Home | History | Annotate | Line # | Download | only in ic
atw.c revision 1.37
      1 /*	$NetBSD: atw.c,v 1.37 2004/06/23 09:41:54 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.37 2004/06/23 09:41:54 dyoung Exp $");
     45 
     46 #include "bpfilter.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/callout.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/malloc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/socket.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/errno.h>
     57 #include <sys/device.h>
     58 #include <sys/time.h>
     59 
     60 #include <machine/endian.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_media.h>
     67 #include <net/if_ether.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_compat.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #if NBPFILTER > 0
     74 #include <net/bpf.h>
     75 #endif
     76 
     77 #include <machine/bus.h>
     78 #include <machine/intr.h>
     79 
     80 #include <dev/ic/atwreg.h>
     81 #include <dev/ic/rf3000reg.h>
     82 #include <dev/ic/si4136reg.h>
     83 #include <dev/ic/atwvar.h>
     84 #include <dev/ic/smc93cx6var.h>
     85 
     86 /* XXX TBD open questions
     87  *
     88  *
     89  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
     90  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
     91  * handle this for me?
     92  *
     93  */
     94 /* device attachment
     95  *
     96  *    print TOFS[012]
     97  *
     98  * device initialization
     99  *
    100  *    clear ATW_FRCTL_MAXPSP to disable max power saving
    101  *    set ATW_TXBR_ALCUPDATE to enable ALC
    102  *    set TOFS[012]? (hope not)
    103  *    disable rx/tx
    104  *    set ATW_PAR_SWR (software reset)
    105  *    wait for ATW_PAR_SWR clear
    106  *    disable interrupts
    107  *    ack status register
    108  *    enable interrupts
    109  *
    110  * rx/tx initialization
    111  *
    112  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    113  *    allocate and init descriptor rings
    114  *    write ATW_PAR_DSL (descriptor skip length)
    115  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
    116  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    118  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    119  *
    120  * rx/tx end
    121  *
    122  *    stop DMA
    123  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    124  *    flush tx w/ ATW_NAR_HF
    125  *
    126  * scan
    127  *
    128  *    initialize rx/tx
    129  *
    130  * IBSS join/create
    131  *
    132  *    set ATW_NAR_EA (is set by ASIC?)
    133  *
    134  * BSS join: (re)association response
    135  *
    136  *    set ATW_FRCTL_AID
    137  *
    138  * optimizations ???
    139  *
    140  */
    141 
    142 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
    143 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
    144 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
    145 
    146 int atw_rfio_enable_delay = 20 * 1000;
    147 int atw_rfio_disable_delay = 2 * 1000;
    148 int atw_writewep_delay = 5;
    149 int atw_beacon_len_adjust = 4;
    150 int atw_dwelltime = 200;
    151 
    152 #ifdef ATW_DEBUG
    153 int atw_xhdrctl = 0;
    154 int atw_xrtylmt = ~0;
    155 int atw_xservice = IEEE80211_PLCP_SERVICE;
    156 int atw_xpaylen = 0;
    157 
    158 int atw_debug = 0;
    159 
    160 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
    161 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
    162 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
    163 #define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
    164 #define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
    165 #define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
    166 static void atw_print_regs(struct atw_softc *, const char *);
    167 static void atw_rf3000_print(struct atw_softc *);
    168 static void atw_si4126_print(struct atw_softc *);
    169 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
    170 #else
    171 #define ATW_DPRINTF(x)
    172 #define ATW_DPRINTF2(x)
    173 #define ATW_DPRINTF3(x)
    174 #define	DPRINTF(sc, x)	/* nothing */
    175 #define	DPRINTF2(sc, x)	/* nothing */
    176 #define	DPRINTF3(sc, x)	/* nothing */
    177 #endif
    178 
    179 #ifdef ATW_STATS
    180 void	atw_print_stats(struct atw_softc *);
    181 #endif
    182 
    183 void	atw_start(struct ifnet *);
    184 void	atw_watchdog(struct ifnet *);
    185 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
    186 int	atw_init(struct ifnet *);
    187 void	atw_txdrain(struct atw_softc *);
    188 void	atw_stop(struct ifnet *, int);
    189 
    190 void	atw_reset(struct atw_softc *);
    191 int	atw_read_srom(struct atw_softc *);
    192 
    193 void	atw_shutdown(void *);
    194 
    195 void	atw_rxdrain(struct atw_softc *);
    196 int	atw_add_rxbuf(struct atw_softc *, int);
    197 void	atw_idle(struct atw_softc *, u_int32_t);
    198 
    199 int	atw_enable(struct atw_softc *);
    200 void	atw_disable(struct atw_softc *);
    201 void	atw_power(int, void *);
    202 
    203 void	atw_rxintr(struct atw_softc *);
    204 void	atw_txintr(struct atw_softc *);
    205 void	atw_linkintr(struct atw_softc *, u_int32_t);
    206 
    207 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
    208 static void atw_tsf(struct atw_softc *);
    209 static void atw_start_beacon(struct atw_softc *, int);
    210 static void atw_write_wep(struct atw_softc *);
    211 static void atw_write_bssid(struct atw_softc *);
    212 static void atw_write_bcn_thresh(struct atw_softc *);
    213 static void atw_write_ssid(struct atw_softc *);
    214 static void atw_write_sup_rates(struct atw_softc *);
    215 static void atw_clear_sram(struct atw_softc *);
    216 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
    217 static int atw_media_change(struct ifnet *);
    218 static void atw_media_status(struct ifnet *, struct ifmediareq *);
    219 static void atw_filter_setup(struct atw_softc *);
    220 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
    221 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
    222 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
    223     struct ieee80211_node *, int, int, u_int32_t);
    224 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
    225     struct ieee80211_node *, int, int, u_int32_t);
    226 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
    227 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
    228 
    229 static int atw_tune(struct atw_softc *);
    230 
    231 static void atw_rfio_enable(struct atw_softc *, int);
    232 
    233 /* RFMD RF3000 Baseband Processor */
    234 static int atw_rf3000_init(struct atw_softc *);
    235 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
    236 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
    237 #ifdef ATW_DEBUG
    238 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    239 #endif /* ATW_DEBUG */
    240 
    241 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
    242 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
    243 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
    244 #ifdef ATW_DEBUG
    245 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
    246 #endif /* ATW_DEBUG */
    247 
    248 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
    249 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
    250 
    251 const char *atw_tx_state[] = {
    252 	"STOPPED",
    253 	"RUNNING - read descriptor",
    254 	"RUNNING - transmitting",
    255 	"RUNNING - filling fifo",	/* XXX */
    256 	"SUSPENDED",
    257 	"RUNNING -- write descriptor",
    258 	"RUNNING -- write last descriptor",
    259 	"RUNNING - fifo full"
    260 };
    261 
    262 const char *atw_rx_state[] = {
    263 	"STOPPED",
    264 	"RUNNING - read descriptor",
    265 	"RUNNING - check this packet, pre-fetch next",
    266 	"RUNNING - wait for reception",
    267 	"SUSPENDED",
    268 	"RUNNING - write descriptor",
    269 	"RUNNING - flush fifo",
    270 	"RUNNING - fifo drain"
    271 };
    272 
    273 int
    274 atw_activate(struct device *self, enum devact act)
    275 {
    276 	struct atw_softc *sc = (struct atw_softc *)self;
    277 	int rv = 0, s;
    278 
    279 	s = splnet();
    280 	switch (act) {
    281 	case DVACT_ACTIVATE:
    282 		rv = EOPNOTSUPP;
    283 		break;
    284 
    285 	case DVACT_DEACTIVATE:
    286 		if_deactivate(&sc->sc_ic.ic_if);
    287 		break;
    288 	}
    289 	splx(s);
    290 	return rv;
    291 }
    292 
    293 /*
    294  * atw_enable:
    295  *
    296  *	Enable the ADM8211 chip.
    297  */
    298 int
    299 atw_enable(struct atw_softc *sc)
    300 {
    301 
    302 	if (ATW_IS_ENABLED(sc) == 0) {
    303 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    304 			printf("%s: device enable failed\n",
    305 			    sc->sc_dev.dv_xname);
    306 			return (EIO);
    307 		}
    308 		sc->sc_flags |= ATWF_ENABLED;
    309 	}
    310 	return (0);
    311 }
    312 
    313 /*
    314  * atw_disable:
    315  *
    316  *	Disable the ADM8211 chip.
    317  */
    318 void
    319 atw_disable(struct atw_softc *sc)
    320 {
    321 	if (!ATW_IS_ENABLED(sc))
    322 		return;
    323 	if (sc->sc_disable != NULL)
    324 		(*sc->sc_disable)(sc);
    325 	sc->sc_flags &= ~ATWF_ENABLED;
    326 }
    327 
    328 /* Returns -1 on failure. */
    329 int
    330 atw_read_srom(struct atw_softc *sc)
    331 {
    332 	struct seeprom_descriptor sd;
    333 	u_int32_t reg;
    334 
    335 	(void)memset(&sd, 0, sizeof(sd));
    336 
    337 	reg = ATW_READ(sc, ATW_TEST0);
    338 
    339 	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
    340 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
    341 		return -1;
    342 	}
    343 
    344 	switch (reg & ATW_TEST0_EPTYP_MASK) {
    345 	case ATW_TEST0_EPTYP_93c66:
    346 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
    347 		sc->sc_sromsz = 512;
    348 		sd.sd_chip = C56_66;
    349 		break;
    350 	case ATW_TEST0_EPTYP_93c46:
    351 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
    352 		sc->sc_sromsz = 128;
    353 		sd.sd_chip = C46;
    354 		break;
    355 	default:
    356 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
    357 		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
    358 		return -1;
    359 	}
    360 
    361 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
    362 
    363 	if (sc->sc_srom == NULL) {
    364 		printf("%s: unable to allocate SROM buffer\n",
    365 		    sc->sc_dev.dv_xname);
    366 		return -1;
    367 	}
    368 
    369 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
    370 
    371 	/* ADM8211 has a single 32-bit register for controlling the
    372 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
    373 	 * "ready" bit. The ADM8211 input/output sense is the reverse
    374 	 * of read_seeprom's.
    375 	 */
    376 	sd.sd_tag = sc->sc_st;
    377 	sd.sd_bsh = sc->sc_sh;
    378 	sd.sd_regsize = 4;
    379 	sd.sd_control_offset = ATW_SPR;
    380 	sd.sd_status_offset = ATW_SPR;
    381 	sd.sd_dataout_offset = ATW_SPR;
    382 	sd.sd_CK = ATW_SPR_SCLK;
    383 	sd.sd_CS = ATW_SPR_SCS;
    384 	sd.sd_DI = ATW_SPR_SDO;
    385 	sd.sd_DO = ATW_SPR_SDI;
    386 	sd.sd_MS = ATW_SPR_SRS;
    387 	sd.sd_RDY = 0;
    388 
    389 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
    390 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
    391 		free(sc->sc_srom, M_DEVBUF);
    392 		return -1;
    393 	}
    394 #ifdef ATW_DEBUG
    395 	{
    396 		int i;
    397 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
    398 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
    399 			if (((i % 8) == 0) && (i != 0)) {
    400 				ATW_DPRINTF(("\n\t"));
    401 			}
    402 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
    403 		}
    404 		ATW_DPRINTF(("\n"));
    405 	}
    406 #endif /* ATW_DEBUG */
    407 	return 0;
    408 }
    409 
    410 #ifdef ATW_DEBUG
    411 static void
    412 atw_print_regs(struct atw_softc *sc, const char *where)
    413 {
    414 #define PRINTREG(sc, reg) \
    415 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
    416 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
    417 
    418 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
    419 
    420 	PRINTREG(sc, ATW_PAR);
    421 	PRINTREG(sc, ATW_FRCTL);
    422 	PRINTREG(sc, ATW_TDR);
    423 	PRINTREG(sc, ATW_WTDP);
    424 	PRINTREG(sc, ATW_RDR);
    425 	PRINTREG(sc, ATW_WRDP);
    426 	PRINTREG(sc, ATW_RDB);
    427 	PRINTREG(sc, ATW_CSR3A);
    428 	PRINTREG(sc, ATW_TDBD);
    429 	PRINTREG(sc, ATW_TDBP);
    430 	PRINTREG(sc, ATW_STSR);
    431 	PRINTREG(sc, ATW_CSR5A);
    432 	PRINTREG(sc, ATW_NAR);
    433 	PRINTREG(sc, ATW_CSR6A);
    434 	PRINTREG(sc, ATW_IER);
    435 	PRINTREG(sc, ATW_CSR7A);
    436 	PRINTREG(sc, ATW_LPC);
    437 	PRINTREG(sc, ATW_TEST1);
    438 	PRINTREG(sc, ATW_SPR);
    439 	PRINTREG(sc, ATW_TEST0);
    440 	PRINTREG(sc, ATW_WCSR);
    441 	PRINTREG(sc, ATW_WPDR);
    442 	PRINTREG(sc, ATW_GPTMR);
    443 	PRINTREG(sc, ATW_GPIO);
    444 	PRINTREG(sc, ATW_BBPCTL);
    445 	PRINTREG(sc, ATW_SYNCTL);
    446 	PRINTREG(sc, ATW_PLCPHD);
    447 	PRINTREG(sc, ATW_MMIWADDR);
    448 	PRINTREG(sc, ATW_MMIRADDR1);
    449 	PRINTREG(sc, ATW_MMIRADDR2);
    450 	PRINTREG(sc, ATW_TXBR);
    451 	PRINTREG(sc, ATW_CSR15A);
    452 	PRINTREG(sc, ATW_ALCSTAT);
    453 	PRINTREG(sc, ATW_TOFS2);
    454 	PRINTREG(sc, ATW_CMDR);
    455 	PRINTREG(sc, ATW_PCIC);
    456 	PRINTREG(sc, ATW_PMCSR);
    457 	PRINTREG(sc, ATW_PAR0);
    458 	PRINTREG(sc, ATW_PAR1);
    459 	PRINTREG(sc, ATW_MAR0);
    460 	PRINTREG(sc, ATW_MAR1);
    461 	PRINTREG(sc, ATW_ATIMDA0);
    462 	PRINTREG(sc, ATW_ABDA1);
    463 	PRINTREG(sc, ATW_BSSID0);
    464 	PRINTREG(sc, ATW_TXLMT);
    465 	PRINTREG(sc, ATW_MIBCNT);
    466 	PRINTREG(sc, ATW_BCNT);
    467 	PRINTREG(sc, ATW_TSFTH);
    468 	PRINTREG(sc, ATW_TSC);
    469 	PRINTREG(sc, ATW_SYNRF);
    470 	PRINTREG(sc, ATW_BPLI);
    471 	PRINTREG(sc, ATW_CAP0);
    472 	PRINTREG(sc, ATW_CAP1);
    473 	PRINTREG(sc, ATW_RMD);
    474 	PRINTREG(sc, ATW_CFPP);
    475 	PRINTREG(sc, ATW_TOFS0);
    476 	PRINTREG(sc, ATW_TOFS1);
    477 	PRINTREG(sc, ATW_IFST);
    478 	PRINTREG(sc, ATW_RSPT);
    479 	PRINTREG(sc, ATW_TSFTL);
    480 	PRINTREG(sc, ATW_WEPCTL);
    481 	PRINTREG(sc, ATW_WESK);
    482 	PRINTREG(sc, ATW_WEPCNT);
    483 	PRINTREG(sc, ATW_MACTEST);
    484 	PRINTREG(sc, ATW_FER);
    485 	PRINTREG(sc, ATW_FEMR);
    486 	PRINTREG(sc, ATW_FPSR);
    487 	PRINTREG(sc, ATW_FFER);
    488 #undef PRINTREG
    489 }
    490 #endif /* ATW_DEBUG */
    491 
    492 /*
    493  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
    494  */
    495 void
    496 atw_attach(struct atw_softc *sc)
    497 {
    498 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
    499 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    500 	};
    501 	struct ieee80211com *ic = &sc->sc_ic;
    502 	struct ifnet *ifp = &ic->ic_if;
    503 	int country_code, error, i, nrate;
    504 	u_int32_t reg;
    505 	static const char *type_strings[] = {"Intersil (not supported)",
    506 	    "RFMD", "Marvel (not supported)"};
    507 
    508 	sc->sc_txth = atw_txthresh_tab_lo;
    509 
    510 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    511 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    512 
    513 #ifdef ATW_DEBUG
    514 	atw_print_regs(sc, "atw_attach");
    515 #endif /* ATW_DEBUG */
    516 
    517 	/*
    518 	 * Allocate the control data structures, and create and load the
    519 	 * DMA map for it.
    520 	 */
    521 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    522 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    523 	    1, &sc->sc_cdnseg, 0)) != 0) {
    524 		printf("%s: unable to allocate control data, error = %d\n",
    525 		    sc->sc_dev.dv_xname, error);
    526 		goto fail_0;
    527 	}
    528 
    529 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
    530 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
    531 	    BUS_DMA_COHERENT)) != 0) {
    532 		printf("%s: unable to map control data, error = %d\n",
    533 		    sc->sc_dev.dv_xname, error);
    534 		goto fail_1;
    535 	}
    536 
    537 	if ((error = bus_dmamap_create(sc->sc_dmat,
    538 	    sizeof(struct atw_control_data), 1,
    539 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    540 		printf("%s: unable to create control data DMA map, "
    541 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    542 		goto fail_2;
    543 	}
    544 
    545 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    546 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
    547 	    0)) != 0) {
    548 		printf("%s: unable to load control data DMA map, error = %d\n",
    549 		    sc->sc_dev.dv_xname, error);
    550 		goto fail_3;
    551 	}
    552 
    553 	/*
    554 	 * Create the transmit buffer DMA maps.
    555 	 */
    556 	sc->sc_ntxsegs = ATW_NTXSEGS;
    557 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    558 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    559 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
    560 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    561 			printf("%s: unable to create tx DMA map %d, "
    562 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    563 			goto fail_4;
    564 		}
    565 	}
    566 
    567 	/*
    568 	 * Create the receive buffer DMA maps.
    569 	 */
    570 	for (i = 0; i < ATW_NRXDESC; i++) {
    571 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    572 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    573 			printf("%s: unable to create rx DMA map %d, "
    574 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    575 			goto fail_5;
    576 		}
    577 	}
    578 	for (i = 0; i < ATW_NRXDESC; i++) {
    579 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    580 	}
    581 
    582 	/* Reset the chip to a known state. */
    583 	atw_reset(sc);
    584 
    585 	if (atw_read_srom(sc) == -1)
    586 		return;
    587 
    588 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    589 	    ATW_SR_RFTYPE_MASK);
    590 
    591 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    592 	    ATW_SR_BBPTYPE_MASK);
    593 
    594 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
    595 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
    596 		return;
    597 	}
    598 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
    599 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
    600 		return;
    601 	}
    602 
    603 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
    604 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
    605 
    606 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
    607 	 * MARVEL. My bug, or theirs?
    608 	 */
    609 
    610 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
    611 
    612 	switch (sc->sc_rftype) {
    613 	case ATW_RFTYPE_INTERSIL:
    614 		reg |= ATW_SYNCTL_CS1;
    615 		break;
    616 	case ATW_RFTYPE_RFMD:
    617 		reg |= ATW_SYNCTL_CS0;
    618 		break;
    619 	case ATW_RFTYPE_MARVEL:
    620 		break;
    621 	}
    622 
    623 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
    624 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
    625 
    626 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
    627 
    628 	switch (sc->sc_bbptype) {
    629 	case ATW_BBPTYPE_INTERSIL:
    630 		reg |= ATW_BBPCTL_TWI;
    631 		break;
    632 	case ATW_BBPTYPE_RFMD:
    633 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
    634 		    ATW_BBPCTL_CCA_ACTLO;
    635 		break;
    636 	case ATW_BBPTYPE_MARVEL:
    637 		break;
    638 	case ATW_C_BBPTYPE_RFMD:
    639 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
    640 		    sc->sc_dev.dv_xname);
    641 		break;
    642 	}
    643 
    644 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
    645 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
    646 
    647 	/*
    648 	 * From this point forward, the attachment cannot fail.  A failure
    649 	 * before this point releases all resources that may have been
    650 	 * allocated.
    651 	 */
    652 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
    653 
    654 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
    655 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
    656 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
    657 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
    658 
    659 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    660 	    ATW_SR_CTRY_MASK);
    661 
    662 #define ADD_CHANNEL(_ic, _chan) do {					\
    663 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
    664 	_ic->ic_channels[_chan].ic_freq =				\
    665 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
    666 } while (0)
    667 
    668 	/* Find available channels */
    669 	switch (country_code) {
    670 	case COUNTRY_MMK2:	/* 1-14 */
    671 		ADD_CHANNEL(ic, 14);
    672 		/*FALLTHROUGH*/
    673 	case COUNTRY_ETSI:	/* 1-13 */
    674 		for (i = 1; i <= 13; i++)
    675 			ADD_CHANNEL(ic, i);
    676 		break;
    677 	case COUNTRY_FCC:	/* 1-11 */
    678 	case COUNTRY_IC:	/* 1-11 */
    679 		for (i = 1; i <= 11; i++)
    680 			ADD_CHANNEL(ic, i);
    681 		break;
    682 	case COUNTRY_MMK:	/* 14 */
    683 		ADD_CHANNEL(ic, 14);
    684 		break;
    685 	case COUNTRY_FRANCE:	/* 10-13 */
    686 		for (i = 10; i <= 13; i++)
    687 			ADD_CHANNEL(ic, i);
    688 		break;
    689 	default:	/* assume channels 10-11 */
    690 	case COUNTRY_SPAIN:	/* 10-11 */
    691 		for (i = 10; i <= 11; i++)
    692 			ADD_CHANNEL(ic, i);
    693 		break;
    694 	}
    695 
    696 	/* Read the MAC address. */
    697 	reg = ATW_READ(sc, ATW_PAR0);
    698 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
    699 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
    700 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
    701 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
    702 	reg = ATW_READ(sc, ATW_PAR1);
    703 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
    704 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
    705 
    706 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
    707 		printf(" could not get mac address, attach failed\n");
    708 		return;
    709 	}
    710 
    711 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
    712 
    713 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    714 	ifp->if_softc = sc;
    715 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
    716 	    IFF_NOTRAILERS;
    717 	ifp->if_ioctl = atw_ioctl;
    718 	ifp->if_start = atw_start;
    719 	ifp->if_watchdog = atw_watchdog;
    720 	ifp->if_init = atw_init;
    721 	ifp->if_stop = atw_stop;
    722 	IFQ_SET_READY(&ifp->if_snd);
    723 
    724 	ic->ic_phytype = IEEE80211_T_DS;
    725 	ic->ic_opmode = IEEE80211_M_STA;
    726 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
    727 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
    728 
    729 	nrate = 0;
    730 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
    731 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
    732 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
    733 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
    734 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
    735 
    736 	/*
    737 	 * Call MI attach routines.
    738 	 */
    739 
    740 	if_attach(ifp);
    741 	ieee80211_ifattach(ifp);
    742 
    743 	sc->sc_newstate = ic->ic_newstate;
    744 	ic->ic_newstate = atw_newstate;
    745 
    746 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    747 	ic->ic_recv_mgmt = atw_recv_mgmt;
    748 
    749 	sc->sc_node_free = ic->ic_node_free;
    750 	ic->ic_node_free = atw_node_free;
    751 
    752 	sc->sc_node_alloc = ic->ic_node_alloc;
    753 	ic->ic_node_alloc = atw_node_alloc;
    754 
    755 	/* possibly we should fill in our own sc_send_prresp, since
    756 	 * the ADM8211 is probably sending probe responses in ad hoc
    757 	 * mode.
    758 	 */
    759 
    760 	/* complete initialization */
    761 	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
    762 	callout_init(&sc->sc_scan_ch);
    763 
    764 #if NBPFILTER > 0
    765 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    766 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
    767 #endif
    768 
    769 	/*
    770 	 * Make sure the interface is shutdown during reboot.
    771 	 */
    772 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
    773 	if (sc->sc_sdhook == NULL)
    774 		printf("%s: WARNING: unable to establish shutdown hook\n",
    775 		    sc->sc_dev.dv_xname);
    776 
    777 	/*
    778 	 * Add a suspend hook to make sure we come back up after a
    779 	 * resume.
    780 	 */
    781 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
    782 	if (sc->sc_powerhook == NULL)
    783 		printf("%s: WARNING: unable to establish power hook\n",
    784 		    sc->sc_dev.dv_xname);
    785 
    786 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
    787 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
    788 	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
    789 
    790 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
    791 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
    792 	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
    793 
    794 	return;
    795 
    796 	/*
    797 	 * Free any resources we've allocated during the failed attach
    798 	 * attempt.  Do this in reverse order and fall through.
    799 	 */
    800  fail_5:
    801 	for (i = 0; i < ATW_NRXDESC; i++) {
    802 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
    803 			continue;
    804 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
    805 	}
    806  fail_4:
    807 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    808 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
    809 			continue;
    810 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
    811 	}
    812 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    813  fail_3:
    814 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    815  fail_2:
    816 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    817 	    sizeof(struct atw_control_data));
    818  fail_1:
    819 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
    820  fail_0:
    821 	return;
    822 }
    823 
    824 static struct ieee80211_node *
    825 atw_node_alloc(struct ieee80211com *ic)
    826 {
    827 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    828 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
    829 
    830 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
    831 	return ni;
    832 }
    833 
    834 static void
    835 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
    836 {
    837 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    838 
    839 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
    840 	    ether_sprintf(ni->ni_bssid)));
    841 	(*sc->sc_node_free)(ic, ni);
    842 }
    843 
    844 /*
    845  * atw_reset:
    846  *
    847  *	Perform a soft reset on the ADM8211.
    848  */
    849 void
    850 atw_reset(struct atw_softc *sc)
    851 {
    852 	int i;
    853 
    854 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
    855 
    856 	for (i = 0; i < 10000; i++) {
    857 		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
    858 			break;
    859 		DELAY(1);
    860 	}
    861 
    862 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
    863 
    864 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
    865 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
    866 
    867 	/* Turn off maximum power saving. */
    868 	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
    869 
    870 	/* Recall EEPROM. */
    871 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
    872 
    873 	DELAY(10 * 1000);
    874 
    875 	/* A reset seems to affect the SRAM contents, so put them into
    876 	 * a known state.
    877 	 */
    878 	atw_clear_sram(sc);
    879 
    880 	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
    881 
    882 	sc->sc_lost_bcn_thresh = 0;
    883 }
    884 
    885 static void
    886 atw_clear_sram(struct atw_softc *sc)
    887 {
    888 #if 0
    889 	for (addr = 0; addr < 448; addr++) {
    890 		ATW_WRITE(sc, ATW_WEPCTL,
    891 		    ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0	| addr);
    892 		DELAY(1000);
    893 		ATW_WRITE(sc, ATW_WESK, 0);
    894 		DELAY(1000); /* paranoia */
    895 	}
    896 	return;
    897 #endif
    898 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
    899 	/* XXX not for revision 0x20. */
    900 	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
    901 }
    902 
    903 /* TBD atw_init
    904  *
    905  * set MAC based on ic->ic_bss->myaddr
    906  * write WEP keys
    907  * set TX rate
    908  */
    909 
    910 /*
    911  * atw_init:		[ ifnet interface function ]
    912  *
    913  *	Initialize the interface.  Must be called at splnet().
    914  */
    915 int
    916 atw_init(struct ifnet *ifp)
    917 {
    918 	struct atw_softc *sc = ifp->if_softc;
    919 	struct ieee80211com *ic = &sc->sc_ic;
    920 	struct atw_txsoft *txs;
    921 	struct atw_rxsoft *rxs;
    922 	u_int32_t reg;
    923 	int i, error = 0;
    924 
    925 	if ((error = atw_enable(sc)) != 0)
    926 		goto out;
    927 
    928 	/*
    929 	 * Cancel any pending I/O. This also resets.
    930 	 */
    931 	atw_stop(ifp, 0);
    932 
    933 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
    934 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
    935 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
    936 	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
    937 
    938 	/* Turn off APM??? (A binary-only driver does this.)
    939 	 *
    940 	 * Set Rx store-and-forward mode.
    941 	 */
    942 	reg = ATW_READ(sc, ATW_CMDR);
    943 	reg &= ~ATW_CMDR_APM;
    944 	reg &= ~ATW_CMDR_DRT_MASK;
    945 	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
    946 
    947 	ATW_WRITE(sc, ATW_CMDR, reg);
    948 
    949 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
    950 	 *
    951 	 * XXX a binary-only driver sets a different service field than
    952 	 * 0. why?
    953 	 */
    954 	reg = ATW_READ(sc, ATW_PLCPHD);
    955 	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
    956 	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
    957 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
    958 	ATW_WRITE(sc, ATW_PLCPHD, reg);
    959 
    960 	/* XXX this magic can probably be figured out from the RFMD docs */
    961 	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
    962 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
    963 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
    964 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
    965 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
    966 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
    967 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
    968 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
    969 	ATW_WRITE(sc, ATW_TOFS2, reg);
    970 
    971 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
    972 	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
    973 
    974 	/* XXX this resets an Intersil RF front-end? */
    975 	/* TBD condition on Intersil RFType? */
    976 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
    977 	DELAY(10 * 1000);
    978 	ATW_WRITE(sc, ATW_SYNRF, 0);
    979 	DELAY(5 * 1000);
    980 
    981 	/* 16 TU max duration for contention-free period */
    982 	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
    983 	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
    984 
    985 	/* XXX I guess that the Cardbus clock is 22MHz?
    986 	 * I am assuming that the role of ATW_TOFS0_USCNT is
    987 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
    988 	 * very clear on this point. It says in the datasheet that it is
    989 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
    990 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
    991 	 * these values. These values are also the power-on default.
    992 	 */
    993 	ATW_WRITE(sc, ATW_TOFS0,
    994 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
    995 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
    996 
    997 	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
    998 	 * driver. Go figure.
    999 	 */
   1000 	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
   1001 	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
   1002 	             ATW_IFST_SIFS_MASK) |
   1003 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
   1004 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
   1005 
   1006 	ATW_WRITE(sc, ATW_IFST, reg);
   1007 
   1008 	/* XXX More magic. Might relate to ACK timing. */
   1009 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
   1010 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
   1011 
   1012 	/* Set up the MMI read/write addresses for the BBP.
   1013 	 *
   1014 	 * TBD find out the Marvel settings.
   1015 	 */
   1016 	switch (sc->sc_bbptype) {
   1017 	case ATW_BBPTYPE_INTERSIL:
   1018 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
   1019 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
   1020 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
   1021 		break;
   1022 	case ATW_BBPTYPE_MARVEL:
   1023 		break;
   1024 	case ATW_BBPTYPE_RFMD:
   1025 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
   1026 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
   1027 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
   1028 	default:
   1029 		break;
   1030 	}
   1031 
   1032 	sc->sc_wepctl = 0;
   1033 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
   1034 
   1035 	if ((error = atw_rf3000_init(sc)) != 0)
   1036 		goto out;
   1037 
   1038 	/*
   1039 	 * Initialize the PCI Access Register.
   1040 	 */
   1041 	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
   1042 
   1043 	/*
   1044 	 * If we're allowed to do so, use Memory Read Line
   1045 	 * and Memory Read Multiple.
   1046 	 *
   1047 	 * XXX Should we use Memory Write and Invalidate?
   1048 	 */
   1049 	if (sc->sc_flags & ATWF_MRL)
   1050 		sc->sc_busmode |= ATW_PAR_MRLE;
   1051 	if (sc->sc_flags & ATWF_MRM)
   1052 		sc->sc_busmode |= ATW_PAR_MRME;
   1053 	if (sc->sc_flags & ATWF_MWI)
   1054 		sc->sc_busmode |= ATW_PAR_MWIE;
   1055 	if (sc->sc_maxburst == 0)
   1056 		sc->sc_maxburst = 8;	/* ADM8211 default */
   1057 
   1058 	switch (sc->sc_cacheline) {
   1059 	default:
   1060 		/* Use burst length. */
   1061 		break;
   1062 	case 8:
   1063 		sc->sc_busmode |= ATW_PAR_CAL_8DW;
   1064 		break;
   1065 	case 16:
   1066 		sc->sc_busmode |= ATW_PAR_CAL_16DW;
   1067 		break;
   1068 	case 32:
   1069 		sc->sc_busmode |= ATW_PAR_CAL_32DW;
   1070 		break;
   1071 	}
   1072 	switch (sc->sc_maxburst) {
   1073 	case 1:
   1074 		sc->sc_busmode |= ATW_PAR_PBL_1DW;
   1075 		break;
   1076 	case 2:
   1077 		sc->sc_busmode |= ATW_PAR_PBL_2DW;
   1078 		break;
   1079 	case 4:
   1080 		sc->sc_busmode |= ATW_PAR_PBL_4DW;
   1081 		break;
   1082 	case 8:
   1083 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1084 		break;
   1085 	case 16:
   1086 		sc->sc_busmode |= ATW_PAR_PBL_16DW;
   1087 		break;
   1088 	case 32:
   1089 		sc->sc_busmode |= ATW_PAR_PBL_32DW;
   1090 		break;
   1091 	default:
   1092 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1093 		break;
   1094 	}
   1095 
   1096 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
   1097 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
   1098 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
   1099 
   1100 	/*
   1101 	 * Initialize the OPMODE register.  We don't write it until
   1102 	 * we're ready to begin the transmit and receive processes.
   1103 	 */
   1104 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
   1105 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
   1106 
   1107 	/*
   1108 	 * Initialize the transmit descriptor ring.
   1109 	 */
   1110 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1111 	for (i = 0; i < ATW_NTXDESC; i++) {
   1112 		/* no transmit chaining */
   1113 		sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
   1114 		sc->sc_txdescs[i].at_buf2 =
   1115 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
   1116 	}
   1117 	/* use ring mode */
   1118 	sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
   1119 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
   1120 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1121 	sc->sc_txfree = ATW_NTXDESC;
   1122 	sc->sc_txnext = 0;
   1123 
   1124 	/*
   1125 	 * Initialize the transmit job descriptors.
   1126 	 */
   1127 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1128 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1129 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   1130 		txs = &sc->sc_txsoft[i];
   1131 		txs->txs_mbuf = NULL;
   1132 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1133 	}
   1134 
   1135 	/*
   1136 	 * Initialize the receive descriptor and receive job
   1137 	 * descriptor rings.
   1138 	 */
   1139 	for (i = 0; i < ATW_NRXDESC; i++) {
   1140 		rxs = &sc->sc_rxsoft[i];
   1141 		if (rxs->rxs_mbuf == NULL) {
   1142 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
   1143 				printf("%s: unable to allocate or map rx "
   1144 				    "buffer %d, error = %d\n",
   1145 				    sc->sc_dev.dv_xname, i, error);
   1146 				/*
   1147 				 * XXX Should attempt to run with fewer receive
   1148 				 * XXX buffers instead of just failing.
   1149 				 */
   1150 				atw_rxdrain(sc);
   1151 				goto out;
   1152 			}
   1153 		} else
   1154 			ATW_INIT_RXDESC(sc, i);
   1155 	}
   1156 	sc->sc_rxptr = 0;
   1157 
   1158 	/* disable all wake-up events */
   1159 	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
   1160 	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
   1161 			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
   1162 			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
   1163 
   1164 	/* ack all wake-up events */
   1165 	ATW_SET(sc, ATW_WCSR, 0);
   1166 
   1167 	/*
   1168 	 * Initialize the interrupt mask and enable interrupts.
   1169 	 */
   1170 	/* normal interrupts */
   1171 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
   1172 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
   1173 
   1174 	/* abnormal interrupts */
   1175 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
   1176 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
   1177 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1178 
   1179 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
   1180 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1181 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
   1182 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
   1183 	    ATW_INTR_TRT;
   1184 
   1185 	sc->sc_linkint_mask &= sc->sc_inten;
   1186 	sc->sc_rxint_mask &= sc->sc_inten;
   1187 	sc->sc_txint_mask &= sc->sc_inten;
   1188 
   1189 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
   1190 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1191 	if (sc->sc_intr_ack != NULL)
   1192 		(*sc->sc_intr_ack)(sc);
   1193 
   1194 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
   1195 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
   1196 
   1197 	/*
   1198 	 * Give the transmit and receive rings to the ADM8211.
   1199 	 */
   1200 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
   1201 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
   1202 
   1203 	/* common 802.11 configuration */
   1204 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
   1205 	switch (ic->ic_opmode) {
   1206 	case IEEE80211_M_STA:
   1207 		sc->sc_opmode &= ~ATW_NAR_EA;
   1208 		break;
   1209 	case IEEE80211_M_AHDEMO: /* XXX */
   1210 	case IEEE80211_M_IBSS:
   1211 		ic->ic_flags |= IEEE80211_F_IBSSON;
   1212 		/*FALLTHROUGH*/
   1213 	case IEEE80211_M_HOSTAP: /* XXX */
   1214 		/* EA bit seems important for ad hoc reception. */
   1215 		sc->sc_opmode |= ATW_NAR_EA;
   1216 		break;
   1217 	case IEEE80211_M_MONITOR: /* XXX */
   1218 		break;
   1219 	}
   1220 
   1221 	atw_start_beacon(sc, 0);
   1222 
   1223 	switch (ic->ic_opmode) {
   1224 	case IEEE80211_M_AHDEMO:
   1225 	case IEEE80211_M_HOSTAP:
   1226 		ic->ic_bss->ni_intval = ic->ic_lintval;
   1227 		ic->ic_bss->ni_rssi = 0;
   1228 		ic->ic_bss->ni_rstamp = 0;
   1229 		break;
   1230 	default:					/* XXX */
   1231 		break;
   1232 	}
   1233 
   1234 	atw_write_ssid(sc);
   1235 	atw_write_sup_rates(sc);
   1236 	if (ic->ic_caps & IEEE80211_C_WEP)
   1237 		atw_write_wep(sc);
   1238 
   1239 	/*
   1240 	 * Set the receive filter.  This will start the transmit and
   1241 	 * receive processes.
   1242 	 */
   1243 	atw_filter_setup(sc);
   1244 
   1245 	/*
   1246 	 * Start the receive process.
   1247 	 */
   1248 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1249 
   1250 	/*
   1251 	 * Note that the interface is now running.
   1252 	 */
   1253 	ifp->if_flags |= IFF_RUNNING;
   1254 	ifp->if_flags &= ~IFF_OACTIVE;
   1255 	ic->ic_state = IEEE80211_S_INIT;
   1256 
   1257 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1258 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1259 	else
   1260 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1261  out:
   1262 	if (error) {
   1263 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1264 		ifp->if_timer = 0;
   1265 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1266 	}
   1267 #ifdef ATW_DEBUG
   1268 	atw_print_regs(sc, "end of init");
   1269 #endif /* ATW_DEBUG */
   1270 
   1271 	return (error);
   1272 }
   1273 
   1274 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
   1275  *           0: MAC control of RF3000/Si4126.
   1276  *
   1277  * Applies power, or selects RF front-end? Sets reset condition.
   1278  *
   1279  * TBD support non-RFMD BBP, non-SiLabs synth.
   1280  */
   1281 static void
   1282 atw_rfio_enable(struct atw_softc *sc, int enable)
   1283 {
   1284 	if (enable) {
   1285 		ATW_WRITE(sc, ATW_SYNRF,
   1286 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
   1287 		DELAY(atw_rfio_enable_delay);
   1288 	} else {
   1289 		ATW_WRITE(sc, ATW_SYNRF, 0);
   1290 		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
   1291 	}
   1292 }
   1293 
   1294 static int
   1295 atw_tune(struct atw_softc *sc)
   1296 {
   1297 	int rc;
   1298 	u_int32_t reg;
   1299 	int chan;
   1300 	struct ieee80211com *ic = &sc->sc_ic;
   1301 
   1302 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
   1303 	if (chan == IEEE80211_CHAN_ANY)
   1304 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
   1305 
   1306 	if (chan == sc->sc_cur_chan)
   1307 		return 0;
   1308 
   1309 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
   1310 	    sc->sc_cur_chan, chan));
   1311 
   1312 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1313 
   1314 	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
   1315 	    (rc = atw_rf3000_tune(sc, chan)) != 0)
   1316 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
   1317 		    chan);
   1318 
   1319 	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
   1320 	ATW_WRITE(sc, ATW_CAP0,
   1321 	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
   1322 
   1323 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1324 
   1325 	if (rc == 0)
   1326 		sc->sc_cur_chan = chan;
   1327 
   1328 	return rc;
   1329 }
   1330 
   1331 #ifdef ATW_DEBUG
   1332 static void
   1333 atw_si4126_print(struct atw_softc *sc)
   1334 {
   1335 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1336 	u_int addr, val;
   1337 
   1338 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1339 		return;
   1340 
   1341 	for (addr = 0; addr <= 8; addr++) {
   1342 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
   1343 		if (atw_si4126_read(sc, addr, &val) == 0) {
   1344 			printf("<unknown> (quitting print-out)\n");
   1345 			break;
   1346 		}
   1347 		printf("%05x\n", val);
   1348 	}
   1349 }
   1350 #endif /* ATW_DEBUG */
   1351 
   1352 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
   1353  *
   1354  * The RF/IF synthesizer produces two reference frequencies for
   1355  * the RF2948B transceiver.  The first frequency the RF2948B requires
   1356  * is two times the so-called "intermediate frequency" (IF). Since
   1357  * a SAW filter on the radio fixes the IF at 374MHz, I program the
   1358  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
   1359  * frequency required by the transceiver is the radio frequency
   1360  * (RF). This is a superheterodyne transceiver; for f(chan) the
   1361  * center frequency of the channel we are tuning, RF = f(chan) -
   1362  * IF.
   1363  *
   1364  * XXX I am told by SiLabs that the Si4126 will accept a broader range
   1365  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
   1366  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
   1367  * works, but I have still programmed for XINDIV2 = 1 to be safe.
   1368  */
   1369 static int
   1370 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
   1371 {
   1372 	int rc = 0;
   1373 	u_int mhz;
   1374 	u_int R;
   1375 	u_int32_t reg;
   1376 	u_int16_t gain;
   1377 
   1378 #ifdef ATW_DEBUG
   1379 	atw_si4126_print(sc);
   1380 #endif /* ATW_DEBUG */
   1381 
   1382 	if (chan == 14)
   1383 		mhz = 2484;
   1384 	else
   1385 		mhz = 2412 + 5 * (chan - 1);
   1386 
   1387 	/* Tune IF to 748MHz to suit the IF LO input of the
   1388 	 * RF2494B, which is 2 x IF. No need to set an IF divider
   1389          * because an IF in 526MHz - 952MHz is allowed.
   1390 	 *
   1391 	 * XIN is 44.000MHz, so divide it by two to get allowable
   1392 	 * range of 2-25MHz. SiLabs tells me that this is not
   1393 	 * strictly necessary.
   1394 	 */
   1395 
   1396 	R = 44;
   1397 
   1398 	atw_rfio_enable(sc, 1);
   1399 
   1400 	/* Power-up RF, IF synthesizers. */
   1401 	if ((rc = atw_si4126_write(sc, SI4126_POWER,
   1402 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
   1403 		goto out;
   1404 
   1405 	/* If RF2 N > 2047, then set KP2 to 1. */
   1406 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
   1407 
   1408 	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
   1409 		goto out;
   1410 
   1411 	/* set LPWR, too? */
   1412 	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
   1413 	    SI4126_MAIN_XINDIV2)) != 0)
   1414 		goto out;
   1415 
   1416 	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
   1417 	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
   1418 	 */
   1419 	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
   1420 		goto out;
   1421 
   1422 	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
   1423 		goto out;
   1424 
   1425 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
   1426 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
   1427 	 * which has no RF1!
   1428 	 */
   1429 	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
   1430 		goto out;
   1431 
   1432 	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
   1433 		goto out;
   1434 
   1435 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
   1436 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
   1437 	 * Now let's multiply it to mhz. So mhz - IF = N.
   1438 	 */
   1439 	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
   1440 		goto out;
   1441 
   1442 	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
   1443 		goto out;
   1444 
   1445 	/* wait 100us from power-up for RF, IF to settle */
   1446 	DELAY(100);
   1447 
   1448 	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
   1449 		/* XXX there is a binary driver which sends
   1450 		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
   1451 		 * that this enables the Si4126 by raising its PWDN#, but I
   1452 		 * think that it actually sets the Prism RF front-end
   1453 		 * to a special mode for channel 14.
   1454 		 */
   1455 		reg = ATW_READ(sc, ATW_GPIO);
   1456 		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
   1457 		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
   1458 		ATW_WRITE(sc, ATW_GPIO, reg);
   1459 	}
   1460 
   1461 #ifdef ATW_DEBUG
   1462 	atw_si4126_print(sc);
   1463 #endif /* ATW_DEBUG */
   1464 
   1465 out:
   1466 	atw_rfio_enable(sc, 0);
   1467 
   1468 	return rc;
   1469 }
   1470 
   1471 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
   1472  * diversity.
   1473  *
   1474  * Call this w/ Tx/Rx suspended.
   1475  */
   1476 static int
   1477 atw_rf3000_init(struct atw_softc *sc)
   1478 {
   1479 	int rc = 0;
   1480 
   1481 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1482 
   1483 	atw_rfio_enable(sc, 1);
   1484 
   1485 	/* enable diversity */
   1486 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
   1487 
   1488 	if (rc != 0)
   1489 		goto out;
   1490 
   1491 	/* sensible setting from a binary-only driver */
   1492 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1493 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
   1494 
   1495 	if (rc != 0)
   1496 		goto out;
   1497 
   1498 	/* magic from a binary-only driver */
   1499 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
   1500 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
   1501 
   1502 	if (rc != 0)
   1503 		goto out;
   1504 
   1505 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
   1506 
   1507 	if (rc != 0)
   1508 		goto out;
   1509 
   1510 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
   1511 
   1512 	if (rc != 0)
   1513 		goto out;
   1514 
   1515 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
   1516 
   1517 	if (rc != 0)
   1518 		goto out;
   1519 
   1520 	/* CCA is acquisition sensitive */
   1521 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
   1522 	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
   1523 
   1524 	if (rc != 0)
   1525 		goto out;
   1526 
   1527 out:
   1528 	atw_rfio_enable(sc, 0);
   1529 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1530 	return rc;
   1531 }
   1532 
   1533 #ifdef ATW_DEBUG
   1534 static void
   1535 atw_rf3000_print(struct atw_softc *sc)
   1536 {
   1537 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1538 	u_int addr, val;
   1539 
   1540 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1541 		return;
   1542 
   1543 	for (addr = 0x01; addr <= 0x15; addr++) {
   1544 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
   1545 		if (atw_rf3000_read(sc, addr, &val) != 0) {
   1546 			printf("<unknown> (quitting print-out)\n");
   1547 			break;
   1548 		}
   1549 		printf("%08x\n", val);
   1550 	}
   1551 }
   1552 #endif /* ATW_DEBUG */
   1553 
   1554 /* Set the power settings on the BBP for channel `chan'. */
   1555 static int
   1556 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
   1557 {
   1558 	int rc = 0;
   1559 	u_int32_t reg;
   1560 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
   1561 
   1562 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
   1563 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
   1564 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
   1565 
   1566 	/* odd channels: LSB, even channels: MSB */
   1567 	if (chan % 2 == 1) {
   1568 		txpower &= 0xFF;
   1569 		lpf_cutoff &= 0xFF;
   1570 		lna_gs_thresh &= 0xFF;
   1571 	} else {
   1572 		txpower >>= 8;
   1573 		lpf_cutoff >>= 8;
   1574 		lna_gs_thresh >>= 8;
   1575 	}
   1576 
   1577 #ifdef ATW_DEBUG
   1578 	atw_rf3000_print(sc);
   1579 #endif /* ATW_DEBUG */
   1580 
   1581 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
   1582 	    "lna_gs_thresh %02x\n",
   1583 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
   1584 
   1585 	atw_rfio_enable(sc, 1);
   1586 
   1587 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1588 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
   1589 		goto out;
   1590 
   1591 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
   1592 		goto out;
   1593 
   1594 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
   1595 		goto out;
   1596 
   1597 	/* from a binary-only driver. */
   1598 	reg = ATW_READ(sc, ATW_PLCPHD);
   1599 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
   1600 	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
   1601 	    ATW_PLCPHD_SERVICE_MASK);
   1602 	ATW_WRITE(sc, ATW_PLCPHD, reg);
   1603 
   1604 #ifdef ATW_DEBUG
   1605 	atw_rf3000_print(sc);
   1606 #endif /* ATW_DEBUG */
   1607 
   1608 out:
   1609 	atw_rfio_enable(sc, 0);
   1610 
   1611 	return rc;
   1612 }
   1613 
   1614 /* Write a register on the RF3000 baseband processor using the
   1615  * registers provided by the ADM8211 for this purpose.
   1616  *
   1617  * Return 0 on success.
   1618  */
   1619 static int
   1620 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
   1621 {
   1622 	u_int32_t reg;
   1623 	int i;
   1624 
   1625 	for (i = 1000; --i >= 0; ) {
   1626 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1627 			break;
   1628 		DELAY(100);
   1629 	}
   1630 
   1631 	if (i < 0) {
   1632 		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
   1633 		return ETIMEDOUT;
   1634 	}
   1635 
   1636 	reg = sc->sc_bbpctl_wr |
   1637 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
   1638 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1639 
   1640 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1641 
   1642 	for (i = 1000; --i >= 0; ) {
   1643 		DELAY(100);
   1644 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
   1645 			break;
   1646 	}
   1647 
   1648 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
   1649 
   1650 	if (i < 0) {
   1651 		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
   1652 		return ETIMEDOUT;
   1653 	}
   1654 	return 0;
   1655 }
   1656 
   1657 /* Read a register on the RF3000 baseband processor using the registers
   1658  * the ADM8211 provides for this purpose.
   1659  *
   1660  * The 7-bit register address is addr.  Record the 8-bit data in the register
   1661  * in *val.
   1662  *
   1663  * Return 0 on success.
   1664  *
   1665  * XXX This does not seem to work. The ADM8211 must require more or
   1666  * different magic to read the chip than to write it. Possibly some
   1667  * of the magic I have derived from a binary-only driver concerns
   1668  * the "chip address" (see the RF3000 manual).
   1669  */
   1670 #ifdef ATW_DEBUG
   1671 static int
   1672 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
   1673 {
   1674 	u_int32_t reg;
   1675 	int i;
   1676 
   1677 	for (i = 1000; --i >= 0; ) {
   1678 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1679 			break;
   1680 		DELAY(100);
   1681 	}
   1682 
   1683 	if (i < 0) {
   1684 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
   1685 		    sc->sc_dev.dv_xname);
   1686 		return ETIMEDOUT;
   1687 	}
   1688 
   1689 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1690 
   1691 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1692 
   1693 	for (i = 1000; --i >= 0; ) {
   1694 		DELAY(100);
   1695 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
   1696 			break;
   1697 	}
   1698 
   1699 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
   1700 
   1701 	if (i < 0) {
   1702 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
   1703 		    sc->sc_dev.dv_xname, reg);
   1704 		return ETIMEDOUT;
   1705 	}
   1706 	if (val != NULL)
   1707 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
   1708 	return 0;
   1709 }
   1710 #endif /* ATW_DEBUG */
   1711 
   1712 /* Write a register on the Si4126 RF/IF synthesizer using the registers
   1713  * provided by the ADM8211 for that purpose.
   1714  *
   1715  * val is 18 bits of data, and val is the 4-bit address of the register.
   1716  *
   1717  * Return 0 on success.
   1718  */
   1719 static int
   1720 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
   1721 {
   1722 	u_int32_t bits, reg;
   1723 	int i;
   1724 
   1725 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1726 	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
   1727 
   1728 	for (i = 1000; --i >= 0; ) {
   1729 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1730 			break;
   1731 		DELAY(100);
   1732 	}
   1733 
   1734 	if (i < 0) {
   1735 		printf("%s: start atw_si4126_write, SYNCTL busy\n",
   1736 		    sc->sc_dev.dv_xname);
   1737 		return ETIMEDOUT;
   1738 	}
   1739 
   1740 	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
   1741 	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
   1742 
   1743 	reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
   1744 
   1745 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1746 
   1747 	for (i = 1000; --i >= 0; ) {
   1748 		DELAY(100);
   1749 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
   1750 			break;
   1751 	}
   1752 
   1753 	/* restore to acceptable starting condition */
   1754 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
   1755 
   1756 	if (i < 0) {
   1757 		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
   1758 		    sc->sc_dev.dv_xname, reg);
   1759 		return ETIMEDOUT;
   1760 	}
   1761 	return 0;
   1762 }
   1763 
   1764 /* Read 18-bit data from the 4-bit address addr in Si4126
   1765  * RF synthesizer and write the data to *val. Return 0 on success.
   1766  *
   1767  * XXX This does not seem to work. The ADM8211 must require more or
   1768  * different magic to read the chip than to write it.
   1769  */
   1770 #ifdef ATW_DEBUG
   1771 static int
   1772 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
   1773 {
   1774 	u_int32_t reg;
   1775 	int i;
   1776 
   1777 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1778 
   1779 	for (i = 1000; --i >= 0; ) {
   1780 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1781 			break;
   1782 		DELAY(100);
   1783 	}
   1784 
   1785 	if (i < 0) {
   1786 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
   1787 		    sc->sc_dev.dv_xname);
   1788 		return ETIMEDOUT;
   1789 	}
   1790 
   1791 	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
   1792 
   1793 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1794 
   1795 	for (i = 1000; --i >= 0; ) {
   1796 		DELAY(100);
   1797 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
   1798 			break;
   1799 	}
   1800 
   1801 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
   1802 
   1803 	if (i < 0) {
   1804 		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
   1805 		    sc->sc_dev.dv_xname, reg);
   1806 		return ETIMEDOUT;
   1807 	}
   1808 	if (val != NULL)
   1809 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
   1810 		                       ATW_SYNCTL_DATA_MASK);
   1811 	return 0;
   1812 }
   1813 #endif /* ATW_DEBUG */
   1814 
   1815 /* XXX is the endianness correct? test. */
   1816 #define	atw_calchash(addr) \
   1817 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
   1818 
   1819 /*
   1820  * atw_filter_setup:
   1821  *
   1822  *	Set the ADM8211's receive filter.
   1823  */
   1824 static void
   1825 atw_filter_setup(struct atw_softc *sc)
   1826 {
   1827 	struct ieee80211com *ic = &sc->sc_ic;
   1828 	struct ethercom *ec = &ic->ic_ec;
   1829 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1830 	int hash;
   1831 	u_int32_t hashes[2] = { 0, 0 };
   1832 	struct ether_multi *enm;
   1833 	struct ether_multistep step;
   1834 
   1835 	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
   1836 	    sc->sc_dev.dv_xname, sc->sc_flags));
   1837 
   1838 	/*
   1839 	 * If we're running, idle the receive engine.  If we're NOT running,
   1840 	 * we're being called from atw_init(), and our writing ATW_NAR will
   1841 	 * start the transmit and receive processes in motion.
   1842 	 */
   1843 	if (ifp->if_flags & IFF_RUNNING)
   1844 		atw_idle(sc, ATW_NAR_SR);
   1845 
   1846 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
   1847 
   1848 	ifp->if_flags &= ~IFF_ALLMULTI;
   1849 
   1850 	if (ifp->if_flags & IFF_PROMISC) {
   1851 		sc->sc_opmode |= ATW_NAR_PR;
   1852 allmulti:
   1853 		ifp->if_flags |= IFF_ALLMULTI;
   1854 		goto setit;
   1855 	}
   1856 
   1857 	/*
   1858 	 * Program the 64-bit multicast hash filter.
   1859 	 */
   1860 	ETHER_FIRST_MULTI(step, ec, enm);
   1861 	while (enm != NULL) {
   1862 		/* XXX */
   1863 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1864 		    ETHER_ADDR_LEN) != 0)
   1865 			goto allmulti;
   1866 
   1867 		hash = atw_calchash(enm->enm_addrlo);
   1868 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1869 		ETHER_NEXT_MULTI(step, enm);
   1870 	}
   1871 
   1872 	if (ifp->if_flags & IFF_BROADCAST) {
   1873 		hash = atw_calchash(etherbroadcastaddr);
   1874 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1875 	}
   1876 
   1877 	/* all bits set => hash is useless */
   1878 	if (~(hashes[0] & hashes[1]) == 0)
   1879 		goto allmulti;
   1880 
   1881  setit:
   1882 	if (ifp->if_flags & IFF_ALLMULTI)
   1883 		sc->sc_opmode |= ATW_NAR_MM;
   1884 
   1885 	/* XXX in scan mode, do not filter packets. maybe this is
   1886 	 * unnecessary.
   1887 	 */
   1888 	if (ic->ic_state == IEEE80211_S_SCAN)
   1889 		sc->sc_opmode |= ATW_NAR_PR;
   1890 
   1891 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
   1892 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
   1893 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1894 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
   1895 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
   1896 
   1897 	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
   1898 }
   1899 
   1900 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
   1901  * a beacon's BSSID and SSID against the preferred BSSID and SSID
   1902  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
   1903  * no beacon with the preferred BSSID and SSID in the number of
   1904  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
   1905  */
   1906 static void
   1907 atw_write_bssid(struct atw_softc *sc)
   1908 {
   1909 	struct ieee80211com *ic = &sc->sc_ic;
   1910 	u_int8_t *bssid;
   1911 
   1912 	bssid = ic->ic_bss->ni_bssid;
   1913 
   1914 	ATW_WRITE(sc, ATW_ABDA1,
   1915 	    (ATW_READ(sc, ATW_ABDA1) &
   1916 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
   1917 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
   1918 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
   1919 
   1920 	ATW_WRITE(sc, ATW_BSSID0,
   1921 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
   1922 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
   1923 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
   1924 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
   1925 
   1926 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
   1927 	    ether_sprintf(sc->sc_bssid)));
   1928 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
   1929 
   1930 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
   1931 }
   1932 
   1933 /* Tell the ADM8211 how many beacon intervals must pass without
   1934  * receiving a beacon with the preferred BSSID & SSID set by
   1935  * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
   1936  * raised.
   1937  */
   1938 static void
   1939 atw_write_bcn_thresh(struct atw_softc *sc)
   1940 {
   1941 	struct ieee80211com *ic = &sc->sc_ic;
   1942 	int lost_bcn_thresh;
   1943 
   1944 	/* Lose link after one second or 7 beacons, whichever comes
   1945 	 * first, but do not lose link before 2 beacons are lost.
   1946 	 *
   1947 	 * In host AP mode, set the lost-beacon threshold to 0.
   1948 	 */
   1949 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1950 		lost_bcn_thresh = 0;
   1951 	else {
   1952 		int beacons_per_second =
   1953 		    1000000 / (IEEE80211_DUR_TU * MAX(1,ic->ic_bss->ni_intval));
   1954 		lost_bcn_thresh = MAX(2, MIN(7, beacons_per_second));
   1955 	}
   1956 
   1957 	/* XXX resets wake-up status bits */
   1958 	ATW_WRITE(sc, ATW_WCSR,
   1959 	    (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
   1960 	    (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
   1961 
   1962 	DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
   1963 	    sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
   1964 
   1965 	sc->sc_lost_bcn_thresh = lost_bcn_thresh;
   1966 
   1967 	DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
   1968 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
   1969 }
   1970 
   1971 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
   1972  * 16-bit word.
   1973  */
   1974 static void
   1975 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
   1976 {
   1977 	u_int i;
   1978 	u_int8_t *ptr;
   1979 
   1980 	memcpy(&sc->sc_sram[ofs], buf, buflen);
   1981 
   1982 	if (ofs % 2 != 0) {
   1983 		ofs--;
   1984 		buflen++;
   1985 	}
   1986 
   1987 	if (buflen % 2 != 0)
   1988 		buflen++;
   1989 
   1990 	assert(buflen + ofs <= ATW_SRAM_SIZE);
   1991 
   1992 	ptr = &sc->sc_sram[ofs];
   1993 
   1994 	for (i = 0; i < buflen; i += 2) {
   1995 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
   1996 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
   1997 		DELAY(atw_writewep_delay);
   1998 
   1999 		ATW_WRITE(sc, ATW_WESK,
   2000 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
   2001 		DELAY(atw_writewep_delay);
   2002 	}
   2003 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
   2004 
   2005 	if (sc->sc_if.if_flags & IFF_DEBUG) {
   2006 		int n_octets = 0;
   2007 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
   2008 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
   2009 		for (i = 0; i < buflen; i++) {
   2010 			printf(" %02x", ptr[i]);
   2011 			if (++n_octets % 24 == 0)
   2012 				printf("\n");
   2013 		}
   2014 		if (n_octets % 24 != 0)
   2015 			printf("\n");
   2016 	}
   2017 }
   2018 
   2019 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
   2020 static void
   2021 atw_write_wep(struct atw_softc *sc)
   2022 {
   2023 	struct ieee80211com *ic = &sc->sc_ic;
   2024 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
   2025 	u_int8_t buf[IEEE80211_WEP_NKID]
   2026 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
   2027 	u_int32_t reg;
   2028 	int i;
   2029 
   2030 	sc->sc_wepctl = 0;
   2031 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
   2032 
   2033 	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
   2034 		return;
   2035 
   2036 	memset(&buf[0][0], 0, sizeof(buf));
   2037 
   2038 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   2039 		if (ic->ic_nw_keys[i].wk_len > 5) {
   2040 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
   2041 		} else if (ic->ic_nw_keys[i].wk_len != 0) {
   2042 			buf[i][1] = ATW_WEP_ENABLED;
   2043 		} else {
   2044 			buf[i][1] = 0;
   2045 			continue;
   2046 		}
   2047 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
   2048 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
   2049 		    ic->ic_nw_keys[i].wk_len - 1);
   2050 	}
   2051 
   2052 	reg = ATW_READ(sc, ATW_MACTEST);
   2053 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
   2054 	reg &= ~ATW_MACTEST_KEYID_MASK;
   2055 	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
   2056 	ATW_WRITE(sc, ATW_MACTEST, reg);
   2057 
   2058 	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
   2059 	 * throughout.)
   2060 	 */
   2061 	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
   2062 	if (sc->sc_if.if_flags & IFF_LINK2)
   2063 		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
   2064 
   2065 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
   2066 	    sizeof(buf));
   2067 }
   2068 
   2069 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
   2070 
   2071 static void
   2072 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2073     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2074 {
   2075 	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
   2076 
   2077 	switch (subtype) {
   2078 	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
   2079 		/* do nothing: hardware answers probe request */
   2080 		break;
   2081 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2082 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2083 		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
   2084 		break;
   2085 	default:
   2086 		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
   2087 		break;
   2088 	}
   2089 	return;
   2090 }
   2091 
   2092 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
   2093  * of IBSSs with like SSID/channel but different BSSID. It joins the
   2094  * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
   2095  * convention. Possibly the ADMtek chip does this for us; I will have
   2096  * to test to find out.
   2097  *
   2098  * XXX we should add the duration field of the received beacon to
   2099  * the TSF time it contains before comparing it with the ADM8211's
   2100  * TSF.
   2101  */
   2102 static void
   2103 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
   2104     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2105 {
   2106 	struct atw_softc *sc;
   2107 	struct ieee80211_frame *wh;
   2108 	u_int64_t tsft, bcn_tsft;
   2109 	u_int32_t tsftl, tsfth;
   2110 	int do_print = 0;
   2111 
   2112 	sc = (struct atw_softc*)ic->ic_if.if_softc;
   2113 
   2114 	if (ic->ic_if.if_flags & IFF_DEBUG)
   2115 		do_print = (ic->ic_if.if_flags & IFF_LINK0)
   2116 		    ? 1 : ratecheck(&sc->sc_last_beacon,
   2117 		    &atw_beacon_mininterval);
   2118 
   2119 	wh = mtod(m0, struct ieee80211_frame *);
   2120 
   2121 	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
   2122 
   2123 	if (ic->ic_state != IEEE80211_S_RUN) {
   2124 		if (do_print)
   2125 			printf("%s: atw_recv_beacon: not running\n",
   2126 			    sc->sc_dev.dv_xname);
   2127 		return;
   2128 	}
   2129 
   2130 	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
   2131 	    ic->ic_bss->ni_chan)) == NULL) {
   2132 		if (do_print)
   2133 			printf("%s: atw_recv_beacon: no node %s\n",
   2134 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2135 		return;
   2136 	}
   2137 
   2138 	if (ieee80211_match_bss(ic, ni) != 0) {
   2139 		if (do_print)
   2140 			printf("%s: atw_recv_beacon: ssid mismatch %s\n",
   2141 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2142 		return;
   2143 	}
   2144 
   2145 	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
   2146 		return;
   2147 
   2148 	if (do_print)
   2149 		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
   2150 		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
   2151 
   2152 	if (ic->ic_opmode != IEEE80211_M_IBSS)
   2153 		return;
   2154 
   2155 	/* If we read TSFTL right before rollover, we read a TSF timer
   2156 	 * that is too high rather than too low. This prevents a spurious
   2157 	 * synchronization down the line, however, our IBSS could suffer
   2158 	 * from a creeping TSF....
   2159 	 */
   2160 	tsftl = ATW_READ(sc, ATW_TSFTL);
   2161 	tsfth = ATW_READ(sc, ATW_TSFTH);
   2162 
   2163 	tsft = (u_int64_t)tsfth << 32 | tsftl;
   2164 	bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
   2165 
   2166 	if (do_print)
   2167 		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
   2168 		    sc->sc_dev.dv_xname, tsft, bcn_tsft);
   2169 
   2170 	/* we are faster, let the other guy catch up */
   2171 	if (bcn_tsft < tsft)
   2172 		return;
   2173 
   2174 	if (do_print)
   2175 		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
   2176 		    ether_sprintf(wh->i_addr2));
   2177 
   2178 	ic->ic_flags &= ~IEEE80211_F_SIBSS;
   2179 
   2180 #if 0
   2181 	atw_tsf(sc);
   2182 #endif
   2183 
   2184 	/* negotiate rates with new IBSS */
   2185 	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
   2186 	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
   2187 	if (ni->ni_rates.rs_nrates == 0) {
   2188 		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
   2189 			ether_sprintf(ni->ni_bssid));
   2190 		return;
   2191 	}
   2192 
   2193 	if (do_print) {
   2194 		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
   2195 		    ether_sprintf(ic->ic_bss->ni_bssid));
   2196 		printf("%s ", ether_sprintf(ni->ni_bssid));
   2197 		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
   2198 	}
   2199 
   2200 	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
   2201 
   2202 	atw_write_bssid(sc);
   2203 	atw_write_bcn_thresh(sc);
   2204 	atw_start_beacon(sc, 1);
   2205 }
   2206 
   2207 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
   2208  * In ad hoc mode, the SSID is written to the beacons sent by the
   2209  * ADM8211. In both ad hoc and infrastructure mode, beacons received
   2210  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
   2211  * indications.
   2212  */
   2213 static void
   2214 atw_write_ssid(struct atw_softc *sc)
   2215 {
   2216 	struct ieee80211com *ic = &sc->sc_ic;
   2217 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID */
   2218 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
   2219 
   2220 	memset(buf, 0, sizeof(buf));
   2221 	buf[0] = ic->ic_bss->ni_esslen;
   2222 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
   2223 
   2224 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
   2225 }
   2226 
   2227 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
   2228  * In ad hoc mode, the supported rates are written to beacons sent by the
   2229  * ADM8211.
   2230  */
   2231 static void
   2232 atw_write_sup_rates(struct atw_softc *sc)
   2233 {
   2234 	struct ieee80211com *ic = &sc->sc_ic;
   2235 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
   2236 	 * supported rates
   2237 	 */
   2238 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
   2239 
   2240 	memset(buf, 0, sizeof(buf));
   2241 
   2242 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
   2243 
   2244 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
   2245 	    ic->ic_bss->ni_rates.rs_nrates);
   2246 
   2247 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
   2248 }
   2249 
   2250 /* Start/stop sending beacons. */
   2251 void
   2252 atw_start_beacon(struct atw_softc *sc, int start)
   2253 {
   2254 	struct ieee80211com *ic = &sc->sc_ic;
   2255 	u_int32_t len, capinfo, reg_bcnt, reg_cap1;
   2256 
   2257 	if (ATW_IS_ENABLED(sc) == 0)
   2258 		return;
   2259 
   2260 	len = capinfo = 0;
   2261 
   2262 	/* start beacons */
   2263 	len = sizeof(struct ieee80211_frame) +
   2264 	    8 /* timestamp */ + 2 /* beacon interval */ +
   2265 	    2 /* capability info */ +
   2266 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
   2267 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
   2268 	    3 /* DS parameters */ +
   2269 	    IEEE80211_CRC_LEN;
   2270 
   2271 	reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
   2272 
   2273 	reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
   2274 
   2275 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2276 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2277 
   2278 	if (!start)
   2279 		return;
   2280 
   2281 	/* TBD use ni_capinfo */
   2282 
   2283 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
   2284 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   2285 	if (ic->ic_flags & IEEE80211_F_WEPON)
   2286 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   2287 
   2288 	switch (ic->ic_opmode) {
   2289 	case IEEE80211_M_IBSS:
   2290 		len += 4; /* IBSS parameters */
   2291 		capinfo |= IEEE80211_CAPINFO_IBSS;
   2292 		break;
   2293 	case IEEE80211_M_HOSTAP:
   2294 		/* XXX 6-byte minimum TIM */
   2295 		len += atw_beacon_len_adjust;
   2296 		capinfo |= IEEE80211_CAPINFO_ESS;
   2297 		break;
   2298 	default:
   2299 		return;
   2300 	}
   2301 
   2302 	reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
   2303 	reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
   2304 
   2305 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2306 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2307 
   2308 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
   2309 	    sc->sc_dev.dv_xname, reg_bcnt));
   2310 
   2311 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
   2312 	    sc->sc_dev.dv_xname, reg_cap1));
   2313 }
   2314 
   2315 /* First beacon was sent at time 0 microseconds, current time is
   2316  * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
   2317  * microseconds.  Return the expected time in microseconds for the
   2318  * beacon after next.
   2319  */
   2320 static __inline u_int64_t
   2321 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
   2322 {
   2323 	return tsft + (tbtt - tsft % tbtt);
   2324 }
   2325 
   2326 /* If we've created an IBSS, write the TSF time in the ADM8211 to
   2327  * the ieee80211com.
   2328  *
   2329  * Predict the next target beacon transmission time (TBTT) and
   2330  * write it to the ADM8211.
   2331  */
   2332 static void
   2333 atw_tsf(struct atw_softc *sc)
   2334 {
   2335 #define TBTTOFS 20 /* TU */
   2336 
   2337 	struct ieee80211com *ic = &sc->sc_ic;
   2338 	u_int64_t tsft, tbtt;
   2339 
   2340 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
   2341 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
   2342 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
   2343 		tsft = ATW_READ(sc, ATW_TSFTH);
   2344 		tsft <<= 32;
   2345 		tsft |= ATW_READ(sc, ATW_TSFTL);
   2346 		*(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
   2347 	} else
   2348 		tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
   2349 
   2350 	tbtt = atw_predict_beacon(tsft,
   2351 	    ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
   2352 
   2353 	/* skip one more beacon so that the TBTT cannot pass before
   2354 	 * we've programmed it, and also so that we can subtract a
   2355 	 * few TU so that we wake a little before TBTT.
   2356 	 */
   2357 	tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
   2358 
   2359 	/* wake up a little early */
   2360 	tbtt -= TBTTOFS * IEEE80211_DUR_TU;
   2361 
   2362 	DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
   2363 	    sc->sc_dev.dv_xname, tsft, tbtt));
   2364 
   2365 	ATW_WRITE(sc, ATW_TOFS1,
   2366 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
   2367 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
   2368 	    LSHIFT(
   2369 		MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
   2370 		ATW_TOFS1_TBTTPRE_MASK));
   2371 #undef TBTTOFS
   2372 }
   2373 
   2374 static void
   2375 atw_next_scan(void *arg)
   2376 {
   2377 	struct atw_softc *sc = arg;
   2378 	struct ieee80211com *ic = &sc->sc_ic;
   2379 	struct ifnet *ifp = &ic->ic_if;
   2380 	int s;
   2381 
   2382 	/* don't call atw_start w/o network interrupts blocked */
   2383 	s = splnet();
   2384 	if (ic->ic_state == IEEE80211_S_SCAN)
   2385 		ieee80211_next_scan(ifp);
   2386 	splx(s);
   2387 }
   2388 
   2389 /* Synchronize the hardware state with the software state. */
   2390 static int
   2391 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   2392 {
   2393 	struct ifnet *ifp = &ic->ic_if;
   2394 	struct atw_softc *sc = ifp->if_softc;
   2395 	enum ieee80211_state ostate;
   2396 	int error;
   2397 
   2398 	ostate = ic->ic_state;
   2399 
   2400 	if (nstate == IEEE80211_S_INIT) {
   2401 		callout_stop(&sc->sc_scan_ch);
   2402 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
   2403 		atw_start_beacon(sc, 0);
   2404 		return (*sc->sc_newstate)(ic, nstate, arg);
   2405 	}
   2406 
   2407 	if ((error = atw_tune(sc)) != 0)
   2408 		return error;
   2409 
   2410 	switch (nstate) {
   2411 	case IEEE80211_S_ASSOC:
   2412 		break;
   2413 	case IEEE80211_S_INIT:
   2414 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
   2415 		break;
   2416 	case IEEE80211_S_SCAN:
   2417 		memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
   2418 		atw_write_bssid(sc);
   2419 
   2420 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
   2421 		    atw_next_scan, sc);
   2422 
   2423 		break;
   2424 	case IEEE80211_S_RUN:
   2425 		if (ic->ic_opmode == IEEE80211_M_STA)
   2426 			break;
   2427 		/*FALLTHROUGH*/
   2428 	case IEEE80211_S_AUTH:
   2429 		atw_write_bssid(sc);
   2430 		atw_write_bcn_thresh(sc);
   2431 		atw_write_ssid(sc);
   2432 		atw_write_sup_rates(sc);
   2433 
   2434 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
   2435 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   2436 			break;
   2437 
   2438 		/* set listen interval
   2439 		 * XXX do software units agree w/ hardware?
   2440 		 */
   2441 		ATW_WRITE(sc, ATW_BPLI,
   2442 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2443 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
   2444 			   ATW_BPLI_LI_MASK));
   2445 
   2446 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
   2447 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
   2448 
   2449 		atw_tsf(sc);
   2450 		break;
   2451 	}
   2452 
   2453 	if (nstate != IEEE80211_S_SCAN)
   2454 		callout_stop(&sc->sc_scan_ch);
   2455 
   2456 	if (nstate == IEEE80211_S_RUN &&
   2457 	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   2458 	     ic->ic_opmode == IEEE80211_M_IBSS))
   2459 		atw_start_beacon(sc, 1);
   2460 	else
   2461 		atw_start_beacon(sc, 0);
   2462 
   2463 	return (*sc->sc_newstate)(ic, nstate, arg);
   2464 }
   2465 
   2466 /*
   2467  * atw_add_rxbuf:
   2468  *
   2469  *	Add a receive buffer to the indicated descriptor.
   2470  */
   2471 int
   2472 atw_add_rxbuf(struct atw_softc *sc, int idx)
   2473 {
   2474 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2475 	struct mbuf *m;
   2476 	int error;
   2477 
   2478 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2479 	if (m == NULL)
   2480 		return (ENOBUFS);
   2481 
   2482 	MCLGET(m, M_DONTWAIT);
   2483 	if ((m->m_flags & M_EXT) == 0) {
   2484 		m_freem(m);
   2485 		return (ENOBUFS);
   2486 	}
   2487 
   2488 	if (rxs->rxs_mbuf != NULL)
   2489 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2490 
   2491 	rxs->rxs_mbuf = m;
   2492 
   2493 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2494 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2495 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2496 	if (error) {
   2497 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2498 		    sc->sc_dev.dv_xname, idx, error);
   2499 		panic("atw_add_rxbuf");	/* XXX */
   2500 	}
   2501 
   2502 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2503 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2504 
   2505 	ATW_INIT_RXDESC(sc, idx);
   2506 
   2507 	return (0);
   2508 }
   2509 
   2510 /*
   2511  * Release any queued transmit buffers.
   2512  */
   2513 void
   2514 atw_txdrain(struct atw_softc *sc)
   2515 {
   2516 	struct atw_txsoft *txs;
   2517 
   2518 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2519 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2520 		if (txs->txs_mbuf != NULL) {
   2521 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2522 			m_freem(txs->txs_mbuf);
   2523 			txs->txs_mbuf = NULL;
   2524 		}
   2525 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2526 	}
   2527 	sc->sc_tx_timer = 0;
   2528 }
   2529 
   2530 /*
   2531  * atw_stop:		[ ifnet interface function ]
   2532  *
   2533  *	Stop transmission on the interface.
   2534  */
   2535 void
   2536 atw_stop(struct ifnet *ifp, int disable)
   2537 {
   2538 	struct atw_softc *sc = ifp->if_softc;
   2539 	struct ieee80211com *ic = &sc->sc_ic;
   2540 
   2541 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   2542 
   2543 	/* Disable interrupts. */
   2544 	ATW_WRITE(sc, ATW_IER, 0);
   2545 
   2546 	/* Stop the transmit and receive processes. */
   2547 	sc->sc_opmode = 0;
   2548 	ATW_WRITE(sc, ATW_NAR, 0);
   2549 	ATW_WRITE(sc, ATW_TDBD, 0);
   2550 	ATW_WRITE(sc, ATW_TDBP, 0);
   2551 	ATW_WRITE(sc, ATW_RDB, 0);
   2552 
   2553 	atw_txdrain(sc);
   2554 
   2555 	if (disable) {
   2556 		atw_rxdrain(sc);
   2557 		atw_disable(sc);
   2558 	}
   2559 
   2560 	/*
   2561 	 * Mark the interface down and cancel the watchdog timer.
   2562 	 */
   2563 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2564 	ifp->if_timer = 0;
   2565 
   2566 	if (!disable)
   2567 		atw_reset(sc);
   2568 }
   2569 
   2570 /*
   2571  * atw_rxdrain:
   2572  *
   2573  *	Drain the receive queue.
   2574  */
   2575 void
   2576 atw_rxdrain(struct atw_softc *sc)
   2577 {
   2578 	struct atw_rxsoft *rxs;
   2579 	int i;
   2580 
   2581 	for (i = 0; i < ATW_NRXDESC; i++) {
   2582 		rxs = &sc->sc_rxsoft[i];
   2583 		if (rxs->rxs_mbuf == NULL)
   2584 			continue;
   2585 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2586 		m_freem(rxs->rxs_mbuf);
   2587 		rxs->rxs_mbuf = NULL;
   2588 	}
   2589 }
   2590 
   2591 /*
   2592  * atw_detach:
   2593  *
   2594  *	Detach an ADM8211 interface.
   2595  */
   2596 int
   2597 atw_detach(struct atw_softc *sc)
   2598 {
   2599 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2600 	struct atw_rxsoft *rxs;
   2601 	struct atw_txsoft *txs;
   2602 	int i;
   2603 
   2604 	/*
   2605 	 * Succeed now if there isn't any work to do.
   2606 	 */
   2607 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
   2608 		return (0);
   2609 
   2610 	ieee80211_ifdetach(ifp);
   2611 	if_detach(ifp);
   2612 
   2613 	for (i = 0; i < ATW_NRXDESC; i++) {
   2614 		rxs = &sc->sc_rxsoft[i];
   2615 		if (rxs->rxs_mbuf != NULL) {
   2616 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2617 			m_freem(rxs->rxs_mbuf);
   2618 			rxs->rxs_mbuf = NULL;
   2619 		}
   2620 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
   2621 	}
   2622 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   2623 		txs = &sc->sc_txsoft[i];
   2624 		if (txs->txs_mbuf != NULL) {
   2625 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2626 			m_freem(txs->txs_mbuf);
   2627 			txs->txs_mbuf = NULL;
   2628 		}
   2629 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
   2630 	}
   2631 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2632 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2633 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2634 	    sizeof(struct atw_control_data));
   2635 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2636 
   2637 	shutdownhook_disestablish(sc->sc_sdhook);
   2638 	powerhook_disestablish(sc->sc_powerhook);
   2639 
   2640 	if (sc->sc_srom)
   2641 		free(sc->sc_srom, M_DEVBUF);
   2642 
   2643 	return (0);
   2644 }
   2645 
   2646 /* atw_shutdown: make sure the interface is stopped at reboot time. */
   2647 void
   2648 atw_shutdown(void *arg)
   2649 {
   2650 	struct atw_softc *sc = arg;
   2651 
   2652 	atw_stop(&sc->sc_ic.ic_if, 1);
   2653 }
   2654 
   2655 int
   2656 atw_intr(void *arg)
   2657 {
   2658 	struct atw_softc *sc = arg;
   2659 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2660 	u_int32_t status, rxstatus, txstatus, linkstatus;
   2661 	int handled = 0, txthresh;
   2662 
   2663 #ifdef DEBUG
   2664 	if (ATW_IS_ENABLED(sc) == 0)
   2665 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
   2666 #endif
   2667 
   2668 	/*
   2669 	 * If the interface isn't running, the interrupt couldn't
   2670 	 * possibly have come from us.
   2671 	 */
   2672 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   2673 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   2674 		return (0);
   2675 
   2676 	for (;;) {
   2677 		status = ATW_READ(sc, ATW_STSR);
   2678 
   2679 		if (status)
   2680 			ATW_WRITE(sc, ATW_STSR, status);
   2681 
   2682 		if (sc->sc_intr_ack != NULL)
   2683 			(*sc->sc_intr_ack)(sc);
   2684 
   2685 #ifdef ATW_DEBUG
   2686 #define PRINTINTR(flag) do { \
   2687 	if ((status & flag) != 0) { \
   2688 		printf("%s" #flag, delim); \
   2689 		delim = ","; \
   2690 	} \
   2691 } while (0)
   2692 
   2693 		if (atw_debug > 1 && status) {
   2694 			const char *delim = "<";
   2695 
   2696 			printf("%s: reg[STSR] = %x",
   2697 			    sc->sc_dev.dv_xname, status);
   2698 
   2699 			PRINTINTR(ATW_INTR_FBE);
   2700 			PRINTINTR(ATW_INTR_LINKOFF);
   2701 			PRINTINTR(ATW_INTR_LINKON);
   2702 			PRINTINTR(ATW_INTR_RCI);
   2703 			PRINTINTR(ATW_INTR_RDU);
   2704 			PRINTINTR(ATW_INTR_REIS);
   2705 			PRINTINTR(ATW_INTR_RPS);
   2706 			PRINTINTR(ATW_INTR_TCI);
   2707 			PRINTINTR(ATW_INTR_TDU);
   2708 			PRINTINTR(ATW_INTR_TLT);
   2709 			PRINTINTR(ATW_INTR_TPS);
   2710 			PRINTINTR(ATW_INTR_TRT);
   2711 			PRINTINTR(ATW_INTR_TUF);
   2712 			PRINTINTR(ATW_INTR_BCNTC);
   2713 			PRINTINTR(ATW_INTR_ATIME);
   2714 			PRINTINTR(ATW_INTR_TBTT);
   2715 			PRINTINTR(ATW_INTR_TSCZ);
   2716 			PRINTINTR(ATW_INTR_TSFTF);
   2717 			printf(">\n");
   2718 		}
   2719 #undef PRINTINTR
   2720 #endif /* ATW_DEBUG */
   2721 
   2722 		if ((status & sc->sc_inten) == 0)
   2723 			break;
   2724 
   2725 		handled = 1;
   2726 
   2727 		rxstatus = status & sc->sc_rxint_mask;
   2728 		txstatus = status & sc->sc_txint_mask;
   2729 		linkstatus = status & sc->sc_linkint_mask;
   2730 
   2731 		if (linkstatus) {
   2732 			atw_linkintr(sc, linkstatus);
   2733 		}
   2734 
   2735 		if (rxstatus) {
   2736 			/* Grab any new packets. */
   2737 			atw_rxintr(sc);
   2738 
   2739 			if (rxstatus & ATW_INTR_RDU) {
   2740 				printf("%s: receive ring overrun\n",
   2741 				    sc->sc_dev.dv_xname);
   2742 				/* Get the receive process going again. */
   2743 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2744 				break;
   2745 			}
   2746 		}
   2747 
   2748 		if (txstatus) {
   2749 			/* Sweep up transmit descriptors. */
   2750 			atw_txintr(sc);
   2751 
   2752 			if (txstatus & ATW_INTR_TLT)
   2753 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
   2754 				    sc->sc_dev.dv_xname));
   2755 
   2756 			if (txstatus & ATW_INTR_TRT)
   2757 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
   2758 				    sc->sc_dev.dv_xname));
   2759 
   2760 			/* If Tx under-run, increase our transmit threshold
   2761 			 * if another is available.
   2762 			 */
   2763 			txthresh = sc->sc_txthresh + 1;
   2764 			if ((txstatus & ATW_INTR_TUF) &&
   2765 			    sc->sc_txth[txthresh].txth_name != NULL) {
   2766 				/* Idle the transmit process. */
   2767 				atw_idle(sc, ATW_NAR_ST);
   2768 
   2769 				sc->sc_txthresh = txthresh;
   2770 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
   2771 				sc->sc_opmode |=
   2772 				    sc->sc_txth[txthresh].txth_opmode;
   2773 				printf("%s: transmit underrun; new "
   2774 				    "threshold: %s\n", sc->sc_dev.dv_xname,
   2775 				    sc->sc_txth[txthresh].txth_name);
   2776 
   2777 				/* Set the new threshold and restart
   2778 				 * the transmit process.
   2779 				 */
   2780 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2781 				/* XXX Log every Nth underrun from
   2782 				 * XXX now on?
   2783 				 */
   2784 			}
   2785 		}
   2786 
   2787 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
   2788 			if (status & ATW_INTR_TPS)
   2789 				printf("%s: transmit process stopped\n",
   2790 				    sc->sc_dev.dv_xname);
   2791 			if (status & ATW_INTR_RPS)
   2792 				printf("%s: receive process stopped\n",
   2793 				    sc->sc_dev.dv_xname);
   2794 			(void)atw_init(ifp);
   2795 			break;
   2796 		}
   2797 
   2798 		if (status & ATW_INTR_FBE) {
   2799 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
   2800 			(void)atw_init(ifp);
   2801 			break;
   2802 		}
   2803 
   2804 		/*
   2805 		 * Not handled:
   2806 		 *
   2807 		 *	Transmit buffer unavailable -- normal
   2808 		 *	condition, nothing to do, really.
   2809 		 *
   2810 		 *	Early receive interrupt -- not available on
   2811 		 *	all chips, we just use RI.  We also only
   2812 		 *	use single-segment receive DMA, so this
   2813 		 *	is mostly useless.
   2814 		 *
   2815 		 *      TBD others
   2816 		 */
   2817 	}
   2818 
   2819 	/* Try to get more packets going. */
   2820 	atw_start(ifp);
   2821 
   2822 	return (handled);
   2823 }
   2824 
   2825 /*
   2826  * atw_idle:
   2827  *
   2828  *	Cause the transmit and/or receive processes to go idle.
   2829  *
   2830  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
   2831  *	process in STSR if I clear SR or ST after the process has already
   2832  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
   2833  *      do not seem to be too reliable. Perhaps I have the sense of the
   2834  *	Rx bits switched with the Tx bits?
   2835  */
   2836 void
   2837 atw_idle(struct atw_softc *sc, u_int32_t bits)
   2838 {
   2839 	u_int32_t ackmask = 0, opmode, stsr, test0;
   2840 	int i, s;
   2841 
   2842 	/* without this, somehow we run concurrently w/ interrupt handler */
   2843 	s = splnet();
   2844 
   2845 	opmode = sc->sc_opmode & ~bits;
   2846 
   2847 	if (bits & ATW_NAR_SR)
   2848 		ackmask |= ATW_INTR_RPS;
   2849 
   2850 	if (bits & ATW_NAR_ST) {
   2851 		ackmask |= ATW_INTR_TPS;
   2852 		/* set ATW_NAR_HF to flush TX FIFO. */
   2853 		opmode |= ATW_NAR_HF;
   2854 	}
   2855 
   2856 	ATW_WRITE(sc, ATW_NAR, opmode);
   2857 
   2858 	for (i = 0; i < 1000; i++) {
   2859 		stsr = ATW_READ(sc, ATW_STSR);
   2860 		if ((stsr & ackmask) == ackmask)
   2861 			break;
   2862 		DELAY(10);
   2863 	}
   2864 
   2865 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
   2866 
   2867 	if ((stsr & ackmask) == ackmask)
   2868 		goto out;
   2869 
   2870 	test0 = ATW_READ(sc, ATW_TEST0);
   2871 
   2872 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
   2873 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
   2874 		printf("%s: transmit process not idle [%s]\n",
   2875 		    sc->sc_dev.dv_xname,
   2876 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
   2877 		printf("%s: bits %08x test0 %08x stsr %08x\n",
   2878 		    sc->sc_dev.dv_xname, bits, test0, stsr);
   2879 	}
   2880 
   2881 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
   2882 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
   2883 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
   2884 		    sc->sc_dev.dv_xname,
   2885 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
   2886 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
   2887 		    sc->sc_dev.dv_xname, bits, test0, stsr));
   2888 	}
   2889 out:
   2890 	if ((bits & ATW_NAR_ST) != 0)
   2891 		atw_txdrain(sc);
   2892 	splx(s);
   2893 	return;
   2894 }
   2895 
   2896 /*
   2897  * atw_linkintr:
   2898  *
   2899  *	Helper; handle link-status interrupts.
   2900  */
   2901 void
   2902 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
   2903 {
   2904 	struct ieee80211com *ic = &sc->sc_ic;
   2905 
   2906 	if (ic->ic_state != IEEE80211_S_RUN)
   2907 		return;
   2908 
   2909 	if (linkstatus & ATW_INTR_LINKON) {
   2910 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
   2911 		sc->sc_rescan_timer = 0;
   2912 	} else if (linkstatus & ATW_INTR_LINKOFF) {
   2913 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
   2914 		if (ic->ic_opmode != IEEE80211_M_STA)
   2915 			return;
   2916 		sc->sc_rescan_timer = 3;
   2917 		ic->ic_if.if_timer = 1;
   2918 	}
   2919 }
   2920 
   2921 /*
   2922  * atw_rxintr:
   2923  *
   2924  *	Helper; handle receive interrupts.
   2925  */
   2926 void
   2927 atw_rxintr(struct atw_softc *sc)
   2928 {
   2929 	static int rate_tbl[] = {2, 4, 11, 22, 44};
   2930 	struct ieee80211com *ic = &sc->sc_ic;
   2931 	struct ieee80211_node *ni;
   2932 	struct ieee80211_frame *wh;
   2933 	struct ifnet *ifp = &ic->ic_if;
   2934 	struct atw_rxsoft *rxs;
   2935 	struct mbuf *m;
   2936 	u_int32_t rxstat;
   2937 	int i, len, rate, rate0;
   2938 	u_int32_t rssi;
   2939 
   2940 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
   2941 		rxs = &sc->sc_rxsoft[i];
   2942 
   2943 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2944 
   2945 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
   2946 		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
   2947 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
   2948 
   2949 		if (rxstat & ATW_RXSTAT_OWN)
   2950 			break; /* We have processed all receive buffers. */
   2951 
   2952 		DPRINTF3(sc,
   2953 		    ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
   2954 		    sc->sc_dev.dv_xname,
   2955 		    sc->sc_rxdescs[i].ar_stat,
   2956 		    sc->sc_rxdescs[i].ar_rssi,
   2957 		    sc->sc_rxdescs[i].ar_buf1,
   2958 		    sc->sc_rxdescs[i].ar_buf2));
   2959 
   2960 		/*
   2961 		 * Make sure the packet fits in one buffer.  This should
   2962 		 * always be the case.
   2963 		 */
   2964 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
   2965 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
   2966 			printf("%s: incoming packet spilled, resetting\n",
   2967 			    sc->sc_dev.dv_xname);
   2968 			(void)atw_init(ifp);
   2969 			return;
   2970 		}
   2971 
   2972 		/*
   2973 		 * If an error occurred, update stats, clear the status
   2974 		 * word, and leave the packet buffer in place.  It will
   2975 		 * simply be reused the next time the ring comes around.
   2976 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
   2977 		 * error.
   2978 		 */
   2979 
   2980 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
   2981 		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
   2982 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
   2983 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
   2984 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
   2985 				ATW_RXSTAT_ICVE)) != 0)) {
   2986 #define	PRINTERR(bit, str)						\
   2987 			if (rxstat & (bit))				\
   2988 				printf("%s: receive error: %s\n",	\
   2989 				    sc->sc_dev.dv_xname, str)
   2990 			ifp->if_ierrors++;
   2991 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
   2992 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
   2993 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
   2994 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
   2995 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
   2996 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
   2997 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
   2998 #undef PRINTERR
   2999 			ATW_INIT_RXDESC(sc, i);
   3000 			continue;
   3001 		}
   3002 
   3003 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3004 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3005 
   3006 		/*
   3007 		 * No errors; receive the packet.  Note the ADM8211
   3008 		 * includes the CRC in promiscuous mode.
   3009 		 */
   3010 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
   3011 
   3012 		/*
   3013 		 * Allocate a new mbuf cluster.  If that fails, we are
   3014 		 * out of memory, and must drop the packet and recycle
   3015 		 * the buffer that's already attached to this descriptor.
   3016 		 */
   3017 		m = rxs->rxs_mbuf;
   3018 		if (atw_add_rxbuf(sc, i) != 0) {
   3019 			ifp->if_ierrors++;
   3020 			ATW_INIT_RXDESC(sc, i);
   3021 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3022 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3023 			continue;
   3024 		}
   3025 
   3026 		ifp->if_ipackets++;
   3027 		if (sc->sc_opmode & ATW_NAR_PR)
   3028 			m->m_flags |= M_HASFCS;
   3029 		m->m_pkthdr.rcvif = ifp;
   3030 		m->m_pkthdr.len = m->m_len = len;
   3031 
   3032 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
   3033 			rate = 0;
   3034 		else
   3035 			rate = rate_tbl[rate0];
   3036 
   3037  #if NBPFILTER > 0
   3038 		/* Pass this up to any BPF listeners. */
   3039 		if (sc->sc_radiobpf != NULL) {
   3040 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
   3041 
   3042 			tap->ar_rate = rate;
   3043 			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3044 			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3045 
   3046 			/* TBD verify units are dB */
   3047 			tap->ar_antsignal = (int)rssi;
   3048 			/* TBD tap->ar_flags */
   3049 
   3050 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3051 			    tap->ar_ihdr.it_len, m);
   3052  		}
   3053  #endif /* NPBFILTER > 0 */
   3054 
   3055 		wh = mtod(m, struct ieee80211_frame *);
   3056 		ni = ieee80211_find_rxnode(ic, wh);
   3057 		ieee80211_input(ifp, m, ni, (int)rssi, 0);
   3058 		/*
   3059 		 * The frame may have caused the node to be marked for
   3060 		 * reclamation (e.g. in response to a DEAUTH message)
   3061 		 * so use free_node here instead of unref_node.
   3062 		 */
   3063 		if (ni == ic->ic_bss)
   3064 			ieee80211_unref_node(&ni);
   3065 		else
   3066 			ieee80211_free_node(ic, ni);
   3067 	}
   3068 
   3069 	/* Update the receive pointer. */
   3070 	sc->sc_rxptr = i;
   3071 }
   3072 
   3073 /*
   3074  * atw_txintr:
   3075  *
   3076  *	Helper; handle transmit interrupts.
   3077  */
   3078 void
   3079 atw_txintr(struct atw_softc *sc)
   3080 {
   3081 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
   3082     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
   3083 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
   3084     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
   3085 
   3086 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
   3087 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3088 	struct atw_txsoft *txs;
   3089 	u_int32_t txstat;
   3090 
   3091 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
   3092 	    sc->sc_dev.dv_xname, sc->sc_flags));
   3093 
   3094 	ifp->if_flags &= ~IFF_OACTIVE;
   3095 
   3096 	/*
   3097 	 * Go through our Tx list and free mbufs for those
   3098 	 * frames that have been transmitted.
   3099 	 */
   3100 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   3101 		ATW_CDTXSYNC(sc, txs->txs_lastdesc,
   3102 		    txs->txs_ndescs,
   3103 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3104 
   3105 #ifdef ATW_DEBUG
   3106 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3107 			int i;
   3108 			printf("    txsoft %p transmit chain:\n", txs);
   3109 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
   3110 				printf("     descriptor %d:\n", i);
   3111 				printf("       at_status:   0x%08x\n",
   3112 				    le32toh(sc->sc_txdescs[i].at_stat));
   3113 				printf("       at_flags:      0x%08x\n",
   3114 				    le32toh(sc->sc_txdescs[i].at_flags));
   3115 				printf("       at_buf1: 0x%08x\n",
   3116 				    le32toh(sc->sc_txdescs[i].at_buf1));
   3117 				printf("       at_buf2: 0x%08x\n",
   3118 				    le32toh(sc->sc_txdescs[i].at_buf2));
   3119 				if (i == txs->txs_lastdesc)
   3120 					break;
   3121 			}
   3122 		}
   3123 #endif
   3124 
   3125 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
   3126 		if (txstat & ATW_TXSTAT_OWN)
   3127 			break;
   3128 
   3129 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   3130 
   3131 		sc->sc_txfree += txs->txs_ndescs;
   3132 
   3133 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   3134 		    0, txs->txs_dmamap->dm_mapsize,
   3135 		    BUS_DMASYNC_POSTWRITE);
   3136 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3137 		m_freem(txs->txs_mbuf);
   3138 		txs->txs_mbuf = NULL;
   3139 
   3140 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   3141 
   3142 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   3143 		    (txstat & TXSTAT_ERRMASK) != 0) {
   3144 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
   3145 			    txstat_buf, sizeof(txstat_buf));
   3146 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
   3147 			    txstat_buf,
   3148 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
   3149 		}
   3150 
   3151 		/*
   3152 		 * Check for errors and collisions.
   3153 		 */
   3154 		if (txstat & ATW_TXSTAT_TUF)
   3155 			sc->sc_stats.ts_tx_tuf++;
   3156 		if (txstat & ATW_TXSTAT_TLT)
   3157 			sc->sc_stats.ts_tx_tlt++;
   3158 		if (txstat & ATW_TXSTAT_TRT)
   3159 			sc->sc_stats.ts_tx_trt++;
   3160 		if (txstat & ATW_TXSTAT_TRO)
   3161 			sc->sc_stats.ts_tx_tro++;
   3162 		if (txstat & ATW_TXSTAT_SOFBR) {
   3163 			sc->sc_stats.ts_tx_sofbr++;
   3164 		}
   3165 
   3166 		if ((txstat & ATW_TXSTAT_ES) == 0)
   3167 			ifp->if_collisions +=
   3168 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
   3169 		else
   3170 			ifp->if_oerrors++;
   3171 
   3172 		ifp->if_opackets++;
   3173 	}
   3174 
   3175 	/*
   3176 	 * If there are no more pending transmissions, cancel the watchdog
   3177 	 * timer.
   3178 	 */
   3179 	if (txs == NULL)
   3180 		sc->sc_tx_timer = 0;
   3181 #undef TXSTAT_ERRMASK
   3182 #undef TXSTAT_FMT
   3183 }
   3184 
   3185 /*
   3186  * atw_watchdog:	[ifnet interface function]
   3187  *
   3188  *	Watchdog timer handler.
   3189  */
   3190 void
   3191 atw_watchdog(struct ifnet *ifp)
   3192 {
   3193 	struct atw_softc *sc = ifp->if_softc;
   3194 	struct ieee80211com *ic = &sc->sc_ic;
   3195 
   3196 	ifp->if_timer = 0;
   3197 	if (ATW_IS_ENABLED(sc) == 0)
   3198 		return;
   3199 
   3200 	if (sc->sc_rescan_timer) {
   3201 		if (--sc->sc_rescan_timer == 0)
   3202 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3203 	}
   3204 	if (sc->sc_tx_timer) {
   3205 		if (--sc->sc_tx_timer == 0 &&
   3206 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
   3207 			printf("%s: transmit timeout\n", ifp->if_xname);
   3208 			ifp->if_oerrors++;
   3209 			(void)atw_init(ifp);
   3210 			atw_start(ifp);
   3211 		}
   3212 	}
   3213 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
   3214 		ifp->if_timer = 1;
   3215 	ieee80211_watchdog(ifp);
   3216 }
   3217 
   3218 /* Compute the 802.11 Duration field and the PLCP Length fields for
   3219  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
   3220  * Write the fields to the ADM8211 Tx header, frm.
   3221  *
   3222  * TBD use the fragmentation threshold to find the right duration for
   3223  * the first & last fragments.
   3224  *
   3225  * TBD make certain of the duration fields applied by the ADM8211 to each
   3226  * fragment. I think that the ADM8211 knows how to subtract the CTS
   3227  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
   3228  * I also think that the ADM8211 does *some* arithmetic for us, because
   3229  * otherwise I think we would have to set a first duration for CTS/first
   3230  * fragment, a second duration for fragments between the first and the
   3231  * last, and a third duration for the last fragment.
   3232  *
   3233  * TBD make certain that duration fields reflect addition of FCS/WEP
   3234  * and correct duration arithmetic as necessary.
   3235  */
   3236 static void
   3237 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
   3238     int len)
   3239 {
   3240 	int remainder;
   3241 
   3242 	/* deal also with encrypted fragments */
   3243 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
   3244 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
   3245 		    sc->sc_dev.dv_xname));
   3246 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
   3247 		       IEEE80211_WEP_CRCLEN;
   3248 	}
   3249 
   3250 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
   3251 	 * duration (XXX added by MAC?).
   3252 	 */
   3253 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
   3254 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
   3255 
   3256 	if (rate <= 4)
   3257 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
   3258 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3259 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3260 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3261 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
   3262 	else
   3263 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
   3264 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3265 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3266 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3267 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
   3268 
   3269 	/* lengthen duration if long preamble */
   3270 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
   3271 		frm->atw_head_dur +=
   3272 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
   3273 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
   3274 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
   3275 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
   3276 
   3277 	if (remainder != 0)
   3278 		frm->atw_head_dur++;
   3279 
   3280 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
   3281 	    (rate == 2 || rate == 4)) {
   3282 		/* derived from Linux: how could this be right? */
   3283 		frm->atw_head_plcplen = frm->atw_head_dur;
   3284 	} else {
   3285 		frm->atw_head_plcplen = (16 * len) / rate;
   3286 		remainder = (80 * len) % (rate * 5);
   3287 
   3288 		if (remainder != 0) {
   3289 			frm->atw_head_plcplen++;
   3290 
   3291 			/* XXX magic */
   3292 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
   3293 			    rate == 22 && remainder <= 30)
   3294 				frm->atw_head_plcplen |= 0x8000;
   3295 		}
   3296 	}
   3297 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
   3298 	    htole16(frm->atw_head_plcplen);
   3299 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
   3300 }
   3301 
   3302 #ifdef ATW_DEBUG
   3303 static void
   3304 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
   3305 {
   3306 	struct atw_softc *sc = ifp->if_softc;
   3307 	struct mbuf *m;
   3308 	int i, noctets = 0;
   3309 
   3310 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
   3311 	    m0->m_pkthdr.len);
   3312 
   3313 	for (m = m0; m; m = m->m_next) {
   3314 		if (m->m_len == 0)
   3315 			continue;
   3316 		for (i = 0; i < m->m_len; i++) {
   3317 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
   3318 			if (++noctets % 24 == 0)
   3319 				printf("\n");
   3320 		}
   3321 	}
   3322 	printf("%s%s: %d bytes emitted\n",
   3323 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
   3324 }
   3325 #endif /* ATW_DEBUG */
   3326 
   3327 /*
   3328  * atw_start:		[ifnet interface function]
   3329  *
   3330  *	Start packet transmission on the interface.
   3331  */
   3332 void
   3333 atw_start(struct ifnet *ifp)
   3334 {
   3335 	struct atw_softc *sc = ifp->if_softc;
   3336 	struct ieee80211com *ic = &sc->sc_ic;
   3337 	struct ieee80211_node *ni;
   3338 	struct ieee80211_frame *wh;
   3339 	struct atw_frame *hh;
   3340 	struct mbuf *m0, *m;
   3341 	struct atw_txsoft *txs, *last_txs;
   3342 	struct atw_txdesc *txd;
   3343 	int do_encrypt, rate;
   3344 	bus_dmamap_t dmamap;
   3345 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
   3346 
   3347 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
   3348 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
   3349 
   3350 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3351 		return;
   3352 
   3353 #if 0 /* TBD ??? */
   3354 	if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
   3355 		return;
   3356 #endif
   3357 
   3358 	/*
   3359 	 * Remember the previous number of free descriptors and
   3360 	 * the first descriptor we'll use.
   3361 	 */
   3362 	ofree = sc->sc_txfree;
   3363 	firsttx = sc->sc_txnext;
   3364 
   3365 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
   3366 	    sc->sc_dev.dv_xname, ofree, firsttx));
   3367 
   3368 	/*
   3369 	 * Loop through the send queue, setting up transmit descriptors
   3370 	 * until we drain the queue, or use up all available transmit
   3371 	 * descriptors.
   3372 	 */
   3373 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   3374 	       sc->sc_txfree != 0) {
   3375 
   3376 		/*
   3377 		 * Grab a packet off the management queue, if it
   3378 		 * is not empty. Otherwise, from the data queue.
   3379 		 */
   3380 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   3381 		if (m0 != NULL) {
   3382 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   3383 			m0->m_pkthdr.rcvif = NULL;
   3384 		} else {
   3385 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   3386 			if (m0 == NULL)
   3387 				break;
   3388 #if NBPFILTER > 0
   3389 			if (ifp->if_bpf != NULL)
   3390 				bpf_mtap(ifp->if_bpf, m0);
   3391 #endif /* NBPFILTER > 0 */
   3392 			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
   3393 				ifp->if_oerrors++;
   3394 				break;
   3395 			}
   3396 		}
   3397 
   3398 		rate = MAX(ieee80211_get_rate(ic), 2);
   3399 
   3400 #if NBPFILTER > 0
   3401 		/*
   3402 		 * Pass the packet to any BPF listeners.
   3403 		 */
   3404 		if (ic->ic_rawbpf != NULL)
   3405 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
   3406 
   3407 		if (sc->sc_radiobpf != NULL) {
   3408 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
   3409 
   3410 			tap->at_rate = rate;
   3411 			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3412 			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3413 
   3414 			/* TBD tap->at_flags */
   3415 
   3416 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3417 			    tap->at_ihdr.it_len, m0);
   3418 		}
   3419 #endif /* NBPFILTER > 0 */
   3420 
   3421 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
   3422 
   3423 		if (ni != NULL && ni != ic->ic_bss)
   3424 			ieee80211_free_node(ic, ni);
   3425 
   3426 		if (m0 == NULL) {
   3427 			ifp->if_oerrors++;
   3428 			break;
   3429 		}
   3430 
   3431 		/* just to make sure. */
   3432 		m0 = m_pullup(m0, sizeof(struct atw_frame));
   3433 
   3434 		if (m0 == NULL) {
   3435 			ifp->if_oerrors++;
   3436 			break;
   3437 		}
   3438 
   3439 		hh = mtod(m0, struct atw_frame *);
   3440 		wh = &hh->atw_ihdr;
   3441 
   3442 		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
   3443 
   3444 		/* Copy everything we need from the 802.11 header:
   3445 		 * Frame Control; address 1, address 3, or addresses
   3446 		 * 3 and 4. NIC fills in BSSID, SA.
   3447 		 */
   3448 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
   3449 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
   3450 				panic("%s: illegal WDS frame",
   3451 				    sc->sc_dev.dv_xname);
   3452 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
   3453 		} else
   3454 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
   3455 
   3456 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
   3457 
   3458 		/* initialize remaining Tx parameters */
   3459 		memset(&hh->u, 0, sizeof(hh->u));
   3460 
   3461 		hh->atw_rate = rate * 5;
   3462 		/* XXX this could be incorrect if M_FCS. _encap should
   3463 		 * probably strip FCS just in case it sticks around in
   3464 		 * bridged packets.
   3465 		 */
   3466 		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
   3467 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
   3468 		    sizeof(struct atw_frame));
   3469 
   3470 #if 0
   3471 		/* this virtually guaranteed that WEP-encrypted frames
   3472 		 * are fragmented. oops.
   3473 		 */
   3474 		hh->atw_fragthr = htole16(m0->m_pkthdr.len -
   3475 		    sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
   3476 		hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3477 #else
   3478 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3479 #endif
   3480 
   3481 		hh->atw_rtylmt = 3;
   3482 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
   3483 		if (do_encrypt) {
   3484 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
   3485 			hh->atw_keyid = ic->ic_wep_txkey;
   3486 		}
   3487 
   3488 		/* TBD 4-addr frames */
   3489 		atw_frame_setdurs(sc, hh, rate,
   3490 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
   3491 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
   3492 
   3493 		/* never fragment multicast frames */
   3494 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
   3495 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3496 		} else if (sc->sc_flags & ATWF_RTSCTS) {
   3497 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
   3498 		}
   3499 
   3500 #ifdef ATW_DEBUG
   3501 		/* experimental stuff */
   3502 		if (atw_xrtylmt != ~0)
   3503 			hh->atw_rtylmt = atw_xrtylmt;
   3504 		if (atw_xhdrctl != 0)
   3505 			hh->atw_hdrctl |= htole16(atw_xhdrctl);
   3506 		if (atw_xservice != IEEE80211_PLCP_SERVICE)
   3507 			hh->atw_service = atw_xservice;
   3508 		if (atw_xpaylen != 0)
   3509 			hh->atw_paylen = htole16(atw_xpaylen);
   3510 		hh->atw_fragnum = 0;
   3511 
   3512 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3513 			printf("%s: dst = %s, rate = 0x%02x, "
   3514 			    "service = 0x%02x, paylen = 0x%04x\n",
   3515 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
   3516 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
   3517 
   3518 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
   3519 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
   3520 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
   3521 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
   3522 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
   3523 			    hh->atw_tail_dur, hh->atw_head_dur);
   3524 
   3525 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
   3526 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
   3527 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
   3528 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
   3529 
   3530 			printf("%s: keyid = %d\n",
   3531 			    sc->sc_dev.dv_xname, hh->atw_keyid);
   3532 
   3533 			atw_dump_pkt(ifp, m0);
   3534 		}
   3535 #endif /* ATW_DEBUG */
   3536 
   3537 		dmamap = txs->txs_dmamap;
   3538 
   3539 		/*
   3540 		 * Load the DMA map.  Copy and try (once) again if the packet
   3541 		 * didn't fit in the alloted number of segments.
   3542 		 */
   3543 		for (first = 1;
   3544 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   3545 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
   3546 		     first = 0) {
   3547 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   3548 			if (m == NULL) {
   3549 				printf("%s: unable to allocate Tx mbuf\n",
   3550 				    sc->sc_dev.dv_xname);
   3551 				break;
   3552 			}
   3553 			if (m0->m_pkthdr.len > MHLEN) {
   3554 				MCLGET(m, M_DONTWAIT);
   3555 				if ((m->m_flags & M_EXT) == 0) {
   3556 					printf("%s: unable to allocate Tx "
   3557 					    "cluster\n", sc->sc_dev.dv_xname);
   3558 					m_freem(m);
   3559 					break;
   3560 				}
   3561 			}
   3562 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   3563 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   3564 			m_freem(m0);
   3565 			m0 = m;
   3566 			m = NULL;
   3567 		}
   3568 		if (error != 0) {
   3569 			printf("%s: unable to load Tx buffer, "
   3570 			    "error = %d\n", sc->sc_dev.dv_xname, error);
   3571 			m_freem(m0);
   3572 			break;
   3573 		}
   3574 
   3575 		/*
   3576 		 * Ensure we have enough descriptors free to describe
   3577 		 * the packet.
   3578 		 */
   3579 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   3580 			/*
   3581 			 * Not enough free descriptors to transmit
   3582 			 * this packet.  Unload the DMA map and
   3583 			 * drop the packet.  Notify the upper layer
   3584 			 * that there are no more slots left.
   3585 			 *
   3586 			 * XXX We could allocate an mbuf and copy, but
   3587 			 * XXX it is worth it?
   3588 			 */
   3589 			ifp->if_flags |= IFF_OACTIVE;
   3590 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   3591 			m_freem(m0);
   3592 			break;
   3593 		}
   3594 
   3595 		/*
   3596 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   3597 		 */
   3598 
   3599 		/* Sync the DMA map. */
   3600 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   3601 		    BUS_DMASYNC_PREWRITE);
   3602 
   3603 		/* XXX arbitrary retry limit; 8 because I have seen it in
   3604 		 * use already and maybe 0 means "no tries" !
   3605 		 */
   3606 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
   3607 
   3608 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
   3609 		    sc->sc_dev.dv_xname, rate * 5));
   3610 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
   3611 
   3612 		/*
   3613 		 * Initialize the transmit descriptors.
   3614 		 */
   3615 		for (nexttx = sc->sc_txnext, seg = 0;
   3616 		     seg < dmamap->dm_nsegs;
   3617 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
   3618 			/*
   3619 			 * If this is the first descriptor we're
   3620 			 * enqueueing, don't set the OWN bit just
   3621 			 * yet.  That could cause a race condition.
   3622 			 * We'll do it below.
   3623 			 */
   3624 			txd = &sc->sc_txdescs[nexttx];
   3625 			txd->at_ctl = ctl |
   3626 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
   3627 
   3628 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
   3629 			txd->at_flags =
   3630 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
   3631 			                   ATW_TXFLAG_TBS1_MASK)) |
   3632 			    ((nexttx == (ATW_NTXDESC - 1))
   3633 			        ? htole32(ATW_TXFLAG_TER) : 0);
   3634 			lasttx = nexttx;
   3635 		}
   3636 
   3637 		IASSERT(lasttx != -1, ("bad lastx"));
   3638 		/* Set `first segment' and `last segment' appropriately. */
   3639 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
   3640 		    htole32(ATW_TXFLAG_FS);
   3641 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
   3642 
   3643 #ifdef ATW_DEBUG
   3644 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3645 			printf("     txsoft %p transmit chain:\n", txs);
   3646 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
   3647 				printf("     descriptor %d:\n", seg);
   3648 				printf("       at_ctl:   0x%08x\n",
   3649 				    le32toh(sc->sc_txdescs[seg].at_ctl));
   3650 				printf("       at_flags:      0x%08x\n",
   3651 				    le32toh(sc->sc_txdescs[seg].at_flags));
   3652 				printf("       at_buf1: 0x%08x\n",
   3653 				    le32toh(sc->sc_txdescs[seg].at_buf1));
   3654 				printf("       at_buf2: 0x%08x\n",
   3655 				    le32toh(sc->sc_txdescs[seg].at_buf2));
   3656 				if (seg == lasttx)
   3657 					break;
   3658 			}
   3659 		}
   3660 #endif
   3661 
   3662 		/* Sync the descriptors we're using. */
   3663 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   3664 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3665 
   3666 		/*
   3667 		 * Store a pointer to the packet so we can free it later,
   3668 		 * and remember what txdirty will be once the packet is
   3669 		 * done.
   3670 		 */
   3671 		txs->txs_mbuf = m0;
   3672 		txs->txs_firstdesc = sc->sc_txnext;
   3673 		txs->txs_lastdesc = lasttx;
   3674 		txs->txs_ndescs = dmamap->dm_nsegs;
   3675 
   3676 		/* Advance the tx pointer. */
   3677 		sc->sc_txfree -= dmamap->dm_nsegs;
   3678 		sc->sc_txnext = nexttx;
   3679 
   3680 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   3681 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   3682 
   3683 		last_txs = txs;
   3684 	}
   3685 
   3686 	if (txs == NULL || sc->sc_txfree == 0) {
   3687 		/* No more slots left; notify upper layer. */
   3688 		ifp->if_flags |= IFF_OACTIVE;
   3689 	}
   3690 
   3691 	if (sc->sc_txfree != ofree) {
   3692 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   3693 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   3694 		/*
   3695 		 * Cause a transmit interrupt to happen on the
   3696 		 * last packet we enqueued.
   3697 		 */
   3698 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
   3699 		ATW_CDTXSYNC(sc, lasttx, 1,
   3700 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3701 
   3702 		/*
   3703 		 * The entire packet chain is set up.  Give the
   3704 		 * first descriptor to the chip now.
   3705 		 */
   3706 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
   3707 		ATW_CDTXSYNC(sc, firsttx, 1,
   3708 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3709 
   3710 		/* Wake up the transmitter. */
   3711 		ATW_WRITE(sc, ATW_TDR, 0x1);
   3712 
   3713 		/* Set a watchdog timer in case the chip flakes out. */
   3714 		sc->sc_tx_timer = 5;
   3715 		ifp->if_timer = 1;
   3716 	}
   3717 }
   3718 
   3719 /*
   3720  * atw_power:
   3721  *
   3722  *	Power management (suspend/resume) hook.
   3723  */
   3724 void
   3725 atw_power(int why, void *arg)
   3726 {
   3727 	struct atw_softc *sc = arg;
   3728 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3729 	int s;
   3730 
   3731 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
   3732 
   3733 	s = splnet();
   3734 	switch (why) {
   3735 	case PWR_STANDBY:
   3736 		/* XXX do nothing. */
   3737 		break;
   3738 	case PWR_SUSPEND:
   3739 		atw_stop(ifp, 0);
   3740 		if (sc->sc_power != NULL)
   3741 			(*sc->sc_power)(sc, why);
   3742 		break;
   3743 	case PWR_RESUME:
   3744 		if (ifp->if_flags & IFF_UP) {
   3745 			if (sc->sc_power != NULL)
   3746 				(*sc->sc_power)(sc, why);
   3747 			atw_init(ifp);
   3748 		}
   3749 		break;
   3750 	case PWR_SOFTSUSPEND:
   3751 	case PWR_SOFTSTANDBY:
   3752 	case PWR_SOFTRESUME:
   3753 		break;
   3754 	}
   3755 	splx(s);
   3756 }
   3757 
   3758 /*
   3759  * atw_ioctl:		[ifnet interface function]
   3760  *
   3761  *	Handle control requests from the operator.
   3762  */
   3763 int
   3764 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   3765 {
   3766 	struct atw_softc *sc = ifp->if_softc;
   3767 	struct ifreq *ifr = (struct ifreq *)data;
   3768 	int s, error = 0;
   3769 
   3770 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
   3771 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   3772 		return ENXIO;
   3773 
   3774 	s = splnet();
   3775 
   3776 	switch (cmd) {
   3777 	case SIOCSIFFLAGS:
   3778 		if (ifp->if_flags & IFF_UP) {
   3779 			if (ATW_IS_ENABLED(sc)) {
   3780 				/*
   3781 				 * To avoid rescanning another access point,
   3782 				 * do not call atw_init() here.  Instead,
   3783 				 * only reflect media settings.
   3784 				 */
   3785 				atw_filter_setup(sc);
   3786 			} else
   3787 				error = atw_init(ifp);
   3788 		} else if (ATW_IS_ENABLED(sc))
   3789 			atw_stop(ifp, 1);
   3790 		break;
   3791 	case SIOCADDMULTI:
   3792 	case SIOCDELMULTI:
   3793 		error = (cmd == SIOCADDMULTI) ?
   3794 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
   3795 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
   3796 		if (error == ENETRESET) {
   3797 			if (ATW_IS_ENABLED(sc))
   3798 				atw_filter_setup(sc); /* do not rescan */
   3799 			error = 0;
   3800 		}
   3801 		break;
   3802 	default:
   3803 		error = ieee80211_ioctl(ifp, cmd, data);
   3804 		if (error == ENETRESET) {
   3805 			if (ATW_IS_ENABLED(sc))
   3806 				error = atw_init(ifp);
   3807 			else
   3808 				error = 0;
   3809 		}
   3810 		break;
   3811 	}
   3812 
   3813 	/* Try to get more packets going. */
   3814 	if (ATW_IS_ENABLED(sc))
   3815 		atw_start(ifp);
   3816 
   3817 	splx(s);
   3818 	return (error);
   3819 }
   3820 
   3821 static int
   3822 atw_media_change(struct ifnet *ifp)
   3823 {
   3824 	int error;
   3825 
   3826 	error = ieee80211_media_change(ifp);
   3827 	if (error == ENETRESET) {
   3828 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   3829 		    (IFF_RUNNING|IFF_UP))
   3830 			atw_init(ifp);		/* XXX lose error */
   3831 		error = 0;
   3832 	}
   3833 	return error;
   3834 }
   3835 
   3836 static void
   3837 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
   3838 {
   3839 	struct atw_softc *sc = ifp->if_softc;
   3840 
   3841 	if (ATW_IS_ENABLED(sc) == 0) {
   3842 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
   3843 		imr->ifm_status = 0;
   3844 		return;
   3845 	}
   3846 	ieee80211_media_status(ifp, imr);
   3847 }
   3848