atw.c revision 1.38 1 /* $NetBSD: atw.c,v 1.38 2004/07/15 05:43:50 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.38 2004/07/15 05:43:50 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
139 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
140 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
141
142 int atw_rfio_enable_delay = 20 * 1000;
143 int atw_rfio_disable_delay = 2 * 1000;
144 int atw_writewep_delay = 5;
145 int atw_beacon_len_adjust = 4;
146 int atw_dwelltime = 200;
147
148 #ifdef ATW_DEBUG
149 int atw_xhdrctl = 0;
150 int atw_xrtylmt = ~0;
151 int atw_xservice = IEEE80211_PLCP_SERVICE;
152 int atw_xpaylen = 0;
153
154 int atw_debug = 0;
155
156 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
157 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
158 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
159 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
160 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
161 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
162 static void atw_print_regs(struct atw_softc *, const char *);
163 static void atw_rf3000_print(struct atw_softc *);
164 static void atw_si4126_print(struct atw_softc *);
165 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
166 #else
167 #define ATW_DPRINTF(x)
168 #define ATW_DPRINTF2(x)
169 #define ATW_DPRINTF3(x)
170 #define DPRINTF(sc, x) /* nothing */
171 #define DPRINTF2(sc, x) /* nothing */
172 #define DPRINTF3(sc, x) /* nothing */
173 #endif
174
175 #ifdef ATW_STATS
176 void atw_print_stats(struct atw_softc *);
177 #endif
178
179 void atw_start(struct ifnet *);
180 void atw_watchdog(struct ifnet *);
181 int atw_ioctl(struct ifnet *, u_long, caddr_t);
182 int atw_init(struct ifnet *);
183 void atw_txdrain(struct atw_softc *);
184 void atw_stop(struct ifnet *, int);
185
186 void atw_reset(struct atw_softc *);
187 int atw_read_srom(struct atw_softc *);
188
189 void atw_shutdown(void *);
190
191 void atw_rxdrain(struct atw_softc *);
192 int atw_add_rxbuf(struct atw_softc *, int);
193 void atw_idle(struct atw_softc *, u_int32_t);
194
195 int atw_enable(struct atw_softc *);
196 void atw_disable(struct atw_softc *);
197 void atw_power(int, void *);
198
199 void atw_rxintr(struct atw_softc *);
200 void atw_txintr(struct atw_softc *);
201 void atw_linkintr(struct atw_softc *, u_int32_t);
202
203 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
204 static void atw_tsf(struct atw_softc *);
205 static void atw_start_beacon(struct atw_softc *, int);
206 static void atw_write_wep(struct atw_softc *);
207 static void atw_write_bssid(struct atw_softc *);
208 static void atw_write_bcn_thresh(struct atw_softc *);
209 static void atw_write_ssid(struct atw_softc *);
210 static void atw_write_sup_rates(struct atw_softc *);
211 static void atw_clear_sram(struct atw_softc *);
212 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
213 static int atw_media_change(struct ifnet *);
214 static void atw_media_status(struct ifnet *, struct ifmediareq *);
215 static void atw_filter_setup(struct atw_softc *);
216 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
217 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
218 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
219 struct ieee80211_node *, int, int, u_int32_t);
220 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
221 struct ieee80211_node *, int, int, u_int32_t);
222 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
223 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
224
225 static int atw_tune(struct atw_softc *);
226
227 static void atw_rfio_enable(struct atw_softc *, int);
228
229 /* RFMD RF3000 Baseband Processor */
230 static int atw_rf3000_init(struct atw_softc *);
231 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
232 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
233 #ifdef ATW_DEBUG
234 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
235 #endif /* ATW_DEBUG */
236
237 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
238 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
239 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
240 #ifdef ATW_DEBUG
241 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
242 #endif /* ATW_DEBUG */
243
244 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
245 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
246
247 const char *atw_tx_state[] = {
248 "STOPPED",
249 "RUNNING - read descriptor",
250 "RUNNING - transmitting",
251 "RUNNING - filling fifo", /* XXX */
252 "SUSPENDED",
253 "RUNNING -- write descriptor",
254 "RUNNING -- write last descriptor",
255 "RUNNING - fifo full"
256 };
257
258 const char *atw_rx_state[] = {
259 "STOPPED",
260 "RUNNING - read descriptor",
261 "RUNNING - check this packet, pre-fetch next",
262 "RUNNING - wait for reception",
263 "SUSPENDED",
264 "RUNNING - write descriptor",
265 "RUNNING - flush fifo",
266 "RUNNING - fifo drain"
267 };
268
269 int
270 atw_activate(struct device *self, enum devact act)
271 {
272 struct atw_softc *sc = (struct atw_softc *)self;
273 int rv = 0, s;
274
275 s = splnet();
276 switch (act) {
277 case DVACT_ACTIVATE:
278 rv = EOPNOTSUPP;
279 break;
280
281 case DVACT_DEACTIVATE:
282 if_deactivate(&sc->sc_ic.ic_if);
283 break;
284 }
285 splx(s);
286 return rv;
287 }
288
289 /*
290 * atw_enable:
291 *
292 * Enable the ADM8211 chip.
293 */
294 int
295 atw_enable(struct atw_softc *sc)
296 {
297
298 if (ATW_IS_ENABLED(sc) == 0) {
299 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
300 printf("%s: device enable failed\n",
301 sc->sc_dev.dv_xname);
302 return (EIO);
303 }
304 sc->sc_flags |= ATWF_ENABLED;
305 }
306 return (0);
307 }
308
309 /*
310 * atw_disable:
311 *
312 * Disable the ADM8211 chip.
313 */
314 void
315 atw_disable(struct atw_softc *sc)
316 {
317 if (!ATW_IS_ENABLED(sc))
318 return;
319 if (sc->sc_disable != NULL)
320 (*sc->sc_disable)(sc);
321 sc->sc_flags &= ~ATWF_ENABLED;
322 }
323
324 /* Returns -1 on failure. */
325 int
326 atw_read_srom(struct atw_softc *sc)
327 {
328 struct seeprom_descriptor sd;
329 u_int32_t reg;
330
331 (void)memset(&sd, 0, sizeof(sd));
332
333 reg = ATW_READ(sc, ATW_TEST0);
334
335 if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
336 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
337 return -1;
338 }
339
340 switch (reg & ATW_TEST0_EPTYP_MASK) {
341 case ATW_TEST0_EPTYP_93c66:
342 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
343 sc->sc_sromsz = 512;
344 sd.sd_chip = C56_66;
345 break;
346 case ATW_TEST0_EPTYP_93c46:
347 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
348 sc->sc_sromsz = 128;
349 sd.sd_chip = C46;
350 break;
351 default:
352 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
353 MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
354 return -1;
355 }
356
357 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
358
359 if (sc->sc_srom == NULL) {
360 printf("%s: unable to allocate SROM buffer\n",
361 sc->sc_dev.dv_xname);
362 return -1;
363 }
364
365 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
366
367 /* ADM8211 has a single 32-bit register for controlling the
368 * 93cx6 SROM. Bit SRS enables the serial port. There is no
369 * "ready" bit. The ADM8211 input/output sense is the reverse
370 * of read_seeprom's.
371 */
372 sd.sd_tag = sc->sc_st;
373 sd.sd_bsh = sc->sc_sh;
374 sd.sd_regsize = 4;
375 sd.sd_control_offset = ATW_SPR;
376 sd.sd_status_offset = ATW_SPR;
377 sd.sd_dataout_offset = ATW_SPR;
378 sd.sd_CK = ATW_SPR_SCLK;
379 sd.sd_CS = ATW_SPR_SCS;
380 sd.sd_DI = ATW_SPR_SDO;
381 sd.sd_DO = ATW_SPR_SDI;
382 sd.sd_MS = ATW_SPR_SRS;
383 sd.sd_RDY = 0;
384
385 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
386 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
387 free(sc->sc_srom, M_DEVBUF);
388 return -1;
389 }
390 #ifdef ATW_DEBUG
391 {
392 int i;
393 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
394 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
395 if (((i % 8) == 0) && (i != 0)) {
396 ATW_DPRINTF(("\n\t"));
397 }
398 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
399 }
400 ATW_DPRINTF(("\n"));
401 }
402 #endif /* ATW_DEBUG */
403 return 0;
404 }
405
406 #ifdef ATW_DEBUG
407 static void
408 atw_print_regs(struct atw_softc *sc, const char *where)
409 {
410 #define PRINTREG(sc, reg) \
411 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
412 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
413
414 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
415
416 PRINTREG(sc, ATW_PAR);
417 PRINTREG(sc, ATW_FRCTL);
418 PRINTREG(sc, ATW_TDR);
419 PRINTREG(sc, ATW_WTDP);
420 PRINTREG(sc, ATW_RDR);
421 PRINTREG(sc, ATW_WRDP);
422 PRINTREG(sc, ATW_RDB);
423 PRINTREG(sc, ATW_CSR3A);
424 PRINTREG(sc, ATW_TDBD);
425 PRINTREG(sc, ATW_TDBP);
426 PRINTREG(sc, ATW_STSR);
427 PRINTREG(sc, ATW_CSR5A);
428 PRINTREG(sc, ATW_NAR);
429 PRINTREG(sc, ATW_CSR6A);
430 PRINTREG(sc, ATW_IER);
431 PRINTREG(sc, ATW_CSR7A);
432 PRINTREG(sc, ATW_LPC);
433 PRINTREG(sc, ATW_TEST1);
434 PRINTREG(sc, ATW_SPR);
435 PRINTREG(sc, ATW_TEST0);
436 PRINTREG(sc, ATW_WCSR);
437 PRINTREG(sc, ATW_WPDR);
438 PRINTREG(sc, ATW_GPTMR);
439 PRINTREG(sc, ATW_GPIO);
440 PRINTREG(sc, ATW_BBPCTL);
441 PRINTREG(sc, ATW_SYNCTL);
442 PRINTREG(sc, ATW_PLCPHD);
443 PRINTREG(sc, ATW_MMIWADDR);
444 PRINTREG(sc, ATW_MMIRADDR1);
445 PRINTREG(sc, ATW_MMIRADDR2);
446 PRINTREG(sc, ATW_TXBR);
447 PRINTREG(sc, ATW_CSR15A);
448 PRINTREG(sc, ATW_ALCSTAT);
449 PRINTREG(sc, ATW_TOFS2);
450 PRINTREG(sc, ATW_CMDR);
451 PRINTREG(sc, ATW_PCIC);
452 PRINTREG(sc, ATW_PMCSR);
453 PRINTREG(sc, ATW_PAR0);
454 PRINTREG(sc, ATW_PAR1);
455 PRINTREG(sc, ATW_MAR0);
456 PRINTREG(sc, ATW_MAR1);
457 PRINTREG(sc, ATW_ATIMDA0);
458 PRINTREG(sc, ATW_ABDA1);
459 PRINTREG(sc, ATW_BSSID0);
460 PRINTREG(sc, ATW_TXLMT);
461 PRINTREG(sc, ATW_MIBCNT);
462 PRINTREG(sc, ATW_BCNT);
463 PRINTREG(sc, ATW_TSFTH);
464 PRINTREG(sc, ATW_TSC);
465 PRINTREG(sc, ATW_SYNRF);
466 PRINTREG(sc, ATW_BPLI);
467 PRINTREG(sc, ATW_CAP0);
468 PRINTREG(sc, ATW_CAP1);
469 PRINTREG(sc, ATW_RMD);
470 PRINTREG(sc, ATW_CFPP);
471 PRINTREG(sc, ATW_TOFS0);
472 PRINTREG(sc, ATW_TOFS1);
473 PRINTREG(sc, ATW_IFST);
474 PRINTREG(sc, ATW_RSPT);
475 PRINTREG(sc, ATW_TSFTL);
476 PRINTREG(sc, ATW_WEPCTL);
477 PRINTREG(sc, ATW_WESK);
478 PRINTREG(sc, ATW_WEPCNT);
479 PRINTREG(sc, ATW_MACTEST);
480 PRINTREG(sc, ATW_FER);
481 PRINTREG(sc, ATW_FEMR);
482 PRINTREG(sc, ATW_FPSR);
483 PRINTREG(sc, ATW_FFER);
484 #undef PRINTREG
485 }
486 #endif /* ATW_DEBUG */
487
488 /*
489 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
490 */
491 void
492 atw_attach(struct atw_softc *sc)
493 {
494 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
495 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
496 };
497 struct ieee80211com *ic = &sc->sc_ic;
498 struct ifnet *ifp = &ic->ic_if;
499 int country_code, error, i, nrate;
500 u_int32_t reg;
501 static const char *type_strings[] = {"Intersil (not supported)",
502 "RFMD", "Marvel (not supported)"};
503
504 sc->sc_txth = atw_txthresh_tab_lo;
505
506 SIMPLEQ_INIT(&sc->sc_txfreeq);
507 SIMPLEQ_INIT(&sc->sc_txdirtyq);
508
509 #ifdef ATW_DEBUG
510 atw_print_regs(sc, "atw_attach");
511 #endif /* ATW_DEBUG */
512
513 /*
514 * Allocate the control data structures, and create and load the
515 * DMA map for it.
516 */
517 if ((error = bus_dmamem_alloc(sc->sc_dmat,
518 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
519 1, &sc->sc_cdnseg, 0)) != 0) {
520 printf("%s: unable to allocate control data, error = %d\n",
521 sc->sc_dev.dv_xname, error);
522 goto fail_0;
523 }
524
525 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
526 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
527 BUS_DMA_COHERENT)) != 0) {
528 printf("%s: unable to map control data, error = %d\n",
529 sc->sc_dev.dv_xname, error);
530 goto fail_1;
531 }
532
533 if ((error = bus_dmamap_create(sc->sc_dmat,
534 sizeof(struct atw_control_data), 1,
535 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
536 printf("%s: unable to create control data DMA map, "
537 "error = %d\n", sc->sc_dev.dv_xname, error);
538 goto fail_2;
539 }
540
541 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
542 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
543 0)) != 0) {
544 printf("%s: unable to load control data DMA map, error = %d\n",
545 sc->sc_dev.dv_xname, error);
546 goto fail_3;
547 }
548
549 /*
550 * Create the transmit buffer DMA maps.
551 */
552 sc->sc_ntxsegs = ATW_NTXSEGS;
553 for (i = 0; i < ATW_TXQUEUELEN; i++) {
554 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
555 sc->sc_ntxsegs, MCLBYTES, 0, 0,
556 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
557 printf("%s: unable to create tx DMA map %d, "
558 "error = %d\n", sc->sc_dev.dv_xname, i, error);
559 goto fail_4;
560 }
561 }
562
563 /*
564 * Create the receive buffer DMA maps.
565 */
566 for (i = 0; i < ATW_NRXDESC; i++) {
567 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
568 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
569 printf("%s: unable to create rx DMA map %d, "
570 "error = %d\n", sc->sc_dev.dv_xname, i, error);
571 goto fail_5;
572 }
573 }
574 for (i = 0; i < ATW_NRXDESC; i++) {
575 sc->sc_rxsoft[i].rxs_mbuf = NULL;
576 }
577
578 /* Reset the chip to a known state. */
579 atw_reset(sc);
580
581 if (atw_read_srom(sc) == -1)
582 return;
583
584 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
585 ATW_SR_RFTYPE_MASK);
586
587 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
588 ATW_SR_BBPTYPE_MASK);
589
590 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
591 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
592 return;
593 }
594 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
595 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
596 return;
597 }
598
599 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
600 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
601
602 /* XXX There exists a Linux driver which seems to use RFType = 0 for
603 * MARVEL. My bug, or theirs?
604 */
605
606 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
607
608 switch (sc->sc_rftype) {
609 case ATW_RFTYPE_INTERSIL:
610 reg |= ATW_SYNCTL_CS1;
611 break;
612 case ATW_RFTYPE_RFMD:
613 reg |= ATW_SYNCTL_CS0;
614 break;
615 case ATW_RFTYPE_MARVEL:
616 break;
617 }
618
619 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
620 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
621
622 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
623
624 switch (sc->sc_bbptype) {
625 case ATW_BBPTYPE_INTERSIL:
626 reg |= ATW_BBPCTL_TWI;
627 break;
628 case ATW_BBPTYPE_RFMD:
629 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
630 ATW_BBPCTL_CCA_ACTLO;
631 break;
632 case ATW_BBPTYPE_MARVEL:
633 break;
634 case ATW_C_BBPTYPE_RFMD:
635 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
636 sc->sc_dev.dv_xname);
637 break;
638 }
639
640 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
641 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
642
643 /*
644 * From this point forward, the attachment cannot fail. A failure
645 * before this point releases all resources that may have been
646 * allocated.
647 */
648 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
649
650 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
651 htole16(sc->sc_srom[ATW_SR_MAC00]),
652 htole16(sc->sc_srom[ATW_SR_MAC01]),
653 htole16(sc->sc_srom[ATW_SR_MAC10])));
654
655 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
656 ATW_SR_CTRY_MASK);
657
658 #define ADD_CHANNEL(_ic, _chan) do { \
659 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
660 _ic->ic_channels[_chan].ic_freq = \
661 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
662 } while (0)
663
664 /* Find available channels */
665 switch (country_code) {
666 case COUNTRY_MMK2: /* 1-14 */
667 ADD_CHANNEL(ic, 14);
668 /*FALLTHROUGH*/
669 case COUNTRY_ETSI: /* 1-13 */
670 for (i = 1; i <= 13; i++)
671 ADD_CHANNEL(ic, i);
672 break;
673 case COUNTRY_FCC: /* 1-11 */
674 case COUNTRY_IC: /* 1-11 */
675 for (i = 1; i <= 11; i++)
676 ADD_CHANNEL(ic, i);
677 break;
678 case COUNTRY_MMK: /* 14 */
679 ADD_CHANNEL(ic, 14);
680 break;
681 case COUNTRY_FRANCE: /* 10-13 */
682 for (i = 10; i <= 13; i++)
683 ADD_CHANNEL(ic, i);
684 break;
685 default: /* assume channels 10-11 */
686 case COUNTRY_SPAIN: /* 10-11 */
687 for (i = 10; i <= 11; i++)
688 ADD_CHANNEL(ic, i);
689 break;
690 }
691
692 /* Read the MAC address. */
693 reg = ATW_READ(sc, ATW_PAR0);
694 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
695 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
696 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
697 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
698 reg = ATW_READ(sc, ATW_PAR1);
699 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
700 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
701
702 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
703 printf(" could not get mac address, attach failed\n");
704 return;
705 }
706
707 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
708
709 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
710 ifp->if_softc = sc;
711 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
712 IFF_NOTRAILERS;
713 ifp->if_ioctl = atw_ioctl;
714 ifp->if_start = atw_start;
715 ifp->if_watchdog = atw_watchdog;
716 ifp->if_init = atw_init;
717 ifp->if_stop = atw_stop;
718 IFQ_SET_READY(&ifp->if_snd);
719
720 ic->ic_phytype = IEEE80211_T_DS;
721 ic->ic_opmode = IEEE80211_M_STA;
722 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
723 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
724
725 nrate = 0;
726 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
727 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
728 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
729 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
730 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
731
732 /*
733 * Call MI attach routines.
734 */
735
736 if_attach(ifp);
737 ieee80211_ifattach(ifp);
738
739 sc->sc_newstate = ic->ic_newstate;
740 ic->ic_newstate = atw_newstate;
741
742 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
743 ic->ic_recv_mgmt = atw_recv_mgmt;
744
745 sc->sc_node_free = ic->ic_node_free;
746 ic->ic_node_free = atw_node_free;
747
748 sc->sc_node_alloc = ic->ic_node_alloc;
749 ic->ic_node_alloc = atw_node_alloc;
750
751 /* possibly we should fill in our own sc_send_prresp, since
752 * the ADM8211 is probably sending probe responses in ad hoc
753 * mode.
754 */
755
756 /* complete initialization */
757 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
758 callout_init(&sc->sc_scan_ch);
759
760 #if NBPFILTER > 0
761 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
762 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
763 #endif
764
765 /*
766 * Make sure the interface is shutdown during reboot.
767 */
768 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
769 if (sc->sc_sdhook == NULL)
770 printf("%s: WARNING: unable to establish shutdown hook\n",
771 sc->sc_dev.dv_xname);
772
773 /*
774 * Add a suspend hook to make sure we come back up after a
775 * resume.
776 */
777 sc->sc_powerhook = powerhook_establish(atw_power, sc);
778 if (sc->sc_powerhook == NULL)
779 printf("%s: WARNING: unable to establish power hook\n",
780 sc->sc_dev.dv_xname);
781
782 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
783 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
784 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
785
786 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
787 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
788 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
789
790 return;
791
792 /*
793 * Free any resources we've allocated during the failed attach
794 * attempt. Do this in reverse order and fall through.
795 */
796 fail_5:
797 for (i = 0; i < ATW_NRXDESC; i++) {
798 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
799 continue;
800 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
801 }
802 fail_4:
803 for (i = 0; i < ATW_TXQUEUELEN; i++) {
804 if (sc->sc_txsoft[i].txs_dmamap == NULL)
805 continue;
806 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
807 }
808 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
809 fail_3:
810 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
811 fail_2:
812 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
813 sizeof(struct atw_control_data));
814 fail_1:
815 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
816 fail_0:
817 return;
818 }
819
820 static struct ieee80211_node *
821 atw_node_alloc(struct ieee80211com *ic)
822 {
823 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
824 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
825
826 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
827 return ni;
828 }
829
830 static void
831 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
832 {
833 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
834
835 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
836 ether_sprintf(ni->ni_bssid)));
837 (*sc->sc_node_free)(ic, ni);
838 }
839
840 /*
841 * atw_reset:
842 *
843 * Perform a soft reset on the ADM8211.
844 */
845 void
846 atw_reset(struct atw_softc *sc)
847 {
848 int i;
849
850 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
851
852 for (i = 0; i < 10000; i++) {
853 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
854 break;
855 DELAY(1);
856 }
857
858 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
859
860 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
861 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
862
863 /* Turn off maximum power saving. */
864 ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
865
866 /* Recall EEPROM. */
867 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
868
869 DELAY(10 * 1000);
870
871 /* A reset seems to affect the SRAM contents, so put them into
872 * a known state.
873 */
874 atw_clear_sram(sc);
875
876 memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
877
878 sc->sc_lost_bcn_thresh = 0;
879 }
880
881 static void
882 atw_clear_sram(struct atw_softc *sc)
883 {
884 #if 0
885 for (addr = 0; addr < 448; addr++) {
886 ATW_WRITE(sc, ATW_WEPCTL,
887 ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0 | addr);
888 DELAY(1000);
889 ATW_WRITE(sc, ATW_WESK, 0);
890 DELAY(1000); /* paranoia */
891 }
892 return;
893 #endif
894 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
895 /* XXX not for revision 0x20. */
896 atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
897 }
898
899 /* TBD atw_init
900 *
901 * set MAC based on ic->ic_bss->myaddr
902 * write WEP keys
903 * set TX rate
904 */
905
906 /*
907 * atw_init: [ ifnet interface function ]
908 *
909 * Initialize the interface. Must be called at splnet().
910 */
911 int
912 atw_init(struct ifnet *ifp)
913 {
914 struct atw_softc *sc = ifp->if_softc;
915 struct ieee80211com *ic = &sc->sc_ic;
916 struct atw_txsoft *txs;
917 struct atw_rxsoft *rxs;
918 u_int32_t reg;
919 int i, error = 0;
920
921 if ((error = atw_enable(sc)) != 0)
922 goto out;
923
924 /*
925 * Cancel any pending I/O. This also resets.
926 */
927 atw_stop(ifp, 0);
928
929 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
930 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
931 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
932 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
933
934 /* Turn off APM??? (A binary-only driver does this.)
935 *
936 * Set Rx store-and-forward mode.
937 */
938 reg = ATW_READ(sc, ATW_CMDR);
939 reg &= ~ATW_CMDR_APM;
940 reg &= ~ATW_CMDR_DRT_MASK;
941 reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
942
943 ATW_WRITE(sc, ATW_CMDR, reg);
944
945 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
946 *
947 * XXX a binary-only driver sets a different service field than
948 * 0. why?
949 */
950 reg = ATW_READ(sc, ATW_PLCPHD);
951 reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
952 reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
953 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
954 ATW_WRITE(sc, ATW_PLCPHD, reg);
955
956 /* XXX this magic can probably be figured out from the RFMD docs */
957 reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
958 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
959 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
960 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
961 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
962 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
963 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
964 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
965 ATW_WRITE(sc, ATW_TOFS2, reg);
966
967 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
968 LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
969
970 /* XXX this resets an Intersil RF front-end? */
971 /* TBD condition on Intersil RFType? */
972 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
973 DELAY(10 * 1000);
974 ATW_WRITE(sc, ATW_SYNRF, 0);
975 DELAY(5 * 1000);
976
977 /* 16 TU max duration for contention-free period */
978 reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
979 ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
980
981 /* XXX I guess that the Cardbus clock is 22MHz?
982 * I am assuming that the role of ATW_TOFS0_USCNT is
983 * to divide the bus clock to get a 1MHz clock---the datasheet is not
984 * very clear on this point. It says in the datasheet that it is
985 * possible for the ADM8211 to accomodate bus speeds between 22MHz
986 * and 33MHz; maybe this is the way? I see a binary-only driver write
987 * these values. These values are also the power-on default.
988 */
989 ATW_WRITE(sc, ATW_TOFS0,
990 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
991 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
992
993 /* Initialize interframe spacing. EIFS=0x64 is used by a binary-only
994 * driver. Go figure.
995 */
996 reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
997 LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
998 ATW_IFST_SIFS_MASK) |
999 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1000 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1001
1002 ATW_WRITE(sc, ATW_IFST, reg);
1003
1004 /* XXX More magic. Might relate to ACK timing. */
1005 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1006 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1007
1008 /* Set up the MMI read/write addresses for the BBP.
1009 *
1010 * TBD find out the Marvel settings.
1011 */
1012 switch (sc->sc_bbptype) {
1013 case ATW_BBPTYPE_INTERSIL:
1014 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1015 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1016 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1017 break;
1018 case ATW_BBPTYPE_MARVEL:
1019 break;
1020 case ATW_BBPTYPE_RFMD:
1021 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1022 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1023 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1024 default:
1025 break;
1026 }
1027
1028 sc->sc_wepctl = 0;
1029 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1030
1031 if ((error = atw_rf3000_init(sc)) != 0)
1032 goto out;
1033
1034 /*
1035 * Initialize the PCI Access Register.
1036 */
1037 sc->sc_busmode = ATW_PAR_BAR; /* XXX what is this? */
1038
1039 /*
1040 * If we're allowed to do so, use Memory Read Line
1041 * and Memory Read Multiple.
1042 *
1043 * XXX Should we use Memory Write and Invalidate?
1044 */
1045 if (sc->sc_flags & ATWF_MRL)
1046 sc->sc_busmode |= ATW_PAR_MRLE;
1047 if (sc->sc_flags & ATWF_MRM)
1048 sc->sc_busmode |= ATW_PAR_MRME;
1049 if (sc->sc_flags & ATWF_MWI)
1050 sc->sc_busmode |= ATW_PAR_MWIE;
1051 if (sc->sc_maxburst == 0)
1052 sc->sc_maxburst = 8; /* ADM8211 default */
1053
1054 switch (sc->sc_cacheline) {
1055 default:
1056 /* Use burst length. */
1057 break;
1058 case 8:
1059 sc->sc_busmode |= ATW_PAR_CAL_8DW;
1060 break;
1061 case 16:
1062 sc->sc_busmode |= ATW_PAR_CAL_16DW;
1063 break;
1064 case 32:
1065 sc->sc_busmode |= ATW_PAR_CAL_32DW;
1066 break;
1067 }
1068 switch (sc->sc_maxburst) {
1069 case 1:
1070 sc->sc_busmode |= ATW_PAR_PBL_1DW;
1071 break;
1072 case 2:
1073 sc->sc_busmode |= ATW_PAR_PBL_2DW;
1074 break;
1075 case 4:
1076 sc->sc_busmode |= ATW_PAR_PBL_4DW;
1077 break;
1078 case 8:
1079 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1080 break;
1081 case 16:
1082 sc->sc_busmode |= ATW_PAR_PBL_16DW;
1083 break;
1084 case 32:
1085 sc->sc_busmode |= ATW_PAR_PBL_32DW;
1086 break;
1087 default:
1088 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1089 break;
1090 }
1091
1092 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1093 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1094 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1095
1096 /*
1097 * Initialize the OPMODE register. We don't write it until
1098 * we're ready to begin the transmit and receive processes.
1099 */
1100 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1101 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1102
1103 /*
1104 * Initialize the transmit descriptor ring.
1105 */
1106 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1107 for (i = 0; i < ATW_NTXDESC; i++) {
1108 /* no transmit chaining */
1109 sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1110 sc->sc_txdescs[i].at_buf2 =
1111 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1112 }
1113 /* use ring mode */
1114 sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1115 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1116 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1117 sc->sc_txfree = ATW_NTXDESC;
1118 sc->sc_txnext = 0;
1119
1120 /*
1121 * Initialize the transmit job descriptors.
1122 */
1123 SIMPLEQ_INIT(&sc->sc_txfreeq);
1124 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1125 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1126 txs = &sc->sc_txsoft[i];
1127 txs->txs_mbuf = NULL;
1128 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1129 }
1130
1131 /*
1132 * Initialize the receive descriptor and receive job
1133 * descriptor rings.
1134 */
1135 for (i = 0; i < ATW_NRXDESC; i++) {
1136 rxs = &sc->sc_rxsoft[i];
1137 if (rxs->rxs_mbuf == NULL) {
1138 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1139 printf("%s: unable to allocate or map rx "
1140 "buffer %d, error = %d\n",
1141 sc->sc_dev.dv_xname, i, error);
1142 /*
1143 * XXX Should attempt to run with fewer receive
1144 * XXX buffers instead of just failing.
1145 */
1146 atw_rxdrain(sc);
1147 goto out;
1148 }
1149 } else
1150 ATW_INIT_RXDESC(sc, i);
1151 }
1152 sc->sc_rxptr = 0;
1153
1154 /* disable all wake-up events */
1155 ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1156 ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1157 ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1158 ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1159
1160 /* ack all wake-up events */
1161 ATW_SET(sc, ATW_WCSR, 0);
1162
1163 /*
1164 * Initialize the interrupt mask and enable interrupts.
1165 */
1166 /* normal interrupts */
1167 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1168 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1169
1170 /* abnormal interrupts */
1171 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1172 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1173 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1174
1175 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1176 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1177 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1178 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1179 ATW_INTR_TRT;
1180
1181 sc->sc_linkint_mask &= sc->sc_inten;
1182 sc->sc_rxint_mask &= sc->sc_inten;
1183 sc->sc_txint_mask &= sc->sc_inten;
1184
1185 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1186 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1187 if (sc->sc_intr_ack != NULL)
1188 (*sc->sc_intr_ack)(sc);
1189
1190 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1191 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1192
1193 /*
1194 * Give the transmit and receive rings to the ADM8211.
1195 */
1196 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1197 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1198
1199 /* common 802.11 configuration */
1200 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1201 switch (ic->ic_opmode) {
1202 case IEEE80211_M_STA:
1203 break;
1204 case IEEE80211_M_AHDEMO: /* XXX */
1205 case IEEE80211_M_IBSS:
1206 ic->ic_flags |= IEEE80211_F_IBSSON;
1207 /*FALLTHROUGH*/
1208 case IEEE80211_M_HOSTAP: /* XXX */
1209 break;
1210 case IEEE80211_M_MONITOR: /* XXX */
1211 break;
1212 }
1213
1214 atw_start_beacon(sc, 0);
1215
1216 switch (ic->ic_opmode) {
1217 case IEEE80211_M_AHDEMO:
1218 case IEEE80211_M_HOSTAP:
1219 ic->ic_bss->ni_intval = ic->ic_lintval;
1220 ic->ic_bss->ni_rssi = 0;
1221 ic->ic_bss->ni_rstamp = 0;
1222 break;
1223 default: /* XXX */
1224 break;
1225 }
1226
1227 atw_write_ssid(sc);
1228 atw_write_sup_rates(sc);
1229 if (ic->ic_caps & IEEE80211_C_WEP)
1230 atw_write_wep(sc);
1231
1232 /*
1233 * Set the receive filter. This will start the transmit and
1234 * receive processes.
1235 */
1236 atw_filter_setup(sc);
1237
1238 /*
1239 * Start the receive process.
1240 */
1241 ATW_WRITE(sc, ATW_RDR, 0x1);
1242
1243 /*
1244 * Note that the interface is now running.
1245 */
1246 ifp->if_flags |= IFF_RUNNING;
1247 ifp->if_flags &= ~IFF_OACTIVE;
1248 ic->ic_state = IEEE80211_S_INIT;
1249
1250 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1251 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1252 else
1253 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1254 out:
1255 if (error) {
1256 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1257 ifp->if_timer = 0;
1258 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1259 }
1260 #ifdef ATW_DEBUG
1261 atw_print_regs(sc, "end of init");
1262 #endif /* ATW_DEBUG */
1263
1264 return (error);
1265 }
1266
1267 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1268 * 0: MAC control of RF3000/Si4126.
1269 *
1270 * Applies power, or selects RF front-end? Sets reset condition.
1271 *
1272 * TBD support non-RFMD BBP, non-SiLabs synth.
1273 */
1274 static void
1275 atw_rfio_enable(struct atw_softc *sc, int enable)
1276 {
1277 if (enable) {
1278 ATW_WRITE(sc, ATW_SYNRF,
1279 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1280 DELAY(atw_rfio_enable_delay);
1281 } else {
1282 ATW_WRITE(sc, ATW_SYNRF, 0);
1283 DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1284 }
1285 }
1286
1287 static int
1288 atw_tune(struct atw_softc *sc)
1289 {
1290 int rc;
1291 u_int32_t reg;
1292 int chan;
1293 struct ieee80211com *ic = &sc->sc_ic;
1294
1295 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1296 if (chan == IEEE80211_CHAN_ANY)
1297 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1298
1299 if (chan == sc->sc_cur_chan)
1300 return 0;
1301
1302 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1303 sc->sc_cur_chan, chan));
1304
1305 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1306
1307 if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1308 (rc = atw_rf3000_tune(sc, chan)) != 0)
1309 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1310 chan);
1311
1312 reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1313 ATW_WRITE(sc, ATW_CAP0,
1314 reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1315
1316 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1317
1318 if (rc == 0)
1319 sc->sc_cur_chan = chan;
1320
1321 return rc;
1322 }
1323
1324 #ifdef ATW_DEBUG
1325 static void
1326 atw_si4126_print(struct atw_softc *sc)
1327 {
1328 struct ifnet *ifp = &sc->sc_ic.ic_if;
1329 u_int addr, val;
1330
1331 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1332 return;
1333
1334 for (addr = 0; addr <= 8; addr++) {
1335 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1336 if (atw_si4126_read(sc, addr, &val) == 0) {
1337 printf("<unknown> (quitting print-out)\n");
1338 break;
1339 }
1340 printf("%05x\n", val);
1341 }
1342 }
1343 #endif /* ATW_DEBUG */
1344
1345 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1346 *
1347 * The RF/IF synthesizer produces two reference frequencies for
1348 * the RF2948B transceiver. The first frequency the RF2948B requires
1349 * is two times the so-called "intermediate frequency" (IF). Since
1350 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1351 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1352 * frequency required by the transceiver is the radio frequency
1353 * (RF). This is a superheterodyne transceiver; for f(chan) the
1354 * center frequency of the channel we are tuning, RF = f(chan) -
1355 * IF.
1356 *
1357 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1358 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1359 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1360 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1361 */
1362 static int
1363 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
1364 {
1365 int rc = 0;
1366 u_int mhz;
1367 u_int R;
1368 u_int32_t reg;
1369 u_int16_t gain;
1370
1371 #ifdef ATW_DEBUG
1372 atw_si4126_print(sc);
1373 #endif /* ATW_DEBUG */
1374
1375 if (chan == 14)
1376 mhz = 2484;
1377 else
1378 mhz = 2412 + 5 * (chan - 1);
1379
1380 /* Tune IF to 748MHz to suit the IF LO input of the
1381 * RF2494B, which is 2 x IF. No need to set an IF divider
1382 * because an IF in 526MHz - 952MHz is allowed.
1383 *
1384 * XIN is 44.000MHz, so divide it by two to get allowable
1385 * range of 2-25MHz. SiLabs tells me that this is not
1386 * strictly necessary.
1387 */
1388
1389 R = 44;
1390
1391 atw_rfio_enable(sc, 1);
1392
1393 /* Power-up RF, IF synthesizers. */
1394 if ((rc = atw_si4126_write(sc, SI4126_POWER,
1395 SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1396 goto out;
1397
1398 /* If RF2 N > 2047, then set KP2 to 1. */
1399 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1400
1401 if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1402 goto out;
1403
1404 /* set LPWR, too? */
1405 if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1406 SI4126_MAIN_XINDIV2)) != 0)
1407 goto out;
1408
1409 /* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN. XIN = 44MHz.
1410 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1411 */
1412 if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1413 goto out;
1414
1415 if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1416 goto out;
1417
1418 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1419 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1420 * which has no RF1!
1421 */
1422 if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1423 goto out;
1424
1425 if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1426 goto out;
1427
1428 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1429 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1430 * Now let's multiply it to mhz. So mhz - IF = N.
1431 */
1432 if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1433 goto out;
1434
1435 if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1436 goto out;
1437
1438 /* wait 100us from power-up for RF, IF to settle */
1439 DELAY(100);
1440
1441 if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1442 /* XXX there is a binary driver which sends
1443 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1444 * that this enables the Si4126 by raising its PWDN#, but I
1445 * think that it actually sets the Prism RF front-end
1446 * to a special mode for channel 14.
1447 */
1448 reg = ATW_READ(sc, ATW_GPIO);
1449 reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1450 reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1451 ATW_WRITE(sc, ATW_GPIO, reg);
1452 }
1453
1454 #ifdef ATW_DEBUG
1455 atw_si4126_print(sc);
1456 #endif /* ATW_DEBUG */
1457
1458 out:
1459 atw_rfio_enable(sc, 0);
1460
1461 return rc;
1462 }
1463
1464 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1465 * diversity.
1466 *
1467 * Call this w/ Tx/Rx suspended.
1468 */
1469 static int
1470 atw_rf3000_init(struct atw_softc *sc)
1471 {
1472 int rc = 0;
1473
1474 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1475
1476 atw_rfio_enable(sc, 1);
1477
1478 /* enable diversity */
1479 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1480
1481 if (rc != 0)
1482 goto out;
1483
1484 /* sensible setting from a binary-only driver */
1485 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1486 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1487
1488 if (rc != 0)
1489 goto out;
1490
1491 /* magic from a binary-only driver */
1492 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1493 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1494
1495 if (rc != 0)
1496 goto out;
1497
1498 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1499
1500 if (rc != 0)
1501 goto out;
1502
1503 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1504
1505 if (rc != 0)
1506 goto out;
1507
1508 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1509
1510 if (rc != 0)
1511 goto out;
1512
1513 /* CCA is acquisition sensitive */
1514 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1515 LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1516
1517 if (rc != 0)
1518 goto out;
1519
1520 out:
1521 atw_rfio_enable(sc, 0);
1522 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1523 return rc;
1524 }
1525
1526 #ifdef ATW_DEBUG
1527 static void
1528 atw_rf3000_print(struct atw_softc *sc)
1529 {
1530 struct ifnet *ifp = &sc->sc_ic.ic_if;
1531 u_int addr, val;
1532
1533 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1534 return;
1535
1536 for (addr = 0x01; addr <= 0x15; addr++) {
1537 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1538 if (atw_rf3000_read(sc, addr, &val) != 0) {
1539 printf("<unknown> (quitting print-out)\n");
1540 break;
1541 }
1542 printf("%08x\n", val);
1543 }
1544 }
1545 #endif /* ATW_DEBUG */
1546
1547 /* Set the power settings on the BBP for channel `chan'. */
1548 static int
1549 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
1550 {
1551 int rc = 0;
1552 u_int32_t reg;
1553 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1554
1555 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1556 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1557 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1558
1559 /* odd channels: LSB, even channels: MSB */
1560 if (chan % 2 == 1) {
1561 txpower &= 0xFF;
1562 lpf_cutoff &= 0xFF;
1563 lna_gs_thresh &= 0xFF;
1564 } else {
1565 txpower >>= 8;
1566 lpf_cutoff >>= 8;
1567 lna_gs_thresh >>= 8;
1568 }
1569
1570 #ifdef ATW_DEBUG
1571 atw_rf3000_print(sc);
1572 #endif /* ATW_DEBUG */
1573
1574 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1575 "lna_gs_thresh %02x\n",
1576 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1577
1578 atw_rfio_enable(sc, 1);
1579
1580 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1581 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1582 goto out;
1583
1584 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1585 goto out;
1586
1587 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1588 goto out;
1589
1590 /* from a binary-only driver. */
1591 reg = ATW_READ(sc, ATW_PLCPHD);
1592 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1593 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1594 ATW_PLCPHD_SERVICE_MASK);
1595 ATW_WRITE(sc, ATW_PLCPHD, reg);
1596
1597 #ifdef ATW_DEBUG
1598 atw_rf3000_print(sc);
1599 #endif /* ATW_DEBUG */
1600
1601 out:
1602 atw_rfio_enable(sc, 0);
1603
1604 return rc;
1605 }
1606
1607 /* Write a register on the RF3000 baseband processor using the
1608 * registers provided by the ADM8211 for this purpose.
1609 *
1610 * Return 0 on success.
1611 */
1612 static int
1613 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1614 {
1615 u_int32_t reg;
1616 int i;
1617
1618 for (i = 1000; --i >= 0; ) {
1619 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1620 break;
1621 DELAY(100);
1622 }
1623
1624 if (i < 0) {
1625 printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1626 return ETIMEDOUT;
1627 }
1628
1629 reg = sc->sc_bbpctl_wr |
1630 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1631 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1632
1633 ATW_WRITE(sc, ATW_BBPCTL, reg);
1634
1635 for (i = 1000; --i >= 0; ) {
1636 DELAY(100);
1637 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1638 break;
1639 }
1640
1641 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1642
1643 if (i < 0) {
1644 printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1645 return ETIMEDOUT;
1646 }
1647 return 0;
1648 }
1649
1650 /* Read a register on the RF3000 baseband processor using the registers
1651 * the ADM8211 provides for this purpose.
1652 *
1653 * The 7-bit register address is addr. Record the 8-bit data in the register
1654 * in *val.
1655 *
1656 * Return 0 on success.
1657 *
1658 * XXX This does not seem to work. The ADM8211 must require more or
1659 * different magic to read the chip than to write it. Possibly some
1660 * of the magic I have derived from a binary-only driver concerns
1661 * the "chip address" (see the RF3000 manual).
1662 */
1663 #ifdef ATW_DEBUG
1664 static int
1665 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1666 {
1667 u_int32_t reg;
1668 int i;
1669
1670 for (i = 1000; --i >= 0; ) {
1671 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1672 break;
1673 DELAY(100);
1674 }
1675
1676 if (i < 0) {
1677 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1678 sc->sc_dev.dv_xname);
1679 return ETIMEDOUT;
1680 }
1681
1682 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1683
1684 ATW_WRITE(sc, ATW_BBPCTL, reg);
1685
1686 for (i = 1000; --i >= 0; ) {
1687 DELAY(100);
1688 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1689 break;
1690 }
1691
1692 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1693
1694 if (i < 0) {
1695 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1696 sc->sc_dev.dv_xname, reg);
1697 return ETIMEDOUT;
1698 }
1699 if (val != NULL)
1700 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1701 return 0;
1702 }
1703 #endif /* ATW_DEBUG */
1704
1705 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1706 * provided by the ADM8211 for that purpose.
1707 *
1708 * val is 18 bits of data, and val is the 4-bit address of the register.
1709 *
1710 * Return 0 on success.
1711 */
1712 static int
1713 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1714 {
1715 u_int32_t bits, reg;
1716 int i;
1717
1718 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1719 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1720
1721 for (i = 1000; --i >= 0; ) {
1722 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1723 break;
1724 DELAY(100);
1725 }
1726
1727 if (i < 0) {
1728 printf("%s: start atw_si4126_write, SYNCTL busy\n",
1729 sc->sc_dev.dv_xname);
1730 return ETIMEDOUT;
1731 }
1732
1733 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1734 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1735
1736 reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
1737
1738 ATW_WRITE(sc, ATW_SYNCTL, reg);
1739
1740 for (i = 1000; --i >= 0; ) {
1741 DELAY(100);
1742 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1743 break;
1744 }
1745
1746 /* restore to acceptable starting condition */
1747 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1748
1749 if (i < 0) {
1750 printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1751 sc->sc_dev.dv_xname, reg);
1752 return ETIMEDOUT;
1753 }
1754 return 0;
1755 }
1756
1757 /* Read 18-bit data from the 4-bit address addr in Si4126
1758 * RF synthesizer and write the data to *val. Return 0 on success.
1759 *
1760 * XXX This does not seem to work. The ADM8211 must require more or
1761 * different magic to read the chip than to write it.
1762 */
1763 #ifdef ATW_DEBUG
1764 static int
1765 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1766 {
1767 u_int32_t reg;
1768 int i;
1769
1770 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1771
1772 for (i = 1000; --i >= 0; ) {
1773 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1774 break;
1775 DELAY(100);
1776 }
1777
1778 if (i < 0) {
1779 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1780 sc->sc_dev.dv_xname);
1781 return ETIMEDOUT;
1782 }
1783
1784 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1785
1786 ATW_WRITE(sc, ATW_SYNCTL, reg);
1787
1788 for (i = 1000; --i >= 0; ) {
1789 DELAY(100);
1790 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1791 break;
1792 }
1793
1794 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1795
1796 if (i < 0) {
1797 printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1798 sc->sc_dev.dv_xname, reg);
1799 return ETIMEDOUT;
1800 }
1801 if (val != NULL)
1802 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1803 ATW_SYNCTL_DATA_MASK);
1804 return 0;
1805 }
1806 #endif /* ATW_DEBUG */
1807
1808 /* XXX is the endianness correct? test. */
1809 #define atw_calchash(addr) \
1810 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1811
1812 /*
1813 * atw_filter_setup:
1814 *
1815 * Set the ADM8211's receive filter.
1816 */
1817 static void
1818 atw_filter_setup(struct atw_softc *sc)
1819 {
1820 struct ieee80211com *ic = &sc->sc_ic;
1821 struct ethercom *ec = &ic->ic_ec;
1822 struct ifnet *ifp = &sc->sc_ic.ic_if;
1823 int hash;
1824 u_int32_t hashes[2] = { 0, 0 };
1825 struct ether_multi *enm;
1826 struct ether_multistep step;
1827
1828 DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1829 sc->sc_dev.dv_xname, sc->sc_flags));
1830
1831 /*
1832 * If we're running, idle the receive engine. If we're NOT running,
1833 * we're being called from atw_init(), and our writing ATW_NAR will
1834 * start the transmit and receive processes in motion.
1835 */
1836 if (ifp->if_flags & IFF_RUNNING)
1837 atw_idle(sc, ATW_NAR_SR);
1838
1839 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1840
1841 ifp->if_flags &= ~IFF_ALLMULTI;
1842
1843 if (ifp->if_flags & IFF_PROMISC) {
1844 sc->sc_opmode |= ATW_NAR_PR;
1845 allmulti:
1846 ifp->if_flags |= IFF_ALLMULTI;
1847 goto setit;
1848 }
1849
1850 /*
1851 * Program the 64-bit multicast hash filter.
1852 */
1853 ETHER_FIRST_MULTI(step, ec, enm);
1854 while (enm != NULL) {
1855 /* XXX */
1856 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1857 ETHER_ADDR_LEN) != 0)
1858 goto allmulti;
1859
1860 hash = atw_calchash(enm->enm_addrlo);
1861 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1862 ETHER_NEXT_MULTI(step, enm);
1863 }
1864
1865 if (ifp->if_flags & IFF_BROADCAST) {
1866 hash = atw_calchash(etherbroadcastaddr);
1867 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1868 }
1869
1870 /* all bits set => hash is useless */
1871 if (~(hashes[0] & hashes[1]) == 0)
1872 goto allmulti;
1873
1874 setit:
1875 if (ifp->if_flags & IFF_ALLMULTI)
1876 sc->sc_opmode |= ATW_NAR_MM;
1877
1878 /* XXX in scan mode, do not filter packets. maybe this is
1879 * unnecessary.
1880 */
1881 if (ic->ic_state == IEEE80211_S_SCAN)
1882 sc->sc_opmode |= ATW_NAR_PR;
1883
1884 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1885 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1886 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1887 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1888 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1889
1890 DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1891 }
1892
1893 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1894 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1895 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1896 * no beacon with the preferred BSSID and SSID in the number of
1897 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1898 */
1899 static void
1900 atw_write_bssid(struct atw_softc *sc)
1901 {
1902 struct ieee80211com *ic = &sc->sc_ic;
1903 u_int8_t *bssid;
1904
1905 bssid = ic->ic_bss->ni_bssid;
1906
1907 ATW_WRITE(sc, ATW_ABDA1,
1908 (ATW_READ(sc, ATW_ABDA1) &
1909 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1910 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1911 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1912
1913 ATW_WRITE(sc, ATW_BSSID0,
1914 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1915 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1916 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1917 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1918
1919 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1920 ether_sprintf(sc->sc_bssid)));
1921 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1922
1923 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1924 }
1925
1926 /* Tell the ADM8211 how many beacon intervals must pass without
1927 * receiving a beacon with the preferred BSSID & SSID set by
1928 * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
1929 * raised.
1930 */
1931 static void
1932 atw_write_bcn_thresh(struct atw_softc *sc)
1933 {
1934 struct ieee80211com *ic = &sc->sc_ic;
1935 int lost_bcn_thresh;
1936
1937 /* Lose link after one second or 7 beacons, whichever comes
1938 * first, but do not lose link before 2 beacons are lost.
1939 *
1940 * In host AP mode, set the lost-beacon threshold to 0.
1941 */
1942 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1943 lost_bcn_thresh = 0;
1944 else {
1945 int beacons_per_second =
1946 1000000 / (IEEE80211_DUR_TU * MAX(1,ic->ic_bss->ni_intval));
1947 lost_bcn_thresh = MAX(2, MIN(7, beacons_per_second));
1948 }
1949
1950 /* XXX resets wake-up status bits */
1951 ATW_WRITE(sc, ATW_WCSR,
1952 (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
1953 (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
1954
1955 DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
1956 sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
1957
1958 sc->sc_lost_bcn_thresh = lost_bcn_thresh;
1959
1960 DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
1961 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
1962 }
1963
1964 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1965 * 16-bit word.
1966 */
1967 static void
1968 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
1969 {
1970 u_int i;
1971 u_int8_t *ptr;
1972
1973 memcpy(&sc->sc_sram[ofs], buf, buflen);
1974
1975 if (ofs % 2 != 0) {
1976 ofs--;
1977 buflen++;
1978 }
1979
1980 if (buflen % 2 != 0)
1981 buflen++;
1982
1983 assert(buflen + ofs <= ATW_SRAM_SIZE);
1984
1985 ptr = &sc->sc_sram[ofs];
1986
1987 for (i = 0; i < buflen; i += 2) {
1988 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
1989 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
1990 DELAY(atw_writewep_delay);
1991
1992 ATW_WRITE(sc, ATW_WESK,
1993 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
1994 DELAY(atw_writewep_delay);
1995 }
1996 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
1997
1998 if (sc->sc_if.if_flags & IFF_DEBUG) {
1999 int n_octets = 0;
2000 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2001 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2002 for (i = 0; i < buflen; i++) {
2003 printf(" %02x", ptr[i]);
2004 if (++n_octets % 24 == 0)
2005 printf("\n");
2006 }
2007 if (n_octets % 24 != 0)
2008 printf("\n");
2009 }
2010 }
2011
2012 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2013 static void
2014 atw_write_wep(struct atw_softc *sc)
2015 {
2016 struct ieee80211com *ic = &sc->sc_ic;
2017 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2018 u_int8_t buf[IEEE80211_WEP_NKID]
2019 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2020 u_int32_t reg;
2021 int i;
2022
2023 sc->sc_wepctl = 0;
2024 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2025
2026 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2027 return;
2028
2029 memset(&buf[0][0], 0, sizeof(buf));
2030
2031 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2032 if (ic->ic_nw_keys[i].wk_len > 5) {
2033 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2034 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2035 buf[i][1] = ATW_WEP_ENABLED;
2036 } else {
2037 buf[i][1] = 0;
2038 continue;
2039 }
2040 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2041 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2042 ic->ic_nw_keys[i].wk_len - 1);
2043 }
2044
2045 reg = ATW_READ(sc, ATW_MACTEST);
2046 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2047 reg &= ~ATW_MACTEST_KEYID_MASK;
2048 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2049 ATW_WRITE(sc, ATW_MACTEST, reg);
2050
2051 /* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2052 * throughout.)
2053 */
2054 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2055 if (sc->sc_if.if_flags & IFF_LINK2)
2056 sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2057
2058 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2059 sizeof(buf));
2060 }
2061
2062 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2063
2064 static void
2065 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2066 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2067 {
2068 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2069
2070 switch (subtype) {
2071 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2072 /* do nothing: hardware answers probe request */
2073 break;
2074 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2075 case IEEE80211_FC0_SUBTYPE_BEACON:
2076 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2077 break;
2078 default:
2079 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2080 break;
2081 }
2082 return;
2083 }
2084
2085 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2086 * of IBSSs with like SSID/channel but different BSSID. It joins the
2087 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2088 * convention. Possibly the ADMtek chip does this for us; I will have
2089 * to test to find out.
2090 *
2091 * XXX we should add the duration field of the received beacon to
2092 * the TSF time it contains before comparing it with the ADM8211's
2093 * TSF.
2094 */
2095 static void
2096 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2097 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2098 {
2099 struct atw_softc *sc;
2100 struct ieee80211_frame *wh;
2101 u_int64_t tsft, bcn_tsft;
2102 u_int32_t tsftl, tsfth;
2103 int do_print = 0;
2104
2105 sc = (struct atw_softc*)ic->ic_if.if_softc;
2106
2107 if (ic->ic_if.if_flags & IFF_DEBUG)
2108 do_print = (ic->ic_if.if_flags & IFF_LINK0)
2109 ? 1 : ratecheck(&sc->sc_last_beacon,
2110 &atw_beacon_mininterval);
2111
2112 wh = mtod(m0, struct ieee80211_frame *);
2113
2114 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2115
2116 if (ic->ic_state != IEEE80211_S_RUN) {
2117 if (do_print)
2118 printf("%s: atw_recv_beacon: not running\n",
2119 sc->sc_dev.dv_xname);
2120 return;
2121 }
2122
2123 if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2124 ic->ic_bss->ni_chan)) == NULL) {
2125 if (do_print)
2126 printf("%s: atw_recv_beacon: no node %s\n",
2127 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2128 return;
2129 }
2130
2131 if (ieee80211_match_bss(ic, ni) != 0) {
2132 if (do_print)
2133 printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2134 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2135 return;
2136 }
2137
2138 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2139 return;
2140
2141 if (do_print)
2142 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2143 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2144
2145 if (ic->ic_opmode != IEEE80211_M_IBSS)
2146 return;
2147
2148 /* If we read TSFTL right before rollover, we read a TSF timer
2149 * that is too high rather than too low. This prevents a spurious
2150 * synchronization down the line, however, our IBSS could suffer
2151 * from a creeping TSF....
2152 */
2153 tsftl = ATW_READ(sc, ATW_TSFTL);
2154 tsfth = ATW_READ(sc, ATW_TSFTH);
2155
2156 tsft = (u_int64_t)tsfth << 32 | tsftl;
2157 bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2158
2159 if (do_print)
2160 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2161 sc->sc_dev.dv_xname, tsft, bcn_tsft);
2162
2163 /* we are faster, let the other guy catch up */
2164 if (bcn_tsft < tsft)
2165 return;
2166
2167 if (do_print)
2168 printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2169 ether_sprintf(wh->i_addr2));
2170
2171 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2172
2173 #if 0
2174 atw_tsf(sc);
2175 #endif
2176
2177 /* negotiate rates with new IBSS */
2178 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2179 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2180 if (ni->ni_rates.rs_nrates == 0) {
2181 printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2182 ether_sprintf(ni->ni_bssid));
2183 return;
2184 }
2185
2186 if (do_print) {
2187 printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2188 ether_sprintf(ic->ic_bss->ni_bssid));
2189 printf("%s ", ether_sprintf(ni->ni_bssid));
2190 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2191 }
2192
2193 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2194
2195 atw_write_bssid(sc);
2196 atw_write_bcn_thresh(sc);
2197 atw_start_beacon(sc, 1);
2198 }
2199
2200 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2201 * In ad hoc mode, the SSID is written to the beacons sent by the
2202 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2203 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2204 * indications.
2205 */
2206 static void
2207 atw_write_ssid(struct atw_softc *sc)
2208 {
2209 struct ieee80211com *ic = &sc->sc_ic;
2210 /* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2211 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2212
2213 memset(buf, 0, sizeof(buf));
2214 buf[0] = ic->ic_bss->ni_esslen;
2215 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2216
2217 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2218 }
2219
2220 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2221 * In ad hoc mode, the supported rates are written to beacons sent by the
2222 * ADM8211.
2223 */
2224 static void
2225 atw_write_sup_rates(struct atw_softc *sc)
2226 {
2227 struct ieee80211com *ic = &sc->sc_ic;
2228 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2229 * supported rates
2230 */
2231 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2232
2233 memset(buf, 0, sizeof(buf));
2234
2235 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2236
2237 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2238 ic->ic_bss->ni_rates.rs_nrates);
2239
2240 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2241 }
2242
2243 /* Start/stop sending beacons. */
2244 void
2245 atw_start_beacon(struct atw_softc *sc, int start)
2246 {
2247 struct ieee80211com *ic = &sc->sc_ic;
2248 u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2249
2250 if (ATW_IS_ENABLED(sc) == 0)
2251 return;
2252
2253 len = capinfo = 0;
2254
2255 /* start beacons */
2256 len = sizeof(struct ieee80211_frame) +
2257 8 /* timestamp */ + 2 /* beacon interval */ +
2258 2 /* capability info */ +
2259 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2260 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2261 3 /* DS parameters */ +
2262 IEEE80211_CRC_LEN;
2263
2264 reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2265
2266 reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2267
2268 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2269 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2270
2271 if (!start)
2272 return;
2273
2274 /* TBD use ni_capinfo */
2275
2276 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2277 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2278 if (ic->ic_flags & IEEE80211_F_WEPON)
2279 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2280
2281 switch (ic->ic_opmode) {
2282 case IEEE80211_M_IBSS:
2283 len += 4; /* IBSS parameters */
2284 capinfo |= IEEE80211_CAPINFO_IBSS;
2285 break;
2286 case IEEE80211_M_HOSTAP:
2287 /* XXX 6-byte minimum TIM */
2288 len += atw_beacon_len_adjust;
2289 capinfo |= IEEE80211_CAPINFO_ESS;
2290 break;
2291 default:
2292 return;
2293 }
2294
2295 reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2296 reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2297
2298 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2299 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2300
2301 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2302 sc->sc_dev.dv_xname, reg_bcnt));
2303
2304 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2305 sc->sc_dev.dv_xname, reg_cap1));
2306 }
2307
2308 /* First beacon was sent at time 0 microseconds, current time is
2309 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2310 * microseconds. Return the expected time in microseconds for the
2311 * beacon after next.
2312 */
2313 static __inline u_int64_t
2314 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2315 {
2316 return tsft + (tbtt - tsft % tbtt);
2317 }
2318
2319 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2320 * the ieee80211com.
2321 *
2322 * Predict the next target beacon transmission time (TBTT) and
2323 * write it to the ADM8211.
2324 */
2325 static void
2326 atw_tsf(struct atw_softc *sc)
2327 {
2328 #define TBTTOFS 20 /* TU */
2329
2330 struct ieee80211com *ic = &sc->sc_ic;
2331 u_int64_t tsft, tbtt;
2332
2333 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2334 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2335 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2336 tsft = ATW_READ(sc, ATW_TSFTH);
2337 tsft <<= 32;
2338 tsft |= ATW_READ(sc, ATW_TSFTL);
2339 *(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2340 } else
2341 tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2342
2343 tbtt = atw_predict_beacon(tsft,
2344 ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2345
2346 /* skip one more beacon so that the TBTT cannot pass before
2347 * we've programmed it, and also so that we can subtract a
2348 * few TU so that we wake a little before TBTT.
2349 */
2350 tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2351
2352 /* wake up a little early */
2353 tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2354
2355 DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2356 sc->sc_dev.dv_xname, tsft, tbtt));
2357
2358 ATW_WRITE(sc, ATW_TOFS1,
2359 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2360 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2361 LSHIFT(
2362 MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2363 ATW_TOFS1_TBTTPRE_MASK));
2364 #undef TBTTOFS
2365 }
2366
2367 static void
2368 atw_next_scan(void *arg)
2369 {
2370 struct atw_softc *sc = arg;
2371 struct ieee80211com *ic = &sc->sc_ic;
2372 struct ifnet *ifp = &ic->ic_if;
2373 int s;
2374
2375 /* don't call atw_start w/o network interrupts blocked */
2376 s = splnet();
2377 if (ic->ic_state == IEEE80211_S_SCAN)
2378 ieee80211_next_scan(ifp);
2379 splx(s);
2380 }
2381
2382 /* Synchronize the hardware state with the software state. */
2383 static int
2384 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2385 {
2386 struct ifnet *ifp = &ic->ic_if;
2387 struct atw_softc *sc = ifp->if_softc;
2388 enum ieee80211_state ostate;
2389 int error;
2390
2391 ostate = ic->ic_state;
2392
2393 if (nstate == IEEE80211_S_INIT) {
2394 callout_stop(&sc->sc_scan_ch);
2395 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2396 atw_start_beacon(sc, 0);
2397 return (*sc->sc_newstate)(ic, nstate, arg);
2398 }
2399
2400 if ((error = atw_tune(sc)) != 0)
2401 return error;
2402
2403 switch (nstate) {
2404 case IEEE80211_S_ASSOC:
2405 break;
2406 case IEEE80211_S_INIT:
2407 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2408 break;
2409 case IEEE80211_S_SCAN:
2410 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2411 atw_write_bssid(sc);
2412
2413 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2414 atw_next_scan, sc);
2415
2416 break;
2417 case IEEE80211_S_RUN:
2418 if (ic->ic_opmode == IEEE80211_M_STA)
2419 break;
2420 /*FALLTHROUGH*/
2421 case IEEE80211_S_AUTH:
2422 atw_write_bssid(sc);
2423 atw_write_bcn_thresh(sc);
2424 atw_write_ssid(sc);
2425 atw_write_sup_rates(sc);
2426
2427 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2428 ic->ic_opmode == IEEE80211_M_MONITOR)
2429 break;
2430
2431 /* set listen interval
2432 * XXX do software units agree w/ hardware?
2433 */
2434 ATW_WRITE(sc, ATW_BPLI,
2435 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2436 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2437 ATW_BPLI_LI_MASK));
2438
2439 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2440 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2441
2442 atw_tsf(sc);
2443 break;
2444 }
2445
2446 if (nstate != IEEE80211_S_SCAN)
2447 callout_stop(&sc->sc_scan_ch);
2448
2449 if (nstate == IEEE80211_S_RUN &&
2450 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2451 ic->ic_opmode == IEEE80211_M_IBSS))
2452 atw_start_beacon(sc, 1);
2453 else
2454 atw_start_beacon(sc, 0);
2455
2456 return (*sc->sc_newstate)(ic, nstate, arg);
2457 }
2458
2459 /*
2460 * atw_add_rxbuf:
2461 *
2462 * Add a receive buffer to the indicated descriptor.
2463 */
2464 int
2465 atw_add_rxbuf(struct atw_softc *sc, int idx)
2466 {
2467 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2468 struct mbuf *m;
2469 int error;
2470
2471 MGETHDR(m, M_DONTWAIT, MT_DATA);
2472 if (m == NULL)
2473 return (ENOBUFS);
2474
2475 MCLGET(m, M_DONTWAIT);
2476 if ((m->m_flags & M_EXT) == 0) {
2477 m_freem(m);
2478 return (ENOBUFS);
2479 }
2480
2481 if (rxs->rxs_mbuf != NULL)
2482 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2483
2484 rxs->rxs_mbuf = m;
2485
2486 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2487 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2488 BUS_DMA_READ|BUS_DMA_NOWAIT);
2489 if (error) {
2490 printf("%s: can't load rx DMA map %d, error = %d\n",
2491 sc->sc_dev.dv_xname, idx, error);
2492 panic("atw_add_rxbuf"); /* XXX */
2493 }
2494
2495 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2496 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2497
2498 ATW_INIT_RXDESC(sc, idx);
2499
2500 return (0);
2501 }
2502
2503 /*
2504 * Release any queued transmit buffers.
2505 */
2506 void
2507 atw_txdrain(struct atw_softc *sc)
2508 {
2509 struct atw_txsoft *txs;
2510
2511 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2512 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2513 if (txs->txs_mbuf != NULL) {
2514 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2515 m_freem(txs->txs_mbuf);
2516 txs->txs_mbuf = NULL;
2517 }
2518 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2519 }
2520 sc->sc_tx_timer = 0;
2521 }
2522
2523 /*
2524 * atw_stop: [ ifnet interface function ]
2525 *
2526 * Stop transmission on the interface.
2527 */
2528 void
2529 atw_stop(struct ifnet *ifp, int disable)
2530 {
2531 struct atw_softc *sc = ifp->if_softc;
2532 struct ieee80211com *ic = &sc->sc_ic;
2533
2534 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2535
2536 /* Disable interrupts. */
2537 ATW_WRITE(sc, ATW_IER, 0);
2538
2539 /* Stop the transmit and receive processes. */
2540 sc->sc_opmode = 0;
2541 ATW_WRITE(sc, ATW_NAR, 0);
2542 ATW_WRITE(sc, ATW_TDBD, 0);
2543 ATW_WRITE(sc, ATW_TDBP, 0);
2544 ATW_WRITE(sc, ATW_RDB, 0);
2545
2546 atw_txdrain(sc);
2547
2548 if (disable) {
2549 atw_rxdrain(sc);
2550 atw_disable(sc);
2551 }
2552
2553 /*
2554 * Mark the interface down and cancel the watchdog timer.
2555 */
2556 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2557 ifp->if_timer = 0;
2558
2559 if (!disable)
2560 atw_reset(sc);
2561 }
2562
2563 /*
2564 * atw_rxdrain:
2565 *
2566 * Drain the receive queue.
2567 */
2568 void
2569 atw_rxdrain(struct atw_softc *sc)
2570 {
2571 struct atw_rxsoft *rxs;
2572 int i;
2573
2574 for (i = 0; i < ATW_NRXDESC; i++) {
2575 rxs = &sc->sc_rxsoft[i];
2576 if (rxs->rxs_mbuf == NULL)
2577 continue;
2578 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2579 m_freem(rxs->rxs_mbuf);
2580 rxs->rxs_mbuf = NULL;
2581 }
2582 }
2583
2584 /*
2585 * atw_detach:
2586 *
2587 * Detach an ADM8211 interface.
2588 */
2589 int
2590 atw_detach(struct atw_softc *sc)
2591 {
2592 struct ifnet *ifp = &sc->sc_ic.ic_if;
2593 struct atw_rxsoft *rxs;
2594 struct atw_txsoft *txs;
2595 int i;
2596
2597 /*
2598 * Succeed now if there isn't any work to do.
2599 */
2600 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2601 return (0);
2602
2603 ieee80211_ifdetach(ifp);
2604 if_detach(ifp);
2605
2606 for (i = 0; i < ATW_NRXDESC; i++) {
2607 rxs = &sc->sc_rxsoft[i];
2608 if (rxs->rxs_mbuf != NULL) {
2609 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2610 m_freem(rxs->rxs_mbuf);
2611 rxs->rxs_mbuf = NULL;
2612 }
2613 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2614 }
2615 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2616 txs = &sc->sc_txsoft[i];
2617 if (txs->txs_mbuf != NULL) {
2618 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2619 m_freem(txs->txs_mbuf);
2620 txs->txs_mbuf = NULL;
2621 }
2622 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2623 }
2624 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2625 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2626 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2627 sizeof(struct atw_control_data));
2628 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2629
2630 shutdownhook_disestablish(sc->sc_sdhook);
2631 powerhook_disestablish(sc->sc_powerhook);
2632
2633 if (sc->sc_srom)
2634 free(sc->sc_srom, M_DEVBUF);
2635
2636 return (0);
2637 }
2638
2639 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2640 void
2641 atw_shutdown(void *arg)
2642 {
2643 struct atw_softc *sc = arg;
2644
2645 atw_stop(&sc->sc_ic.ic_if, 1);
2646 }
2647
2648 int
2649 atw_intr(void *arg)
2650 {
2651 struct atw_softc *sc = arg;
2652 struct ifnet *ifp = &sc->sc_ic.ic_if;
2653 u_int32_t status, rxstatus, txstatus, linkstatus;
2654 int handled = 0, txthresh;
2655
2656 #ifdef DEBUG
2657 if (ATW_IS_ENABLED(sc) == 0)
2658 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2659 #endif
2660
2661 /*
2662 * If the interface isn't running, the interrupt couldn't
2663 * possibly have come from us.
2664 */
2665 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2666 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2667 return (0);
2668
2669 for (;;) {
2670 status = ATW_READ(sc, ATW_STSR);
2671
2672 if (status)
2673 ATW_WRITE(sc, ATW_STSR, status);
2674
2675 if (sc->sc_intr_ack != NULL)
2676 (*sc->sc_intr_ack)(sc);
2677
2678 #ifdef ATW_DEBUG
2679 #define PRINTINTR(flag) do { \
2680 if ((status & flag) != 0) { \
2681 printf("%s" #flag, delim); \
2682 delim = ","; \
2683 } \
2684 } while (0)
2685
2686 if (atw_debug > 1 && status) {
2687 const char *delim = "<";
2688
2689 printf("%s: reg[STSR] = %x",
2690 sc->sc_dev.dv_xname, status);
2691
2692 PRINTINTR(ATW_INTR_FBE);
2693 PRINTINTR(ATW_INTR_LINKOFF);
2694 PRINTINTR(ATW_INTR_LINKON);
2695 PRINTINTR(ATW_INTR_RCI);
2696 PRINTINTR(ATW_INTR_RDU);
2697 PRINTINTR(ATW_INTR_REIS);
2698 PRINTINTR(ATW_INTR_RPS);
2699 PRINTINTR(ATW_INTR_TCI);
2700 PRINTINTR(ATW_INTR_TDU);
2701 PRINTINTR(ATW_INTR_TLT);
2702 PRINTINTR(ATW_INTR_TPS);
2703 PRINTINTR(ATW_INTR_TRT);
2704 PRINTINTR(ATW_INTR_TUF);
2705 PRINTINTR(ATW_INTR_BCNTC);
2706 PRINTINTR(ATW_INTR_ATIME);
2707 PRINTINTR(ATW_INTR_TBTT);
2708 PRINTINTR(ATW_INTR_TSCZ);
2709 PRINTINTR(ATW_INTR_TSFTF);
2710 printf(">\n");
2711 }
2712 #undef PRINTINTR
2713 #endif /* ATW_DEBUG */
2714
2715 if ((status & sc->sc_inten) == 0)
2716 break;
2717
2718 handled = 1;
2719
2720 rxstatus = status & sc->sc_rxint_mask;
2721 txstatus = status & sc->sc_txint_mask;
2722 linkstatus = status & sc->sc_linkint_mask;
2723
2724 if (linkstatus) {
2725 atw_linkintr(sc, linkstatus);
2726 }
2727
2728 if (rxstatus) {
2729 /* Grab any new packets. */
2730 atw_rxintr(sc);
2731
2732 if (rxstatus & ATW_INTR_RDU) {
2733 printf("%s: receive ring overrun\n",
2734 sc->sc_dev.dv_xname);
2735 /* Get the receive process going again. */
2736 ATW_WRITE(sc, ATW_RDR, 0x1);
2737 break;
2738 }
2739 }
2740
2741 if (txstatus) {
2742 /* Sweep up transmit descriptors. */
2743 atw_txintr(sc);
2744
2745 if (txstatus & ATW_INTR_TLT)
2746 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2747 sc->sc_dev.dv_xname));
2748
2749 if (txstatus & ATW_INTR_TRT)
2750 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2751 sc->sc_dev.dv_xname));
2752
2753 /* If Tx under-run, increase our transmit threshold
2754 * if another is available.
2755 */
2756 txthresh = sc->sc_txthresh + 1;
2757 if ((txstatus & ATW_INTR_TUF) &&
2758 sc->sc_txth[txthresh].txth_name != NULL) {
2759 /* Idle the transmit process. */
2760 atw_idle(sc, ATW_NAR_ST);
2761
2762 sc->sc_txthresh = txthresh;
2763 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2764 sc->sc_opmode |=
2765 sc->sc_txth[txthresh].txth_opmode;
2766 printf("%s: transmit underrun; new "
2767 "threshold: %s\n", sc->sc_dev.dv_xname,
2768 sc->sc_txth[txthresh].txth_name);
2769
2770 /* Set the new threshold and restart
2771 * the transmit process.
2772 */
2773 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2774 /* XXX Log every Nth underrun from
2775 * XXX now on?
2776 */
2777 }
2778 }
2779
2780 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2781 if (status & ATW_INTR_TPS)
2782 printf("%s: transmit process stopped\n",
2783 sc->sc_dev.dv_xname);
2784 if (status & ATW_INTR_RPS)
2785 printf("%s: receive process stopped\n",
2786 sc->sc_dev.dv_xname);
2787 (void)atw_init(ifp);
2788 break;
2789 }
2790
2791 if (status & ATW_INTR_FBE) {
2792 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2793 (void)atw_init(ifp);
2794 break;
2795 }
2796
2797 /*
2798 * Not handled:
2799 *
2800 * Transmit buffer unavailable -- normal
2801 * condition, nothing to do, really.
2802 *
2803 * Early receive interrupt -- not available on
2804 * all chips, we just use RI. We also only
2805 * use single-segment receive DMA, so this
2806 * is mostly useless.
2807 *
2808 * TBD others
2809 */
2810 }
2811
2812 /* Try to get more packets going. */
2813 atw_start(ifp);
2814
2815 return (handled);
2816 }
2817
2818 /*
2819 * atw_idle:
2820 *
2821 * Cause the transmit and/or receive processes to go idle.
2822 *
2823 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2824 * process in STSR if I clear SR or ST after the process has already
2825 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2826 * do not seem to be too reliable. Perhaps I have the sense of the
2827 * Rx bits switched with the Tx bits?
2828 */
2829 void
2830 atw_idle(struct atw_softc *sc, u_int32_t bits)
2831 {
2832 u_int32_t ackmask = 0, opmode, stsr, test0;
2833 int i, s;
2834
2835 /* without this, somehow we run concurrently w/ interrupt handler */
2836 s = splnet();
2837
2838 opmode = sc->sc_opmode & ~bits;
2839
2840 if (bits & ATW_NAR_SR)
2841 ackmask |= ATW_INTR_RPS;
2842
2843 if (bits & ATW_NAR_ST) {
2844 ackmask |= ATW_INTR_TPS;
2845 /* set ATW_NAR_HF to flush TX FIFO. */
2846 opmode |= ATW_NAR_HF;
2847 }
2848
2849 ATW_WRITE(sc, ATW_NAR, opmode);
2850
2851 for (i = 0; i < 1000; i++) {
2852 stsr = ATW_READ(sc, ATW_STSR);
2853 if ((stsr & ackmask) == ackmask)
2854 break;
2855 DELAY(10);
2856 }
2857
2858 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2859
2860 if ((stsr & ackmask) == ackmask)
2861 goto out;
2862
2863 test0 = ATW_READ(sc, ATW_TEST0);
2864
2865 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2866 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2867 printf("%s: transmit process not idle [%s]\n",
2868 sc->sc_dev.dv_xname,
2869 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2870 printf("%s: bits %08x test0 %08x stsr %08x\n",
2871 sc->sc_dev.dv_xname, bits, test0, stsr);
2872 }
2873
2874 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2875 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2876 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2877 sc->sc_dev.dv_xname,
2878 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2879 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2880 sc->sc_dev.dv_xname, bits, test0, stsr));
2881 }
2882 out:
2883 if ((bits & ATW_NAR_ST) != 0)
2884 atw_txdrain(sc);
2885 splx(s);
2886 return;
2887 }
2888
2889 /*
2890 * atw_linkintr:
2891 *
2892 * Helper; handle link-status interrupts.
2893 */
2894 void
2895 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2896 {
2897 struct ieee80211com *ic = &sc->sc_ic;
2898
2899 if (ic->ic_state != IEEE80211_S_RUN)
2900 return;
2901
2902 if (linkstatus & ATW_INTR_LINKON) {
2903 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2904 sc->sc_rescan_timer = 0;
2905 } else if (linkstatus & ATW_INTR_LINKOFF) {
2906 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2907 if (ic->ic_opmode != IEEE80211_M_STA)
2908 return;
2909 sc->sc_rescan_timer = 3;
2910 ic->ic_if.if_timer = 1;
2911 }
2912 }
2913
2914 /*
2915 * atw_rxintr:
2916 *
2917 * Helper; handle receive interrupts.
2918 */
2919 void
2920 atw_rxintr(struct atw_softc *sc)
2921 {
2922 static int rate_tbl[] = {2, 4, 11, 22, 44};
2923 struct ieee80211com *ic = &sc->sc_ic;
2924 struct ieee80211_node *ni;
2925 struct ieee80211_frame *wh;
2926 struct ifnet *ifp = &ic->ic_if;
2927 struct atw_rxsoft *rxs;
2928 struct mbuf *m;
2929 u_int32_t rxstat;
2930 int i, len, rate, rate0;
2931 u_int32_t rssi;
2932
2933 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2934 rxs = &sc->sc_rxsoft[i];
2935
2936 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2937
2938 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2939 rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2940 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2941
2942 if (rxstat & ATW_RXSTAT_OWN)
2943 break; /* We have processed all receive buffers. */
2944
2945 DPRINTF3(sc,
2946 ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2947 sc->sc_dev.dv_xname,
2948 sc->sc_rxdescs[i].ar_stat,
2949 sc->sc_rxdescs[i].ar_rssi,
2950 sc->sc_rxdescs[i].ar_buf1,
2951 sc->sc_rxdescs[i].ar_buf2));
2952
2953 /*
2954 * Make sure the packet fits in one buffer. This should
2955 * always be the case.
2956 */
2957 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2958 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2959 printf("%s: incoming packet spilled, resetting\n",
2960 sc->sc_dev.dv_xname);
2961 (void)atw_init(ifp);
2962 return;
2963 }
2964
2965 /*
2966 * If an error occurred, update stats, clear the status
2967 * word, and leave the packet buffer in place. It will
2968 * simply be reused the next time the ring comes around.
2969 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2970 * error.
2971 */
2972
2973 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
2974 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
2975 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
2976 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
2977 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
2978 ATW_RXSTAT_ICVE)) != 0)) {
2979 #define PRINTERR(bit, str) \
2980 if (rxstat & (bit)) \
2981 printf("%s: receive error: %s\n", \
2982 sc->sc_dev.dv_xname, str)
2983 ifp->if_ierrors++;
2984 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
2985 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
2986 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
2987 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
2988 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
2989 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
2990 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
2991 #undef PRINTERR
2992 ATW_INIT_RXDESC(sc, i);
2993 continue;
2994 }
2995
2996 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2997 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2998
2999 /*
3000 * No errors; receive the packet. Note the ADM8211
3001 * includes the CRC in promiscuous mode.
3002 */
3003 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3004
3005 /*
3006 * Allocate a new mbuf cluster. If that fails, we are
3007 * out of memory, and must drop the packet and recycle
3008 * the buffer that's already attached to this descriptor.
3009 */
3010 m = rxs->rxs_mbuf;
3011 if (atw_add_rxbuf(sc, i) != 0) {
3012 ifp->if_ierrors++;
3013 ATW_INIT_RXDESC(sc, i);
3014 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3015 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3016 continue;
3017 }
3018
3019 ifp->if_ipackets++;
3020 if (sc->sc_opmode & ATW_NAR_PR)
3021 m->m_flags |= M_HASFCS;
3022 m->m_pkthdr.rcvif = ifp;
3023 m->m_pkthdr.len = m->m_len = len;
3024
3025 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3026 rate = 0;
3027 else
3028 rate = rate_tbl[rate0];
3029
3030 #if NBPFILTER > 0
3031 /* Pass this up to any BPF listeners. */
3032 if (sc->sc_radiobpf != NULL) {
3033 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3034
3035 tap->ar_rate = rate;
3036 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3037 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3038
3039 /* TBD verify units are dB */
3040 tap->ar_antsignal = (int)rssi;
3041 /* TBD tap->ar_flags */
3042
3043 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3044 tap->ar_ihdr.it_len, m);
3045 }
3046 #endif /* NPBFILTER > 0 */
3047
3048 wh = mtod(m, struct ieee80211_frame *);
3049 ni = ieee80211_find_rxnode(ic, wh);
3050 ieee80211_input(ifp, m, ni, (int)rssi, 0);
3051 /*
3052 * The frame may have caused the node to be marked for
3053 * reclamation (e.g. in response to a DEAUTH message)
3054 * so use free_node here instead of unref_node.
3055 */
3056 if (ni == ic->ic_bss)
3057 ieee80211_unref_node(&ni);
3058 else
3059 ieee80211_free_node(ic, ni);
3060 }
3061
3062 /* Update the receive pointer. */
3063 sc->sc_rxptr = i;
3064 }
3065
3066 /*
3067 * atw_txintr:
3068 *
3069 * Helper; handle transmit interrupts.
3070 */
3071 void
3072 atw_txintr(struct atw_softc *sc)
3073 {
3074 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3075 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3076 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3077 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3078
3079 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3080 struct ifnet *ifp = &sc->sc_ic.ic_if;
3081 struct atw_txsoft *txs;
3082 u_int32_t txstat;
3083
3084 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3085 sc->sc_dev.dv_xname, sc->sc_flags));
3086
3087 ifp->if_flags &= ~IFF_OACTIVE;
3088
3089 /*
3090 * Go through our Tx list and free mbufs for those
3091 * frames that have been transmitted.
3092 */
3093 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3094 ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3095 txs->txs_ndescs,
3096 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3097
3098 #ifdef ATW_DEBUG
3099 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3100 int i;
3101 printf(" txsoft %p transmit chain:\n", txs);
3102 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3103 printf(" descriptor %d:\n", i);
3104 printf(" at_status: 0x%08x\n",
3105 le32toh(sc->sc_txdescs[i].at_stat));
3106 printf(" at_flags: 0x%08x\n",
3107 le32toh(sc->sc_txdescs[i].at_flags));
3108 printf(" at_buf1: 0x%08x\n",
3109 le32toh(sc->sc_txdescs[i].at_buf1));
3110 printf(" at_buf2: 0x%08x\n",
3111 le32toh(sc->sc_txdescs[i].at_buf2));
3112 if (i == txs->txs_lastdesc)
3113 break;
3114 }
3115 }
3116 #endif
3117
3118 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3119 if (txstat & ATW_TXSTAT_OWN)
3120 break;
3121
3122 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3123
3124 sc->sc_txfree += txs->txs_ndescs;
3125
3126 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3127 0, txs->txs_dmamap->dm_mapsize,
3128 BUS_DMASYNC_POSTWRITE);
3129 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3130 m_freem(txs->txs_mbuf);
3131 txs->txs_mbuf = NULL;
3132
3133 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3134
3135 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3136 (txstat & TXSTAT_ERRMASK) != 0) {
3137 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3138 txstat_buf, sizeof(txstat_buf));
3139 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3140 txstat_buf,
3141 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3142 }
3143
3144 /*
3145 * Check for errors and collisions.
3146 */
3147 if (txstat & ATW_TXSTAT_TUF)
3148 sc->sc_stats.ts_tx_tuf++;
3149 if (txstat & ATW_TXSTAT_TLT)
3150 sc->sc_stats.ts_tx_tlt++;
3151 if (txstat & ATW_TXSTAT_TRT)
3152 sc->sc_stats.ts_tx_trt++;
3153 if (txstat & ATW_TXSTAT_TRO)
3154 sc->sc_stats.ts_tx_tro++;
3155 if (txstat & ATW_TXSTAT_SOFBR) {
3156 sc->sc_stats.ts_tx_sofbr++;
3157 }
3158
3159 if ((txstat & ATW_TXSTAT_ES) == 0)
3160 ifp->if_collisions +=
3161 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3162 else
3163 ifp->if_oerrors++;
3164
3165 ifp->if_opackets++;
3166 }
3167
3168 /*
3169 * If there are no more pending transmissions, cancel the watchdog
3170 * timer.
3171 */
3172 if (txs == NULL)
3173 sc->sc_tx_timer = 0;
3174 #undef TXSTAT_ERRMASK
3175 #undef TXSTAT_FMT
3176 }
3177
3178 /*
3179 * atw_watchdog: [ifnet interface function]
3180 *
3181 * Watchdog timer handler.
3182 */
3183 void
3184 atw_watchdog(struct ifnet *ifp)
3185 {
3186 struct atw_softc *sc = ifp->if_softc;
3187 struct ieee80211com *ic = &sc->sc_ic;
3188
3189 ifp->if_timer = 0;
3190 if (ATW_IS_ENABLED(sc) == 0)
3191 return;
3192
3193 if (sc->sc_rescan_timer) {
3194 if (--sc->sc_rescan_timer == 0)
3195 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3196 }
3197 if (sc->sc_tx_timer) {
3198 if (--sc->sc_tx_timer == 0 &&
3199 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3200 printf("%s: transmit timeout\n", ifp->if_xname);
3201 ifp->if_oerrors++;
3202 (void)atw_init(ifp);
3203 atw_start(ifp);
3204 }
3205 }
3206 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3207 ifp->if_timer = 1;
3208 ieee80211_watchdog(ifp);
3209 }
3210
3211 /* Compute the 802.11 Duration field and the PLCP Length fields for
3212 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3213 * Write the fields to the ADM8211 Tx header, frm.
3214 *
3215 * TBD use the fragmentation threshold to find the right duration for
3216 * the first & last fragments.
3217 *
3218 * TBD make certain of the duration fields applied by the ADM8211 to each
3219 * fragment. I think that the ADM8211 knows how to subtract the CTS
3220 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3221 * I also think that the ADM8211 does *some* arithmetic for us, because
3222 * otherwise I think we would have to set a first duration for CTS/first
3223 * fragment, a second duration for fragments between the first and the
3224 * last, and a third duration for the last fragment.
3225 *
3226 * TBD make certain that duration fields reflect addition of FCS/WEP
3227 * and correct duration arithmetic as necessary.
3228 */
3229 static void
3230 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3231 int len)
3232 {
3233 int remainder;
3234
3235 /* deal also with encrypted fragments */
3236 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3237 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3238 sc->sc_dev.dv_xname));
3239 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3240 IEEE80211_WEP_CRCLEN;
3241 }
3242
3243 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3244 * duration (XXX added by MAC?).
3245 */
3246 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3247 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3248
3249 if (rate <= 4)
3250 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3251 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3252 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3253 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3254 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3255 else
3256 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3257 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3258 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3259 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3260 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3261
3262 /* lengthen duration if long preamble */
3263 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3264 frm->atw_head_dur +=
3265 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3266 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3267 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3268 IEEE80211_DUR_DS_FAST_PLCPHDR);
3269
3270 if (remainder != 0)
3271 frm->atw_head_dur++;
3272
3273 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3274 (rate == 2 || rate == 4)) {
3275 /* derived from Linux: how could this be right? */
3276 frm->atw_head_plcplen = frm->atw_head_dur;
3277 } else {
3278 frm->atw_head_plcplen = (16 * len) / rate;
3279 remainder = (80 * len) % (rate * 5);
3280
3281 if (remainder != 0) {
3282 frm->atw_head_plcplen++;
3283
3284 /* XXX magic */
3285 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3286 rate == 22 && remainder <= 30)
3287 frm->atw_head_plcplen |= 0x8000;
3288 }
3289 }
3290 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3291 htole16(frm->atw_head_plcplen);
3292 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3293 }
3294
3295 #ifdef ATW_DEBUG
3296 static void
3297 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3298 {
3299 struct atw_softc *sc = ifp->if_softc;
3300 struct mbuf *m;
3301 int i, noctets = 0;
3302
3303 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3304 m0->m_pkthdr.len);
3305
3306 for (m = m0; m; m = m->m_next) {
3307 if (m->m_len == 0)
3308 continue;
3309 for (i = 0; i < m->m_len; i++) {
3310 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3311 if (++noctets % 24 == 0)
3312 printf("\n");
3313 }
3314 }
3315 printf("%s%s: %d bytes emitted\n",
3316 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3317 }
3318 #endif /* ATW_DEBUG */
3319
3320 /*
3321 * atw_start: [ifnet interface function]
3322 *
3323 * Start packet transmission on the interface.
3324 */
3325 void
3326 atw_start(struct ifnet *ifp)
3327 {
3328 struct atw_softc *sc = ifp->if_softc;
3329 struct ieee80211com *ic = &sc->sc_ic;
3330 struct ieee80211_node *ni;
3331 struct ieee80211_frame *wh;
3332 struct atw_frame *hh;
3333 struct mbuf *m0, *m;
3334 struct atw_txsoft *txs, *last_txs;
3335 struct atw_txdesc *txd;
3336 int do_encrypt, rate;
3337 bus_dmamap_t dmamap;
3338 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3339
3340 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3341 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3342
3343 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3344 return;
3345
3346 #if 0 /* TBD ??? */
3347 if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3348 return;
3349 #endif
3350
3351 /*
3352 * Remember the previous number of free descriptors and
3353 * the first descriptor we'll use.
3354 */
3355 ofree = sc->sc_txfree;
3356 firsttx = sc->sc_txnext;
3357
3358 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3359 sc->sc_dev.dv_xname, ofree, firsttx));
3360
3361 /*
3362 * Loop through the send queue, setting up transmit descriptors
3363 * until we drain the queue, or use up all available transmit
3364 * descriptors.
3365 */
3366 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3367 sc->sc_txfree != 0) {
3368
3369 /*
3370 * Grab a packet off the management queue, if it
3371 * is not empty. Otherwise, from the data queue.
3372 */
3373 IF_DEQUEUE(&ic->ic_mgtq, m0);
3374 if (m0 != NULL) {
3375 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3376 m0->m_pkthdr.rcvif = NULL;
3377 } else {
3378 IFQ_DEQUEUE(&ifp->if_snd, m0);
3379 if (m0 == NULL)
3380 break;
3381 #if NBPFILTER > 0
3382 if (ifp->if_bpf != NULL)
3383 bpf_mtap(ifp->if_bpf, m0);
3384 #endif /* NBPFILTER > 0 */
3385 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3386 ifp->if_oerrors++;
3387 break;
3388 }
3389 }
3390
3391 rate = MAX(ieee80211_get_rate(ic), 2);
3392
3393 #if NBPFILTER > 0
3394 /*
3395 * Pass the packet to any BPF listeners.
3396 */
3397 if (ic->ic_rawbpf != NULL)
3398 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3399
3400 if (sc->sc_radiobpf != NULL) {
3401 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3402
3403 tap->at_rate = rate;
3404 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3405 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3406
3407 /* TBD tap->at_flags */
3408
3409 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3410 tap->at_ihdr.it_len, m0);
3411 }
3412 #endif /* NBPFILTER > 0 */
3413
3414 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3415
3416 if (ni != NULL && ni != ic->ic_bss)
3417 ieee80211_free_node(ic, ni);
3418
3419 if (m0 == NULL) {
3420 ifp->if_oerrors++;
3421 break;
3422 }
3423
3424 /* just to make sure. */
3425 m0 = m_pullup(m0, sizeof(struct atw_frame));
3426
3427 if (m0 == NULL) {
3428 ifp->if_oerrors++;
3429 break;
3430 }
3431
3432 hh = mtod(m0, struct atw_frame *);
3433 wh = &hh->atw_ihdr;
3434
3435 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3436
3437 /* Copy everything we need from the 802.11 header:
3438 * Frame Control; address 1, address 3, or addresses
3439 * 3 and 4. NIC fills in BSSID, SA.
3440 */
3441 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3442 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3443 panic("%s: illegal WDS frame",
3444 sc->sc_dev.dv_xname);
3445 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3446 } else
3447 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3448
3449 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3450
3451 /* initialize remaining Tx parameters */
3452 memset(&hh->u, 0, sizeof(hh->u));
3453
3454 hh->atw_rate = rate * 5;
3455 /* XXX this could be incorrect if M_FCS. _encap should
3456 * probably strip FCS just in case it sticks around in
3457 * bridged packets.
3458 */
3459 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3460 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3461 sizeof(struct atw_frame));
3462
3463 #if 0
3464 /* this virtually guaranteed that WEP-encrypted frames
3465 * are fragmented. oops.
3466 */
3467 hh->atw_fragthr = htole16(m0->m_pkthdr.len -
3468 sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
3469 hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3470 #else
3471 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3472 #endif
3473
3474 hh->atw_rtylmt = 3;
3475 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3476 if (do_encrypt) {
3477 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3478 hh->atw_keyid = ic->ic_wep_txkey;
3479 }
3480
3481 /* TBD 4-addr frames */
3482 atw_frame_setdurs(sc, hh, rate,
3483 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3484 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3485
3486 /* never fragment multicast frames */
3487 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3488 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3489 } else if (sc->sc_flags & ATWF_RTSCTS) {
3490 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3491 }
3492
3493 #ifdef ATW_DEBUG
3494 /* experimental stuff */
3495 if (atw_xrtylmt != ~0)
3496 hh->atw_rtylmt = atw_xrtylmt;
3497 if (atw_xhdrctl != 0)
3498 hh->atw_hdrctl |= htole16(atw_xhdrctl);
3499 if (atw_xservice != IEEE80211_PLCP_SERVICE)
3500 hh->atw_service = atw_xservice;
3501 if (atw_xpaylen != 0)
3502 hh->atw_paylen = htole16(atw_xpaylen);
3503 hh->atw_fragnum = 0;
3504
3505 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3506 printf("%s: dst = %s, rate = 0x%02x, "
3507 "service = 0x%02x, paylen = 0x%04x\n",
3508 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3509 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3510
3511 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3512 "dur1 = 0x%04x, dur2 = 0x%04x, "
3513 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3514 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3515 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3516 hh->atw_tail_dur, hh->atw_head_dur);
3517
3518 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3519 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3520 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3521 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3522
3523 printf("%s: keyid = %d\n",
3524 sc->sc_dev.dv_xname, hh->atw_keyid);
3525
3526 atw_dump_pkt(ifp, m0);
3527 }
3528 #endif /* ATW_DEBUG */
3529
3530 dmamap = txs->txs_dmamap;
3531
3532 /*
3533 * Load the DMA map. Copy and try (once) again if the packet
3534 * didn't fit in the alloted number of segments.
3535 */
3536 for (first = 1;
3537 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3538 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3539 first = 0) {
3540 MGETHDR(m, M_DONTWAIT, MT_DATA);
3541 if (m == NULL) {
3542 printf("%s: unable to allocate Tx mbuf\n",
3543 sc->sc_dev.dv_xname);
3544 break;
3545 }
3546 if (m0->m_pkthdr.len > MHLEN) {
3547 MCLGET(m, M_DONTWAIT);
3548 if ((m->m_flags & M_EXT) == 0) {
3549 printf("%s: unable to allocate Tx "
3550 "cluster\n", sc->sc_dev.dv_xname);
3551 m_freem(m);
3552 break;
3553 }
3554 }
3555 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3556 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3557 m_freem(m0);
3558 m0 = m;
3559 m = NULL;
3560 }
3561 if (error != 0) {
3562 printf("%s: unable to load Tx buffer, "
3563 "error = %d\n", sc->sc_dev.dv_xname, error);
3564 m_freem(m0);
3565 break;
3566 }
3567
3568 /*
3569 * Ensure we have enough descriptors free to describe
3570 * the packet.
3571 */
3572 if (dmamap->dm_nsegs > sc->sc_txfree) {
3573 /*
3574 * Not enough free descriptors to transmit
3575 * this packet. Unload the DMA map and
3576 * drop the packet. Notify the upper layer
3577 * that there are no more slots left.
3578 *
3579 * XXX We could allocate an mbuf and copy, but
3580 * XXX it is worth it?
3581 */
3582 ifp->if_flags |= IFF_OACTIVE;
3583 bus_dmamap_unload(sc->sc_dmat, dmamap);
3584 m_freem(m0);
3585 break;
3586 }
3587
3588 /*
3589 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3590 */
3591
3592 /* Sync the DMA map. */
3593 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3594 BUS_DMASYNC_PREWRITE);
3595
3596 /* XXX arbitrary retry limit; 8 because I have seen it in
3597 * use already and maybe 0 means "no tries" !
3598 */
3599 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3600
3601 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3602 sc->sc_dev.dv_xname, rate * 5));
3603 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3604
3605 /*
3606 * Initialize the transmit descriptors.
3607 */
3608 for (nexttx = sc->sc_txnext, seg = 0;
3609 seg < dmamap->dm_nsegs;
3610 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3611 /*
3612 * If this is the first descriptor we're
3613 * enqueueing, don't set the OWN bit just
3614 * yet. That could cause a race condition.
3615 * We'll do it below.
3616 */
3617 txd = &sc->sc_txdescs[nexttx];
3618 txd->at_ctl = ctl |
3619 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3620
3621 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3622 txd->at_flags =
3623 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3624 ATW_TXFLAG_TBS1_MASK)) |
3625 ((nexttx == (ATW_NTXDESC - 1))
3626 ? htole32(ATW_TXFLAG_TER) : 0);
3627 lasttx = nexttx;
3628 }
3629
3630 IASSERT(lasttx != -1, ("bad lastx"));
3631 /* Set `first segment' and `last segment' appropriately. */
3632 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3633 htole32(ATW_TXFLAG_FS);
3634 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3635
3636 #ifdef ATW_DEBUG
3637 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3638 printf(" txsoft %p transmit chain:\n", txs);
3639 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3640 printf(" descriptor %d:\n", seg);
3641 printf(" at_ctl: 0x%08x\n",
3642 le32toh(sc->sc_txdescs[seg].at_ctl));
3643 printf(" at_flags: 0x%08x\n",
3644 le32toh(sc->sc_txdescs[seg].at_flags));
3645 printf(" at_buf1: 0x%08x\n",
3646 le32toh(sc->sc_txdescs[seg].at_buf1));
3647 printf(" at_buf2: 0x%08x\n",
3648 le32toh(sc->sc_txdescs[seg].at_buf2));
3649 if (seg == lasttx)
3650 break;
3651 }
3652 }
3653 #endif
3654
3655 /* Sync the descriptors we're using. */
3656 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3657 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3658
3659 /*
3660 * Store a pointer to the packet so we can free it later,
3661 * and remember what txdirty will be once the packet is
3662 * done.
3663 */
3664 txs->txs_mbuf = m0;
3665 txs->txs_firstdesc = sc->sc_txnext;
3666 txs->txs_lastdesc = lasttx;
3667 txs->txs_ndescs = dmamap->dm_nsegs;
3668
3669 /* Advance the tx pointer. */
3670 sc->sc_txfree -= dmamap->dm_nsegs;
3671 sc->sc_txnext = nexttx;
3672
3673 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3674 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3675
3676 last_txs = txs;
3677 }
3678
3679 if (txs == NULL || sc->sc_txfree == 0) {
3680 /* No more slots left; notify upper layer. */
3681 ifp->if_flags |= IFF_OACTIVE;
3682 }
3683
3684 if (sc->sc_txfree != ofree) {
3685 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3686 sc->sc_dev.dv_xname, lasttx, firsttx));
3687 /*
3688 * Cause a transmit interrupt to happen on the
3689 * last packet we enqueued.
3690 */
3691 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3692 ATW_CDTXSYNC(sc, lasttx, 1,
3693 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3694
3695 /*
3696 * The entire packet chain is set up. Give the
3697 * first descriptor to the chip now.
3698 */
3699 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3700 ATW_CDTXSYNC(sc, firsttx, 1,
3701 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3702
3703 /* Wake up the transmitter. */
3704 ATW_WRITE(sc, ATW_TDR, 0x1);
3705
3706 /* Set a watchdog timer in case the chip flakes out. */
3707 sc->sc_tx_timer = 5;
3708 ifp->if_timer = 1;
3709 }
3710 }
3711
3712 /*
3713 * atw_power:
3714 *
3715 * Power management (suspend/resume) hook.
3716 */
3717 void
3718 atw_power(int why, void *arg)
3719 {
3720 struct atw_softc *sc = arg;
3721 struct ifnet *ifp = &sc->sc_ic.ic_if;
3722 int s;
3723
3724 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3725
3726 s = splnet();
3727 switch (why) {
3728 case PWR_STANDBY:
3729 /* XXX do nothing. */
3730 break;
3731 case PWR_SUSPEND:
3732 atw_stop(ifp, 0);
3733 if (sc->sc_power != NULL)
3734 (*sc->sc_power)(sc, why);
3735 break;
3736 case PWR_RESUME:
3737 if (ifp->if_flags & IFF_UP) {
3738 if (sc->sc_power != NULL)
3739 (*sc->sc_power)(sc, why);
3740 atw_init(ifp);
3741 }
3742 break;
3743 case PWR_SOFTSUSPEND:
3744 case PWR_SOFTSTANDBY:
3745 case PWR_SOFTRESUME:
3746 break;
3747 }
3748 splx(s);
3749 }
3750
3751 /*
3752 * atw_ioctl: [ifnet interface function]
3753 *
3754 * Handle control requests from the operator.
3755 */
3756 int
3757 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3758 {
3759 struct atw_softc *sc = ifp->if_softc;
3760 struct ifreq *ifr = (struct ifreq *)data;
3761 int s, error = 0;
3762
3763 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3764 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3765 return ENXIO;
3766
3767 s = splnet();
3768
3769 switch (cmd) {
3770 case SIOCSIFFLAGS:
3771 if (ifp->if_flags & IFF_UP) {
3772 if (ATW_IS_ENABLED(sc)) {
3773 /*
3774 * To avoid rescanning another access point,
3775 * do not call atw_init() here. Instead,
3776 * only reflect media settings.
3777 */
3778 atw_filter_setup(sc);
3779 } else
3780 error = atw_init(ifp);
3781 } else if (ATW_IS_ENABLED(sc))
3782 atw_stop(ifp, 1);
3783 break;
3784 case SIOCADDMULTI:
3785 case SIOCDELMULTI:
3786 error = (cmd == SIOCADDMULTI) ?
3787 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3788 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3789 if (error == ENETRESET) {
3790 if (ATW_IS_ENABLED(sc))
3791 atw_filter_setup(sc); /* do not rescan */
3792 error = 0;
3793 }
3794 break;
3795 default:
3796 error = ieee80211_ioctl(ifp, cmd, data);
3797 if (error == ENETRESET) {
3798 if (ATW_IS_ENABLED(sc))
3799 error = atw_init(ifp);
3800 else
3801 error = 0;
3802 }
3803 break;
3804 }
3805
3806 /* Try to get more packets going. */
3807 if (ATW_IS_ENABLED(sc))
3808 atw_start(ifp);
3809
3810 splx(s);
3811 return (error);
3812 }
3813
3814 static int
3815 atw_media_change(struct ifnet *ifp)
3816 {
3817 int error;
3818
3819 error = ieee80211_media_change(ifp);
3820 if (error == ENETRESET) {
3821 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3822 (IFF_RUNNING|IFF_UP))
3823 atw_init(ifp); /* XXX lose error */
3824 error = 0;
3825 }
3826 return error;
3827 }
3828
3829 static void
3830 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3831 {
3832 struct atw_softc *sc = ifp->if_softc;
3833
3834 if (ATW_IS_ENABLED(sc) == 0) {
3835 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3836 imr->ifm_status = 0;
3837 return;
3838 }
3839 ieee80211_media_status(ifp, imr);
3840 }
3841