Home | History | Annotate | Line # | Download | only in ic
atw.c revision 1.39
      1 /*	$NetBSD: atw.c,v 1.39 2004/07/15 05:54:13 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.39 2004/07/15 05:54:13 dyoung Exp $");
     45 
     46 #include "bpfilter.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/callout.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/malloc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/socket.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/errno.h>
     57 #include <sys/device.h>
     58 #include <sys/time.h>
     59 
     60 #include <machine/endian.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_media.h>
     67 #include <net/if_ether.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_compat.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #if NBPFILTER > 0
     74 #include <net/bpf.h>
     75 #endif
     76 
     77 #include <machine/bus.h>
     78 #include <machine/intr.h>
     79 
     80 #include <dev/ic/atwreg.h>
     81 #include <dev/ic/rf3000reg.h>
     82 #include <dev/ic/si4136reg.h>
     83 #include <dev/ic/atwvar.h>
     84 #include <dev/ic/smc93cx6var.h>
     85 
     86 /* XXX TBD open questions
     87  *
     88  *
     89  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
     90  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
     91  * handle this for me?
     92  *
     93  */
     94 /* device attachment
     95  *
     96  *    print TOFS[012]
     97  *
     98  * device initialization
     99  *
    100  *    clear ATW_FRCTL_MAXPSP to disable max power saving
    101  *    set ATW_TXBR_ALCUPDATE to enable ALC
    102  *    set TOFS[012]? (hope not)
    103  *    disable rx/tx
    104  *    set ATW_PAR_SWR (software reset)
    105  *    wait for ATW_PAR_SWR clear
    106  *    disable interrupts
    107  *    ack status register
    108  *    enable interrupts
    109  *
    110  * rx/tx initialization
    111  *
    112  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    113  *    allocate and init descriptor rings
    114  *    write ATW_PAR_DSL (descriptor skip length)
    115  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
    116  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    118  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    119  *
    120  * rx/tx end
    121  *
    122  *    stop DMA
    123  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    124  *    flush tx w/ ATW_NAR_HF
    125  *
    126  * scan
    127  *
    128  *    initialize rx/tx
    129  *
    130  * BSS join: (re)association response
    131  *
    132  *    set ATW_FRCTL_AID
    133  *
    134  * optimizations ???
    135  *
    136  */
    137 
    138 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
    139 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
    140 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
    141 
    142 int atw_rfio_enable_delay = 20 * 1000;
    143 int atw_rfio_disable_delay = 2 * 1000;
    144 int atw_writewep_delay = 5;
    145 int atw_beacon_len_adjust = 4;
    146 int atw_dwelltime = 200;
    147 
    148 #ifdef ATW_DEBUG
    149 int atw_debug = 0;
    150 
    151 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
    152 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
    153 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
    154 #define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
    155 #define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
    156 #define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
    157 
    158 static void atw_print_regs(struct atw_softc *, const char *);
    159 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
    160 
    161 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
    162 #	ifdef ATW_BBPDEBUG
    163 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    164 static void atw_rf3000_print(struct atw_softc *);
    165 #	endif /* ATW_BBPDEBUG */
    166 
    167 #	ifdef ATW_SYNDEBUG
    168 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
    169 static void atw_si4126_print(struct atw_softc *);
    170 #	endif /* ATW_SYNDEBUG */
    171 
    172 #else
    173 #define ATW_DPRINTF(x)
    174 #define ATW_DPRINTF2(x)
    175 #define ATW_DPRINTF3(x)
    176 #define	DPRINTF(sc, x)	/* nothing */
    177 #define	DPRINTF2(sc, x)	/* nothing */
    178 #define	DPRINTF3(sc, x)	/* nothing */
    179 #endif
    180 
    181 #ifdef ATW_STATS
    182 void	atw_print_stats(struct atw_softc *);
    183 #endif
    184 
    185 void	atw_start(struct ifnet *);
    186 void	atw_watchdog(struct ifnet *);
    187 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
    188 int	atw_init(struct ifnet *);
    189 void	atw_txdrain(struct atw_softc *);
    190 void	atw_stop(struct ifnet *, int);
    191 
    192 void	atw_reset(struct atw_softc *);
    193 int	atw_read_srom(struct atw_softc *);
    194 
    195 void	atw_shutdown(void *);
    196 
    197 void	atw_rxdrain(struct atw_softc *);
    198 int	atw_add_rxbuf(struct atw_softc *, int);
    199 void	atw_idle(struct atw_softc *, u_int32_t);
    200 
    201 int	atw_enable(struct atw_softc *);
    202 void	atw_disable(struct atw_softc *);
    203 void	atw_power(int, void *);
    204 
    205 void	atw_rxintr(struct atw_softc *);
    206 void	atw_txintr(struct atw_softc *);
    207 void	atw_linkintr(struct atw_softc *, u_int32_t);
    208 
    209 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
    210 static void atw_tsf(struct atw_softc *);
    211 static void atw_start_beacon(struct atw_softc *, int);
    212 static void atw_write_wep(struct atw_softc *);
    213 static void atw_write_bssid(struct atw_softc *);
    214 static void atw_write_bcn_thresh(struct atw_softc *);
    215 static void atw_write_ssid(struct atw_softc *);
    216 static void atw_write_sup_rates(struct atw_softc *);
    217 static void atw_clear_sram(struct atw_softc *);
    218 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
    219 static int atw_media_change(struct ifnet *);
    220 static void atw_media_status(struct ifnet *, struct ifmediareq *);
    221 static void atw_filter_setup(struct atw_softc *);
    222 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
    223 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
    224 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
    225     struct ieee80211_node *, int, int, u_int32_t);
    226 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
    227     struct ieee80211_node *, int, int, u_int32_t);
    228 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
    229 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
    230 
    231 static int atw_tune(struct atw_softc *);
    232 
    233 static void atw_rfio_enable(struct atw_softc *, int);
    234 
    235 /* RFMD RF3000 Baseband Processor */
    236 static int atw_rf3000_init(struct atw_softc *);
    237 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
    238 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
    239 #ifdef ATW_DEBUG
    240 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    241 #endif /* ATW_DEBUG */
    242 
    243 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
    244 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
    245 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
    246 #ifdef ATW_DEBUG
    247 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
    248 #endif /* ATW_DEBUG */
    249 
    250 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
    251 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
    252 
    253 const char *atw_tx_state[] = {
    254 	"STOPPED",
    255 	"RUNNING - read descriptor",
    256 	"RUNNING - transmitting",
    257 	"RUNNING - filling fifo",	/* XXX */
    258 	"SUSPENDED",
    259 	"RUNNING -- write descriptor",
    260 	"RUNNING -- write last descriptor",
    261 	"RUNNING - fifo full"
    262 };
    263 
    264 const char *atw_rx_state[] = {
    265 	"STOPPED",
    266 	"RUNNING - read descriptor",
    267 	"RUNNING - check this packet, pre-fetch next",
    268 	"RUNNING - wait for reception",
    269 	"SUSPENDED",
    270 	"RUNNING - write descriptor",
    271 	"RUNNING - flush fifo",
    272 	"RUNNING - fifo drain"
    273 };
    274 
    275 int
    276 atw_activate(struct device *self, enum devact act)
    277 {
    278 	struct atw_softc *sc = (struct atw_softc *)self;
    279 	int rv = 0, s;
    280 
    281 	s = splnet();
    282 	switch (act) {
    283 	case DVACT_ACTIVATE:
    284 		rv = EOPNOTSUPP;
    285 		break;
    286 
    287 	case DVACT_DEACTIVATE:
    288 		if_deactivate(&sc->sc_ic.ic_if);
    289 		break;
    290 	}
    291 	splx(s);
    292 	return rv;
    293 }
    294 
    295 /*
    296  * atw_enable:
    297  *
    298  *	Enable the ADM8211 chip.
    299  */
    300 int
    301 atw_enable(struct atw_softc *sc)
    302 {
    303 
    304 	if (ATW_IS_ENABLED(sc) == 0) {
    305 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    306 			printf("%s: device enable failed\n",
    307 			    sc->sc_dev.dv_xname);
    308 			return (EIO);
    309 		}
    310 		sc->sc_flags |= ATWF_ENABLED;
    311 	}
    312 	return (0);
    313 }
    314 
    315 /*
    316  * atw_disable:
    317  *
    318  *	Disable the ADM8211 chip.
    319  */
    320 void
    321 atw_disable(struct atw_softc *sc)
    322 {
    323 	if (!ATW_IS_ENABLED(sc))
    324 		return;
    325 	if (sc->sc_disable != NULL)
    326 		(*sc->sc_disable)(sc);
    327 	sc->sc_flags &= ~ATWF_ENABLED;
    328 }
    329 
    330 /* Returns -1 on failure. */
    331 int
    332 atw_read_srom(struct atw_softc *sc)
    333 {
    334 	struct seeprom_descriptor sd;
    335 	u_int32_t reg;
    336 
    337 	(void)memset(&sd, 0, sizeof(sd));
    338 
    339 	reg = ATW_READ(sc, ATW_TEST0);
    340 
    341 	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
    342 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
    343 		return -1;
    344 	}
    345 
    346 	switch (reg & ATW_TEST0_EPTYP_MASK) {
    347 	case ATW_TEST0_EPTYP_93c66:
    348 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
    349 		sc->sc_sromsz = 512;
    350 		sd.sd_chip = C56_66;
    351 		break;
    352 	case ATW_TEST0_EPTYP_93c46:
    353 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
    354 		sc->sc_sromsz = 128;
    355 		sd.sd_chip = C46;
    356 		break;
    357 	default:
    358 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
    359 		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
    360 		return -1;
    361 	}
    362 
    363 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
    364 
    365 	if (sc->sc_srom == NULL) {
    366 		printf("%s: unable to allocate SROM buffer\n",
    367 		    sc->sc_dev.dv_xname);
    368 		return -1;
    369 	}
    370 
    371 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
    372 
    373 	/* ADM8211 has a single 32-bit register for controlling the
    374 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
    375 	 * "ready" bit. The ADM8211 input/output sense is the reverse
    376 	 * of read_seeprom's.
    377 	 */
    378 	sd.sd_tag = sc->sc_st;
    379 	sd.sd_bsh = sc->sc_sh;
    380 	sd.sd_regsize = 4;
    381 	sd.sd_control_offset = ATW_SPR;
    382 	sd.sd_status_offset = ATW_SPR;
    383 	sd.sd_dataout_offset = ATW_SPR;
    384 	sd.sd_CK = ATW_SPR_SCLK;
    385 	sd.sd_CS = ATW_SPR_SCS;
    386 	sd.sd_DI = ATW_SPR_SDO;
    387 	sd.sd_DO = ATW_SPR_SDI;
    388 	sd.sd_MS = ATW_SPR_SRS;
    389 	sd.sd_RDY = 0;
    390 
    391 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
    392 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
    393 		free(sc->sc_srom, M_DEVBUF);
    394 		return -1;
    395 	}
    396 #ifdef ATW_DEBUG
    397 	{
    398 		int i;
    399 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
    400 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
    401 			if (((i % 8) == 0) && (i != 0)) {
    402 				ATW_DPRINTF(("\n\t"));
    403 			}
    404 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
    405 		}
    406 		ATW_DPRINTF(("\n"));
    407 	}
    408 #endif /* ATW_DEBUG */
    409 	return 0;
    410 }
    411 
    412 #ifdef ATW_DEBUG
    413 static void
    414 atw_print_regs(struct atw_softc *sc, const char *where)
    415 {
    416 #define PRINTREG(sc, reg) \
    417 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
    418 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
    419 
    420 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
    421 
    422 	PRINTREG(sc, ATW_PAR);
    423 	PRINTREG(sc, ATW_FRCTL);
    424 	PRINTREG(sc, ATW_TDR);
    425 	PRINTREG(sc, ATW_WTDP);
    426 	PRINTREG(sc, ATW_RDR);
    427 	PRINTREG(sc, ATW_WRDP);
    428 	PRINTREG(sc, ATW_RDB);
    429 	PRINTREG(sc, ATW_CSR3A);
    430 	PRINTREG(sc, ATW_TDBD);
    431 	PRINTREG(sc, ATW_TDBP);
    432 	PRINTREG(sc, ATW_STSR);
    433 	PRINTREG(sc, ATW_CSR5A);
    434 	PRINTREG(sc, ATW_NAR);
    435 	PRINTREG(sc, ATW_CSR6A);
    436 	PRINTREG(sc, ATW_IER);
    437 	PRINTREG(sc, ATW_CSR7A);
    438 	PRINTREG(sc, ATW_LPC);
    439 	PRINTREG(sc, ATW_TEST1);
    440 	PRINTREG(sc, ATW_SPR);
    441 	PRINTREG(sc, ATW_TEST0);
    442 	PRINTREG(sc, ATW_WCSR);
    443 	PRINTREG(sc, ATW_WPDR);
    444 	PRINTREG(sc, ATW_GPTMR);
    445 	PRINTREG(sc, ATW_GPIO);
    446 	PRINTREG(sc, ATW_BBPCTL);
    447 	PRINTREG(sc, ATW_SYNCTL);
    448 	PRINTREG(sc, ATW_PLCPHD);
    449 	PRINTREG(sc, ATW_MMIWADDR);
    450 	PRINTREG(sc, ATW_MMIRADDR1);
    451 	PRINTREG(sc, ATW_MMIRADDR2);
    452 	PRINTREG(sc, ATW_TXBR);
    453 	PRINTREG(sc, ATW_CSR15A);
    454 	PRINTREG(sc, ATW_ALCSTAT);
    455 	PRINTREG(sc, ATW_TOFS2);
    456 	PRINTREG(sc, ATW_CMDR);
    457 	PRINTREG(sc, ATW_PCIC);
    458 	PRINTREG(sc, ATW_PMCSR);
    459 	PRINTREG(sc, ATW_PAR0);
    460 	PRINTREG(sc, ATW_PAR1);
    461 	PRINTREG(sc, ATW_MAR0);
    462 	PRINTREG(sc, ATW_MAR1);
    463 	PRINTREG(sc, ATW_ATIMDA0);
    464 	PRINTREG(sc, ATW_ABDA1);
    465 	PRINTREG(sc, ATW_BSSID0);
    466 	PRINTREG(sc, ATW_TXLMT);
    467 	PRINTREG(sc, ATW_MIBCNT);
    468 	PRINTREG(sc, ATW_BCNT);
    469 	PRINTREG(sc, ATW_TSFTH);
    470 	PRINTREG(sc, ATW_TSC);
    471 	PRINTREG(sc, ATW_SYNRF);
    472 	PRINTREG(sc, ATW_BPLI);
    473 	PRINTREG(sc, ATW_CAP0);
    474 	PRINTREG(sc, ATW_CAP1);
    475 	PRINTREG(sc, ATW_RMD);
    476 	PRINTREG(sc, ATW_CFPP);
    477 	PRINTREG(sc, ATW_TOFS0);
    478 	PRINTREG(sc, ATW_TOFS1);
    479 	PRINTREG(sc, ATW_IFST);
    480 	PRINTREG(sc, ATW_RSPT);
    481 	PRINTREG(sc, ATW_TSFTL);
    482 	PRINTREG(sc, ATW_WEPCTL);
    483 	PRINTREG(sc, ATW_WESK);
    484 	PRINTREG(sc, ATW_WEPCNT);
    485 	PRINTREG(sc, ATW_MACTEST);
    486 	PRINTREG(sc, ATW_FER);
    487 	PRINTREG(sc, ATW_FEMR);
    488 	PRINTREG(sc, ATW_FPSR);
    489 	PRINTREG(sc, ATW_FFER);
    490 #undef PRINTREG
    491 }
    492 #endif /* ATW_DEBUG */
    493 
    494 /*
    495  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
    496  */
    497 void
    498 atw_attach(struct atw_softc *sc)
    499 {
    500 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
    501 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    502 	};
    503 	struct ieee80211com *ic = &sc->sc_ic;
    504 	struct ifnet *ifp = &ic->ic_if;
    505 	int country_code, error, i, nrate;
    506 	u_int32_t reg;
    507 	static const char *type_strings[] = {"Intersil (not supported)",
    508 	    "RFMD", "Marvel (not supported)"};
    509 
    510 	sc->sc_txth = atw_txthresh_tab_lo;
    511 
    512 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    513 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    514 
    515 #ifdef ATW_DEBUG
    516 	atw_print_regs(sc, "atw_attach");
    517 #endif /* ATW_DEBUG */
    518 
    519 	/*
    520 	 * Allocate the control data structures, and create and load the
    521 	 * DMA map for it.
    522 	 */
    523 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    524 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    525 	    1, &sc->sc_cdnseg, 0)) != 0) {
    526 		printf("%s: unable to allocate control data, error = %d\n",
    527 		    sc->sc_dev.dv_xname, error);
    528 		goto fail_0;
    529 	}
    530 
    531 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
    532 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
    533 	    BUS_DMA_COHERENT)) != 0) {
    534 		printf("%s: unable to map control data, error = %d\n",
    535 		    sc->sc_dev.dv_xname, error);
    536 		goto fail_1;
    537 	}
    538 
    539 	if ((error = bus_dmamap_create(sc->sc_dmat,
    540 	    sizeof(struct atw_control_data), 1,
    541 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    542 		printf("%s: unable to create control data DMA map, "
    543 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    544 		goto fail_2;
    545 	}
    546 
    547 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    548 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
    549 	    0)) != 0) {
    550 		printf("%s: unable to load control data DMA map, error = %d\n",
    551 		    sc->sc_dev.dv_xname, error);
    552 		goto fail_3;
    553 	}
    554 
    555 	/*
    556 	 * Create the transmit buffer DMA maps.
    557 	 */
    558 	sc->sc_ntxsegs = ATW_NTXSEGS;
    559 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    560 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    561 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
    562 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    563 			printf("%s: unable to create tx DMA map %d, "
    564 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    565 			goto fail_4;
    566 		}
    567 	}
    568 
    569 	/*
    570 	 * Create the receive buffer DMA maps.
    571 	 */
    572 	for (i = 0; i < ATW_NRXDESC; i++) {
    573 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    574 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    575 			printf("%s: unable to create rx DMA map %d, "
    576 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    577 			goto fail_5;
    578 		}
    579 	}
    580 	for (i = 0; i < ATW_NRXDESC; i++) {
    581 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    582 	}
    583 
    584 	/* Reset the chip to a known state. */
    585 	atw_reset(sc);
    586 
    587 	if (atw_read_srom(sc) == -1)
    588 		return;
    589 
    590 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    591 	    ATW_SR_RFTYPE_MASK);
    592 
    593 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    594 	    ATW_SR_BBPTYPE_MASK);
    595 
    596 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
    597 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
    598 		return;
    599 	}
    600 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
    601 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
    602 		return;
    603 	}
    604 
    605 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
    606 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
    607 
    608 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
    609 	 * MARVEL. My bug, or theirs?
    610 	 */
    611 
    612 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
    613 
    614 	switch (sc->sc_rftype) {
    615 	case ATW_RFTYPE_INTERSIL:
    616 		reg |= ATW_SYNCTL_CS1;
    617 		break;
    618 	case ATW_RFTYPE_RFMD:
    619 		reg |= ATW_SYNCTL_CS0;
    620 		break;
    621 	case ATW_RFTYPE_MARVEL:
    622 		break;
    623 	}
    624 
    625 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
    626 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
    627 
    628 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
    629 
    630 	switch (sc->sc_bbptype) {
    631 	case ATW_BBPTYPE_INTERSIL:
    632 		reg |= ATW_BBPCTL_TWI;
    633 		break;
    634 	case ATW_BBPTYPE_RFMD:
    635 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
    636 		    ATW_BBPCTL_CCA_ACTLO;
    637 		break;
    638 	case ATW_BBPTYPE_MARVEL:
    639 		break;
    640 	case ATW_C_BBPTYPE_RFMD:
    641 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
    642 		    sc->sc_dev.dv_xname);
    643 		break;
    644 	}
    645 
    646 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
    647 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
    648 
    649 	/*
    650 	 * From this point forward, the attachment cannot fail.  A failure
    651 	 * before this point releases all resources that may have been
    652 	 * allocated.
    653 	 */
    654 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
    655 
    656 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
    657 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
    658 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
    659 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
    660 
    661 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    662 	    ATW_SR_CTRY_MASK);
    663 
    664 #define ADD_CHANNEL(_ic, _chan) do {					\
    665 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
    666 	_ic->ic_channels[_chan].ic_freq =				\
    667 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
    668 } while (0)
    669 
    670 	/* Find available channels */
    671 	switch (country_code) {
    672 	case COUNTRY_MMK2:	/* 1-14 */
    673 		ADD_CHANNEL(ic, 14);
    674 		/*FALLTHROUGH*/
    675 	case COUNTRY_ETSI:	/* 1-13 */
    676 		for (i = 1; i <= 13; i++)
    677 			ADD_CHANNEL(ic, i);
    678 		break;
    679 	case COUNTRY_FCC:	/* 1-11 */
    680 	case COUNTRY_IC:	/* 1-11 */
    681 		for (i = 1; i <= 11; i++)
    682 			ADD_CHANNEL(ic, i);
    683 		break;
    684 	case COUNTRY_MMK:	/* 14 */
    685 		ADD_CHANNEL(ic, 14);
    686 		break;
    687 	case COUNTRY_FRANCE:	/* 10-13 */
    688 		for (i = 10; i <= 13; i++)
    689 			ADD_CHANNEL(ic, i);
    690 		break;
    691 	default:	/* assume channels 10-11 */
    692 	case COUNTRY_SPAIN:	/* 10-11 */
    693 		for (i = 10; i <= 11; i++)
    694 			ADD_CHANNEL(ic, i);
    695 		break;
    696 	}
    697 
    698 	/* Read the MAC address. */
    699 	reg = ATW_READ(sc, ATW_PAR0);
    700 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
    701 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
    702 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
    703 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
    704 	reg = ATW_READ(sc, ATW_PAR1);
    705 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
    706 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
    707 
    708 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
    709 		printf(" could not get mac address, attach failed\n");
    710 		return;
    711 	}
    712 
    713 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
    714 
    715 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    716 	ifp->if_softc = sc;
    717 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
    718 	    IFF_NOTRAILERS;
    719 	ifp->if_ioctl = atw_ioctl;
    720 	ifp->if_start = atw_start;
    721 	ifp->if_watchdog = atw_watchdog;
    722 	ifp->if_init = atw_init;
    723 	ifp->if_stop = atw_stop;
    724 	IFQ_SET_READY(&ifp->if_snd);
    725 
    726 	ic->ic_phytype = IEEE80211_T_DS;
    727 	ic->ic_opmode = IEEE80211_M_STA;
    728 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
    729 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
    730 
    731 	nrate = 0;
    732 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
    733 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
    734 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
    735 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
    736 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
    737 
    738 	/*
    739 	 * Call MI attach routines.
    740 	 */
    741 
    742 	if_attach(ifp);
    743 	ieee80211_ifattach(ifp);
    744 
    745 	sc->sc_newstate = ic->ic_newstate;
    746 	ic->ic_newstate = atw_newstate;
    747 
    748 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    749 	ic->ic_recv_mgmt = atw_recv_mgmt;
    750 
    751 	sc->sc_node_free = ic->ic_node_free;
    752 	ic->ic_node_free = atw_node_free;
    753 
    754 	sc->sc_node_alloc = ic->ic_node_alloc;
    755 	ic->ic_node_alloc = atw_node_alloc;
    756 
    757 	/* possibly we should fill in our own sc_send_prresp, since
    758 	 * the ADM8211 is probably sending probe responses in ad hoc
    759 	 * mode.
    760 	 */
    761 
    762 	/* complete initialization */
    763 	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
    764 	callout_init(&sc->sc_scan_ch);
    765 
    766 #if NBPFILTER > 0
    767 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    768 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
    769 #endif
    770 
    771 	/*
    772 	 * Make sure the interface is shutdown during reboot.
    773 	 */
    774 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
    775 	if (sc->sc_sdhook == NULL)
    776 		printf("%s: WARNING: unable to establish shutdown hook\n",
    777 		    sc->sc_dev.dv_xname);
    778 
    779 	/*
    780 	 * Add a suspend hook to make sure we come back up after a
    781 	 * resume.
    782 	 */
    783 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
    784 	if (sc->sc_powerhook == NULL)
    785 		printf("%s: WARNING: unable to establish power hook\n",
    786 		    sc->sc_dev.dv_xname);
    787 
    788 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
    789 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
    790 	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
    791 
    792 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
    793 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
    794 	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
    795 
    796 	return;
    797 
    798 	/*
    799 	 * Free any resources we've allocated during the failed attach
    800 	 * attempt.  Do this in reverse order and fall through.
    801 	 */
    802  fail_5:
    803 	for (i = 0; i < ATW_NRXDESC; i++) {
    804 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
    805 			continue;
    806 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
    807 	}
    808  fail_4:
    809 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    810 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
    811 			continue;
    812 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
    813 	}
    814 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    815  fail_3:
    816 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    817  fail_2:
    818 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    819 	    sizeof(struct atw_control_data));
    820  fail_1:
    821 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
    822  fail_0:
    823 	return;
    824 }
    825 
    826 static struct ieee80211_node *
    827 atw_node_alloc(struct ieee80211com *ic)
    828 {
    829 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    830 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
    831 
    832 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
    833 	return ni;
    834 }
    835 
    836 static void
    837 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
    838 {
    839 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    840 
    841 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
    842 	    ether_sprintf(ni->ni_bssid)));
    843 	(*sc->sc_node_free)(ic, ni);
    844 }
    845 
    846 /*
    847  * atw_reset:
    848  *
    849  *	Perform a soft reset on the ADM8211.
    850  */
    851 void
    852 atw_reset(struct atw_softc *sc)
    853 {
    854 	int i;
    855 
    856 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
    857 
    858 	for (i = 0; i < 10000; i++) {
    859 		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
    860 			break;
    861 		DELAY(1);
    862 	}
    863 
    864 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
    865 
    866 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
    867 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
    868 
    869 	/* Turn off maximum power saving. */
    870 	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
    871 
    872 	/* Recall EEPROM. */
    873 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
    874 
    875 	DELAY(10 * 1000);
    876 
    877 	/* A reset seems to affect the SRAM contents, so put them into
    878 	 * a known state.
    879 	 */
    880 	atw_clear_sram(sc);
    881 
    882 	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
    883 
    884 	sc->sc_lost_bcn_thresh = 0;
    885 }
    886 
    887 static void
    888 atw_clear_sram(struct atw_softc *sc)
    889 {
    890 #if 0
    891 	for (addr = 0; addr < 448; addr++) {
    892 		ATW_WRITE(sc, ATW_WEPCTL,
    893 		    ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0	| addr);
    894 		DELAY(1000);
    895 		ATW_WRITE(sc, ATW_WESK, 0);
    896 		DELAY(1000); /* paranoia */
    897 	}
    898 	return;
    899 #endif
    900 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
    901 	/* XXX not for revision 0x20. */
    902 	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
    903 }
    904 
    905 /* TBD atw_init
    906  *
    907  * set MAC based on ic->ic_bss->myaddr
    908  * write WEP keys
    909  * set TX rate
    910  */
    911 
    912 /*
    913  * atw_init:		[ ifnet interface function ]
    914  *
    915  *	Initialize the interface.  Must be called at splnet().
    916  */
    917 int
    918 atw_init(struct ifnet *ifp)
    919 {
    920 	struct atw_softc *sc = ifp->if_softc;
    921 	struct ieee80211com *ic = &sc->sc_ic;
    922 	struct atw_txsoft *txs;
    923 	struct atw_rxsoft *rxs;
    924 	u_int32_t reg;
    925 	int i, error = 0;
    926 
    927 	if ((error = atw_enable(sc)) != 0)
    928 		goto out;
    929 
    930 	/*
    931 	 * Cancel any pending I/O. This also resets.
    932 	 */
    933 	atw_stop(ifp, 0);
    934 
    935 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
    936 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
    937 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
    938 	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
    939 
    940 	/* Turn off APM??? (A binary-only driver does this.)
    941 	 *
    942 	 * Set Rx store-and-forward mode.
    943 	 */
    944 	reg = ATW_READ(sc, ATW_CMDR);
    945 	reg &= ~ATW_CMDR_APM;
    946 	reg &= ~ATW_CMDR_DRT_MASK;
    947 	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
    948 
    949 	ATW_WRITE(sc, ATW_CMDR, reg);
    950 
    951 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
    952 	 *
    953 	 * XXX a binary-only driver sets a different service field than
    954 	 * 0. why?
    955 	 */
    956 	reg = ATW_READ(sc, ATW_PLCPHD);
    957 	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
    958 	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
    959 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
    960 	ATW_WRITE(sc, ATW_PLCPHD, reg);
    961 
    962 	/* XXX this magic can probably be figured out from the RFMD docs */
    963 	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
    964 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
    965 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
    966 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
    967 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
    968 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
    969 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
    970 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
    971 	ATW_WRITE(sc, ATW_TOFS2, reg);
    972 
    973 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
    974 	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
    975 
    976 	/* XXX this resets an Intersil RF front-end? */
    977 	/* TBD condition on Intersil RFType? */
    978 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
    979 	DELAY(10 * 1000);
    980 	ATW_WRITE(sc, ATW_SYNRF, 0);
    981 	DELAY(5 * 1000);
    982 
    983 	/* 16 TU max duration for contention-free period */
    984 	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
    985 	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
    986 
    987 	/* XXX I guess that the Cardbus clock is 22MHz?
    988 	 * I am assuming that the role of ATW_TOFS0_USCNT is
    989 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
    990 	 * very clear on this point. It says in the datasheet that it is
    991 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
    992 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
    993 	 * these values. These values are also the power-on default.
    994 	 */
    995 	ATW_WRITE(sc, ATW_TOFS0,
    996 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
    997 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
    998 
    999 	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
   1000 	 * driver. Go figure.
   1001 	 */
   1002 	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
   1003 	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
   1004 	             ATW_IFST_SIFS_MASK) |
   1005 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
   1006 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
   1007 
   1008 	ATW_WRITE(sc, ATW_IFST, reg);
   1009 
   1010 	/* XXX More magic. Might relate to ACK timing. */
   1011 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
   1012 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
   1013 
   1014 	/* Set up the MMI read/write addresses for the BBP.
   1015 	 *
   1016 	 * TBD find out the Marvel settings.
   1017 	 */
   1018 	switch (sc->sc_bbptype) {
   1019 	case ATW_BBPTYPE_INTERSIL:
   1020 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
   1021 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
   1022 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
   1023 		break;
   1024 	case ATW_BBPTYPE_MARVEL:
   1025 		break;
   1026 	case ATW_BBPTYPE_RFMD:
   1027 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
   1028 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
   1029 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
   1030 	default:
   1031 		break;
   1032 	}
   1033 
   1034 	sc->sc_wepctl = 0;
   1035 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
   1036 
   1037 	if ((error = atw_rf3000_init(sc)) != 0)
   1038 		goto out;
   1039 
   1040 	/*
   1041 	 * Initialize the PCI Access Register.
   1042 	 */
   1043 	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
   1044 
   1045 	/*
   1046 	 * If we're allowed to do so, use Memory Read Line
   1047 	 * and Memory Read Multiple.
   1048 	 *
   1049 	 * XXX Should we use Memory Write and Invalidate?
   1050 	 */
   1051 	if (sc->sc_flags & ATWF_MRL)
   1052 		sc->sc_busmode |= ATW_PAR_MRLE;
   1053 	if (sc->sc_flags & ATWF_MRM)
   1054 		sc->sc_busmode |= ATW_PAR_MRME;
   1055 	if (sc->sc_flags & ATWF_MWI)
   1056 		sc->sc_busmode |= ATW_PAR_MWIE;
   1057 	if (sc->sc_maxburst == 0)
   1058 		sc->sc_maxburst = 8;	/* ADM8211 default */
   1059 
   1060 	switch (sc->sc_cacheline) {
   1061 	default:
   1062 		/* Use burst length. */
   1063 		break;
   1064 	case 8:
   1065 		sc->sc_busmode |= ATW_PAR_CAL_8DW;
   1066 		break;
   1067 	case 16:
   1068 		sc->sc_busmode |= ATW_PAR_CAL_16DW;
   1069 		break;
   1070 	case 32:
   1071 		sc->sc_busmode |= ATW_PAR_CAL_32DW;
   1072 		break;
   1073 	}
   1074 	switch (sc->sc_maxburst) {
   1075 	case 1:
   1076 		sc->sc_busmode |= ATW_PAR_PBL_1DW;
   1077 		break;
   1078 	case 2:
   1079 		sc->sc_busmode |= ATW_PAR_PBL_2DW;
   1080 		break;
   1081 	case 4:
   1082 		sc->sc_busmode |= ATW_PAR_PBL_4DW;
   1083 		break;
   1084 	case 8:
   1085 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1086 		break;
   1087 	case 16:
   1088 		sc->sc_busmode |= ATW_PAR_PBL_16DW;
   1089 		break;
   1090 	case 32:
   1091 		sc->sc_busmode |= ATW_PAR_PBL_32DW;
   1092 		break;
   1093 	default:
   1094 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1095 		break;
   1096 	}
   1097 
   1098 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
   1099 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
   1100 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
   1101 
   1102 	/*
   1103 	 * Initialize the OPMODE register.  We don't write it until
   1104 	 * we're ready to begin the transmit and receive processes.
   1105 	 */
   1106 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
   1107 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
   1108 
   1109 	/*
   1110 	 * Initialize the transmit descriptor ring.
   1111 	 */
   1112 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1113 	for (i = 0; i < ATW_NTXDESC; i++) {
   1114 		/* no transmit chaining */
   1115 		sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
   1116 		sc->sc_txdescs[i].at_buf2 =
   1117 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
   1118 	}
   1119 	/* use ring mode */
   1120 	sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
   1121 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
   1122 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1123 	sc->sc_txfree = ATW_NTXDESC;
   1124 	sc->sc_txnext = 0;
   1125 
   1126 	/*
   1127 	 * Initialize the transmit job descriptors.
   1128 	 */
   1129 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1130 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1131 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   1132 		txs = &sc->sc_txsoft[i];
   1133 		txs->txs_mbuf = NULL;
   1134 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1135 	}
   1136 
   1137 	/*
   1138 	 * Initialize the receive descriptor and receive job
   1139 	 * descriptor rings.
   1140 	 */
   1141 	for (i = 0; i < ATW_NRXDESC; i++) {
   1142 		rxs = &sc->sc_rxsoft[i];
   1143 		if (rxs->rxs_mbuf == NULL) {
   1144 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
   1145 				printf("%s: unable to allocate or map rx "
   1146 				    "buffer %d, error = %d\n",
   1147 				    sc->sc_dev.dv_xname, i, error);
   1148 				/*
   1149 				 * XXX Should attempt to run with fewer receive
   1150 				 * XXX buffers instead of just failing.
   1151 				 */
   1152 				atw_rxdrain(sc);
   1153 				goto out;
   1154 			}
   1155 		} else
   1156 			ATW_INIT_RXDESC(sc, i);
   1157 	}
   1158 	sc->sc_rxptr = 0;
   1159 
   1160 	/* disable all wake-up events */
   1161 	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
   1162 	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
   1163 			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
   1164 			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
   1165 
   1166 	/* ack all wake-up events */
   1167 	ATW_SET(sc, ATW_WCSR, 0);
   1168 
   1169 	/*
   1170 	 * Initialize the interrupt mask and enable interrupts.
   1171 	 */
   1172 	/* normal interrupts */
   1173 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
   1174 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
   1175 
   1176 	/* abnormal interrupts */
   1177 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
   1178 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
   1179 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1180 
   1181 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
   1182 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1183 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
   1184 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
   1185 	    ATW_INTR_TRT;
   1186 
   1187 	sc->sc_linkint_mask &= sc->sc_inten;
   1188 	sc->sc_rxint_mask &= sc->sc_inten;
   1189 	sc->sc_txint_mask &= sc->sc_inten;
   1190 
   1191 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
   1192 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1193 	if (sc->sc_intr_ack != NULL)
   1194 		(*sc->sc_intr_ack)(sc);
   1195 
   1196 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
   1197 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
   1198 
   1199 	/*
   1200 	 * Give the transmit and receive rings to the ADM8211.
   1201 	 */
   1202 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
   1203 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
   1204 
   1205 	/* common 802.11 configuration */
   1206 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
   1207 	switch (ic->ic_opmode) {
   1208 	case IEEE80211_M_STA:
   1209 		break;
   1210 	case IEEE80211_M_AHDEMO: /* XXX */
   1211 	case IEEE80211_M_IBSS:
   1212 		ic->ic_flags |= IEEE80211_F_IBSSON;
   1213 		/*FALLTHROUGH*/
   1214 	case IEEE80211_M_HOSTAP: /* XXX */
   1215 		break;
   1216 	case IEEE80211_M_MONITOR: /* XXX */
   1217 		break;
   1218 	}
   1219 
   1220 	atw_start_beacon(sc, 0);
   1221 
   1222 	switch (ic->ic_opmode) {
   1223 	case IEEE80211_M_AHDEMO:
   1224 	case IEEE80211_M_HOSTAP:
   1225 		ic->ic_bss->ni_intval = ic->ic_lintval;
   1226 		ic->ic_bss->ni_rssi = 0;
   1227 		ic->ic_bss->ni_rstamp = 0;
   1228 		break;
   1229 	default:					/* XXX */
   1230 		break;
   1231 	}
   1232 
   1233 	atw_write_ssid(sc);
   1234 	atw_write_sup_rates(sc);
   1235 	if (ic->ic_caps & IEEE80211_C_WEP)
   1236 		atw_write_wep(sc);
   1237 
   1238 	/*
   1239 	 * Set the receive filter.  This will start the transmit and
   1240 	 * receive processes.
   1241 	 */
   1242 	atw_filter_setup(sc);
   1243 
   1244 	/*
   1245 	 * Start the receive process.
   1246 	 */
   1247 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1248 
   1249 	/*
   1250 	 * Note that the interface is now running.
   1251 	 */
   1252 	ifp->if_flags |= IFF_RUNNING;
   1253 	ifp->if_flags &= ~IFF_OACTIVE;
   1254 	ic->ic_state = IEEE80211_S_INIT;
   1255 
   1256 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1257 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1258 	else
   1259 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1260  out:
   1261 	if (error) {
   1262 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1263 		ifp->if_timer = 0;
   1264 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1265 	}
   1266 #ifdef ATW_DEBUG
   1267 	atw_print_regs(sc, "end of init");
   1268 #endif /* ATW_DEBUG */
   1269 
   1270 	return (error);
   1271 }
   1272 
   1273 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
   1274  *           0: MAC control of RF3000/Si4126.
   1275  *
   1276  * Applies power, or selects RF front-end? Sets reset condition.
   1277  *
   1278  * TBD support non-RFMD BBP, non-SiLabs synth.
   1279  */
   1280 static void
   1281 atw_rfio_enable(struct atw_softc *sc, int enable)
   1282 {
   1283 	if (enable) {
   1284 		ATW_WRITE(sc, ATW_SYNRF,
   1285 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
   1286 		DELAY(atw_rfio_enable_delay);
   1287 	} else {
   1288 		ATW_WRITE(sc, ATW_SYNRF, 0);
   1289 		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
   1290 	}
   1291 }
   1292 
   1293 static int
   1294 atw_tune(struct atw_softc *sc)
   1295 {
   1296 	int rc;
   1297 	u_int32_t reg;
   1298 	int chan;
   1299 	struct ieee80211com *ic = &sc->sc_ic;
   1300 
   1301 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
   1302 	if (chan == IEEE80211_CHAN_ANY)
   1303 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
   1304 
   1305 	if (chan == sc->sc_cur_chan)
   1306 		return 0;
   1307 
   1308 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
   1309 	    sc->sc_cur_chan, chan));
   1310 
   1311 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1312 
   1313 	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
   1314 	    (rc = atw_rf3000_tune(sc, chan)) != 0)
   1315 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
   1316 		    chan);
   1317 
   1318 	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
   1319 	ATW_WRITE(sc, ATW_CAP0,
   1320 	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
   1321 
   1322 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1323 
   1324 	if (rc == 0)
   1325 		sc->sc_cur_chan = chan;
   1326 
   1327 	return rc;
   1328 }
   1329 
   1330 #ifdef ATW_DEBUG
   1331 static void
   1332 atw_si4126_print(struct atw_softc *sc)
   1333 {
   1334 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1335 	u_int addr, val;
   1336 
   1337 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1338 		return;
   1339 
   1340 	for (addr = 0; addr <= 8; addr++) {
   1341 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
   1342 		if (atw_si4126_read(sc, addr, &val) == 0) {
   1343 			printf("<unknown> (quitting print-out)\n");
   1344 			break;
   1345 		}
   1346 		printf("%05x\n", val);
   1347 	}
   1348 }
   1349 #endif /* ATW_DEBUG */
   1350 
   1351 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
   1352  *
   1353  * The RF/IF synthesizer produces two reference frequencies for
   1354  * the RF2948B transceiver.  The first frequency the RF2948B requires
   1355  * is two times the so-called "intermediate frequency" (IF). Since
   1356  * a SAW filter on the radio fixes the IF at 374MHz, I program the
   1357  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
   1358  * frequency required by the transceiver is the radio frequency
   1359  * (RF). This is a superheterodyne transceiver; for f(chan) the
   1360  * center frequency of the channel we are tuning, RF = f(chan) -
   1361  * IF.
   1362  *
   1363  * XXX I am told by SiLabs that the Si4126 will accept a broader range
   1364  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
   1365  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
   1366  * works, but I have still programmed for XINDIV2 = 1 to be safe.
   1367  */
   1368 static int
   1369 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
   1370 {
   1371 	int rc = 0;
   1372 	u_int mhz;
   1373 	u_int R;
   1374 	u_int32_t reg;
   1375 	u_int16_t gain;
   1376 
   1377 #ifdef ATW_DEBUG
   1378 	atw_si4126_print(sc);
   1379 #endif /* ATW_DEBUG */
   1380 
   1381 	if (chan == 14)
   1382 		mhz = 2484;
   1383 	else
   1384 		mhz = 2412 + 5 * (chan - 1);
   1385 
   1386 	/* Tune IF to 748MHz to suit the IF LO input of the
   1387 	 * RF2494B, which is 2 x IF. No need to set an IF divider
   1388          * because an IF in 526MHz - 952MHz is allowed.
   1389 	 *
   1390 	 * XIN is 44.000MHz, so divide it by two to get allowable
   1391 	 * range of 2-25MHz. SiLabs tells me that this is not
   1392 	 * strictly necessary.
   1393 	 */
   1394 
   1395 	R = 44;
   1396 
   1397 	atw_rfio_enable(sc, 1);
   1398 
   1399 	/* Power-up RF, IF synthesizers. */
   1400 	if ((rc = atw_si4126_write(sc, SI4126_POWER,
   1401 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
   1402 		goto out;
   1403 
   1404 	/* If RF2 N > 2047, then set KP2 to 1. */
   1405 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
   1406 
   1407 	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
   1408 		goto out;
   1409 
   1410 	/* set LPWR, too? */
   1411 	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
   1412 	    SI4126_MAIN_XINDIV2)) != 0)
   1413 		goto out;
   1414 
   1415 	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
   1416 	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
   1417 	 */
   1418 	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
   1419 		goto out;
   1420 
   1421 	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
   1422 		goto out;
   1423 
   1424 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
   1425 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
   1426 	 * which has no RF1!
   1427 	 */
   1428 	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
   1429 		goto out;
   1430 
   1431 	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
   1432 		goto out;
   1433 
   1434 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
   1435 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
   1436 	 * Now let's multiply it to mhz. So mhz - IF = N.
   1437 	 */
   1438 	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
   1439 		goto out;
   1440 
   1441 	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
   1442 		goto out;
   1443 
   1444 	/* wait 100us from power-up for RF, IF to settle */
   1445 	DELAY(100);
   1446 
   1447 	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
   1448 		/* XXX there is a binary driver which sends
   1449 		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
   1450 		 * that this enables the Si4126 by raising its PWDN#, but I
   1451 		 * think that it actually sets the Prism RF front-end
   1452 		 * to a special mode for channel 14.
   1453 		 */
   1454 		reg = ATW_READ(sc, ATW_GPIO);
   1455 		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
   1456 		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
   1457 		ATW_WRITE(sc, ATW_GPIO, reg);
   1458 	}
   1459 
   1460 #ifdef ATW_DEBUG
   1461 	atw_si4126_print(sc);
   1462 #endif /* ATW_DEBUG */
   1463 
   1464 out:
   1465 	atw_rfio_enable(sc, 0);
   1466 
   1467 	return rc;
   1468 }
   1469 
   1470 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
   1471  * diversity.
   1472  *
   1473  * Call this w/ Tx/Rx suspended.
   1474  */
   1475 static int
   1476 atw_rf3000_init(struct atw_softc *sc)
   1477 {
   1478 	int rc = 0;
   1479 
   1480 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1481 
   1482 	atw_rfio_enable(sc, 1);
   1483 
   1484 	/* enable diversity */
   1485 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
   1486 
   1487 	if (rc != 0)
   1488 		goto out;
   1489 
   1490 	/* sensible setting from a binary-only driver */
   1491 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1492 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
   1493 
   1494 	if (rc != 0)
   1495 		goto out;
   1496 
   1497 	/* magic from a binary-only driver */
   1498 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
   1499 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
   1500 
   1501 	if (rc != 0)
   1502 		goto out;
   1503 
   1504 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
   1505 
   1506 	if (rc != 0)
   1507 		goto out;
   1508 
   1509 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
   1510 
   1511 	if (rc != 0)
   1512 		goto out;
   1513 
   1514 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
   1515 
   1516 	if (rc != 0)
   1517 		goto out;
   1518 
   1519 	/* CCA is acquisition sensitive */
   1520 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
   1521 	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
   1522 
   1523 	if (rc != 0)
   1524 		goto out;
   1525 
   1526 out:
   1527 	atw_rfio_enable(sc, 0);
   1528 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1529 	return rc;
   1530 }
   1531 
   1532 #ifdef ATW_DEBUG
   1533 static void
   1534 atw_rf3000_print(struct atw_softc *sc)
   1535 {
   1536 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1537 	u_int addr, val;
   1538 
   1539 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1540 		return;
   1541 
   1542 	for (addr = 0x01; addr <= 0x15; addr++) {
   1543 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
   1544 		if (atw_rf3000_read(sc, addr, &val) != 0) {
   1545 			printf("<unknown> (quitting print-out)\n");
   1546 			break;
   1547 		}
   1548 		printf("%08x\n", val);
   1549 	}
   1550 }
   1551 #endif /* ATW_DEBUG */
   1552 
   1553 /* Set the power settings on the BBP for channel `chan'. */
   1554 static int
   1555 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
   1556 {
   1557 	int rc = 0;
   1558 	u_int32_t reg;
   1559 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
   1560 
   1561 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
   1562 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
   1563 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
   1564 
   1565 	/* odd channels: LSB, even channels: MSB */
   1566 	if (chan % 2 == 1) {
   1567 		txpower &= 0xFF;
   1568 		lpf_cutoff &= 0xFF;
   1569 		lna_gs_thresh &= 0xFF;
   1570 	} else {
   1571 		txpower >>= 8;
   1572 		lpf_cutoff >>= 8;
   1573 		lna_gs_thresh >>= 8;
   1574 	}
   1575 
   1576 #ifdef ATW_DEBUG
   1577 	atw_rf3000_print(sc);
   1578 #endif /* ATW_DEBUG */
   1579 
   1580 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
   1581 	    "lna_gs_thresh %02x\n",
   1582 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
   1583 
   1584 	atw_rfio_enable(sc, 1);
   1585 
   1586 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1587 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
   1588 		goto out;
   1589 
   1590 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
   1591 		goto out;
   1592 
   1593 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
   1594 		goto out;
   1595 
   1596 	/* from a binary-only driver. */
   1597 	reg = ATW_READ(sc, ATW_PLCPHD);
   1598 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
   1599 	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
   1600 	    ATW_PLCPHD_SERVICE_MASK);
   1601 	ATW_WRITE(sc, ATW_PLCPHD, reg);
   1602 
   1603 #ifdef ATW_DEBUG
   1604 	atw_rf3000_print(sc);
   1605 #endif /* ATW_DEBUG */
   1606 
   1607 out:
   1608 	atw_rfio_enable(sc, 0);
   1609 
   1610 	return rc;
   1611 }
   1612 
   1613 /* Write a register on the RF3000 baseband processor using the
   1614  * registers provided by the ADM8211 for this purpose.
   1615  *
   1616  * Return 0 on success.
   1617  */
   1618 static int
   1619 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
   1620 {
   1621 	u_int32_t reg;
   1622 	int i;
   1623 
   1624 	for (i = 1000; --i >= 0; ) {
   1625 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1626 			break;
   1627 		DELAY(100);
   1628 	}
   1629 
   1630 	if (i < 0) {
   1631 		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
   1632 		return ETIMEDOUT;
   1633 	}
   1634 
   1635 	reg = sc->sc_bbpctl_wr |
   1636 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
   1637 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1638 
   1639 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1640 
   1641 	for (i = 1000; --i >= 0; ) {
   1642 		DELAY(100);
   1643 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
   1644 			break;
   1645 	}
   1646 
   1647 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
   1648 
   1649 	if (i < 0) {
   1650 		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
   1651 		return ETIMEDOUT;
   1652 	}
   1653 	return 0;
   1654 }
   1655 
   1656 /* Read a register on the RF3000 baseband processor using the registers
   1657  * the ADM8211 provides for this purpose.
   1658  *
   1659  * The 7-bit register address is addr.  Record the 8-bit data in the register
   1660  * in *val.
   1661  *
   1662  * Return 0 on success.
   1663  *
   1664  * XXX This does not seem to work. The ADM8211 must require more or
   1665  * different magic to read the chip than to write it. Possibly some
   1666  * of the magic I have derived from a binary-only driver concerns
   1667  * the "chip address" (see the RF3000 manual).
   1668  */
   1669 #ifdef ATW_DEBUG
   1670 static int
   1671 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
   1672 {
   1673 	u_int32_t reg;
   1674 	int i;
   1675 
   1676 	for (i = 1000; --i >= 0; ) {
   1677 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1678 			break;
   1679 		DELAY(100);
   1680 	}
   1681 
   1682 	if (i < 0) {
   1683 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
   1684 		    sc->sc_dev.dv_xname);
   1685 		return ETIMEDOUT;
   1686 	}
   1687 
   1688 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1689 
   1690 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1691 
   1692 	for (i = 1000; --i >= 0; ) {
   1693 		DELAY(100);
   1694 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
   1695 			break;
   1696 	}
   1697 
   1698 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
   1699 
   1700 	if (i < 0) {
   1701 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
   1702 		    sc->sc_dev.dv_xname, reg);
   1703 		return ETIMEDOUT;
   1704 	}
   1705 	if (val != NULL)
   1706 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
   1707 	return 0;
   1708 }
   1709 #endif /* ATW_DEBUG */
   1710 
   1711 /* Write a register on the Si4126 RF/IF synthesizer using the registers
   1712  * provided by the ADM8211 for that purpose.
   1713  *
   1714  * val is 18 bits of data, and val is the 4-bit address of the register.
   1715  *
   1716  * Return 0 on success.
   1717  */
   1718 static int
   1719 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
   1720 {
   1721 	u_int32_t bits, reg;
   1722 	int i;
   1723 
   1724 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1725 	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
   1726 
   1727 	for (i = 1000; --i >= 0; ) {
   1728 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1729 			break;
   1730 		DELAY(100);
   1731 	}
   1732 
   1733 	if (i < 0) {
   1734 		printf("%s: start atw_si4126_write, SYNCTL busy\n",
   1735 		    sc->sc_dev.dv_xname);
   1736 		return ETIMEDOUT;
   1737 	}
   1738 
   1739 	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
   1740 	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
   1741 
   1742 	reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
   1743 
   1744 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1745 
   1746 	for (i = 1000; --i >= 0; ) {
   1747 		DELAY(100);
   1748 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
   1749 			break;
   1750 	}
   1751 
   1752 	/* restore to acceptable starting condition */
   1753 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
   1754 
   1755 	if (i < 0) {
   1756 		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
   1757 		    sc->sc_dev.dv_xname, reg);
   1758 		return ETIMEDOUT;
   1759 	}
   1760 	return 0;
   1761 }
   1762 
   1763 /* Read 18-bit data from the 4-bit address addr in Si4126
   1764  * RF synthesizer and write the data to *val. Return 0 on success.
   1765  *
   1766  * XXX This does not seem to work. The ADM8211 must require more or
   1767  * different magic to read the chip than to write it.
   1768  */
   1769 #ifdef ATW_DEBUG
   1770 static int
   1771 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
   1772 {
   1773 	u_int32_t reg;
   1774 	int i;
   1775 
   1776 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1777 
   1778 	for (i = 1000; --i >= 0; ) {
   1779 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1780 			break;
   1781 		DELAY(100);
   1782 	}
   1783 
   1784 	if (i < 0) {
   1785 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
   1786 		    sc->sc_dev.dv_xname);
   1787 		return ETIMEDOUT;
   1788 	}
   1789 
   1790 	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
   1791 
   1792 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1793 
   1794 	for (i = 1000; --i >= 0; ) {
   1795 		DELAY(100);
   1796 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
   1797 			break;
   1798 	}
   1799 
   1800 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
   1801 
   1802 	if (i < 0) {
   1803 		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
   1804 		    sc->sc_dev.dv_xname, reg);
   1805 		return ETIMEDOUT;
   1806 	}
   1807 	if (val != NULL)
   1808 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
   1809 		                       ATW_SYNCTL_DATA_MASK);
   1810 	return 0;
   1811 }
   1812 #endif /* ATW_DEBUG */
   1813 
   1814 /* XXX is the endianness correct? test. */
   1815 #define	atw_calchash(addr) \
   1816 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
   1817 
   1818 /*
   1819  * atw_filter_setup:
   1820  *
   1821  *	Set the ADM8211's receive filter.
   1822  */
   1823 static void
   1824 atw_filter_setup(struct atw_softc *sc)
   1825 {
   1826 	struct ieee80211com *ic = &sc->sc_ic;
   1827 	struct ethercom *ec = &ic->ic_ec;
   1828 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1829 	int hash;
   1830 	u_int32_t hashes[2] = { 0, 0 };
   1831 	struct ether_multi *enm;
   1832 	struct ether_multistep step;
   1833 
   1834 	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
   1835 	    sc->sc_dev.dv_xname, sc->sc_flags));
   1836 
   1837 	/*
   1838 	 * If we're running, idle the receive engine.  If we're NOT running,
   1839 	 * we're being called from atw_init(), and our writing ATW_NAR will
   1840 	 * start the transmit and receive processes in motion.
   1841 	 */
   1842 	if (ifp->if_flags & IFF_RUNNING)
   1843 		atw_idle(sc, ATW_NAR_SR);
   1844 
   1845 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
   1846 
   1847 	ifp->if_flags &= ~IFF_ALLMULTI;
   1848 
   1849 	if (ifp->if_flags & IFF_PROMISC) {
   1850 		sc->sc_opmode |= ATW_NAR_PR;
   1851 allmulti:
   1852 		ifp->if_flags |= IFF_ALLMULTI;
   1853 		goto setit;
   1854 	}
   1855 
   1856 	/*
   1857 	 * Program the 64-bit multicast hash filter.
   1858 	 */
   1859 	ETHER_FIRST_MULTI(step, ec, enm);
   1860 	while (enm != NULL) {
   1861 		/* XXX */
   1862 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1863 		    ETHER_ADDR_LEN) != 0)
   1864 			goto allmulti;
   1865 
   1866 		hash = atw_calchash(enm->enm_addrlo);
   1867 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1868 		ETHER_NEXT_MULTI(step, enm);
   1869 	}
   1870 
   1871 	if (ifp->if_flags & IFF_BROADCAST) {
   1872 		hash = atw_calchash(etherbroadcastaddr);
   1873 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1874 	}
   1875 
   1876 	/* all bits set => hash is useless */
   1877 	if (~(hashes[0] & hashes[1]) == 0)
   1878 		goto allmulti;
   1879 
   1880  setit:
   1881 	if (ifp->if_flags & IFF_ALLMULTI)
   1882 		sc->sc_opmode |= ATW_NAR_MM;
   1883 
   1884 	/* XXX in scan mode, do not filter packets. maybe this is
   1885 	 * unnecessary.
   1886 	 */
   1887 	if (ic->ic_state == IEEE80211_S_SCAN)
   1888 		sc->sc_opmode |= ATW_NAR_PR;
   1889 
   1890 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
   1891 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
   1892 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1893 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
   1894 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
   1895 
   1896 	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
   1897 }
   1898 
   1899 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
   1900  * a beacon's BSSID and SSID against the preferred BSSID and SSID
   1901  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
   1902  * no beacon with the preferred BSSID and SSID in the number of
   1903  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
   1904  */
   1905 static void
   1906 atw_write_bssid(struct atw_softc *sc)
   1907 {
   1908 	struct ieee80211com *ic = &sc->sc_ic;
   1909 	u_int8_t *bssid;
   1910 
   1911 	bssid = ic->ic_bss->ni_bssid;
   1912 
   1913 	ATW_WRITE(sc, ATW_ABDA1,
   1914 	    (ATW_READ(sc, ATW_ABDA1) &
   1915 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
   1916 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
   1917 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
   1918 
   1919 	ATW_WRITE(sc, ATW_BSSID0,
   1920 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
   1921 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
   1922 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
   1923 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
   1924 
   1925 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
   1926 	    ether_sprintf(sc->sc_bssid)));
   1927 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
   1928 
   1929 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
   1930 }
   1931 
   1932 /* Tell the ADM8211 how many beacon intervals must pass without
   1933  * receiving a beacon with the preferred BSSID & SSID set by
   1934  * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
   1935  * raised.
   1936  */
   1937 static void
   1938 atw_write_bcn_thresh(struct atw_softc *sc)
   1939 {
   1940 	struct ieee80211com *ic = &sc->sc_ic;
   1941 	int lost_bcn_thresh;
   1942 
   1943 	/* Lose link after one second or 7 beacons, whichever comes
   1944 	 * first, but do not lose link before 2 beacons are lost.
   1945 	 *
   1946 	 * In host AP mode, set the lost-beacon threshold to 0.
   1947 	 */
   1948 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1949 		lost_bcn_thresh = 0;
   1950 	else {
   1951 		int beacons_per_second =
   1952 		    1000000 / (IEEE80211_DUR_TU * MAX(1,ic->ic_bss->ni_intval));
   1953 		lost_bcn_thresh = MAX(2, MIN(7, beacons_per_second));
   1954 	}
   1955 
   1956 	/* XXX resets wake-up status bits */
   1957 	ATW_WRITE(sc, ATW_WCSR,
   1958 	    (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
   1959 	    (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
   1960 
   1961 	DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
   1962 	    sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
   1963 
   1964 	sc->sc_lost_bcn_thresh = lost_bcn_thresh;
   1965 
   1966 	DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
   1967 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
   1968 }
   1969 
   1970 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
   1971  * 16-bit word.
   1972  */
   1973 static void
   1974 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
   1975 {
   1976 	u_int i;
   1977 	u_int8_t *ptr;
   1978 
   1979 	memcpy(&sc->sc_sram[ofs], buf, buflen);
   1980 
   1981 	if (ofs % 2 != 0) {
   1982 		ofs--;
   1983 		buflen++;
   1984 	}
   1985 
   1986 	if (buflen % 2 != 0)
   1987 		buflen++;
   1988 
   1989 	assert(buflen + ofs <= ATW_SRAM_SIZE);
   1990 
   1991 	ptr = &sc->sc_sram[ofs];
   1992 
   1993 	for (i = 0; i < buflen; i += 2) {
   1994 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
   1995 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
   1996 		DELAY(atw_writewep_delay);
   1997 
   1998 		ATW_WRITE(sc, ATW_WESK,
   1999 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
   2000 		DELAY(atw_writewep_delay);
   2001 	}
   2002 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
   2003 
   2004 	if (sc->sc_if.if_flags & IFF_DEBUG) {
   2005 		int n_octets = 0;
   2006 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
   2007 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
   2008 		for (i = 0; i < buflen; i++) {
   2009 			printf(" %02x", ptr[i]);
   2010 			if (++n_octets % 24 == 0)
   2011 				printf("\n");
   2012 		}
   2013 		if (n_octets % 24 != 0)
   2014 			printf("\n");
   2015 	}
   2016 }
   2017 
   2018 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
   2019 static void
   2020 atw_write_wep(struct atw_softc *sc)
   2021 {
   2022 	struct ieee80211com *ic = &sc->sc_ic;
   2023 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
   2024 	u_int8_t buf[IEEE80211_WEP_NKID]
   2025 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
   2026 	u_int32_t reg;
   2027 	int i;
   2028 
   2029 	sc->sc_wepctl = 0;
   2030 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
   2031 
   2032 	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
   2033 		return;
   2034 
   2035 	memset(&buf[0][0], 0, sizeof(buf));
   2036 
   2037 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   2038 		if (ic->ic_nw_keys[i].wk_len > 5) {
   2039 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
   2040 		} else if (ic->ic_nw_keys[i].wk_len != 0) {
   2041 			buf[i][1] = ATW_WEP_ENABLED;
   2042 		} else {
   2043 			buf[i][1] = 0;
   2044 			continue;
   2045 		}
   2046 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
   2047 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
   2048 		    ic->ic_nw_keys[i].wk_len - 1);
   2049 	}
   2050 
   2051 	reg = ATW_READ(sc, ATW_MACTEST);
   2052 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
   2053 	reg &= ~ATW_MACTEST_KEYID_MASK;
   2054 	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
   2055 	ATW_WRITE(sc, ATW_MACTEST, reg);
   2056 
   2057 	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
   2058 	 * throughout.)
   2059 	 */
   2060 	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
   2061 	if (sc->sc_if.if_flags & IFF_LINK2)
   2062 		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
   2063 
   2064 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
   2065 	    sizeof(buf));
   2066 }
   2067 
   2068 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
   2069 
   2070 static void
   2071 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2072     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2073 {
   2074 	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
   2075 
   2076 	switch (subtype) {
   2077 	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
   2078 		/* do nothing: hardware answers probe request */
   2079 		break;
   2080 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2081 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2082 		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
   2083 		break;
   2084 	default:
   2085 		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
   2086 		break;
   2087 	}
   2088 	return;
   2089 }
   2090 
   2091 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
   2092  * of IBSSs with like SSID/channel but different BSSID. It joins the
   2093  * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
   2094  * convention. Possibly the ADMtek chip does this for us; I will have
   2095  * to test to find out.
   2096  *
   2097  * XXX we should add the duration field of the received beacon to
   2098  * the TSF time it contains before comparing it with the ADM8211's
   2099  * TSF.
   2100  */
   2101 static void
   2102 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
   2103     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2104 {
   2105 	struct atw_softc *sc;
   2106 	struct ieee80211_frame *wh;
   2107 	u_int64_t tsft, bcn_tsft;
   2108 	u_int32_t tsftl, tsfth;
   2109 	int do_print = 0;
   2110 
   2111 	sc = (struct atw_softc*)ic->ic_if.if_softc;
   2112 
   2113 	if (ic->ic_if.if_flags & IFF_DEBUG)
   2114 		do_print = (ic->ic_if.if_flags & IFF_LINK0)
   2115 		    ? 1 : ratecheck(&sc->sc_last_beacon,
   2116 		    &atw_beacon_mininterval);
   2117 
   2118 	wh = mtod(m0, struct ieee80211_frame *);
   2119 
   2120 	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
   2121 
   2122 	if (ic->ic_state != IEEE80211_S_RUN) {
   2123 		if (do_print)
   2124 			printf("%s: atw_recv_beacon: not running\n",
   2125 			    sc->sc_dev.dv_xname);
   2126 		return;
   2127 	}
   2128 
   2129 	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
   2130 	    ic->ic_bss->ni_chan)) == NULL) {
   2131 		if (do_print)
   2132 			printf("%s: atw_recv_beacon: no node %s\n",
   2133 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2134 		return;
   2135 	}
   2136 
   2137 	if (ieee80211_match_bss(ic, ni) != 0) {
   2138 		if (do_print)
   2139 			printf("%s: atw_recv_beacon: ssid mismatch %s\n",
   2140 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2141 		return;
   2142 	}
   2143 
   2144 	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
   2145 		return;
   2146 
   2147 	if (do_print)
   2148 		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
   2149 		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
   2150 
   2151 	if (ic->ic_opmode != IEEE80211_M_IBSS)
   2152 		return;
   2153 
   2154 	/* If we read TSFTL right before rollover, we read a TSF timer
   2155 	 * that is too high rather than too low. This prevents a spurious
   2156 	 * synchronization down the line, however, our IBSS could suffer
   2157 	 * from a creeping TSF....
   2158 	 */
   2159 	tsftl = ATW_READ(sc, ATW_TSFTL);
   2160 	tsfth = ATW_READ(sc, ATW_TSFTH);
   2161 
   2162 	tsft = (u_int64_t)tsfth << 32 | tsftl;
   2163 	bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
   2164 
   2165 	if (do_print)
   2166 		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
   2167 		    sc->sc_dev.dv_xname, tsft, bcn_tsft);
   2168 
   2169 	/* we are faster, let the other guy catch up */
   2170 	if (bcn_tsft < tsft)
   2171 		return;
   2172 
   2173 	if (do_print)
   2174 		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
   2175 		    ether_sprintf(wh->i_addr2));
   2176 
   2177 	ic->ic_flags &= ~IEEE80211_F_SIBSS;
   2178 
   2179 #if 0
   2180 	atw_tsf(sc);
   2181 #endif
   2182 
   2183 	/* negotiate rates with new IBSS */
   2184 	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
   2185 	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
   2186 	if (ni->ni_rates.rs_nrates == 0) {
   2187 		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
   2188 			ether_sprintf(ni->ni_bssid));
   2189 		return;
   2190 	}
   2191 
   2192 	if (do_print) {
   2193 		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
   2194 		    ether_sprintf(ic->ic_bss->ni_bssid));
   2195 		printf("%s ", ether_sprintf(ni->ni_bssid));
   2196 		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
   2197 	}
   2198 
   2199 	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
   2200 
   2201 	atw_write_bssid(sc);
   2202 	atw_write_bcn_thresh(sc);
   2203 	atw_start_beacon(sc, 1);
   2204 }
   2205 
   2206 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
   2207  * In ad hoc mode, the SSID is written to the beacons sent by the
   2208  * ADM8211. In both ad hoc and infrastructure mode, beacons received
   2209  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
   2210  * indications.
   2211  */
   2212 static void
   2213 atw_write_ssid(struct atw_softc *sc)
   2214 {
   2215 	struct ieee80211com *ic = &sc->sc_ic;
   2216 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID */
   2217 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
   2218 
   2219 	memset(buf, 0, sizeof(buf));
   2220 	buf[0] = ic->ic_bss->ni_esslen;
   2221 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
   2222 
   2223 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
   2224 }
   2225 
   2226 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
   2227  * In ad hoc mode, the supported rates are written to beacons sent by the
   2228  * ADM8211.
   2229  */
   2230 static void
   2231 atw_write_sup_rates(struct atw_softc *sc)
   2232 {
   2233 	struct ieee80211com *ic = &sc->sc_ic;
   2234 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
   2235 	 * supported rates
   2236 	 */
   2237 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
   2238 
   2239 	memset(buf, 0, sizeof(buf));
   2240 
   2241 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
   2242 
   2243 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
   2244 	    ic->ic_bss->ni_rates.rs_nrates);
   2245 
   2246 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
   2247 }
   2248 
   2249 /* Start/stop sending beacons. */
   2250 void
   2251 atw_start_beacon(struct atw_softc *sc, int start)
   2252 {
   2253 	struct ieee80211com *ic = &sc->sc_ic;
   2254 	u_int32_t len, capinfo, reg_bcnt, reg_cap1;
   2255 
   2256 	if (ATW_IS_ENABLED(sc) == 0)
   2257 		return;
   2258 
   2259 	len = capinfo = 0;
   2260 
   2261 	/* start beacons */
   2262 	len = sizeof(struct ieee80211_frame) +
   2263 	    8 /* timestamp */ + 2 /* beacon interval */ +
   2264 	    2 /* capability info */ +
   2265 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
   2266 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
   2267 	    3 /* DS parameters */ +
   2268 	    IEEE80211_CRC_LEN;
   2269 
   2270 	reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
   2271 
   2272 	reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
   2273 
   2274 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2275 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2276 
   2277 	if (!start)
   2278 		return;
   2279 
   2280 	/* TBD use ni_capinfo */
   2281 
   2282 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
   2283 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   2284 	if (ic->ic_flags & IEEE80211_F_WEPON)
   2285 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   2286 
   2287 	switch (ic->ic_opmode) {
   2288 	case IEEE80211_M_IBSS:
   2289 		len += 4; /* IBSS parameters */
   2290 		capinfo |= IEEE80211_CAPINFO_IBSS;
   2291 		break;
   2292 	case IEEE80211_M_HOSTAP:
   2293 		/* XXX 6-byte minimum TIM */
   2294 		len += atw_beacon_len_adjust;
   2295 		capinfo |= IEEE80211_CAPINFO_ESS;
   2296 		break;
   2297 	default:
   2298 		return;
   2299 	}
   2300 
   2301 	reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
   2302 	reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
   2303 
   2304 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2305 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2306 
   2307 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
   2308 	    sc->sc_dev.dv_xname, reg_bcnt));
   2309 
   2310 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
   2311 	    sc->sc_dev.dv_xname, reg_cap1));
   2312 }
   2313 
   2314 /* First beacon was sent at time 0 microseconds, current time is
   2315  * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
   2316  * microseconds.  Return the expected time in microseconds for the
   2317  * beacon after next.
   2318  */
   2319 static __inline u_int64_t
   2320 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
   2321 {
   2322 	return tsft + (tbtt - tsft % tbtt);
   2323 }
   2324 
   2325 /* If we've created an IBSS, write the TSF time in the ADM8211 to
   2326  * the ieee80211com.
   2327  *
   2328  * Predict the next target beacon transmission time (TBTT) and
   2329  * write it to the ADM8211.
   2330  */
   2331 static void
   2332 atw_tsf(struct atw_softc *sc)
   2333 {
   2334 #define TBTTOFS 20 /* TU */
   2335 
   2336 	struct ieee80211com *ic = &sc->sc_ic;
   2337 	u_int64_t tsft, tbtt;
   2338 
   2339 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
   2340 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
   2341 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
   2342 		tsft = ATW_READ(sc, ATW_TSFTH);
   2343 		tsft <<= 32;
   2344 		tsft |= ATW_READ(sc, ATW_TSFTL);
   2345 		*(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
   2346 	} else
   2347 		tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
   2348 
   2349 	tbtt = atw_predict_beacon(tsft,
   2350 	    ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
   2351 
   2352 	/* skip one more beacon so that the TBTT cannot pass before
   2353 	 * we've programmed it, and also so that we can subtract a
   2354 	 * few TU so that we wake a little before TBTT.
   2355 	 */
   2356 	tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
   2357 
   2358 	/* wake up a little early */
   2359 	tbtt -= TBTTOFS * IEEE80211_DUR_TU;
   2360 
   2361 	DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
   2362 	    sc->sc_dev.dv_xname, tsft, tbtt));
   2363 
   2364 	ATW_WRITE(sc, ATW_TOFS1,
   2365 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
   2366 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
   2367 	    LSHIFT(
   2368 		MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
   2369 		ATW_TOFS1_TBTTPRE_MASK));
   2370 #undef TBTTOFS
   2371 }
   2372 
   2373 static void
   2374 atw_next_scan(void *arg)
   2375 {
   2376 	struct atw_softc *sc = arg;
   2377 	struct ieee80211com *ic = &sc->sc_ic;
   2378 	struct ifnet *ifp = &ic->ic_if;
   2379 	int s;
   2380 
   2381 	/* don't call atw_start w/o network interrupts blocked */
   2382 	s = splnet();
   2383 	if (ic->ic_state == IEEE80211_S_SCAN)
   2384 		ieee80211_next_scan(ifp);
   2385 	splx(s);
   2386 }
   2387 
   2388 /* Synchronize the hardware state with the software state. */
   2389 static int
   2390 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   2391 {
   2392 	struct ifnet *ifp = &ic->ic_if;
   2393 	struct atw_softc *sc = ifp->if_softc;
   2394 	enum ieee80211_state ostate;
   2395 	int error;
   2396 
   2397 	ostate = ic->ic_state;
   2398 
   2399 	if (nstate == IEEE80211_S_INIT) {
   2400 		callout_stop(&sc->sc_scan_ch);
   2401 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
   2402 		atw_start_beacon(sc, 0);
   2403 		return (*sc->sc_newstate)(ic, nstate, arg);
   2404 	}
   2405 
   2406 	if ((error = atw_tune(sc)) != 0)
   2407 		return error;
   2408 
   2409 	switch (nstate) {
   2410 	case IEEE80211_S_ASSOC:
   2411 		break;
   2412 	case IEEE80211_S_INIT:
   2413 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
   2414 		break;
   2415 	case IEEE80211_S_SCAN:
   2416 		memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
   2417 		atw_write_bssid(sc);
   2418 
   2419 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
   2420 		    atw_next_scan, sc);
   2421 
   2422 		break;
   2423 	case IEEE80211_S_RUN:
   2424 		if (ic->ic_opmode == IEEE80211_M_STA)
   2425 			break;
   2426 		/*FALLTHROUGH*/
   2427 	case IEEE80211_S_AUTH:
   2428 		atw_write_bssid(sc);
   2429 		atw_write_bcn_thresh(sc);
   2430 		atw_write_ssid(sc);
   2431 		atw_write_sup_rates(sc);
   2432 
   2433 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
   2434 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   2435 			break;
   2436 
   2437 		/* set listen interval
   2438 		 * XXX do software units agree w/ hardware?
   2439 		 */
   2440 		ATW_WRITE(sc, ATW_BPLI,
   2441 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2442 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
   2443 			   ATW_BPLI_LI_MASK));
   2444 
   2445 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
   2446 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
   2447 
   2448 		atw_tsf(sc);
   2449 		break;
   2450 	}
   2451 
   2452 	if (nstate != IEEE80211_S_SCAN)
   2453 		callout_stop(&sc->sc_scan_ch);
   2454 
   2455 	if (nstate == IEEE80211_S_RUN &&
   2456 	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   2457 	     ic->ic_opmode == IEEE80211_M_IBSS))
   2458 		atw_start_beacon(sc, 1);
   2459 	else
   2460 		atw_start_beacon(sc, 0);
   2461 
   2462 	return (*sc->sc_newstate)(ic, nstate, arg);
   2463 }
   2464 
   2465 /*
   2466  * atw_add_rxbuf:
   2467  *
   2468  *	Add a receive buffer to the indicated descriptor.
   2469  */
   2470 int
   2471 atw_add_rxbuf(struct atw_softc *sc, int idx)
   2472 {
   2473 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2474 	struct mbuf *m;
   2475 	int error;
   2476 
   2477 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2478 	if (m == NULL)
   2479 		return (ENOBUFS);
   2480 
   2481 	MCLGET(m, M_DONTWAIT);
   2482 	if ((m->m_flags & M_EXT) == 0) {
   2483 		m_freem(m);
   2484 		return (ENOBUFS);
   2485 	}
   2486 
   2487 	if (rxs->rxs_mbuf != NULL)
   2488 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2489 
   2490 	rxs->rxs_mbuf = m;
   2491 
   2492 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2493 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2494 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2495 	if (error) {
   2496 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2497 		    sc->sc_dev.dv_xname, idx, error);
   2498 		panic("atw_add_rxbuf");	/* XXX */
   2499 	}
   2500 
   2501 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2502 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2503 
   2504 	ATW_INIT_RXDESC(sc, idx);
   2505 
   2506 	return (0);
   2507 }
   2508 
   2509 /*
   2510  * Release any queued transmit buffers.
   2511  */
   2512 void
   2513 atw_txdrain(struct atw_softc *sc)
   2514 {
   2515 	struct atw_txsoft *txs;
   2516 
   2517 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2518 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2519 		if (txs->txs_mbuf != NULL) {
   2520 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2521 			m_freem(txs->txs_mbuf);
   2522 			txs->txs_mbuf = NULL;
   2523 		}
   2524 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2525 	}
   2526 	sc->sc_tx_timer = 0;
   2527 }
   2528 
   2529 /*
   2530  * atw_stop:		[ ifnet interface function ]
   2531  *
   2532  *	Stop transmission on the interface.
   2533  */
   2534 void
   2535 atw_stop(struct ifnet *ifp, int disable)
   2536 {
   2537 	struct atw_softc *sc = ifp->if_softc;
   2538 	struct ieee80211com *ic = &sc->sc_ic;
   2539 
   2540 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   2541 
   2542 	/* Disable interrupts. */
   2543 	ATW_WRITE(sc, ATW_IER, 0);
   2544 
   2545 	/* Stop the transmit and receive processes. */
   2546 	sc->sc_opmode = 0;
   2547 	ATW_WRITE(sc, ATW_NAR, 0);
   2548 	ATW_WRITE(sc, ATW_TDBD, 0);
   2549 	ATW_WRITE(sc, ATW_TDBP, 0);
   2550 	ATW_WRITE(sc, ATW_RDB, 0);
   2551 
   2552 	atw_txdrain(sc);
   2553 
   2554 	if (disable) {
   2555 		atw_rxdrain(sc);
   2556 		atw_disable(sc);
   2557 	}
   2558 
   2559 	/*
   2560 	 * Mark the interface down and cancel the watchdog timer.
   2561 	 */
   2562 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2563 	ifp->if_timer = 0;
   2564 
   2565 	if (!disable)
   2566 		atw_reset(sc);
   2567 }
   2568 
   2569 /*
   2570  * atw_rxdrain:
   2571  *
   2572  *	Drain the receive queue.
   2573  */
   2574 void
   2575 atw_rxdrain(struct atw_softc *sc)
   2576 {
   2577 	struct atw_rxsoft *rxs;
   2578 	int i;
   2579 
   2580 	for (i = 0; i < ATW_NRXDESC; i++) {
   2581 		rxs = &sc->sc_rxsoft[i];
   2582 		if (rxs->rxs_mbuf == NULL)
   2583 			continue;
   2584 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2585 		m_freem(rxs->rxs_mbuf);
   2586 		rxs->rxs_mbuf = NULL;
   2587 	}
   2588 }
   2589 
   2590 /*
   2591  * atw_detach:
   2592  *
   2593  *	Detach an ADM8211 interface.
   2594  */
   2595 int
   2596 atw_detach(struct atw_softc *sc)
   2597 {
   2598 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2599 	struct atw_rxsoft *rxs;
   2600 	struct atw_txsoft *txs;
   2601 	int i;
   2602 
   2603 	/*
   2604 	 * Succeed now if there isn't any work to do.
   2605 	 */
   2606 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
   2607 		return (0);
   2608 
   2609 	ieee80211_ifdetach(ifp);
   2610 	if_detach(ifp);
   2611 
   2612 	for (i = 0; i < ATW_NRXDESC; i++) {
   2613 		rxs = &sc->sc_rxsoft[i];
   2614 		if (rxs->rxs_mbuf != NULL) {
   2615 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2616 			m_freem(rxs->rxs_mbuf);
   2617 			rxs->rxs_mbuf = NULL;
   2618 		}
   2619 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
   2620 	}
   2621 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   2622 		txs = &sc->sc_txsoft[i];
   2623 		if (txs->txs_mbuf != NULL) {
   2624 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2625 			m_freem(txs->txs_mbuf);
   2626 			txs->txs_mbuf = NULL;
   2627 		}
   2628 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
   2629 	}
   2630 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2631 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2632 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2633 	    sizeof(struct atw_control_data));
   2634 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2635 
   2636 	shutdownhook_disestablish(sc->sc_sdhook);
   2637 	powerhook_disestablish(sc->sc_powerhook);
   2638 
   2639 	if (sc->sc_srom)
   2640 		free(sc->sc_srom, M_DEVBUF);
   2641 
   2642 	return (0);
   2643 }
   2644 
   2645 /* atw_shutdown: make sure the interface is stopped at reboot time. */
   2646 void
   2647 atw_shutdown(void *arg)
   2648 {
   2649 	struct atw_softc *sc = arg;
   2650 
   2651 	atw_stop(&sc->sc_ic.ic_if, 1);
   2652 }
   2653 
   2654 int
   2655 atw_intr(void *arg)
   2656 {
   2657 	struct atw_softc *sc = arg;
   2658 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2659 	u_int32_t status, rxstatus, txstatus, linkstatus;
   2660 	int handled = 0, txthresh;
   2661 
   2662 #ifdef DEBUG
   2663 	if (ATW_IS_ENABLED(sc) == 0)
   2664 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
   2665 #endif
   2666 
   2667 	/*
   2668 	 * If the interface isn't running, the interrupt couldn't
   2669 	 * possibly have come from us.
   2670 	 */
   2671 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   2672 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   2673 		return (0);
   2674 
   2675 	for (;;) {
   2676 		status = ATW_READ(sc, ATW_STSR);
   2677 
   2678 		if (status)
   2679 			ATW_WRITE(sc, ATW_STSR, status);
   2680 
   2681 		if (sc->sc_intr_ack != NULL)
   2682 			(*sc->sc_intr_ack)(sc);
   2683 
   2684 #ifdef ATW_DEBUG
   2685 #define PRINTINTR(flag) do { \
   2686 	if ((status & flag) != 0) { \
   2687 		printf("%s" #flag, delim); \
   2688 		delim = ","; \
   2689 	} \
   2690 } while (0)
   2691 
   2692 		if (atw_debug > 1 && status) {
   2693 			const char *delim = "<";
   2694 
   2695 			printf("%s: reg[STSR] = %x",
   2696 			    sc->sc_dev.dv_xname, status);
   2697 
   2698 			PRINTINTR(ATW_INTR_FBE);
   2699 			PRINTINTR(ATW_INTR_LINKOFF);
   2700 			PRINTINTR(ATW_INTR_LINKON);
   2701 			PRINTINTR(ATW_INTR_RCI);
   2702 			PRINTINTR(ATW_INTR_RDU);
   2703 			PRINTINTR(ATW_INTR_REIS);
   2704 			PRINTINTR(ATW_INTR_RPS);
   2705 			PRINTINTR(ATW_INTR_TCI);
   2706 			PRINTINTR(ATW_INTR_TDU);
   2707 			PRINTINTR(ATW_INTR_TLT);
   2708 			PRINTINTR(ATW_INTR_TPS);
   2709 			PRINTINTR(ATW_INTR_TRT);
   2710 			PRINTINTR(ATW_INTR_TUF);
   2711 			PRINTINTR(ATW_INTR_BCNTC);
   2712 			PRINTINTR(ATW_INTR_ATIME);
   2713 			PRINTINTR(ATW_INTR_TBTT);
   2714 			PRINTINTR(ATW_INTR_TSCZ);
   2715 			PRINTINTR(ATW_INTR_TSFTF);
   2716 			printf(">\n");
   2717 		}
   2718 #undef PRINTINTR
   2719 #endif /* ATW_DEBUG */
   2720 
   2721 		if ((status & sc->sc_inten) == 0)
   2722 			break;
   2723 
   2724 		handled = 1;
   2725 
   2726 		rxstatus = status & sc->sc_rxint_mask;
   2727 		txstatus = status & sc->sc_txint_mask;
   2728 		linkstatus = status & sc->sc_linkint_mask;
   2729 
   2730 		if (linkstatus) {
   2731 			atw_linkintr(sc, linkstatus);
   2732 		}
   2733 
   2734 		if (rxstatus) {
   2735 			/* Grab any new packets. */
   2736 			atw_rxintr(sc);
   2737 
   2738 			if (rxstatus & ATW_INTR_RDU) {
   2739 				printf("%s: receive ring overrun\n",
   2740 				    sc->sc_dev.dv_xname);
   2741 				/* Get the receive process going again. */
   2742 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2743 				break;
   2744 			}
   2745 		}
   2746 
   2747 		if (txstatus) {
   2748 			/* Sweep up transmit descriptors. */
   2749 			atw_txintr(sc);
   2750 
   2751 			if (txstatus & ATW_INTR_TLT)
   2752 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
   2753 				    sc->sc_dev.dv_xname));
   2754 
   2755 			if (txstatus & ATW_INTR_TRT)
   2756 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
   2757 				    sc->sc_dev.dv_xname));
   2758 
   2759 			/* If Tx under-run, increase our transmit threshold
   2760 			 * if another is available.
   2761 			 */
   2762 			txthresh = sc->sc_txthresh + 1;
   2763 			if ((txstatus & ATW_INTR_TUF) &&
   2764 			    sc->sc_txth[txthresh].txth_name != NULL) {
   2765 				/* Idle the transmit process. */
   2766 				atw_idle(sc, ATW_NAR_ST);
   2767 
   2768 				sc->sc_txthresh = txthresh;
   2769 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
   2770 				sc->sc_opmode |=
   2771 				    sc->sc_txth[txthresh].txth_opmode;
   2772 				printf("%s: transmit underrun; new "
   2773 				    "threshold: %s\n", sc->sc_dev.dv_xname,
   2774 				    sc->sc_txth[txthresh].txth_name);
   2775 
   2776 				/* Set the new threshold and restart
   2777 				 * the transmit process.
   2778 				 */
   2779 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2780 				/* XXX Log every Nth underrun from
   2781 				 * XXX now on?
   2782 				 */
   2783 			}
   2784 		}
   2785 
   2786 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
   2787 			if (status & ATW_INTR_TPS)
   2788 				printf("%s: transmit process stopped\n",
   2789 				    sc->sc_dev.dv_xname);
   2790 			if (status & ATW_INTR_RPS)
   2791 				printf("%s: receive process stopped\n",
   2792 				    sc->sc_dev.dv_xname);
   2793 			(void)atw_init(ifp);
   2794 			break;
   2795 		}
   2796 
   2797 		if (status & ATW_INTR_FBE) {
   2798 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
   2799 			(void)atw_init(ifp);
   2800 			break;
   2801 		}
   2802 
   2803 		/*
   2804 		 * Not handled:
   2805 		 *
   2806 		 *	Transmit buffer unavailable -- normal
   2807 		 *	condition, nothing to do, really.
   2808 		 *
   2809 		 *	Early receive interrupt -- not available on
   2810 		 *	all chips, we just use RI.  We also only
   2811 		 *	use single-segment receive DMA, so this
   2812 		 *	is mostly useless.
   2813 		 *
   2814 		 *      TBD others
   2815 		 */
   2816 	}
   2817 
   2818 	/* Try to get more packets going. */
   2819 	atw_start(ifp);
   2820 
   2821 	return (handled);
   2822 }
   2823 
   2824 /*
   2825  * atw_idle:
   2826  *
   2827  *	Cause the transmit and/or receive processes to go idle.
   2828  *
   2829  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
   2830  *	process in STSR if I clear SR or ST after the process has already
   2831  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
   2832  *      do not seem to be too reliable. Perhaps I have the sense of the
   2833  *	Rx bits switched with the Tx bits?
   2834  */
   2835 void
   2836 atw_idle(struct atw_softc *sc, u_int32_t bits)
   2837 {
   2838 	u_int32_t ackmask = 0, opmode, stsr, test0;
   2839 	int i, s;
   2840 
   2841 	/* without this, somehow we run concurrently w/ interrupt handler */
   2842 	s = splnet();
   2843 
   2844 	opmode = sc->sc_opmode & ~bits;
   2845 
   2846 	if (bits & ATW_NAR_SR)
   2847 		ackmask |= ATW_INTR_RPS;
   2848 
   2849 	if (bits & ATW_NAR_ST) {
   2850 		ackmask |= ATW_INTR_TPS;
   2851 		/* set ATW_NAR_HF to flush TX FIFO. */
   2852 		opmode |= ATW_NAR_HF;
   2853 	}
   2854 
   2855 	ATW_WRITE(sc, ATW_NAR, opmode);
   2856 
   2857 	for (i = 0; i < 1000; i++) {
   2858 		stsr = ATW_READ(sc, ATW_STSR);
   2859 		if ((stsr & ackmask) == ackmask)
   2860 			break;
   2861 		DELAY(10);
   2862 	}
   2863 
   2864 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
   2865 
   2866 	if ((stsr & ackmask) == ackmask)
   2867 		goto out;
   2868 
   2869 	test0 = ATW_READ(sc, ATW_TEST0);
   2870 
   2871 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
   2872 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
   2873 		printf("%s: transmit process not idle [%s]\n",
   2874 		    sc->sc_dev.dv_xname,
   2875 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
   2876 		printf("%s: bits %08x test0 %08x stsr %08x\n",
   2877 		    sc->sc_dev.dv_xname, bits, test0, stsr);
   2878 	}
   2879 
   2880 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
   2881 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
   2882 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
   2883 		    sc->sc_dev.dv_xname,
   2884 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
   2885 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
   2886 		    sc->sc_dev.dv_xname, bits, test0, stsr));
   2887 	}
   2888 out:
   2889 	if ((bits & ATW_NAR_ST) != 0)
   2890 		atw_txdrain(sc);
   2891 	splx(s);
   2892 	return;
   2893 }
   2894 
   2895 /*
   2896  * atw_linkintr:
   2897  *
   2898  *	Helper; handle link-status interrupts.
   2899  */
   2900 void
   2901 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
   2902 {
   2903 	struct ieee80211com *ic = &sc->sc_ic;
   2904 
   2905 	if (ic->ic_state != IEEE80211_S_RUN)
   2906 		return;
   2907 
   2908 	if (linkstatus & ATW_INTR_LINKON) {
   2909 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
   2910 		sc->sc_rescan_timer = 0;
   2911 	} else if (linkstatus & ATW_INTR_LINKOFF) {
   2912 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
   2913 		if (ic->ic_opmode != IEEE80211_M_STA)
   2914 			return;
   2915 		sc->sc_rescan_timer = 3;
   2916 		ic->ic_if.if_timer = 1;
   2917 	}
   2918 }
   2919 
   2920 /*
   2921  * atw_rxintr:
   2922  *
   2923  *	Helper; handle receive interrupts.
   2924  */
   2925 void
   2926 atw_rxintr(struct atw_softc *sc)
   2927 {
   2928 	static int rate_tbl[] = {2, 4, 11, 22, 44};
   2929 	struct ieee80211com *ic = &sc->sc_ic;
   2930 	struct ieee80211_node *ni;
   2931 	struct ieee80211_frame *wh;
   2932 	struct ifnet *ifp = &ic->ic_if;
   2933 	struct atw_rxsoft *rxs;
   2934 	struct mbuf *m;
   2935 	u_int32_t rxstat;
   2936 	int i, len, rate, rate0;
   2937 	u_int32_t rssi;
   2938 
   2939 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
   2940 		rxs = &sc->sc_rxsoft[i];
   2941 
   2942 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2943 
   2944 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
   2945 		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
   2946 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
   2947 
   2948 		if (rxstat & ATW_RXSTAT_OWN)
   2949 			break; /* We have processed all receive buffers. */
   2950 
   2951 		DPRINTF3(sc,
   2952 		    ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
   2953 		    sc->sc_dev.dv_xname,
   2954 		    sc->sc_rxdescs[i].ar_stat,
   2955 		    sc->sc_rxdescs[i].ar_rssi,
   2956 		    sc->sc_rxdescs[i].ar_buf1,
   2957 		    sc->sc_rxdescs[i].ar_buf2));
   2958 
   2959 		/*
   2960 		 * Make sure the packet fits in one buffer.  This should
   2961 		 * always be the case.
   2962 		 */
   2963 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
   2964 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
   2965 			printf("%s: incoming packet spilled, resetting\n",
   2966 			    sc->sc_dev.dv_xname);
   2967 			(void)atw_init(ifp);
   2968 			return;
   2969 		}
   2970 
   2971 		/*
   2972 		 * If an error occurred, update stats, clear the status
   2973 		 * word, and leave the packet buffer in place.  It will
   2974 		 * simply be reused the next time the ring comes around.
   2975 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
   2976 		 * error.
   2977 		 */
   2978 
   2979 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
   2980 		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
   2981 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
   2982 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
   2983 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
   2984 				ATW_RXSTAT_ICVE)) != 0)) {
   2985 #define	PRINTERR(bit, str)						\
   2986 			if (rxstat & (bit))				\
   2987 				printf("%s: receive error: %s\n",	\
   2988 				    sc->sc_dev.dv_xname, str)
   2989 			ifp->if_ierrors++;
   2990 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
   2991 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
   2992 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
   2993 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
   2994 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
   2995 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
   2996 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
   2997 #undef PRINTERR
   2998 			ATW_INIT_RXDESC(sc, i);
   2999 			continue;
   3000 		}
   3001 
   3002 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3003 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3004 
   3005 		/*
   3006 		 * No errors; receive the packet.  Note the ADM8211
   3007 		 * includes the CRC in promiscuous mode.
   3008 		 */
   3009 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
   3010 
   3011 		/*
   3012 		 * Allocate a new mbuf cluster.  If that fails, we are
   3013 		 * out of memory, and must drop the packet and recycle
   3014 		 * the buffer that's already attached to this descriptor.
   3015 		 */
   3016 		m = rxs->rxs_mbuf;
   3017 		if (atw_add_rxbuf(sc, i) != 0) {
   3018 			ifp->if_ierrors++;
   3019 			ATW_INIT_RXDESC(sc, i);
   3020 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3021 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3022 			continue;
   3023 		}
   3024 
   3025 		ifp->if_ipackets++;
   3026 		if (sc->sc_opmode & ATW_NAR_PR)
   3027 			m->m_flags |= M_HASFCS;
   3028 		m->m_pkthdr.rcvif = ifp;
   3029 		m->m_pkthdr.len = m->m_len = len;
   3030 
   3031 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
   3032 			rate = 0;
   3033 		else
   3034 			rate = rate_tbl[rate0];
   3035 
   3036  #if NBPFILTER > 0
   3037 		/* Pass this up to any BPF listeners. */
   3038 		if (sc->sc_radiobpf != NULL) {
   3039 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
   3040 
   3041 			tap->ar_rate = rate;
   3042 			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3043 			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3044 
   3045 			/* TBD verify units are dB */
   3046 			tap->ar_antsignal = (int)rssi;
   3047 			/* TBD tap->ar_flags */
   3048 
   3049 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3050 			    tap->ar_ihdr.it_len, m);
   3051  		}
   3052  #endif /* NPBFILTER > 0 */
   3053 
   3054 		wh = mtod(m, struct ieee80211_frame *);
   3055 		ni = ieee80211_find_rxnode(ic, wh);
   3056 		ieee80211_input(ifp, m, ni, (int)rssi, 0);
   3057 		/*
   3058 		 * The frame may have caused the node to be marked for
   3059 		 * reclamation (e.g. in response to a DEAUTH message)
   3060 		 * so use free_node here instead of unref_node.
   3061 		 */
   3062 		if (ni == ic->ic_bss)
   3063 			ieee80211_unref_node(&ni);
   3064 		else
   3065 			ieee80211_free_node(ic, ni);
   3066 	}
   3067 
   3068 	/* Update the receive pointer. */
   3069 	sc->sc_rxptr = i;
   3070 }
   3071 
   3072 /*
   3073  * atw_txintr:
   3074  *
   3075  *	Helper; handle transmit interrupts.
   3076  */
   3077 void
   3078 atw_txintr(struct atw_softc *sc)
   3079 {
   3080 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
   3081     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
   3082 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
   3083     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
   3084 
   3085 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
   3086 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3087 	struct atw_txsoft *txs;
   3088 	u_int32_t txstat;
   3089 
   3090 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
   3091 	    sc->sc_dev.dv_xname, sc->sc_flags));
   3092 
   3093 	ifp->if_flags &= ~IFF_OACTIVE;
   3094 
   3095 	/*
   3096 	 * Go through our Tx list and free mbufs for those
   3097 	 * frames that have been transmitted.
   3098 	 */
   3099 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   3100 		ATW_CDTXSYNC(sc, txs->txs_lastdesc,
   3101 		    txs->txs_ndescs,
   3102 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3103 
   3104 #ifdef ATW_DEBUG
   3105 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3106 			int i;
   3107 			printf("    txsoft %p transmit chain:\n", txs);
   3108 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
   3109 				printf("     descriptor %d:\n", i);
   3110 				printf("       at_status:   0x%08x\n",
   3111 				    le32toh(sc->sc_txdescs[i].at_stat));
   3112 				printf("       at_flags:      0x%08x\n",
   3113 				    le32toh(sc->sc_txdescs[i].at_flags));
   3114 				printf("       at_buf1: 0x%08x\n",
   3115 				    le32toh(sc->sc_txdescs[i].at_buf1));
   3116 				printf("       at_buf2: 0x%08x\n",
   3117 				    le32toh(sc->sc_txdescs[i].at_buf2));
   3118 				if (i == txs->txs_lastdesc)
   3119 					break;
   3120 			}
   3121 		}
   3122 #endif
   3123 
   3124 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
   3125 		if (txstat & ATW_TXSTAT_OWN)
   3126 			break;
   3127 
   3128 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   3129 
   3130 		sc->sc_txfree += txs->txs_ndescs;
   3131 
   3132 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   3133 		    0, txs->txs_dmamap->dm_mapsize,
   3134 		    BUS_DMASYNC_POSTWRITE);
   3135 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3136 		m_freem(txs->txs_mbuf);
   3137 		txs->txs_mbuf = NULL;
   3138 
   3139 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   3140 
   3141 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   3142 		    (txstat & TXSTAT_ERRMASK) != 0) {
   3143 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
   3144 			    txstat_buf, sizeof(txstat_buf));
   3145 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
   3146 			    txstat_buf,
   3147 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
   3148 		}
   3149 
   3150 		/*
   3151 		 * Check for errors and collisions.
   3152 		 */
   3153 		if (txstat & ATW_TXSTAT_TUF)
   3154 			sc->sc_stats.ts_tx_tuf++;
   3155 		if (txstat & ATW_TXSTAT_TLT)
   3156 			sc->sc_stats.ts_tx_tlt++;
   3157 		if (txstat & ATW_TXSTAT_TRT)
   3158 			sc->sc_stats.ts_tx_trt++;
   3159 		if (txstat & ATW_TXSTAT_TRO)
   3160 			sc->sc_stats.ts_tx_tro++;
   3161 		if (txstat & ATW_TXSTAT_SOFBR) {
   3162 			sc->sc_stats.ts_tx_sofbr++;
   3163 		}
   3164 
   3165 		if ((txstat & ATW_TXSTAT_ES) == 0)
   3166 			ifp->if_collisions +=
   3167 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
   3168 		else
   3169 			ifp->if_oerrors++;
   3170 
   3171 		ifp->if_opackets++;
   3172 	}
   3173 
   3174 	/*
   3175 	 * If there are no more pending transmissions, cancel the watchdog
   3176 	 * timer.
   3177 	 */
   3178 	if (txs == NULL)
   3179 		sc->sc_tx_timer = 0;
   3180 #undef TXSTAT_ERRMASK
   3181 #undef TXSTAT_FMT
   3182 }
   3183 
   3184 /*
   3185  * atw_watchdog:	[ifnet interface function]
   3186  *
   3187  *	Watchdog timer handler.
   3188  */
   3189 void
   3190 atw_watchdog(struct ifnet *ifp)
   3191 {
   3192 	struct atw_softc *sc = ifp->if_softc;
   3193 	struct ieee80211com *ic = &sc->sc_ic;
   3194 
   3195 	ifp->if_timer = 0;
   3196 	if (ATW_IS_ENABLED(sc) == 0)
   3197 		return;
   3198 
   3199 	if (sc->sc_rescan_timer) {
   3200 		if (--sc->sc_rescan_timer == 0)
   3201 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3202 	}
   3203 	if (sc->sc_tx_timer) {
   3204 		if (--sc->sc_tx_timer == 0 &&
   3205 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
   3206 			printf("%s: transmit timeout\n", ifp->if_xname);
   3207 			ifp->if_oerrors++;
   3208 			(void)atw_init(ifp);
   3209 			atw_start(ifp);
   3210 		}
   3211 	}
   3212 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
   3213 		ifp->if_timer = 1;
   3214 	ieee80211_watchdog(ifp);
   3215 }
   3216 
   3217 /* Compute the 802.11 Duration field and the PLCP Length fields for
   3218  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
   3219  * Write the fields to the ADM8211 Tx header, frm.
   3220  *
   3221  * TBD use the fragmentation threshold to find the right duration for
   3222  * the first & last fragments.
   3223  *
   3224  * TBD make certain of the duration fields applied by the ADM8211 to each
   3225  * fragment. I think that the ADM8211 knows how to subtract the CTS
   3226  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
   3227  * I also think that the ADM8211 does *some* arithmetic for us, because
   3228  * otherwise I think we would have to set a first duration for CTS/first
   3229  * fragment, a second duration for fragments between the first and the
   3230  * last, and a third duration for the last fragment.
   3231  *
   3232  * TBD make certain that duration fields reflect addition of FCS/WEP
   3233  * and correct duration arithmetic as necessary.
   3234  */
   3235 static void
   3236 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
   3237     int len)
   3238 {
   3239 	int remainder;
   3240 
   3241 	/* deal also with encrypted fragments */
   3242 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
   3243 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
   3244 		    sc->sc_dev.dv_xname));
   3245 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
   3246 		       IEEE80211_WEP_CRCLEN;
   3247 	}
   3248 
   3249 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
   3250 	 * duration (XXX added by MAC?).
   3251 	 */
   3252 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
   3253 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
   3254 
   3255 	if (rate <= 4)
   3256 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
   3257 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3258 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3259 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3260 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
   3261 	else
   3262 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
   3263 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3264 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3265 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3266 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
   3267 
   3268 	/* lengthen duration if long preamble */
   3269 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
   3270 		frm->atw_head_dur +=
   3271 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
   3272 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
   3273 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
   3274 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
   3275 
   3276 	if (remainder != 0)
   3277 		frm->atw_head_dur++;
   3278 
   3279 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
   3280 	    (rate == 2 || rate == 4)) {
   3281 		/* derived from Linux: how could this be right? */
   3282 		frm->atw_head_plcplen = frm->atw_head_dur;
   3283 	} else {
   3284 		frm->atw_head_plcplen = (16 * len) / rate;
   3285 		remainder = (80 * len) % (rate * 5);
   3286 
   3287 		if (remainder != 0) {
   3288 			frm->atw_head_plcplen++;
   3289 
   3290 			/* XXX magic */
   3291 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
   3292 			    rate == 22 && remainder <= 30)
   3293 				frm->atw_head_plcplen |= 0x8000;
   3294 		}
   3295 	}
   3296 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
   3297 	    htole16(frm->atw_head_plcplen);
   3298 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
   3299 }
   3300 
   3301 #ifdef ATW_DEBUG
   3302 static void
   3303 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
   3304 {
   3305 	struct atw_softc *sc = ifp->if_softc;
   3306 	struct mbuf *m;
   3307 	int i, noctets = 0;
   3308 
   3309 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
   3310 	    m0->m_pkthdr.len);
   3311 
   3312 	for (m = m0; m; m = m->m_next) {
   3313 		if (m->m_len == 0)
   3314 			continue;
   3315 		for (i = 0; i < m->m_len; i++) {
   3316 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
   3317 			if (++noctets % 24 == 0)
   3318 				printf("\n");
   3319 		}
   3320 	}
   3321 	printf("%s%s: %d bytes emitted\n",
   3322 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
   3323 }
   3324 #endif /* ATW_DEBUG */
   3325 
   3326 /*
   3327  * atw_start:		[ifnet interface function]
   3328  *
   3329  *	Start packet transmission on the interface.
   3330  */
   3331 void
   3332 atw_start(struct ifnet *ifp)
   3333 {
   3334 	struct atw_softc *sc = ifp->if_softc;
   3335 	struct ieee80211com *ic = &sc->sc_ic;
   3336 	struct ieee80211_node *ni;
   3337 	struct ieee80211_frame *wh;
   3338 	struct atw_frame *hh;
   3339 	struct mbuf *m0, *m;
   3340 	struct atw_txsoft *txs, *last_txs;
   3341 	struct atw_txdesc *txd;
   3342 	int do_encrypt, rate;
   3343 	bus_dmamap_t dmamap;
   3344 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
   3345 
   3346 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
   3347 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
   3348 
   3349 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3350 		return;
   3351 
   3352 #if 0 /* TBD ??? */
   3353 	if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
   3354 		return;
   3355 #endif
   3356 
   3357 	/*
   3358 	 * Remember the previous number of free descriptors and
   3359 	 * the first descriptor we'll use.
   3360 	 */
   3361 	ofree = sc->sc_txfree;
   3362 	firsttx = sc->sc_txnext;
   3363 
   3364 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
   3365 	    sc->sc_dev.dv_xname, ofree, firsttx));
   3366 
   3367 	/*
   3368 	 * Loop through the send queue, setting up transmit descriptors
   3369 	 * until we drain the queue, or use up all available transmit
   3370 	 * descriptors.
   3371 	 */
   3372 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   3373 	       sc->sc_txfree != 0) {
   3374 
   3375 		/*
   3376 		 * Grab a packet off the management queue, if it
   3377 		 * is not empty. Otherwise, from the data queue.
   3378 		 */
   3379 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   3380 		if (m0 != NULL) {
   3381 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   3382 			m0->m_pkthdr.rcvif = NULL;
   3383 		} else {
   3384 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   3385 			if (m0 == NULL)
   3386 				break;
   3387 #if NBPFILTER > 0
   3388 			if (ifp->if_bpf != NULL)
   3389 				bpf_mtap(ifp->if_bpf, m0);
   3390 #endif /* NBPFILTER > 0 */
   3391 			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
   3392 				ifp->if_oerrors++;
   3393 				break;
   3394 			}
   3395 		}
   3396 
   3397 		rate = MAX(ieee80211_get_rate(ic), 2);
   3398 
   3399 #if NBPFILTER > 0
   3400 		/*
   3401 		 * Pass the packet to any BPF listeners.
   3402 		 */
   3403 		if (ic->ic_rawbpf != NULL)
   3404 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
   3405 
   3406 		if (sc->sc_radiobpf != NULL) {
   3407 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
   3408 
   3409 			tap->at_rate = rate;
   3410 			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3411 			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3412 
   3413 			/* TBD tap->at_flags */
   3414 
   3415 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3416 			    tap->at_ihdr.it_len, m0);
   3417 		}
   3418 #endif /* NBPFILTER > 0 */
   3419 
   3420 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
   3421 
   3422 		if (ni != NULL && ni != ic->ic_bss)
   3423 			ieee80211_free_node(ic, ni);
   3424 
   3425 		if (m0 == NULL) {
   3426 			ifp->if_oerrors++;
   3427 			break;
   3428 		}
   3429 
   3430 		/* just to make sure. */
   3431 		m0 = m_pullup(m0, sizeof(struct atw_frame));
   3432 
   3433 		if (m0 == NULL) {
   3434 			ifp->if_oerrors++;
   3435 			break;
   3436 		}
   3437 
   3438 		hh = mtod(m0, struct atw_frame *);
   3439 		wh = &hh->atw_ihdr;
   3440 
   3441 		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
   3442 
   3443 		/* Copy everything we need from the 802.11 header:
   3444 		 * Frame Control; address 1, address 3, or addresses
   3445 		 * 3 and 4. NIC fills in BSSID, SA.
   3446 		 */
   3447 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
   3448 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
   3449 				panic("%s: illegal WDS frame",
   3450 				    sc->sc_dev.dv_xname);
   3451 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
   3452 		} else
   3453 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
   3454 
   3455 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
   3456 
   3457 		/* initialize remaining Tx parameters */
   3458 		memset(&hh->u, 0, sizeof(hh->u));
   3459 
   3460 		hh->atw_rate = rate * 5;
   3461 		/* XXX this could be incorrect if M_FCS. _encap should
   3462 		 * probably strip FCS just in case it sticks around in
   3463 		 * bridged packets.
   3464 		 */
   3465 		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
   3466 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
   3467 		    sizeof(struct atw_frame));
   3468 
   3469 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3470 		hh->atw_rtylmt = 3;
   3471 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
   3472 		if (do_encrypt) {
   3473 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
   3474 			hh->atw_keyid = ic->ic_wep_txkey;
   3475 		}
   3476 
   3477 		/* TBD 4-addr frames */
   3478 		atw_frame_setdurs(sc, hh, rate,
   3479 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
   3480 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
   3481 
   3482 		/* never fragment multicast frames */
   3483 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
   3484 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3485 		} else if (sc->sc_flags & ATWF_RTSCTS) {
   3486 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
   3487 		}
   3488 
   3489 #ifdef ATW_DEBUG
   3490 		hh->atw_fragnum = 0;
   3491 
   3492 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3493 			printf("%s: dst = %s, rate = 0x%02x, "
   3494 			    "service = 0x%02x, paylen = 0x%04x\n",
   3495 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
   3496 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
   3497 
   3498 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
   3499 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
   3500 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
   3501 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
   3502 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
   3503 			    hh->atw_tail_dur, hh->atw_head_dur);
   3504 
   3505 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
   3506 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
   3507 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
   3508 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
   3509 
   3510 			printf("%s: keyid = %d\n",
   3511 			    sc->sc_dev.dv_xname, hh->atw_keyid);
   3512 
   3513 			atw_dump_pkt(ifp, m0);
   3514 		}
   3515 #endif /* ATW_DEBUG */
   3516 
   3517 		dmamap = txs->txs_dmamap;
   3518 
   3519 		/*
   3520 		 * Load the DMA map.  Copy and try (once) again if the packet
   3521 		 * didn't fit in the alloted number of segments.
   3522 		 */
   3523 		for (first = 1;
   3524 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   3525 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
   3526 		     first = 0) {
   3527 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   3528 			if (m == NULL) {
   3529 				printf("%s: unable to allocate Tx mbuf\n",
   3530 				    sc->sc_dev.dv_xname);
   3531 				break;
   3532 			}
   3533 			if (m0->m_pkthdr.len > MHLEN) {
   3534 				MCLGET(m, M_DONTWAIT);
   3535 				if ((m->m_flags & M_EXT) == 0) {
   3536 					printf("%s: unable to allocate Tx "
   3537 					    "cluster\n", sc->sc_dev.dv_xname);
   3538 					m_freem(m);
   3539 					break;
   3540 				}
   3541 			}
   3542 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   3543 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   3544 			m_freem(m0);
   3545 			m0 = m;
   3546 			m = NULL;
   3547 		}
   3548 		if (error != 0) {
   3549 			printf("%s: unable to load Tx buffer, "
   3550 			    "error = %d\n", sc->sc_dev.dv_xname, error);
   3551 			m_freem(m0);
   3552 			break;
   3553 		}
   3554 
   3555 		/*
   3556 		 * Ensure we have enough descriptors free to describe
   3557 		 * the packet.
   3558 		 */
   3559 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   3560 			/*
   3561 			 * Not enough free descriptors to transmit
   3562 			 * this packet.  Unload the DMA map and
   3563 			 * drop the packet.  Notify the upper layer
   3564 			 * that there are no more slots left.
   3565 			 *
   3566 			 * XXX We could allocate an mbuf and copy, but
   3567 			 * XXX it is worth it?
   3568 			 */
   3569 			ifp->if_flags |= IFF_OACTIVE;
   3570 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   3571 			m_freem(m0);
   3572 			break;
   3573 		}
   3574 
   3575 		/*
   3576 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   3577 		 */
   3578 
   3579 		/* Sync the DMA map. */
   3580 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   3581 		    BUS_DMASYNC_PREWRITE);
   3582 
   3583 		/* XXX arbitrary retry limit; 8 because I have seen it in
   3584 		 * use already and maybe 0 means "no tries" !
   3585 		 */
   3586 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
   3587 
   3588 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
   3589 		    sc->sc_dev.dv_xname, rate * 5));
   3590 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
   3591 
   3592 		/*
   3593 		 * Initialize the transmit descriptors.
   3594 		 */
   3595 		for (nexttx = sc->sc_txnext, seg = 0;
   3596 		     seg < dmamap->dm_nsegs;
   3597 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
   3598 			/*
   3599 			 * If this is the first descriptor we're
   3600 			 * enqueueing, don't set the OWN bit just
   3601 			 * yet.  That could cause a race condition.
   3602 			 * We'll do it below.
   3603 			 */
   3604 			txd = &sc->sc_txdescs[nexttx];
   3605 			txd->at_ctl = ctl |
   3606 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
   3607 
   3608 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
   3609 			txd->at_flags =
   3610 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
   3611 			                   ATW_TXFLAG_TBS1_MASK)) |
   3612 			    ((nexttx == (ATW_NTXDESC - 1))
   3613 			        ? htole32(ATW_TXFLAG_TER) : 0);
   3614 			lasttx = nexttx;
   3615 		}
   3616 
   3617 		IASSERT(lasttx != -1, ("bad lastx"));
   3618 		/* Set `first segment' and `last segment' appropriately. */
   3619 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
   3620 		    htole32(ATW_TXFLAG_FS);
   3621 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
   3622 
   3623 #ifdef ATW_DEBUG
   3624 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3625 			printf("     txsoft %p transmit chain:\n", txs);
   3626 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
   3627 				printf("     descriptor %d:\n", seg);
   3628 				printf("       at_ctl:   0x%08x\n",
   3629 				    le32toh(sc->sc_txdescs[seg].at_ctl));
   3630 				printf("       at_flags:      0x%08x\n",
   3631 				    le32toh(sc->sc_txdescs[seg].at_flags));
   3632 				printf("       at_buf1: 0x%08x\n",
   3633 				    le32toh(sc->sc_txdescs[seg].at_buf1));
   3634 				printf("       at_buf2: 0x%08x\n",
   3635 				    le32toh(sc->sc_txdescs[seg].at_buf2));
   3636 				if (seg == lasttx)
   3637 					break;
   3638 			}
   3639 		}
   3640 #endif
   3641 
   3642 		/* Sync the descriptors we're using. */
   3643 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   3644 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3645 
   3646 		/*
   3647 		 * Store a pointer to the packet so we can free it later,
   3648 		 * and remember what txdirty will be once the packet is
   3649 		 * done.
   3650 		 */
   3651 		txs->txs_mbuf = m0;
   3652 		txs->txs_firstdesc = sc->sc_txnext;
   3653 		txs->txs_lastdesc = lasttx;
   3654 		txs->txs_ndescs = dmamap->dm_nsegs;
   3655 
   3656 		/* Advance the tx pointer. */
   3657 		sc->sc_txfree -= dmamap->dm_nsegs;
   3658 		sc->sc_txnext = nexttx;
   3659 
   3660 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   3661 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   3662 
   3663 		last_txs = txs;
   3664 	}
   3665 
   3666 	if (txs == NULL || sc->sc_txfree == 0) {
   3667 		/* No more slots left; notify upper layer. */
   3668 		ifp->if_flags |= IFF_OACTIVE;
   3669 	}
   3670 
   3671 	if (sc->sc_txfree != ofree) {
   3672 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   3673 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   3674 		/*
   3675 		 * Cause a transmit interrupt to happen on the
   3676 		 * last packet we enqueued.
   3677 		 */
   3678 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
   3679 		ATW_CDTXSYNC(sc, lasttx, 1,
   3680 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3681 
   3682 		/*
   3683 		 * The entire packet chain is set up.  Give the
   3684 		 * first descriptor to the chip now.
   3685 		 */
   3686 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
   3687 		ATW_CDTXSYNC(sc, firsttx, 1,
   3688 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3689 
   3690 		/* Wake up the transmitter. */
   3691 		ATW_WRITE(sc, ATW_TDR, 0x1);
   3692 
   3693 		/* Set a watchdog timer in case the chip flakes out. */
   3694 		sc->sc_tx_timer = 5;
   3695 		ifp->if_timer = 1;
   3696 	}
   3697 }
   3698 
   3699 /*
   3700  * atw_power:
   3701  *
   3702  *	Power management (suspend/resume) hook.
   3703  */
   3704 void
   3705 atw_power(int why, void *arg)
   3706 {
   3707 	struct atw_softc *sc = arg;
   3708 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3709 	int s;
   3710 
   3711 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
   3712 
   3713 	s = splnet();
   3714 	switch (why) {
   3715 	case PWR_STANDBY:
   3716 		/* XXX do nothing. */
   3717 		break;
   3718 	case PWR_SUSPEND:
   3719 		atw_stop(ifp, 0);
   3720 		if (sc->sc_power != NULL)
   3721 			(*sc->sc_power)(sc, why);
   3722 		break;
   3723 	case PWR_RESUME:
   3724 		if (ifp->if_flags & IFF_UP) {
   3725 			if (sc->sc_power != NULL)
   3726 				(*sc->sc_power)(sc, why);
   3727 			atw_init(ifp);
   3728 		}
   3729 		break;
   3730 	case PWR_SOFTSUSPEND:
   3731 	case PWR_SOFTSTANDBY:
   3732 	case PWR_SOFTRESUME:
   3733 		break;
   3734 	}
   3735 	splx(s);
   3736 }
   3737 
   3738 /*
   3739  * atw_ioctl:		[ifnet interface function]
   3740  *
   3741  *	Handle control requests from the operator.
   3742  */
   3743 int
   3744 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   3745 {
   3746 	struct atw_softc *sc = ifp->if_softc;
   3747 	struct ifreq *ifr = (struct ifreq *)data;
   3748 	int s, error = 0;
   3749 
   3750 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
   3751 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   3752 		return ENXIO;
   3753 
   3754 	s = splnet();
   3755 
   3756 	switch (cmd) {
   3757 	case SIOCSIFFLAGS:
   3758 		if (ifp->if_flags & IFF_UP) {
   3759 			if (ATW_IS_ENABLED(sc)) {
   3760 				/*
   3761 				 * To avoid rescanning another access point,
   3762 				 * do not call atw_init() here.  Instead,
   3763 				 * only reflect media settings.
   3764 				 */
   3765 				atw_filter_setup(sc);
   3766 			} else
   3767 				error = atw_init(ifp);
   3768 		} else if (ATW_IS_ENABLED(sc))
   3769 			atw_stop(ifp, 1);
   3770 		break;
   3771 	case SIOCADDMULTI:
   3772 	case SIOCDELMULTI:
   3773 		error = (cmd == SIOCADDMULTI) ?
   3774 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
   3775 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
   3776 		if (error == ENETRESET) {
   3777 			if (ATW_IS_ENABLED(sc))
   3778 				atw_filter_setup(sc); /* do not rescan */
   3779 			error = 0;
   3780 		}
   3781 		break;
   3782 	default:
   3783 		error = ieee80211_ioctl(ifp, cmd, data);
   3784 		if (error == ENETRESET) {
   3785 			if (ATW_IS_ENABLED(sc))
   3786 				error = atw_init(ifp);
   3787 			else
   3788 				error = 0;
   3789 		}
   3790 		break;
   3791 	}
   3792 
   3793 	/* Try to get more packets going. */
   3794 	if (ATW_IS_ENABLED(sc))
   3795 		atw_start(ifp);
   3796 
   3797 	splx(s);
   3798 	return (error);
   3799 }
   3800 
   3801 static int
   3802 atw_media_change(struct ifnet *ifp)
   3803 {
   3804 	int error;
   3805 
   3806 	error = ieee80211_media_change(ifp);
   3807 	if (error == ENETRESET) {
   3808 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   3809 		    (IFF_RUNNING|IFF_UP))
   3810 			atw_init(ifp);		/* XXX lose error */
   3811 		error = 0;
   3812 	}
   3813 	return error;
   3814 }
   3815 
   3816 static void
   3817 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
   3818 {
   3819 	struct atw_softc *sc = ifp->if_softc;
   3820 
   3821 	if (ATW_IS_ENABLED(sc) == 0) {
   3822 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
   3823 		imr->ifm_status = 0;
   3824 		return;
   3825 	}
   3826 	ieee80211_media_status(ifp, imr);
   3827 }
   3828