Home | History | Annotate | Line # | Download | only in ic
atw.c revision 1.41
      1 /*	$NetBSD: atw.c,v 1.41 2004/07/15 06:20:58 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.41 2004/07/15 06:20:58 dyoung Exp $");
     45 
     46 #include "bpfilter.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/callout.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/malloc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/socket.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/errno.h>
     57 #include <sys/device.h>
     58 #include <sys/time.h>
     59 
     60 #include <machine/endian.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_media.h>
     67 #include <net/if_ether.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_compat.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #if NBPFILTER > 0
     74 #include <net/bpf.h>
     75 #endif
     76 
     77 #include <machine/bus.h>
     78 #include <machine/intr.h>
     79 
     80 #include <dev/ic/atwreg.h>
     81 #include <dev/ic/rf3000reg.h>
     82 #include <dev/ic/si4136reg.h>
     83 #include <dev/ic/atwvar.h>
     84 #include <dev/ic/smc93cx6var.h>
     85 
     86 /* XXX TBD open questions
     87  *
     88  *
     89  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
     90  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
     91  * handle this for me?
     92  *
     93  */
     94 /* device attachment
     95  *
     96  *    print TOFS[012]
     97  *
     98  * device initialization
     99  *
    100  *    clear ATW_FRCTL_MAXPSP to disable max power saving
    101  *    set ATW_TXBR_ALCUPDATE to enable ALC
    102  *    set TOFS[012]? (hope not)
    103  *    disable rx/tx
    104  *    set ATW_PAR_SWR (software reset)
    105  *    wait for ATW_PAR_SWR clear
    106  *    disable interrupts
    107  *    ack status register
    108  *    enable interrupts
    109  *
    110  * rx/tx initialization
    111  *
    112  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    113  *    allocate and init descriptor rings
    114  *    write ATW_PAR_DSL (descriptor skip length)
    115  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
    116  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    118  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    119  *
    120  * rx/tx end
    121  *
    122  *    stop DMA
    123  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    124  *    flush tx w/ ATW_NAR_HF
    125  *
    126  * scan
    127  *
    128  *    initialize rx/tx
    129  *
    130  * BSS join: (re)association response
    131  *
    132  *    set ATW_FRCTL_AID
    133  *
    134  * optimizations ???
    135  *
    136  */
    137 
    138 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
    139 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
    140 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
    141 
    142 int atw_rfio_enable_delay = 20 * 1000;
    143 int atw_rfio_disable_delay = 2 * 1000;
    144 int atw_writewep_delay = 5;
    145 int atw_beacon_len_adjust = 4;
    146 int atw_dwelltime = 200;
    147 
    148 #ifdef ATW_DEBUG
    149 int atw_debug = 0;
    150 
    151 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
    152 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
    153 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
    154 #define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
    155 #define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
    156 #define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
    157 
    158 static void atw_print_regs(struct atw_softc *, const char *);
    159 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
    160 
    161 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
    162 #	ifdef ATW_BBPDEBUG
    163 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    164 static void atw_rf3000_print(struct atw_softc *);
    165 #	endif /* ATW_BBPDEBUG */
    166 
    167 #	ifdef ATW_SYNDEBUG
    168 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
    169 static void atw_si4126_print(struct atw_softc *);
    170 #	endif /* ATW_SYNDEBUG */
    171 
    172 #else
    173 #define ATW_DPRINTF(x)
    174 #define ATW_DPRINTF2(x)
    175 #define ATW_DPRINTF3(x)
    176 #define	DPRINTF(sc, x)	/* nothing */
    177 #define	DPRINTF2(sc, x)	/* nothing */
    178 #define	DPRINTF3(sc, x)	/* nothing */
    179 #endif
    180 
    181 #ifdef ATW_STATS
    182 void	atw_print_stats(struct atw_softc *);
    183 #endif
    184 
    185 void	atw_start(struct ifnet *);
    186 void	atw_watchdog(struct ifnet *);
    187 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
    188 int	atw_init(struct ifnet *);
    189 void	atw_txdrain(struct atw_softc *);
    190 void	atw_stop(struct ifnet *, int);
    191 
    192 void	atw_reset(struct atw_softc *);
    193 int	atw_read_srom(struct atw_softc *);
    194 
    195 void	atw_shutdown(void *);
    196 
    197 void	atw_rxdrain(struct atw_softc *);
    198 int	atw_add_rxbuf(struct atw_softc *, int);
    199 void	atw_idle(struct atw_softc *, u_int32_t);
    200 
    201 int	atw_enable(struct atw_softc *);
    202 void	atw_disable(struct atw_softc *);
    203 void	atw_power(int, void *);
    204 
    205 void	atw_rxintr(struct atw_softc *);
    206 void	atw_txintr(struct atw_softc *);
    207 void	atw_linkintr(struct atw_softc *, u_int32_t);
    208 
    209 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
    210 static void atw_tsf(struct atw_softc *);
    211 static void atw_start_beacon(struct atw_softc *, int);
    212 static void atw_write_wep(struct atw_softc *);
    213 static void atw_write_bssid(struct atw_softc *);
    214 static void atw_write_ssid(struct atw_softc *);
    215 static void atw_write_sup_rates(struct atw_softc *);
    216 static void atw_clear_sram(struct atw_softc *);
    217 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
    218 static int atw_media_change(struct ifnet *);
    219 static void atw_media_status(struct ifnet *, struct ifmediareq *);
    220 static void atw_filter_setup(struct atw_softc *);
    221 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
    222 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
    223 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
    224     struct ieee80211_node *, int, int, u_int32_t);
    225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
    226     struct ieee80211_node *, int, int, u_int32_t);
    227 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
    228 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
    229 
    230 static int atw_tune(struct atw_softc *);
    231 
    232 static void atw_rfio_enable(struct atw_softc *, int);
    233 
    234 /* RFMD RF3000 Baseband Processor */
    235 static int atw_rf3000_init(struct atw_softc *);
    236 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
    237 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
    238 #ifdef ATW_DEBUG
    239 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    240 #endif /* ATW_DEBUG */
    241 
    242 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
    243 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
    244 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
    245 #ifdef ATW_DEBUG
    246 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
    247 #endif /* ATW_DEBUG */
    248 
    249 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
    250 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
    251 
    252 const char *atw_tx_state[] = {
    253 	"STOPPED",
    254 	"RUNNING - read descriptor",
    255 	"RUNNING - transmitting",
    256 	"RUNNING - filling fifo",	/* XXX */
    257 	"SUSPENDED",
    258 	"RUNNING -- write descriptor",
    259 	"RUNNING -- write last descriptor",
    260 	"RUNNING - fifo full"
    261 };
    262 
    263 const char *atw_rx_state[] = {
    264 	"STOPPED",
    265 	"RUNNING - read descriptor",
    266 	"RUNNING - check this packet, pre-fetch next",
    267 	"RUNNING - wait for reception",
    268 	"SUSPENDED",
    269 	"RUNNING - write descriptor",
    270 	"RUNNING - flush fifo",
    271 	"RUNNING - fifo drain"
    272 };
    273 
    274 int
    275 atw_activate(struct device *self, enum devact act)
    276 {
    277 	struct atw_softc *sc = (struct atw_softc *)self;
    278 	int rv = 0, s;
    279 
    280 	s = splnet();
    281 	switch (act) {
    282 	case DVACT_ACTIVATE:
    283 		rv = EOPNOTSUPP;
    284 		break;
    285 
    286 	case DVACT_DEACTIVATE:
    287 		if_deactivate(&sc->sc_ic.ic_if);
    288 		break;
    289 	}
    290 	splx(s);
    291 	return rv;
    292 }
    293 
    294 /*
    295  * atw_enable:
    296  *
    297  *	Enable the ADM8211 chip.
    298  */
    299 int
    300 atw_enable(struct atw_softc *sc)
    301 {
    302 
    303 	if (ATW_IS_ENABLED(sc) == 0) {
    304 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    305 			printf("%s: device enable failed\n",
    306 			    sc->sc_dev.dv_xname);
    307 			return (EIO);
    308 		}
    309 		sc->sc_flags |= ATWF_ENABLED;
    310 	}
    311 	return (0);
    312 }
    313 
    314 /*
    315  * atw_disable:
    316  *
    317  *	Disable the ADM8211 chip.
    318  */
    319 void
    320 atw_disable(struct atw_softc *sc)
    321 {
    322 	if (!ATW_IS_ENABLED(sc))
    323 		return;
    324 	if (sc->sc_disable != NULL)
    325 		(*sc->sc_disable)(sc);
    326 	sc->sc_flags &= ~ATWF_ENABLED;
    327 }
    328 
    329 /* Returns -1 on failure. */
    330 int
    331 atw_read_srom(struct atw_softc *sc)
    332 {
    333 	struct seeprom_descriptor sd;
    334 	u_int32_t reg;
    335 
    336 	(void)memset(&sd, 0, sizeof(sd));
    337 
    338 	reg = ATW_READ(sc, ATW_TEST0);
    339 
    340 	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
    341 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
    342 		return -1;
    343 	}
    344 
    345 	switch (reg & ATW_TEST0_EPTYP_MASK) {
    346 	case ATW_TEST0_EPTYP_93c66:
    347 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
    348 		sc->sc_sromsz = 512;
    349 		sd.sd_chip = C56_66;
    350 		break;
    351 	case ATW_TEST0_EPTYP_93c46:
    352 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
    353 		sc->sc_sromsz = 128;
    354 		sd.sd_chip = C46;
    355 		break;
    356 	default:
    357 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
    358 		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
    359 		return -1;
    360 	}
    361 
    362 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
    363 
    364 	if (sc->sc_srom == NULL) {
    365 		printf("%s: unable to allocate SROM buffer\n",
    366 		    sc->sc_dev.dv_xname);
    367 		return -1;
    368 	}
    369 
    370 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
    371 
    372 	/* ADM8211 has a single 32-bit register for controlling the
    373 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
    374 	 * "ready" bit. The ADM8211 input/output sense is the reverse
    375 	 * of read_seeprom's.
    376 	 */
    377 	sd.sd_tag = sc->sc_st;
    378 	sd.sd_bsh = sc->sc_sh;
    379 	sd.sd_regsize = 4;
    380 	sd.sd_control_offset = ATW_SPR;
    381 	sd.sd_status_offset = ATW_SPR;
    382 	sd.sd_dataout_offset = ATW_SPR;
    383 	sd.sd_CK = ATW_SPR_SCLK;
    384 	sd.sd_CS = ATW_SPR_SCS;
    385 	sd.sd_DI = ATW_SPR_SDO;
    386 	sd.sd_DO = ATW_SPR_SDI;
    387 	sd.sd_MS = ATW_SPR_SRS;
    388 	sd.sd_RDY = 0;
    389 
    390 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
    391 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
    392 		free(sc->sc_srom, M_DEVBUF);
    393 		return -1;
    394 	}
    395 #ifdef ATW_DEBUG
    396 	{
    397 		int i;
    398 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
    399 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
    400 			if (((i % 8) == 0) && (i != 0)) {
    401 				ATW_DPRINTF(("\n\t"));
    402 			}
    403 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
    404 		}
    405 		ATW_DPRINTF(("\n"));
    406 	}
    407 #endif /* ATW_DEBUG */
    408 	return 0;
    409 }
    410 
    411 #ifdef ATW_DEBUG
    412 static void
    413 atw_print_regs(struct atw_softc *sc, const char *where)
    414 {
    415 #define PRINTREG(sc, reg) \
    416 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
    417 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
    418 
    419 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
    420 
    421 	PRINTREG(sc, ATW_PAR);
    422 	PRINTREG(sc, ATW_FRCTL);
    423 	PRINTREG(sc, ATW_TDR);
    424 	PRINTREG(sc, ATW_WTDP);
    425 	PRINTREG(sc, ATW_RDR);
    426 	PRINTREG(sc, ATW_WRDP);
    427 	PRINTREG(sc, ATW_RDB);
    428 	PRINTREG(sc, ATW_CSR3A);
    429 	PRINTREG(sc, ATW_TDBD);
    430 	PRINTREG(sc, ATW_TDBP);
    431 	PRINTREG(sc, ATW_STSR);
    432 	PRINTREG(sc, ATW_CSR5A);
    433 	PRINTREG(sc, ATW_NAR);
    434 	PRINTREG(sc, ATW_CSR6A);
    435 	PRINTREG(sc, ATW_IER);
    436 	PRINTREG(sc, ATW_CSR7A);
    437 	PRINTREG(sc, ATW_LPC);
    438 	PRINTREG(sc, ATW_TEST1);
    439 	PRINTREG(sc, ATW_SPR);
    440 	PRINTREG(sc, ATW_TEST0);
    441 	PRINTREG(sc, ATW_WCSR);
    442 	PRINTREG(sc, ATW_WPDR);
    443 	PRINTREG(sc, ATW_GPTMR);
    444 	PRINTREG(sc, ATW_GPIO);
    445 	PRINTREG(sc, ATW_BBPCTL);
    446 	PRINTREG(sc, ATW_SYNCTL);
    447 	PRINTREG(sc, ATW_PLCPHD);
    448 	PRINTREG(sc, ATW_MMIWADDR);
    449 	PRINTREG(sc, ATW_MMIRADDR1);
    450 	PRINTREG(sc, ATW_MMIRADDR2);
    451 	PRINTREG(sc, ATW_TXBR);
    452 	PRINTREG(sc, ATW_CSR15A);
    453 	PRINTREG(sc, ATW_ALCSTAT);
    454 	PRINTREG(sc, ATW_TOFS2);
    455 	PRINTREG(sc, ATW_CMDR);
    456 	PRINTREG(sc, ATW_PCIC);
    457 	PRINTREG(sc, ATW_PMCSR);
    458 	PRINTREG(sc, ATW_PAR0);
    459 	PRINTREG(sc, ATW_PAR1);
    460 	PRINTREG(sc, ATW_MAR0);
    461 	PRINTREG(sc, ATW_MAR1);
    462 	PRINTREG(sc, ATW_ATIMDA0);
    463 	PRINTREG(sc, ATW_ABDA1);
    464 	PRINTREG(sc, ATW_BSSID0);
    465 	PRINTREG(sc, ATW_TXLMT);
    466 	PRINTREG(sc, ATW_MIBCNT);
    467 	PRINTREG(sc, ATW_BCNT);
    468 	PRINTREG(sc, ATW_TSFTH);
    469 	PRINTREG(sc, ATW_TSC);
    470 	PRINTREG(sc, ATW_SYNRF);
    471 	PRINTREG(sc, ATW_BPLI);
    472 	PRINTREG(sc, ATW_CAP0);
    473 	PRINTREG(sc, ATW_CAP1);
    474 	PRINTREG(sc, ATW_RMD);
    475 	PRINTREG(sc, ATW_CFPP);
    476 	PRINTREG(sc, ATW_TOFS0);
    477 	PRINTREG(sc, ATW_TOFS1);
    478 	PRINTREG(sc, ATW_IFST);
    479 	PRINTREG(sc, ATW_RSPT);
    480 	PRINTREG(sc, ATW_TSFTL);
    481 	PRINTREG(sc, ATW_WEPCTL);
    482 	PRINTREG(sc, ATW_WESK);
    483 	PRINTREG(sc, ATW_WEPCNT);
    484 	PRINTREG(sc, ATW_MACTEST);
    485 	PRINTREG(sc, ATW_FER);
    486 	PRINTREG(sc, ATW_FEMR);
    487 	PRINTREG(sc, ATW_FPSR);
    488 	PRINTREG(sc, ATW_FFER);
    489 #undef PRINTREG
    490 }
    491 #endif /* ATW_DEBUG */
    492 
    493 /*
    494  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
    495  */
    496 void
    497 atw_attach(struct atw_softc *sc)
    498 {
    499 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
    500 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    501 	};
    502 	struct ieee80211com *ic = &sc->sc_ic;
    503 	struct ifnet *ifp = &ic->ic_if;
    504 	int country_code, error, i, nrate;
    505 	u_int32_t reg;
    506 	static const char *type_strings[] = {"Intersil (not supported)",
    507 	    "RFMD", "Marvel (not supported)"};
    508 
    509 	sc->sc_txth = atw_txthresh_tab_lo;
    510 
    511 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    512 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    513 
    514 #ifdef ATW_DEBUG
    515 	atw_print_regs(sc, "atw_attach");
    516 #endif /* ATW_DEBUG */
    517 
    518 	/*
    519 	 * Allocate the control data structures, and create and load the
    520 	 * DMA map for it.
    521 	 */
    522 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    523 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    524 	    1, &sc->sc_cdnseg, 0)) != 0) {
    525 		printf("%s: unable to allocate control data, error = %d\n",
    526 		    sc->sc_dev.dv_xname, error);
    527 		goto fail_0;
    528 	}
    529 
    530 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
    531 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
    532 	    BUS_DMA_COHERENT)) != 0) {
    533 		printf("%s: unable to map control data, error = %d\n",
    534 		    sc->sc_dev.dv_xname, error);
    535 		goto fail_1;
    536 	}
    537 
    538 	if ((error = bus_dmamap_create(sc->sc_dmat,
    539 	    sizeof(struct atw_control_data), 1,
    540 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    541 		printf("%s: unable to create control data DMA map, "
    542 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    543 		goto fail_2;
    544 	}
    545 
    546 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    547 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
    548 	    0)) != 0) {
    549 		printf("%s: unable to load control data DMA map, error = %d\n",
    550 		    sc->sc_dev.dv_xname, error);
    551 		goto fail_3;
    552 	}
    553 
    554 	/*
    555 	 * Create the transmit buffer DMA maps.
    556 	 */
    557 	sc->sc_ntxsegs = ATW_NTXSEGS;
    558 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    559 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    560 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
    561 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    562 			printf("%s: unable to create tx DMA map %d, "
    563 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    564 			goto fail_4;
    565 		}
    566 	}
    567 
    568 	/*
    569 	 * Create the receive buffer DMA maps.
    570 	 */
    571 	for (i = 0; i < ATW_NRXDESC; i++) {
    572 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    573 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    574 			printf("%s: unable to create rx DMA map %d, "
    575 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    576 			goto fail_5;
    577 		}
    578 	}
    579 	for (i = 0; i < ATW_NRXDESC; i++) {
    580 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    581 	}
    582 
    583 	/* Reset the chip to a known state. */
    584 	atw_reset(sc);
    585 
    586 	if (atw_read_srom(sc) == -1)
    587 		return;
    588 
    589 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    590 	    ATW_SR_RFTYPE_MASK);
    591 
    592 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    593 	    ATW_SR_BBPTYPE_MASK);
    594 
    595 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
    596 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
    597 		return;
    598 	}
    599 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
    600 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
    601 		return;
    602 	}
    603 
    604 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
    605 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
    606 
    607 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
    608 	 * MARVEL. My bug, or theirs?
    609 	 */
    610 
    611 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
    612 
    613 	switch (sc->sc_rftype) {
    614 	case ATW_RFTYPE_INTERSIL:
    615 		reg |= ATW_SYNCTL_CS1;
    616 		break;
    617 	case ATW_RFTYPE_RFMD:
    618 		reg |= ATW_SYNCTL_CS0;
    619 		break;
    620 	case ATW_RFTYPE_MARVEL:
    621 		break;
    622 	}
    623 
    624 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
    625 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
    626 
    627 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
    628 
    629 	switch (sc->sc_bbptype) {
    630 	case ATW_BBPTYPE_INTERSIL:
    631 		reg |= ATW_BBPCTL_TWI;
    632 		break;
    633 	case ATW_BBPTYPE_RFMD:
    634 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
    635 		    ATW_BBPCTL_CCA_ACTLO;
    636 		break;
    637 	case ATW_BBPTYPE_MARVEL:
    638 		break;
    639 	case ATW_C_BBPTYPE_RFMD:
    640 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
    641 		    sc->sc_dev.dv_xname);
    642 		break;
    643 	}
    644 
    645 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
    646 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
    647 
    648 	/*
    649 	 * From this point forward, the attachment cannot fail.  A failure
    650 	 * before this point releases all resources that may have been
    651 	 * allocated.
    652 	 */
    653 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
    654 
    655 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
    656 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
    657 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
    658 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
    659 
    660 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    661 	    ATW_SR_CTRY_MASK);
    662 
    663 #define ADD_CHANNEL(_ic, _chan) do {					\
    664 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
    665 	_ic->ic_channels[_chan].ic_freq =				\
    666 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
    667 } while (0)
    668 
    669 	/* Find available channels */
    670 	switch (country_code) {
    671 	case COUNTRY_MMK2:	/* 1-14 */
    672 		ADD_CHANNEL(ic, 14);
    673 		/*FALLTHROUGH*/
    674 	case COUNTRY_ETSI:	/* 1-13 */
    675 		for (i = 1; i <= 13; i++)
    676 			ADD_CHANNEL(ic, i);
    677 		break;
    678 	case COUNTRY_FCC:	/* 1-11 */
    679 	case COUNTRY_IC:	/* 1-11 */
    680 		for (i = 1; i <= 11; i++)
    681 			ADD_CHANNEL(ic, i);
    682 		break;
    683 	case COUNTRY_MMK:	/* 14 */
    684 		ADD_CHANNEL(ic, 14);
    685 		break;
    686 	case COUNTRY_FRANCE:	/* 10-13 */
    687 		for (i = 10; i <= 13; i++)
    688 			ADD_CHANNEL(ic, i);
    689 		break;
    690 	default:	/* assume channels 10-11 */
    691 	case COUNTRY_SPAIN:	/* 10-11 */
    692 		for (i = 10; i <= 11; i++)
    693 			ADD_CHANNEL(ic, i);
    694 		break;
    695 	}
    696 
    697 	/* Read the MAC address. */
    698 	reg = ATW_READ(sc, ATW_PAR0);
    699 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
    700 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
    701 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
    702 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
    703 	reg = ATW_READ(sc, ATW_PAR1);
    704 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
    705 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
    706 
    707 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
    708 		printf(" could not get mac address, attach failed\n");
    709 		return;
    710 	}
    711 
    712 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
    713 
    714 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    715 	ifp->if_softc = sc;
    716 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
    717 	    IFF_NOTRAILERS;
    718 	ifp->if_ioctl = atw_ioctl;
    719 	ifp->if_start = atw_start;
    720 	ifp->if_watchdog = atw_watchdog;
    721 	ifp->if_init = atw_init;
    722 	ifp->if_stop = atw_stop;
    723 	IFQ_SET_READY(&ifp->if_snd);
    724 
    725 	ic->ic_phytype = IEEE80211_T_DS;
    726 	ic->ic_opmode = IEEE80211_M_STA;
    727 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
    728 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
    729 
    730 	nrate = 0;
    731 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
    732 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
    733 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
    734 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
    735 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
    736 
    737 	/*
    738 	 * Call MI attach routines.
    739 	 */
    740 
    741 	if_attach(ifp);
    742 	ieee80211_ifattach(ifp);
    743 
    744 	sc->sc_newstate = ic->ic_newstate;
    745 	ic->ic_newstate = atw_newstate;
    746 
    747 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    748 	ic->ic_recv_mgmt = atw_recv_mgmt;
    749 
    750 	sc->sc_node_free = ic->ic_node_free;
    751 	ic->ic_node_free = atw_node_free;
    752 
    753 	sc->sc_node_alloc = ic->ic_node_alloc;
    754 	ic->ic_node_alloc = atw_node_alloc;
    755 
    756 	/* possibly we should fill in our own sc_send_prresp, since
    757 	 * the ADM8211 is probably sending probe responses in ad hoc
    758 	 * mode.
    759 	 */
    760 
    761 	/* complete initialization */
    762 	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
    763 	callout_init(&sc->sc_scan_ch);
    764 
    765 #if NBPFILTER > 0
    766 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    767 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
    768 #endif
    769 
    770 	/*
    771 	 * Make sure the interface is shutdown during reboot.
    772 	 */
    773 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
    774 	if (sc->sc_sdhook == NULL)
    775 		printf("%s: WARNING: unable to establish shutdown hook\n",
    776 		    sc->sc_dev.dv_xname);
    777 
    778 	/*
    779 	 * Add a suspend hook to make sure we come back up after a
    780 	 * resume.
    781 	 */
    782 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
    783 	if (sc->sc_powerhook == NULL)
    784 		printf("%s: WARNING: unable to establish power hook\n",
    785 		    sc->sc_dev.dv_xname);
    786 
    787 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
    788 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
    789 	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
    790 
    791 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
    792 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
    793 	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
    794 
    795 	return;
    796 
    797 	/*
    798 	 * Free any resources we've allocated during the failed attach
    799 	 * attempt.  Do this in reverse order and fall through.
    800 	 */
    801  fail_5:
    802 	for (i = 0; i < ATW_NRXDESC; i++) {
    803 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
    804 			continue;
    805 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
    806 	}
    807  fail_4:
    808 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    809 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
    810 			continue;
    811 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
    812 	}
    813 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    814  fail_3:
    815 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    816  fail_2:
    817 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    818 	    sizeof(struct atw_control_data));
    819  fail_1:
    820 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
    821  fail_0:
    822 	return;
    823 }
    824 
    825 static struct ieee80211_node *
    826 atw_node_alloc(struct ieee80211com *ic)
    827 {
    828 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    829 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
    830 
    831 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
    832 	return ni;
    833 }
    834 
    835 static void
    836 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
    837 {
    838 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    839 
    840 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
    841 	    ether_sprintf(ni->ni_bssid)));
    842 	(*sc->sc_node_free)(ic, ni);
    843 }
    844 
    845 /*
    846  * atw_reset:
    847  *
    848  *	Perform a soft reset on the ADM8211.
    849  */
    850 void
    851 atw_reset(struct atw_softc *sc)
    852 {
    853 	int i;
    854 
    855 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
    856 
    857 	for (i = 0; i < 10000; i++) {
    858 		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
    859 			break;
    860 		DELAY(1);
    861 	}
    862 
    863 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
    864 
    865 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
    866 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
    867 
    868 	/* Turn off maximum power saving. */
    869 	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
    870 
    871 	/* Recall EEPROM. */
    872 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
    873 
    874 	DELAY(10 * 1000);
    875 
    876 	/* A reset seems to affect the SRAM contents, so put them into
    877 	 * a known state.
    878 	 */
    879 	atw_clear_sram(sc);
    880 
    881 	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
    882 }
    883 
    884 static void
    885 atw_clear_sram(struct atw_softc *sc)
    886 {
    887 #if 0
    888 	for (addr = 0; addr < 448; addr++) {
    889 		ATW_WRITE(sc, ATW_WEPCTL,
    890 		    ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0	| addr);
    891 		DELAY(1000);
    892 		ATW_WRITE(sc, ATW_WESK, 0);
    893 		DELAY(1000); /* paranoia */
    894 	}
    895 	return;
    896 #endif
    897 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
    898 	/* XXX not for revision 0x20. */
    899 	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
    900 }
    901 
    902 /* TBD atw_init
    903  *
    904  * set MAC based on ic->ic_bss->myaddr
    905  * write WEP keys
    906  * set TX rate
    907  */
    908 
    909 /*
    910  * atw_init:		[ ifnet interface function ]
    911  *
    912  *	Initialize the interface.  Must be called at splnet().
    913  */
    914 int
    915 atw_init(struct ifnet *ifp)
    916 {
    917 	struct atw_softc *sc = ifp->if_softc;
    918 	struct ieee80211com *ic = &sc->sc_ic;
    919 	struct atw_txsoft *txs;
    920 	struct atw_rxsoft *rxs;
    921 	u_int32_t reg;
    922 	int i, error = 0;
    923 
    924 	if ((error = atw_enable(sc)) != 0)
    925 		goto out;
    926 
    927 	/*
    928 	 * Cancel any pending I/O. This also resets.
    929 	 */
    930 	atw_stop(ifp, 0);
    931 
    932 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
    933 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
    934 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
    935 	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
    936 
    937 	/* Turn off APM??? (A binary-only driver does this.)
    938 	 *
    939 	 * Set Rx store-and-forward mode.
    940 	 */
    941 	reg = ATW_READ(sc, ATW_CMDR);
    942 	reg &= ~ATW_CMDR_APM;
    943 	reg &= ~ATW_CMDR_DRT_MASK;
    944 	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
    945 
    946 	ATW_WRITE(sc, ATW_CMDR, reg);
    947 
    948 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
    949 	 *
    950 	 * XXX a binary-only driver sets a different service field than
    951 	 * 0. why?
    952 	 */
    953 	reg = ATW_READ(sc, ATW_PLCPHD);
    954 	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
    955 	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
    956 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
    957 	ATW_WRITE(sc, ATW_PLCPHD, reg);
    958 
    959 	/* XXX this magic can probably be figured out from the RFMD docs */
    960 	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
    961 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
    962 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
    963 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
    964 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
    965 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
    966 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
    967 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
    968 	ATW_WRITE(sc, ATW_TOFS2, reg);
    969 
    970 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
    971 	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
    972 
    973 	/* XXX this resets an Intersil RF front-end? */
    974 	/* TBD condition on Intersil RFType? */
    975 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
    976 	DELAY(10 * 1000);
    977 	ATW_WRITE(sc, ATW_SYNRF, 0);
    978 	DELAY(5 * 1000);
    979 
    980 	/* 16 TU max duration for contention-free period */
    981 	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
    982 	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
    983 
    984 	/* XXX I guess that the Cardbus clock is 22MHz?
    985 	 * I am assuming that the role of ATW_TOFS0_USCNT is
    986 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
    987 	 * very clear on this point. It says in the datasheet that it is
    988 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
    989 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
    990 	 * these values. These values are also the power-on default.
    991 	 */
    992 	ATW_WRITE(sc, ATW_TOFS0,
    993 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
    994 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
    995 
    996 	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
    997 	 * driver. Go figure.
    998 	 */
    999 	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
   1000 	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
   1001 	             ATW_IFST_SIFS_MASK) |
   1002 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
   1003 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
   1004 
   1005 	ATW_WRITE(sc, ATW_IFST, reg);
   1006 
   1007 	/* XXX More magic. Might relate to ACK timing. */
   1008 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
   1009 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
   1010 
   1011 	/* Set up the MMI read/write addresses for the BBP.
   1012 	 *
   1013 	 * TBD find out the Marvel settings.
   1014 	 */
   1015 	switch (sc->sc_bbptype) {
   1016 	case ATW_BBPTYPE_INTERSIL:
   1017 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
   1018 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
   1019 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
   1020 		break;
   1021 	case ATW_BBPTYPE_MARVEL:
   1022 		break;
   1023 	case ATW_BBPTYPE_RFMD:
   1024 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
   1025 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
   1026 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
   1027 	default:
   1028 		break;
   1029 	}
   1030 
   1031 	sc->sc_wepctl = 0;
   1032 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
   1033 
   1034 	if ((error = atw_rf3000_init(sc)) != 0)
   1035 		goto out;
   1036 
   1037 	/*
   1038 	 * Initialize the PCI Access Register.
   1039 	 */
   1040 	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
   1041 
   1042 	/*
   1043 	 * If we're allowed to do so, use Memory Read Line
   1044 	 * and Memory Read Multiple.
   1045 	 *
   1046 	 * XXX Should we use Memory Write and Invalidate?
   1047 	 */
   1048 	if (sc->sc_flags & ATWF_MRL)
   1049 		sc->sc_busmode |= ATW_PAR_MRLE;
   1050 	if (sc->sc_flags & ATWF_MRM)
   1051 		sc->sc_busmode |= ATW_PAR_MRME;
   1052 	if (sc->sc_flags & ATWF_MWI)
   1053 		sc->sc_busmode |= ATW_PAR_MWIE;
   1054 	if (sc->sc_maxburst == 0)
   1055 		sc->sc_maxburst = 8;	/* ADM8211 default */
   1056 
   1057 	switch (sc->sc_cacheline) {
   1058 	default:
   1059 		/* Use burst length. */
   1060 		break;
   1061 	case 8:
   1062 		sc->sc_busmode |= ATW_PAR_CAL_8DW;
   1063 		break;
   1064 	case 16:
   1065 		sc->sc_busmode |= ATW_PAR_CAL_16DW;
   1066 		break;
   1067 	case 32:
   1068 		sc->sc_busmode |= ATW_PAR_CAL_32DW;
   1069 		break;
   1070 	}
   1071 	switch (sc->sc_maxburst) {
   1072 	case 1:
   1073 		sc->sc_busmode |= ATW_PAR_PBL_1DW;
   1074 		break;
   1075 	case 2:
   1076 		sc->sc_busmode |= ATW_PAR_PBL_2DW;
   1077 		break;
   1078 	case 4:
   1079 		sc->sc_busmode |= ATW_PAR_PBL_4DW;
   1080 		break;
   1081 	case 8:
   1082 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1083 		break;
   1084 	case 16:
   1085 		sc->sc_busmode |= ATW_PAR_PBL_16DW;
   1086 		break;
   1087 	case 32:
   1088 		sc->sc_busmode |= ATW_PAR_PBL_32DW;
   1089 		break;
   1090 	default:
   1091 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1092 		break;
   1093 	}
   1094 
   1095 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
   1096 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
   1097 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
   1098 
   1099 	/*
   1100 	 * Initialize the OPMODE register.  We don't write it until
   1101 	 * we're ready to begin the transmit and receive processes.
   1102 	 */
   1103 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
   1104 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
   1105 
   1106 	/*
   1107 	 * Initialize the transmit descriptor ring.
   1108 	 */
   1109 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1110 	for (i = 0; i < ATW_NTXDESC; i++) {
   1111 		/* no transmit chaining */
   1112 		sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
   1113 		sc->sc_txdescs[i].at_buf2 =
   1114 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
   1115 	}
   1116 	/* use ring mode */
   1117 	sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
   1118 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
   1119 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1120 	sc->sc_txfree = ATW_NTXDESC;
   1121 	sc->sc_txnext = 0;
   1122 
   1123 	/*
   1124 	 * Initialize the transmit job descriptors.
   1125 	 */
   1126 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1127 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1128 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   1129 		txs = &sc->sc_txsoft[i];
   1130 		txs->txs_mbuf = NULL;
   1131 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1132 	}
   1133 
   1134 	/*
   1135 	 * Initialize the receive descriptor and receive job
   1136 	 * descriptor rings.
   1137 	 */
   1138 	for (i = 0; i < ATW_NRXDESC; i++) {
   1139 		rxs = &sc->sc_rxsoft[i];
   1140 		if (rxs->rxs_mbuf == NULL) {
   1141 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
   1142 				printf("%s: unable to allocate or map rx "
   1143 				    "buffer %d, error = %d\n",
   1144 				    sc->sc_dev.dv_xname, i, error);
   1145 				/*
   1146 				 * XXX Should attempt to run with fewer receive
   1147 				 * XXX buffers instead of just failing.
   1148 				 */
   1149 				atw_rxdrain(sc);
   1150 				goto out;
   1151 			}
   1152 		} else
   1153 			ATW_INIT_RXDESC(sc, i);
   1154 	}
   1155 	sc->sc_rxptr = 0;
   1156 
   1157 	/* disable all wake-up events */
   1158 	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
   1159 	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
   1160 			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
   1161 			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
   1162 
   1163 	/* ack all wake-up events */
   1164 	ATW_SET(sc, ATW_WCSR, 0);
   1165 
   1166 	/*
   1167 	 * Initialize the interrupt mask and enable interrupts.
   1168 	 */
   1169 	/* normal interrupts */
   1170 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
   1171 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
   1172 
   1173 	/* abnormal interrupts */
   1174 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
   1175 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
   1176 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1177 
   1178 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
   1179 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1180 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
   1181 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
   1182 	    ATW_INTR_TRT;
   1183 
   1184 	sc->sc_linkint_mask &= sc->sc_inten;
   1185 	sc->sc_rxint_mask &= sc->sc_inten;
   1186 	sc->sc_txint_mask &= sc->sc_inten;
   1187 
   1188 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
   1189 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1190 	if (sc->sc_intr_ack != NULL)
   1191 		(*sc->sc_intr_ack)(sc);
   1192 
   1193 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
   1194 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
   1195 
   1196 	/*
   1197 	 * Give the transmit and receive rings to the ADM8211.
   1198 	 */
   1199 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
   1200 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
   1201 
   1202 	/* common 802.11 configuration */
   1203 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
   1204 	switch (ic->ic_opmode) {
   1205 	case IEEE80211_M_STA:
   1206 		break;
   1207 	case IEEE80211_M_AHDEMO: /* XXX */
   1208 	case IEEE80211_M_IBSS:
   1209 		ic->ic_flags |= IEEE80211_F_IBSSON;
   1210 		/*FALLTHROUGH*/
   1211 	case IEEE80211_M_HOSTAP: /* XXX */
   1212 		break;
   1213 	case IEEE80211_M_MONITOR: /* XXX */
   1214 		break;
   1215 	}
   1216 
   1217 	atw_start_beacon(sc, 0);
   1218 
   1219 	switch (ic->ic_opmode) {
   1220 	case IEEE80211_M_AHDEMO:
   1221 	case IEEE80211_M_HOSTAP:
   1222 		ic->ic_bss->ni_intval = ic->ic_lintval;
   1223 		ic->ic_bss->ni_rssi = 0;
   1224 		ic->ic_bss->ni_rstamp = 0;
   1225 		break;
   1226 	default:					/* XXX */
   1227 		break;
   1228 	}
   1229 
   1230 	atw_write_ssid(sc);
   1231 	atw_write_sup_rates(sc);
   1232 	if (ic->ic_caps & IEEE80211_C_WEP)
   1233 		atw_write_wep(sc);
   1234 
   1235 	/*
   1236 	 * Set the receive filter.  This will start the transmit and
   1237 	 * receive processes.
   1238 	 */
   1239 	atw_filter_setup(sc);
   1240 
   1241 	/*
   1242 	 * Start the receive process.
   1243 	 */
   1244 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1245 
   1246 	/*
   1247 	 * Note that the interface is now running.
   1248 	 */
   1249 	ifp->if_flags |= IFF_RUNNING;
   1250 	ifp->if_flags &= ~IFF_OACTIVE;
   1251 	ic->ic_state = IEEE80211_S_INIT;
   1252 
   1253 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1254 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1255 	else
   1256 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1257  out:
   1258 	if (error) {
   1259 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1260 		ifp->if_timer = 0;
   1261 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1262 	}
   1263 #ifdef ATW_DEBUG
   1264 	atw_print_regs(sc, "end of init");
   1265 #endif /* ATW_DEBUG */
   1266 
   1267 	return (error);
   1268 }
   1269 
   1270 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
   1271  *           0: MAC control of RF3000/Si4126.
   1272  *
   1273  * Applies power, or selects RF front-end? Sets reset condition.
   1274  *
   1275  * TBD support non-RFMD BBP, non-SiLabs synth.
   1276  */
   1277 static void
   1278 atw_rfio_enable(struct atw_softc *sc, int enable)
   1279 {
   1280 	if (enable) {
   1281 		ATW_WRITE(sc, ATW_SYNRF,
   1282 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
   1283 		DELAY(atw_rfio_enable_delay);
   1284 	} else {
   1285 		ATW_WRITE(sc, ATW_SYNRF, 0);
   1286 		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
   1287 	}
   1288 }
   1289 
   1290 static int
   1291 atw_tune(struct atw_softc *sc)
   1292 {
   1293 	int rc;
   1294 	u_int32_t reg;
   1295 	int chan;
   1296 	struct ieee80211com *ic = &sc->sc_ic;
   1297 
   1298 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
   1299 	if (chan == IEEE80211_CHAN_ANY)
   1300 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
   1301 
   1302 	if (chan == sc->sc_cur_chan)
   1303 		return 0;
   1304 
   1305 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
   1306 	    sc->sc_cur_chan, chan));
   1307 
   1308 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1309 
   1310 	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
   1311 	    (rc = atw_rf3000_tune(sc, chan)) != 0)
   1312 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
   1313 		    chan);
   1314 
   1315 	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
   1316 	ATW_WRITE(sc, ATW_CAP0,
   1317 	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
   1318 
   1319 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1320 
   1321 	if (rc == 0)
   1322 		sc->sc_cur_chan = chan;
   1323 
   1324 	return rc;
   1325 }
   1326 
   1327 #ifdef ATW_DEBUG
   1328 static void
   1329 atw_si4126_print(struct atw_softc *sc)
   1330 {
   1331 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1332 	u_int addr, val;
   1333 
   1334 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1335 		return;
   1336 
   1337 	for (addr = 0; addr <= 8; addr++) {
   1338 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
   1339 		if (atw_si4126_read(sc, addr, &val) == 0) {
   1340 			printf("<unknown> (quitting print-out)\n");
   1341 			break;
   1342 		}
   1343 		printf("%05x\n", val);
   1344 	}
   1345 }
   1346 #endif /* ATW_DEBUG */
   1347 
   1348 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
   1349  *
   1350  * The RF/IF synthesizer produces two reference frequencies for
   1351  * the RF2948B transceiver.  The first frequency the RF2948B requires
   1352  * is two times the so-called "intermediate frequency" (IF). Since
   1353  * a SAW filter on the radio fixes the IF at 374MHz, I program the
   1354  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
   1355  * frequency required by the transceiver is the radio frequency
   1356  * (RF). This is a superheterodyne transceiver; for f(chan) the
   1357  * center frequency of the channel we are tuning, RF = f(chan) -
   1358  * IF.
   1359  *
   1360  * XXX I am told by SiLabs that the Si4126 will accept a broader range
   1361  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
   1362  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
   1363  * works, but I have still programmed for XINDIV2 = 1 to be safe.
   1364  */
   1365 static int
   1366 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
   1367 {
   1368 	int rc = 0;
   1369 	u_int mhz;
   1370 	u_int R;
   1371 	u_int32_t reg;
   1372 	u_int16_t gain;
   1373 
   1374 #ifdef ATW_DEBUG
   1375 	atw_si4126_print(sc);
   1376 #endif /* ATW_DEBUG */
   1377 
   1378 	if (chan == 14)
   1379 		mhz = 2484;
   1380 	else
   1381 		mhz = 2412 + 5 * (chan - 1);
   1382 
   1383 	/* Tune IF to 748MHz to suit the IF LO input of the
   1384 	 * RF2494B, which is 2 x IF. No need to set an IF divider
   1385          * because an IF in 526MHz - 952MHz is allowed.
   1386 	 *
   1387 	 * XIN is 44.000MHz, so divide it by two to get allowable
   1388 	 * range of 2-25MHz. SiLabs tells me that this is not
   1389 	 * strictly necessary.
   1390 	 */
   1391 
   1392 	R = 44;
   1393 
   1394 	atw_rfio_enable(sc, 1);
   1395 
   1396 	/* Power-up RF, IF synthesizers. */
   1397 	if ((rc = atw_si4126_write(sc, SI4126_POWER,
   1398 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
   1399 		goto out;
   1400 
   1401 	/* If RF2 N > 2047, then set KP2 to 1. */
   1402 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
   1403 
   1404 	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
   1405 		goto out;
   1406 
   1407 	/* set LPWR, too? */
   1408 	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
   1409 	    SI4126_MAIN_XINDIV2)) != 0)
   1410 		goto out;
   1411 
   1412 	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
   1413 	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
   1414 	 */
   1415 	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
   1416 		goto out;
   1417 
   1418 	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
   1419 		goto out;
   1420 
   1421 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
   1422 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
   1423 	 * which has no RF1!
   1424 	 */
   1425 	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
   1426 		goto out;
   1427 
   1428 	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
   1429 		goto out;
   1430 
   1431 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
   1432 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
   1433 	 * Now let's multiply it to mhz. So mhz - IF = N.
   1434 	 */
   1435 	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
   1436 		goto out;
   1437 
   1438 	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
   1439 		goto out;
   1440 
   1441 	/* wait 100us from power-up for RF, IF to settle */
   1442 	DELAY(100);
   1443 
   1444 	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
   1445 		/* XXX there is a binary driver which sends
   1446 		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
   1447 		 * that this enables the Si4126 by raising its PWDN#, but I
   1448 		 * think that it actually sets the Prism RF front-end
   1449 		 * to a special mode for channel 14.
   1450 		 */
   1451 		reg = ATW_READ(sc, ATW_GPIO);
   1452 		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
   1453 		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
   1454 		ATW_WRITE(sc, ATW_GPIO, reg);
   1455 	}
   1456 
   1457 #ifdef ATW_DEBUG
   1458 	atw_si4126_print(sc);
   1459 #endif /* ATW_DEBUG */
   1460 
   1461 out:
   1462 	atw_rfio_enable(sc, 0);
   1463 
   1464 	return rc;
   1465 }
   1466 
   1467 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
   1468  * diversity.
   1469  *
   1470  * Call this w/ Tx/Rx suspended.
   1471  */
   1472 static int
   1473 atw_rf3000_init(struct atw_softc *sc)
   1474 {
   1475 	int rc = 0;
   1476 
   1477 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1478 
   1479 	atw_rfio_enable(sc, 1);
   1480 
   1481 	/* enable diversity */
   1482 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
   1483 
   1484 	if (rc != 0)
   1485 		goto out;
   1486 
   1487 	/* sensible setting from a binary-only driver */
   1488 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1489 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
   1490 
   1491 	if (rc != 0)
   1492 		goto out;
   1493 
   1494 	/* magic from a binary-only driver */
   1495 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
   1496 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
   1497 
   1498 	if (rc != 0)
   1499 		goto out;
   1500 
   1501 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
   1502 
   1503 	if (rc != 0)
   1504 		goto out;
   1505 
   1506 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
   1507 
   1508 	if (rc != 0)
   1509 		goto out;
   1510 
   1511 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
   1512 
   1513 	if (rc != 0)
   1514 		goto out;
   1515 
   1516 	/* CCA is acquisition sensitive */
   1517 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
   1518 	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
   1519 
   1520 	if (rc != 0)
   1521 		goto out;
   1522 
   1523 out:
   1524 	atw_rfio_enable(sc, 0);
   1525 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1526 	return rc;
   1527 }
   1528 
   1529 #ifdef ATW_DEBUG
   1530 static void
   1531 atw_rf3000_print(struct atw_softc *sc)
   1532 {
   1533 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1534 	u_int addr, val;
   1535 
   1536 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1537 		return;
   1538 
   1539 	for (addr = 0x01; addr <= 0x15; addr++) {
   1540 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
   1541 		if (atw_rf3000_read(sc, addr, &val) != 0) {
   1542 			printf("<unknown> (quitting print-out)\n");
   1543 			break;
   1544 		}
   1545 		printf("%08x\n", val);
   1546 	}
   1547 }
   1548 #endif /* ATW_DEBUG */
   1549 
   1550 /* Set the power settings on the BBP for channel `chan'. */
   1551 static int
   1552 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
   1553 {
   1554 	int rc = 0;
   1555 	u_int32_t reg;
   1556 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
   1557 
   1558 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
   1559 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
   1560 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
   1561 
   1562 	/* odd channels: LSB, even channels: MSB */
   1563 	if (chan % 2 == 1) {
   1564 		txpower &= 0xFF;
   1565 		lpf_cutoff &= 0xFF;
   1566 		lna_gs_thresh &= 0xFF;
   1567 	} else {
   1568 		txpower >>= 8;
   1569 		lpf_cutoff >>= 8;
   1570 		lna_gs_thresh >>= 8;
   1571 	}
   1572 
   1573 #ifdef ATW_DEBUG
   1574 	atw_rf3000_print(sc);
   1575 #endif /* ATW_DEBUG */
   1576 
   1577 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
   1578 	    "lna_gs_thresh %02x\n",
   1579 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
   1580 
   1581 	atw_rfio_enable(sc, 1);
   1582 
   1583 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1584 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
   1585 		goto out;
   1586 
   1587 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
   1588 		goto out;
   1589 
   1590 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
   1591 		goto out;
   1592 
   1593 	/* from a binary-only driver. */
   1594 	reg = ATW_READ(sc, ATW_PLCPHD);
   1595 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
   1596 	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
   1597 	    ATW_PLCPHD_SERVICE_MASK);
   1598 	ATW_WRITE(sc, ATW_PLCPHD, reg);
   1599 
   1600 #ifdef ATW_DEBUG
   1601 	atw_rf3000_print(sc);
   1602 #endif /* ATW_DEBUG */
   1603 
   1604 out:
   1605 	atw_rfio_enable(sc, 0);
   1606 
   1607 	return rc;
   1608 }
   1609 
   1610 /* Write a register on the RF3000 baseband processor using the
   1611  * registers provided by the ADM8211 for this purpose.
   1612  *
   1613  * Return 0 on success.
   1614  */
   1615 static int
   1616 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
   1617 {
   1618 	u_int32_t reg;
   1619 	int i;
   1620 
   1621 	for (i = 1000; --i >= 0; ) {
   1622 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1623 			break;
   1624 		DELAY(100);
   1625 	}
   1626 
   1627 	if (i < 0) {
   1628 		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
   1629 		return ETIMEDOUT;
   1630 	}
   1631 
   1632 	reg = sc->sc_bbpctl_wr |
   1633 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
   1634 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1635 
   1636 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1637 
   1638 	for (i = 1000; --i >= 0; ) {
   1639 		DELAY(100);
   1640 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
   1641 			break;
   1642 	}
   1643 
   1644 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
   1645 
   1646 	if (i < 0) {
   1647 		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
   1648 		return ETIMEDOUT;
   1649 	}
   1650 	return 0;
   1651 }
   1652 
   1653 /* Read a register on the RF3000 baseband processor using the registers
   1654  * the ADM8211 provides for this purpose.
   1655  *
   1656  * The 7-bit register address is addr.  Record the 8-bit data in the register
   1657  * in *val.
   1658  *
   1659  * Return 0 on success.
   1660  *
   1661  * XXX This does not seem to work. The ADM8211 must require more or
   1662  * different magic to read the chip than to write it. Possibly some
   1663  * of the magic I have derived from a binary-only driver concerns
   1664  * the "chip address" (see the RF3000 manual).
   1665  */
   1666 #ifdef ATW_DEBUG
   1667 static int
   1668 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
   1669 {
   1670 	u_int32_t reg;
   1671 	int i;
   1672 
   1673 	for (i = 1000; --i >= 0; ) {
   1674 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1675 			break;
   1676 		DELAY(100);
   1677 	}
   1678 
   1679 	if (i < 0) {
   1680 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
   1681 		    sc->sc_dev.dv_xname);
   1682 		return ETIMEDOUT;
   1683 	}
   1684 
   1685 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1686 
   1687 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1688 
   1689 	for (i = 1000; --i >= 0; ) {
   1690 		DELAY(100);
   1691 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
   1692 			break;
   1693 	}
   1694 
   1695 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
   1696 
   1697 	if (i < 0) {
   1698 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
   1699 		    sc->sc_dev.dv_xname, reg);
   1700 		return ETIMEDOUT;
   1701 	}
   1702 	if (val != NULL)
   1703 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
   1704 	return 0;
   1705 }
   1706 #endif /* ATW_DEBUG */
   1707 
   1708 /* Write a register on the Si4126 RF/IF synthesizer using the registers
   1709  * provided by the ADM8211 for that purpose.
   1710  *
   1711  * val is 18 bits of data, and val is the 4-bit address of the register.
   1712  *
   1713  * Return 0 on success.
   1714  */
   1715 static int
   1716 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
   1717 {
   1718 	u_int32_t bits, reg;
   1719 	int i;
   1720 
   1721 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1722 	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
   1723 
   1724 	for (i = 1000; --i >= 0; ) {
   1725 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1726 			break;
   1727 		DELAY(100);
   1728 	}
   1729 
   1730 	if (i < 0) {
   1731 		printf("%s: start atw_si4126_write, SYNCTL busy\n",
   1732 		    sc->sc_dev.dv_xname);
   1733 		return ETIMEDOUT;
   1734 	}
   1735 
   1736 	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
   1737 	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
   1738 
   1739 	reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
   1740 
   1741 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1742 
   1743 	for (i = 1000; --i >= 0; ) {
   1744 		DELAY(100);
   1745 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
   1746 			break;
   1747 	}
   1748 
   1749 	/* restore to acceptable starting condition */
   1750 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
   1751 
   1752 	if (i < 0) {
   1753 		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
   1754 		    sc->sc_dev.dv_xname, reg);
   1755 		return ETIMEDOUT;
   1756 	}
   1757 	return 0;
   1758 }
   1759 
   1760 /* Read 18-bit data from the 4-bit address addr in Si4126
   1761  * RF synthesizer and write the data to *val. Return 0 on success.
   1762  *
   1763  * XXX This does not seem to work. The ADM8211 must require more or
   1764  * different magic to read the chip than to write it.
   1765  */
   1766 #ifdef ATW_DEBUG
   1767 static int
   1768 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
   1769 {
   1770 	u_int32_t reg;
   1771 	int i;
   1772 
   1773 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1774 
   1775 	for (i = 1000; --i >= 0; ) {
   1776 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1777 			break;
   1778 		DELAY(100);
   1779 	}
   1780 
   1781 	if (i < 0) {
   1782 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
   1783 		    sc->sc_dev.dv_xname);
   1784 		return ETIMEDOUT;
   1785 	}
   1786 
   1787 	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
   1788 
   1789 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1790 
   1791 	for (i = 1000; --i >= 0; ) {
   1792 		DELAY(100);
   1793 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
   1794 			break;
   1795 	}
   1796 
   1797 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
   1798 
   1799 	if (i < 0) {
   1800 		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
   1801 		    sc->sc_dev.dv_xname, reg);
   1802 		return ETIMEDOUT;
   1803 	}
   1804 	if (val != NULL)
   1805 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
   1806 		                       ATW_SYNCTL_DATA_MASK);
   1807 	return 0;
   1808 }
   1809 #endif /* ATW_DEBUG */
   1810 
   1811 /* XXX is the endianness correct? test. */
   1812 #define	atw_calchash(addr) \
   1813 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
   1814 
   1815 /*
   1816  * atw_filter_setup:
   1817  *
   1818  *	Set the ADM8211's receive filter.
   1819  */
   1820 static void
   1821 atw_filter_setup(struct atw_softc *sc)
   1822 {
   1823 	struct ieee80211com *ic = &sc->sc_ic;
   1824 	struct ethercom *ec = &ic->ic_ec;
   1825 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1826 	int hash;
   1827 	u_int32_t hashes[2] = { 0, 0 };
   1828 	struct ether_multi *enm;
   1829 	struct ether_multistep step;
   1830 
   1831 	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
   1832 	    sc->sc_dev.dv_xname, sc->sc_flags));
   1833 
   1834 	/*
   1835 	 * If we're running, idle the receive engine.  If we're NOT running,
   1836 	 * we're being called from atw_init(), and our writing ATW_NAR will
   1837 	 * start the transmit and receive processes in motion.
   1838 	 */
   1839 	if (ifp->if_flags & IFF_RUNNING)
   1840 		atw_idle(sc, ATW_NAR_SR);
   1841 
   1842 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
   1843 
   1844 	ifp->if_flags &= ~IFF_ALLMULTI;
   1845 
   1846 	if (ifp->if_flags & IFF_PROMISC) {
   1847 		sc->sc_opmode |= ATW_NAR_PR;
   1848 allmulti:
   1849 		ifp->if_flags |= IFF_ALLMULTI;
   1850 		goto setit;
   1851 	}
   1852 
   1853 	/*
   1854 	 * Program the 64-bit multicast hash filter.
   1855 	 */
   1856 	ETHER_FIRST_MULTI(step, ec, enm);
   1857 	while (enm != NULL) {
   1858 		/* XXX */
   1859 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1860 		    ETHER_ADDR_LEN) != 0)
   1861 			goto allmulti;
   1862 
   1863 		hash = atw_calchash(enm->enm_addrlo);
   1864 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1865 		ETHER_NEXT_MULTI(step, enm);
   1866 	}
   1867 
   1868 	if (ifp->if_flags & IFF_BROADCAST) {
   1869 		hash = atw_calchash(etherbroadcastaddr);
   1870 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1871 	}
   1872 
   1873 	/* all bits set => hash is useless */
   1874 	if (~(hashes[0] & hashes[1]) == 0)
   1875 		goto allmulti;
   1876 
   1877  setit:
   1878 	if (ifp->if_flags & IFF_ALLMULTI)
   1879 		sc->sc_opmode |= ATW_NAR_MM;
   1880 
   1881 	/* XXX in scan mode, do not filter packets. maybe this is
   1882 	 * unnecessary.
   1883 	 */
   1884 	if (ic->ic_state == IEEE80211_S_SCAN)
   1885 		sc->sc_opmode |= ATW_NAR_PR;
   1886 
   1887 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
   1888 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
   1889 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1890 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
   1891 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
   1892 
   1893 	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
   1894 }
   1895 
   1896 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
   1897  * a beacon's BSSID and SSID against the preferred BSSID and SSID
   1898  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
   1899  * no beacon with the preferred BSSID and SSID in the number of
   1900  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
   1901  */
   1902 static void
   1903 atw_write_bssid(struct atw_softc *sc)
   1904 {
   1905 	struct ieee80211com *ic = &sc->sc_ic;
   1906 	u_int8_t *bssid;
   1907 
   1908 	bssid = ic->ic_bss->ni_bssid;
   1909 
   1910 	ATW_WRITE(sc, ATW_ABDA1,
   1911 	    (ATW_READ(sc, ATW_ABDA1) &
   1912 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
   1913 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
   1914 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
   1915 
   1916 	ATW_WRITE(sc, ATW_BSSID0,
   1917 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
   1918 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
   1919 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
   1920 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
   1921 
   1922 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
   1923 	    ether_sprintf(sc->sc_bssid)));
   1924 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
   1925 
   1926 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
   1927 }
   1928 
   1929 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
   1930  * 16-bit word.
   1931  */
   1932 static void
   1933 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
   1934 {
   1935 	u_int i;
   1936 	u_int8_t *ptr;
   1937 
   1938 	memcpy(&sc->sc_sram[ofs], buf, buflen);
   1939 
   1940 	if (ofs % 2 != 0) {
   1941 		ofs--;
   1942 		buflen++;
   1943 	}
   1944 
   1945 	if (buflen % 2 != 0)
   1946 		buflen++;
   1947 
   1948 	assert(buflen + ofs <= ATW_SRAM_SIZE);
   1949 
   1950 	ptr = &sc->sc_sram[ofs];
   1951 
   1952 	for (i = 0; i < buflen; i += 2) {
   1953 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
   1954 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
   1955 		DELAY(atw_writewep_delay);
   1956 
   1957 		ATW_WRITE(sc, ATW_WESK,
   1958 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
   1959 		DELAY(atw_writewep_delay);
   1960 	}
   1961 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
   1962 
   1963 	if (sc->sc_if.if_flags & IFF_DEBUG) {
   1964 		int n_octets = 0;
   1965 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
   1966 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
   1967 		for (i = 0; i < buflen; i++) {
   1968 			printf(" %02x", ptr[i]);
   1969 			if (++n_octets % 24 == 0)
   1970 				printf("\n");
   1971 		}
   1972 		if (n_octets % 24 != 0)
   1973 			printf("\n");
   1974 	}
   1975 }
   1976 
   1977 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
   1978 static void
   1979 atw_write_wep(struct atw_softc *sc)
   1980 {
   1981 	struct ieee80211com *ic = &sc->sc_ic;
   1982 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
   1983 	u_int8_t buf[IEEE80211_WEP_NKID]
   1984 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
   1985 	u_int32_t reg;
   1986 	int i;
   1987 
   1988 	sc->sc_wepctl = 0;
   1989 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
   1990 
   1991 	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
   1992 		return;
   1993 
   1994 	memset(&buf[0][0], 0, sizeof(buf));
   1995 
   1996 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1997 		if (ic->ic_nw_keys[i].wk_len > 5) {
   1998 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
   1999 		} else if (ic->ic_nw_keys[i].wk_len != 0) {
   2000 			buf[i][1] = ATW_WEP_ENABLED;
   2001 		} else {
   2002 			buf[i][1] = 0;
   2003 			continue;
   2004 		}
   2005 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
   2006 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
   2007 		    ic->ic_nw_keys[i].wk_len - 1);
   2008 	}
   2009 
   2010 	reg = ATW_READ(sc, ATW_MACTEST);
   2011 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
   2012 	reg &= ~ATW_MACTEST_KEYID_MASK;
   2013 	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
   2014 	ATW_WRITE(sc, ATW_MACTEST, reg);
   2015 
   2016 	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
   2017 	 * throughout.)
   2018 	 */
   2019 	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
   2020 	if (sc->sc_if.if_flags & IFF_LINK2)
   2021 		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
   2022 
   2023 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
   2024 	    sizeof(buf));
   2025 }
   2026 
   2027 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
   2028 
   2029 static void
   2030 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2031     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2032 {
   2033 	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
   2034 
   2035 	switch (subtype) {
   2036 	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
   2037 		/* do nothing: hardware answers probe request */
   2038 		break;
   2039 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2040 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2041 		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
   2042 		break;
   2043 	default:
   2044 		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
   2045 		break;
   2046 	}
   2047 	return;
   2048 }
   2049 
   2050 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
   2051  * of IBSSs with like SSID/channel but different BSSID. It joins the
   2052  * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
   2053  * convention. Possibly the ADMtek chip does this for us; I will have
   2054  * to test to find out.
   2055  *
   2056  * XXX we should add the duration field of the received beacon to
   2057  * the TSF time it contains before comparing it with the ADM8211's
   2058  * TSF.
   2059  */
   2060 static void
   2061 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
   2062     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2063 {
   2064 	struct atw_softc *sc;
   2065 	struct ieee80211_frame *wh;
   2066 	u_int64_t tsft, bcn_tsft;
   2067 	u_int32_t tsftl, tsfth;
   2068 	int do_print = 0;
   2069 
   2070 	sc = (struct atw_softc*)ic->ic_if.if_softc;
   2071 
   2072 	if (ic->ic_if.if_flags & IFF_DEBUG)
   2073 		do_print = (ic->ic_if.if_flags & IFF_LINK0)
   2074 		    ? 1 : ratecheck(&sc->sc_last_beacon,
   2075 		    &atw_beacon_mininterval);
   2076 
   2077 	wh = mtod(m0, struct ieee80211_frame *);
   2078 
   2079 	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
   2080 
   2081 	if (ic->ic_state != IEEE80211_S_RUN) {
   2082 		if (do_print)
   2083 			printf("%s: atw_recv_beacon: not running\n",
   2084 			    sc->sc_dev.dv_xname);
   2085 		return;
   2086 	}
   2087 
   2088 	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
   2089 	    ic->ic_bss->ni_chan)) == NULL) {
   2090 		if (do_print)
   2091 			printf("%s: atw_recv_beacon: no node %s\n",
   2092 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2093 		return;
   2094 	}
   2095 
   2096 	if (ieee80211_match_bss(ic, ni) != 0) {
   2097 		if (do_print)
   2098 			printf("%s: atw_recv_beacon: ssid mismatch %s\n",
   2099 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2100 		return;
   2101 	}
   2102 
   2103 	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
   2104 		return;
   2105 
   2106 	if (do_print)
   2107 		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
   2108 		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
   2109 
   2110 	if (ic->ic_opmode != IEEE80211_M_IBSS)
   2111 		return;
   2112 
   2113 	/* If we read TSFTL right before rollover, we read a TSF timer
   2114 	 * that is too high rather than too low. This prevents a spurious
   2115 	 * synchronization down the line, however, our IBSS could suffer
   2116 	 * from a creeping TSF....
   2117 	 */
   2118 	tsftl = ATW_READ(sc, ATW_TSFTL);
   2119 	tsfth = ATW_READ(sc, ATW_TSFTH);
   2120 
   2121 	tsft = (u_int64_t)tsfth << 32 | tsftl;
   2122 	bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
   2123 
   2124 	if (do_print)
   2125 		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
   2126 		    sc->sc_dev.dv_xname, tsft, bcn_tsft);
   2127 
   2128 	/* we are faster, let the other guy catch up */
   2129 	if (bcn_tsft < tsft)
   2130 		return;
   2131 
   2132 	if (do_print)
   2133 		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
   2134 		    ether_sprintf(wh->i_addr2));
   2135 
   2136 	ic->ic_flags &= ~IEEE80211_F_SIBSS;
   2137 
   2138 #if 0
   2139 	atw_tsf(sc);
   2140 #endif
   2141 
   2142 	/* negotiate rates with new IBSS */
   2143 	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
   2144 	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
   2145 	if (ni->ni_rates.rs_nrates == 0) {
   2146 		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
   2147 			ether_sprintf(ni->ni_bssid));
   2148 		return;
   2149 	}
   2150 
   2151 	if (do_print) {
   2152 		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
   2153 		    ether_sprintf(ic->ic_bss->ni_bssid));
   2154 		printf("%s ", ether_sprintf(ni->ni_bssid));
   2155 		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
   2156 	}
   2157 
   2158 	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
   2159 
   2160 	atw_write_bssid(sc);
   2161 	atw_start_beacon(sc, 1);
   2162 }
   2163 
   2164 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
   2165  * In ad hoc mode, the SSID is written to the beacons sent by the
   2166  * ADM8211. In both ad hoc and infrastructure mode, beacons received
   2167  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
   2168  * indications.
   2169  */
   2170 static void
   2171 atw_write_ssid(struct atw_softc *sc)
   2172 {
   2173 	struct ieee80211com *ic = &sc->sc_ic;
   2174 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID */
   2175 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
   2176 
   2177 	memset(buf, 0, sizeof(buf));
   2178 	buf[0] = ic->ic_bss->ni_esslen;
   2179 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
   2180 
   2181 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
   2182 }
   2183 
   2184 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
   2185  * In ad hoc mode, the supported rates are written to beacons sent by the
   2186  * ADM8211.
   2187  */
   2188 static void
   2189 atw_write_sup_rates(struct atw_softc *sc)
   2190 {
   2191 	struct ieee80211com *ic = &sc->sc_ic;
   2192 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
   2193 	 * supported rates
   2194 	 */
   2195 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
   2196 
   2197 	memset(buf, 0, sizeof(buf));
   2198 
   2199 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
   2200 
   2201 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
   2202 	    ic->ic_bss->ni_rates.rs_nrates);
   2203 
   2204 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
   2205 }
   2206 
   2207 /* Start/stop sending beacons. */
   2208 void
   2209 atw_start_beacon(struct atw_softc *sc, int start)
   2210 {
   2211 	struct ieee80211com *ic = &sc->sc_ic;
   2212 	u_int32_t len, capinfo, reg_bcnt, reg_cap1;
   2213 
   2214 	if (ATW_IS_ENABLED(sc) == 0)
   2215 		return;
   2216 
   2217 	len = capinfo = 0;
   2218 
   2219 	/* start beacons */
   2220 	len = sizeof(struct ieee80211_frame) +
   2221 	    8 /* timestamp */ + 2 /* beacon interval */ +
   2222 	    2 /* capability info */ +
   2223 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
   2224 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
   2225 	    3 /* DS parameters */ +
   2226 	    IEEE80211_CRC_LEN;
   2227 
   2228 	reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
   2229 
   2230 	reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
   2231 
   2232 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2233 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2234 
   2235 	if (!start)
   2236 		return;
   2237 
   2238 	/* TBD use ni_capinfo */
   2239 
   2240 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
   2241 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   2242 	if (ic->ic_flags & IEEE80211_F_WEPON)
   2243 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   2244 
   2245 	switch (ic->ic_opmode) {
   2246 	case IEEE80211_M_IBSS:
   2247 		len += 4; /* IBSS parameters */
   2248 		capinfo |= IEEE80211_CAPINFO_IBSS;
   2249 		break;
   2250 	case IEEE80211_M_HOSTAP:
   2251 		/* XXX 6-byte minimum TIM */
   2252 		len += atw_beacon_len_adjust;
   2253 		capinfo |= IEEE80211_CAPINFO_ESS;
   2254 		break;
   2255 	default:
   2256 		return;
   2257 	}
   2258 
   2259 	reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
   2260 	reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
   2261 
   2262 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2263 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2264 
   2265 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
   2266 	    sc->sc_dev.dv_xname, reg_bcnt));
   2267 
   2268 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
   2269 	    sc->sc_dev.dv_xname, reg_cap1));
   2270 }
   2271 
   2272 /* First beacon was sent at time 0 microseconds, current time is
   2273  * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
   2274  * microseconds.  Return the expected time in microseconds for the
   2275  * beacon after next.
   2276  */
   2277 static __inline u_int64_t
   2278 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
   2279 {
   2280 	return tsft + (tbtt - tsft % tbtt);
   2281 }
   2282 
   2283 /* If we've created an IBSS, write the TSF time in the ADM8211 to
   2284  * the ieee80211com.
   2285  *
   2286  * Predict the next target beacon transmission time (TBTT) and
   2287  * write it to the ADM8211.
   2288  */
   2289 static void
   2290 atw_tsf(struct atw_softc *sc)
   2291 {
   2292 #define TBTTOFS 20 /* TU */
   2293 
   2294 	struct ieee80211com *ic = &sc->sc_ic;
   2295 	u_int64_t tsft, tbtt;
   2296 
   2297 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
   2298 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
   2299 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
   2300 		tsft = ATW_READ(sc, ATW_TSFTH);
   2301 		tsft <<= 32;
   2302 		tsft |= ATW_READ(sc, ATW_TSFTL);
   2303 		*(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
   2304 	} else
   2305 		tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
   2306 
   2307 	tbtt = atw_predict_beacon(tsft,
   2308 	    ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
   2309 
   2310 	/* skip one more beacon so that the TBTT cannot pass before
   2311 	 * we've programmed it, and also so that we can subtract a
   2312 	 * few TU so that we wake a little before TBTT.
   2313 	 */
   2314 	tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
   2315 
   2316 	/* wake up a little early */
   2317 	tbtt -= TBTTOFS * IEEE80211_DUR_TU;
   2318 
   2319 	DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
   2320 	    sc->sc_dev.dv_xname, tsft, tbtt));
   2321 
   2322 	ATW_WRITE(sc, ATW_TOFS1,
   2323 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
   2324 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
   2325 	    LSHIFT(
   2326 		MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
   2327 		ATW_TOFS1_TBTTPRE_MASK));
   2328 #undef TBTTOFS
   2329 }
   2330 
   2331 static void
   2332 atw_next_scan(void *arg)
   2333 {
   2334 	struct atw_softc *sc = arg;
   2335 	struct ieee80211com *ic = &sc->sc_ic;
   2336 	struct ifnet *ifp = &ic->ic_if;
   2337 	int s;
   2338 
   2339 	/* don't call atw_start w/o network interrupts blocked */
   2340 	s = splnet();
   2341 	if (ic->ic_state == IEEE80211_S_SCAN)
   2342 		ieee80211_next_scan(ifp);
   2343 	splx(s);
   2344 }
   2345 
   2346 /* Synchronize the hardware state with the software state. */
   2347 static int
   2348 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   2349 {
   2350 	struct ifnet *ifp = &ic->ic_if;
   2351 	struct atw_softc *sc = ifp->if_softc;
   2352 	enum ieee80211_state ostate;
   2353 	int error;
   2354 
   2355 	ostate = ic->ic_state;
   2356 
   2357 	if (nstate == IEEE80211_S_INIT) {
   2358 		callout_stop(&sc->sc_scan_ch);
   2359 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
   2360 		atw_start_beacon(sc, 0);
   2361 		return (*sc->sc_newstate)(ic, nstate, arg);
   2362 	}
   2363 
   2364 	if ((error = atw_tune(sc)) != 0)
   2365 		return error;
   2366 
   2367 	switch (nstate) {
   2368 	case IEEE80211_S_ASSOC:
   2369 		break;
   2370 	case IEEE80211_S_INIT:
   2371 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
   2372 		break;
   2373 	case IEEE80211_S_SCAN:
   2374 		memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
   2375 		atw_write_bssid(sc);
   2376 
   2377 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
   2378 		    atw_next_scan, sc);
   2379 
   2380 		break;
   2381 	case IEEE80211_S_RUN:
   2382 		if (ic->ic_opmode == IEEE80211_M_STA)
   2383 			break;
   2384 		/*FALLTHROUGH*/
   2385 	case IEEE80211_S_AUTH:
   2386 		atw_write_bssid(sc);
   2387 		atw_write_ssid(sc);
   2388 		atw_write_sup_rates(sc);
   2389 
   2390 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
   2391 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   2392 			break;
   2393 
   2394 		/* set listen interval
   2395 		 * XXX do software units agree w/ hardware?
   2396 		 */
   2397 		ATW_WRITE(sc, ATW_BPLI,
   2398 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2399 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
   2400 			   ATW_BPLI_LI_MASK));
   2401 
   2402 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
   2403 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
   2404 
   2405 		atw_tsf(sc);
   2406 		break;
   2407 	}
   2408 
   2409 	if (nstate != IEEE80211_S_SCAN)
   2410 		callout_stop(&sc->sc_scan_ch);
   2411 
   2412 	if (nstate == IEEE80211_S_RUN &&
   2413 	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   2414 	     ic->ic_opmode == IEEE80211_M_IBSS))
   2415 		atw_start_beacon(sc, 1);
   2416 	else
   2417 		atw_start_beacon(sc, 0);
   2418 
   2419 	return (*sc->sc_newstate)(ic, nstate, arg);
   2420 }
   2421 
   2422 /*
   2423  * atw_add_rxbuf:
   2424  *
   2425  *	Add a receive buffer to the indicated descriptor.
   2426  */
   2427 int
   2428 atw_add_rxbuf(struct atw_softc *sc, int idx)
   2429 {
   2430 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2431 	struct mbuf *m;
   2432 	int error;
   2433 
   2434 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2435 	if (m == NULL)
   2436 		return (ENOBUFS);
   2437 
   2438 	MCLGET(m, M_DONTWAIT);
   2439 	if ((m->m_flags & M_EXT) == 0) {
   2440 		m_freem(m);
   2441 		return (ENOBUFS);
   2442 	}
   2443 
   2444 	if (rxs->rxs_mbuf != NULL)
   2445 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2446 
   2447 	rxs->rxs_mbuf = m;
   2448 
   2449 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2450 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2451 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2452 	if (error) {
   2453 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2454 		    sc->sc_dev.dv_xname, idx, error);
   2455 		panic("atw_add_rxbuf");	/* XXX */
   2456 	}
   2457 
   2458 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2459 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2460 
   2461 	ATW_INIT_RXDESC(sc, idx);
   2462 
   2463 	return (0);
   2464 }
   2465 
   2466 /*
   2467  * Release any queued transmit buffers.
   2468  */
   2469 void
   2470 atw_txdrain(struct atw_softc *sc)
   2471 {
   2472 	struct atw_txsoft *txs;
   2473 
   2474 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2475 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2476 		if (txs->txs_mbuf != NULL) {
   2477 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2478 			m_freem(txs->txs_mbuf);
   2479 			txs->txs_mbuf = NULL;
   2480 		}
   2481 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2482 	}
   2483 	sc->sc_tx_timer = 0;
   2484 }
   2485 
   2486 /*
   2487  * atw_stop:		[ ifnet interface function ]
   2488  *
   2489  *	Stop transmission on the interface.
   2490  */
   2491 void
   2492 atw_stop(struct ifnet *ifp, int disable)
   2493 {
   2494 	struct atw_softc *sc = ifp->if_softc;
   2495 	struct ieee80211com *ic = &sc->sc_ic;
   2496 
   2497 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   2498 
   2499 	/* Disable interrupts. */
   2500 	ATW_WRITE(sc, ATW_IER, 0);
   2501 
   2502 	/* Stop the transmit and receive processes. */
   2503 	sc->sc_opmode = 0;
   2504 	ATW_WRITE(sc, ATW_NAR, 0);
   2505 	ATW_WRITE(sc, ATW_TDBD, 0);
   2506 	ATW_WRITE(sc, ATW_TDBP, 0);
   2507 	ATW_WRITE(sc, ATW_RDB, 0);
   2508 
   2509 	atw_txdrain(sc);
   2510 
   2511 	if (disable) {
   2512 		atw_rxdrain(sc);
   2513 		atw_disable(sc);
   2514 	}
   2515 
   2516 	/*
   2517 	 * Mark the interface down and cancel the watchdog timer.
   2518 	 */
   2519 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2520 	ifp->if_timer = 0;
   2521 
   2522 	if (!disable)
   2523 		atw_reset(sc);
   2524 }
   2525 
   2526 /*
   2527  * atw_rxdrain:
   2528  *
   2529  *	Drain the receive queue.
   2530  */
   2531 void
   2532 atw_rxdrain(struct atw_softc *sc)
   2533 {
   2534 	struct atw_rxsoft *rxs;
   2535 	int i;
   2536 
   2537 	for (i = 0; i < ATW_NRXDESC; i++) {
   2538 		rxs = &sc->sc_rxsoft[i];
   2539 		if (rxs->rxs_mbuf == NULL)
   2540 			continue;
   2541 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2542 		m_freem(rxs->rxs_mbuf);
   2543 		rxs->rxs_mbuf = NULL;
   2544 	}
   2545 }
   2546 
   2547 /*
   2548  * atw_detach:
   2549  *
   2550  *	Detach an ADM8211 interface.
   2551  */
   2552 int
   2553 atw_detach(struct atw_softc *sc)
   2554 {
   2555 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2556 	struct atw_rxsoft *rxs;
   2557 	struct atw_txsoft *txs;
   2558 	int i;
   2559 
   2560 	/*
   2561 	 * Succeed now if there isn't any work to do.
   2562 	 */
   2563 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
   2564 		return (0);
   2565 
   2566 	ieee80211_ifdetach(ifp);
   2567 	if_detach(ifp);
   2568 
   2569 	for (i = 0; i < ATW_NRXDESC; i++) {
   2570 		rxs = &sc->sc_rxsoft[i];
   2571 		if (rxs->rxs_mbuf != NULL) {
   2572 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2573 			m_freem(rxs->rxs_mbuf);
   2574 			rxs->rxs_mbuf = NULL;
   2575 		}
   2576 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
   2577 	}
   2578 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   2579 		txs = &sc->sc_txsoft[i];
   2580 		if (txs->txs_mbuf != NULL) {
   2581 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2582 			m_freem(txs->txs_mbuf);
   2583 			txs->txs_mbuf = NULL;
   2584 		}
   2585 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
   2586 	}
   2587 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2588 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2589 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2590 	    sizeof(struct atw_control_data));
   2591 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2592 
   2593 	shutdownhook_disestablish(sc->sc_sdhook);
   2594 	powerhook_disestablish(sc->sc_powerhook);
   2595 
   2596 	if (sc->sc_srom)
   2597 		free(sc->sc_srom, M_DEVBUF);
   2598 
   2599 	return (0);
   2600 }
   2601 
   2602 /* atw_shutdown: make sure the interface is stopped at reboot time. */
   2603 void
   2604 atw_shutdown(void *arg)
   2605 {
   2606 	struct atw_softc *sc = arg;
   2607 
   2608 	atw_stop(&sc->sc_ic.ic_if, 1);
   2609 }
   2610 
   2611 int
   2612 atw_intr(void *arg)
   2613 {
   2614 	struct atw_softc *sc = arg;
   2615 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2616 	u_int32_t status, rxstatus, txstatus, linkstatus;
   2617 	int handled = 0, txthresh;
   2618 
   2619 #ifdef DEBUG
   2620 	if (ATW_IS_ENABLED(sc) == 0)
   2621 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
   2622 #endif
   2623 
   2624 	/*
   2625 	 * If the interface isn't running, the interrupt couldn't
   2626 	 * possibly have come from us.
   2627 	 */
   2628 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   2629 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   2630 		return (0);
   2631 
   2632 	for (;;) {
   2633 		status = ATW_READ(sc, ATW_STSR);
   2634 
   2635 		if (status)
   2636 			ATW_WRITE(sc, ATW_STSR, status);
   2637 
   2638 		if (sc->sc_intr_ack != NULL)
   2639 			(*sc->sc_intr_ack)(sc);
   2640 
   2641 #ifdef ATW_DEBUG
   2642 #define PRINTINTR(flag) do { \
   2643 	if ((status & flag) != 0) { \
   2644 		printf("%s" #flag, delim); \
   2645 		delim = ","; \
   2646 	} \
   2647 } while (0)
   2648 
   2649 		if (atw_debug > 1 && status) {
   2650 			const char *delim = "<";
   2651 
   2652 			printf("%s: reg[STSR] = %x",
   2653 			    sc->sc_dev.dv_xname, status);
   2654 
   2655 			PRINTINTR(ATW_INTR_FBE);
   2656 			PRINTINTR(ATW_INTR_LINKOFF);
   2657 			PRINTINTR(ATW_INTR_LINKON);
   2658 			PRINTINTR(ATW_INTR_RCI);
   2659 			PRINTINTR(ATW_INTR_RDU);
   2660 			PRINTINTR(ATW_INTR_REIS);
   2661 			PRINTINTR(ATW_INTR_RPS);
   2662 			PRINTINTR(ATW_INTR_TCI);
   2663 			PRINTINTR(ATW_INTR_TDU);
   2664 			PRINTINTR(ATW_INTR_TLT);
   2665 			PRINTINTR(ATW_INTR_TPS);
   2666 			PRINTINTR(ATW_INTR_TRT);
   2667 			PRINTINTR(ATW_INTR_TUF);
   2668 			PRINTINTR(ATW_INTR_BCNTC);
   2669 			PRINTINTR(ATW_INTR_ATIME);
   2670 			PRINTINTR(ATW_INTR_TBTT);
   2671 			PRINTINTR(ATW_INTR_TSCZ);
   2672 			PRINTINTR(ATW_INTR_TSFTF);
   2673 			printf(">\n");
   2674 		}
   2675 #undef PRINTINTR
   2676 #endif /* ATW_DEBUG */
   2677 
   2678 		if ((status & sc->sc_inten) == 0)
   2679 			break;
   2680 
   2681 		handled = 1;
   2682 
   2683 		rxstatus = status & sc->sc_rxint_mask;
   2684 		txstatus = status & sc->sc_txint_mask;
   2685 		linkstatus = status & sc->sc_linkint_mask;
   2686 
   2687 		if (linkstatus) {
   2688 			atw_linkintr(sc, linkstatus);
   2689 		}
   2690 
   2691 		if (rxstatus) {
   2692 			/* Grab any new packets. */
   2693 			atw_rxintr(sc);
   2694 
   2695 			if (rxstatus & ATW_INTR_RDU) {
   2696 				printf("%s: receive ring overrun\n",
   2697 				    sc->sc_dev.dv_xname);
   2698 				/* Get the receive process going again. */
   2699 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2700 				break;
   2701 			}
   2702 		}
   2703 
   2704 		if (txstatus) {
   2705 			/* Sweep up transmit descriptors. */
   2706 			atw_txintr(sc);
   2707 
   2708 			if (txstatus & ATW_INTR_TLT)
   2709 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
   2710 				    sc->sc_dev.dv_xname));
   2711 
   2712 			if (txstatus & ATW_INTR_TRT)
   2713 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
   2714 				    sc->sc_dev.dv_xname));
   2715 
   2716 			/* If Tx under-run, increase our transmit threshold
   2717 			 * if another is available.
   2718 			 */
   2719 			txthresh = sc->sc_txthresh + 1;
   2720 			if ((txstatus & ATW_INTR_TUF) &&
   2721 			    sc->sc_txth[txthresh].txth_name != NULL) {
   2722 				/* Idle the transmit process. */
   2723 				atw_idle(sc, ATW_NAR_ST);
   2724 
   2725 				sc->sc_txthresh = txthresh;
   2726 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
   2727 				sc->sc_opmode |=
   2728 				    sc->sc_txth[txthresh].txth_opmode;
   2729 				printf("%s: transmit underrun; new "
   2730 				    "threshold: %s\n", sc->sc_dev.dv_xname,
   2731 				    sc->sc_txth[txthresh].txth_name);
   2732 
   2733 				/* Set the new threshold and restart
   2734 				 * the transmit process.
   2735 				 */
   2736 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2737 				/* XXX Log every Nth underrun from
   2738 				 * XXX now on?
   2739 				 */
   2740 			}
   2741 		}
   2742 
   2743 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
   2744 			if (status & ATW_INTR_TPS)
   2745 				printf("%s: transmit process stopped\n",
   2746 				    sc->sc_dev.dv_xname);
   2747 			if (status & ATW_INTR_RPS)
   2748 				printf("%s: receive process stopped\n",
   2749 				    sc->sc_dev.dv_xname);
   2750 			(void)atw_init(ifp);
   2751 			break;
   2752 		}
   2753 
   2754 		if (status & ATW_INTR_FBE) {
   2755 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
   2756 			(void)atw_init(ifp);
   2757 			break;
   2758 		}
   2759 
   2760 		/*
   2761 		 * Not handled:
   2762 		 *
   2763 		 *	Transmit buffer unavailable -- normal
   2764 		 *	condition, nothing to do, really.
   2765 		 *
   2766 		 *	Early receive interrupt -- not available on
   2767 		 *	all chips, we just use RI.  We also only
   2768 		 *	use single-segment receive DMA, so this
   2769 		 *	is mostly useless.
   2770 		 *
   2771 		 *      TBD others
   2772 		 */
   2773 	}
   2774 
   2775 	/* Try to get more packets going. */
   2776 	atw_start(ifp);
   2777 
   2778 	return (handled);
   2779 }
   2780 
   2781 /*
   2782  * atw_idle:
   2783  *
   2784  *	Cause the transmit and/or receive processes to go idle.
   2785  *
   2786  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
   2787  *	process in STSR if I clear SR or ST after the process has already
   2788  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
   2789  *      do not seem to be too reliable. Perhaps I have the sense of the
   2790  *	Rx bits switched with the Tx bits?
   2791  */
   2792 void
   2793 atw_idle(struct atw_softc *sc, u_int32_t bits)
   2794 {
   2795 	u_int32_t ackmask = 0, opmode, stsr, test0;
   2796 	int i, s;
   2797 
   2798 	/* without this, somehow we run concurrently w/ interrupt handler */
   2799 	s = splnet();
   2800 
   2801 	opmode = sc->sc_opmode & ~bits;
   2802 
   2803 	if (bits & ATW_NAR_SR)
   2804 		ackmask |= ATW_INTR_RPS;
   2805 
   2806 	if (bits & ATW_NAR_ST) {
   2807 		ackmask |= ATW_INTR_TPS;
   2808 		/* set ATW_NAR_HF to flush TX FIFO. */
   2809 		opmode |= ATW_NAR_HF;
   2810 	}
   2811 
   2812 	ATW_WRITE(sc, ATW_NAR, opmode);
   2813 
   2814 	for (i = 0; i < 1000; i++) {
   2815 		stsr = ATW_READ(sc, ATW_STSR);
   2816 		if ((stsr & ackmask) == ackmask)
   2817 			break;
   2818 		DELAY(10);
   2819 	}
   2820 
   2821 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
   2822 
   2823 	if ((stsr & ackmask) == ackmask)
   2824 		goto out;
   2825 
   2826 	test0 = ATW_READ(sc, ATW_TEST0);
   2827 
   2828 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
   2829 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
   2830 		printf("%s: transmit process not idle [%s]\n",
   2831 		    sc->sc_dev.dv_xname,
   2832 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
   2833 		printf("%s: bits %08x test0 %08x stsr %08x\n",
   2834 		    sc->sc_dev.dv_xname, bits, test0, stsr);
   2835 	}
   2836 
   2837 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
   2838 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
   2839 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
   2840 		    sc->sc_dev.dv_xname,
   2841 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
   2842 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
   2843 		    sc->sc_dev.dv_xname, bits, test0, stsr));
   2844 	}
   2845 out:
   2846 	if ((bits & ATW_NAR_ST) != 0)
   2847 		atw_txdrain(sc);
   2848 	splx(s);
   2849 	return;
   2850 }
   2851 
   2852 /*
   2853  * atw_linkintr:
   2854  *
   2855  *	Helper; handle link-status interrupts.
   2856  */
   2857 void
   2858 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
   2859 {
   2860 	struct ieee80211com *ic = &sc->sc_ic;
   2861 
   2862 	if (ic->ic_state != IEEE80211_S_RUN)
   2863 		return;
   2864 
   2865 	if (linkstatus & ATW_INTR_LINKON) {
   2866 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
   2867 		sc->sc_rescan_timer = 0;
   2868 	} else if (linkstatus & ATW_INTR_LINKOFF) {
   2869 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
   2870 		if (ic->ic_opmode != IEEE80211_M_STA)
   2871 			return;
   2872 		sc->sc_rescan_timer = 3;
   2873 		ic->ic_if.if_timer = 1;
   2874 	}
   2875 }
   2876 
   2877 /*
   2878  * atw_rxintr:
   2879  *
   2880  *	Helper; handle receive interrupts.
   2881  */
   2882 void
   2883 atw_rxintr(struct atw_softc *sc)
   2884 {
   2885 	static int rate_tbl[] = {2, 4, 11, 22, 44};
   2886 	struct ieee80211com *ic = &sc->sc_ic;
   2887 	struct ieee80211_node *ni;
   2888 	struct ieee80211_frame *wh;
   2889 	struct ifnet *ifp = &ic->ic_if;
   2890 	struct atw_rxsoft *rxs;
   2891 	struct mbuf *m;
   2892 	u_int32_t rxstat;
   2893 	int i, len, rate, rate0;
   2894 	u_int32_t rssi;
   2895 
   2896 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
   2897 		rxs = &sc->sc_rxsoft[i];
   2898 
   2899 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2900 
   2901 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
   2902 		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
   2903 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
   2904 
   2905 		if (rxstat & ATW_RXSTAT_OWN)
   2906 			break; /* We have processed all receive buffers. */
   2907 
   2908 		DPRINTF3(sc,
   2909 		    ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
   2910 		    sc->sc_dev.dv_xname,
   2911 		    sc->sc_rxdescs[i].ar_stat,
   2912 		    sc->sc_rxdescs[i].ar_rssi,
   2913 		    sc->sc_rxdescs[i].ar_buf1,
   2914 		    sc->sc_rxdescs[i].ar_buf2));
   2915 
   2916 		/*
   2917 		 * Make sure the packet fits in one buffer.  This should
   2918 		 * always be the case.
   2919 		 */
   2920 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
   2921 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
   2922 			printf("%s: incoming packet spilled, resetting\n",
   2923 			    sc->sc_dev.dv_xname);
   2924 			(void)atw_init(ifp);
   2925 			return;
   2926 		}
   2927 
   2928 		/*
   2929 		 * If an error occurred, update stats, clear the status
   2930 		 * word, and leave the packet buffer in place.  It will
   2931 		 * simply be reused the next time the ring comes around.
   2932 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
   2933 		 * error.
   2934 		 */
   2935 
   2936 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
   2937 		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
   2938 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
   2939 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
   2940 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
   2941 				ATW_RXSTAT_ICVE)) != 0)) {
   2942 #define	PRINTERR(bit, str)						\
   2943 			if (rxstat & (bit))				\
   2944 				printf("%s: receive error: %s\n",	\
   2945 				    sc->sc_dev.dv_xname, str)
   2946 			ifp->if_ierrors++;
   2947 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
   2948 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
   2949 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
   2950 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
   2951 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
   2952 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
   2953 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
   2954 #undef PRINTERR
   2955 			ATW_INIT_RXDESC(sc, i);
   2956 			continue;
   2957 		}
   2958 
   2959 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2960 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2961 
   2962 		/*
   2963 		 * No errors; receive the packet.  Note the ADM8211
   2964 		 * includes the CRC in promiscuous mode.
   2965 		 */
   2966 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
   2967 
   2968 		/*
   2969 		 * Allocate a new mbuf cluster.  If that fails, we are
   2970 		 * out of memory, and must drop the packet and recycle
   2971 		 * the buffer that's already attached to this descriptor.
   2972 		 */
   2973 		m = rxs->rxs_mbuf;
   2974 		if (atw_add_rxbuf(sc, i) != 0) {
   2975 			ifp->if_ierrors++;
   2976 			ATW_INIT_RXDESC(sc, i);
   2977 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2978 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2979 			continue;
   2980 		}
   2981 
   2982 		ifp->if_ipackets++;
   2983 		if (sc->sc_opmode & ATW_NAR_PR)
   2984 			m->m_flags |= M_HASFCS;
   2985 		m->m_pkthdr.rcvif = ifp;
   2986 		m->m_pkthdr.len = m->m_len = len;
   2987 
   2988 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
   2989 			rate = 0;
   2990 		else
   2991 			rate = rate_tbl[rate0];
   2992 
   2993  #if NBPFILTER > 0
   2994 		/* Pass this up to any BPF listeners. */
   2995 		if (sc->sc_radiobpf != NULL) {
   2996 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
   2997 
   2998 			tap->ar_rate = rate;
   2999 			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3000 			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3001 
   3002 			/* TBD verify units are dB */
   3003 			tap->ar_antsignal = (int)rssi;
   3004 			/* TBD tap->ar_flags */
   3005 
   3006 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3007 			    tap->ar_ihdr.it_len, m);
   3008  		}
   3009  #endif /* NPBFILTER > 0 */
   3010 
   3011 		wh = mtod(m, struct ieee80211_frame *);
   3012 		ni = ieee80211_find_rxnode(ic, wh);
   3013 		ieee80211_input(ifp, m, ni, (int)rssi, 0);
   3014 		/*
   3015 		 * The frame may have caused the node to be marked for
   3016 		 * reclamation (e.g. in response to a DEAUTH message)
   3017 		 * so use free_node here instead of unref_node.
   3018 		 */
   3019 		if (ni == ic->ic_bss)
   3020 			ieee80211_unref_node(&ni);
   3021 		else
   3022 			ieee80211_free_node(ic, ni);
   3023 	}
   3024 
   3025 	/* Update the receive pointer. */
   3026 	sc->sc_rxptr = i;
   3027 }
   3028 
   3029 /*
   3030  * atw_txintr:
   3031  *
   3032  *	Helper; handle transmit interrupts.
   3033  */
   3034 void
   3035 atw_txintr(struct atw_softc *sc)
   3036 {
   3037 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
   3038     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
   3039 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
   3040     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
   3041 
   3042 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
   3043 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3044 	struct atw_txsoft *txs;
   3045 	u_int32_t txstat;
   3046 
   3047 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
   3048 	    sc->sc_dev.dv_xname, sc->sc_flags));
   3049 
   3050 	ifp->if_flags &= ~IFF_OACTIVE;
   3051 
   3052 	/*
   3053 	 * Go through our Tx list and free mbufs for those
   3054 	 * frames that have been transmitted.
   3055 	 */
   3056 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   3057 		ATW_CDTXSYNC(sc, txs->txs_lastdesc,
   3058 		    txs->txs_ndescs,
   3059 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3060 
   3061 #ifdef ATW_DEBUG
   3062 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3063 			int i;
   3064 			printf("    txsoft %p transmit chain:\n", txs);
   3065 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
   3066 				printf("     descriptor %d:\n", i);
   3067 				printf("       at_status:   0x%08x\n",
   3068 				    le32toh(sc->sc_txdescs[i].at_stat));
   3069 				printf("       at_flags:      0x%08x\n",
   3070 				    le32toh(sc->sc_txdescs[i].at_flags));
   3071 				printf("       at_buf1: 0x%08x\n",
   3072 				    le32toh(sc->sc_txdescs[i].at_buf1));
   3073 				printf("       at_buf2: 0x%08x\n",
   3074 				    le32toh(sc->sc_txdescs[i].at_buf2));
   3075 				if (i == txs->txs_lastdesc)
   3076 					break;
   3077 			}
   3078 		}
   3079 #endif
   3080 
   3081 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
   3082 		if (txstat & ATW_TXSTAT_OWN)
   3083 			break;
   3084 
   3085 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   3086 
   3087 		sc->sc_txfree += txs->txs_ndescs;
   3088 
   3089 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   3090 		    0, txs->txs_dmamap->dm_mapsize,
   3091 		    BUS_DMASYNC_POSTWRITE);
   3092 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3093 		m_freem(txs->txs_mbuf);
   3094 		txs->txs_mbuf = NULL;
   3095 
   3096 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   3097 
   3098 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   3099 		    (txstat & TXSTAT_ERRMASK) != 0) {
   3100 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
   3101 			    txstat_buf, sizeof(txstat_buf));
   3102 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
   3103 			    txstat_buf,
   3104 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
   3105 		}
   3106 
   3107 		/*
   3108 		 * Check for errors and collisions.
   3109 		 */
   3110 		if (txstat & ATW_TXSTAT_TUF)
   3111 			sc->sc_stats.ts_tx_tuf++;
   3112 		if (txstat & ATW_TXSTAT_TLT)
   3113 			sc->sc_stats.ts_tx_tlt++;
   3114 		if (txstat & ATW_TXSTAT_TRT)
   3115 			sc->sc_stats.ts_tx_trt++;
   3116 		if (txstat & ATW_TXSTAT_TRO)
   3117 			sc->sc_stats.ts_tx_tro++;
   3118 		if (txstat & ATW_TXSTAT_SOFBR) {
   3119 			sc->sc_stats.ts_tx_sofbr++;
   3120 		}
   3121 
   3122 		if ((txstat & ATW_TXSTAT_ES) == 0)
   3123 			ifp->if_collisions +=
   3124 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
   3125 		else
   3126 			ifp->if_oerrors++;
   3127 
   3128 		ifp->if_opackets++;
   3129 	}
   3130 
   3131 	/*
   3132 	 * If there are no more pending transmissions, cancel the watchdog
   3133 	 * timer.
   3134 	 */
   3135 	if (txs == NULL)
   3136 		sc->sc_tx_timer = 0;
   3137 #undef TXSTAT_ERRMASK
   3138 #undef TXSTAT_FMT
   3139 }
   3140 
   3141 /*
   3142  * atw_watchdog:	[ifnet interface function]
   3143  *
   3144  *	Watchdog timer handler.
   3145  */
   3146 void
   3147 atw_watchdog(struct ifnet *ifp)
   3148 {
   3149 	struct atw_softc *sc = ifp->if_softc;
   3150 	struct ieee80211com *ic = &sc->sc_ic;
   3151 
   3152 	ifp->if_timer = 0;
   3153 	if (ATW_IS_ENABLED(sc) == 0)
   3154 		return;
   3155 
   3156 	if (sc->sc_rescan_timer) {
   3157 		if (--sc->sc_rescan_timer == 0)
   3158 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3159 	}
   3160 	if (sc->sc_tx_timer) {
   3161 		if (--sc->sc_tx_timer == 0 &&
   3162 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
   3163 			printf("%s: transmit timeout\n", ifp->if_xname);
   3164 			ifp->if_oerrors++;
   3165 			(void)atw_init(ifp);
   3166 			atw_start(ifp);
   3167 		}
   3168 	}
   3169 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
   3170 		ifp->if_timer = 1;
   3171 	ieee80211_watchdog(ifp);
   3172 }
   3173 
   3174 /* Compute the 802.11 Duration field and the PLCP Length fields for
   3175  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
   3176  * Write the fields to the ADM8211 Tx header, frm.
   3177  *
   3178  * TBD use the fragmentation threshold to find the right duration for
   3179  * the first & last fragments.
   3180  *
   3181  * TBD make certain of the duration fields applied by the ADM8211 to each
   3182  * fragment. I think that the ADM8211 knows how to subtract the CTS
   3183  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
   3184  * I also think that the ADM8211 does *some* arithmetic for us, because
   3185  * otherwise I think we would have to set a first duration for CTS/first
   3186  * fragment, a second duration for fragments between the first and the
   3187  * last, and a third duration for the last fragment.
   3188  *
   3189  * TBD make certain that duration fields reflect addition of FCS/WEP
   3190  * and correct duration arithmetic as necessary.
   3191  */
   3192 static void
   3193 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
   3194     int len)
   3195 {
   3196 	int remainder;
   3197 
   3198 	/* deal also with encrypted fragments */
   3199 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
   3200 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
   3201 		    sc->sc_dev.dv_xname));
   3202 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
   3203 		       IEEE80211_WEP_CRCLEN;
   3204 	}
   3205 
   3206 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
   3207 	 * duration (XXX added by MAC?).
   3208 	 */
   3209 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
   3210 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
   3211 
   3212 	if (rate <= 4)
   3213 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
   3214 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3215 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3216 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3217 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
   3218 	else
   3219 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
   3220 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3221 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3222 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3223 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
   3224 
   3225 	/* lengthen duration if long preamble */
   3226 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
   3227 		frm->atw_head_dur +=
   3228 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
   3229 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
   3230 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
   3231 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
   3232 
   3233 	if (remainder != 0)
   3234 		frm->atw_head_dur++;
   3235 
   3236 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
   3237 	    (rate == 2 || rate == 4)) {
   3238 		/* derived from Linux: how could this be right? */
   3239 		frm->atw_head_plcplen = frm->atw_head_dur;
   3240 	} else {
   3241 		frm->atw_head_plcplen = (16 * len) / rate;
   3242 		remainder = (80 * len) % (rate * 5);
   3243 
   3244 		if (remainder != 0) {
   3245 			frm->atw_head_plcplen++;
   3246 
   3247 			/* XXX magic */
   3248 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
   3249 			    rate == 22 && remainder <= 30)
   3250 				frm->atw_head_plcplen |= 0x8000;
   3251 		}
   3252 	}
   3253 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
   3254 	    htole16(frm->atw_head_plcplen);
   3255 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
   3256 }
   3257 
   3258 #ifdef ATW_DEBUG
   3259 static void
   3260 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
   3261 {
   3262 	struct atw_softc *sc = ifp->if_softc;
   3263 	struct mbuf *m;
   3264 	int i, noctets = 0;
   3265 
   3266 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
   3267 	    m0->m_pkthdr.len);
   3268 
   3269 	for (m = m0; m; m = m->m_next) {
   3270 		if (m->m_len == 0)
   3271 			continue;
   3272 		for (i = 0; i < m->m_len; i++) {
   3273 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
   3274 			if (++noctets % 24 == 0)
   3275 				printf("\n");
   3276 		}
   3277 	}
   3278 	printf("%s%s: %d bytes emitted\n",
   3279 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
   3280 }
   3281 #endif /* ATW_DEBUG */
   3282 
   3283 /*
   3284  * atw_start:		[ifnet interface function]
   3285  *
   3286  *	Start packet transmission on the interface.
   3287  */
   3288 void
   3289 atw_start(struct ifnet *ifp)
   3290 {
   3291 	struct atw_softc *sc = ifp->if_softc;
   3292 	struct ieee80211com *ic = &sc->sc_ic;
   3293 	struct ieee80211_node *ni;
   3294 	struct ieee80211_frame *wh;
   3295 	struct atw_frame *hh;
   3296 	struct mbuf *m0, *m;
   3297 	struct atw_txsoft *txs, *last_txs;
   3298 	struct atw_txdesc *txd;
   3299 	int do_encrypt, rate;
   3300 	bus_dmamap_t dmamap;
   3301 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
   3302 
   3303 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
   3304 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
   3305 
   3306 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3307 		return;
   3308 
   3309 #if 0 /* TBD ??? */
   3310 	if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
   3311 		return;
   3312 #endif
   3313 
   3314 	/*
   3315 	 * Remember the previous number of free descriptors and
   3316 	 * the first descriptor we'll use.
   3317 	 */
   3318 	ofree = sc->sc_txfree;
   3319 	firsttx = sc->sc_txnext;
   3320 
   3321 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
   3322 	    sc->sc_dev.dv_xname, ofree, firsttx));
   3323 
   3324 	/*
   3325 	 * Loop through the send queue, setting up transmit descriptors
   3326 	 * until we drain the queue, or use up all available transmit
   3327 	 * descriptors.
   3328 	 */
   3329 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   3330 	       sc->sc_txfree != 0) {
   3331 
   3332 		/*
   3333 		 * Grab a packet off the management queue, if it
   3334 		 * is not empty. Otherwise, from the data queue.
   3335 		 */
   3336 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   3337 		if (m0 != NULL) {
   3338 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   3339 			m0->m_pkthdr.rcvif = NULL;
   3340 		} else {
   3341 			/* send no data packets until we are associated */
   3342 			if (ic->ic_state != IEEE80211_S_RUN)
   3343 				break;
   3344 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   3345 			if (m0 == NULL)
   3346 				break;
   3347 #if NBPFILTER > 0
   3348 			if (ifp->if_bpf != NULL)
   3349 				bpf_mtap(ifp->if_bpf, m0);
   3350 #endif /* NBPFILTER > 0 */
   3351 			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
   3352 				ifp->if_oerrors++;
   3353 				break;
   3354 			}
   3355 		}
   3356 
   3357 		rate = MAX(ieee80211_get_rate(ic), 2);
   3358 
   3359 #if NBPFILTER > 0
   3360 		/*
   3361 		 * Pass the packet to any BPF listeners.
   3362 		 */
   3363 		if (ic->ic_rawbpf != NULL)
   3364 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
   3365 
   3366 		if (sc->sc_radiobpf != NULL) {
   3367 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
   3368 
   3369 			tap->at_rate = rate;
   3370 			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3371 			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3372 
   3373 			/* TBD tap->at_flags */
   3374 
   3375 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3376 			    tap->at_ihdr.it_len, m0);
   3377 		}
   3378 #endif /* NBPFILTER > 0 */
   3379 
   3380 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
   3381 
   3382 		if (ni != NULL && ni != ic->ic_bss)
   3383 			ieee80211_free_node(ic, ni);
   3384 
   3385 		if (m0 == NULL) {
   3386 			ifp->if_oerrors++;
   3387 			break;
   3388 		}
   3389 
   3390 		/* just to make sure. */
   3391 		m0 = m_pullup(m0, sizeof(struct atw_frame));
   3392 
   3393 		if (m0 == NULL) {
   3394 			ifp->if_oerrors++;
   3395 			break;
   3396 		}
   3397 
   3398 		hh = mtod(m0, struct atw_frame *);
   3399 		wh = &hh->atw_ihdr;
   3400 
   3401 		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
   3402 
   3403 		/* Copy everything we need from the 802.11 header:
   3404 		 * Frame Control; address 1, address 3, or addresses
   3405 		 * 3 and 4. NIC fills in BSSID, SA.
   3406 		 */
   3407 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
   3408 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
   3409 				panic("%s: illegal WDS frame",
   3410 				    sc->sc_dev.dv_xname);
   3411 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
   3412 		} else
   3413 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
   3414 
   3415 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
   3416 
   3417 		/* initialize remaining Tx parameters */
   3418 		memset(&hh->u, 0, sizeof(hh->u));
   3419 
   3420 		hh->atw_rate = rate * 5;
   3421 		/* XXX this could be incorrect if M_FCS. _encap should
   3422 		 * probably strip FCS just in case it sticks around in
   3423 		 * bridged packets.
   3424 		 */
   3425 		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
   3426 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
   3427 		    sizeof(struct atw_frame));
   3428 
   3429 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3430 		hh->atw_rtylmt = 3;
   3431 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
   3432 		if (do_encrypt) {
   3433 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
   3434 			hh->atw_keyid = ic->ic_wep_txkey;
   3435 		}
   3436 
   3437 		/* TBD 4-addr frames */
   3438 		atw_frame_setdurs(sc, hh, rate,
   3439 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
   3440 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
   3441 
   3442 		/* never fragment multicast frames */
   3443 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
   3444 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3445 		} else if (sc->sc_flags & ATWF_RTSCTS) {
   3446 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
   3447 		}
   3448 
   3449 #ifdef ATW_DEBUG
   3450 		hh->atw_fragnum = 0;
   3451 
   3452 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3453 			printf("%s: dst = %s, rate = 0x%02x, "
   3454 			    "service = 0x%02x, paylen = 0x%04x\n",
   3455 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
   3456 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
   3457 
   3458 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
   3459 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
   3460 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
   3461 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
   3462 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
   3463 			    hh->atw_tail_dur, hh->atw_head_dur);
   3464 
   3465 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
   3466 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
   3467 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
   3468 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
   3469 
   3470 			printf("%s: keyid = %d\n",
   3471 			    sc->sc_dev.dv_xname, hh->atw_keyid);
   3472 
   3473 			atw_dump_pkt(ifp, m0);
   3474 		}
   3475 #endif /* ATW_DEBUG */
   3476 
   3477 		dmamap = txs->txs_dmamap;
   3478 
   3479 		/*
   3480 		 * Load the DMA map.  Copy and try (once) again if the packet
   3481 		 * didn't fit in the alloted number of segments.
   3482 		 */
   3483 		for (first = 1;
   3484 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   3485 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
   3486 		     first = 0) {
   3487 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   3488 			if (m == NULL) {
   3489 				printf("%s: unable to allocate Tx mbuf\n",
   3490 				    sc->sc_dev.dv_xname);
   3491 				break;
   3492 			}
   3493 			if (m0->m_pkthdr.len > MHLEN) {
   3494 				MCLGET(m, M_DONTWAIT);
   3495 				if ((m->m_flags & M_EXT) == 0) {
   3496 					printf("%s: unable to allocate Tx "
   3497 					    "cluster\n", sc->sc_dev.dv_xname);
   3498 					m_freem(m);
   3499 					break;
   3500 				}
   3501 			}
   3502 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   3503 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   3504 			m_freem(m0);
   3505 			m0 = m;
   3506 			m = NULL;
   3507 		}
   3508 		if (error != 0) {
   3509 			printf("%s: unable to load Tx buffer, "
   3510 			    "error = %d\n", sc->sc_dev.dv_xname, error);
   3511 			m_freem(m0);
   3512 			break;
   3513 		}
   3514 
   3515 		/*
   3516 		 * Ensure we have enough descriptors free to describe
   3517 		 * the packet.
   3518 		 */
   3519 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   3520 			/*
   3521 			 * Not enough free descriptors to transmit
   3522 			 * this packet.  Unload the DMA map and
   3523 			 * drop the packet.  Notify the upper layer
   3524 			 * that there are no more slots left.
   3525 			 *
   3526 			 * XXX We could allocate an mbuf and copy, but
   3527 			 * XXX it is worth it?
   3528 			 */
   3529 			ifp->if_flags |= IFF_OACTIVE;
   3530 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   3531 			m_freem(m0);
   3532 			break;
   3533 		}
   3534 
   3535 		/*
   3536 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   3537 		 */
   3538 
   3539 		/* Sync the DMA map. */
   3540 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   3541 		    BUS_DMASYNC_PREWRITE);
   3542 
   3543 		/* XXX arbitrary retry limit; 8 because I have seen it in
   3544 		 * use already and maybe 0 means "no tries" !
   3545 		 */
   3546 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
   3547 
   3548 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
   3549 		    sc->sc_dev.dv_xname, rate * 5));
   3550 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
   3551 
   3552 		/*
   3553 		 * Initialize the transmit descriptors.
   3554 		 */
   3555 		for (nexttx = sc->sc_txnext, seg = 0;
   3556 		     seg < dmamap->dm_nsegs;
   3557 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
   3558 			/*
   3559 			 * If this is the first descriptor we're
   3560 			 * enqueueing, don't set the OWN bit just
   3561 			 * yet.  That could cause a race condition.
   3562 			 * We'll do it below.
   3563 			 */
   3564 			txd = &sc->sc_txdescs[nexttx];
   3565 			txd->at_ctl = ctl |
   3566 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
   3567 
   3568 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
   3569 			txd->at_flags =
   3570 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
   3571 			                   ATW_TXFLAG_TBS1_MASK)) |
   3572 			    ((nexttx == (ATW_NTXDESC - 1))
   3573 			        ? htole32(ATW_TXFLAG_TER) : 0);
   3574 			lasttx = nexttx;
   3575 		}
   3576 
   3577 		IASSERT(lasttx != -1, ("bad lastx"));
   3578 		/* Set `first segment' and `last segment' appropriately. */
   3579 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
   3580 		    htole32(ATW_TXFLAG_FS);
   3581 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
   3582 
   3583 #ifdef ATW_DEBUG
   3584 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3585 			printf("     txsoft %p transmit chain:\n", txs);
   3586 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
   3587 				printf("     descriptor %d:\n", seg);
   3588 				printf("       at_ctl:   0x%08x\n",
   3589 				    le32toh(sc->sc_txdescs[seg].at_ctl));
   3590 				printf("       at_flags:      0x%08x\n",
   3591 				    le32toh(sc->sc_txdescs[seg].at_flags));
   3592 				printf("       at_buf1: 0x%08x\n",
   3593 				    le32toh(sc->sc_txdescs[seg].at_buf1));
   3594 				printf("       at_buf2: 0x%08x\n",
   3595 				    le32toh(sc->sc_txdescs[seg].at_buf2));
   3596 				if (seg == lasttx)
   3597 					break;
   3598 			}
   3599 		}
   3600 #endif
   3601 
   3602 		/* Sync the descriptors we're using. */
   3603 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   3604 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3605 
   3606 		/*
   3607 		 * Store a pointer to the packet so we can free it later,
   3608 		 * and remember what txdirty will be once the packet is
   3609 		 * done.
   3610 		 */
   3611 		txs->txs_mbuf = m0;
   3612 		txs->txs_firstdesc = sc->sc_txnext;
   3613 		txs->txs_lastdesc = lasttx;
   3614 		txs->txs_ndescs = dmamap->dm_nsegs;
   3615 
   3616 		/* Advance the tx pointer. */
   3617 		sc->sc_txfree -= dmamap->dm_nsegs;
   3618 		sc->sc_txnext = nexttx;
   3619 
   3620 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   3621 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   3622 
   3623 		last_txs = txs;
   3624 	}
   3625 
   3626 	if (txs == NULL || sc->sc_txfree == 0) {
   3627 		/* No more slots left; notify upper layer. */
   3628 		ifp->if_flags |= IFF_OACTIVE;
   3629 	}
   3630 
   3631 	if (sc->sc_txfree != ofree) {
   3632 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   3633 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   3634 		/*
   3635 		 * Cause a transmit interrupt to happen on the
   3636 		 * last packet we enqueued.
   3637 		 */
   3638 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
   3639 		ATW_CDTXSYNC(sc, lasttx, 1,
   3640 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3641 
   3642 		/*
   3643 		 * The entire packet chain is set up.  Give the
   3644 		 * first descriptor to the chip now.
   3645 		 */
   3646 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
   3647 		ATW_CDTXSYNC(sc, firsttx, 1,
   3648 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3649 
   3650 		/* Wake up the transmitter. */
   3651 		ATW_WRITE(sc, ATW_TDR, 0x1);
   3652 
   3653 		/* Set a watchdog timer in case the chip flakes out. */
   3654 		sc->sc_tx_timer = 5;
   3655 		ifp->if_timer = 1;
   3656 	}
   3657 }
   3658 
   3659 /*
   3660  * atw_power:
   3661  *
   3662  *	Power management (suspend/resume) hook.
   3663  */
   3664 void
   3665 atw_power(int why, void *arg)
   3666 {
   3667 	struct atw_softc *sc = arg;
   3668 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3669 	int s;
   3670 
   3671 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
   3672 
   3673 	s = splnet();
   3674 	switch (why) {
   3675 	case PWR_STANDBY:
   3676 		/* XXX do nothing. */
   3677 		break;
   3678 	case PWR_SUSPEND:
   3679 		atw_stop(ifp, 0);
   3680 		if (sc->sc_power != NULL)
   3681 			(*sc->sc_power)(sc, why);
   3682 		break;
   3683 	case PWR_RESUME:
   3684 		if (ifp->if_flags & IFF_UP) {
   3685 			if (sc->sc_power != NULL)
   3686 				(*sc->sc_power)(sc, why);
   3687 			atw_init(ifp);
   3688 		}
   3689 		break;
   3690 	case PWR_SOFTSUSPEND:
   3691 	case PWR_SOFTSTANDBY:
   3692 	case PWR_SOFTRESUME:
   3693 		break;
   3694 	}
   3695 	splx(s);
   3696 }
   3697 
   3698 /*
   3699  * atw_ioctl:		[ifnet interface function]
   3700  *
   3701  *	Handle control requests from the operator.
   3702  */
   3703 int
   3704 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   3705 {
   3706 	struct atw_softc *sc = ifp->if_softc;
   3707 	struct ifreq *ifr = (struct ifreq *)data;
   3708 	int s, error = 0;
   3709 
   3710 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
   3711 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   3712 		return ENXIO;
   3713 
   3714 	s = splnet();
   3715 
   3716 	switch (cmd) {
   3717 	case SIOCSIFFLAGS:
   3718 		if (ifp->if_flags & IFF_UP) {
   3719 			if (ATW_IS_ENABLED(sc)) {
   3720 				/*
   3721 				 * To avoid rescanning another access point,
   3722 				 * do not call atw_init() here.  Instead,
   3723 				 * only reflect media settings.
   3724 				 */
   3725 				atw_filter_setup(sc);
   3726 			} else
   3727 				error = atw_init(ifp);
   3728 		} else if (ATW_IS_ENABLED(sc))
   3729 			atw_stop(ifp, 1);
   3730 		break;
   3731 	case SIOCADDMULTI:
   3732 	case SIOCDELMULTI:
   3733 		error = (cmd == SIOCADDMULTI) ?
   3734 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
   3735 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
   3736 		if (error == ENETRESET) {
   3737 			if (ATW_IS_ENABLED(sc))
   3738 				atw_filter_setup(sc); /* do not rescan */
   3739 			error = 0;
   3740 		}
   3741 		break;
   3742 	default:
   3743 		error = ieee80211_ioctl(ifp, cmd, data);
   3744 		if (error == ENETRESET) {
   3745 			if (ATW_IS_ENABLED(sc))
   3746 				error = atw_init(ifp);
   3747 			else
   3748 				error = 0;
   3749 		}
   3750 		break;
   3751 	}
   3752 
   3753 	/* Try to get more packets going. */
   3754 	if (ATW_IS_ENABLED(sc))
   3755 		atw_start(ifp);
   3756 
   3757 	splx(s);
   3758 	return (error);
   3759 }
   3760 
   3761 static int
   3762 atw_media_change(struct ifnet *ifp)
   3763 {
   3764 	int error;
   3765 
   3766 	error = ieee80211_media_change(ifp);
   3767 	if (error == ENETRESET) {
   3768 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   3769 		    (IFF_RUNNING|IFF_UP))
   3770 			atw_init(ifp);		/* XXX lose error */
   3771 		error = 0;
   3772 	}
   3773 	return error;
   3774 }
   3775 
   3776 static void
   3777 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
   3778 {
   3779 	struct atw_softc *sc = ifp->if_softc;
   3780 
   3781 	if (ATW_IS_ENABLED(sc) == 0) {
   3782 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
   3783 		imr->ifm_status = 0;
   3784 		return;
   3785 	}
   3786 	ieee80211_media_status(ifp, imr);
   3787 }
   3788