atw.c revision 1.41 1 /* $NetBSD: atw.c,v 1.41 2004/07/15 06:20:58 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.41 2004/07/15 06:20:58 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
139 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
140 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
141
142 int atw_rfio_enable_delay = 20 * 1000;
143 int atw_rfio_disable_delay = 2 * 1000;
144 int atw_writewep_delay = 5;
145 int atw_beacon_len_adjust = 4;
146 int atw_dwelltime = 200;
147
148 #ifdef ATW_DEBUG
149 int atw_debug = 0;
150
151 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
152 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
153 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
154 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
155 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157
158 static void atw_print_regs(struct atw_softc *, const char *);
159 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
160
161 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162 # ifdef ATW_BBPDEBUG
163 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
164 static void atw_rf3000_print(struct atw_softc *);
165 # endif /* ATW_BBPDEBUG */
166
167 # ifdef ATW_SYNDEBUG
168 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
169 static void atw_si4126_print(struct atw_softc *);
170 # endif /* ATW_SYNDEBUG */
171
172 #else
173 #define ATW_DPRINTF(x)
174 #define ATW_DPRINTF2(x)
175 #define ATW_DPRINTF3(x)
176 #define DPRINTF(sc, x) /* nothing */
177 #define DPRINTF2(sc, x) /* nothing */
178 #define DPRINTF3(sc, x) /* nothing */
179 #endif
180
181 #ifdef ATW_STATS
182 void atw_print_stats(struct atw_softc *);
183 #endif
184
185 void atw_start(struct ifnet *);
186 void atw_watchdog(struct ifnet *);
187 int atw_ioctl(struct ifnet *, u_long, caddr_t);
188 int atw_init(struct ifnet *);
189 void atw_txdrain(struct atw_softc *);
190 void atw_stop(struct ifnet *, int);
191
192 void atw_reset(struct atw_softc *);
193 int atw_read_srom(struct atw_softc *);
194
195 void atw_shutdown(void *);
196
197 void atw_rxdrain(struct atw_softc *);
198 int atw_add_rxbuf(struct atw_softc *, int);
199 void atw_idle(struct atw_softc *, u_int32_t);
200
201 int atw_enable(struct atw_softc *);
202 void atw_disable(struct atw_softc *);
203 void atw_power(int, void *);
204
205 void atw_rxintr(struct atw_softc *);
206 void atw_txintr(struct atw_softc *);
207 void atw_linkintr(struct atw_softc *, u_int32_t);
208
209 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
210 static void atw_tsf(struct atw_softc *);
211 static void atw_start_beacon(struct atw_softc *, int);
212 static void atw_write_wep(struct atw_softc *);
213 static void atw_write_bssid(struct atw_softc *);
214 static void atw_write_ssid(struct atw_softc *);
215 static void atw_write_sup_rates(struct atw_softc *);
216 static void atw_clear_sram(struct atw_softc *);
217 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
218 static int atw_media_change(struct ifnet *);
219 static void atw_media_status(struct ifnet *, struct ifmediareq *);
220 static void atw_filter_setup(struct atw_softc *);
221 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
222 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
223 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
224 struct ieee80211_node *, int, int, u_int32_t);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
228 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
229
230 static int atw_tune(struct atw_softc *);
231
232 static void atw_rfio_enable(struct atw_softc *, int);
233
234 /* RFMD RF3000 Baseband Processor */
235 static int atw_rf3000_init(struct atw_softc *);
236 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
237 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
238 #ifdef ATW_DEBUG
239 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
240 #endif /* ATW_DEBUG */
241
242 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
243 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
244 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
245 #ifdef ATW_DEBUG
246 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
247 #endif /* ATW_DEBUG */
248
249 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
250 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
251
252 const char *atw_tx_state[] = {
253 "STOPPED",
254 "RUNNING - read descriptor",
255 "RUNNING - transmitting",
256 "RUNNING - filling fifo", /* XXX */
257 "SUSPENDED",
258 "RUNNING -- write descriptor",
259 "RUNNING -- write last descriptor",
260 "RUNNING - fifo full"
261 };
262
263 const char *atw_rx_state[] = {
264 "STOPPED",
265 "RUNNING - read descriptor",
266 "RUNNING - check this packet, pre-fetch next",
267 "RUNNING - wait for reception",
268 "SUSPENDED",
269 "RUNNING - write descriptor",
270 "RUNNING - flush fifo",
271 "RUNNING - fifo drain"
272 };
273
274 int
275 atw_activate(struct device *self, enum devact act)
276 {
277 struct atw_softc *sc = (struct atw_softc *)self;
278 int rv = 0, s;
279
280 s = splnet();
281 switch (act) {
282 case DVACT_ACTIVATE:
283 rv = EOPNOTSUPP;
284 break;
285
286 case DVACT_DEACTIVATE:
287 if_deactivate(&sc->sc_ic.ic_if);
288 break;
289 }
290 splx(s);
291 return rv;
292 }
293
294 /*
295 * atw_enable:
296 *
297 * Enable the ADM8211 chip.
298 */
299 int
300 atw_enable(struct atw_softc *sc)
301 {
302
303 if (ATW_IS_ENABLED(sc) == 0) {
304 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
305 printf("%s: device enable failed\n",
306 sc->sc_dev.dv_xname);
307 return (EIO);
308 }
309 sc->sc_flags |= ATWF_ENABLED;
310 }
311 return (0);
312 }
313
314 /*
315 * atw_disable:
316 *
317 * Disable the ADM8211 chip.
318 */
319 void
320 atw_disable(struct atw_softc *sc)
321 {
322 if (!ATW_IS_ENABLED(sc))
323 return;
324 if (sc->sc_disable != NULL)
325 (*sc->sc_disable)(sc);
326 sc->sc_flags &= ~ATWF_ENABLED;
327 }
328
329 /* Returns -1 on failure. */
330 int
331 atw_read_srom(struct atw_softc *sc)
332 {
333 struct seeprom_descriptor sd;
334 u_int32_t reg;
335
336 (void)memset(&sd, 0, sizeof(sd));
337
338 reg = ATW_READ(sc, ATW_TEST0);
339
340 if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
341 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
342 return -1;
343 }
344
345 switch (reg & ATW_TEST0_EPTYP_MASK) {
346 case ATW_TEST0_EPTYP_93c66:
347 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
348 sc->sc_sromsz = 512;
349 sd.sd_chip = C56_66;
350 break;
351 case ATW_TEST0_EPTYP_93c46:
352 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
353 sc->sc_sromsz = 128;
354 sd.sd_chip = C46;
355 break;
356 default:
357 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
358 MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
359 return -1;
360 }
361
362 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
363
364 if (sc->sc_srom == NULL) {
365 printf("%s: unable to allocate SROM buffer\n",
366 sc->sc_dev.dv_xname);
367 return -1;
368 }
369
370 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
371
372 /* ADM8211 has a single 32-bit register for controlling the
373 * 93cx6 SROM. Bit SRS enables the serial port. There is no
374 * "ready" bit. The ADM8211 input/output sense is the reverse
375 * of read_seeprom's.
376 */
377 sd.sd_tag = sc->sc_st;
378 sd.sd_bsh = sc->sc_sh;
379 sd.sd_regsize = 4;
380 sd.sd_control_offset = ATW_SPR;
381 sd.sd_status_offset = ATW_SPR;
382 sd.sd_dataout_offset = ATW_SPR;
383 sd.sd_CK = ATW_SPR_SCLK;
384 sd.sd_CS = ATW_SPR_SCS;
385 sd.sd_DI = ATW_SPR_SDO;
386 sd.sd_DO = ATW_SPR_SDI;
387 sd.sd_MS = ATW_SPR_SRS;
388 sd.sd_RDY = 0;
389
390 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
391 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
392 free(sc->sc_srom, M_DEVBUF);
393 return -1;
394 }
395 #ifdef ATW_DEBUG
396 {
397 int i;
398 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
399 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
400 if (((i % 8) == 0) && (i != 0)) {
401 ATW_DPRINTF(("\n\t"));
402 }
403 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
404 }
405 ATW_DPRINTF(("\n"));
406 }
407 #endif /* ATW_DEBUG */
408 return 0;
409 }
410
411 #ifdef ATW_DEBUG
412 static void
413 atw_print_regs(struct atw_softc *sc, const char *where)
414 {
415 #define PRINTREG(sc, reg) \
416 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
417 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
418
419 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
420
421 PRINTREG(sc, ATW_PAR);
422 PRINTREG(sc, ATW_FRCTL);
423 PRINTREG(sc, ATW_TDR);
424 PRINTREG(sc, ATW_WTDP);
425 PRINTREG(sc, ATW_RDR);
426 PRINTREG(sc, ATW_WRDP);
427 PRINTREG(sc, ATW_RDB);
428 PRINTREG(sc, ATW_CSR3A);
429 PRINTREG(sc, ATW_TDBD);
430 PRINTREG(sc, ATW_TDBP);
431 PRINTREG(sc, ATW_STSR);
432 PRINTREG(sc, ATW_CSR5A);
433 PRINTREG(sc, ATW_NAR);
434 PRINTREG(sc, ATW_CSR6A);
435 PRINTREG(sc, ATW_IER);
436 PRINTREG(sc, ATW_CSR7A);
437 PRINTREG(sc, ATW_LPC);
438 PRINTREG(sc, ATW_TEST1);
439 PRINTREG(sc, ATW_SPR);
440 PRINTREG(sc, ATW_TEST0);
441 PRINTREG(sc, ATW_WCSR);
442 PRINTREG(sc, ATW_WPDR);
443 PRINTREG(sc, ATW_GPTMR);
444 PRINTREG(sc, ATW_GPIO);
445 PRINTREG(sc, ATW_BBPCTL);
446 PRINTREG(sc, ATW_SYNCTL);
447 PRINTREG(sc, ATW_PLCPHD);
448 PRINTREG(sc, ATW_MMIWADDR);
449 PRINTREG(sc, ATW_MMIRADDR1);
450 PRINTREG(sc, ATW_MMIRADDR2);
451 PRINTREG(sc, ATW_TXBR);
452 PRINTREG(sc, ATW_CSR15A);
453 PRINTREG(sc, ATW_ALCSTAT);
454 PRINTREG(sc, ATW_TOFS2);
455 PRINTREG(sc, ATW_CMDR);
456 PRINTREG(sc, ATW_PCIC);
457 PRINTREG(sc, ATW_PMCSR);
458 PRINTREG(sc, ATW_PAR0);
459 PRINTREG(sc, ATW_PAR1);
460 PRINTREG(sc, ATW_MAR0);
461 PRINTREG(sc, ATW_MAR1);
462 PRINTREG(sc, ATW_ATIMDA0);
463 PRINTREG(sc, ATW_ABDA1);
464 PRINTREG(sc, ATW_BSSID0);
465 PRINTREG(sc, ATW_TXLMT);
466 PRINTREG(sc, ATW_MIBCNT);
467 PRINTREG(sc, ATW_BCNT);
468 PRINTREG(sc, ATW_TSFTH);
469 PRINTREG(sc, ATW_TSC);
470 PRINTREG(sc, ATW_SYNRF);
471 PRINTREG(sc, ATW_BPLI);
472 PRINTREG(sc, ATW_CAP0);
473 PRINTREG(sc, ATW_CAP1);
474 PRINTREG(sc, ATW_RMD);
475 PRINTREG(sc, ATW_CFPP);
476 PRINTREG(sc, ATW_TOFS0);
477 PRINTREG(sc, ATW_TOFS1);
478 PRINTREG(sc, ATW_IFST);
479 PRINTREG(sc, ATW_RSPT);
480 PRINTREG(sc, ATW_TSFTL);
481 PRINTREG(sc, ATW_WEPCTL);
482 PRINTREG(sc, ATW_WESK);
483 PRINTREG(sc, ATW_WEPCNT);
484 PRINTREG(sc, ATW_MACTEST);
485 PRINTREG(sc, ATW_FER);
486 PRINTREG(sc, ATW_FEMR);
487 PRINTREG(sc, ATW_FPSR);
488 PRINTREG(sc, ATW_FFER);
489 #undef PRINTREG
490 }
491 #endif /* ATW_DEBUG */
492
493 /*
494 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
495 */
496 void
497 atw_attach(struct atw_softc *sc)
498 {
499 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
500 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
501 };
502 struct ieee80211com *ic = &sc->sc_ic;
503 struct ifnet *ifp = &ic->ic_if;
504 int country_code, error, i, nrate;
505 u_int32_t reg;
506 static const char *type_strings[] = {"Intersil (not supported)",
507 "RFMD", "Marvel (not supported)"};
508
509 sc->sc_txth = atw_txthresh_tab_lo;
510
511 SIMPLEQ_INIT(&sc->sc_txfreeq);
512 SIMPLEQ_INIT(&sc->sc_txdirtyq);
513
514 #ifdef ATW_DEBUG
515 atw_print_regs(sc, "atw_attach");
516 #endif /* ATW_DEBUG */
517
518 /*
519 * Allocate the control data structures, and create and load the
520 * DMA map for it.
521 */
522 if ((error = bus_dmamem_alloc(sc->sc_dmat,
523 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
524 1, &sc->sc_cdnseg, 0)) != 0) {
525 printf("%s: unable to allocate control data, error = %d\n",
526 sc->sc_dev.dv_xname, error);
527 goto fail_0;
528 }
529
530 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
531 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
532 BUS_DMA_COHERENT)) != 0) {
533 printf("%s: unable to map control data, error = %d\n",
534 sc->sc_dev.dv_xname, error);
535 goto fail_1;
536 }
537
538 if ((error = bus_dmamap_create(sc->sc_dmat,
539 sizeof(struct atw_control_data), 1,
540 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
541 printf("%s: unable to create control data DMA map, "
542 "error = %d\n", sc->sc_dev.dv_xname, error);
543 goto fail_2;
544 }
545
546 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
547 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
548 0)) != 0) {
549 printf("%s: unable to load control data DMA map, error = %d\n",
550 sc->sc_dev.dv_xname, error);
551 goto fail_3;
552 }
553
554 /*
555 * Create the transmit buffer DMA maps.
556 */
557 sc->sc_ntxsegs = ATW_NTXSEGS;
558 for (i = 0; i < ATW_TXQUEUELEN; i++) {
559 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
560 sc->sc_ntxsegs, MCLBYTES, 0, 0,
561 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
562 printf("%s: unable to create tx DMA map %d, "
563 "error = %d\n", sc->sc_dev.dv_xname, i, error);
564 goto fail_4;
565 }
566 }
567
568 /*
569 * Create the receive buffer DMA maps.
570 */
571 for (i = 0; i < ATW_NRXDESC; i++) {
572 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
573 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
574 printf("%s: unable to create rx DMA map %d, "
575 "error = %d\n", sc->sc_dev.dv_xname, i, error);
576 goto fail_5;
577 }
578 }
579 for (i = 0; i < ATW_NRXDESC; i++) {
580 sc->sc_rxsoft[i].rxs_mbuf = NULL;
581 }
582
583 /* Reset the chip to a known state. */
584 atw_reset(sc);
585
586 if (atw_read_srom(sc) == -1)
587 return;
588
589 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
590 ATW_SR_RFTYPE_MASK);
591
592 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
593 ATW_SR_BBPTYPE_MASK);
594
595 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
596 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
597 return;
598 }
599 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
600 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
601 return;
602 }
603
604 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
605 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
606
607 /* XXX There exists a Linux driver which seems to use RFType = 0 for
608 * MARVEL. My bug, or theirs?
609 */
610
611 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
612
613 switch (sc->sc_rftype) {
614 case ATW_RFTYPE_INTERSIL:
615 reg |= ATW_SYNCTL_CS1;
616 break;
617 case ATW_RFTYPE_RFMD:
618 reg |= ATW_SYNCTL_CS0;
619 break;
620 case ATW_RFTYPE_MARVEL:
621 break;
622 }
623
624 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
625 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
626
627 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
628
629 switch (sc->sc_bbptype) {
630 case ATW_BBPTYPE_INTERSIL:
631 reg |= ATW_BBPCTL_TWI;
632 break;
633 case ATW_BBPTYPE_RFMD:
634 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
635 ATW_BBPCTL_CCA_ACTLO;
636 break;
637 case ATW_BBPTYPE_MARVEL:
638 break;
639 case ATW_C_BBPTYPE_RFMD:
640 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
641 sc->sc_dev.dv_xname);
642 break;
643 }
644
645 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
646 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
647
648 /*
649 * From this point forward, the attachment cannot fail. A failure
650 * before this point releases all resources that may have been
651 * allocated.
652 */
653 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
654
655 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
656 htole16(sc->sc_srom[ATW_SR_MAC00]),
657 htole16(sc->sc_srom[ATW_SR_MAC01]),
658 htole16(sc->sc_srom[ATW_SR_MAC10])));
659
660 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
661 ATW_SR_CTRY_MASK);
662
663 #define ADD_CHANNEL(_ic, _chan) do { \
664 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
665 _ic->ic_channels[_chan].ic_freq = \
666 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
667 } while (0)
668
669 /* Find available channels */
670 switch (country_code) {
671 case COUNTRY_MMK2: /* 1-14 */
672 ADD_CHANNEL(ic, 14);
673 /*FALLTHROUGH*/
674 case COUNTRY_ETSI: /* 1-13 */
675 for (i = 1; i <= 13; i++)
676 ADD_CHANNEL(ic, i);
677 break;
678 case COUNTRY_FCC: /* 1-11 */
679 case COUNTRY_IC: /* 1-11 */
680 for (i = 1; i <= 11; i++)
681 ADD_CHANNEL(ic, i);
682 break;
683 case COUNTRY_MMK: /* 14 */
684 ADD_CHANNEL(ic, 14);
685 break;
686 case COUNTRY_FRANCE: /* 10-13 */
687 for (i = 10; i <= 13; i++)
688 ADD_CHANNEL(ic, i);
689 break;
690 default: /* assume channels 10-11 */
691 case COUNTRY_SPAIN: /* 10-11 */
692 for (i = 10; i <= 11; i++)
693 ADD_CHANNEL(ic, i);
694 break;
695 }
696
697 /* Read the MAC address. */
698 reg = ATW_READ(sc, ATW_PAR0);
699 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
700 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
701 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
702 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
703 reg = ATW_READ(sc, ATW_PAR1);
704 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
705 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
706
707 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
708 printf(" could not get mac address, attach failed\n");
709 return;
710 }
711
712 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
713
714 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
715 ifp->if_softc = sc;
716 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
717 IFF_NOTRAILERS;
718 ifp->if_ioctl = atw_ioctl;
719 ifp->if_start = atw_start;
720 ifp->if_watchdog = atw_watchdog;
721 ifp->if_init = atw_init;
722 ifp->if_stop = atw_stop;
723 IFQ_SET_READY(&ifp->if_snd);
724
725 ic->ic_phytype = IEEE80211_T_DS;
726 ic->ic_opmode = IEEE80211_M_STA;
727 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
728 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
729
730 nrate = 0;
731 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
732 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
733 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
734 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
735 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
736
737 /*
738 * Call MI attach routines.
739 */
740
741 if_attach(ifp);
742 ieee80211_ifattach(ifp);
743
744 sc->sc_newstate = ic->ic_newstate;
745 ic->ic_newstate = atw_newstate;
746
747 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
748 ic->ic_recv_mgmt = atw_recv_mgmt;
749
750 sc->sc_node_free = ic->ic_node_free;
751 ic->ic_node_free = atw_node_free;
752
753 sc->sc_node_alloc = ic->ic_node_alloc;
754 ic->ic_node_alloc = atw_node_alloc;
755
756 /* possibly we should fill in our own sc_send_prresp, since
757 * the ADM8211 is probably sending probe responses in ad hoc
758 * mode.
759 */
760
761 /* complete initialization */
762 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
763 callout_init(&sc->sc_scan_ch);
764
765 #if NBPFILTER > 0
766 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
767 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
768 #endif
769
770 /*
771 * Make sure the interface is shutdown during reboot.
772 */
773 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
774 if (sc->sc_sdhook == NULL)
775 printf("%s: WARNING: unable to establish shutdown hook\n",
776 sc->sc_dev.dv_xname);
777
778 /*
779 * Add a suspend hook to make sure we come back up after a
780 * resume.
781 */
782 sc->sc_powerhook = powerhook_establish(atw_power, sc);
783 if (sc->sc_powerhook == NULL)
784 printf("%s: WARNING: unable to establish power hook\n",
785 sc->sc_dev.dv_xname);
786
787 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
788 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
789 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
790
791 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
792 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
793 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
794
795 return;
796
797 /*
798 * Free any resources we've allocated during the failed attach
799 * attempt. Do this in reverse order and fall through.
800 */
801 fail_5:
802 for (i = 0; i < ATW_NRXDESC; i++) {
803 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
804 continue;
805 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
806 }
807 fail_4:
808 for (i = 0; i < ATW_TXQUEUELEN; i++) {
809 if (sc->sc_txsoft[i].txs_dmamap == NULL)
810 continue;
811 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
812 }
813 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
814 fail_3:
815 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
816 fail_2:
817 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
818 sizeof(struct atw_control_data));
819 fail_1:
820 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
821 fail_0:
822 return;
823 }
824
825 static struct ieee80211_node *
826 atw_node_alloc(struct ieee80211com *ic)
827 {
828 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
829 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
830
831 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
832 return ni;
833 }
834
835 static void
836 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
837 {
838 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
839
840 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
841 ether_sprintf(ni->ni_bssid)));
842 (*sc->sc_node_free)(ic, ni);
843 }
844
845 /*
846 * atw_reset:
847 *
848 * Perform a soft reset on the ADM8211.
849 */
850 void
851 atw_reset(struct atw_softc *sc)
852 {
853 int i;
854
855 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
856
857 for (i = 0; i < 10000; i++) {
858 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
859 break;
860 DELAY(1);
861 }
862
863 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
864
865 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
866 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
867
868 /* Turn off maximum power saving. */
869 ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
870
871 /* Recall EEPROM. */
872 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
873
874 DELAY(10 * 1000);
875
876 /* A reset seems to affect the SRAM contents, so put them into
877 * a known state.
878 */
879 atw_clear_sram(sc);
880
881 memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
882 }
883
884 static void
885 atw_clear_sram(struct atw_softc *sc)
886 {
887 #if 0
888 for (addr = 0; addr < 448; addr++) {
889 ATW_WRITE(sc, ATW_WEPCTL,
890 ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0 | addr);
891 DELAY(1000);
892 ATW_WRITE(sc, ATW_WESK, 0);
893 DELAY(1000); /* paranoia */
894 }
895 return;
896 #endif
897 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
898 /* XXX not for revision 0x20. */
899 atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
900 }
901
902 /* TBD atw_init
903 *
904 * set MAC based on ic->ic_bss->myaddr
905 * write WEP keys
906 * set TX rate
907 */
908
909 /*
910 * atw_init: [ ifnet interface function ]
911 *
912 * Initialize the interface. Must be called at splnet().
913 */
914 int
915 atw_init(struct ifnet *ifp)
916 {
917 struct atw_softc *sc = ifp->if_softc;
918 struct ieee80211com *ic = &sc->sc_ic;
919 struct atw_txsoft *txs;
920 struct atw_rxsoft *rxs;
921 u_int32_t reg;
922 int i, error = 0;
923
924 if ((error = atw_enable(sc)) != 0)
925 goto out;
926
927 /*
928 * Cancel any pending I/O. This also resets.
929 */
930 atw_stop(ifp, 0);
931
932 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
933 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
934 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
935 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
936
937 /* Turn off APM??? (A binary-only driver does this.)
938 *
939 * Set Rx store-and-forward mode.
940 */
941 reg = ATW_READ(sc, ATW_CMDR);
942 reg &= ~ATW_CMDR_APM;
943 reg &= ~ATW_CMDR_DRT_MASK;
944 reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
945
946 ATW_WRITE(sc, ATW_CMDR, reg);
947
948 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
949 *
950 * XXX a binary-only driver sets a different service field than
951 * 0. why?
952 */
953 reg = ATW_READ(sc, ATW_PLCPHD);
954 reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
955 reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
956 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
957 ATW_WRITE(sc, ATW_PLCPHD, reg);
958
959 /* XXX this magic can probably be figured out from the RFMD docs */
960 reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
961 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
962 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
963 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
964 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
965 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
966 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
967 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
968 ATW_WRITE(sc, ATW_TOFS2, reg);
969
970 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
971 LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
972
973 /* XXX this resets an Intersil RF front-end? */
974 /* TBD condition on Intersil RFType? */
975 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
976 DELAY(10 * 1000);
977 ATW_WRITE(sc, ATW_SYNRF, 0);
978 DELAY(5 * 1000);
979
980 /* 16 TU max duration for contention-free period */
981 reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
982 ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
983
984 /* XXX I guess that the Cardbus clock is 22MHz?
985 * I am assuming that the role of ATW_TOFS0_USCNT is
986 * to divide the bus clock to get a 1MHz clock---the datasheet is not
987 * very clear on this point. It says in the datasheet that it is
988 * possible for the ADM8211 to accomodate bus speeds between 22MHz
989 * and 33MHz; maybe this is the way? I see a binary-only driver write
990 * these values. These values are also the power-on default.
991 */
992 ATW_WRITE(sc, ATW_TOFS0,
993 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
994 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
995
996 /* Initialize interframe spacing. EIFS=0x64 is used by a binary-only
997 * driver. Go figure.
998 */
999 reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1000 LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
1001 ATW_IFST_SIFS_MASK) |
1002 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1003 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1004
1005 ATW_WRITE(sc, ATW_IFST, reg);
1006
1007 /* XXX More magic. Might relate to ACK timing. */
1008 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1009 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1010
1011 /* Set up the MMI read/write addresses for the BBP.
1012 *
1013 * TBD find out the Marvel settings.
1014 */
1015 switch (sc->sc_bbptype) {
1016 case ATW_BBPTYPE_INTERSIL:
1017 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1018 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1019 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1020 break;
1021 case ATW_BBPTYPE_MARVEL:
1022 break;
1023 case ATW_BBPTYPE_RFMD:
1024 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1025 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1026 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1027 default:
1028 break;
1029 }
1030
1031 sc->sc_wepctl = 0;
1032 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1033
1034 if ((error = atw_rf3000_init(sc)) != 0)
1035 goto out;
1036
1037 /*
1038 * Initialize the PCI Access Register.
1039 */
1040 sc->sc_busmode = ATW_PAR_BAR; /* XXX what is this? */
1041
1042 /*
1043 * If we're allowed to do so, use Memory Read Line
1044 * and Memory Read Multiple.
1045 *
1046 * XXX Should we use Memory Write and Invalidate?
1047 */
1048 if (sc->sc_flags & ATWF_MRL)
1049 sc->sc_busmode |= ATW_PAR_MRLE;
1050 if (sc->sc_flags & ATWF_MRM)
1051 sc->sc_busmode |= ATW_PAR_MRME;
1052 if (sc->sc_flags & ATWF_MWI)
1053 sc->sc_busmode |= ATW_PAR_MWIE;
1054 if (sc->sc_maxburst == 0)
1055 sc->sc_maxburst = 8; /* ADM8211 default */
1056
1057 switch (sc->sc_cacheline) {
1058 default:
1059 /* Use burst length. */
1060 break;
1061 case 8:
1062 sc->sc_busmode |= ATW_PAR_CAL_8DW;
1063 break;
1064 case 16:
1065 sc->sc_busmode |= ATW_PAR_CAL_16DW;
1066 break;
1067 case 32:
1068 sc->sc_busmode |= ATW_PAR_CAL_32DW;
1069 break;
1070 }
1071 switch (sc->sc_maxburst) {
1072 case 1:
1073 sc->sc_busmode |= ATW_PAR_PBL_1DW;
1074 break;
1075 case 2:
1076 sc->sc_busmode |= ATW_PAR_PBL_2DW;
1077 break;
1078 case 4:
1079 sc->sc_busmode |= ATW_PAR_PBL_4DW;
1080 break;
1081 case 8:
1082 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1083 break;
1084 case 16:
1085 sc->sc_busmode |= ATW_PAR_PBL_16DW;
1086 break;
1087 case 32:
1088 sc->sc_busmode |= ATW_PAR_PBL_32DW;
1089 break;
1090 default:
1091 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1092 break;
1093 }
1094
1095 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1096 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1097 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1098
1099 /*
1100 * Initialize the OPMODE register. We don't write it until
1101 * we're ready to begin the transmit and receive processes.
1102 */
1103 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1104 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1105
1106 /*
1107 * Initialize the transmit descriptor ring.
1108 */
1109 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1110 for (i = 0; i < ATW_NTXDESC; i++) {
1111 /* no transmit chaining */
1112 sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1113 sc->sc_txdescs[i].at_buf2 =
1114 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1115 }
1116 /* use ring mode */
1117 sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1118 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1119 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1120 sc->sc_txfree = ATW_NTXDESC;
1121 sc->sc_txnext = 0;
1122
1123 /*
1124 * Initialize the transmit job descriptors.
1125 */
1126 SIMPLEQ_INIT(&sc->sc_txfreeq);
1127 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1128 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1129 txs = &sc->sc_txsoft[i];
1130 txs->txs_mbuf = NULL;
1131 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1132 }
1133
1134 /*
1135 * Initialize the receive descriptor and receive job
1136 * descriptor rings.
1137 */
1138 for (i = 0; i < ATW_NRXDESC; i++) {
1139 rxs = &sc->sc_rxsoft[i];
1140 if (rxs->rxs_mbuf == NULL) {
1141 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1142 printf("%s: unable to allocate or map rx "
1143 "buffer %d, error = %d\n",
1144 sc->sc_dev.dv_xname, i, error);
1145 /*
1146 * XXX Should attempt to run with fewer receive
1147 * XXX buffers instead of just failing.
1148 */
1149 atw_rxdrain(sc);
1150 goto out;
1151 }
1152 } else
1153 ATW_INIT_RXDESC(sc, i);
1154 }
1155 sc->sc_rxptr = 0;
1156
1157 /* disable all wake-up events */
1158 ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1159 ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1160 ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1161 ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1162
1163 /* ack all wake-up events */
1164 ATW_SET(sc, ATW_WCSR, 0);
1165
1166 /*
1167 * Initialize the interrupt mask and enable interrupts.
1168 */
1169 /* normal interrupts */
1170 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1171 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1172
1173 /* abnormal interrupts */
1174 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1175 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1176 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1177
1178 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1179 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1180 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1181 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1182 ATW_INTR_TRT;
1183
1184 sc->sc_linkint_mask &= sc->sc_inten;
1185 sc->sc_rxint_mask &= sc->sc_inten;
1186 sc->sc_txint_mask &= sc->sc_inten;
1187
1188 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1189 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1190 if (sc->sc_intr_ack != NULL)
1191 (*sc->sc_intr_ack)(sc);
1192
1193 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1194 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1195
1196 /*
1197 * Give the transmit and receive rings to the ADM8211.
1198 */
1199 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1200 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1201
1202 /* common 802.11 configuration */
1203 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1204 switch (ic->ic_opmode) {
1205 case IEEE80211_M_STA:
1206 break;
1207 case IEEE80211_M_AHDEMO: /* XXX */
1208 case IEEE80211_M_IBSS:
1209 ic->ic_flags |= IEEE80211_F_IBSSON;
1210 /*FALLTHROUGH*/
1211 case IEEE80211_M_HOSTAP: /* XXX */
1212 break;
1213 case IEEE80211_M_MONITOR: /* XXX */
1214 break;
1215 }
1216
1217 atw_start_beacon(sc, 0);
1218
1219 switch (ic->ic_opmode) {
1220 case IEEE80211_M_AHDEMO:
1221 case IEEE80211_M_HOSTAP:
1222 ic->ic_bss->ni_intval = ic->ic_lintval;
1223 ic->ic_bss->ni_rssi = 0;
1224 ic->ic_bss->ni_rstamp = 0;
1225 break;
1226 default: /* XXX */
1227 break;
1228 }
1229
1230 atw_write_ssid(sc);
1231 atw_write_sup_rates(sc);
1232 if (ic->ic_caps & IEEE80211_C_WEP)
1233 atw_write_wep(sc);
1234
1235 /*
1236 * Set the receive filter. This will start the transmit and
1237 * receive processes.
1238 */
1239 atw_filter_setup(sc);
1240
1241 /*
1242 * Start the receive process.
1243 */
1244 ATW_WRITE(sc, ATW_RDR, 0x1);
1245
1246 /*
1247 * Note that the interface is now running.
1248 */
1249 ifp->if_flags |= IFF_RUNNING;
1250 ifp->if_flags &= ~IFF_OACTIVE;
1251 ic->ic_state = IEEE80211_S_INIT;
1252
1253 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1254 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1255 else
1256 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1257 out:
1258 if (error) {
1259 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1260 ifp->if_timer = 0;
1261 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1262 }
1263 #ifdef ATW_DEBUG
1264 atw_print_regs(sc, "end of init");
1265 #endif /* ATW_DEBUG */
1266
1267 return (error);
1268 }
1269
1270 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1271 * 0: MAC control of RF3000/Si4126.
1272 *
1273 * Applies power, or selects RF front-end? Sets reset condition.
1274 *
1275 * TBD support non-RFMD BBP, non-SiLabs synth.
1276 */
1277 static void
1278 atw_rfio_enable(struct atw_softc *sc, int enable)
1279 {
1280 if (enable) {
1281 ATW_WRITE(sc, ATW_SYNRF,
1282 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1283 DELAY(atw_rfio_enable_delay);
1284 } else {
1285 ATW_WRITE(sc, ATW_SYNRF, 0);
1286 DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1287 }
1288 }
1289
1290 static int
1291 atw_tune(struct atw_softc *sc)
1292 {
1293 int rc;
1294 u_int32_t reg;
1295 int chan;
1296 struct ieee80211com *ic = &sc->sc_ic;
1297
1298 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1299 if (chan == IEEE80211_CHAN_ANY)
1300 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1301
1302 if (chan == sc->sc_cur_chan)
1303 return 0;
1304
1305 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1306 sc->sc_cur_chan, chan));
1307
1308 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1309
1310 if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1311 (rc = atw_rf3000_tune(sc, chan)) != 0)
1312 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1313 chan);
1314
1315 reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1316 ATW_WRITE(sc, ATW_CAP0,
1317 reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1318
1319 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1320
1321 if (rc == 0)
1322 sc->sc_cur_chan = chan;
1323
1324 return rc;
1325 }
1326
1327 #ifdef ATW_DEBUG
1328 static void
1329 atw_si4126_print(struct atw_softc *sc)
1330 {
1331 struct ifnet *ifp = &sc->sc_ic.ic_if;
1332 u_int addr, val;
1333
1334 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1335 return;
1336
1337 for (addr = 0; addr <= 8; addr++) {
1338 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1339 if (atw_si4126_read(sc, addr, &val) == 0) {
1340 printf("<unknown> (quitting print-out)\n");
1341 break;
1342 }
1343 printf("%05x\n", val);
1344 }
1345 }
1346 #endif /* ATW_DEBUG */
1347
1348 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1349 *
1350 * The RF/IF synthesizer produces two reference frequencies for
1351 * the RF2948B transceiver. The first frequency the RF2948B requires
1352 * is two times the so-called "intermediate frequency" (IF). Since
1353 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1354 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1355 * frequency required by the transceiver is the radio frequency
1356 * (RF). This is a superheterodyne transceiver; for f(chan) the
1357 * center frequency of the channel we are tuning, RF = f(chan) -
1358 * IF.
1359 *
1360 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1361 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1362 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1363 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1364 */
1365 static int
1366 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
1367 {
1368 int rc = 0;
1369 u_int mhz;
1370 u_int R;
1371 u_int32_t reg;
1372 u_int16_t gain;
1373
1374 #ifdef ATW_DEBUG
1375 atw_si4126_print(sc);
1376 #endif /* ATW_DEBUG */
1377
1378 if (chan == 14)
1379 mhz = 2484;
1380 else
1381 mhz = 2412 + 5 * (chan - 1);
1382
1383 /* Tune IF to 748MHz to suit the IF LO input of the
1384 * RF2494B, which is 2 x IF. No need to set an IF divider
1385 * because an IF in 526MHz - 952MHz is allowed.
1386 *
1387 * XIN is 44.000MHz, so divide it by two to get allowable
1388 * range of 2-25MHz. SiLabs tells me that this is not
1389 * strictly necessary.
1390 */
1391
1392 R = 44;
1393
1394 atw_rfio_enable(sc, 1);
1395
1396 /* Power-up RF, IF synthesizers. */
1397 if ((rc = atw_si4126_write(sc, SI4126_POWER,
1398 SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1399 goto out;
1400
1401 /* If RF2 N > 2047, then set KP2 to 1. */
1402 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1403
1404 if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1405 goto out;
1406
1407 /* set LPWR, too? */
1408 if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1409 SI4126_MAIN_XINDIV2)) != 0)
1410 goto out;
1411
1412 /* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN. XIN = 44MHz.
1413 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1414 */
1415 if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1416 goto out;
1417
1418 if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1419 goto out;
1420
1421 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1422 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1423 * which has no RF1!
1424 */
1425 if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1426 goto out;
1427
1428 if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1429 goto out;
1430
1431 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1432 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1433 * Now let's multiply it to mhz. So mhz - IF = N.
1434 */
1435 if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1436 goto out;
1437
1438 if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1439 goto out;
1440
1441 /* wait 100us from power-up for RF, IF to settle */
1442 DELAY(100);
1443
1444 if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1445 /* XXX there is a binary driver which sends
1446 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1447 * that this enables the Si4126 by raising its PWDN#, but I
1448 * think that it actually sets the Prism RF front-end
1449 * to a special mode for channel 14.
1450 */
1451 reg = ATW_READ(sc, ATW_GPIO);
1452 reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1453 reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1454 ATW_WRITE(sc, ATW_GPIO, reg);
1455 }
1456
1457 #ifdef ATW_DEBUG
1458 atw_si4126_print(sc);
1459 #endif /* ATW_DEBUG */
1460
1461 out:
1462 atw_rfio_enable(sc, 0);
1463
1464 return rc;
1465 }
1466
1467 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1468 * diversity.
1469 *
1470 * Call this w/ Tx/Rx suspended.
1471 */
1472 static int
1473 atw_rf3000_init(struct atw_softc *sc)
1474 {
1475 int rc = 0;
1476
1477 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1478
1479 atw_rfio_enable(sc, 1);
1480
1481 /* enable diversity */
1482 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1483
1484 if (rc != 0)
1485 goto out;
1486
1487 /* sensible setting from a binary-only driver */
1488 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1489 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1490
1491 if (rc != 0)
1492 goto out;
1493
1494 /* magic from a binary-only driver */
1495 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1496 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1497
1498 if (rc != 0)
1499 goto out;
1500
1501 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1502
1503 if (rc != 0)
1504 goto out;
1505
1506 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1507
1508 if (rc != 0)
1509 goto out;
1510
1511 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1512
1513 if (rc != 0)
1514 goto out;
1515
1516 /* CCA is acquisition sensitive */
1517 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1518 LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1519
1520 if (rc != 0)
1521 goto out;
1522
1523 out:
1524 atw_rfio_enable(sc, 0);
1525 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1526 return rc;
1527 }
1528
1529 #ifdef ATW_DEBUG
1530 static void
1531 atw_rf3000_print(struct atw_softc *sc)
1532 {
1533 struct ifnet *ifp = &sc->sc_ic.ic_if;
1534 u_int addr, val;
1535
1536 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1537 return;
1538
1539 for (addr = 0x01; addr <= 0x15; addr++) {
1540 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1541 if (atw_rf3000_read(sc, addr, &val) != 0) {
1542 printf("<unknown> (quitting print-out)\n");
1543 break;
1544 }
1545 printf("%08x\n", val);
1546 }
1547 }
1548 #endif /* ATW_DEBUG */
1549
1550 /* Set the power settings on the BBP for channel `chan'. */
1551 static int
1552 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
1553 {
1554 int rc = 0;
1555 u_int32_t reg;
1556 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1557
1558 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1559 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1560 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1561
1562 /* odd channels: LSB, even channels: MSB */
1563 if (chan % 2 == 1) {
1564 txpower &= 0xFF;
1565 lpf_cutoff &= 0xFF;
1566 lna_gs_thresh &= 0xFF;
1567 } else {
1568 txpower >>= 8;
1569 lpf_cutoff >>= 8;
1570 lna_gs_thresh >>= 8;
1571 }
1572
1573 #ifdef ATW_DEBUG
1574 atw_rf3000_print(sc);
1575 #endif /* ATW_DEBUG */
1576
1577 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1578 "lna_gs_thresh %02x\n",
1579 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1580
1581 atw_rfio_enable(sc, 1);
1582
1583 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1584 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1585 goto out;
1586
1587 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1588 goto out;
1589
1590 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1591 goto out;
1592
1593 /* from a binary-only driver. */
1594 reg = ATW_READ(sc, ATW_PLCPHD);
1595 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1596 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1597 ATW_PLCPHD_SERVICE_MASK);
1598 ATW_WRITE(sc, ATW_PLCPHD, reg);
1599
1600 #ifdef ATW_DEBUG
1601 atw_rf3000_print(sc);
1602 #endif /* ATW_DEBUG */
1603
1604 out:
1605 atw_rfio_enable(sc, 0);
1606
1607 return rc;
1608 }
1609
1610 /* Write a register on the RF3000 baseband processor using the
1611 * registers provided by the ADM8211 for this purpose.
1612 *
1613 * Return 0 on success.
1614 */
1615 static int
1616 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1617 {
1618 u_int32_t reg;
1619 int i;
1620
1621 for (i = 1000; --i >= 0; ) {
1622 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1623 break;
1624 DELAY(100);
1625 }
1626
1627 if (i < 0) {
1628 printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1629 return ETIMEDOUT;
1630 }
1631
1632 reg = sc->sc_bbpctl_wr |
1633 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1634 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1635
1636 ATW_WRITE(sc, ATW_BBPCTL, reg);
1637
1638 for (i = 1000; --i >= 0; ) {
1639 DELAY(100);
1640 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1641 break;
1642 }
1643
1644 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1645
1646 if (i < 0) {
1647 printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1648 return ETIMEDOUT;
1649 }
1650 return 0;
1651 }
1652
1653 /* Read a register on the RF3000 baseband processor using the registers
1654 * the ADM8211 provides for this purpose.
1655 *
1656 * The 7-bit register address is addr. Record the 8-bit data in the register
1657 * in *val.
1658 *
1659 * Return 0 on success.
1660 *
1661 * XXX This does not seem to work. The ADM8211 must require more or
1662 * different magic to read the chip than to write it. Possibly some
1663 * of the magic I have derived from a binary-only driver concerns
1664 * the "chip address" (see the RF3000 manual).
1665 */
1666 #ifdef ATW_DEBUG
1667 static int
1668 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1669 {
1670 u_int32_t reg;
1671 int i;
1672
1673 for (i = 1000; --i >= 0; ) {
1674 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1675 break;
1676 DELAY(100);
1677 }
1678
1679 if (i < 0) {
1680 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1681 sc->sc_dev.dv_xname);
1682 return ETIMEDOUT;
1683 }
1684
1685 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1686
1687 ATW_WRITE(sc, ATW_BBPCTL, reg);
1688
1689 for (i = 1000; --i >= 0; ) {
1690 DELAY(100);
1691 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1692 break;
1693 }
1694
1695 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1696
1697 if (i < 0) {
1698 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1699 sc->sc_dev.dv_xname, reg);
1700 return ETIMEDOUT;
1701 }
1702 if (val != NULL)
1703 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1704 return 0;
1705 }
1706 #endif /* ATW_DEBUG */
1707
1708 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1709 * provided by the ADM8211 for that purpose.
1710 *
1711 * val is 18 bits of data, and val is the 4-bit address of the register.
1712 *
1713 * Return 0 on success.
1714 */
1715 static int
1716 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1717 {
1718 u_int32_t bits, reg;
1719 int i;
1720
1721 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1722 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1723
1724 for (i = 1000; --i >= 0; ) {
1725 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1726 break;
1727 DELAY(100);
1728 }
1729
1730 if (i < 0) {
1731 printf("%s: start atw_si4126_write, SYNCTL busy\n",
1732 sc->sc_dev.dv_xname);
1733 return ETIMEDOUT;
1734 }
1735
1736 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1737 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1738
1739 reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
1740
1741 ATW_WRITE(sc, ATW_SYNCTL, reg);
1742
1743 for (i = 1000; --i >= 0; ) {
1744 DELAY(100);
1745 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1746 break;
1747 }
1748
1749 /* restore to acceptable starting condition */
1750 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1751
1752 if (i < 0) {
1753 printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1754 sc->sc_dev.dv_xname, reg);
1755 return ETIMEDOUT;
1756 }
1757 return 0;
1758 }
1759
1760 /* Read 18-bit data from the 4-bit address addr in Si4126
1761 * RF synthesizer and write the data to *val. Return 0 on success.
1762 *
1763 * XXX This does not seem to work. The ADM8211 must require more or
1764 * different magic to read the chip than to write it.
1765 */
1766 #ifdef ATW_DEBUG
1767 static int
1768 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1769 {
1770 u_int32_t reg;
1771 int i;
1772
1773 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1774
1775 for (i = 1000; --i >= 0; ) {
1776 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1777 break;
1778 DELAY(100);
1779 }
1780
1781 if (i < 0) {
1782 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1783 sc->sc_dev.dv_xname);
1784 return ETIMEDOUT;
1785 }
1786
1787 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1788
1789 ATW_WRITE(sc, ATW_SYNCTL, reg);
1790
1791 for (i = 1000; --i >= 0; ) {
1792 DELAY(100);
1793 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1794 break;
1795 }
1796
1797 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1798
1799 if (i < 0) {
1800 printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1801 sc->sc_dev.dv_xname, reg);
1802 return ETIMEDOUT;
1803 }
1804 if (val != NULL)
1805 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1806 ATW_SYNCTL_DATA_MASK);
1807 return 0;
1808 }
1809 #endif /* ATW_DEBUG */
1810
1811 /* XXX is the endianness correct? test. */
1812 #define atw_calchash(addr) \
1813 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1814
1815 /*
1816 * atw_filter_setup:
1817 *
1818 * Set the ADM8211's receive filter.
1819 */
1820 static void
1821 atw_filter_setup(struct atw_softc *sc)
1822 {
1823 struct ieee80211com *ic = &sc->sc_ic;
1824 struct ethercom *ec = &ic->ic_ec;
1825 struct ifnet *ifp = &sc->sc_ic.ic_if;
1826 int hash;
1827 u_int32_t hashes[2] = { 0, 0 };
1828 struct ether_multi *enm;
1829 struct ether_multistep step;
1830
1831 DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1832 sc->sc_dev.dv_xname, sc->sc_flags));
1833
1834 /*
1835 * If we're running, idle the receive engine. If we're NOT running,
1836 * we're being called from atw_init(), and our writing ATW_NAR will
1837 * start the transmit and receive processes in motion.
1838 */
1839 if (ifp->if_flags & IFF_RUNNING)
1840 atw_idle(sc, ATW_NAR_SR);
1841
1842 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1843
1844 ifp->if_flags &= ~IFF_ALLMULTI;
1845
1846 if (ifp->if_flags & IFF_PROMISC) {
1847 sc->sc_opmode |= ATW_NAR_PR;
1848 allmulti:
1849 ifp->if_flags |= IFF_ALLMULTI;
1850 goto setit;
1851 }
1852
1853 /*
1854 * Program the 64-bit multicast hash filter.
1855 */
1856 ETHER_FIRST_MULTI(step, ec, enm);
1857 while (enm != NULL) {
1858 /* XXX */
1859 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1860 ETHER_ADDR_LEN) != 0)
1861 goto allmulti;
1862
1863 hash = atw_calchash(enm->enm_addrlo);
1864 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1865 ETHER_NEXT_MULTI(step, enm);
1866 }
1867
1868 if (ifp->if_flags & IFF_BROADCAST) {
1869 hash = atw_calchash(etherbroadcastaddr);
1870 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1871 }
1872
1873 /* all bits set => hash is useless */
1874 if (~(hashes[0] & hashes[1]) == 0)
1875 goto allmulti;
1876
1877 setit:
1878 if (ifp->if_flags & IFF_ALLMULTI)
1879 sc->sc_opmode |= ATW_NAR_MM;
1880
1881 /* XXX in scan mode, do not filter packets. maybe this is
1882 * unnecessary.
1883 */
1884 if (ic->ic_state == IEEE80211_S_SCAN)
1885 sc->sc_opmode |= ATW_NAR_PR;
1886
1887 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1888 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1889 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1890 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1891 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1892
1893 DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1894 }
1895
1896 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1897 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1898 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1899 * no beacon with the preferred BSSID and SSID in the number of
1900 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1901 */
1902 static void
1903 atw_write_bssid(struct atw_softc *sc)
1904 {
1905 struct ieee80211com *ic = &sc->sc_ic;
1906 u_int8_t *bssid;
1907
1908 bssid = ic->ic_bss->ni_bssid;
1909
1910 ATW_WRITE(sc, ATW_ABDA1,
1911 (ATW_READ(sc, ATW_ABDA1) &
1912 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1913 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1914 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1915
1916 ATW_WRITE(sc, ATW_BSSID0,
1917 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1918 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1919 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1920 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1921
1922 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1923 ether_sprintf(sc->sc_bssid)));
1924 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1925
1926 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1927 }
1928
1929 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1930 * 16-bit word.
1931 */
1932 static void
1933 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
1934 {
1935 u_int i;
1936 u_int8_t *ptr;
1937
1938 memcpy(&sc->sc_sram[ofs], buf, buflen);
1939
1940 if (ofs % 2 != 0) {
1941 ofs--;
1942 buflen++;
1943 }
1944
1945 if (buflen % 2 != 0)
1946 buflen++;
1947
1948 assert(buflen + ofs <= ATW_SRAM_SIZE);
1949
1950 ptr = &sc->sc_sram[ofs];
1951
1952 for (i = 0; i < buflen; i += 2) {
1953 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
1954 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
1955 DELAY(atw_writewep_delay);
1956
1957 ATW_WRITE(sc, ATW_WESK,
1958 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
1959 DELAY(atw_writewep_delay);
1960 }
1961 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
1962
1963 if (sc->sc_if.if_flags & IFF_DEBUG) {
1964 int n_octets = 0;
1965 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
1966 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
1967 for (i = 0; i < buflen; i++) {
1968 printf(" %02x", ptr[i]);
1969 if (++n_octets % 24 == 0)
1970 printf("\n");
1971 }
1972 if (n_octets % 24 != 0)
1973 printf("\n");
1974 }
1975 }
1976
1977 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
1978 static void
1979 atw_write_wep(struct atw_softc *sc)
1980 {
1981 struct ieee80211com *ic = &sc->sc_ic;
1982 /* SRAM shared-key record format: key0 flags key1 ... key12 */
1983 u_int8_t buf[IEEE80211_WEP_NKID]
1984 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
1985 u_int32_t reg;
1986 int i;
1987
1988 sc->sc_wepctl = 0;
1989 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
1990
1991 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
1992 return;
1993
1994 memset(&buf[0][0], 0, sizeof(buf));
1995
1996 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1997 if (ic->ic_nw_keys[i].wk_len > 5) {
1998 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
1999 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2000 buf[i][1] = ATW_WEP_ENABLED;
2001 } else {
2002 buf[i][1] = 0;
2003 continue;
2004 }
2005 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2006 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2007 ic->ic_nw_keys[i].wk_len - 1);
2008 }
2009
2010 reg = ATW_READ(sc, ATW_MACTEST);
2011 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2012 reg &= ~ATW_MACTEST_KEYID_MASK;
2013 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2014 ATW_WRITE(sc, ATW_MACTEST, reg);
2015
2016 /* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2017 * throughout.)
2018 */
2019 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2020 if (sc->sc_if.if_flags & IFF_LINK2)
2021 sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2022
2023 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2024 sizeof(buf));
2025 }
2026
2027 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2028
2029 static void
2030 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2031 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2032 {
2033 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2034
2035 switch (subtype) {
2036 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2037 /* do nothing: hardware answers probe request */
2038 break;
2039 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2040 case IEEE80211_FC0_SUBTYPE_BEACON:
2041 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2042 break;
2043 default:
2044 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2045 break;
2046 }
2047 return;
2048 }
2049
2050 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2051 * of IBSSs with like SSID/channel but different BSSID. It joins the
2052 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2053 * convention. Possibly the ADMtek chip does this for us; I will have
2054 * to test to find out.
2055 *
2056 * XXX we should add the duration field of the received beacon to
2057 * the TSF time it contains before comparing it with the ADM8211's
2058 * TSF.
2059 */
2060 static void
2061 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2062 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2063 {
2064 struct atw_softc *sc;
2065 struct ieee80211_frame *wh;
2066 u_int64_t tsft, bcn_tsft;
2067 u_int32_t tsftl, tsfth;
2068 int do_print = 0;
2069
2070 sc = (struct atw_softc*)ic->ic_if.if_softc;
2071
2072 if (ic->ic_if.if_flags & IFF_DEBUG)
2073 do_print = (ic->ic_if.if_flags & IFF_LINK0)
2074 ? 1 : ratecheck(&sc->sc_last_beacon,
2075 &atw_beacon_mininterval);
2076
2077 wh = mtod(m0, struct ieee80211_frame *);
2078
2079 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2080
2081 if (ic->ic_state != IEEE80211_S_RUN) {
2082 if (do_print)
2083 printf("%s: atw_recv_beacon: not running\n",
2084 sc->sc_dev.dv_xname);
2085 return;
2086 }
2087
2088 if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2089 ic->ic_bss->ni_chan)) == NULL) {
2090 if (do_print)
2091 printf("%s: atw_recv_beacon: no node %s\n",
2092 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2093 return;
2094 }
2095
2096 if (ieee80211_match_bss(ic, ni) != 0) {
2097 if (do_print)
2098 printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2099 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2100 return;
2101 }
2102
2103 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2104 return;
2105
2106 if (do_print)
2107 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2108 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2109
2110 if (ic->ic_opmode != IEEE80211_M_IBSS)
2111 return;
2112
2113 /* If we read TSFTL right before rollover, we read a TSF timer
2114 * that is too high rather than too low. This prevents a spurious
2115 * synchronization down the line, however, our IBSS could suffer
2116 * from a creeping TSF....
2117 */
2118 tsftl = ATW_READ(sc, ATW_TSFTL);
2119 tsfth = ATW_READ(sc, ATW_TSFTH);
2120
2121 tsft = (u_int64_t)tsfth << 32 | tsftl;
2122 bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2123
2124 if (do_print)
2125 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2126 sc->sc_dev.dv_xname, tsft, bcn_tsft);
2127
2128 /* we are faster, let the other guy catch up */
2129 if (bcn_tsft < tsft)
2130 return;
2131
2132 if (do_print)
2133 printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2134 ether_sprintf(wh->i_addr2));
2135
2136 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2137
2138 #if 0
2139 atw_tsf(sc);
2140 #endif
2141
2142 /* negotiate rates with new IBSS */
2143 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2144 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2145 if (ni->ni_rates.rs_nrates == 0) {
2146 printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2147 ether_sprintf(ni->ni_bssid));
2148 return;
2149 }
2150
2151 if (do_print) {
2152 printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2153 ether_sprintf(ic->ic_bss->ni_bssid));
2154 printf("%s ", ether_sprintf(ni->ni_bssid));
2155 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2156 }
2157
2158 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2159
2160 atw_write_bssid(sc);
2161 atw_start_beacon(sc, 1);
2162 }
2163
2164 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2165 * In ad hoc mode, the SSID is written to the beacons sent by the
2166 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2167 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2168 * indications.
2169 */
2170 static void
2171 atw_write_ssid(struct atw_softc *sc)
2172 {
2173 struct ieee80211com *ic = &sc->sc_ic;
2174 /* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2175 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2176
2177 memset(buf, 0, sizeof(buf));
2178 buf[0] = ic->ic_bss->ni_esslen;
2179 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2180
2181 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2182 }
2183
2184 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2185 * In ad hoc mode, the supported rates are written to beacons sent by the
2186 * ADM8211.
2187 */
2188 static void
2189 atw_write_sup_rates(struct atw_softc *sc)
2190 {
2191 struct ieee80211com *ic = &sc->sc_ic;
2192 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2193 * supported rates
2194 */
2195 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2196
2197 memset(buf, 0, sizeof(buf));
2198
2199 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2200
2201 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2202 ic->ic_bss->ni_rates.rs_nrates);
2203
2204 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2205 }
2206
2207 /* Start/stop sending beacons. */
2208 void
2209 atw_start_beacon(struct atw_softc *sc, int start)
2210 {
2211 struct ieee80211com *ic = &sc->sc_ic;
2212 u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2213
2214 if (ATW_IS_ENABLED(sc) == 0)
2215 return;
2216
2217 len = capinfo = 0;
2218
2219 /* start beacons */
2220 len = sizeof(struct ieee80211_frame) +
2221 8 /* timestamp */ + 2 /* beacon interval */ +
2222 2 /* capability info */ +
2223 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2224 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2225 3 /* DS parameters */ +
2226 IEEE80211_CRC_LEN;
2227
2228 reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2229
2230 reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2231
2232 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2233 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2234
2235 if (!start)
2236 return;
2237
2238 /* TBD use ni_capinfo */
2239
2240 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2241 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2242 if (ic->ic_flags & IEEE80211_F_WEPON)
2243 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2244
2245 switch (ic->ic_opmode) {
2246 case IEEE80211_M_IBSS:
2247 len += 4; /* IBSS parameters */
2248 capinfo |= IEEE80211_CAPINFO_IBSS;
2249 break;
2250 case IEEE80211_M_HOSTAP:
2251 /* XXX 6-byte minimum TIM */
2252 len += atw_beacon_len_adjust;
2253 capinfo |= IEEE80211_CAPINFO_ESS;
2254 break;
2255 default:
2256 return;
2257 }
2258
2259 reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2260 reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2261
2262 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2263 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2264
2265 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2266 sc->sc_dev.dv_xname, reg_bcnt));
2267
2268 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2269 sc->sc_dev.dv_xname, reg_cap1));
2270 }
2271
2272 /* First beacon was sent at time 0 microseconds, current time is
2273 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2274 * microseconds. Return the expected time in microseconds for the
2275 * beacon after next.
2276 */
2277 static __inline u_int64_t
2278 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2279 {
2280 return tsft + (tbtt - tsft % tbtt);
2281 }
2282
2283 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2284 * the ieee80211com.
2285 *
2286 * Predict the next target beacon transmission time (TBTT) and
2287 * write it to the ADM8211.
2288 */
2289 static void
2290 atw_tsf(struct atw_softc *sc)
2291 {
2292 #define TBTTOFS 20 /* TU */
2293
2294 struct ieee80211com *ic = &sc->sc_ic;
2295 u_int64_t tsft, tbtt;
2296
2297 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2298 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2299 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2300 tsft = ATW_READ(sc, ATW_TSFTH);
2301 tsft <<= 32;
2302 tsft |= ATW_READ(sc, ATW_TSFTL);
2303 *(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2304 } else
2305 tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2306
2307 tbtt = atw_predict_beacon(tsft,
2308 ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2309
2310 /* skip one more beacon so that the TBTT cannot pass before
2311 * we've programmed it, and also so that we can subtract a
2312 * few TU so that we wake a little before TBTT.
2313 */
2314 tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2315
2316 /* wake up a little early */
2317 tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2318
2319 DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2320 sc->sc_dev.dv_xname, tsft, tbtt));
2321
2322 ATW_WRITE(sc, ATW_TOFS1,
2323 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2324 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2325 LSHIFT(
2326 MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2327 ATW_TOFS1_TBTTPRE_MASK));
2328 #undef TBTTOFS
2329 }
2330
2331 static void
2332 atw_next_scan(void *arg)
2333 {
2334 struct atw_softc *sc = arg;
2335 struct ieee80211com *ic = &sc->sc_ic;
2336 struct ifnet *ifp = &ic->ic_if;
2337 int s;
2338
2339 /* don't call atw_start w/o network interrupts blocked */
2340 s = splnet();
2341 if (ic->ic_state == IEEE80211_S_SCAN)
2342 ieee80211_next_scan(ifp);
2343 splx(s);
2344 }
2345
2346 /* Synchronize the hardware state with the software state. */
2347 static int
2348 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2349 {
2350 struct ifnet *ifp = &ic->ic_if;
2351 struct atw_softc *sc = ifp->if_softc;
2352 enum ieee80211_state ostate;
2353 int error;
2354
2355 ostate = ic->ic_state;
2356
2357 if (nstate == IEEE80211_S_INIT) {
2358 callout_stop(&sc->sc_scan_ch);
2359 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2360 atw_start_beacon(sc, 0);
2361 return (*sc->sc_newstate)(ic, nstate, arg);
2362 }
2363
2364 if ((error = atw_tune(sc)) != 0)
2365 return error;
2366
2367 switch (nstate) {
2368 case IEEE80211_S_ASSOC:
2369 break;
2370 case IEEE80211_S_INIT:
2371 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2372 break;
2373 case IEEE80211_S_SCAN:
2374 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2375 atw_write_bssid(sc);
2376
2377 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2378 atw_next_scan, sc);
2379
2380 break;
2381 case IEEE80211_S_RUN:
2382 if (ic->ic_opmode == IEEE80211_M_STA)
2383 break;
2384 /*FALLTHROUGH*/
2385 case IEEE80211_S_AUTH:
2386 atw_write_bssid(sc);
2387 atw_write_ssid(sc);
2388 atw_write_sup_rates(sc);
2389
2390 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2391 ic->ic_opmode == IEEE80211_M_MONITOR)
2392 break;
2393
2394 /* set listen interval
2395 * XXX do software units agree w/ hardware?
2396 */
2397 ATW_WRITE(sc, ATW_BPLI,
2398 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2399 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2400 ATW_BPLI_LI_MASK));
2401
2402 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2403 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2404
2405 atw_tsf(sc);
2406 break;
2407 }
2408
2409 if (nstate != IEEE80211_S_SCAN)
2410 callout_stop(&sc->sc_scan_ch);
2411
2412 if (nstate == IEEE80211_S_RUN &&
2413 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2414 ic->ic_opmode == IEEE80211_M_IBSS))
2415 atw_start_beacon(sc, 1);
2416 else
2417 atw_start_beacon(sc, 0);
2418
2419 return (*sc->sc_newstate)(ic, nstate, arg);
2420 }
2421
2422 /*
2423 * atw_add_rxbuf:
2424 *
2425 * Add a receive buffer to the indicated descriptor.
2426 */
2427 int
2428 atw_add_rxbuf(struct atw_softc *sc, int idx)
2429 {
2430 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2431 struct mbuf *m;
2432 int error;
2433
2434 MGETHDR(m, M_DONTWAIT, MT_DATA);
2435 if (m == NULL)
2436 return (ENOBUFS);
2437
2438 MCLGET(m, M_DONTWAIT);
2439 if ((m->m_flags & M_EXT) == 0) {
2440 m_freem(m);
2441 return (ENOBUFS);
2442 }
2443
2444 if (rxs->rxs_mbuf != NULL)
2445 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2446
2447 rxs->rxs_mbuf = m;
2448
2449 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2450 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2451 BUS_DMA_READ|BUS_DMA_NOWAIT);
2452 if (error) {
2453 printf("%s: can't load rx DMA map %d, error = %d\n",
2454 sc->sc_dev.dv_xname, idx, error);
2455 panic("atw_add_rxbuf"); /* XXX */
2456 }
2457
2458 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2459 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2460
2461 ATW_INIT_RXDESC(sc, idx);
2462
2463 return (0);
2464 }
2465
2466 /*
2467 * Release any queued transmit buffers.
2468 */
2469 void
2470 atw_txdrain(struct atw_softc *sc)
2471 {
2472 struct atw_txsoft *txs;
2473
2474 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2475 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2476 if (txs->txs_mbuf != NULL) {
2477 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2478 m_freem(txs->txs_mbuf);
2479 txs->txs_mbuf = NULL;
2480 }
2481 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2482 }
2483 sc->sc_tx_timer = 0;
2484 }
2485
2486 /*
2487 * atw_stop: [ ifnet interface function ]
2488 *
2489 * Stop transmission on the interface.
2490 */
2491 void
2492 atw_stop(struct ifnet *ifp, int disable)
2493 {
2494 struct atw_softc *sc = ifp->if_softc;
2495 struct ieee80211com *ic = &sc->sc_ic;
2496
2497 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2498
2499 /* Disable interrupts. */
2500 ATW_WRITE(sc, ATW_IER, 0);
2501
2502 /* Stop the transmit and receive processes. */
2503 sc->sc_opmode = 0;
2504 ATW_WRITE(sc, ATW_NAR, 0);
2505 ATW_WRITE(sc, ATW_TDBD, 0);
2506 ATW_WRITE(sc, ATW_TDBP, 0);
2507 ATW_WRITE(sc, ATW_RDB, 0);
2508
2509 atw_txdrain(sc);
2510
2511 if (disable) {
2512 atw_rxdrain(sc);
2513 atw_disable(sc);
2514 }
2515
2516 /*
2517 * Mark the interface down and cancel the watchdog timer.
2518 */
2519 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2520 ifp->if_timer = 0;
2521
2522 if (!disable)
2523 atw_reset(sc);
2524 }
2525
2526 /*
2527 * atw_rxdrain:
2528 *
2529 * Drain the receive queue.
2530 */
2531 void
2532 atw_rxdrain(struct atw_softc *sc)
2533 {
2534 struct atw_rxsoft *rxs;
2535 int i;
2536
2537 for (i = 0; i < ATW_NRXDESC; i++) {
2538 rxs = &sc->sc_rxsoft[i];
2539 if (rxs->rxs_mbuf == NULL)
2540 continue;
2541 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2542 m_freem(rxs->rxs_mbuf);
2543 rxs->rxs_mbuf = NULL;
2544 }
2545 }
2546
2547 /*
2548 * atw_detach:
2549 *
2550 * Detach an ADM8211 interface.
2551 */
2552 int
2553 atw_detach(struct atw_softc *sc)
2554 {
2555 struct ifnet *ifp = &sc->sc_ic.ic_if;
2556 struct atw_rxsoft *rxs;
2557 struct atw_txsoft *txs;
2558 int i;
2559
2560 /*
2561 * Succeed now if there isn't any work to do.
2562 */
2563 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2564 return (0);
2565
2566 ieee80211_ifdetach(ifp);
2567 if_detach(ifp);
2568
2569 for (i = 0; i < ATW_NRXDESC; i++) {
2570 rxs = &sc->sc_rxsoft[i];
2571 if (rxs->rxs_mbuf != NULL) {
2572 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2573 m_freem(rxs->rxs_mbuf);
2574 rxs->rxs_mbuf = NULL;
2575 }
2576 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2577 }
2578 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2579 txs = &sc->sc_txsoft[i];
2580 if (txs->txs_mbuf != NULL) {
2581 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2582 m_freem(txs->txs_mbuf);
2583 txs->txs_mbuf = NULL;
2584 }
2585 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2586 }
2587 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2588 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2589 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2590 sizeof(struct atw_control_data));
2591 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2592
2593 shutdownhook_disestablish(sc->sc_sdhook);
2594 powerhook_disestablish(sc->sc_powerhook);
2595
2596 if (sc->sc_srom)
2597 free(sc->sc_srom, M_DEVBUF);
2598
2599 return (0);
2600 }
2601
2602 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2603 void
2604 atw_shutdown(void *arg)
2605 {
2606 struct atw_softc *sc = arg;
2607
2608 atw_stop(&sc->sc_ic.ic_if, 1);
2609 }
2610
2611 int
2612 atw_intr(void *arg)
2613 {
2614 struct atw_softc *sc = arg;
2615 struct ifnet *ifp = &sc->sc_ic.ic_if;
2616 u_int32_t status, rxstatus, txstatus, linkstatus;
2617 int handled = 0, txthresh;
2618
2619 #ifdef DEBUG
2620 if (ATW_IS_ENABLED(sc) == 0)
2621 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2622 #endif
2623
2624 /*
2625 * If the interface isn't running, the interrupt couldn't
2626 * possibly have come from us.
2627 */
2628 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2629 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2630 return (0);
2631
2632 for (;;) {
2633 status = ATW_READ(sc, ATW_STSR);
2634
2635 if (status)
2636 ATW_WRITE(sc, ATW_STSR, status);
2637
2638 if (sc->sc_intr_ack != NULL)
2639 (*sc->sc_intr_ack)(sc);
2640
2641 #ifdef ATW_DEBUG
2642 #define PRINTINTR(flag) do { \
2643 if ((status & flag) != 0) { \
2644 printf("%s" #flag, delim); \
2645 delim = ","; \
2646 } \
2647 } while (0)
2648
2649 if (atw_debug > 1 && status) {
2650 const char *delim = "<";
2651
2652 printf("%s: reg[STSR] = %x",
2653 sc->sc_dev.dv_xname, status);
2654
2655 PRINTINTR(ATW_INTR_FBE);
2656 PRINTINTR(ATW_INTR_LINKOFF);
2657 PRINTINTR(ATW_INTR_LINKON);
2658 PRINTINTR(ATW_INTR_RCI);
2659 PRINTINTR(ATW_INTR_RDU);
2660 PRINTINTR(ATW_INTR_REIS);
2661 PRINTINTR(ATW_INTR_RPS);
2662 PRINTINTR(ATW_INTR_TCI);
2663 PRINTINTR(ATW_INTR_TDU);
2664 PRINTINTR(ATW_INTR_TLT);
2665 PRINTINTR(ATW_INTR_TPS);
2666 PRINTINTR(ATW_INTR_TRT);
2667 PRINTINTR(ATW_INTR_TUF);
2668 PRINTINTR(ATW_INTR_BCNTC);
2669 PRINTINTR(ATW_INTR_ATIME);
2670 PRINTINTR(ATW_INTR_TBTT);
2671 PRINTINTR(ATW_INTR_TSCZ);
2672 PRINTINTR(ATW_INTR_TSFTF);
2673 printf(">\n");
2674 }
2675 #undef PRINTINTR
2676 #endif /* ATW_DEBUG */
2677
2678 if ((status & sc->sc_inten) == 0)
2679 break;
2680
2681 handled = 1;
2682
2683 rxstatus = status & sc->sc_rxint_mask;
2684 txstatus = status & sc->sc_txint_mask;
2685 linkstatus = status & sc->sc_linkint_mask;
2686
2687 if (linkstatus) {
2688 atw_linkintr(sc, linkstatus);
2689 }
2690
2691 if (rxstatus) {
2692 /* Grab any new packets. */
2693 atw_rxintr(sc);
2694
2695 if (rxstatus & ATW_INTR_RDU) {
2696 printf("%s: receive ring overrun\n",
2697 sc->sc_dev.dv_xname);
2698 /* Get the receive process going again. */
2699 ATW_WRITE(sc, ATW_RDR, 0x1);
2700 break;
2701 }
2702 }
2703
2704 if (txstatus) {
2705 /* Sweep up transmit descriptors. */
2706 atw_txintr(sc);
2707
2708 if (txstatus & ATW_INTR_TLT)
2709 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2710 sc->sc_dev.dv_xname));
2711
2712 if (txstatus & ATW_INTR_TRT)
2713 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2714 sc->sc_dev.dv_xname));
2715
2716 /* If Tx under-run, increase our transmit threshold
2717 * if another is available.
2718 */
2719 txthresh = sc->sc_txthresh + 1;
2720 if ((txstatus & ATW_INTR_TUF) &&
2721 sc->sc_txth[txthresh].txth_name != NULL) {
2722 /* Idle the transmit process. */
2723 atw_idle(sc, ATW_NAR_ST);
2724
2725 sc->sc_txthresh = txthresh;
2726 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2727 sc->sc_opmode |=
2728 sc->sc_txth[txthresh].txth_opmode;
2729 printf("%s: transmit underrun; new "
2730 "threshold: %s\n", sc->sc_dev.dv_xname,
2731 sc->sc_txth[txthresh].txth_name);
2732
2733 /* Set the new threshold and restart
2734 * the transmit process.
2735 */
2736 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2737 /* XXX Log every Nth underrun from
2738 * XXX now on?
2739 */
2740 }
2741 }
2742
2743 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2744 if (status & ATW_INTR_TPS)
2745 printf("%s: transmit process stopped\n",
2746 sc->sc_dev.dv_xname);
2747 if (status & ATW_INTR_RPS)
2748 printf("%s: receive process stopped\n",
2749 sc->sc_dev.dv_xname);
2750 (void)atw_init(ifp);
2751 break;
2752 }
2753
2754 if (status & ATW_INTR_FBE) {
2755 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2756 (void)atw_init(ifp);
2757 break;
2758 }
2759
2760 /*
2761 * Not handled:
2762 *
2763 * Transmit buffer unavailable -- normal
2764 * condition, nothing to do, really.
2765 *
2766 * Early receive interrupt -- not available on
2767 * all chips, we just use RI. We also only
2768 * use single-segment receive DMA, so this
2769 * is mostly useless.
2770 *
2771 * TBD others
2772 */
2773 }
2774
2775 /* Try to get more packets going. */
2776 atw_start(ifp);
2777
2778 return (handled);
2779 }
2780
2781 /*
2782 * atw_idle:
2783 *
2784 * Cause the transmit and/or receive processes to go idle.
2785 *
2786 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2787 * process in STSR if I clear SR or ST after the process has already
2788 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2789 * do not seem to be too reliable. Perhaps I have the sense of the
2790 * Rx bits switched with the Tx bits?
2791 */
2792 void
2793 atw_idle(struct atw_softc *sc, u_int32_t bits)
2794 {
2795 u_int32_t ackmask = 0, opmode, stsr, test0;
2796 int i, s;
2797
2798 /* without this, somehow we run concurrently w/ interrupt handler */
2799 s = splnet();
2800
2801 opmode = sc->sc_opmode & ~bits;
2802
2803 if (bits & ATW_NAR_SR)
2804 ackmask |= ATW_INTR_RPS;
2805
2806 if (bits & ATW_NAR_ST) {
2807 ackmask |= ATW_INTR_TPS;
2808 /* set ATW_NAR_HF to flush TX FIFO. */
2809 opmode |= ATW_NAR_HF;
2810 }
2811
2812 ATW_WRITE(sc, ATW_NAR, opmode);
2813
2814 for (i = 0; i < 1000; i++) {
2815 stsr = ATW_READ(sc, ATW_STSR);
2816 if ((stsr & ackmask) == ackmask)
2817 break;
2818 DELAY(10);
2819 }
2820
2821 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2822
2823 if ((stsr & ackmask) == ackmask)
2824 goto out;
2825
2826 test0 = ATW_READ(sc, ATW_TEST0);
2827
2828 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2829 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2830 printf("%s: transmit process not idle [%s]\n",
2831 sc->sc_dev.dv_xname,
2832 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2833 printf("%s: bits %08x test0 %08x stsr %08x\n",
2834 sc->sc_dev.dv_xname, bits, test0, stsr);
2835 }
2836
2837 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2838 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2839 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2840 sc->sc_dev.dv_xname,
2841 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2842 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2843 sc->sc_dev.dv_xname, bits, test0, stsr));
2844 }
2845 out:
2846 if ((bits & ATW_NAR_ST) != 0)
2847 atw_txdrain(sc);
2848 splx(s);
2849 return;
2850 }
2851
2852 /*
2853 * atw_linkintr:
2854 *
2855 * Helper; handle link-status interrupts.
2856 */
2857 void
2858 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2859 {
2860 struct ieee80211com *ic = &sc->sc_ic;
2861
2862 if (ic->ic_state != IEEE80211_S_RUN)
2863 return;
2864
2865 if (linkstatus & ATW_INTR_LINKON) {
2866 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2867 sc->sc_rescan_timer = 0;
2868 } else if (linkstatus & ATW_INTR_LINKOFF) {
2869 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2870 if (ic->ic_opmode != IEEE80211_M_STA)
2871 return;
2872 sc->sc_rescan_timer = 3;
2873 ic->ic_if.if_timer = 1;
2874 }
2875 }
2876
2877 /*
2878 * atw_rxintr:
2879 *
2880 * Helper; handle receive interrupts.
2881 */
2882 void
2883 atw_rxintr(struct atw_softc *sc)
2884 {
2885 static int rate_tbl[] = {2, 4, 11, 22, 44};
2886 struct ieee80211com *ic = &sc->sc_ic;
2887 struct ieee80211_node *ni;
2888 struct ieee80211_frame *wh;
2889 struct ifnet *ifp = &ic->ic_if;
2890 struct atw_rxsoft *rxs;
2891 struct mbuf *m;
2892 u_int32_t rxstat;
2893 int i, len, rate, rate0;
2894 u_int32_t rssi;
2895
2896 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2897 rxs = &sc->sc_rxsoft[i];
2898
2899 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2900
2901 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2902 rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2903 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2904
2905 if (rxstat & ATW_RXSTAT_OWN)
2906 break; /* We have processed all receive buffers. */
2907
2908 DPRINTF3(sc,
2909 ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2910 sc->sc_dev.dv_xname,
2911 sc->sc_rxdescs[i].ar_stat,
2912 sc->sc_rxdescs[i].ar_rssi,
2913 sc->sc_rxdescs[i].ar_buf1,
2914 sc->sc_rxdescs[i].ar_buf2));
2915
2916 /*
2917 * Make sure the packet fits in one buffer. This should
2918 * always be the case.
2919 */
2920 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2921 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2922 printf("%s: incoming packet spilled, resetting\n",
2923 sc->sc_dev.dv_xname);
2924 (void)atw_init(ifp);
2925 return;
2926 }
2927
2928 /*
2929 * If an error occurred, update stats, clear the status
2930 * word, and leave the packet buffer in place. It will
2931 * simply be reused the next time the ring comes around.
2932 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2933 * error.
2934 */
2935
2936 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
2937 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
2938 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
2939 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
2940 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
2941 ATW_RXSTAT_ICVE)) != 0)) {
2942 #define PRINTERR(bit, str) \
2943 if (rxstat & (bit)) \
2944 printf("%s: receive error: %s\n", \
2945 sc->sc_dev.dv_xname, str)
2946 ifp->if_ierrors++;
2947 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
2948 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
2949 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
2950 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
2951 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
2952 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
2953 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
2954 #undef PRINTERR
2955 ATW_INIT_RXDESC(sc, i);
2956 continue;
2957 }
2958
2959 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2960 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2961
2962 /*
2963 * No errors; receive the packet. Note the ADM8211
2964 * includes the CRC in promiscuous mode.
2965 */
2966 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
2967
2968 /*
2969 * Allocate a new mbuf cluster. If that fails, we are
2970 * out of memory, and must drop the packet and recycle
2971 * the buffer that's already attached to this descriptor.
2972 */
2973 m = rxs->rxs_mbuf;
2974 if (atw_add_rxbuf(sc, i) != 0) {
2975 ifp->if_ierrors++;
2976 ATW_INIT_RXDESC(sc, i);
2977 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2978 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2979 continue;
2980 }
2981
2982 ifp->if_ipackets++;
2983 if (sc->sc_opmode & ATW_NAR_PR)
2984 m->m_flags |= M_HASFCS;
2985 m->m_pkthdr.rcvif = ifp;
2986 m->m_pkthdr.len = m->m_len = len;
2987
2988 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
2989 rate = 0;
2990 else
2991 rate = rate_tbl[rate0];
2992
2993 #if NBPFILTER > 0
2994 /* Pass this up to any BPF listeners. */
2995 if (sc->sc_radiobpf != NULL) {
2996 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
2997
2998 tap->ar_rate = rate;
2999 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3000 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3001
3002 /* TBD verify units are dB */
3003 tap->ar_antsignal = (int)rssi;
3004 /* TBD tap->ar_flags */
3005
3006 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3007 tap->ar_ihdr.it_len, m);
3008 }
3009 #endif /* NPBFILTER > 0 */
3010
3011 wh = mtod(m, struct ieee80211_frame *);
3012 ni = ieee80211_find_rxnode(ic, wh);
3013 ieee80211_input(ifp, m, ni, (int)rssi, 0);
3014 /*
3015 * The frame may have caused the node to be marked for
3016 * reclamation (e.g. in response to a DEAUTH message)
3017 * so use free_node here instead of unref_node.
3018 */
3019 if (ni == ic->ic_bss)
3020 ieee80211_unref_node(&ni);
3021 else
3022 ieee80211_free_node(ic, ni);
3023 }
3024
3025 /* Update the receive pointer. */
3026 sc->sc_rxptr = i;
3027 }
3028
3029 /*
3030 * atw_txintr:
3031 *
3032 * Helper; handle transmit interrupts.
3033 */
3034 void
3035 atw_txintr(struct atw_softc *sc)
3036 {
3037 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3038 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3039 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3040 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3041
3042 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3043 struct ifnet *ifp = &sc->sc_ic.ic_if;
3044 struct atw_txsoft *txs;
3045 u_int32_t txstat;
3046
3047 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3048 sc->sc_dev.dv_xname, sc->sc_flags));
3049
3050 ifp->if_flags &= ~IFF_OACTIVE;
3051
3052 /*
3053 * Go through our Tx list and free mbufs for those
3054 * frames that have been transmitted.
3055 */
3056 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3057 ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3058 txs->txs_ndescs,
3059 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3060
3061 #ifdef ATW_DEBUG
3062 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3063 int i;
3064 printf(" txsoft %p transmit chain:\n", txs);
3065 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3066 printf(" descriptor %d:\n", i);
3067 printf(" at_status: 0x%08x\n",
3068 le32toh(sc->sc_txdescs[i].at_stat));
3069 printf(" at_flags: 0x%08x\n",
3070 le32toh(sc->sc_txdescs[i].at_flags));
3071 printf(" at_buf1: 0x%08x\n",
3072 le32toh(sc->sc_txdescs[i].at_buf1));
3073 printf(" at_buf2: 0x%08x\n",
3074 le32toh(sc->sc_txdescs[i].at_buf2));
3075 if (i == txs->txs_lastdesc)
3076 break;
3077 }
3078 }
3079 #endif
3080
3081 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3082 if (txstat & ATW_TXSTAT_OWN)
3083 break;
3084
3085 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3086
3087 sc->sc_txfree += txs->txs_ndescs;
3088
3089 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3090 0, txs->txs_dmamap->dm_mapsize,
3091 BUS_DMASYNC_POSTWRITE);
3092 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3093 m_freem(txs->txs_mbuf);
3094 txs->txs_mbuf = NULL;
3095
3096 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3097
3098 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3099 (txstat & TXSTAT_ERRMASK) != 0) {
3100 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3101 txstat_buf, sizeof(txstat_buf));
3102 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3103 txstat_buf,
3104 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3105 }
3106
3107 /*
3108 * Check for errors and collisions.
3109 */
3110 if (txstat & ATW_TXSTAT_TUF)
3111 sc->sc_stats.ts_tx_tuf++;
3112 if (txstat & ATW_TXSTAT_TLT)
3113 sc->sc_stats.ts_tx_tlt++;
3114 if (txstat & ATW_TXSTAT_TRT)
3115 sc->sc_stats.ts_tx_trt++;
3116 if (txstat & ATW_TXSTAT_TRO)
3117 sc->sc_stats.ts_tx_tro++;
3118 if (txstat & ATW_TXSTAT_SOFBR) {
3119 sc->sc_stats.ts_tx_sofbr++;
3120 }
3121
3122 if ((txstat & ATW_TXSTAT_ES) == 0)
3123 ifp->if_collisions +=
3124 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3125 else
3126 ifp->if_oerrors++;
3127
3128 ifp->if_opackets++;
3129 }
3130
3131 /*
3132 * If there are no more pending transmissions, cancel the watchdog
3133 * timer.
3134 */
3135 if (txs == NULL)
3136 sc->sc_tx_timer = 0;
3137 #undef TXSTAT_ERRMASK
3138 #undef TXSTAT_FMT
3139 }
3140
3141 /*
3142 * atw_watchdog: [ifnet interface function]
3143 *
3144 * Watchdog timer handler.
3145 */
3146 void
3147 atw_watchdog(struct ifnet *ifp)
3148 {
3149 struct atw_softc *sc = ifp->if_softc;
3150 struct ieee80211com *ic = &sc->sc_ic;
3151
3152 ifp->if_timer = 0;
3153 if (ATW_IS_ENABLED(sc) == 0)
3154 return;
3155
3156 if (sc->sc_rescan_timer) {
3157 if (--sc->sc_rescan_timer == 0)
3158 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3159 }
3160 if (sc->sc_tx_timer) {
3161 if (--sc->sc_tx_timer == 0 &&
3162 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3163 printf("%s: transmit timeout\n", ifp->if_xname);
3164 ifp->if_oerrors++;
3165 (void)atw_init(ifp);
3166 atw_start(ifp);
3167 }
3168 }
3169 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3170 ifp->if_timer = 1;
3171 ieee80211_watchdog(ifp);
3172 }
3173
3174 /* Compute the 802.11 Duration field and the PLCP Length fields for
3175 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3176 * Write the fields to the ADM8211 Tx header, frm.
3177 *
3178 * TBD use the fragmentation threshold to find the right duration for
3179 * the first & last fragments.
3180 *
3181 * TBD make certain of the duration fields applied by the ADM8211 to each
3182 * fragment. I think that the ADM8211 knows how to subtract the CTS
3183 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3184 * I also think that the ADM8211 does *some* arithmetic for us, because
3185 * otherwise I think we would have to set a first duration for CTS/first
3186 * fragment, a second duration for fragments between the first and the
3187 * last, and a third duration for the last fragment.
3188 *
3189 * TBD make certain that duration fields reflect addition of FCS/WEP
3190 * and correct duration arithmetic as necessary.
3191 */
3192 static void
3193 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3194 int len)
3195 {
3196 int remainder;
3197
3198 /* deal also with encrypted fragments */
3199 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3200 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3201 sc->sc_dev.dv_xname));
3202 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3203 IEEE80211_WEP_CRCLEN;
3204 }
3205
3206 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3207 * duration (XXX added by MAC?).
3208 */
3209 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3210 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3211
3212 if (rate <= 4)
3213 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3214 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3215 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3216 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3217 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3218 else
3219 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3220 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3221 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3222 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3223 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3224
3225 /* lengthen duration if long preamble */
3226 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3227 frm->atw_head_dur +=
3228 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3229 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3230 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3231 IEEE80211_DUR_DS_FAST_PLCPHDR);
3232
3233 if (remainder != 0)
3234 frm->atw_head_dur++;
3235
3236 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3237 (rate == 2 || rate == 4)) {
3238 /* derived from Linux: how could this be right? */
3239 frm->atw_head_plcplen = frm->atw_head_dur;
3240 } else {
3241 frm->atw_head_plcplen = (16 * len) / rate;
3242 remainder = (80 * len) % (rate * 5);
3243
3244 if (remainder != 0) {
3245 frm->atw_head_plcplen++;
3246
3247 /* XXX magic */
3248 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3249 rate == 22 && remainder <= 30)
3250 frm->atw_head_plcplen |= 0x8000;
3251 }
3252 }
3253 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3254 htole16(frm->atw_head_plcplen);
3255 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3256 }
3257
3258 #ifdef ATW_DEBUG
3259 static void
3260 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3261 {
3262 struct atw_softc *sc = ifp->if_softc;
3263 struct mbuf *m;
3264 int i, noctets = 0;
3265
3266 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3267 m0->m_pkthdr.len);
3268
3269 for (m = m0; m; m = m->m_next) {
3270 if (m->m_len == 0)
3271 continue;
3272 for (i = 0; i < m->m_len; i++) {
3273 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3274 if (++noctets % 24 == 0)
3275 printf("\n");
3276 }
3277 }
3278 printf("%s%s: %d bytes emitted\n",
3279 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3280 }
3281 #endif /* ATW_DEBUG */
3282
3283 /*
3284 * atw_start: [ifnet interface function]
3285 *
3286 * Start packet transmission on the interface.
3287 */
3288 void
3289 atw_start(struct ifnet *ifp)
3290 {
3291 struct atw_softc *sc = ifp->if_softc;
3292 struct ieee80211com *ic = &sc->sc_ic;
3293 struct ieee80211_node *ni;
3294 struct ieee80211_frame *wh;
3295 struct atw_frame *hh;
3296 struct mbuf *m0, *m;
3297 struct atw_txsoft *txs, *last_txs;
3298 struct atw_txdesc *txd;
3299 int do_encrypt, rate;
3300 bus_dmamap_t dmamap;
3301 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3302
3303 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3304 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3305
3306 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3307 return;
3308
3309 #if 0 /* TBD ??? */
3310 if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3311 return;
3312 #endif
3313
3314 /*
3315 * Remember the previous number of free descriptors and
3316 * the first descriptor we'll use.
3317 */
3318 ofree = sc->sc_txfree;
3319 firsttx = sc->sc_txnext;
3320
3321 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3322 sc->sc_dev.dv_xname, ofree, firsttx));
3323
3324 /*
3325 * Loop through the send queue, setting up transmit descriptors
3326 * until we drain the queue, or use up all available transmit
3327 * descriptors.
3328 */
3329 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3330 sc->sc_txfree != 0) {
3331
3332 /*
3333 * Grab a packet off the management queue, if it
3334 * is not empty. Otherwise, from the data queue.
3335 */
3336 IF_DEQUEUE(&ic->ic_mgtq, m0);
3337 if (m0 != NULL) {
3338 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3339 m0->m_pkthdr.rcvif = NULL;
3340 } else {
3341 /* send no data packets until we are associated */
3342 if (ic->ic_state != IEEE80211_S_RUN)
3343 break;
3344 IFQ_DEQUEUE(&ifp->if_snd, m0);
3345 if (m0 == NULL)
3346 break;
3347 #if NBPFILTER > 0
3348 if (ifp->if_bpf != NULL)
3349 bpf_mtap(ifp->if_bpf, m0);
3350 #endif /* NBPFILTER > 0 */
3351 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3352 ifp->if_oerrors++;
3353 break;
3354 }
3355 }
3356
3357 rate = MAX(ieee80211_get_rate(ic), 2);
3358
3359 #if NBPFILTER > 0
3360 /*
3361 * Pass the packet to any BPF listeners.
3362 */
3363 if (ic->ic_rawbpf != NULL)
3364 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3365
3366 if (sc->sc_radiobpf != NULL) {
3367 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3368
3369 tap->at_rate = rate;
3370 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3371 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3372
3373 /* TBD tap->at_flags */
3374
3375 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3376 tap->at_ihdr.it_len, m0);
3377 }
3378 #endif /* NBPFILTER > 0 */
3379
3380 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3381
3382 if (ni != NULL && ni != ic->ic_bss)
3383 ieee80211_free_node(ic, ni);
3384
3385 if (m0 == NULL) {
3386 ifp->if_oerrors++;
3387 break;
3388 }
3389
3390 /* just to make sure. */
3391 m0 = m_pullup(m0, sizeof(struct atw_frame));
3392
3393 if (m0 == NULL) {
3394 ifp->if_oerrors++;
3395 break;
3396 }
3397
3398 hh = mtod(m0, struct atw_frame *);
3399 wh = &hh->atw_ihdr;
3400
3401 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3402
3403 /* Copy everything we need from the 802.11 header:
3404 * Frame Control; address 1, address 3, or addresses
3405 * 3 and 4. NIC fills in BSSID, SA.
3406 */
3407 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3408 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3409 panic("%s: illegal WDS frame",
3410 sc->sc_dev.dv_xname);
3411 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3412 } else
3413 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3414
3415 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3416
3417 /* initialize remaining Tx parameters */
3418 memset(&hh->u, 0, sizeof(hh->u));
3419
3420 hh->atw_rate = rate * 5;
3421 /* XXX this could be incorrect if M_FCS. _encap should
3422 * probably strip FCS just in case it sticks around in
3423 * bridged packets.
3424 */
3425 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3426 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3427 sizeof(struct atw_frame));
3428
3429 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3430 hh->atw_rtylmt = 3;
3431 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3432 if (do_encrypt) {
3433 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3434 hh->atw_keyid = ic->ic_wep_txkey;
3435 }
3436
3437 /* TBD 4-addr frames */
3438 atw_frame_setdurs(sc, hh, rate,
3439 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3440 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3441
3442 /* never fragment multicast frames */
3443 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3444 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3445 } else if (sc->sc_flags & ATWF_RTSCTS) {
3446 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3447 }
3448
3449 #ifdef ATW_DEBUG
3450 hh->atw_fragnum = 0;
3451
3452 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3453 printf("%s: dst = %s, rate = 0x%02x, "
3454 "service = 0x%02x, paylen = 0x%04x\n",
3455 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3456 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3457
3458 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3459 "dur1 = 0x%04x, dur2 = 0x%04x, "
3460 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3461 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3462 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3463 hh->atw_tail_dur, hh->atw_head_dur);
3464
3465 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3466 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3467 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3468 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3469
3470 printf("%s: keyid = %d\n",
3471 sc->sc_dev.dv_xname, hh->atw_keyid);
3472
3473 atw_dump_pkt(ifp, m0);
3474 }
3475 #endif /* ATW_DEBUG */
3476
3477 dmamap = txs->txs_dmamap;
3478
3479 /*
3480 * Load the DMA map. Copy and try (once) again if the packet
3481 * didn't fit in the alloted number of segments.
3482 */
3483 for (first = 1;
3484 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3485 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3486 first = 0) {
3487 MGETHDR(m, M_DONTWAIT, MT_DATA);
3488 if (m == NULL) {
3489 printf("%s: unable to allocate Tx mbuf\n",
3490 sc->sc_dev.dv_xname);
3491 break;
3492 }
3493 if (m0->m_pkthdr.len > MHLEN) {
3494 MCLGET(m, M_DONTWAIT);
3495 if ((m->m_flags & M_EXT) == 0) {
3496 printf("%s: unable to allocate Tx "
3497 "cluster\n", sc->sc_dev.dv_xname);
3498 m_freem(m);
3499 break;
3500 }
3501 }
3502 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3503 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3504 m_freem(m0);
3505 m0 = m;
3506 m = NULL;
3507 }
3508 if (error != 0) {
3509 printf("%s: unable to load Tx buffer, "
3510 "error = %d\n", sc->sc_dev.dv_xname, error);
3511 m_freem(m0);
3512 break;
3513 }
3514
3515 /*
3516 * Ensure we have enough descriptors free to describe
3517 * the packet.
3518 */
3519 if (dmamap->dm_nsegs > sc->sc_txfree) {
3520 /*
3521 * Not enough free descriptors to transmit
3522 * this packet. Unload the DMA map and
3523 * drop the packet. Notify the upper layer
3524 * that there are no more slots left.
3525 *
3526 * XXX We could allocate an mbuf and copy, but
3527 * XXX it is worth it?
3528 */
3529 ifp->if_flags |= IFF_OACTIVE;
3530 bus_dmamap_unload(sc->sc_dmat, dmamap);
3531 m_freem(m0);
3532 break;
3533 }
3534
3535 /*
3536 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3537 */
3538
3539 /* Sync the DMA map. */
3540 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3541 BUS_DMASYNC_PREWRITE);
3542
3543 /* XXX arbitrary retry limit; 8 because I have seen it in
3544 * use already and maybe 0 means "no tries" !
3545 */
3546 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3547
3548 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3549 sc->sc_dev.dv_xname, rate * 5));
3550 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3551
3552 /*
3553 * Initialize the transmit descriptors.
3554 */
3555 for (nexttx = sc->sc_txnext, seg = 0;
3556 seg < dmamap->dm_nsegs;
3557 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3558 /*
3559 * If this is the first descriptor we're
3560 * enqueueing, don't set the OWN bit just
3561 * yet. That could cause a race condition.
3562 * We'll do it below.
3563 */
3564 txd = &sc->sc_txdescs[nexttx];
3565 txd->at_ctl = ctl |
3566 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3567
3568 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3569 txd->at_flags =
3570 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3571 ATW_TXFLAG_TBS1_MASK)) |
3572 ((nexttx == (ATW_NTXDESC - 1))
3573 ? htole32(ATW_TXFLAG_TER) : 0);
3574 lasttx = nexttx;
3575 }
3576
3577 IASSERT(lasttx != -1, ("bad lastx"));
3578 /* Set `first segment' and `last segment' appropriately. */
3579 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3580 htole32(ATW_TXFLAG_FS);
3581 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3582
3583 #ifdef ATW_DEBUG
3584 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3585 printf(" txsoft %p transmit chain:\n", txs);
3586 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3587 printf(" descriptor %d:\n", seg);
3588 printf(" at_ctl: 0x%08x\n",
3589 le32toh(sc->sc_txdescs[seg].at_ctl));
3590 printf(" at_flags: 0x%08x\n",
3591 le32toh(sc->sc_txdescs[seg].at_flags));
3592 printf(" at_buf1: 0x%08x\n",
3593 le32toh(sc->sc_txdescs[seg].at_buf1));
3594 printf(" at_buf2: 0x%08x\n",
3595 le32toh(sc->sc_txdescs[seg].at_buf2));
3596 if (seg == lasttx)
3597 break;
3598 }
3599 }
3600 #endif
3601
3602 /* Sync the descriptors we're using. */
3603 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3604 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3605
3606 /*
3607 * Store a pointer to the packet so we can free it later,
3608 * and remember what txdirty will be once the packet is
3609 * done.
3610 */
3611 txs->txs_mbuf = m0;
3612 txs->txs_firstdesc = sc->sc_txnext;
3613 txs->txs_lastdesc = lasttx;
3614 txs->txs_ndescs = dmamap->dm_nsegs;
3615
3616 /* Advance the tx pointer. */
3617 sc->sc_txfree -= dmamap->dm_nsegs;
3618 sc->sc_txnext = nexttx;
3619
3620 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3621 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3622
3623 last_txs = txs;
3624 }
3625
3626 if (txs == NULL || sc->sc_txfree == 0) {
3627 /* No more slots left; notify upper layer. */
3628 ifp->if_flags |= IFF_OACTIVE;
3629 }
3630
3631 if (sc->sc_txfree != ofree) {
3632 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3633 sc->sc_dev.dv_xname, lasttx, firsttx));
3634 /*
3635 * Cause a transmit interrupt to happen on the
3636 * last packet we enqueued.
3637 */
3638 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3639 ATW_CDTXSYNC(sc, lasttx, 1,
3640 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3641
3642 /*
3643 * The entire packet chain is set up. Give the
3644 * first descriptor to the chip now.
3645 */
3646 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3647 ATW_CDTXSYNC(sc, firsttx, 1,
3648 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3649
3650 /* Wake up the transmitter. */
3651 ATW_WRITE(sc, ATW_TDR, 0x1);
3652
3653 /* Set a watchdog timer in case the chip flakes out. */
3654 sc->sc_tx_timer = 5;
3655 ifp->if_timer = 1;
3656 }
3657 }
3658
3659 /*
3660 * atw_power:
3661 *
3662 * Power management (suspend/resume) hook.
3663 */
3664 void
3665 atw_power(int why, void *arg)
3666 {
3667 struct atw_softc *sc = arg;
3668 struct ifnet *ifp = &sc->sc_ic.ic_if;
3669 int s;
3670
3671 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3672
3673 s = splnet();
3674 switch (why) {
3675 case PWR_STANDBY:
3676 /* XXX do nothing. */
3677 break;
3678 case PWR_SUSPEND:
3679 atw_stop(ifp, 0);
3680 if (sc->sc_power != NULL)
3681 (*sc->sc_power)(sc, why);
3682 break;
3683 case PWR_RESUME:
3684 if (ifp->if_flags & IFF_UP) {
3685 if (sc->sc_power != NULL)
3686 (*sc->sc_power)(sc, why);
3687 atw_init(ifp);
3688 }
3689 break;
3690 case PWR_SOFTSUSPEND:
3691 case PWR_SOFTSTANDBY:
3692 case PWR_SOFTRESUME:
3693 break;
3694 }
3695 splx(s);
3696 }
3697
3698 /*
3699 * atw_ioctl: [ifnet interface function]
3700 *
3701 * Handle control requests from the operator.
3702 */
3703 int
3704 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3705 {
3706 struct atw_softc *sc = ifp->if_softc;
3707 struct ifreq *ifr = (struct ifreq *)data;
3708 int s, error = 0;
3709
3710 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3711 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3712 return ENXIO;
3713
3714 s = splnet();
3715
3716 switch (cmd) {
3717 case SIOCSIFFLAGS:
3718 if (ifp->if_flags & IFF_UP) {
3719 if (ATW_IS_ENABLED(sc)) {
3720 /*
3721 * To avoid rescanning another access point,
3722 * do not call atw_init() here. Instead,
3723 * only reflect media settings.
3724 */
3725 atw_filter_setup(sc);
3726 } else
3727 error = atw_init(ifp);
3728 } else if (ATW_IS_ENABLED(sc))
3729 atw_stop(ifp, 1);
3730 break;
3731 case SIOCADDMULTI:
3732 case SIOCDELMULTI:
3733 error = (cmd == SIOCADDMULTI) ?
3734 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3735 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3736 if (error == ENETRESET) {
3737 if (ATW_IS_ENABLED(sc))
3738 atw_filter_setup(sc); /* do not rescan */
3739 error = 0;
3740 }
3741 break;
3742 default:
3743 error = ieee80211_ioctl(ifp, cmd, data);
3744 if (error == ENETRESET) {
3745 if (ATW_IS_ENABLED(sc))
3746 error = atw_init(ifp);
3747 else
3748 error = 0;
3749 }
3750 break;
3751 }
3752
3753 /* Try to get more packets going. */
3754 if (ATW_IS_ENABLED(sc))
3755 atw_start(ifp);
3756
3757 splx(s);
3758 return (error);
3759 }
3760
3761 static int
3762 atw_media_change(struct ifnet *ifp)
3763 {
3764 int error;
3765
3766 error = ieee80211_media_change(ifp);
3767 if (error == ENETRESET) {
3768 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3769 (IFF_RUNNING|IFF_UP))
3770 atw_init(ifp); /* XXX lose error */
3771 error = 0;
3772 }
3773 return error;
3774 }
3775
3776 static void
3777 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3778 {
3779 struct atw_softc *sc = ifp->if_softc;
3780
3781 if (ATW_IS_ENABLED(sc) == 0) {
3782 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3783 imr->ifm_status = 0;
3784 return;
3785 }
3786 ieee80211_media_status(ifp, imr);
3787 }
3788