxstatus) {
2736 /* Grab any new packets. */
2737 atw_rxintr(sc);
2738
2739 if (rxstatus & ATW_INTR_RDU) {
2740 printf("%s: receive ring overrun\n",
2741 sc->sc_dev.dv_xname);
2742 /* Get the receive process going again. */
2743 ATW_WRITE(sc, ATW_RDR, 0x1);
2744 break;
2745 }
2746 }
2747
2748 if (txstatus) {
2749 /* Sweep up transmit descriptors. */
2750 atw_txintr(sc);
2751
2752 if (txstatus & ATW_INTR_TLT)
2753 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2754 sc->sc_dev.dv_xname));
2755
2756 if (txstatus & ATW_INTR_TRT)
2757 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2758 sc->sc_dev.dv_xname));
2759
2760 /* If Tx under-run, increase our transmit threshold
2761 * if another is available.
2762 */
2763 txthresh = sc->sc_txthresh + 1;
2764 if ((txstatus & ATW_INTR_TUF) &&
2765 sc->sc_txth[txthresh].txth_name != NULL) {
2766 /* Idle the transmit process. */
2767 atw_idle(sc, ATW_NAR_ST);
2768
2769 sc->sc_txthresh = txthresh;
2770 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2771 sc->sc_opmode |=
2772 sc->sc_txth[txthresh].txth_opmode;
2773 printf("%s: transmit underrun; new "
2774 "threshold: %s\n", sc->sc_dev.dv_xname,
2775 sc->sc_txth[txthresh].txth_name);
2776
2777 /* Set the new threshold and restart
2778 * the transmit process.
2779 */
2780 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2781 /* XXX Log every Nth underrun from
2782 * XXX now on?
2783 */
2784 }
2785 }
2786
2787 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2788 if (status & ATW_INTR_TPS)
2789 printf("%s: transmit process stopped\n",
2790 sc->sc_dev.dv_xname);
2791 if (status & ATW_INTR_RPS)
2792 printf("%s: receive process stopped\n",
2793 sc->sc_dev.dv_xname);
2794 (void)atw_init(ifp);
2795 break;
2796 }
2797
2798 if (status & ATW_INTR_FBE) {
2799 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2800 (void)atw_init(ifp);
2801 break;
2802 }
2803
2804 /*
2805 * Not handled:
2806 *
2807 * Transmit buffer unavailable -- normal
2808 * condition, nothing to do, really.
2809 *
2810 * Early receive interrupt -- not available on
2811 * all chips, we just use RI. We also only
2812 * use single-segment receive DMA, so this
2813 * is mostly useless.
2814 *
2815 * TBD others
2816 */
2817 }
2818
2819 /* Try to get more packets going. */
2820 atw_start(ifp);
2821
2822 return (handled);
2823 }
2824
2825 /*
2826 * atw_idle:
2827 *
2828 * Cause the transmit and/or receive processes to go idle.
2829 *
2830 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2831 * process in STSR if I clear SR or ST after the process has already
2832 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2833 * do not seem to be too reliable. Perhaps I have the sense of the
2834 * Rx bits switched with the Tx bits?
2835 */
2836 void
2837 atw_idle(struct atw_softc *sc, u_int32_t bits)
2838 {
2839 u_int32_t ackmask = 0, opmode, stsr, test0;
2840 int i, s;
2841
2842 /* without this, somehow we run concurrently w/ interrupt handler */
2843 s = splnet();
2844
2845 opmode = sc->sc_opmode & ~bits;
2846
2847 if (bits & ATW_NAR_SR)
2848 ackmask |= ATW_INTR_RPS;
2849
2850 if (bits & ATW_NAR_ST) {
2851 ackmask |= ATW_INTR_TPS;
2852 /* set ATW_NAR_HF to flush TX FIFO. */
2853 opmode |= ATW_NAR_HF;
2854 }
2855
2856 ATW_WRITE(sc, ATW_NAR, opmode);
2857
2858 for (i = 0; i < 1000; i++) {
2859 stsr = ATW_READ(sc, ATW_STSR);
2860 if ((stsr & ackmask) == ackmask)
2861 break;
2862 DELAY(10);
2863 }
2864
2865 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2866
2867 if ((stsr & ackmask) == ackmask)
2868 goto out;
2869
2870 test0 = ATW_READ(sc, ATW_TEST0);
2871
2872 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2873 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2874 printf("%s: transmit process not idle [%s]\n",
2875 sc->sc_dev.dv_xname,
2876 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2877 printf("%s: bits %08x test0 %08x stsr %08x\n",
2878 sc->sc_dev.dv_xname, bits, test0, stsr);
2879 }
2880
2881 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2882 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2883 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2884 sc->sc_dev.dv_xname,
2885 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2886 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2887 sc->sc_dev.dv_xname, bits, test0, stsr));
2888 }
2889 out:
2890 if ((bits & ATW_NAR_ST) != 0)
2891 atw_txdrain(sc);
2892 splx(s);
2893 return;
2894 }
2895
2896 /*
2897 * atw_linkintr:
2898 *
2899 * Helper; handle link-status interrupts.
2900 */
2901 void
2902 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2903 {
2904 struct ieee80211com *ic = &sc->sc_ic;
2905
2906 if (ic->ic_state != IEEE80211_S_RUN)
2907 return;
2908
2909 if (linkstatus & ATW_INTR_LINKON) {
2910 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2911 sc->sc_rescan_timer = 0;
2912 } else if (linkstatus & ATW_INTR_LINKOFF) {
2913 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2914 if (ic->ic_opmode != IEEE80211_M_STA)
2915 return;
2916 sc->sc_rescan_timer = 3;
2917 ic->ic_if.if_timer = 1;
2918 }
2919 }
2920
2921 /*
2922 * atw_rxintr:
2923 *
2924 * Helper; handle receive interrupts.
2925 */
2926 void
2927 atw_rxintr(struct atw_softc *sc)
2928 {
2929 static int rate_tbl[] = {2, 4, 11, 22, 44};
2930 struct ieee80211com *ic = &sc->sc_ic;
2931 struct ieee80211_node *ni;
2932 struct ieee80211_frame *wh;
2933 struct ifnet *ifp = &ic->ic_if;
2934 struct atw_rxsoft *rxs;
2935 struct mbuf *m;
2936 u_int32_t rxstat;
2937 int i, len, rate, rate0;
2938 u_int32_t rssi;
2939
2940 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2941 rxs = &sc->sc_rxsoft[i];
2942
2943 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2944
2945 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2946 rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2947 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2948
2949 if (rxstat & ATW_RXSTAT_OWN)
2950 break; /* We have processed all receive buffers. */
2951
2952 DPRINTF3(sc,
2953 ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2954 sc->sc_dev.dv_xname,
2955 sc->sc_rxdescs[i].ar_stat,
2956 sc->sc_rxdescs[i].ar_rssi,
2957 sc->sc_rxdescs[i].ar_buf1,
2958 sc->sc_rxdescs[i].ar_buf2));
2959
2960 /*
2961 * Make sure the packet fits in one buffer. This should
2962 * always be the case.
2963 */
2964 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2965 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2966 printf("%s: incoming packet spilled, resetting\n",
2967 sc->sc_dev.dv_xname);
2968 (void)atw_init(ifp);
2969 return;
2970 }
2971
2972 /*
2973 * If an error occurred, update stats, clear the status
2974 * word, and leave the packet buffer in place. It will
2975 * simply be reused the next time the ring comes around.
2976 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2977 * error.
2978 */
2979
2980 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
2981 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
2982 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
2983 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
2984 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
2985 ATW_RXSTAT_ICVE)) != 0)) {
2986 #define PRINTERR(bit, str) \
2987 if (rxstat & (bit)) \
2988 printf("%s: receive error: %s\n", \
2989 sc->sc_dev.dv_xname, str)
2990 ifp->if_ierrors++;
2991 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
2992 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
2993 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
2994 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
2995 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
2996 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
2997 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
2998 #undef PRINTERR
2999 ATW_INIT_RXDESC(sc, i);
3000 continue;
3001 }
3002
3003 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3004 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3005
3006 /*
3007 * No errors; receive the packet. Note the ADM8211
3008 * includes the CRC in promiscuous mode.
3009 */
3010 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3011
3012 /*
3013 * Allocate a new mbuf cluster. If that fails, we are
3014 * out of memory, and must drop the packet and recycle
3015 * the buffer that's already attached to this descriptor.
3016 */
3017 m = rxs->rxs_mbuf;
3018 if (atw_add_rxbuf(sc, i) != 0) {
3019 ifp->if_ierrors++;
3020 ATW_INIT_RXDESC(sc, i);
3021 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3022 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3023 continue;
3024 }
3025
3026 ifp->if_ipackets++;
3027 if (sc->sc_opmode & ATW_NAR_PR)
3028 m->m_flags |= M_HASFCS;
3029 m->m_pkthdr.rcvif = ifp;
3030 m->m_pkthdr.len = m->m_len = len;
3031
3032 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3033 rate = 0;
3034 else
3035 rate = rate_tbl[rate0];
3036
3037 #if NBPFILTER > 0
3038 /* Pass this up to any BPF listeners. */
3039 if (sc->sc_radiobpf != NULL) {
3040 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3041
3042 tap->ar_rate = rate;
3043 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3044 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3045
3046 /* TBD verify units are dB */
3047 tap->ar_antsignal = (int)rssi;
3048 /* TBD tap->ar_flags */
3049
3050 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3051 tap->ar_ihdr.it_len, m);
3052 }
3053 #endif /* NPBFILTER > 0 */
3054
3055 wh = mtod(m, struct ieee80211_frame *);
3056 ni = ieee80211_find_rxnode(ic, wh);
3057 ieee80211_input(ifp, m, ni, (int)rssi, 0);
3058 /*
3059 * The frame may have caused the node to be marked for
3060 * reclamation (e.g. in response to a DEAUTH message)
3061 * so use free_node here instead of unref_node.
3062 */
3063 if (ni == ic->ic_bss)
3064 ieee80211_unref_node(&ni);
3065 else
3066 ieee80211_free_node(ic, ni);
3067 }
3068
3069 /* Update the receive pointer. */
3070 sc->sc_rxptr = i;
3071 }
3072
3073 /*
3074 * atw_txintr:
3075 *
3076 * Helper; handle transmit interrupts.
3077 */
3078 void
3079 atw_txintr(struct atw_softc *sc)
3080 {
3081 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3082 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3083 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3084 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3085
3086 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3087 struct ifnet *ifp = &sc->sc_ic.ic_if;
3088 struct atw_txsoft *txs;
3089 u_int32_t txstat;
3090
3091 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3092 sc->sc_dev.dv_xname, sc->sc_flags));
3093
3094 ifp->if_flags &= ~IFF_OACTIVE;
3095
3096 /*
3097 * Go through our Tx list and free mbufs for those
3098 * frames that have been transmitted.
3099 */
3100 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3101 ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3102 txs->txs_ndescs,
3103 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3104
3105 #ifdef ATW_DEBUG
3106 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3107 int i;
3108 printf(" txsoft %p transmit chain:\n", txs);
3109 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3110 printf(" descriptor %d:\n", i);
3111 printf(" at_status: 0x%08x\n",
3112 le32toh(sc->sc_txdescs[i].at_stat));
3113 printf(" at_flags: 0x%08x\n",
3114 le32toh(sc->sc_txdescs[i].at_flags));
3115 printf(" at_buf1: 0x%08x\n",
3116 le32toh(sc->sc_txdescs[i].at_buf1));
3117 printf(" at_buf2: 0x%08x\n",
3118 le32toh(sc->sc_txdescs[i].at_buf2));
3119 if (i == txs->txs_lastdesc)
3120 break;
3121 }
3122 }
3123 #endif
3124
3125 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3126 if (txstat & ATW_TXSTAT_OWN)
3127 break;
3128
3129 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3130
3131 sc->sc_txfree += txs->txs_ndescs;
3132
3133 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3134 0, txs->txs_dmamap->dm_mapsize,
3135 BUS_DMASYNC_POSTWRITE);
3136 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3137 m_freem(txs->txs_mbuf);
3138 txs->txs_mbuf = NULL;
3139
3140 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3141
3142 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3143 (txstat & TXSTAT_ERRMASK) != 0) {
3144 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3145 txstat_buf, sizeof(txstat_buf));
3146 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3147 txstat_buf,
3148 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3149 }
3150
3151 /*
3152 * Check for errors and collisions.
3153 */
3154 if (txstat & ATW_TXSTAT_TUF)
3155 sc->sc_stats.ts_tx_tuf++;
3156 if (txstat & ATW_TXSTAT_TLT)
3157 sc->sc_stats.ts_tx_tlt++;
3158 if (txstat & ATW_TXSTAT_TRT)
3159 sc->sc_stats.ts_tx_trt++;
3160 if (txstat & ATW_TXSTAT_TRO)
3161 sc->sc_stats.ts_tx_tro++;
3162 if (txstat & ATW_TXSTAT_SOFBR) {
3163 sc->sc_stats.ts_tx_sofbr++;
3164 }
3165
3166 if ((txstat & ATW_TXSTAT_ES) == 0)
3167 ifp->if_collisions +=
3168 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3169 else
3170 ifp->if_oerrors++;
3171
3172 ifp->if_opackets++;
3173 }
3174
3175 /*
3176 * If there are no more pending transmissions, cancel the watchdog
3177 * timer.
3178 */
3179 if (txs == NULL)
3180 sc->sc_tx_timer = 0;
3181 #undef TXSTAT_ERRMASK
3182 #undef TXSTAT_FMT
3183 }
3184
3185 /*
3186 * atw_watchdog: [ifnet interface function]
3187 *
3188 * Watchdog timer handler.
3189 */
3190 void
3191 atw_watchdog(struct ifnet *ifp)
3192 {
3193 struct atw_softc *sc = ifp->if_softc;
3194 struct ieee80211com *ic = &sc->sc_ic;
3195
3196 ifp->if_timer = 0;
3197 if (ATW_IS_ENABLED(sc) == 0)
3198 return;
3199
3200 if (sc->sc_rescan_timer) {
3201 if (--sc->sc_rescan_timer == 0)
3202 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3203 }
3204 if (sc->sc_tx_timer) {
3205 if (--sc->sc_tx_timer == 0 &&
3206 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3207 printf("%s: transmit timeout\n", ifp->if_xname);
3208 ifp->if_oerrors++;
3209 (void)atw_init(ifp);
3210 atw_start(ifp);
3211 }
3212 }
3213 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3214 ifp->if_timer = 1;
3215 ieee80211_watchdog(ifp);
3216 }
3217
3218 /* Compute the 802.11 Duration field and the PLCP Length fields for
3219 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3220 * Write the fields to the ADM8211 Tx header, frm.
3221 *
3222 * TBD use the fragmentation threshold to find the right duration for
3223 * the first & last fragments.
3224 *
3225 * TBD make certain of the duration fields applied by the ADM8211 to each
3226 * fragment. I think that the ADM8211 knows how to subtract the CTS
3227 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3228 * I also think that the ADM8211 does *some* arithmetic for us, because
3229 * otherwise I think we would have to set a first duration for CTS/first
3230 * fragment, a second duration for fragments between the first and the
3231 * last, and a third duration for the last fragment.
3232 *
3233 * TBD make certain that duration fields reflect addition of FCS/WEP
3234 * and correct duration arithmetic as necessary.
3235 */
3236 static void
3237 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3238 int len)
3239 {
3240 int remainder;
3241
3242 /* deal also with encrypted fragments */
3243 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3244 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3245 sc->sc_dev.dv_xname));
3246 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3247 IEEE80211_WEP_CRCLEN;
3248 }
3249
3250 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3251 * duration (XXX added by MAC?).
3252 */
3253 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3254 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3255
3256 if (rate <= 4)
3257 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3258 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3259 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3260 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3261 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3262 else
3263 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3264 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3265 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3266 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3267 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3268
3269 /* lengthen duration if long preamble */
3270 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3271 frm->atw_head_dur +=
3272 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3273 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3274 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3275 IEEE80211_DUR_DS_FAST_PLCPHDR);
3276
3277 if (remainder != 0)
3278 frm->atw_head_dur++;
3279
3280 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3281 (rate == 2 || rate == 4)) {
3282 /* derived from Linux: how could this be right? */
3283 frm->atw_head_plcplen = frm->atw_head_dur;
3284 } else {
3285 frm->atw_head_plcplen = (16 * len) / rate;
3286 remainder = (80 * len) % (rate * 5);
3287
3288 if (remainder != 0) {
3289 frm->atw_head_plcplen++;
3290
3291 /* XXX magic */
3292 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3293 rate == 22 && remainder <= 30)
3294 frm->atw_head_plcplen |= 0x8000;
3295 }
3296 }
3297 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3298 htole16(frm->atw_head_plcplen);
3299 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3300 }
3301
3302 #ifdef ATW_DEBUG
3303 static void
3304 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3305 {
3306 struct atw_softc *sc = ifp->if_softc;
3307 struct mbuf *m;
3308 int i, noctets = 0;
3309
3310 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3311 m0->m_pkthdr.len);
3312
3313 for (m = m0; m; m = m->m_next) {
3314 if (m->m_len == 0)
3315 continue;
3316 for (i = 0; i < m->m_len; i++) {
3317 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3318 if (++noctets % 24 == 0)
3319 printf("\n");
3320 }
3321 }
3322 printf("%s%s: %d bytes emitted\n",
3323 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3324 }
3325 #endif /* ATW_DEBUG */
3326
3327 /*
3328 * atw_start: [ifnet interface function]
3329 *
3330 * Start packet transmission on the interface.
3331 */
3332 void
3333 atw_start(struct ifnet *ifp)
3334 {
3335 struct atw_softc *sc = ifp->if_softc;
3336 struct ieee80211com *ic = &sc->sc_ic;
3337 struct ieee80211_node *ni;
3338 struct ieee80211_frame *wh;
3339 struct atw_frame *hh;
3340 struct mbuf *m0, *m;
3341 struct atw_txsoft *txs, *last_txs;
3342 struct atw_txdesc *txd;
3343 int do_encrypt, rate;
3344 bus_dmamap_t dmamap;
3345 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3346
3347 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3348 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3349
3350 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3351 return;
3352
3353 #if 0 /* TBD ??? */
3354 if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3355 return;
3356 #endif
3357
3358 /*
3359 * Remember the previous number of free descriptors and
3360 * the first descriptor we'll use.
3361 */
3362 ofree = sc->sc_txfree;
3363 firsttx = sc->sc_txnext;
3364
3365 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3366 sc->sc_dev.dv_xname, ofree, firsttx));
3367
3368 /*
3369 * Loop through the send queue, setting up transmit descriptors
3370 * until we drain the queue, or use up all available transmit
3371 * descriptors.
3372 */
3373 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3374 sc->sc_txfree != 0) {
3375
3376 /*
3377 * Grab a packet off the management queue, if it
3378 * is not empty. Otherwise, from the data queue.
3379 */
3380 IF_DEQUEUE(&ic->ic_mgtq, m0);
3381 if (m0 != NULL) {
3382 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3383 m0->m_pkthdr.rcvif = NULL;
3384 } else {
3385 IFQ_DEQUEUE(&ifp->if_snd, m0);
3386 if (m0 == NULL)
3387 break;
3388 #if NBPFILTER > 0
3389 if (ifp->if_bpf != NULL)
3390 bpf_mtap(ifp->if_bpf, m0);
3391 #endif /* NBPFILTER > 0 */
3392 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3393 ifp->if_oerrors++;
3394 break;
3395 }
3396 }
3397
3398 rate = MAX(ieee80211_get_rate(ic), 2);
3399
3400 #if NBPFILTER > 0
3401 /*
3402 * Pass the packet to any BPF listeners.
3403 */
3404 if (ic->ic_rawbpf != NULL)
3405 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3406
3407 if (sc->sc_radiobpf != NULL) {
3408 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3409
3410 tap->at_rate = rate;
3411 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3412 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3413
3414 /* TBD tap->at_flags */
3415
3416 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3417 tap->at_ihdr.it_len, m0);
3418 }
3419 #endif /* NBPFILTER > 0 */
3420
3421 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3422
3423 if (ni != NULL && ni != ic->ic_bss)
3424 ieee80211_free_node(ic, ni);
3425
3426 if (m0 == NULL) {
3427 ifp->if_oerrors++;
3428 break;
3429 }
3430
3431 /* just to make sure. */
3432 m0 = m_pullup(m0, sizeof(struct atw_frame));
3433
3434 if (m0 == NULL) {
3435 ifp->if_oerrors++;
3436 break;
3437 }
3438
3439 hh = mtod(m0, struct atw_frame *);
3440 wh = &hh->atw_ihdr;
3441
3442 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3443
3444 /* Copy everything we need from the 802.11 header:
3445 * Frame Control; address 1, address 3, or addresses
3446 * 3 and 4. NIC fills in BSSID, SA.
3447 */
3448 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3449 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3450 panic("%s: illegal WDS frame",
3451 sc->sc_dev.dv_xname);
3452 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3453 } else
3454 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3455
3456 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3457
3458 /* initialize remaining Tx parameters */
3459 memset(&hh->u, 0, sizeof(hh->u));
3460
3461 hh->atw_rate = rate * 5;
3462 /* XXX this could be incorrect if M_FCS. _encap should
3463 * probably strip FCS just in case it sticks around in
3464 * bridged packets.
3465 */
3466 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3467 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3468 sizeof(struct atw_frame));
3469
3470 #if 0
3471 /* this virtually guaranteed that WEP-encrypted frames
3472 * are fragmented. oops.
3473 */
3474 hh->atw_fragthr = htole16(m0->m_pkthdr.len -
3475 sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
3476 hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3477 #else
3478 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3479 #endif
3480
3481 hh->atw_rtylmt = 3;
3482 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3483 if (do_encrypt) {
3484 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3485 hh->atw_keyid = ic->ic_wep_txkey;
3486 }
3487
3488 /* TBD 4-addr frames */
3489 atw_frame_setdurs(sc, hh, rate,
3490 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3491 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3492
3493 /* never fragment multicast frames */
3494 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3495 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3496 } else if (sc->sc_flags & ATWF_RTSCTS) {
3497 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3498 }
3499
3500 #ifdef ATW_DEBUG
3501 /* experimental stuff */
3502 if (atw_xrtylmt != ~0)
3503 hh->atw_rtylmt = atw_xrtylmt;
3504 if (atw_xhdrctl != 0)
3505 hh->atw_hdrctl |= htole16(atw_xhdrctl);
3506 if (atw_xservice != IEEE80211_PLCP_SERVICE)
3507 hh->atw_service = atw_xservice;
3508 if (atw_xpaylen != 0)
3509 hh->atw_paylen = htole16(atw_xpaylen);
3510 hh->atw_fragnum = 0;
3511
3512 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3513 printf("%s: dst = %s, rate = 0x%02x, "
3514 "service = 0x%02x, paylen = 0x%04x\n",
3515 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3516 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3517
3518 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3519 "dur1 = 0x%04x, dur2 = 0x%04x, "
3520 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3521 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3522 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3523 hh->atw_tail_dur, hh->atw_head_dur);
3524
3525 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3526 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3527 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3528 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3529
3530 printf("%s: keyid = %d\n",
3531 sc->sc_dev.dv_xname, hh->atw_keyid);
3532
3533 atw_dump_pkt(ifp, m0);
3534 }
3535 #endif /* ATW_DEBUG */
3536
3537 dmamap = txs->txs_dmamap;
3538
3539 /*
3540 * Load the DMA map. Copy and try (once) again if the packet
3541 * didn't fit in the alloted number of segments.
3542 */
3543 for (first = 1;
3544 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3545 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3546 first = 0) {
3547 MGETHDR(m, M_DONTWAIT, MT_DATA);
3548 if (m == NULL) {
3549 printf("%s: unable to allocate Tx mbuf\n",
3550 sc->sc_dev.dv_xname);
3551 break;
3552 }
3553 if (m0->m_pkthdr.len > MHLEN) {
3554 MCLGET(m, M_DONTWAIT);
3555 if ((m->m_flags & M_EXT) == 0) {
3556 printf("%s: unable to allocate Tx "
3557 "cluster\n", sc->sc_dev.dv_xname);
3558 m_freem(m);
3559 break;
3560 }
3561 }
3562 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3563 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3564 m_freem(m0);
3565 m0 = m;
3566 m = NULL;
3567 }
3568 if (error != 0) {
3569 printf("%s: unable to load Tx buffer, "
3570 "error = %d\n", sc->sc_dev.dv_xname, error);
3571 m_freem(m0);
3572 break;
3573 }
3574
3575 /*
3576 * Ensure we have enough descriptors free to describe
3577 * the packet.
3578 */
3579 if (dmamap->dm_nsegs > sc->sc_txfree) {
3580 /*
3581 * Not enough free descriptors to transmit
3582 * this packet. Unload the DMA map and
3583 * drop the packet. Notify the upper layer
3584 * that there are no more slots left.
3585 *
3586 * XXX We could allocate an mbuf and copy, but
3587 * XXX it is worth it?
3588 */
3589 ifp->if_flags |= IFF_OACTIVE;
3590 bus_dmamap_unload(sc->sc_dmat, dmamap);
3591 m_freem(m0);
3592 break;
3593 }
3594
3595 /*
3596 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3597 */
3598
3599 /* Sync the DMA map. */
3600 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3601 BUS_DMASYNC_PREWRITE);
3602
3603 /* XXX arbitrary retry limit; 8 because I have seen it in
3604 * use already and maybe 0 means "no tries" !
3605 */
3606 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3607
3608 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3609 sc->sc_dev.dv_xname, rate * 5));
3610 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3611
3612 /*
3613 * Initialize the transmit descriptors.
3614 */
3615 for (nexttx = sc->sc_txnext, seg = 0;
3616 seg < dmamap->dm_nsegs;
3617 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3618 /*
3619 * If this is the first descriptor we're
3620 * enqueueing, don't set the OWN bit just
3621 * yet. That could cause a race condition.
3622 * We'll do it below.
3623 */
3624 txd = &sc->sc_txdescs[nexttx];
3625 txd->at_ctl = ctl |
3626 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3627
3628 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3629 txd->at_flags =
3630 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3631 ATW_TXFLAG_TBS1_MASK)) |
3632 ((nexttx == (ATW_NTXDESC - 1))
3633 ? htole32(ATW_TXFLAG_TER) : 0);
3634 lasttx = nexttx;
3635 }
3636
3637 IASSERT(lasttx != -1, ("bad lastx"));
3638 /* Set `first segment' and `last segment' appropriately. */
3639 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3640 htole32(ATW_TXFLAG_FS);
3641 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3642
3643 #ifdef ATW_DEBUG
3644 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3645 printf(" txsoft %p transmit chain:\n", txs);
3646 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3647 printf(" descriptor %d:\n", seg);
3648 printf(" at_ctl: 0x%08x\n",
3649 le32toh(sc->sc_txdescs[seg].at_ctl));
3650 printf(" at_flags: 0x%08x\n",
3651 le32toh(sc->sc_txdescs[seg].at_flags));
3652 printf(" at_buf1: 0x%08x\n",
3653 le32toh(sc->sc_txdescs[seg].at_buf1));
3654 printf(" at_buf2: 0x%08x\n",
3655 le32toh(sc->sc_txdescs[seg].at_buf2));
3656 if (seg == lasttx)
3657 break;
3658 }
3659 }
3660 #endif
3661
3662 /* Sync the descriptors we're using. */
3663 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3664 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3665
3666 /*
3667 * Store a pointer to the packet so we can free it later,
3668 * and remember what txdirty will be once the packet is
3669 * done.
3670 */
3671 txs->txs_mbuf = m0;
3672 txs->txs_firstdesc = sc->sc_txnext;
3673 txs->txs_lastdesc = lasttx;
3674 txs->txs_ndescs = dmamap->dm_nsegs;
3675
3676 /* Advance the tx pointer. */
3677 sc->sc_txfree -= dmamap->dm_nsegs;
3678 sc->sc_txnext = nexttx;
3679
3680 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3681 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3682
3683 last_txs = txs;
3684 }
3685
3686 if (txs == NULL || sc->sc_txfree == 0) {
3687 /* No more slots left; notify upper layer. */
3688 ifp->if_flags |= IFF_OACTIVE;
3689 }
3690
3691 if (sc->sc_txfree != ofree) {
3692 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3693 sc->sc_dev.dv_xname, lasttx, firsttx));
3694 /*
3695 * Cause a transmit interrupt to happen on the
3696 * last packet we enqueued.
3697 */
3698 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3699 ATW_CDTXSYNC(sc, lasttx, 1,
3700 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3701
3702 /*
3703 * The entire packet chain is set up. Give the
3704 * first descriptor to the chip now.
3705 */
3706 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3707 ATW_CDTXSYNC(sc, firsttx, 1,
3708 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3709
3710 /* Wake up the transmitter. */
3711 ATW_WRITE(sc, ATW_TDR, 0x1);
3712
3713 /* Set a watchdog timer in case the chip flakes out. */
3714 sc->sc_tx_timer = 5;
3715 ifp->if_timer = 1;
3716 }
3717 }
3718
3719 /*
3720 * atw_power:
3721 *
3722 * Power management (suspend/resume) hook.
3723 */
3724 void
3725 atw_power(int why, void *arg)
3726 {
3727 struct atw_softc *sc = arg;
3728 struct ifnet *ifp = &sc->sc_ic.ic_if;
3729 int s;
3730
3731 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3732
3733 s = splnet();
3734 switch (why) {
3735 case PWR_STANDBY:
3736 /* XXX do nothing. */
3737 break;
3738 case PWR_SUSPEND:
3739 atw_stop(ifp, 0);
3740 if (sc->sc_power != NULL)
3741 (*sc->sc_power)(sc, why);
3742 break;
3743 case PWR_RESUME:
3744 if (ifp->if_flags & IFF_UP) {
3745 if (sc->sc_power != NULL)
3746 (*sc->sc_power)(sc, why);
3747 atw_init(ifp);
3748 }
3749 break;
3750 case PWR_SOFTSUSPEND:
3751 case PWR_SOFTSTANDBY:
3752 case PWR_SOFTRESUME:
3753 break;
3754 }
3755 splx(s);
3756 }
3757
3758 /*
3759 * atw_ioctl: [ifnet interface function]
3760 *
3761 * Handle control requests from the operator.
3762 */
3763 int
3764 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3765 {
3766 struct atw_softc *sc = ifp->if_softc;
3767 struct ifreq *ifr = (struct ifreq *)data;
3768 int s, error = 0;
3769
3770 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3771 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3772 return ENXIO;
3773
3774 s = splnet();
3775
3776 switch (cmd) {
3777 case SIOCSIFFLAGS:
3778 if (ifp->if_flags & IFF_UP) {
3779 if (ATW_IS_ENABLED(sc)) {
3780 /*
3781 * To avoid rescanning another access point,
3782 * do not call atw_init() here. Instead,
3783 * only reflect media settings.
3784 */
3785 atw_filter_setup(sc);
3786 } else
3787 error = atw_init(ifp);
3788 } else if (ATW_IS_ENABLED(sc))
3789 atw_stop(ifp, 1);
3790 break;
3791 case SIOCADDMULTI:
3792 case SIOCDELMULTI:
3793 error = (cmd == SIOCADDMULTI) ?
3794 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3795 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3796 if (error == ENETRESET) {
3797 if (ATW_IS_ENABLED(sc))
3798 atw_filter_setup(sc); /* do not rescan */
3799 error = 0;
3800 }
3801 break;
3802 default:
3803 error = ieee80211_ioctl(ifp, cmd, data);
3804 if (error == ENETRESET) {
3805 if (ATW_IS_ENABLED(sc))
3806 error = atw_init(ifp);
3807 else
3808 error = 0;
3809 }
3810 break;
3811 }
3812
3813 /* Try to get more packets going. */
3814 if (ATW_IS_ENABLED(sc))
3815 atw_start(ifp);
3816
3817 splx(s);
3818 return (error);
3819 }
3820
3821 static int
3822 atw_media_change(struct ifnet *ifp)
3823 {
3824 int error;
3825
3826 error = ieee80211_media_change(ifp);
3827 if (error == ENETRESET) {
3828 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3829 (IFF_RUNNING|IFF_UP))
3830 atw_init(ifp); /* XXX lose error */
3831 error = 0;
3832 }
3833 return error;
3834 }
3835
3836 static void
3837 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3838 {
3839 struct atw_softc *sc = ifp->if_softc;
3840
3841 if (ATW_IS_ENABLED(sc) == 0) {
3842 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3843 imr->ifm_status = 0;
3844 return;
3845 }
3846 ieee80211_media_status(ifp, imr);
3847 }
3848