atw.c revision 1.39 1 /* $NetBSD: atw.c,v 1.39 2004/07/15 05:54:13 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.39 2004/07/15 05:54:13 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
139 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
140 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
141
142 int atw_rfio_enable_delay = 20 * 1000;
143 int atw_rfio_disable_delay = 2 * 1000;
144 int atw_writewep_delay = 5;
145 int atw_beacon_len_adjust = 4;
146 int atw_dwelltime = 200;
147
148 #ifdef ATW_DEBUG
149 int atw_debug = 0;
150
151 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
152 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
153 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
154 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
155 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157
158 static void atw_print_regs(struct atw_softc *, const char *);
159 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
160
161 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162 # ifdef ATW_BBPDEBUG
163 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
164 static void atw_rf3000_print(struct atw_softc *);
165 # endif /* ATW_BBPDEBUG */
166
167 # ifdef ATW_SYNDEBUG
168 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
169 static void atw_si4126_print(struct atw_softc *);
170 # endif /* ATW_SYNDEBUG */
171
172 #else
173 #define ATW_DPRINTF(x)
174 #define ATW_DPRINTF2(x)
175 #define ATW_DPRINTF3(x)
176 #define DPRINTF(sc, x) /* nothing */
177 #define DPRINTF2(sc, x) /* nothing */
178 #define DPRINTF3(sc, x) /* nothing */
179 #endif
180
181 #ifdef ATW_STATS
182 void atw_print_stats(struct atw_softc *);
183 #endif
184
185 void atw_start(struct ifnet *);
186 void atw_watchdog(struct ifnet *);
187 int atw_ioctl(struct ifnet *, u_long, caddr_t);
188 int atw_init(struct ifnet *);
189 void atw_txdrain(struct atw_softc *);
190 void atw_stop(struct ifnet *, int);
191
192 void atw_reset(struct atw_softc *);
193 int atw_read_srom(struct atw_softc *);
194
195 void atw_shutdown(void *);
196
197 void atw_rxdrain(struct atw_softc *);
198 int atw_add_rxbuf(struct atw_softc *, int);
199 void atw_idle(struct atw_softc *, u_int32_t);
200
201 int atw_enable(struct atw_softc *);
202 void atw_disable(struct atw_softc *);
203 void atw_power(int, void *);
204
205 void atw_rxintr(struct atw_softc *);
206 void atw_txintr(struct atw_softc *);
207 void atw_linkintr(struct atw_softc *, u_int32_t);
208
209 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
210 static void atw_tsf(struct atw_softc *);
211 static void atw_start_beacon(struct atw_softc *, int);
212 static void atw_write_wep(struct atw_softc *);
213 static void atw_write_bssid(struct atw_softc *);
214 static void atw_write_bcn_thresh(struct atw_softc *);
215 static void atw_write_ssid(struct atw_softc *);
216 static void atw_write_sup_rates(struct atw_softc *);
217 static void atw_clear_sram(struct atw_softc *);
218 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
219 static int atw_media_change(struct ifnet *);
220 static void atw_media_status(struct ifnet *, struct ifmediareq *);
221 static void atw_filter_setup(struct atw_softc *);
222 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
223 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
224 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
225 struct ieee80211_node *, int, int, u_int32_t);
226 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
227 struct ieee80211_node *, int, int, u_int32_t);
228 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
229 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
230
231 static int atw_tune(struct atw_softc *);
232
233 static void atw_rfio_enable(struct atw_softc *, int);
234
235 /* RFMD RF3000 Baseband Processor */
236 static int atw_rf3000_init(struct atw_softc *);
237 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
238 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
239 #ifdef ATW_DEBUG
240 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
241 #endif /* ATW_DEBUG */
242
243 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
244 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
245 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
246 #ifdef ATW_DEBUG
247 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
248 #endif /* ATW_DEBUG */
249
250 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
251 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
252
253 const char *atw_tx_state[] = {
254 "STOPPED",
255 "RUNNING - read descriptor",
256 "RUNNING - transmitting",
257 "RUNNING - filling fifo", /* XXX */
258 "SUSPENDED",
259 "RUNNING -- write descriptor",
260 "RUNNING -- write last descriptor",
261 "RUNNING - fifo full"
262 };
263
264 const char *atw_rx_state[] = {
265 "STOPPED",
266 "RUNNING - read descriptor",
267 "RUNNING - check this packet, pre-fetch next",
268 "RUNNING - wait for reception",
269 "SUSPENDED",
270 "RUNNING - write descriptor",
271 "RUNNING - flush fifo",
272 "RUNNING - fifo drain"
273 };
274
275 int
276 atw_activate(struct device *self, enum devact act)
277 {
278 struct atw_softc *sc = (struct atw_softc *)self;
279 int rv = 0, s;
280
281 s = splnet();
282 switch (act) {
283 case DVACT_ACTIVATE:
284 rv = EOPNOTSUPP;
285 break;
286
287 case DVACT_DEACTIVATE:
288 if_deactivate(&sc->sc_ic.ic_if);
289 break;
290 }
291 splx(s);
292 return rv;
293 }
294
295 /*
296 * atw_enable:
297 *
298 * Enable the ADM8211 chip.
299 */
300 int
301 atw_enable(struct atw_softc *sc)
302 {
303
304 if (ATW_IS_ENABLED(sc) == 0) {
305 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
306 printf("%s: device enable failed\n",
307 sc->sc_dev.dv_xname);
308 return (EIO);
309 }
310 sc->sc_flags |= ATWF_ENABLED;
311 }
312 return (0);
313 }
314
315 /*
316 * atw_disable:
317 *
318 * Disable the ADM8211 chip.
319 */
320 void
321 atw_disable(struct atw_softc *sc)
322 {
323 if (!ATW_IS_ENABLED(sc))
324 return;
325 if (sc->sc_disable != NULL)
326 (*sc->sc_disable)(sc);
327 sc->sc_flags &= ~ATWF_ENABLED;
328 }
329
330 /* Returns -1 on failure. */
331 int
332 atw_read_srom(struct atw_softc *sc)
333 {
334 struct seeprom_descriptor sd;
335 u_int32_t reg;
336
337 (void)memset(&sd, 0, sizeof(sd));
338
339 reg = ATW_READ(sc, ATW_TEST0);
340
341 if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
342 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
343 return -1;
344 }
345
346 switch (reg & ATW_TEST0_EPTYP_MASK) {
347 case ATW_TEST0_EPTYP_93c66:
348 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
349 sc->sc_sromsz = 512;
350 sd.sd_chip = C56_66;
351 break;
352 case ATW_TEST0_EPTYP_93c46:
353 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
354 sc->sc_sromsz = 128;
355 sd.sd_chip = C46;
356 break;
357 default:
358 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
359 MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
360 return -1;
361 }
362
363 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
364
365 if (sc->sc_srom == NULL) {
366 printf("%s: unable to allocate SROM buffer\n",
367 sc->sc_dev.dv_xname);
368 return -1;
369 }
370
371 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
372
373 /* ADM8211 has a single 32-bit register for controlling the
374 * 93cx6 SROM. Bit SRS enables the serial port. There is no
375 * "ready" bit. The ADM8211 input/output sense is the reverse
376 * of read_seeprom's.
377 */
378 sd.sd_tag = sc->sc_st;
379 sd.sd_bsh = sc->sc_sh;
380 sd.sd_regsize = 4;
381 sd.sd_control_offset = ATW_SPR;
382 sd.sd_status_offset = ATW_SPR;
383 sd.sd_dataout_offset = ATW_SPR;
384 sd.sd_CK = ATW_SPR_SCLK;
385 sd.sd_CS = ATW_SPR_SCS;
386 sd.sd_DI = ATW_SPR_SDO;
387 sd.sd_DO = ATW_SPR_SDI;
388 sd.sd_MS = ATW_SPR_SRS;
389 sd.sd_RDY = 0;
390
391 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
392 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
393 free(sc->sc_srom, M_DEVBUF);
394 return -1;
395 }
396 #ifdef ATW_DEBUG
397 {
398 int i;
399 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
400 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
401 if (((i % 8) == 0) && (i != 0)) {
402 ATW_DPRINTF(("\n\t"));
403 }
404 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
405 }
406 ATW_DPRINTF(("\n"));
407 }
408 #endif /* ATW_DEBUG */
409 return 0;
410 }
411
412 #ifdef ATW_DEBUG
413 static void
414 atw_print_regs(struct atw_softc *sc, const char *where)
415 {
416 #define PRINTREG(sc, reg) \
417 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
418 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
419
420 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
421
422 PRINTREG(sc, ATW_PAR);
423 PRINTREG(sc, ATW_FRCTL);
424 PRINTREG(sc, ATW_TDR);
425 PRINTREG(sc, ATW_WTDP);
426 PRINTREG(sc, ATW_RDR);
427 PRINTREG(sc, ATW_WRDP);
428 PRINTREG(sc, ATW_RDB);
429 PRINTREG(sc, ATW_CSR3A);
430 PRINTREG(sc, ATW_TDBD);
431 PRINTREG(sc, ATW_TDBP);
432 PRINTREG(sc, ATW_STSR);
433 PRINTREG(sc, ATW_CSR5A);
434 PRINTREG(sc, ATW_NAR);
435 PRINTREG(sc, ATW_CSR6A);
436 PRINTREG(sc, ATW_IER);
437 PRINTREG(sc, ATW_CSR7A);
438 PRINTREG(sc, ATW_LPC);
439 PRINTREG(sc, ATW_TEST1);
440 PRINTREG(sc, ATW_SPR);
441 PRINTREG(sc, ATW_TEST0);
442 PRINTREG(sc, ATW_WCSR);
443 PRINTREG(sc, ATW_WPDR);
444 PRINTREG(sc, ATW_GPTMR);
445 PRINTREG(sc, ATW_GPIO);
446 PRINTREG(sc, ATW_BBPCTL);
447 PRINTREG(sc, ATW_SYNCTL);
448 PRINTREG(sc, ATW_PLCPHD);
449 PRINTREG(sc, ATW_MMIWADDR);
450 PRINTREG(sc, ATW_MMIRADDR1);
451 PRINTREG(sc, ATW_MMIRADDR2);
452 PRINTREG(sc, ATW_TXBR);
453 PRINTREG(sc, ATW_CSR15A);
454 PRINTREG(sc, ATW_ALCSTAT);
455 PRINTREG(sc, ATW_TOFS2);
456 PRINTREG(sc, ATW_CMDR);
457 PRINTREG(sc, ATW_PCIC);
458 PRINTREG(sc, ATW_PMCSR);
459 PRINTREG(sc, ATW_PAR0);
460 PRINTREG(sc, ATW_PAR1);
461 PRINTREG(sc, ATW_MAR0);
462 PRINTREG(sc, ATW_MAR1);
463 PRINTREG(sc, ATW_ATIMDA0);
464 PRINTREG(sc, ATW_ABDA1);
465 PRINTREG(sc, ATW_BSSID0);
466 PRINTREG(sc, ATW_TXLMT);
467 PRINTREG(sc, ATW_MIBCNT);
468 PRINTREG(sc, ATW_BCNT);
469 PRINTREG(sc, ATW_TSFTH);
470 PRINTREG(sc, ATW_TSC);
471 PRINTREG(sc, ATW_SYNRF);
472 PRINTREG(sc, ATW_BPLI);
473 PRINTREG(sc, ATW_CAP0);
474 PRINTREG(sc, ATW_CAP1);
475 PRINTREG(sc, ATW_RMD);
476 PRINTREG(sc, ATW_CFPP);
477 PRINTREG(sc, ATW_TOFS0);
478 PRINTREG(sc, ATW_TOFS1);
479 PRINTREG(sc, ATW_IFST);
480 PRINTREG(sc, ATW_RSPT);
481 PRINTREG(sc, ATW_TSFTL);
482 PRINTREG(sc, ATW_WEPCTL);
483 PRINTREG(sc, ATW_WESK);
484 PRINTREG(sc, ATW_WEPCNT);
485 PRINTREG(sc, ATW_MACTEST);
486 PRINTREG(sc, ATW_FER);
487 PRINTREG(sc, ATW_FEMR);
488 PRINTREG(sc, ATW_FPSR);
489 PRINTREG(sc, ATW_FFER);
490 #undef PRINTREG
491 }
492 #endif /* ATW_DEBUG */
493
494 /*
495 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
496 */
497 void
498 atw_attach(struct atw_softc *sc)
499 {
500 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
501 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
502 };
503 struct ieee80211com *ic = &sc->sc_ic;
504 struct ifnet *ifp = &ic->ic_if;
505 int country_code, error, i, nrate;
506 u_int32_t reg;
507 static const char *type_strings[] = {"Intersil (not supported)",
508 "RFMD", "Marvel (not supported)"};
509
510 sc->sc_txth = atw_txthresh_tab_lo;
511
512 SIMPLEQ_INIT(&sc->sc_txfreeq);
513 SIMPLEQ_INIT(&sc->sc_txdirtyq);
514
515 #ifdef ATW_DEBUG
516 atw_print_regs(sc, "atw_attach");
517 #endif /* ATW_DEBUG */
518
519 /*
520 * Allocate the control data structures, and create and load the
521 * DMA map for it.
522 */
523 if ((error = bus_dmamem_alloc(sc->sc_dmat,
524 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
525 1, &sc->sc_cdnseg, 0)) != 0) {
526 printf("%s: unable to allocate control data, error = %d\n",
527 sc->sc_dev.dv_xname, error);
528 goto fail_0;
529 }
530
531 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
532 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
533 BUS_DMA_COHERENT)) != 0) {
534 printf("%s: unable to map control data, error = %d\n",
535 sc->sc_dev.dv_xname, error);
536 goto fail_1;
537 }
538
539 if ((error = bus_dmamap_create(sc->sc_dmat,
540 sizeof(struct atw_control_data), 1,
541 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
542 printf("%s: unable to create control data DMA map, "
543 "error = %d\n", sc->sc_dev.dv_xname, error);
544 goto fail_2;
545 }
546
547 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
548 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
549 0)) != 0) {
550 printf("%s: unable to load control data DMA map, error = %d\n",
551 sc->sc_dev.dv_xname, error);
552 goto fail_3;
553 }
554
555 /*
556 * Create the transmit buffer DMA maps.
557 */
558 sc->sc_ntxsegs = ATW_NTXSEGS;
559 for (i = 0; i < ATW_TXQUEUELEN; i++) {
560 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
561 sc->sc_ntxsegs, MCLBYTES, 0, 0,
562 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
563 printf("%s: unable to create tx DMA map %d, "
564 "error = %d\n", sc->sc_dev.dv_xname, i, error);
565 goto fail_4;
566 }
567 }
568
569 /*
570 * Create the receive buffer DMA maps.
571 */
572 for (i = 0; i < ATW_NRXDESC; i++) {
573 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
574 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
575 printf("%s: unable to create rx DMA map %d, "
576 "error = %d\n", sc->sc_dev.dv_xname, i, error);
577 goto fail_5;
578 }
579 }
580 for (i = 0; i < ATW_NRXDESC; i++) {
581 sc->sc_rxsoft[i].rxs_mbuf = NULL;
582 }
583
584 /* Reset the chip to a known state. */
585 atw_reset(sc);
586
587 if (atw_read_srom(sc) == -1)
588 return;
589
590 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
591 ATW_SR_RFTYPE_MASK);
592
593 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
594 ATW_SR_BBPTYPE_MASK);
595
596 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
597 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
598 return;
599 }
600 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
601 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
602 return;
603 }
604
605 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
606 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
607
608 /* XXX There exists a Linux driver which seems to use RFType = 0 for
609 * MARVEL. My bug, or theirs?
610 */
611
612 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
613
614 switch (sc->sc_rftype) {
615 case ATW_RFTYPE_INTERSIL:
616 reg |= ATW_SYNCTL_CS1;
617 break;
618 case ATW_RFTYPE_RFMD:
619 reg |= ATW_SYNCTL_CS0;
620 break;
621 case ATW_RFTYPE_MARVEL:
622 break;
623 }
624
625 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
626 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
627
628 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
629
630 switch (sc->sc_bbptype) {
631 case ATW_BBPTYPE_INTERSIL:
632 reg |= ATW_BBPCTL_TWI;
633 break;
634 case ATW_BBPTYPE_RFMD:
635 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
636 ATW_BBPCTL_CCA_ACTLO;
637 break;
638 case ATW_BBPTYPE_MARVEL:
639 break;
640 case ATW_C_BBPTYPE_RFMD:
641 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
642 sc->sc_dev.dv_xname);
643 break;
644 }
645
646 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
647 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
648
649 /*
650 * From this point forward, the attachment cannot fail. A failure
651 * before this point releases all resources that may have been
652 * allocated.
653 */
654 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
655
656 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
657 htole16(sc->sc_srom[ATW_SR_MAC00]),
658 htole16(sc->sc_srom[ATW_SR_MAC01]),
659 htole16(sc->sc_srom[ATW_SR_MAC10])));
660
661 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
662 ATW_SR_CTRY_MASK);
663
664 #define ADD_CHANNEL(_ic, _chan) do { \
665 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
666 _ic->ic_channels[_chan].ic_freq = \
667 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
668 } while (0)
669
670 /* Find available channels */
671 switch (country_code) {
672 case COUNTRY_MMK2: /* 1-14 */
673 ADD_CHANNEL(ic, 14);
674 /*FALLTHROUGH*/
675 case COUNTRY_ETSI: /* 1-13 */
676 for (i = 1; i <= 13; i++)
677 ADD_CHANNEL(ic, i);
678 break;
679 case COUNTRY_FCC: /* 1-11 */
680 case COUNTRY_IC: /* 1-11 */
681 for (i = 1; i <= 11; i++)
682 ADD_CHANNEL(ic, i);
683 break;
684 case COUNTRY_MMK: /* 14 */
685 ADD_CHANNEL(ic, 14);
686 break;
687 case COUNTRY_FRANCE: /* 10-13 */
688 for (i = 10; i <= 13; i++)
689 ADD_CHANNEL(ic, i);
690 break;
691 default: /* assume channels 10-11 */
692 case COUNTRY_SPAIN: /* 10-11 */
693 for (i = 10; i <= 11; i++)
694 ADD_CHANNEL(ic, i);
695 break;
696 }
697
698 /* Read the MAC address. */
699 reg = ATW_READ(sc, ATW_PAR0);
700 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
701 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
702 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
703 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
704 reg = ATW_READ(sc, ATW_PAR1);
705 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
706 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
707
708 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
709 printf(" could not get mac address, attach failed\n");
710 return;
711 }
712
713 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
714
715 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
716 ifp->if_softc = sc;
717 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
718 IFF_NOTRAILERS;
719 ifp->if_ioctl = atw_ioctl;
720 ifp->if_start = atw_start;
721 ifp->if_watchdog = atw_watchdog;
722 ifp->if_init = atw_init;
723 ifp->if_stop = atw_stop;
724 IFQ_SET_READY(&ifp->if_snd);
725
726 ic->ic_phytype = IEEE80211_T_DS;
727 ic->ic_opmode = IEEE80211_M_STA;
728 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
729 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
730
731 nrate = 0;
732 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
733 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
734 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
735 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
736 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
737
738 /*
739 * Call MI attach routines.
740 */
741
742 if_attach(ifp);
743 ieee80211_ifattach(ifp);
744
745 sc->sc_newstate = ic->ic_newstate;
746 ic->ic_newstate = atw_newstate;
747
748 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
749 ic->ic_recv_mgmt = atw_recv_mgmt;
750
751 sc->sc_node_free = ic->ic_node_free;
752 ic->ic_node_free = atw_node_free;
753
754 sc->sc_node_alloc = ic->ic_node_alloc;
755 ic->ic_node_alloc = atw_node_alloc;
756
757 /* possibly we should fill in our own sc_send_prresp, since
758 * the ADM8211 is probably sending probe responses in ad hoc
759 * mode.
760 */
761
762 /* complete initialization */
763 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
764 callout_init(&sc->sc_scan_ch);
765
766 #if NBPFILTER > 0
767 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
768 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
769 #endif
770
771 /*
772 * Make sure the interface is shutdown during reboot.
773 */
774 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
775 if (sc->sc_sdhook == NULL)
776 printf("%s: WARNING: unable to establish shutdown hook\n",
777 sc->sc_dev.dv_xname);
778
779 /*
780 * Add a suspend hook to make sure we come back up after a
781 * resume.
782 */
783 sc->sc_powerhook = powerhook_establish(atw_power, sc);
784 if (sc->sc_powerhook == NULL)
785 printf("%s: WARNING: unable to establish power hook\n",
786 sc->sc_dev.dv_xname);
787
788 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
789 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
790 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
791
792 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
793 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
794 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
795
796 return;
797
798 /*
799 * Free any resources we've allocated during the failed attach
800 * attempt. Do this in reverse order and fall through.
801 */
802 fail_5:
803 for (i = 0; i < ATW_NRXDESC; i++) {
804 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
805 continue;
806 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
807 }
808 fail_4:
809 for (i = 0; i < ATW_TXQUEUELEN; i++) {
810 if (sc->sc_txsoft[i].txs_dmamap == NULL)
811 continue;
812 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
813 }
814 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
815 fail_3:
816 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
817 fail_2:
818 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
819 sizeof(struct atw_control_data));
820 fail_1:
821 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
822 fail_0:
823 return;
824 }
825
826 static struct ieee80211_node *
827 atw_node_alloc(struct ieee80211com *ic)
828 {
829 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
830 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
831
832 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
833 return ni;
834 }
835
836 static void
837 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
838 {
839 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
840
841 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
842 ether_sprintf(ni->ni_bssid)));
843 (*sc->sc_node_free)(ic, ni);
844 }
845
846 /*
847 * atw_reset:
848 *
849 * Perform a soft reset on the ADM8211.
850 */
851 void
852 atw_reset(struct atw_softc *sc)
853 {
854 int i;
855
856 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
857
858 for (i = 0; i < 10000; i++) {
859 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
860 break;
861 DELAY(1);
862 }
863
864 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
865
866 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
867 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
868
869 /* Turn off maximum power saving. */
870 ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
871
872 /* Recall EEPROM. */
873 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
874
875 DELAY(10 * 1000);
876
877 /* A reset seems to affect the SRAM contents, so put them into
878 * a known state.
879 */
880 atw_clear_sram(sc);
881
882 memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
883
884 sc->sc_lost_bcn_thresh = 0;
885 }
886
887 static void
888 atw_clear_sram(struct atw_softc *sc)
889 {
890 #if 0
891 for (addr = 0; addr < 448; addr++) {
892 ATW_WRITE(sc, ATW_WEPCTL,
893 ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0 | addr);
894 DELAY(1000);
895 ATW_WRITE(sc, ATW_WESK, 0);
896 DELAY(1000); /* paranoia */
897 }
898 return;
899 #endif
900 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
901 /* XXX not for revision 0x20. */
902 atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
903 }
904
905 /* TBD atw_init
906 *
907 * set MAC based on ic->ic_bss->myaddr
908 * write WEP keys
909 * set TX rate
910 */
911
912 /*
913 * atw_init: [ ifnet interface function ]
914 *
915 * Initialize the interface. Must be called at splnet().
916 */
917 int
918 atw_init(struct ifnet *ifp)
919 {
920 struct atw_softc *sc = ifp->if_softc;
921 struct ieee80211com *ic = &sc->sc_ic;
922 struct atw_txsoft *txs;
923 struct atw_rxsoft *rxs;
924 u_int32_t reg;
925 int i, error = 0;
926
927 if ((error = atw_enable(sc)) != 0)
928 goto out;
929
930 /*
931 * Cancel any pending I/O. This also resets.
932 */
933 atw_stop(ifp, 0);
934
935 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
936 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
937 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
938 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
939
940 /* Turn off APM??? (A binary-only driver does this.)
941 *
942 * Set Rx store-and-forward mode.
943 */
944 reg = ATW_READ(sc, ATW_CMDR);
945 reg &= ~ATW_CMDR_APM;
946 reg &= ~ATW_CMDR_DRT_MASK;
947 reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
948
949 ATW_WRITE(sc, ATW_CMDR, reg);
950
951 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
952 *
953 * XXX a binary-only driver sets a different service field than
954 * 0. why?
955 */
956 reg = ATW_READ(sc, ATW_PLCPHD);
957 reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
958 reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
959 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
960 ATW_WRITE(sc, ATW_PLCPHD, reg);
961
962 /* XXX this magic can probably be figured out from the RFMD docs */
963 reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
964 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
965 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
966 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
967 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
968 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
969 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
970 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
971 ATW_WRITE(sc, ATW_TOFS2, reg);
972
973 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
974 LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
975
976 /* XXX this resets an Intersil RF front-end? */
977 /* TBD condition on Intersil RFType? */
978 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
979 DELAY(10 * 1000);
980 ATW_WRITE(sc, ATW_SYNRF, 0);
981 DELAY(5 * 1000);
982
983 /* 16 TU max duration for contention-free period */
984 reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
985 ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
986
987 /* XXX I guess that the Cardbus clock is 22MHz?
988 * I am assuming that the role of ATW_TOFS0_USCNT is
989 * to divide the bus clock to get a 1MHz clock---the datasheet is not
990 * very clear on this point. It says in the datasheet that it is
991 * possible for the ADM8211 to accomodate bus speeds between 22MHz
992 * and 33MHz; maybe this is the way? I see a binary-only driver write
993 * these values. These values are also the power-on default.
994 */
995 ATW_WRITE(sc, ATW_TOFS0,
996 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
997 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
998
999 /* Initialize interframe spacing. EIFS=0x64 is used by a binary-only
1000 * driver. Go figure.
1001 */
1002 reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1003 LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
1004 ATW_IFST_SIFS_MASK) |
1005 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1006 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1007
1008 ATW_WRITE(sc, ATW_IFST, reg);
1009
1010 /* XXX More magic. Might relate to ACK timing. */
1011 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1012 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1013
1014 /* Set up the MMI read/write addresses for the BBP.
1015 *
1016 * TBD find out the Marvel settings.
1017 */
1018 switch (sc->sc_bbptype) {
1019 case ATW_BBPTYPE_INTERSIL:
1020 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1021 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1022 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1023 break;
1024 case ATW_BBPTYPE_MARVEL:
1025 break;
1026 case ATW_BBPTYPE_RFMD:
1027 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1028 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1029 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1030 default:
1031 break;
1032 }
1033
1034 sc->sc_wepctl = 0;
1035 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1036
1037 if ((error = atw_rf3000_init(sc)) != 0)
1038 goto out;
1039
1040 /*
1041 * Initialize the PCI Access Register.
1042 */
1043 sc->sc_busmode = ATW_PAR_BAR; /* XXX what is this? */
1044
1045 /*
1046 * If we're allowed to do so, use Memory Read Line
1047 * and Memory Read Multiple.
1048 *
1049 * XXX Should we use Memory Write and Invalidate?
1050 */
1051 if (sc->sc_flags & ATWF_MRL)
1052 sc->sc_busmode |= ATW_PAR_MRLE;
1053 if (sc->sc_flags & ATWF_MRM)
1054 sc->sc_busmode |= ATW_PAR_MRME;
1055 if (sc->sc_flags & ATWF_MWI)
1056 sc->sc_busmode |= ATW_PAR_MWIE;
1057 if (sc->sc_maxburst == 0)
1058 sc->sc_maxburst = 8; /* ADM8211 default */
1059
1060 switch (sc->sc_cacheline) {
1061 default:
1062 /* Use burst length. */
1063 break;
1064 case 8:
1065 sc->sc_busmode |= ATW_PAR_CAL_8DW;
1066 break;
1067 case 16:
1068 sc->sc_busmode |= ATW_PAR_CAL_16DW;
1069 break;
1070 case 32:
1071 sc->sc_busmode |= ATW_PAR_CAL_32DW;
1072 break;
1073 }
1074 switch (sc->sc_maxburst) {
1075 case 1:
1076 sc->sc_busmode |= ATW_PAR_PBL_1DW;
1077 break;
1078 case 2:
1079 sc->sc_busmode |= ATW_PAR_PBL_2DW;
1080 break;
1081 case 4:
1082 sc->sc_busmode |= ATW_PAR_PBL_4DW;
1083 break;
1084 case 8:
1085 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1086 break;
1087 case 16:
1088 sc->sc_busmode |= ATW_PAR_PBL_16DW;
1089 break;
1090 case 32:
1091 sc->sc_busmode |= ATW_PAR_PBL_32DW;
1092 break;
1093 default:
1094 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1095 break;
1096 }
1097
1098 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1099 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1100 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1101
1102 /*
1103 * Initialize the OPMODE register. We don't write it until
1104 * we're ready to begin the transmit and receive processes.
1105 */
1106 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1107 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1108
1109 /*
1110 * Initialize the transmit descriptor ring.
1111 */
1112 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1113 for (i = 0; i < ATW_NTXDESC; i++) {
1114 /* no transmit chaining */
1115 sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1116 sc->sc_txdescs[i].at_buf2 =
1117 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1118 }
1119 /* use ring mode */
1120 sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1121 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1122 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1123 sc->sc_txfree = ATW_NTXDESC;
1124 sc->sc_txnext = 0;
1125
1126 /*
1127 * Initialize the transmit job descriptors.
1128 */
1129 SIMPLEQ_INIT(&sc->sc_txfreeq);
1130 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1131 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1132 txs = &sc->sc_txsoft[i];
1133 txs->txs_mbuf = NULL;
1134 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1135 }
1136
1137 /*
1138 * Initialize the receive descriptor and receive job
1139 * descriptor rings.
1140 */
1141 for (i = 0; i < ATW_NRXDESC; i++) {
1142 rxs = &sc->sc_rxsoft[i];
1143 if (rxs->rxs_mbuf == NULL) {
1144 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1145 printf("%s: unable to allocate or map rx "
1146 "buffer %d, error = %d\n",
1147 sc->sc_dev.dv_xname, i, error);
1148 /*
1149 * XXX Should attempt to run with fewer receive
1150 * XXX buffers instead of just failing.
1151 */
1152 atw_rxdrain(sc);
1153 goto out;
1154 }
1155 } else
1156 ATW_INIT_RXDESC(sc, i);
1157 }
1158 sc->sc_rxptr = 0;
1159
1160 /* disable all wake-up events */
1161 ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1162 ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1163 ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1164 ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1165
1166 /* ack all wake-up events */
1167 ATW_SET(sc, ATW_WCSR, 0);
1168
1169 /*
1170 * Initialize the interrupt mask and enable interrupts.
1171 */
1172 /* normal interrupts */
1173 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1174 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1175
1176 /* abnormal interrupts */
1177 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1178 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1179 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1180
1181 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1182 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1183 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1184 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1185 ATW_INTR_TRT;
1186
1187 sc->sc_linkint_mask &= sc->sc_inten;
1188 sc->sc_rxint_mask &= sc->sc_inten;
1189 sc->sc_txint_mask &= sc->sc_inten;
1190
1191 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1192 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1193 if (sc->sc_intr_ack != NULL)
1194 (*sc->sc_intr_ack)(sc);
1195
1196 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1197 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1198
1199 /*
1200 * Give the transmit and receive rings to the ADM8211.
1201 */
1202 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1203 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1204
1205 /* common 802.11 configuration */
1206 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1207 switch (ic->ic_opmode) {
1208 case IEEE80211_M_STA:
1209 break;
1210 case IEEE80211_M_AHDEMO: /* XXX */
1211 case IEEE80211_M_IBSS:
1212 ic->ic_flags |= IEEE80211_F_IBSSON;
1213 /*FALLTHROUGH*/
1214 case IEEE80211_M_HOSTAP: /* XXX */
1215 break;
1216 case IEEE80211_M_MONITOR: /* XXX */
1217 break;
1218 }
1219
1220 atw_start_beacon(sc, 0);
1221
1222 switch (ic->ic_opmode) {
1223 case IEEE80211_M_AHDEMO:
1224 case IEEE80211_M_HOSTAP:
1225 ic->ic_bss->ni_intval = ic->ic_lintval;
1226 ic->ic_bss->ni_rssi = 0;
1227 ic->ic_bss->ni_rstamp = 0;
1228 break;
1229 default: /* XXX */
1230 break;
1231 }
1232
1233 atw_write_ssid(sc);
1234 atw_write_sup_rates(sc);
1235 if (ic->ic_caps & IEEE80211_C_WEP)
1236 atw_write_wep(sc);
1237
1238 /*
1239 * Set the receive filter. This will start the transmit and
1240 * receive processes.
1241 */
1242 atw_filter_setup(sc);
1243
1244 /*
1245 * Start the receive process.
1246 */
1247 ATW_WRITE(sc, ATW_RDR, 0x1);
1248
1249 /*
1250 * Note that the interface is now running.
1251 */
1252 ifp->if_flags |= IFF_RUNNING;
1253 ifp->if_flags &= ~IFF_OACTIVE;
1254 ic->ic_state = IEEE80211_S_INIT;
1255
1256 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1257 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1258 else
1259 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1260 out:
1261 if (error) {
1262 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1263 ifp->if_timer = 0;
1264 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1265 }
1266 #ifdef ATW_DEBUG
1267 atw_print_regs(sc, "end of init");
1268 #endif /* ATW_DEBUG */
1269
1270 return (error);
1271 }
1272
1273 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1274 * 0: MAC control of RF3000/Si4126.
1275 *
1276 * Applies power, or selects RF front-end? Sets reset condition.
1277 *
1278 * TBD support non-RFMD BBP, non-SiLabs synth.
1279 */
1280 static void
1281 atw_rfio_enable(struct atw_softc *sc, int enable)
1282 {
1283 if (enable) {
1284 ATW_WRITE(sc, ATW_SYNRF,
1285 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1286 DELAY(atw_rfio_enable_delay);
1287 } else {
1288 ATW_WRITE(sc, ATW_SYNRF, 0);
1289 DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1290 }
1291 }
1292
1293 static int
1294 atw_tune(struct atw_softc *sc)
1295 {
1296 int rc;
1297 u_int32_t reg;
1298 int chan;
1299 struct ieee80211com *ic = &sc->sc_ic;
1300
1301 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1302 if (chan == IEEE80211_CHAN_ANY)
1303 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1304
1305 if (chan == sc->sc_cur_chan)
1306 return 0;
1307
1308 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1309 sc->sc_cur_chan, chan));
1310
1311 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1312
1313 if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1314 (rc = atw_rf3000_tune(sc, chan)) != 0)
1315 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1316 chan);
1317
1318 reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1319 ATW_WRITE(sc, ATW_CAP0,
1320 reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1321
1322 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1323
1324 if (rc == 0)
1325 sc->sc_cur_chan = chan;
1326
1327 return rc;
1328 }
1329
1330 #ifdef ATW_DEBUG
1331 static void
1332 atw_si4126_print(struct atw_softc *sc)
1333 {
1334 struct ifnet *ifp = &sc->sc_ic.ic_if;
1335 u_int addr, val;
1336
1337 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1338 return;
1339
1340 for (addr = 0; addr <= 8; addr++) {
1341 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1342 if (atw_si4126_read(sc, addr, &val) == 0) {
1343 printf("<unknown> (quitting print-out)\n");
1344 break;
1345 }
1346 printf("%05x\n", val);
1347 }
1348 }
1349 #endif /* ATW_DEBUG */
1350
1351 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1352 *
1353 * The RF/IF synthesizer produces two reference frequencies for
1354 * the RF2948B transceiver. The first frequency the RF2948B requires
1355 * is two times the so-called "intermediate frequency" (IF). Since
1356 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1357 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1358 * frequency required by the transceiver is the radio frequency
1359 * (RF). This is a superheterodyne transceiver; for f(chan) the
1360 * center frequency of the channel we are tuning, RF = f(chan) -
1361 * IF.
1362 *
1363 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1364 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1365 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1366 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1367 */
1368 static int
1369 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
1370 {
1371 int rc = 0;
1372 u_int mhz;
1373 u_int R;
1374 u_int32_t reg;
1375 u_int16_t gain;
1376
1377 #ifdef ATW_DEBUG
1378 atw_si4126_print(sc);
1379 #endif /* ATW_DEBUG */
1380
1381 if (chan == 14)
1382 mhz = 2484;
1383 else
1384 mhz = 2412 + 5 * (chan - 1);
1385
1386 /* Tune IF to 748MHz to suit the IF LO input of the
1387 * RF2494B, which is 2 x IF. No need to set an IF divider
1388 * because an IF in 526MHz - 952MHz is allowed.
1389 *
1390 * XIN is 44.000MHz, so divide it by two to get allowable
1391 * range of 2-25MHz. SiLabs tells me that this is not
1392 * strictly necessary.
1393 */
1394
1395 R = 44;
1396
1397 atw_rfio_enable(sc, 1);
1398
1399 /* Power-up RF, IF synthesizers. */
1400 if ((rc = atw_si4126_write(sc, SI4126_POWER,
1401 SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1402 goto out;
1403
1404 /* If RF2 N > 2047, then set KP2 to 1. */
1405 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1406
1407 if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1408 goto out;
1409
1410 /* set LPWR, too? */
1411 if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1412 SI4126_MAIN_XINDIV2)) != 0)
1413 goto out;
1414
1415 /* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN. XIN = 44MHz.
1416 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1417 */
1418 if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1419 goto out;
1420
1421 if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1422 goto out;
1423
1424 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1425 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1426 * which has no RF1!
1427 */
1428 if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1429 goto out;
1430
1431 if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1432 goto out;
1433
1434 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1435 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1436 * Now let's multiply it to mhz. So mhz - IF = N.
1437 */
1438 if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1439 goto out;
1440
1441 if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1442 goto out;
1443
1444 /* wait 100us from power-up for RF, IF to settle */
1445 DELAY(100);
1446
1447 if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1448 /* XXX there is a binary driver which sends
1449 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1450 * that this enables the Si4126 by raising its PWDN#, but I
1451 * think that it actually sets the Prism RF front-end
1452 * to a special mode for channel 14.
1453 */
1454 reg = ATW_READ(sc, ATW_GPIO);
1455 reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1456 reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1457 ATW_WRITE(sc, ATW_GPIO, reg);
1458 }
1459
1460 #ifdef ATW_DEBUG
1461 atw_si4126_print(sc);
1462 #endif /* ATW_DEBUG */
1463
1464 out:
1465 atw_rfio_enable(sc, 0);
1466
1467 return rc;
1468 }
1469
1470 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1471 * diversity.
1472 *
1473 * Call this w/ Tx/Rx suspended.
1474 */
1475 static int
1476 atw_rf3000_init(struct atw_softc *sc)
1477 {
1478 int rc = 0;
1479
1480 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1481
1482 atw_rfio_enable(sc, 1);
1483
1484 /* enable diversity */
1485 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1486
1487 if (rc != 0)
1488 goto out;
1489
1490 /* sensible setting from a binary-only driver */
1491 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1492 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1493
1494 if (rc != 0)
1495 goto out;
1496
1497 /* magic from a binary-only driver */
1498 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1499 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1500
1501 if (rc != 0)
1502 goto out;
1503
1504 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1505
1506 if (rc != 0)
1507 goto out;
1508
1509 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1510
1511 if (rc != 0)
1512 goto out;
1513
1514 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1515
1516 if (rc != 0)
1517 goto out;
1518
1519 /* CCA is acquisition sensitive */
1520 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1521 LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1522
1523 if (rc != 0)
1524 goto out;
1525
1526 out:
1527 atw_rfio_enable(sc, 0);
1528 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1529 return rc;
1530 }
1531
1532 #ifdef ATW_DEBUG
1533 static void
1534 atw_rf3000_print(struct atw_softc *sc)
1535 {
1536 struct ifnet *ifp = &sc->sc_ic.ic_if;
1537 u_int addr, val;
1538
1539 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1540 return;
1541
1542 for (addr = 0x01; addr <= 0x15; addr++) {
1543 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1544 if (atw_rf3000_read(sc, addr, &val) != 0) {
1545 printf("<unknown> (quitting print-out)\n");
1546 break;
1547 }
1548 printf("%08x\n", val);
1549 }
1550 }
1551 #endif /* ATW_DEBUG */
1552
1553 /* Set the power settings on the BBP for channel `chan'. */
1554 static int
1555 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
1556 {
1557 int rc = 0;
1558 u_int32_t reg;
1559 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1560
1561 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1562 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1563 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1564
1565 /* odd channels: LSB, even channels: MSB */
1566 if (chan % 2 == 1) {
1567 txpower &= 0xFF;
1568 lpf_cutoff &= 0xFF;
1569 lna_gs_thresh &= 0xFF;
1570 } else {
1571 txpower >>= 8;
1572 lpf_cutoff >>= 8;
1573 lna_gs_thresh >>= 8;
1574 }
1575
1576 #ifdef ATW_DEBUG
1577 atw_rf3000_print(sc);
1578 #endif /* ATW_DEBUG */
1579
1580 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1581 "lna_gs_thresh %02x\n",
1582 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1583
1584 atw_rfio_enable(sc, 1);
1585
1586 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1587 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1588 goto out;
1589
1590 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1591 goto out;
1592
1593 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1594 goto out;
1595
1596 /* from a binary-only driver. */
1597 reg = ATW_READ(sc, ATW_PLCPHD);
1598 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1599 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1600 ATW_PLCPHD_SERVICE_MASK);
1601 ATW_WRITE(sc, ATW_PLCPHD, reg);
1602
1603 #ifdef ATW_DEBUG
1604 atw_rf3000_print(sc);
1605 #endif /* ATW_DEBUG */
1606
1607 out:
1608 atw_rfio_enable(sc, 0);
1609
1610 return rc;
1611 }
1612
1613 /* Write a register on the RF3000 baseband processor using the
1614 * registers provided by the ADM8211 for this purpose.
1615 *
1616 * Return 0 on success.
1617 */
1618 static int
1619 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1620 {
1621 u_int32_t reg;
1622 int i;
1623
1624 for (i = 1000; --i >= 0; ) {
1625 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1626 break;
1627 DELAY(100);
1628 }
1629
1630 if (i < 0) {
1631 printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1632 return ETIMEDOUT;
1633 }
1634
1635 reg = sc->sc_bbpctl_wr |
1636 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1637 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1638
1639 ATW_WRITE(sc, ATW_BBPCTL, reg);
1640
1641 for (i = 1000; --i >= 0; ) {
1642 DELAY(100);
1643 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1644 break;
1645 }
1646
1647 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1648
1649 if (i < 0) {
1650 printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1651 return ETIMEDOUT;
1652 }
1653 return 0;
1654 }
1655
1656 /* Read a register on the RF3000 baseband processor using the registers
1657 * the ADM8211 provides for this purpose.
1658 *
1659 * The 7-bit register address is addr. Record the 8-bit data in the register
1660 * in *val.
1661 *
1662 * Return 0 on success.
1663 *
1664 * XXX This does not seem to work. The ADM8211 must require more or
1665 * different magic to read the chip than to write it. Possibly some
1666 * of the magic I have derived from a binary-only driver concerns
1667 * the "chip address" (see the RF3000 manual).
1668 */
1669 #ifdef ATW_DEBUG
1670 static int
1671 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1672 {
1673 u_int32_t reg;
1674 int i;
1675
1676 for (i = 1000; --i >= 0; ) {
1677 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1678 break;
1679 DELAY(100);
1680 }
1681
1682 if (i < 0) {
1683 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1684 sc->sc_dev.dv_xname);
1685 return ETIMEDOUT;
1686 }
1687
1688 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1689
1690 ATW_WRITE(sc, ATW_BBPCTL, reg);
1691
1692 for (i = 1000; --i >= 0; ) {
1693 DELAY(100);
1694 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1695 break;
1696 }
1697
1698 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1699
1700 if (i < 0) {
1701 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1702 sc->sc_dev.dv_xname, reg);
1703 return ETIMEDOUT;
1704 }
1705 if (val != NULL)
1706 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1707 return 0;
1708 }
1709 #endif /* ATW_DEBUG */
1710
1711 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1712 * provided by the ADM8211 for that purpose.
1713 *
1714 * val is 18 bits of data, and val is the 4-bit address of the register.
1715 *
1716 * Return 0 on success.
1717 */
1718 static int
1719 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1720 {
1721 u_int32_t bits, reg;
1722 int i;
1723
1724 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1725 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1726
1727 for (i = 1000; --i >= 0; ) {
1728 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1729 break;
1730 DELAY(100);
1731 }
1732
1733 if (i < 0) {
1734 printf("%s: start atw_si4126_write, SYNCTL busy\n",
1735 sc->sc_dev.dv_xname);
1736 return ETIMEDOUT;
1737 }
1738
1739 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1740 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1741
1742 reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
1743
1744 ATW_WRITE(sc, ATW_SYNCTL, reg);
1745
1746 for (i = 1000; --i >= 0; ) {
1747 DELAY(100);
1748 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1749 break;
1750 }
1751
1752 /* restore to acceptable starting condition */
1753 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1754
1755 if (i < 0) {
1756 printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1757 sc->sc_dev.dv_xname, reg);
1758 return ETIMEDOUT;
1759 }
1760 return 0;
1761 }
1762
1763 /* Read 18-bit data from the 4-bit address addr in Si4126
1764 * RF synthesizer and write the data to *val. Return 0 on success.
1765 *
1766 * XXX This does not seem to work. The ADM8211 must require more or
1767 * different magic to read the chip than to write it.
1768 */
1769 #ifdef ATW_DEBUG
1770 static int
1771 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1772 {
1773 u_int32_t reg;
1774 int i;
1775
1776 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1777
1778 for (i = 1000; --i >= 0; ) {
1779 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1780 break;
1781 DELAY(100);
1782 }
1783
1784 if (i < 0) {
1785 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1786 sc->sc_dev.dv_xname);
1787 return ETIMEDOUT;
1788 }
1789
1790 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1791
1792 ATW_WRITE(sc, ATW_SYNCTL, reg);
1793
1794 for (i = 1000; --i >= 0; ) {
1795 DELAY(100);
1796 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1797 break;
1798 }
1799
1800 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1801
1802 if (i < 0) {
1803 printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1804 sc->sc_dev.dv_xname, reg);
1805 return ETIMEDOUT;
1806 }
1807 if (val != NULL)
1808 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1809 ATW_SYNCTL_DATA_MASK);
1810 return 0;
1811 }
1812 #endif /* ATW_DEBUG */
1813
1814 /* XXX is the endianness correct? test. */
1815 #define atw_calchash(addr) \
1816 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1817
1818 /*
1819 * atw_filter_setup:
1820 *
1821 * Set the ADM8211's receive filter.
1822 */
1823 static void
1824 atw_filter_setup(struct atw_softc *sc)
1825 {
1826 struct ieee80211com *ic = &sc->sc_ic;
1827 struct ethercom *ec = &ic->ic_ec;
1828 struct ifnet *ifp = &sc->sc_ic.ic_if;
1829 int hash;
1830 u_int32_t hashes[2] = { 0, 0 };
1831 struct ether_multi *enm;
1832 struct ether_multistep step;
1833
1834 DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1835 sc->sc_dev.dv_xname, sc->sc_flags));
1836
1837 /*
1838 * If we're running, idle the receive engine. If we're NOT running,
1839 * we're being called from atw_init(), and our writing ATW_NAR will
1840 * start the transmit and receive processes in motion.
1841 */
1842 if (ifp->if_flags & IFF_RUNNING)
1843 atw_idle(sc, ATW_NAR_SR);
1844
1845 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1846
1847 ifp->if_flags &= ~IFF_ALLMULTI;
1848
1849 if (ifp->if_flags & IFF_PROMISC) {
1850 sc->sc_opmode |= ATW_NAR_PR;
1851 allmulti:
1852 ifp->if_flags |= IFF_ALLMULTI;
1853 goto setit;
1854 }
1855
1856 /*
1857 * Program the 64-bit multicast hash filter.
1858 */
1859 ETHER_FIRST_MULTI(step, ec, enm);
1860 while (enm != NULL) {
1861 /* XXX */
1862 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1863 ETHER_ADDR_LEN) != 0)
1864 goto allmulti;
1865
1866 hash = atw_calchash(enm->enm_addrlo);
1867 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1868 ETHER_NEXT_MULTI(step, enm);
1869 }
1870
1871 if (ifp->if_flags & IFF_BROADCAST) {
1872 hash = atw_calchash(etherbroadcastaddr);
1873 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1874 }
1875
1876 /* all bits set => hash is useless */
1877 if (~(hashes[0] & hashes[1]) == 0)
1878 goto allmulti;
1879
1880 setit:
1881 if (ifp->if_flags & IFF_ALLMULTI)
1882 sc->sc_opmode |= ATW_NAR_MM;
1883
1884 /* XXX in scan mode, do not filter packets. maybe this is
1885 * unnecessary.
1886 */
1887 if (ic->ic_state == IEEE80211_S_SCAN)
1888 sc->sc_opmode |= ATW_NAR_PR;
1889
1890 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1891 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1892 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1893 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1894 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1895
1896 DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1897 }
1898
1899 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1900 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1901 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1902 * no beacon with the preferred BSSID and SSID in the number of
1903 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1904 */
1905 static void
1906 atw_write_bssid(struct atw_softc *sc)
1907 {
1908 struct ieee80211com *ic = &sc->sc_ic;
1909 u_int8_t *bssid;
1910
1911 bssid = ic->ic_bss->ni_bssid;
1912
1913 ATW_WRITE(sc, ATW_ABDA1,
1914 (ATW_READ(sc, ATW_ABDA1) &
1915 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1916 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1917 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1918
1919 ATW_WRITE(sc, ATW_BSSID0,
1920 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1921 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1922 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1923 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1924
1925 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1926 ether_sprintf(sc->sc_bssid)));
1927 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1928
1929 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1930 }
1931
1932 /* Tell the ADM8211 how many beacon intervals must pass without
1933 * receiving a beacon with the preferred BSSID & SSID set by
1934 * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
1935 * raised.
1936 */
1937 static void
1938 atw_write_bcn_thresh(struct atw_softc *sc)
1939 {
1940 struct ieee80211com *ic = &sc->sc_ic;
1941 int lost_bcn_thresh;
1942
1943 /* Lose link after one second or 7 beacons, whichever comes
1944 * first, but do not lose link before 2 beacons are lost.
1945 *
1946 * In host AP mode, set the lost-beacon threshold to 0.
1947 */
1948 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1949 lost_bcn_thresh = 0;
1950 else {
1951 int beacons_per_second =
1952 1000000 / (IEEE80211_DUR_TU * MAX(1,ic->ic_bss->ni_intval));
1953 lost_bcn_thresh = MAX(2, MIN(7, beacons_per_second));
1954 }
1955
1956 /* XXX resets wake-up status bits */
1957 ATW_WRITE(sc, ATW_WCSR,
1958 (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
1959 (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
1960
1961 DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
1962 sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
1963
1964 sc->sc_lost_bcn_thresh = lost_bcn_thresh;
1965
1966 DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
1967 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
1968 }
1969
1970 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1971 * 16-bit word.
1972 */
1973 static void
1974 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
1975 {
1976 u_int i;
1977 u_int8_t *ptr;
1978
1979 memcpy(&sc->sc_sram[ofs], buf, buflen);
1980
1981 if (ofs % 2 != 0) {
1982 ofs--;
1983 buflen++;
1984 }
1985
1986 if (buflen % 2 != 0)
1987 buflen++;
1988
1989 assert(buflen + ofs <= ATW_SRAM_SIZE);
1990
1991 ptr = &sc->sc_sram[ofs];
1992
1993 for (i = 0; i < buflen; i += 2) {
1994 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
1995 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
1996 DELAY(atw_writewep_delay);
1997
1998 ATW_WRITE(sc, ATW_WESK,
1999 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2000 DELAY(atw_writewep_delay);
2001 }
2002 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2003
2004 if (sc->sc_if.if_flags & IFF_DEBUG) {
2005 int n_octets = 0;
2006 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2007 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2008 for (i = 0; i < buflen; i++) {
2009 printf(" %02x", ptr[i]);
2010 if (++n_octets % 24 == 0)
2011 printf("\n");
2012 }
2013 if (n_octets % 24 != 0)
2014 printf("\n");
2015 }
2016 }
2017
2018 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2019 static void
2020 atw_write_wep(struct atw_softc *sc)
2021 {
2022 struct ieee80211com *ic = &sc->sc_ic;
2023 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2024 u_int8_t buf[IEEE80211_WEP_NKID]
2025 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2026 u_int32_t reg;
2027 int i;
2028
2029 sc->sc_wepctl = 0;
2030 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2031
2032 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2033 return;
2034
2035 memset(&buf[0][0], 0, sizeof(buf));
2036
2037 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2038 if (ic->ic_nw_keys[i].wk_len > 5) {
2039 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2040 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2041 buf[i][1] = ATW_WEP_ENABLED;
2042 } else {
2043 buf[i][1] = 0;
2044 continue;
2045 }
2046 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2047 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2048 ic->ic_nw_keys[i].wk_len - 1);
2049 }
2050
2051 reg = ATW_READ(sc, ATW_MACTEST);
2052 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2053 reg &= ~ATW_MACTEST_KEYID_MASK;
2054 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2055 ATW_WRITE(sc, ATW_MACTEST, reg);
2056
2057 /* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2058 * throughout.)
2059 */
2060 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2061 if (sc->sc_if.if_flags & IFF_LINK2)
2062 sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2063
2064 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2065 sizeof(buf));
2066 }
2067
2068 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2069
2070 static void
2071 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2072 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2073 {
2074 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2075
2076 switch (subtype) {
2077 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2078 /* do nothing: hardware answers probe request */
2079 break;
2080 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2081 case IEEE80211_FC0_SUBTYPE_BEACON:
2082 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2083 break;
2084 default:
2085 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2086 break;
2087 }
2088 return;
2089 }
2090
2091 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2092 * of IBSSs with like SSID/channel but different BSSID. It joins the
2093 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2094 * convention. Possibly the ADMtek chip does this for us; I will have
2095 * to test to find out.
2096 *
2097 * XXX we should add the duration field of the received beacon to
2098 * the TSF time it contains before comparing it with the ADM8211's
2099 * TSF.
2100 */
2101 static void
2102 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2103 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2104 {
2105 struct atw_softc *sc;
2106 struct ieee80211_frame *wh;
2107 u_int64_t tsft, bcn_tsft;
2108 u_int32_t tsftl, tsfth;
2109 int do_print = 0;
2110
2111 sc = (struct atw_softc*)ic->ic_if.if_softc;
2112
2113 if (ic->ic_if.if_flags & IFF_DEBUG)
2114 do_print = (ic->ic_if.if_flags & IFF_LINK0)
2115 ? 1 : ratecheck(&sc->sc_last_beacon,
2116 &atw_beacon_mininterval);
2117
2118 wh = mtod(m0, struct ieee80211_frame *);
2119
2120 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2121
2122 if (ic->ic_state != IEEE80211_S_RUN) {
2123 if (do_print)
2124 printf("%s: atw_recv_beacon: not running\n",
2125 sc->sc_dev.dv_xname);
2126 return;
2127 }
2128
2129 if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2130 ic->ic_bss->ni_chan)) == NULL) {
2131 if (do_print)
2132 printf("%s: atw_recv_beacon: no node %s\n",
2133 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2134 return;
2135 }
2136
2137 if (ieee80211_match_bss(ic, ni) != 0) {
2138 if (do_print)
2139 printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2140 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2141 return;
2142 }
2143
2144 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2145 return;
2146
2147 if (do_print)
2148 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2149 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2150
2151 if (ic->ic_opmode != IEEE80211_M_IBSS)
2152 return;
2153
2154 /* If we read TSFTL right before rollover, we read a TSF timer
2155 * that is too high rather than too low. This prevents a spurious
2156 * synchronization down the line, however, our IBSS could suffer
2157 * from a creeping TSF....
2158 */
2159 tsftl = ATW_READ(sc, ATW_TSFTL);
2160 tsfth = ATW_READ(sc, ATW_TSFTH);
2161
2162 tsft = (u_int64_t)tsfth << 32 | tsftl;
2163 bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2164
2165 if (do_print)
2166 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2167 sc->sc_dev.dv_xname, tsft, bcn_tsft);
2168
2169 /* we are faster, let the other guy catch up */
2170 if (bcn_tsft < tsft)
2171 return;
2172
2173 if (do_print)
2174 printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2175 ether_sprintf(wh->i_addr2));
2176
2177 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2178
2179 #if 0
2180 atw_tsf(sc);
2181 #endif
2182
2183 /* negotiate rates with new IBSS */
2184 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2185 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2186 if (ni->ni_rates.rs_nrates == 0) {
2187 printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2188 ether_sprintf(ni->ni_bssid));
2189 return;
2190 }
2191
2192 if (do_print) {
2193 printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2194 ether_sprintf(ic->ic_bss->ni_bssid));
2195 printf("%s ", ether_sprintf(ni->ni_bssid));
2196 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2197 }
2198
2199 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2200
2201 atw_write_bssid(sc);
2202 atw_write_bcn_thresh(sc);
2203 atw_start_beacon(sc, 1);
2204 }
2205
2206 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2207 * In ad hoc mode, the SSID is written to the beacons sent by the
2208 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2209 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2210 * indications.
2211 */
2212 static void
2213 atw_write_ssid(struct atw_softc *sc)
2214 {
2215 struct ieee80211com *ic = &sc->sc_ic;
2216 /* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2217 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2218
2219 memset(buf, 0, sizeof(buf));
2220 buf[0] = ic->ic_bss->ni_esslen;
2221 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2222
2223 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2224 }
2225
2226 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2227 * In ad hoc mode, the supported rates are written to beacons sent by the
2228 * ADM8211.
2229 */
2230 static void
2231 atw_write_sup_rates(struct atw_softc *sc)
2232 {
2233 struct ieee80211com *ic = &sc->sc_ic;
2234 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2235 * supported rates
2236 */
2237 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2238
2239 memset(buf, 0, sizeof(buf));
2240
2241 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2242
2243 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2244 ic->ic_bss->ni_rates.rs_nrates);
2245
2246 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2247 }
2248
2249 /* Start/stop sending beacons. */
2250 void
2251 atw_start_beacon(struct atw_softc *sc, int start)
2252 {
2253 struct ieee80211com *ic = &sc->sc_ic;
2254 u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2255
2256 if (ATW_IS_ENABLED(sc) == 0)
2257 return;
2258
2259 len = capinfo = 0;
2260
2261 /* start beacons */
2262 len = sizeof(struct ieee80211_frame) +
2263 8 /* timestamp */ + 2 /* beacon interval */ +
2264 2 /* capability info */ +
2265 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2266 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2267 3 /* DS parameters */ +
2268 IEEE80211_CRC_LEN;
2269
2270 reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2271
2272 reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2273
2274 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2275 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2276
2277 if (!start)
2278 return;
2279
2280 /* TBD use ni_capinfo */
2281
2282 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2283 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2284 if (ic->ic_flags & IEEE80211_F_WEPON)
2285 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2286
2287 switch (ic->ic_opmode) {
2288 case IEEE80211_M_IBSS:
2289 len += 4; /* IBSS parameters */
2290 capinfo |= IEEE80211_CAPINFO_IBSS;
2291 break;
2292 case IEEE80211_M_HOSTAP:
2293 /* XXX 6-byte minimum TIM */
2294 len += atw_beacon_len_adjust;
2295 capinfo |= IEEE80211_CAPINFO_ESS;
2296 break;
2297 default:
2298 return;
2299 }
2300
2301 reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2302 reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2303
2304 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2305 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2306
2307 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2308 sc->sc_dev.dv_xname, reg_bcnt));
2309
2310 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2311 sc->sc_dev.dv_xname, reg_cap1));
2312 }
2313
2314 /* First beacon was sent at time 0 microseconds, current time is
2315 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2316 * microseconds. Return the expected time in microseconds for the
2317 * beacon after next.
2318 */
2319 static __inline u_int64_t
2320 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2321 {
2322 return tsft + (tbtt - tsft % tbtt);
2323 }
2324
2325 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2326 * the ieee80211com.
2327 *
2328 * Predict the next target beacon transmission time (TBTT) and
2329 * write it to the ADM8211.
2330 */
2331 static void
2332 atw_tsf(struct atw_softc *sc)
2333 {
2334 #define TBTTOFS 20 /* TU */
2335
2336 struct ieee80211com *ic = &sc->sc_ic;
2337 u_int64_t tsft, tbtt;
2338
2339 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2340 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2341 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2342 tsft = ATW_READ(sc, ATW_TSFTH);
2343 tsft <<= 32;
2344 tsft |= ATW_READ(sc, ATW_TSFTL);
2345 *(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2346 } else
2347 tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2348
2349 tbtt = atw_predict_beacon(tsft,
2350 ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2351
2352 /* skip one more beacon so that the TBTT cannot pass before
2353 * we've programmed it, and also so that we can subtract a
2354 * few TU so that we wake a little before TBTT.
2355 */
2356 tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2357
2358 /* wake up a little early */
2359 tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2360
2361 DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2362 sc->sc_dev.dv_xname, tsft, tbtt));
2363
2364 ATW_WRITE(sc, ATW_TOFS1,
2365 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2366 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2367 LSHIFT(
2368 MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2369 ATW_TOFS1_TBTTPRE_MASK));
2370 #undef TBTTOFS
2371 }
2372
2373 static void
2374 atw_next_scan(void *arg)
2375 {
2376 struct atw_softc *sc = arg;
2377 struct ieee80211com *ic = &sc->sc_ic;
2378 struct ifnet *ifp = &ic->ic_if;
2379 int s;
2380
2381 /* don't call atw_start w/o network interrupts blocked */
2382 s = splnet();
2383 if (ic->ic_state == IEEE80211_S_SCAN)
2384 ieee80211_next_scan(ifp);
2385 splx(s);
2386 }
2387
2388 /* Synchronize the hardware state with the software state. */
2389 static int
2390 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2391 {
2392 struct ifnet *ifp = &ic->ic_if;
2393 struct atw_softc *sc = ifp->if_softc;
2394 enum ieee80211_state ostate;
2395 int error;
2396
2397 ostate = ic->ic_state;
2398
2399 if (nstate == IEEE80211_S_INIT) {
2400 callout_stop(&sc->sc_scan_ch);
2401 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2402 atw_start_beacon(sc, 0);
2403 return (*sc->sc_newstate)(ic, nstate, arg);
2404 }
2405
2406 if ((error = atw_tune(sc)) != 0)
2407 return error;
2408
2409 switch (nstate) {
2410 case IEEE80211_S_ASSOC:
2411 break;
2412 case IEEE80211_S_INIT:
2413 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2414 break;
2415 case IEEE80211_S_SCAN:
2416 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2417 atw_write_bssid(sc);
2418
2419 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2420 atw_next_scan, sc);
2421
2422 break;
2423 case IEEE80211_S_RUN:
2424 if (ic->ic_opmode == IEEE80211_M_STA)
2425 break;
2426 /*FALLTHROUGH*/
2427 case IEEE80211_S_AUTH:
2428 atw_write_bssid(sc);
2429 atw_write_bcn_thresh(sc);
2430 atw_write_ssid(sc);
2431 atw_write_sup_rates(sc);
2432
2433 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2434 ic->ic_opmode == IEEE80211_M_MONITOR)
2435 break;
2436
2437 /* set listen interval
2438 * XXX do software units agree w/ hardware?
2439 */
2440 ATW_WRITE(sc, ATW_BPLI,
2441 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2442 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2443 ATW_BPLI_LI_MASK));
2444
2445 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2446 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2447
2448 atw_tsf(sc);
2449 break;
2450 }
2451
2452 if (nstate != IEEE80211_S_SCAN)
2453 callout_stop(&sc->sc_scan_ch);
2454
2455 if (nstate == IEEE80211_S_RUN &&
2456 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2457 ic->ic_opmode == IEEE80211_M_IBSS))
2458 atw_start_beacon(sc, 1);
2459 else
2460 atw_start_beacon(sc, 0);
2461
2462 return (*sc->sc_newstate)(ic, nstate, arg);
2463 }
2464
2465 /*
2466 * atw_add_rxbuf:
2467 *
2468 * Add a receive buffer to the indicated descriptor.
2469 */
2470 int
2471 atw_add_rxbuf(struct atw_softc *sc, int idx)
2472 {
2473 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2474 struct mbuf *m;
2475 int error;
2476
2477 MGETHDR(m, M_DONTWAIT, MT_DATA);
2478 if (m == NULL)
2479 return (ENOBUFS);
2480
2481 MCLGET(m, M_DONTWAIT);
2482 if ((m->m_flags & M_EXT) == 0) {
2483 m_freem(m);
2484 return (ENOBUFS);
2485 }
2486
2487 if (rxs->rxs_mbuf != NULL)
2488 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2489
2490 rxs->rxs_mbuf = m;
2491
2492 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2493 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2494 BUS_DMA_READ|BUS_DMA_NOWAIT);
2495 if (error) {
2496 printf("%s: can't load rx DMA map %d, error = %d\n",
2497 sc->sc_dev.dv_xname, idx, error);
2498 panic("atw_add_rxbuf"); /* XXX */
2499 }
2500
2501 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2502 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2503
2504 ATW_INIT_RXDESC(sc, idx);
2505
2506 return (0);
2507 }
2508
2509 /*
2510 * Release any queued transmit buffers.
2511 */
2512 void
2513 atw_txdrain(struct atw_softc *sc)
2514 {
2515 struct atw_txsoft *txs;
2516
2517 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2518 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2519 if (txs->txs_mbuf != NULL) {
2520 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2521 m_freem(txs->txs_mbuf);
2522 txs->txs_mbuf = NULL;
2523 }
2524 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2525 }
2526 sc->sc_tx_timer = 0;
2527 }
2528
2529 /*
2530 * atw_stop: [ ifnet interface function ]
2531 *
2532 * Stop transmission on the interface.
2533 */
2534 void
2535 atw_stop(struct ifnet *ifp, int disable)
2536 {
2537 struct atw_softc *sc = ifp->if_softc;
2538 struct ieee80211com *ic = &sc->sc_ic;
2539
2540 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2541
2542 /* Disable interrupts. */
2543 ATW_WRITE(sc, ATW_IER, 0);
2544
2545 /* Stop the transmit and receive processes. */
2546 sc->sc_opmode = 0;
2547 ATW_WRITE(sc, ATW_NAR, 0);
2548 ATW_WRITE(sc, ATW_TDBD, 0);
2549 ATW_WRITE(sc, ATW_TDBP, 0);
2550 ATW_WRITE(sc, ATW_RDB, 0);
2551
2552 atw_txdrain(sc);
2553
2554 if (disable) {
2555 atw_rxdrain(sc);
2556 atw_disable(sc);
2557 }
2558
2559 /*
2560 * Mark the interface down and cancel the watchdog timer.
2561 */
2562 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2563 ifp->if_timer = 0;
2564
2565 if (!disable)
2566 atw_reset(sc);
2567 }
2568
2569 /*
2570 * atw_rxdrain:
2571 *
2572 * Drain the receive queue.
2573 */
2574 void
2575 atw_rxdrain(struct atw_softc *sc)
2576 {
2577 struct atw_rxsoft *rxs;
2578 int i;
2579
2580 for (i = 0; i < ATW_NRXDESC; i++) {
2581 rxs = &sc->sc_rxsoft[i];
2582 if (rxs->rxs_mbuf == NULL)
2583 continue;
2584 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2585 m_freem(rxs->rxs_mbuf);
2586 rxs->rxs_mbuf = NULL;
2587 }
2588 }
2589
2590 /*
2591 * atw_detach:
2592 *
2593 * Detach an ADM8211 interface.
2594 */
2595 int
2596 atw_detach(struct atw_softc *sc)
2597 {
2598 struct ifnet *ifp = &sc->sc_ic.ic_if;
2599 struct atw_rxsoft *rxs;
2600 struct atw_txsoft *txs;
2601 int i;
2602
2603 /*
2604 * Succeed now if there isn't any work to do.
2605 */
2606 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2607 return (0);
2608
2609 ieee80211_ifdetach(ifp);
2610 if_detach(ifp);
2611
2612 for (i = 0; i < ATW_NRXDESC; i++) {
2613 rxs = &sc->sc_rxsoft[i];
2614 if (rxs->rxs_mbuf != NULL) {
2615 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2616 m_freem(rxs->rxs_mbuf);
2617 rxs->rxs_mbuf = NULL;
2618 }
2619 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2620 }
2621 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2622 txs = &sc->sc_txsoft[i];
2623 if (txs->txs_mbuf != NULL) {
2624 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2625 m_freem(txs->txs_mbuf);
2626 txs->txs_mbuf = NULL;
2627 }
2628 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2629 }
2630 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2631 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2632 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2633 sizeof(struct atw_control_data));
2634 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2635
2636 shutdownhook_disestablish(sc->sc_sdhook);
2637 powerhook_disestablish(sc->sc_powerhook);
2638
2639 if (sc->sc_srom)
2640 free(sc->sc_srom, M_DEVBUF);
2641
2642 return (0);
2643 }
2644
2645 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2646 void
2647 atw_shutdown(void *arg)
2648 {
2649 struct atw_softc *sc = arg;
2650
2651 atw_stop(&sc->sc_ic.ic_if, 1);
2652 }
2653
2654 int
2655 atw_intr(void *arg)
2656 {
2657 struct atw_softc *sc = arg;
2658 struct ifnet *ifp = &sc->sc_ic.ic_if;
2659 u_int32_t status, rxstatus, txstatus, linkstatus;
2660 int handled = 0, txthresh;
2661
2662 #ifdef DEBUG
2663 if (ATW_IS_ENABLED(sc) == 0)
2664 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2665 #endif
2666
2667 /*
2668 * If the interface isn't running, the interrupt couldn't
2669 * possibly have come from us.
2670 */
2671 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2672 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2673 return (0);
2674
2675 for (;;) {
2676 status = ATW_READ(sc, ATW_STSR);
2677
2678 if (status)
2679 ATW_WRITE(sc, ATW_STSR, status);
2680
2681 if (sc->sc_intr_ack != NULL)
2682 (*sc->sc_intr_ack)(sc);
2683
2684 #ifdef ATW_DEBUG
2685 #define PRINTINTR(flag) do { \
2686 if ((status & flag) != 0) { \
2687 printf("%s" #flag, delim); \
2688 delim = ","; \
2689 } \
2690 } while (0)
2691
2692 if (atw_debug > 1 && status) {
2693 const char *delim = "<";
2694
2695 printf("%s: reg[STSR] = %x",
2696 sc->sc_dev.dv_xname, status);
2697
2698 PRINTINTR(ATW_INTR_FBE);
2699 PRINTINTR(ATW_INTR_LINKOFF);
2700 PRINTINTR(ATW_INTR_LINKON);
2701 PRINTINTR(ATW_INTR_RCI);
2702 PRINTINTR(ATW_INTR_RDU);
2703 PRINTINTR(ATW_INTR_REIS);
2704 PRINTINTR(ATW_INTR_RPS);
2705 PRINTINTR(ATW_INTR_TCI);
2706 PRINTINTR(ATW_INTR_TDU);
2707 PRINTINTR(ATW_INTR_TLT);
2708 PRINTINTR(ATW_INTR_TPS);
2709 PRINTINTR(ATW_INTR_TRT);
2710 PRINTINTR(ATW_INTR_TUF);
2711 PRINTINTR(ATW_INTR_BCNTC);
2712 PRINTINTR(ATW_INTR_ATIME);
2713 PRINTINTR(ATW_INTR_TBTT);
2714 PRINTINTR(ATW_INTR_TSCZ);
2715 PRINTINTR(ATW_INTR_TSFTF);
2716 printf(">\n");
2717 }
2718 #undef PRINTINTR
2719 #endif /* ATW_DEBUG */
2720
2721 if ((status & sc->sc_inten) == 0)
2722 break;
2723
2724 handled = 1;
2725
2726 rxstatus = status & sc->sc_rxint_mask;
2727 txstatus = status & sc->sc_txint_mask;
2728 linkstatus = status & sc->sc_linkint_mask;
2729
2730 if (linkstatus) {
2731 atw_linkintr(sc, linkstatus);
2732 }
2733
2734 if (rxstatus) {
2735 /* Grab any new packets. */
2736 atw_rxintr(sc);
2737
2738 if (rxstatus & ATW_INTR_RDU) {
2739 printf("%s: receive ring overrun\n",
2740 sc->sc_dev.dv_xname);
2741 /* Get the receive process going again. */
2742 ATW_WRITE(sc, ATW_RDR, 0x1);
2743 break;
2744 }
2745 }
2746
2747 if (txstatus) {
2748 /* Sweep up transmit descriptors. */
2749 atw_txintr(sc);
2750
2751 if (txstatus & ATW_INTR_TLT)
2752 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2753 sc->sc_dev.dv_xname));
2754
2755 if (txstatus & ATW_INTR_TRT)
2756 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2757 sc->sc_dev.dv_xname));
2758
2759 /* If Tx under-run, increase our transmit threshold
2760 * if another is available.
2761 */
2762 txthresh = sc->sc_txthresh + 1;
2763 if ((txstatus & ATW_INTR_TUF) &&
2764 sc->sc_txth[txthresh].txth_name != NULL) {
2765 /* Idle the transmit process. */
2766 atw_idle(sc, ATW_NAR_ST);
2767
2768 sc->sc_txthresh = txthresh;
2769 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2770 sc->sc_opmode |=
2771 sc->sc_txth[txthresh].txth_opmode;
2772 printf("%s: transmit underrun; new "
2773 "threshold: %s\n", sc->sc_dev.dv_xname,
2774 sc->sc_txth[txthresh].txth_name);
2775
2776 /* Set the new threshold and restart
2777 * the transmit process.
2778 */
2779 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2780 /* XXX Log every Nth underrun from
2781 * XXX now on?
2782 */
2783 }
2784 }
2785
2786 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2787 if (status & ATW_INTR_TPS)
2788 printf("%s: transmit process stopped\n",
2789 sc->sc_dev.dv_xname);
2790 if (status & ATW_INTR_RPS)
2791 printf("%s: receive process stopped\n",
2792 sc->sc_dev.dv_xname);
2793 (void)atw_init(ifp);
2794 break;
2795 }
2796
2797 if (status & ATW_INTR_FBE) {
2798 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2799 (void)atw_init(ifp);
2800 break;
2801 }
2802
2803 /*
2804 * Not handled:
2805 *
2806 * Transmit buffer unavailable -- normal
2807 * condition, nothing to do, really.
2808 *
2809 * Early receive interrupt -- not available on
2810 * all chips, we just use RI. We also only
2811 * use single-segment receive DMA, so this
2812 * is mostly useless.
2813 *
2814 * TBD others
2815 */
2816 }
2817
2818 /* Try to get more packets going. */
2819 atw_start(ifp);
2820
2821 return (handled);
2822 }
2823
2824 /*
2825 * atw_idle:
2826 *
2827 * Cause the transmit and/or receive processes to go idle.
2828 *
2829 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2830 * process in STSR if I clear SR or ST after the process has already
2831 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2832 * do not seem to be too reliable. Perhaps I have the sense of the
2833 * Rx bits switched with the Tx bits?
2834 */
2835 void
2836 atw_idle(struct atw_softc *sc, u_int32_t bits)
2837 {
2838 u_int32_t ackmask = 0, opmode, stsr, test0;
2839 int i, s;
2840
2841 /* without this, somehow we run concurrently w/ interrupt handler */
2842 s = splnet();
2843
2844 opmode = sc->sc_opmode & ~bits;
2845
2846 if (bits & ATW_NAR_SR)
2847 ackmask |= ATW_INTR_RPS;
2848
2849 if (bits & ATW_NAR_ST) {
2850 ackmask |= ATW_INTR_TPS;
2851 /* set ATW_NAR_HF to flush TX FIFO. */
2852 opmode |= ATW_NAR_HF;
2853 }
2854
2855 ATW_WRITE(sc, ATW_NAR, opmode);
2856
2857 for (i = 0; i < 1000; i++) {
2858 stsr = ATW_READ(sc, ATW_STSR);
2859 if ((stsr & ackmask) == ackmask)
2860 break;
2861 DELAY(10);
2862 }
2863
2864 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2865
2866 if ((stsr & ackmask) == ackmask)
2867 goto out;
2868
2869 test0 = ATW_READ(sc, ATW_TEST0);
2870
2871 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2872 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2873 printf("%s: transmit process not idle [%s]\n",
2874 sc->sc_dev.dv_xname,
2875 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2876 printf("%s: bits %08x test0 %08x stsr %08x\n",
2877 sc->sc_dev.dv_xname, bits, test0, stsr);
2878 }
2879
2880 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2881 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2882 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2883 sc->sc_dev.dv_xname,
2884 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2885 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2886 sc->sc_dev.dv_xname, bits, test0, stsr));
2887 }
2888 out:
2889 if ((bits & ATW_NAR_ST) != 0)
2890 atw_txdrain(sc);
2891 splx(s);
2892 return;
2893 }
2894
2895 /*
2896 * atw_linkintr:
2897 *
2898 * Helper; handle link-status interrupts.
2899 */
2900 void
2901 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2902 {
2903 struct ieee80211com *ic = &sc->sc_ic;
2904
2905 if (ic->ic_state != IEEE80211_S_RUN)
2906 return;
2907
2908 if (linkstatus & ATW_INTR_LINKON) {
2909 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2910 sc->sc_rescan_timer = 0;
2911 } else if (linkstatus & ATW_INTR_LINKOFF) {
2912 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2913 if (ic->ic_opmode != IEEE80211_M_STA)
2914 return;
2915 sc->sc_rescan_timer = 3;
2916 ic->ic_if.if_timer = 1;
2917 }
2918 }
2919
2920 /*
2921 * atw_rxintr:
2922 *
2923 * Helper; handle receive interrupts.
2924 */
2925 void
2926 atw_rxintr(struct atw_softc *sc)
2927 {
2928 static int rate_tbl[] = {2, 4, 11, 22, 44};
2929 struct ieee80211com *ic = &sc->sc_ic;
2930 struct ieee80211_node *ni;
2931 struct ieee80211_frame *wh;
2932 struct ifnet *ifp = &ic->ic_if;
2933 struct atw_rxsoft *rxs;
2934 struct mbuf *m;
2935 u_int32_t rxstat;
2936 int i, len, rate, rate0;
2937 u_int32_t rssi;
2938
2939 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2940 rxs = &sc->sc_rxsoft[i];
2941
2942 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2943
2944 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2945 rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2946 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2947
2948 if (rxstat & ATW_RXSTAT_OWN)
2949 break; /* We have processed all receive buffers. */
2950
2951 DPRINTF3(sc,
2952 ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2953 sc->sc_dev.dv_xname,
2954 sc->sc_rxdescs[i].ar_stat,
2955 sc->sc_rxdescs[i].ar_rssi,
2956 sc->sc_rxdescs[i].ar_buf1,
2957 sc->sc_rxdescs[i].ar_buf2));
2958
2959 /*
2960 * Make sure the packet fits in one buffer. This should
2961 * always be the case.
2962 */
2963 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2964 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2965 printf("%s: incoming packet spilled, resetting\n",
2966 sc->sc_dev.dv_xname);
2967 (void)atw_init(ifp);
2968 return;
2969 }
2970
2971 /*
2972 * If an error occurred, update stats, clear the status
2973 * word, and leave the packet buffer in place. It will
2974 * simply be reused the next time the ring comes around.
2975 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2976 * error.
2977 */
2978
2979 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
2980 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
2981 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
2982 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
2983 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
2984 ATW_RXSTAT_ICVE)) != 0)) {
2985 #define PRINTERR(bit, str) \
2986 if (rxstat & (bit)) \
2987 printf("%s: receive error: %s\n", \
2988 sc->sc_dev.dv_xname, str)
2989 ifp->if_ierrors++;
2990 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
2991 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
2992 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
2993 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
2994 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
2995 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
2996 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
2997 #undef PRINTERR
2998 ATW_INIT_RXDESC(sc, i);
2999 continue;
3000 }
3001
3002 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3003 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3004
3005 /*
3006 * No errors; receive the packet. Note the ADM8211
3007 * includes the CRC in promiscuous mode.
3008 */
3009 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3010
3011 /*
3012 * Allocate a new mbuf cluster. If that fails, we are
3013 * out of memory, and must drop the packet and recycle
3014 * the buffer that's already attached to this descriptor.
3015 */
3016 m = rxs->rxs_mbuf;
3017 if (atw_add_rxbuf(sc, i) != 0) {
3018 ifp->if_ierrors++;
3019 ATW_INIT_RXDESC(sc, i);
3020 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3021 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3022 continue;
3023 }
3024
3025 ifp->if_ipackets++;
3026 if (sc->sc_opmode & ATW_NAR_PR)
3027 m->m_flags |= M_HASFCS;
3028 m->m_pkthdr.rcvif = ifp;
3029 m->m_pkthdr.len = m->m_len = len;
3030
3031 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3032 rate = 0;
3033 else
3034 rate = rate_tbl[rate0];
3035
3036 #if NBPFILTER > 0
3037 /* Pass this up to any BPF listeners. */
3038 if (sc->sc_radiobpf != NULL) {
3039 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3040
3041 tap->ar_rate = rate;
3042 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3043 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3044
3045 /* TBD verify units are dB */
3046 tap->ar_antsignal = (int)rssi;
3047 /* TBD tap->ar_flags */
3048
3049 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3050 tap->ar_ihdr.it_len, m);
3051 }
3052 #endif /* NPBFILTER > 0 */
3053
3054 wh = mtod(m, struct ieee80211_frame *);
3055 ni = ieee80211_find_rxnode(ic, wh);
3056 ieee80211_input(ifp, m, ni, (int)rssi, 0);
3057 /*
3058 * The frame may have caused the node to be marked for
3059 * reclamation (e.g. in response to a DEAUTH message)
3060 * so use free_node here instead of unref_node.
3061 */
3062 if (ni == ic->ic_bss)
3063 ieee80211_unref_node(&ni);
3064 else
3065 ieee80211_free_node(ic, ni);
3066 }
3067
3068 /* Update the receive pointer. */
3069 sc->sc_rxptr = i;
3070 }
3071
3072 /*
3073 * atw_txintr:
3074 *
3075 * Helper; handle transmit interrupts.
3076 */
3077 void
3078 atw_txintr(struct atw_softc *sc)
3079 {
3080 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3081 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3082 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3083 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3084
3085 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3086 struct ifnet *ifp = &sc->sc_ic.ic_if;
3087 struct atw_txsoft *txs;
3088 u_int32_t txstat;
3089
3090 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3091 sc->sc_dev.dv_xname, sc->sc_flags));
3092
3093 ifp->if_flags &= ~IFF_OACTIVE;
3094
3095 /*
3096 * Go through our Tx list and free mbufs for those
3097 * frames that have been transmitted.
3098 */
3099 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3100 ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3101 txs->txs_ndescs,
3102 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3103
3104 #ifdef ATW_DEBUG
3105 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3106 int i;
3107 printf(" txsoft %p transmit chain:\n", txs);
3108 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3109 printf(" descriptor %d:\n", i);
3110 printf(" at_status: 0x%08x\n",
3111 le32toh(sc->sc_txdescs[i].at_stat));
3112 printf(" at_flags: 0x%08x\n",
3113 le32toh(sc->sc_txdescs[i].at_flags));
3114 printf(" at_buf1: 0x%08x\n",
3115 le32toh(sc->sc_txdescs[i].at_buf1));
3116 printf(" at_buf2: 0x%08x\n",
3117 le32toh(sc->sc_txdescs[i].at_buf2));
3118 if (i == txs->txs_lastdesc)
3119 break;
3120 }
3121 }
3122 #endif
3123
3124 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3125 if (txstat & ATW_TXSTAT_OWN)
3126 break;
3127
3128 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3129
3130 sc->sc_txfree += txs->txs_ndescs;
3131
3132 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3133 0, txs->txs_dmamap->dm_mapsize,
3134 BUS_DMASYNC_POSTWRITE);
3135 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3136 m_freem(txs->txs_mbuf);
3137 txs->txs_mbuf = NULL;
3138
3139 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3140
3141 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3142 (txstat & TXSTAT_ERRMASK) != 0) {
3143 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3144 txstat_buf, sizeof(txstat_buf));
3145 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3146 txstat_buf,
3147 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3148 }
3149
3150 /*
3151 * Check for errors and collisions.
3152 */
3153 if (txstat & ATW_TXSTAT_TUF)
3154 sc->sc_stats.ts_tx_tuf++;
3155 if (txstat & ATW_TXSTAT_TLT)
3156 sc->sc_stats.ts_tx_tlt++;
3157 if (txstat & ATW_TXSTAT_TRT)
3158 sc->sc_stats.ts_tx_trt++;
3159 if (txstat & ATW_TXSTAT_TRO)
3160 sc->sc_stats.ts_tx_tro++;
3161 if (txstat & ATW_TXSTAT_SOFBR) {
3162 sc->sc_stats.ts_tx_sofbr++;
3163 }
3164
3165 if ((txstat & ATW_TXSTAT_ES) == 0)
3166 ifp->if_collisions +=
3167 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3168 else
3169 ifp->if_oerrors++;
3170
3171 ifp->if_opackets++;
3172 }
3173
3174 /*
3175 * If there are no more pending transmissions, cancel the watchdog
3176 * timer.
3177 */
3178 if (txs == NULL)
3179 sc->sc_tx_timer = 0;
3180 #undef TXSTAT_ERRMASK
3181 #undef TXSTAT_FMT
3182 }
3183
3184 /*
3185 * atw_watchdog: [ifnet interface function]
3186 *
3187 * Watchdog timer handler.
3188 */
3189 void
3190 atw_watchdog(struct ifnet *ifp)
3191 {
3192 struct atw_softc *sc = ifp->if_softc;
3193 struct ieee80211com *ic = &sc->sc_ic;
3194
3195 ifp->if_timer = 0;
3196 if (ATW_IS_ENABLED(sc) == 0)
3197 return;
3198
3199 if (sc->sc_rescan_timer) {
3200 if (--sc->sc_rescan_timer == 0)
3201 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3202 }
3203 if (sc->sc_tx_timer) {
3204 if (--sc->sc_tx_timer == 0 &&
3205 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3206 printf("%s: transmit timeout\n", ifp->if_xname);
3207 ifp->if_oerrors++;
3208 (void)atw_init(ifp);
3209 atw_start(ifp);
3210 }
3211 }
3212 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3213 ifp->if_timer = 1;
3214 ieee80211_watchdog(ifp);
3215 }
3216
3217 /* Compute the 802.11 Duration field and the PLCP Length fields for
3218 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3219 * Write the fields to the ADM8211 Tx header, frm.
3220 *
3221 * TBD use the fragmentation threshold to find the right duration for
3222 * the first & last fragments.
3223 *
3224 * TBD make certain of the duration fields applied by the ADM8211 to each
3225 * fragment. I think that the ADM8211 knows how to subtract the CTS
3226 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3227 * I also think that the ADM8211 does *some* arithmetic for us, because
3228 * otherwise I think we would have to set a first duration for CTS/first
3229 * fragment, a second duration for fragments between the first and the
3230 * last, and a third duration for the last fragment.
3231 *
3232 * TBD make certain that duration fields reflect addition of FCS/WEP
3233 * and correct duration arithmetic as necessary.
3234 */
3235 static void
3236 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3237 int len)
3238 {
3239 int remainder;
3240
3241 /* deal also with encrypted fragments */
3242 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3243 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3244 sc->sc_dev.dv_xname));
3245 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3246 IEEE80211_WEP_CRCLEN;
3247 }
3248
3249 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3250 * duration (XXX added by MAC?).
3251 */
3252 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3253 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3254
3255 if (rate <= 4)
3256 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3257 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3258 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3259 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3260 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3261 else
3262 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3263 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3264 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3265 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3266 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3267
3268 /* lengthen duration if long preamble */
3269 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3270 frm->atw_head_dur +=
3271 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3272 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3273 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3274 IEEE80211_DUR_DS_FAST_PLCPHDR);
3275
3276 if (remainder != 0)
3277 frm->atw_head_dur++;
3278
3279 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3280 (rate == 2 || rate == 4)) {
3281 /* derived from Linux: how could this be right? */
3282 frm->atw_head_plcplen = frm->atw_head_dur;
3283 } else {
3284 frm->atw_head_plcplen = (16 * len) / rate;
3285 remainder = (80 * len) % (rate * 5);
3286
3287 if (remainder != 0) {
3288 frm->atw_head_plcplen++;
3289
3290 /* XXX magic */
3291 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3292 rate == 22 && remainder <= 30)
3293 frm->atw_head_plcplen |= 0x8000;
3294 }
3295 }
3296 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3297 htole16(frm->atw_head_plcplen);
3298 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3299 }
3300
3301 #ifdef ATW_DEBUG
3302 static void
3303 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3304 {
3305 struct atw_softc *sc = ifp->if_softc;
3306 struct mbuf *m;
3307 int i, noctets = 0;
3308
3309 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3310 m0->m_pkthdr.len);
3311
3312 for (m = m0; m; m = m->m_next) {
3313 if (m->m_len == 0)
3314 continue;
3315 for (i = 0; i < m->m_len; i++) {
3316 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3317 if (++noctets % 24 == 0)
3318 printf("\n");
3319 }
3320 }
3321 printf("%s%s: %d bytes emitted\n",
3322 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3323 }
3324 #endif /* ATW_DEBUG */
3325
3326 /*
3327 * atw_start: [ifnet interface function]
3328 *
3329 * Start packet transmission on the interface.
3330 */
3331 void
3332 atw_start(struct ifnet *ifp)
3333 {
3334 struct atw_softc *sc = ifp->if_softc;
3335 struct ieee80211com *ic = &sc->sc_ic;
3336 struct ieee80211_node *ni;
3337 struct ieee80211_frame *wh;
3338 struct atw_frame *hh;
3339 struct mbuf *m0, *m;
3340 struct atw_txsoft *txs, *last_txs;
3341 struct atw_txdesc *txd;
3342 int do_encrypt, rate;
3343 bus_dmamap_t dmamap;
3344 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3345
3346 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3347 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3348
3349 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3350 return;
3351
3352 #if 0 /* TBD ??? */
3353 if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3354 return;
3355 #endif
3356
3357 /*
3358 * Remember the previous number of free descriptors and
3359 * the first descriptor we'll use.
3360 */
3361 ofree = sc->sc_txfree;
3362 firsttx = sc->sc_txnext;
3363
3364 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3365 sc->sc_dev.dv_xname, ofree, firsttx));
3366
3367 /*
3368 * Loop through the send queue, setting up transmit descriptors
3369 * until we drain the queue, or use up all available transmit
3370 * descriptors.
3371 */
3372 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3373 sc->sc_txfree != 0) {
3374
3375 /*
3376 * Grab a packet off the management queue, if it
3377 * is not empty. Otherwise, from the data queue.
3378 */
3379 IF_DEQUEUE(&ic->ic_mgtq, m0);
3380 if (m0 != NULL) {
3381 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3382 m0->m_pkthdr.rcvif = NULL;
3383 } else {
3384 IFQ_DEQUEUE(&ifp->if_snd, m0);
3385 if (m0 == NULL)
3386 break;
3387 #if NBPFILTER > 0
3388 if (ifp->if_bpf != NULL)
3389 bpf_mtap(ifp->if_bpf, m0);
3390 #endif /* NBPFILTER > 0 */
3391 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3392 ifp->if_oerrors++;
3393 break;
3394 }
3395 }
3396
3397 rate = MAX(ieee80211_get_rate(ic), 2);
3398
3399 #if NBPFILTER > 0
3400 /*
3401 * Pass the packet to any BPF listeners.
3402 */
3403 if (ic->ic_rawbpf != NULL)
3404 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3405
3406 if (sc->sc_radiobpf != NULL) {
3407 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3408
3409 tap->at_rate = rate;
3410 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3411 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3412
3413 /* TBD tap->at_flags */
3414
3415 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3416 tap->at_ihdr.it_len, m0);
3417 }
3418 #endif /* NBPFILTER > 0 */
3419
3420 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3421
3422 if (ni != NULL && ni != ic->ic_bss)
3423 ieee80211_free_node(ic, ni);
3424
3425 if (m0 == NULL) {
3426 ifp->if_oerrors++;
3427 break;
3428 }
3429
3430 /* just to make sure. */
3431 m0 = m_pullup(m0, sizeof(struct atw_frame));
3432
3433 if (m0 == NULL) {
3434 ifp->if_oerrors++;
3435 break;
3436 }
3437
3438 hh = mtod(m0, struct atw_frame *);
3439 wh = &hh->atw_ihdr;
3440
3441 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3442
3443 /* Copy everything we need from the 802.11 header:
3444 * Frame Control; address 1, address 3, or addresses
3445 * 3 and 4. NIC fills in BSSID, SA.
3446 */
3447 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3448 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3449 panic("%s: illegal WDS frame",
3450 sc->sc_dev.dv_xname);
3451 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3452 } else
3453 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3454
3455 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3456
3457 /* initialize remaining Tx parameters */
3458 memset(&hh->u, 0, sizeof(hh->u));
3459
3460 hh->atw_rate = rate * 5;
3461 /* XXX this could be incorrect if M_FCS. _encap should
3462 * probably strip FCS just in case it sticks around in
3463 * bridged packets.
3464 */
3465 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3466 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3467 sizeof(struct atw_frame));
3468
3469 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3470 hh->atw_rtylmt = 3;
3471 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3472 if (do_encrypt) {
3473 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3474 hh->atw_keyid = ic->ic_wep_txkey;
3475 }
3476
3477 /* TBD 4-addr frames */
3478 atw_frame_setdurs(sc, hh, rate,
3479 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3480 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3481
3482 /* never fragment multicast frames */
3483 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3484 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3485 } else if (sc->sc_flags & ATWF_RTSCTS) {
3486 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3487 }
3488
3489 #ifdef ATW_DEBUG
3490 hh->atw_fragnum = 0;
3491
3492 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3493 printf("%s: dst = %s, rate = 0x%02x, "
3494 "service = 0x%02x, paylen = 0x%04x\n",
3495 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3496 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3497
3498 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3499 "dur1 = 0x%04x, dur2 = 0x%04x, "
3500 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3501 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3502 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3503 hh->atw_tail_dur, hh->atw_head_dur);
3504
3505 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3506 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3507 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3508 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3509
3510 printf("%s: keyid = %d\n",
3511 sc->sc_dev.dv_xname, hh->atw_keyid);
3512
3513 atw_dump_pkt(ifp, m0);
3514 }
3515 #endif /* ATW_DEBUG */
3516
3517 dmamap = txs->txs_dmamap;
3518
3519 /*
3520 * Load the DMA map. Copy and try (once) again if the packet
3521 * didn't fit in the alloted number of segments.
3522 */
3523 for (first = 1;
3524 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3525 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3526 first = 0) {
3527 MGETHDR(m, M_DONTWAIT, MT_DATA);
3528 if (m == NULL) {
3529 printf("%s: unable to allocate Tx mbuf\n",
3530 sc->sc_dev.dv_xname);
3531 break;
3532 }
3533 if (m0->m_pkthdr.len > MHLEN) {
3534 MCLGET(m, M_DONTWAIT);
3535 if ((m->m_flags & M_EXT) == 0) {
3536 printf("%s: unable to allocate Tx "
3537 "cluster\n", sc->sc_dev.dv_xname);
3538 m_freem(m);
3539 break;
3540 }
3541 }
3542 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3543 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3544 m_freem(m0);
3545 m0 = m;
3546 m = NULL;
3547 }
3548 if (error != 0) {
3549 printf("%s: unable to load Tx buffer, "
3550 "error = %d\n", sc->sc_dev.dv_xname, error);
3551 m_freem(m0);
3552 break;
3553 }
3554
3555 /*
3556 * Ensure we have enough descriptors free to describe
3557 * the packet.
3558 */
3559 if (dmamap->dm_nsegs > sc->sc_txfree) {
3560 /*
3561 * Not enough free descriptors to transmit
3562 * this packet. Unload the DMA map and
3563 * drop the packet. Notify the upper layer
3564 * that there are no more slots left.
3565 *
3566 * XXX We could allocate an mbuf and copy, but
3567 * XXX it is worth it?
3568 */
3569 ifp->if_flags |= IFF_OACTIVE;
3570 bus_dmamap_unload(sc->sc_dmat, dmamap);
3571 m_freem(m0);
3572 break;
3573 }
3574
3575 /*
3576 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3577 */
3578
3579 /* Sync the DMA map. */
3580 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3581 BUS_DMASYNC_PREWRITE);
3582
3583 /* XXX arbitrary retry limit; 8 because I have seen it in
3584 * use already and maybe 0 means "no tries" !
3585 */
3586 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3587
3588 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3589 sc->sc_dev.dv_xname, rate * 5));
3590 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3591
3592 /*
3593 * Initialize the transmit descriptors.
3594 */
3595 for (nexttx = sc->sc_txnext, seg = 0;
3596 seg < dmamap->dm_nsegs;
3597 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3598 /*
3599 * If this is the first descriptor we're
3600 * enqueueing, don't set the OWN bit just
3601 * yet. That could cause a race condition.
3602 * We'll do it below.
3603 */
3604 txd = &sc->sc_txdescs[nexttx];
3605 txd->at_ctl = ctl |
3606 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3607
3608 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3609 txd->at_flags =
3610 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3611 ATW_TXFLAG_TBS1_MASK)) |
3612 ((nexttx == (ATW_NTXDESC - 1))
3613 ? htole32(ATW_TXFLAG_TER) : 0);
3614 lasttx = nexttx;
3615 }
3616
3617 IASSERT(lasttx != -1, ("bad lastx"));
3618 /* Set `first segment' and `last segment' appropriately. */
3619 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3620 htole32(ATW_TXFLAG_FS);
3621 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3622
3623 #ifdef ATW_DEBUG
3624 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3625 printf(" txsoft %p transmit chain:\n", txs);
3626 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3627 printf(" descriptor %d:\n", seg);
3628 printf(" at_ctl: 0x%08x\n",
3629 le32toh(sc->sc_txdescs[seg].at_ctl));
3630 printf(" at_flags: 0x%08x\n",
3631 le32toh(sc->sc_txdescs[seg].at_flags));
3632 printf(" at_buf1: 0x%08x\n",
3633 le32toh(sc->sc_txdescs[seg].at_buf1));
3634 printf(" at_buf2: 0x%08x\n",
3635 le32toh(sc->sc_txdescs[seg].at_buf2));
3636 if (seg == lasttx)
3637 break;
3638 }
3639 }
3640 #endif
3641
3642 /* Sync the descriptors we're using. */
3643 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3644 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3645
3646 /*
3647 * Store a pointer to the packet so we can free it later,
3648 * and remember what txdirty will be once the packet is
3649 * done.
3650 */
3651 txs->txs_mbuf = m0;
3652 txs->txs_firstdesc = sc->sc_txnext;
3653 txs->txs_lastdesc = lasttx;
3654 txs->txs_ndescs = dmamap->dm_nsegs;
3655
3656 /* Advance the tx pointer. */
3657 sc->sc_txfree -= dmamap->dm_nsegs;
3658 sc->sc_txnext = nexttx;
3659
3660 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3661 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3662
3663 last_txs = txs;
3664 }
3665
3666 if (txs == NULL || sc->sc_txfree == 0) {
3667 /* No more slots left; notify upper layer. */
3668 ifp->if_flags |= IFF_OACTIVE;
3669 }
3670
3671 if (sc->sc_txfree != ofree) {
3672 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3673 sc->sc_dev.dv_xname, lasttx, firsttx));
3674 /*
3675 * Cause a transmit interrupt to happen on the
3676 * last packet we enqueued.
3677 */
3678 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3679 ATW_CDTXSYNC(sc, lasttx, 1,
3680 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3681
3682 /*
3683 * The entire packet chain is set up. Give the
3684 * first descriptor to the chip now.
3685 */
3686 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3687 ATW_CDTXSYNC(sc, firsttx, 1,
3688 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3689
3690 /* Wake up the transmitter. */
3691 ATW_WRITE(sc, ATW_TDR, 0x1);
3692
3693 /* Set a watchdog timer in case the chip flakes out. */
3694 sc->sc_tx_timer = 5;
3695 ifp->if_timer = 1;
3696 }
3697 }
3698
3699 /*
3700 * atw_power:
3701 *
3702 * Power management (suspend/resume) hook.
3703 */
3704 void
3705 atw_power(int why, void *arg)
3706 {
3707 struct atw_softc *sc = arg;
3708 struct ifnet *ifp = &sc->sc_ic.ic_if;
3709 int s;
3710
3711 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3712
3713 s = splnet();
3714 switch (why) {
3715 case PWR_STANDBY:
3716 /* XXX do nothing. */
3717 break;
3718 case PWR_SUSPEND:
3719 atw_stop(ifp, 0);
3720 if (sc->sc_power != NULL)
3721 (*sc->sc_power)(sc, why);
3722 break;
3723 case PWR_RESUME:
3724 if (ifp->if_flags & IFF_UP) {
3725 if (sc->sc_power != NULL)
3726 (*sc->sc_power)(sc, why);
3727 atw_init(ifp);
3728 }
3729 break;
3730 case PWR_SOFTSUSPEND:
3731 case PWR_SOFTSTANDBY:
3732 case PWR_SOFTRESUME:
3733 break;
3734 }
3735 splx(s);
3736 }
3737
3738 /*
3739 * atw_ioctl: [ifnet interface function]
3740 *
3741 * Handle control requests from the operator.
3742 */
3743 int
3744 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3745 {
3746 struct atw_softc *sc = ifp->if_softc;
3747 struct ifreq *ifr = (struct ifreq *)data;
3748 int s, error = 0;
3749
3750 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3751 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3752 return ENXIO;
3753
3754 s = splnet();
3755
3756 switch (cmd) {
3757 case SIOCSIFFLAGS:
3758 if (ifp->if_flags & IFF_UP) {
3759 if (ATW_IS_ENABLED(sc)) {
3760 /*
3761 * To avoid rescanning another access point,
3762 * do not call atw_init() here. Instead,
3763 * only reflect media settings.
3764 */
3765 atw_filter_setup(sc);
3766 } else
3767 error = atw_init(ifp);
3768 } else if (ATW_IS_ENABLED(sc))
3769 atw_stop(ifp, 1);
3770 break;
3771 case SIOCADDMULTI:
3772 case SIOCDELMULTI:
3773 error = (cmd == SIOCADDMULTI) ?
3774 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3775 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3776 if (error == ENETRESET) {
3777 if (ATW_IS_ENABLED(sc))
3778 atw_filter_setup(sc); /* do not rescan */
3779 error = 0;
3780 }
3781 break;
3782 default:
3783 error = ieee80211_ioctl(ifp, cmd, data);
3784 if (error == ENETRESET) {
3785 if (ATW_IS_ENABLED(sc))
3786 error = atw_init(ifp);
3787 else
3788 error = 0;
3789 }
3790 break;
3791 }
3792
3793 /* Try to get more packets going. */
3794 if (ATW_IS_ENABLED(sc))
3795 atw_start(ifp);
3796
3797 splx(s);
3798 return (error);
3799 }
3800
3801 static int
3802 atw_media_change(struct ifnet *ifp)
3803 {
3804 int error;
3805
3806 error = ieee80211_media_change(ifp);
3807 if (error == ENETRESET) {
3808 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3809 (IFF_RUNNING|IFF_UP))
3810 atw_init(ifp); /* XXX lose error */
3811 error = 0;
3812 }
3813 return error;
3814 }
3815
3816 static void
3817 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3818 {
3819 struct atw_softc *sc = ifp->if_softc;
3820
3821 if (ATW_IS_ENABLED(sc) == 0) {
3822 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3823 imr->ifm_status = 0;
3824 return;
3825 }
3826 ieee80211_media_status(ifp, imr);
3827 }
3828