atw.c revision 1.49 1 /* $NetBSD: atw.c,v 1.49 2004/07/15 06:38:46 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.49 2004/07/15 06:38:46 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
139 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
140 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
141
142 int atw_rfio_enable_delay = 20 * 1000;
143 int atw_rfio_disable_delay = 2 * 1000;
144 int atw_writewep_delay = 5;
145 int atw_beacon_len_adjust = 4;
146 int atw_dwelltime = 200;
147
148 #ifdef ATW_DEBUG
149 int atw_debug = 0;
150
151 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
152 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
153 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
154 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
155 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157
158 static void atw_print_regs(struct atw_softc *, const char *);
159 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
160
161 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162 # ifdef ATW_BBPDEBUG
163 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
164 static void atw_rf3000_print(struct atw_softc *);
165 # endif /* ATW_BBPDEBUG */
166
167 # ifdef ATW_SYNDEBUG
168 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
169 static void atw_si4126_print(struct atw_softc *);
170 # endif /* ATW_SYNDEBUG */
171
172 #else
173 #define ATW_DPRINTF(x)
174 #define ATW_DPRINTF2(x)
175 #define ATW_DPRINTF3(x)
176 #define DPRINTF(sc, x) /* nothing */
177 #define DPRINTF2(sc, x) /* nothing */
178 #define DPRINTF3(sc, x) /* nothing */
179 #endif
180
181 #ifdef ATW_STATS
182 void atw_print_stats(struct atw_softc *);
183 #endif
184
185 void atw_start(struct ifnet *);
186 void atw_watchdog(struct ifnet *);
187 int atw_ioctl(struct ifnet *, u_long, caddr_t);
188 int atw_init(struct ifnet *);
189 void atw_txdrain(struct atw_softc *);
190 void atw_stop(struct ifnet *, int);
191
192 void atw_reset(struct atw_softc *);
193 int atw_read_srom(struct atw_softc *);
194
195 void atw_shutdown(void *);
196
197 void atw_rxdrain(struct atw_softc *);
198 int atw_add_rxbuf(struct atw_softc *, int);
199 void atw_idle(struct atw_softc *, u_int32_t);
200
201 int atw_enable(struct atw_softc *);
202 void atw_disable(struct atw_softc *);
203 void atw_power(int, void *);
204
205 void atw_rxintr(struct atw_softc *);
206 void atw_txintr(struct atw_softc *);
207 void atw_linkintr(struct atw_softc *, u_int32_t);
208
209 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
210 static void atw_tsf(struct atw_softc *);
211 static void atw_start_beacon(struct atw_softc *, int);
212 static void atw_write_wep(struct atw_softc *);
213 static void atw_write_bssid(struct atw_softc *);
214 static void atw_write_ssid(struct atw_softc *);
215 static void atw_write_sup_rates(struct atw_softc *);
216 static void atw_clear_sram(struct atw_softc *);
217 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
218 static int atw_media_change(struct ifnet *);
219 static void atw_media_status(struct ifnet *, struct ifmediareq *);
220 static void atw_filter_setup(struct atw_softc *);
221 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
222 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
223 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
224 struct ieee80211_node *, int, int, u_int32_t);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
228 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
229
230 static int atw_tune(struct atw_softc *);
231
232 static void atw_rfio_enable(struct atw_softc *, int);
233
234 /* RFMD RF3000 Baseband Processor */
235 static int atw_rf3000_init(struct atw_softc *);
236 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
237 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
238 #ifdef ATW_DEBUG
239 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
240 #endif /* ATW_DEBUG */
241
242 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
243 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
244 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
245 #ifdef ATW_DEBUG
246 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
247 #endif /* ATW_DEBUG */
248
249 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
250 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
251
252 const char *atw_tx_state[] = {
253 "STOPPED",
254 "RUNNING - read descriptor",
255 "RUNNING - transmitting",
256 "RUNNING - filling fifo", /* XXX */
257 "SUSPENDED",
258 "RUNNING -- write descriptor",
259 "RUNNING -- write last descriptor",
260 "RUNNING - fifo full"
261 };
262
263 const char *atw_rx_state[] = {
264 "STOPPED",
265 "RUNNING - read descriptor",
266 "RUNNING - check this packet, pre-fetch next",
267 "RUNNING - wait for reception",
268 "SUSPENDED",
269 "RUNNING - write descriptor",
270 "RUNNING - flush fifo",
271 "RUNNING - fifo drain"
272 };
273
274 int
275 atw_activate(struct device *self, enum devact act)
276 {
277 struct atw_softc *sc = (struct atw_softc *)self;
278 int rv = 0, s;
279
280 s = splnet();
281 switch (act) {
282 case DVACT_ACTIVATE:
283 rv = EOPNOTSUPP;
284 break;
285
286 case DVACT_DEACTIVATE:
287 if_deactivate(&sc->sc_ic.ic_if);
288 break;
289 }
290 splx(s);
291 return rv;
292 }
293
294 /*
295 * atw_enable:
296 *
297 * Enable the ADM8211 chip.
298 */
299 int
300 atw_enable(struct atw_softc *sc)
301 {
302
303 if (ATW_IS_ENABLED(sc) == 0) {
304 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
305 printf("%s: device enable failed\n",
306 sc->sc_dev.dv_xname);
307 return (EIO);
308 }
309 sc->sc_flags |= ATWF_ENABLED;
310 }
311 return (0);
312 }
313
314 /*
315 * atw_disable:
316 *
317 * Disable the ADM8211 chip.
318 */
319 void
320 atw_disable(struct atw_softc *sc)
321 {
322 if (!ATW_IS_ENABLED(sc))
323 return;
324 if (sc->sc_disable != NULL)
325 (*sc->sc_disable)(sc);
326 sc->sc_flags &= ~ATWF_ENABLED;
327 }
328
329 /* Returns -1 on failure. */
330 int
331 atw_read_srom(struct atw_softc *sc)
332 {
333 struct seeprom_descriptor sd;
334 u_int32_t reg;
335
336 (void)memset(&sd, 0, sizeof(sd));
337
338 reg = ATW_READ(sc, ATW_TEST0);
339
340 if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
341 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
342 return -1;
343 }
344
345 switch (reg & ATW_TEST0_EPTYP_MASK) {
346 case ATW_TEST0_EPTYP_93c66:
347 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
348 sc->sc_sromsz = 512;
349 sd.sd_chip = C56_66;
350 break;
351 case ATW_TEST0_EPTYP_93c46:
352 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
353 sc->sc_sromsz = 128;
354 sd.sd_chip = C46;
355 break;
356 default:
357 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
358 MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
359 return -1;
360 }
361
362 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
363
364 if (sc->sc_srom == NULL) {
365 printf("%s: unable to allocate SROM buffer\n",
366 sc->sc_dev.dv_xname);
367 return -1;
368 }
369
370 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
371
372 /* ADM8211 has a single 32-bit register for controlling the
373 * 93cx6 SROM. Bit SRS enables the serial port. There is no
374 * "ready" bit. The ADM8211 input/output sense is the reverse
375 * of read_seeprom's.
376 */
377 sd.sd_tag = sc->sc_st;
378 sd.sd_bsh = sc->sc_sh;
379 sd.sd_regsize = 4;
380 sd.sd_control_offset = ATW_SPR;
381 sd.sd_status_offset = ATW_SPR;
382 sd.sd_dataout_offset = ATW_SPR;
383 sd.sd_CK = ATW_SPR_SCLK;
384 sd.sd_CS = ATW_SPR_SCS;
385 sd.sd_DI = ATW_SPR_SDO;
386 sd.sd_DO = ATW_SPR_SDI;
387 sd.sd_MS = ATW_SPR_SRS;
388 sd.sd_RDY = 0;
389
390 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
391 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
392 free(sc->sc_srom, M_DEVBUF);
393 return -1;
394 }
395 #ifdef ATW_DEBUG
396 {
397 int i;
398 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
399 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
400 if (((i % 8) == 0) && (i != 0)) {
401 ATW_DPRINTF(("\n\t"));
402 }
403 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
404 }
405 ATW_DPRINTF(("\n"));
406 }
407 #endif /* ATW_DEBUG */
408 return 0;
409 }
410
411 #ifdef ATW_DEBUG
412 static void
413 atw_print_regs(struct atw_softc *sc, const char *where)
414 {
415 #define PRINTREG(sc, reg) \
416 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
417 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
418
419 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
420
421 PRINTREG(sc, ATW_PAR);
422 PRINTREG(sc, ATW_FRCTL);
423 PRINTREG(sc, ATW_TDR);
424 PRINTREG(sc, ATW_WTDP);
425 PRINTREG(sc, ATW_RDR);
426 PRINTREG(sc, ATW_WRDP);
427 PRINTREG(sc, ATW_RDB);
428 PRINTREG(sc, ATW_CSR3A);
429 PRINTREG(sc, ATW_TDBD);
430 PRINTREG(sc, ATW_TDBP);
431 PRINTREG(sc, ATW_STSR);
432 PRINTREG(sc, ATW_CSR5A);
433 PRINTREG(sc, ATW_NAR);
434 PRINTREG(sc, ATW_CSR6A);
435 PRINTREG(sc, ATW_IER);
436 PRINTREG(sc, ATW_CSR7A);
437 PRINTREG(sc, ATW_LPC);
438 PRINTREG(sc, ATW_TEST1);
439 PRINTREG(sc, ATW_SPR);
440 PRINTREG(sc, ATW_TEST0);
441 PRINTREG(sc, ATW_WCSR);
442 PRINTREG(sc, ATW_WPDR);
443 PRINTREG(sc, ATW_GPTMR);
444 PRINTREG(sc, ATW_GPIO);
445 PRINTREG(sc, ATW_BBPCTL);
446 PRINTREG(sc, ATW_SYNCTL);
447 PRINTREG(sc, ATW_PLCPHD);
448 PRINTREG(sc, ATW_MMIWADDR);
449 PRINTREG(sc, ATW_MMIRADDR1);
450 PRINTREG(sc, ATW_MMIRADDR2);
451 PRINTREG(sc, ATW_TXBR);
452 PRINTREG(sc, ATW_CSR15A);
453 PRINTREG(sc, ATW_ALCSTAT);
454 PRINTREG(sc, ATW_TOFS2);
455 PRINTREG(sc, ATW_CMDR);
456 PRINTREG(sc, ATW_PCIC);
457 PRINTREG(sc, ATW_PMCSR);
458 PRINTREG(sc, ATW_PAR0);
459 PRINTREG(sc, ATW_PAR1);
460 PRINTREG(sc, ATW_MAR0);
461 PRINTREG(sc, ATW_MAR1);
462 PRINTREG(sc, ATW_ATIMDA0);
463 PRINTREG(sc, ATW_ABDA1);
464 PRINTREG(sc, ATW_BSSID0);
465 PRINTREG(sc, ATW_TXLMT);
466 PRINTREG(sc, ATW_MIBCNT);
467 PRINTREG(sc, ATW_BCNT);
468 PRINTREG(sc, ATW_TSFTH);
469 PRINTREG(sc, ATW_TSC);
470 PRINTREG(sc, ATW_SYNRF);
471 PRINTREG(sc, ATW_BPLI);
472 PRINTREG(sc, ATW_CAP0);
473 PRINTREG(sc, ATW_CAP1);
474 PRINTREG(sc, ATW_RMD);
475 PRINTREG(sc, ATW_CFPP);
476 PRINTREG(sc, ATW_TOFS0);
477 PRINTREG(sc, ATW_TOFS1);
478 PRINTREG(sc, ATW_IFST);
479 PRINTREG(sc, ATW_RSPT);
480 PRINTREG(sc, ATW_TSFTL);
481 PRINTREG(sc, ATW_WEPCTL);
482 PRINTREG(sc, ATW_WESK);
483 PRINTREG(sc, ATW_WEPCNT);
484 PRINTREG(sc, ATW_MACTEST);
485 PRINTREG(sc, ATW_FER);
486 PRINTREG(sc, ATW_FEMR);
487 PRINTREG(sc, ATW_FPSR);
488 PRINTREG(sc, ATW_FFER);
489 #undef PRINTREG
490 }
491 #endif /* ATW_DEBUG */
492
493 /*
494 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
495 */
496 void
497 atw_attach(struct atw_softc *sc)
498 {
499 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
500 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
501 };
502 struct ieee80211com *ic = &sc->sc_ic;
503 struct ifnet *ifp = &ic->ic_if;
504 int country_code, error, i, nrate;
505 u_int32_t reg;
506 static const char *type_strings[] = {"Intersil (not supported)",
507 "RFMD", "Marvel (not supported)"};
508
509 sc->sc_txth = atw_txthresh_tab_lo;
510
511 SIMPLEQ_INIT(&sc->sc_txfreeq);
512 SIMPLEQ_INIT(&sc->sc_txdirtyq);
513
514 #ifdef ATW_DEBUG
515 atw_print_regs(sc, "atw_attach");
516 #endif /* ATW_DEBUG */
517
518 /*
519 * Allocate the control data structures, and create and load the
520 * DMA map for it.
521 */
522 if ((error = bus_dmamem_alloc(sc->sc_dmat,
523 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
524 1, &sc->sc_cdnseg, 0)) != 0) {
525 printf("%s: unable to allocate control data, error = %d\n",
526 sc->sc_dev.dv_xname, error);
527 goto fail_0;
528 }
529
530 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
531 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
532 BUS_DMA_COHERENT)) != 0) {
533 printf("%s: unable to map control data, error = %d\n",
534 sc->sc_dev.dv_xname, error);
535 goto fail_1;
536 }
537
538 if ((error = bus_dmamap_create(sc->sc_dmat,
539 sizeof(struct atw_control_data), 1,
540 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
541 printf("%s: unable to create control data DMA map, "
542 "error = %d\n", sc->sc_dev.dv_xname, error);
543 goto fail_2;
544 }
545
546 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
547 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
548 0)) != 0) {
549 printf("%s: unable to load control data DMA map, error = %d\n",
550 sc->sc_dev.dv_xname, error);
551 goto fail_3;
552 }
553
554 /*
555 * Create the transmit buffer DMA maps.
556 */
557 sc->sc_ntxsegs = ATW_NTXSEGS;
558 for (i = 0; i < ATW_TXQUEUELEN; i++) {
559 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
560 sc->sc_ntxsegs, MCLBYTES, 0, 0,
561 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
562 printf("%s: unable to create tx DMA map %d, "
563 "error = %d\n", sc->sc_dev.dv_xname, i, error);
564 goto fail_4;
565 }
566 }
567
568 /*
569 * Create the receive buffer DMA maps.
570 */
571 for (i = 0; i < ATW_NRXDESC; i++) {
572 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
573 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
574 printf("%s: unable to create rx DMA map %d, "
575 "error = %d\n", sc->sc_dev.dv_xname, i, error);
576 goto fail_5;
577 }
578 }
579 for (i = 0; i < ATW_NRXDESC; i++) {
580 sc->sc_rxsoft[i].rxs_mbuf = NULL;
581 }
582
583 /* Reset the chip to a known state. */
584 atw_reset(sc);
585
586 if (atw_read_srom(sc) == -1)
587 return;
588
589 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
590 ATW_SR_RFTYPE_MASK);
591
592 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
593 ATW_SR_BBPTYPE_MASK);
594
595 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
596 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
597 return;
598 }
599 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
600 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
601 return;
602 }
603
604 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
605 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
606
607 /* XXX There exists a Linux driver which seems to use RFType = 0 for
608 * MARVEL. My bug, or theirs?
609 */
610
611 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
612
613 switch (sc->sc_rftype) {
614 case ATW_RFTYPE_INTERSIL:
615 reg |= ATW_SYNCTL_CS1;
616 break;
617 case ATW_RFTYPE_RFMD:
618 reg |= ATW_SYNCTL_CS0;
619 break;
620 case ATW_RFTYPE_MARVEL:
621 break;
622 }
623
624 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
625 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
626
627 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
628
629 switch (sc->sc_bbptype) {
630 case ATW_BBPTYPE_INTERSIL:
631 reg |= ATW_BBPCTL_TWI;
632 break;
633 case ATW_BBPTYPE_RFMD:
634 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
635 ATW_BBPCTL_CCA_ACTLO;
636 break;
637 case ATW_BBPTYPE_MARVEL:
638 break;
639 case ATW_C_BBPTYPE_RFMD:
640 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
641 sc->sc_dev.dv_xname);
642 break;
643 }
644
645 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
646 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
647
648 /*
649 * From this point forward, the attachment cannot fail. A failure
650 * before this point releases all resources that may have been
651 * allocated.
652 */
653 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
654
655 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
656 htole16(sc->sc_srom[ATW_SR_MAC00]),
657 htole16(sc->sc_srom[ATW_SR_MAC01]),
658 htole16(sc->sc_srom[ATW_SR_MAC10])));
659
660 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
661 ATW_SR_CTRY_MASK);
662
663 #define ADD_CHANNEL(_ic, _chan) do { \
664 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
665 _ic->ic_channels[_chan].ic_freq = \
666 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
667 } while (0)
668
669 /* Find available channels */
670 switch (country_code) {
671 case COUNTRY_MMK2: /* 1-14 */
672 ADD_CHANNEL(ic, 14);
673 /*FALLTHROUGH*/
674 case COUNTRY_ETSI: /* 1-13 */
675 for (i = 1; i <= 13; i++)
676 ADD_CHANNEL(ic, i);
677 break;
678 case COUNTRY_FCC: /* 1-11 */
679 case COUNTRY_IC: /* 1-11 */
680 for (i = 1; i <= 11; i++)
681 ADD_CHANNEL(ic, i);
682 break;
683 case COUNTRY_MMK: /* 14 */
684 ADD_CHANNEL(ic, 14);
685 break;
686 case COUNTRY_FRANCE: /* 10-13 */
687 for (i = 10; i <= 13; i++)
688 ADD_CHANNEL(ic, i);
689 break;
690 default: /* assume channels 10-11 */
691 case COUNTRY_SPAIN: /* 10-11 */
692 for (i = 10; i <= 11; i++)
693 ADD_CHANNEL(ic, i);
694 break;
695 }
696
697 /* Read the MAC address. */
698 reg = ATW_READ(sc, ATW_PAR0);
699 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
700 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
701 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
702 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
703 reg = ATW_READ(sc, ATW_PAR1);
704 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
705 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
706
707 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
708 printf(" could not get mac address, attach failed\n");
709 return;
710 }
711
712 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
713
714 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
715 ifp->if_softc = sc;
716 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
717 IFF_NOTRAILERS;
718 ifp->if_ioctl = atw_ioctl;
719 ifp->if_start = atw_start;
720 ifp->if_watchdog = atw_watchdog;
721 ifp->if_init = atw_init;
722 ifp->if_stop = atw_stop;
723 IFQ_SET_READY(&ifp->if_snd);
724
725 ic->ic_phytype = IEEE80211_T_DS;
726 ic->ic_opmode = IEEE80211_M_STA;
727 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
728 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
729
730 nrate = 0;
731 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
732 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
733 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
734 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
735 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
736
737 /*
738 * Call MI attach routines.
739 */
740
741 if_attach(ifp);
742 ieee80211_ifattach(ifp);
743
744 sc->sc_newstate = ic->ic_newstate;
745 ic->ic_newstate = atw_newstate;
746
747 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
748 ic->ic_recv_mgmt = atw_recv_mgmt;
749
750 sc->sc_node_free = ic->ic_node_free;
751 ic->ic_node_free = atw_node_free;
752
753 sc->sc_node_alloc = ic->ic_node_alloc;
754 ic->ic_node_alloc = atw_node_alloc;
755
756 /* possibly we should fill in our own sc_send_prresp, since
757 * the ADM8211 is probably sending probe responses in ad hoc
758 * mode.
759 */
760
761 /* complete initialization */
762 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
763 callout_init(&sc->sc_scan_ch);
764
765 #if NBPFILTER > 0
766 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
767 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
768 #endif
769
770 /*
771 * Make sure the interface is shutdown during reboot.
772 */
773 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
774 if (sc->sc_sdhook == NULL)
775 printf("%s: WARNING: unable to establish shutdown hook\n",
776 sc->sc_dev.dv_xname);
777
778 /*
779 * Add a suspend hook to make sure we come back up after a
780 * resume.
781 */
782 sc->sc_powerhook = powerhook_establish(atw_power, sc);
783 if (sc->sc_powerhook == NULL)
784 printf("%s: WARNING: unable to establish power hook\n",
785 sc->sc_dev.dv_xname);
786
787 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
788 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
789 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
790
791 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
792 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
793 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
794
795 return;
796
797 /*
798 * Free any resources we've allocated during the failed attach
799 * attempt. Do this in reverse order and fall through.
800 */
801 fail_5:
802 for (i = 0; i < ATW_NRXDESC; i++) {
803 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
804 continue;
805 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
806 }
807 fail_4:
808 for (i = 0; i < ATW_TXQUEUELEN; i++) {
809 if (sc->sc_txsoft[i].txs_dmamap == NULL)
810 continue;
811 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
812 }
813 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
814 fail_3:
815 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
816 fail_2:
817 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
818 sizeof(struct atw_control_data));
819 fail_1:
820 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
821 fail_0:
822 return;
823 }
824
825 static struct ieee80211_node *
826 atw_node_alloc(struct ieee80211com *ic)
827 {
828 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
829 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
830
831 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
832 return ni;
833 }
834
835 static void
836 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
837 {
838 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
839
840 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
841 ether_sprintf(ni->ni_bssid)));
842 (*sc->sc_node_free)(ic, ni);
843 }
844
845 /*
846 * atw_reset:
847 *
848 * Perform a soft reset on the ADM8211.
849 */
850 void
851 atw_reset(struct atw_softc *sc)
852 {
853 int i;
854
855 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
856
857 for (i = 0; i < 10000; i++) {
858 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
859 break;
860 DELAY(1);
861 }
862
863 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
864
865 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
866 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
867
868 /* Turn off maximum power saving. */
869 ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
870
871 /* Recall EEPROM. */
872 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
873
874 DELAY(10 * 1000);
875
876 /* A reset seems to affect the SRAM contents, so put them into
877 * a known state.
878 */
879 atw_clear_sram(sc);
880
881 memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
882 }
883
884 static void
885 atw_clear_sram(struct atw_softc *sc)
886 {
887 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
888 /* XXX not for revision 0x20. */
889 atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
890 }
891
892 /* TBD atw_init
893 *
894 * set MAC based on ic->ic_bss->myaddr
895 * write WEP keys
896 * set TX rate
897 */
898
899 /*
900 * atw_init: [ ifnet interface function ]
901 *
902 * Initialize the interface. Must be called at splnet().
903 */
904 int
905 atw_init(struct ifnet *ifp)
906 {
907 struct atw_softc *sc = ifp->if_softc;
908 struct ieee80211com *ic = &sc->sc_ic;
909 struct atw_txsoft *txs;
910 struct atw_rxsoft *rxs;
911 u_int32_t reg;
912 int i, error = 0;
913
914 if ((error = atw_enable(sc)) != 0)
915 goto out;
916
917 /*
918 * Cancel any pending I/O. This also resets.
919 */
920 atw_stop(ifp, 0);
921
922 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
923 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
924 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
925 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
926
927 /* Turn off APM??? (A binary-only driver does this.)
928 *
929 * Set Rx store-and-forward mode.
930 */
931 reg = ATW_READ(sc, ATW_CMDR);
932 reg &= ~ATW_CMDR_APM;
933 reg &= ~ATW_CMDR_DRT_MASK;
934 reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
935
936 ATW_WRITE(sc, ATW_CMDR, reg);
937
938 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
939 *
940 * XXX a binary-only driver sets a different service field than
941 * 0. why?
942 */
943 reg = ATW_READ(sc, ATW_PLCPHD);
944 reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
945 reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
946 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
947 ATW_WRITE(sc, ATW_PLCPHD, reg);
948
949 /* XXX this magic can probably be figured out from the RFMD docs */
950 reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
951 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
952 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
953 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
954 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
955 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
956 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
957 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
958 ATW_WRITE(sc, ATW_TOFS2, reg);
959
960 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
961 LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
962
963 /* XXX this resets an Intersil RF front-end? */
964 /* TBD condition on Intersil RFType? */
965 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
966 DELAY(10 * 1000);
967 ATW_WRITE(sc, ATW_SYNRF, 0);
968 DELAY(5 * 1000);
969
970 /* 16 TU max duration for contention-free period */
971 reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
972 ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
973
974 /* XXX I guess that the Cardbus clock is 22MHz?
975 * I am assuming that the role of ATW_TOFS0_USCNT is
976 * to divide the bus clock to get a 1MHz clock---the datasheet is not
977 * very clear on this point. It says in the datasheet that it is
978 * possible for the ADM8211 to accomodate bus speeds between 22MHz
979 * and 33MHz; maybe this is the way? I see a binary-only driver write
980 * these values. These values are also the power-on default.
981 */
982 ATW_WRITE(sc, ATW_TOFS0,
983 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
984 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
985
986 /* Initialize interframe spacing. EIFS=0x64 is used by a binary-only
987 * driver. Go figure.
988 */
989 reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
990 LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
991 ATW_IFST_SIFS_MASK) |
992 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
993 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
994
995 ATW_WRITE(sc, ATW_IFST, reg);
996
997 /* XXX More magic. Might relate to ACK timing. */
998 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
999 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1000
1001 /* Set up the MMI read/write addresses for the BBP.
1002 *
1003 * TBD find out the Marvel settings.
1004 */
1005 switch (sc->sc_bbptype) {
1006 case ATW_BBPTYPE_INTERSIL:
1007 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1008 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1009 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1010 break;
1011 case ATW_BBPTYPE_MARVEL:
1012 break;
1013 case ATW_BBPTYPE_RFMD:
1014 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1015 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1016 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1017 default:
1018 break;
1019 }
1020
1021 sc->sc_wepctl = 0;
1022 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1023
1024 if ((error = atw_rf3000_init(sc)) != 0)
1025 goto out;
1026
1027 /*
1028 * Initialize the PCI Access Register.
1029 */
1030 sc->sc_busmode = ATW_PAR_BAR; /* XXX what is this? */
1031
1032 /*
1033 * If we're allowed to do so, use Memory Read Line
1034 * and Memory Read Multiple.
1035 *
1036 * XXX Should we use Memory Write and Invalidate?
1037 */
1038 if (sc->sc_flags & ATWF_MRL)
1039 sc->sc_busmode |= ATW_PAR_MRLE;
1040 if (sc->sc_flags & ATWF_MRM)
1041 sc->sc_busmode |= ATW_PAR_MRME;
1042 if (sc->sc_flags & ATWF_MWI)
1043 sc->sc_busmode |= ATW_PAR_MWIE;
1044 if (sc->sc_maxburst == 0)
1045 sc->sc_maxburst = 8; /* ADM8211 default */
1046
1047 switch (sc->sc_cacheline) {
1048 default:
1049 /* Use burst length. */
1050 break;
1051 case 8:
1052 sc->sc_busmode |= ATW_PAR_CAL_8DW;
1053 break;
1054 case 16:
1055 sc->sc_busmode |= ATW_PAR_CAL_16DW;
1056 break;
1057 case 32:
1058 sc->sc_busmode |= ATW_PAR_CAL_32DW;
1059 break;
1060 }
1061 switch (sc->sc_maxburst) {
1062 case 1:
1063 sc->sc_busmode |= ATW_PAR_PBL_1DW;
1064 break;
1065 case 2:
1066 sc->sc_busmode |= ATW_PAR_PBL_2DW;
1067 break;
1068 case 4:
1069 sc->sc_busmode |= ATW_PAR_PBL_4DW;
1070 break;
1071 case 8:
1072 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1073 break;
1074 case 16:
1075 sc->sc_busmode |= ATW_PAR_PBL_16DW;
1076 break;
1077 case 32:
1078 sc->sc_busmode |= ATW_PAR_PBL_32DW;
1079 break;
1080 default:
1081 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1082 break;
1083 }
1084
1085 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1086 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1087 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1088
1089 /*
1090 * Initialize the OPMODE register. We don't write it until
1091 * we're ready to begin the transmit and receive processes.
1092 */
1093 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1094 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1095
1096 /*
1097 * Initialize the transmit descriptor ring.
1098 */
1099 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1100 for (i = 0; i < ATW_NTXDESC; i++) {
1101 /* no transmit chaining */
1102 sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1103 sc->sc_txdescs[i].at_buf2 =
1104 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1105 }
1106 /* use ring mode */
1107 sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1108 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1109 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1110 sc->sc_txfree = ATW_NTXDESC;
1111 sc->sc_txnext = 0;
1112
1113 /*
1114 * Initialize the transmit job descriptors.
1115 */
1116 SIMPLEQ_INIT(&sc->sc_txfreeq);
1117 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1118 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1119 txs = &sc->sc_txsoft[i];
1120 txs->txs_mbuf = NULL;
1121 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1122 }
1123
1124 /*
1125 * Initialize the receive descriptor and receive job
1126 * descriptor rings.
1127 */
1128 for (i = 0; i < ATW_NRXDESC; i++) {
1129 rxs = &sc->sc_rxsoft[i];
1130 if (rxs->rxs_mbuf == NULL) {
1131 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1132 printf("%s: unable to allocate or map rx "
1133 "buffer %d, error = %d\n",
1134 sc->sc_dev.dv_xname, i, error);
1135 /*
1136 * XXX Should attempt to run with fewer receive
1137 * XXX buffers instead of just failing.
1138 */
1139 atw_rxdrain(sc);
1140 goto out;
1141 }
1142 } else
1143 ATW_INIT_RXDESC(sc, i);
1144 }
1145 sc->sc_rxptr = 0;
1146
1147 /* disable all wake-up events */
1148 ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1149 ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1150 ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1151 ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1152
1153 /* ack all wake-up events */
1154 ATW_SET(sc, ATW_WCSR, 0);
1155
1156 /*
1157 * Initialize the interrupt mask and enable interrupts.
1158 */
1159 /* normal interrupts */
1160 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1161 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1162
1163 /* abnormal interrupts */
1164 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1165 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1166 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1167
1168 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1169 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1170 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1171 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1172 ATW_INTR_TRT;
1173
1174 sc->sc_linkint_mask &= sc->sc_inten;
1175 sc->sc_rxint_mask &= sc->sc_inten;
1176 sc->sc_txint_mask &= sc->sc_inten;
1177
1178 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1179 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1180 if (sc->sc_intr_ack != NULL)
1181 (*sc->sc_intr_ack)(sc);
1182
1183 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1184 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1185
1186 /*
1187 * Give the transmit and receive rings to the ADM8211.
1188 */
1189 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1190 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1191
1192 /* common 802.11 configuration */
1193 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1194 switch (ic->ic_opmode) {
1195 case IEEE80211_M_STA:
1196 break;
1197 case IEEE80211_M_AHDEMO: /* XXX */
1198 case IEEE80211_M_IBSS:
1199 ic->ic_flags |= IEEE80211_F_IBSSON;
1200 /*FALLTHROUGH*/
1201 case IEEE80211_M_HOSTAP: /* XXX */
1202 break;
1203 case IEEE80211_M_MONITOR: /* XXX */
1204 break;
1205 }
1206
1207 atw_start_beacon(sc, 0);
1208
1209 switch (ic->ic_opmode) {
1210 case IEEE80211_M_AHDEMO:
1211 case IEEE80211_M_HOSTAP:
1212 ic->ic_bss->ni_intval = ic->ic_lintval;
1213 ic->ic_bss->ni_rssi = 0;
1214 ic->ic_bss->ni_rstamp = 0;
1215 break;
1216 default: /* XXX */
1217 break;
1218 }
1219
1220 atw_write_ssid(sc);
1221 atw_write_sup_rates(sc);
1222 if (ic->ic_caps & IEEE80211_C_WEP)
1223 atw_write_wep(sc);
1224
1225 /*
1226 * Set the receive filter. This will start the transmit and
1227 * receive processes.
1228 */
1229 atw_filter_setup(sc);
1230
1231 /*
1232 * Start the receive process.
1233 */
1234 ATW_WRITE(sc, ATW_RDR, 0x1);
1235
1236 /*
1237 * Note that the interface is now running.
1238 */
1239 ifp->if_flags |= IFF_RUNNING;
1240 ifp->if_flags &= ~IFF_OACTIVE;
1241 ic->ic_state = IEEE80211_S_INIT;
1242
1243 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1244 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1245 else
1246 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1247 out:
1248 if (error) {
1249 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1250 ifp->if_timer = 0;
1251 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1252 }
1253 #ifdef ATW_DEBUG
1254 atw_print_regs(sc, "end of init");
1255 #endif /* ATW_DEBUG */
1256
1257 return (error);
1258 }
1259
1260 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1261 * 0: MAC control of RF3000/Si4126.
1262 *
1263 * Applies power, or selects RF front-end? Sets reset condition.
1264 *
1265 * TBD support non-RFMD BBP, non-SiLabs synth.
1266 */
1267 static void
1268 atw_rfio_enable(struct atw_softc *sc, int enable)
1269 {
1270 if (enable) {
1271 ATW_WRITE(sc, ATW_SYNRF,
1272 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1273 DELAY(atw_rfio_enable_delay);
1274 } else {
1275 ATW_WRITE(sc, ATW_SYNRF, 0);
1276 DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1277 }
1278 }
1279
1280 static int
1281 atw_tune(struct atw_softc *sc)
1282 {
1283 int rc;
1284 u_int32_t reg;
1285 int chan;
1286 struct ieee80211com *ic = &sc->sc_ic;
1287
1288 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1289 if (chan == IEEE80211_CHAN_ANY)
1290 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1291
1292 if (chan == sc->sc_cur_chan)
1293 return 0;
1294
1295 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1296 sc->sc_cur_chan, chan));
1297
1298 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1299
1300 if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1301 (rc = atw_rf3000_tune(sc, chan)) != 0)
1302 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1303 chan);
1304
1305 reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1306 ATW_WRITE(sc, ATW_CAP0,
1307 reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1308
1309 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1310
1311 if (rc == 0)
1312 sc->sc_cur_chan = chan;
1313
1314 return rc;
1315 }
1316
1317 #ifdef ATW_DEBUG
1318 static void
1319 atw_si4126_print(struct atw_softc *sc)
1320 {
1321 struct ifnet *ifp = &sc->sc_ic.ic_if;
1322 u_int addr, val;
1323
1324 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1325 return;
1326
1327 for (addr = 0; addr <= 8; addr++) {
1328 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1329 if (atw_si4126_read(sc, addr, &val) == 0) {
1330 printf("<unknown> (quitting print-out)\n");
1331 break;
1332 }
1333 printf("%05x\n", val);
1334 }
1335 }
1336 #endif /* ATW_DEBUG */
1337
1338 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1339 *
1340 * The RF/IF synthesizer produces two reference frequencies for
1341 * the RF2948B transceiver. The first frequency the RF2948B requires
1342 * is two times the so-called "intermediate frequency" (IF). Since
1343 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1344 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1345 * frequency required by the transceiver is the radio frequency
1346 * (RF). This is a superheterodyne transceiver; for f(chan) the
1347 * center frequency of the channel we are tuning, RF = f(chan) -
1348 * IF.
1349 *
1350 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1351 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1352 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1353 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1354 */
1355 static int
1356 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
1357 {
1358 int rc = 0;
1359 u_int mhz;
1360 u_int R;
1361 u_int32_t reg;
1362 u_int16_t gain;
1363
1364 #ifdef ATW_DEBUG
1365 atw_si4126_print(sc);
1366 #endif /* ATW_DEBUG */
1367
1368 if (chan == 14)
1369 mhz = 2484;
1370 else
1371 mhz = 2412 + 5 * (chan - 1);
1372
1373 /* Tune IF to 748MHz to suit the IF LO input of the
1374 * RF2494B, which is 2 x IF. No need to set an IF divider
1375 * because an IF in 526MHz - 952MHz is allowed.
1376 *
1377 * XIN is 44.000MHz, so divide it by two to get allowable
1378 * range of 2-25MHz. SiLabs tells me that this is not
1379 * strictly necessary.
1380 */
1381
1382 R = 44;
1383
1384 atw_rfio_enable(sc, 1);
1385
1386 /* Power-up RF, IF synthesizers. */
1387 if ((rc = atw_si4126_write(sc, SI4126_POWER,
1388 SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1389 goto out;
1390
1391 /* If RF2 N > 2047, then set KP2 to 1. */
1392 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1393
1394 if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1395 goto out;
1396
1397 /* set LPWR, too? */
1398 if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1399 SI4126_MAIN_XINDIV2)) != 0)
1400 goto out;
1401
1402 /* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN. XIN = 44MHz.
1403 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1404 */
1405 if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1406 goto out;
1407
1408 if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1409 goto out;
1410
1411 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1412 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1413 * which has no RF1!
1414 */
1415 if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1416 goto out;
1417
1418 if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1419 goto out;
1420
1421 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1422 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1423 * Now let's multiply it to mhz. So mhz - IF = N.
1424 */
1425 if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1426 goto out;
1427
1428 if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1429 goto out;
1430
1431 /* wait 100us from power-up for RF, IF to settle */
1432 DELAY(100);
1433
1434 if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1435 /* XXX there is a binary driver which sends
1436 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1437 * that this enables the Si4126 by raising its PWDN#, but I
1438 * think that it actually sets the Prism RF front-end
1439 * to a special mode for channel 14.
1440 */
1441 reg = ATW_READ(sc, ATW_GPIO);
1442 reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1443 reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1444 ATW_WRITE(sc, ATW_GPIO, reg);
1445 }
1446
1447 #ifdef ATW_DEBUG
1448 atw_si4126_print(sc);
1449 #endif /* ATW_DEBUG */
1450
1451 out:
1452 atw_rfio_enable(sc, 0);
1453
1454 return rc;
1455 }
1456
1457 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1458 * diversity.
1459 *
1460 * Call this w/ Tx/Rx suspended.
1461 */
1462 static int
1463 atw_rf3000_init(struct atw_softc *sc)
1464 {
1465 int rc = 0;
1466
1467 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1468
1469 atw_rfio_enable(sc, 1);
1470
1471 /* enable diversity */
1472 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1473
1474 if (rc != 0)
1475 goto out;
1476
1477 /* sensible setting from a binary-only driver */
1478 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1479 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1480
1481 if (rc != 0)
1482 goto out;
1483
1484 /* magic from a binary-only driver */
1485 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1486 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1487
1488 if (rc != 0)
1489 goto out;
1490
1491 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1492
1493 if (rc != 0)
1494 goto out;
1495
1496 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1497
1498 if (rc != 0)
1499 goto out;
1500
1501 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1502
1503 if (rc != 0)
1504 goto out;
1505
1506 /* CCA is acquisition sensitive */
1507 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1508 LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1509
1510 if (rc != 0)
1511 goto out;
1512
1513 out:
1514 atw_rfio_enable(sc, 0);
1515 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1516 return rc;
1517 }
1518
1519 #ifdef ATW_DEBUG
1520 static void
1521 atw_rf3000_print(struct atw_softc *sc)
1522 {
1523 struct ifnet *ifp = &sc->sc_ic.ic_if;
1524 u_int addr, val;
1525
1526 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1527 return;
1528
1529 for (addr = 0x01; addr <= 0x15; addr++) {
1530 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1531 if (atw_rf3000_read(sc, addr, &val) != 0) {
1532 printf("<unknown> (quitting print-out)\n");
1533 break;
1534 }
1535 printf("%08x\n", val);
1536 }
1537 }
1538 #endif /* ATW_DEBUG */
1539
1540 /* Set the power settings on the BBP for channel `chan'. */
1541 static int
1542 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
1543 {
1544 int rc = 0;
1545 u_int32_t reg;
1546 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1547
1548 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1549 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1550 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1551
1552 /* odd channels: LSB, even channels: MSB */
1553 if (chan % 2 == 1) {
1554 txpower &= 0xFF;
1555 lpf_cutoff &= 0xFF;
1556 lna_gs_thresh &= 0xFF;
1557 } else {
1558 txpower >>= 8;
1559 lpf_cutoff >>= 8;
1560 lna_gs_thresh >>= 8;
1561 }
1562
1563 #ifdef ATW_DEBUG
1564 atw_rf3000_print(sc);
1565 #endif /* ATW_DEBUG */
1566
1567 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1568 "lna_gs_thresh %02x\n",
1569 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1570
1571 atw_rfio_enable(sc, 1);
1572
1573 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1574 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1575 goto out;
1576
1577 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1578 goto out;
1579
1580 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1581 goto out;
1582
1583 /* from a binary-only driver. */
1584 reg = ATW_READ(sc, ATW_PLCPHD);
1585 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1586 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1587 ATW_PLCPHD_SERVICE_MASK);
1588 ATW_WRITE(sc, ATW_PLCPHD, reg);
1589
1590 #ifdef ATW_DEBUG
1591 atw_rf3000_print(sc);
1592 #endif /* ATW_DEBUG */
1593
1594 out:
1595 atw_rfio_enable(sc, 0);
1596
1597 return rc;
1598 }
1599
1600 /* Write a register on the RF3000 baseband processor using the
1601 * registers provided by the ADM8211 for this purpose.
1602 *
1603 * Return 0 on success.
1604 */
1605 static int
1606 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1607 {
1608 u_int32_t reg;
1609 int i;
1610
1611 for (i = 1000; --i >= 0; ) {
1612 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1613 break;
1614 DELAY(100);
1615 }
1616
1617 if (i < 0) {
1618 printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1619 return ETIMEDOUT;
1620 }
1621
1622 reg = sc->sc_bbpctl_wr |
1623 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1624 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1625
1626 ATW_WRITE(sc, ATW_BBPCTL, reg);
1627
1628 for (i = 1000; --i >= 0; ) {
1629 DELAY(100);
1630 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1631 break;
1632 }
1633
1634 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1635
1636 if (i < 0) {
1637 printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1638 return ETIMEDOUT;
1639 }
1640 return 0;
1641 }
1642
1643 /* Read a register on the RF3000 baseband processor using the registers
1644 * the ADM8211 provides for this purpose.
1645 *
1646 * The 7-bit register address is addr. Record the 8-bit data in the register
1647 * in *val.
1648 *
1649 * Return 0 on success.
1650 *
1651 * XXX This does not seem to work. The ADM8211 must require more or
1652 * different magic to read the chip than to write it. Possibly some
1653 * of the magic I have derived from a binary-only driver concerns
1654 * the "chip address" (see the RF3000 manual).
1655 */
1656 #ifdef ATW_DEBUG
1657 static int
1658 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1659 {
1660 u_int32_t reg;
1661 int i;
1662
1663 for (i = 1000; --i >= 0; ) {
1664 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1665 break;
1666 DELAY(100);
1667 }
1668
1669 if (i < 0) {
1670 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1671 sc->sc_dev.dv_xname);
1672 return ETIMEDOUT;
1673 }
1674
1675 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1676
1677 ATW_WRITE(sc, ATW_BBPCTL, reg);
1678
1679 for (i = 1000; --i >= 0; ) {
1680 DELAY(100);
1681 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1682 break;
1683 }
1684
1685 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1686
1687 if (i < 0) {
1688 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1689 sc->sc_dev.dv_xname, reg);
1690 return ETIMEDOUT;
1691 }
1692 if (val != NULL)
1693 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1694 return 0;
1695 }
1696 #endif /* ATW_DEBUG */
1697
1698 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1699 * provided by the ADM8211 for that purpose.
1700 *
1701 * val is 18 bits of data, and val is the 4-bit address of the register.
1702 *
1703 * Return 0 on success.
1704 */
1705 static int
1706 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1707 {
1708 u_int32_t bits, reg;
1709 int i;
1710
1711 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1712 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1713
1714 for (i = 1000; --i >= 0; ) {
1715 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1716 break;
1717 DELAY(100);
1718 }
1719
1720 if (i < 0) {
1721 printf("%s: start atw_si4126_write, SYNCTL busy\n",
1722 sc->sc_dev.dv_xname);
1723 return ETIMEDOUT;
1724 }
1725
1726 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1727 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1728
1729 reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
1730
1731 ATW_WRITE(sc, ATW_SYNCTL, reg);
1732
1733 for (i = 1000; --i >= 0; ) {
1734 DELAY(100);
1735 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1736 break;
1737 }
1738
1739 /* restore to acceptable starting condition */
1740 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1741
1742 if (i < 0) {
1743 printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1744 sc->sc_dev.dv_xname, reg);
1745 return ETIMEDOUT;
1746 }
1747 return 0;
1748 }
1749
1750 /* Read 18-bit data from the 4-bit address addr in Si4126
1751 * RF synthesizer and write the data to *val. Return 0 on success.
1752 *
1753 * XXX This does not seem to work. The ADM8211 must require more or
1754 * different magic to read the chip than to write it.
1755 */
1756 #ifdef ATW_DEBUG
1757 static int
1758 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1759 {
1760 u_int32_t reg;
1761 int i;
1762
1763 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1764
1765 for (i = 1000; --i >= 0; ) {
1766 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1767 break;
1768 DELAY(100);
1769 }
1770
1771 if (i < 0) {
1772 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1773 sc->sc_dev.dv_xname);
1774 return ETIMEDOUT;
1775 }
1776
1777 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1778
1779 ATW_WRITE(sc, ATW_SYNCTL, reg);
1780
1781 for (i = 1000; --i >= 0; ) {
1782 DELAY(100);
1783 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1784 break;
1785 }
1786
1787 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1788
1789 if (i < 0) {
1790 printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1791 sc->sc_dev.dv_xname, reg);
1792 return ETIMEDOUT;
1793 }
1794 if (val != NULL)
1795 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1796 ATW_SYNCTL_DATA_MASK);
1797 return 0;
1798 }
1799 #endif /* ATW_DEBUG */
1800
1801 /* XXX is the endianness correct? test. */
1802 #define atw_calchash(addr) \
1803 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1804
1805 /*
1806 * atw_filter_setup:
1807 *
1808 * Set the ADM8211's receive filter.
1809 */
1810 static void
1811 atw_filter_setup(struct atw_softc *sc)
1812 {
1813 struct ieee80211com *ic = &sc->sc_ic;
1814 struct ethercom *ec = &ic->ic_ec;
1815 struct ifnet *ifp = &sc->sc_ic.ic_if;
1816 int hash;
1817 u_int32_t hashes[2] = { 0, 0 };
1818 struct ether_multi *enm;
1819 struct ether_multistep step;
1820
1821 DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1822 sc->sc_dev.dv_xname, sc->sc_flags));
1823
1824 /*
1825 * If we're running, idle the receive engine. If we're NOT running,
1826 * we're being called from atw_init(), and our writing ATW_NAR will
1827 * start the transmit and receive processes in motion.
1828 */
1829 if (ifp->if_flags & IFF_RUNNING)
1830 atw_idle(sc, ATW_NAR_SR);
1831
1832 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1833
1834 ifp->if_flags &= ~IFF_ALLMULTI;
1835
1836 if (ifp->if_flags & IFF_PROMISC) {
1837 sc->sc_opmode |= ATW_NAR_PR;
1838 allmulti:
1839 ifp->if_flags |= IFF_ALLMULTI;
1840 goto setit;
1841 }
1842
1843 /*
1844 * Program the 64-bit multicast hash filter.
1845 */
1846 ETHER_FIRST_MULTI(step, ec, enm);
1847 while (enm != NULL) {
1848 /* XXX */
1849 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1850 ETHER_ADDR_LEN) != 0)
1851 goto allmulti;
1852
1853 hash = atw_calchash(enm->enm_addrlo);
1854 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1855 ETHER_NEXT_MULTI(step, enm);
1856 }
1857
1858 if (ifp->if_flags & IFF_BROADCAST) {
1859 hash = atw_calchash(etherbroadcastaddr);
1860 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1861 }
1862
1863 /* all bits set => hash is useless */
1864 if (~(hashes[0] & hashes[1]) == 0)
1865 goto allmulti;
1866
1867 setit:
1868 if (ifp->if_flags & IFF_ALLMULTI)
1869 sc->sc_opmode |= ATW_NAR_MM;
1870
1871 /* XXX in scan mode, do not filter packets. maybe this is
1872 * unnecessary.
1873 */
1874 if (ic->ic_state == IEEE80211_S_SCAN)
1875 sc->sc_opmode |= ATW_NAR_PR;
1876
1877 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1878 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1879 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1880 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1881 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1882
1883 DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1884 }
1885
1886 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1887 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1888 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1889 * no beacon with the preferred BSSID and SSID in the number of
1890 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1891 */
1892 static void
1893 atw_write_bssid(struct atw_softc *sc)
1894 {
1895 struct ieee80211com *ic = &sc->sc_ic;
1896 u_int8_t *bssid;
1897
1898 bssid = ic->ic_bss->ni_bssid;
1899
1900 ATW_WRITE(sc, ATW_ABDA1,
1901 (ATW_READ(sc, ATW_ABDA1) &
1902 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1903 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1904 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1905
1906 ATW_WRITE(sc, ATW_BSSID0,
1907 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1908 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1909 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1910 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1911
1912 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1913 ether_sprintf(sc->sc_bssid)));
1914 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1915
1916 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1917 }
1918
1919 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1920 * 16-bit word.
1921 */
1922 static void
1923 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
1924 {
1925 u_int i;
1926 u_int8_t *ptr;
1927
1928 memcpy(&sc->sc_sram[ofs], buf, buflen);
1929
1930 if (ofs % 2 != 0) {
1931 ofs--;
1932 buflen++;
1933 }
1934
1935 if (buflen % 2 != 0)
1936 buflen++;
1937
1938 assert(buflen + ofs <= ATW_SRAM_SIZE);
1939
1940 ptr = &sc->sc_sram[ofs];
1941
1942 for (i = 0; i < buflen; i += 2) {
1943 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
1944 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
1945 DELAY(atw_writewep_delay);
1946
1947 ATW_WRITE(sc, ATW_WESK,
1948 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
1949 DELAY(atw_writewep_delay);
1950 }
1951 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
1952
1953 if (sc->sc_if.if_flags & IFF_DEBUG) {
1954 int n_octets = 0;
1955 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
1956 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
1957 for (i = 0; i < buflen; i++) {
1958 printf(" %02x", ptr[i]);
1959 if (++n_octets % 24 == 0)
1960 printf("\n");
1961 }
1962 if (n_octets % 24 != 0)
1963 printf("\n");
1964 }
1965 }
1966
1967 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
1968 static void
1969 atw_write_wep(struct atw_softc *sc)
1970 {
1971 struct ieee80211com *ic = &sc->sc_ic;
1972 /* SRAM shared-key record format: key0 flags key1 ... key12 */
1973 u_int8_t buf[IEEE80211_WEP_NKID]
1974 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
1975 u_int32_t reg;
1976 int i;
1977
1978 sc->sc_wepctl = 0;
1979 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
1980
1981 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
1982 return;
1983
1984 memset(&buf[0][0], 0, sizeof(buf));
1985
1986 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1987 if (ic->ic_nw_keys[i].wk_len > 5) {
1988 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
1989 } else if (ic->ic_nw_keys[i].wk_len != 0) {
1990 buf[i][1] = ATW_WEP_ENABLED;
1991 } else {
1992 buf[i][1] = 0;
1993 continue;
1994 }
1995 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
1996 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
1997 ic->ic_nw_keys[i].wk_len - 1);
1998 }
1999
2000 reg = ATW_READ(sc, ATW_MACTEST);
2001 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2002 reg &= ~ATW_MACTEST_KEYID_MASK;
2003 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2004 ATW_WRITE(sc, ATW_MACTEST, reg);
2005
2006 /* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2007 * throughout.)
2008 */
2009 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2010 if (sc->sc_if.if_flags & IFF_LINK2)
2011 sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2012
2013 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2014 sizeof(buf));
2015 }
2016
2017 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2018
2019 static void
2020 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2021 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2022 {
2023 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2024
2025 switch (subtype) {
2026 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2027 /* do nothing: hardware answers probe request */
2028 break;
2029 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2030 case IEEE80211_FC0_SUBTYPE_BEACON:
2031 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2032 break;
2033 default:
2034 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2035 break;
2036 }
2037 return;
2038 }
2039
2040 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2041 * of IBSSs with like SSID/channel but different BSSID. It joins the
2042 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2043 * convention. Possibly the ADMtek chip does this for us; I will have
2044 * to test to find out.
2045 *
2046 * XXX we should add the duration field of the received beacon to
2047 * the TSF time it contains before comparing it with the ADM8211's
2048 * TSF.
2049 */
2050 static void
2051 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2052 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2053 {
2054 struct atw_softc *sc;
2055 struct ieee80211_frame *wh;
2056 u_int64_t tsft, bcn_tsft;
2057 u_int32_t tsftl, tsfth;
2058 int do_print = 0;
2059
2060 sc = (struct atw_softc*)ic->ic_if.if_softc;
2061
2062 if (ic->ic_if.if_flags & IFF_DEBUG)
2063 do_print = (ic->ic_if.if_flags & IFF_LINK0)
2064 ? 1 : ratecheck(&sc->sc_last_beacon,
2065 &atw_beacon_mininterval);
2066
2067 wh = mtod(m0, struct ieee80211_frame *);
2068
2069 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2070
2071 if (ic->ic_state != IEEE80211_S_RUN) {
2072 if (do_print)
2073 printf("%s: atw_recv_beacon: not running\n",
2074 sc->sc_dev.dv_xname);
2075 return;
2076 }
2077
2078 if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2079 ic->ic_bss->ni_chan)) == NULL) {
2080 if (do_print)
2081 printf("%s: atw_recv_beacon: no node %s\n",
2082 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2083 return;
2084 }
2085
2086 if (ieee80211_match_bss(ic, ni) != 0) {
2087 if (do_print)
2088 printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2089 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2090 return;
2091 }
2092
2093 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2094 return;
2095
2096 if (do_print)
2097 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2098 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2099
2100 if (ic->ic_opmode != IEEE80211_M_IBSS)
2101 return;
2102
2103 /* If we read TSFTL right before rollover, we read a TSF timer
2104 * that is too high rather than too low. This prevents a spurious
2105 * synchronization down the line, however, our IBSS could suffer
2106 * from a creeping TSF....
2107 */
2108 tsftl = ATW_READ(sc, ATW_TSFTL);
2109 tsfth = ATW_READ(sc, ATW_TSFTH);
2110
2111 tsft = (u_int64_t)tsfth << 32 | tsftl;
2112 bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2113
2114 if (do_print)
2115 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2116 sc->sc_dev.dv_xname, tsft, bcn_tsft);
2117
2118 /* we are faster, let the other guy catch up */
2119 if (bcn_tsft < tsft)
2120 return;
2121
2122 if (do_print)
2123 printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2124 ether_sprintf(wh->i_addr2));
2125
2126 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2127
2128 #if 0
2129 atw_tsf(sc);
2130 #endif
2131
2132 /* negotiate rates with new IBSS */
2133 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2134 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2135 if (ni->ni_rates.rs_nrates == 0) {
2136 printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2137 ether_sprintf(ni->ni_bssid));
2138 return;
2139 }
2140
2141 if (do_print) {
2142 printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2143 ether_sprintf(ic->ic_bss->ni_bssid));
2144 printf("%s ", ether_sprintf(ni->ni_bssid));
2145 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2146 }
2147
2148 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2149
2150 atw_write_bssid(sc);
2151 atw_start_beacon(sc, 1);
2152 }
2153
2154 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2155 * In ad hoc mode, the SSID is written to the beacons sent by the
2156 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2157 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2158 * indications.
2159 */
2160 static void
2161 atw_write_ssid(struct atw_softc *sc)
2162 {
2163 struct ieee80211com *ic = &sc->sc_ic;
2164 /* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2165 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2166
2167 memset(buf, 0, sizeof(buf));
2168 buf[0] = ic->ic_bss->ni_esslen;
2169 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2170
2171 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2172 }
2173
2174 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2175 * In ad hoc mode, the supported rates are written to beacons sent by the
2176 * ADM8211.
2177 */
2178 static void
2179 atw_write_sup_rates(struct atw_softc *sc)
2180 {
2181 struct ieee80211com *ic = &sc->sc_ic;
2182 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2183 * supported rates
2184 */
2185 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2186
2187 memset(buf, 0, sizeof(buf));
2188
2189 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2190
2191 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2192 ic->ic_bss->ni_rates.rs_nrates);
2193
2194 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2195 }
2196
2197 /* Start/stop sending beacons. */
2198 void
2199 atw_start_beacon(struct atw_softc *sc, int start)
2200 {
2201 struct ieee80211com *ic = &sc->sc_ic;
2202 u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2203
2204 if (ATW_IS_ENABLED(sc) == 0)
2205 return;
2206
2207 len = capinfo = 0;
2208
2209 /* start beacons */
2210 len = sizeof(struct ieee80211_frame) +
2211 8 /* timestamp */ + 2 /* beacon interval */ +
2212 2 /* capability info */ +
2213 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2214 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2215 3 /* DS parameters */ +
2216 IEEE80211_CRC_LEN;
2217
2218 reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2219
2220 reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2221
2222 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2223 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2224
2225 if (!start)
2226 return;
2227
2228 /* TBD use ni_capinfo */
2229
2230 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2231 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2232 if (ic->ic_flags & IEEE80211_F_WEPON)
2233 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2234
2235 switch (ic->ic_opmode) {
2236 case IEEE80211_M_IBSS:
2237 len += 4; /* IBSS parameters */
2238 capinfo |= IEEE80211_CAPINFO_IBSS;
2239 break;
2240 case IEEE80211_M_HOSTAP:
2241 /* XXX 6-byte minimum TIM */
2242 len += atw_beacon_len_adjust;
2243 capinfo |= IEEE80211_CAPINFO_ESS;
2244 break;
2245 default:
2246 return;
2247 }
2248
2249 reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2250 reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2251
2252 ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2253 ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2254
2255 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2256 sc->sc_dev.dv_xname, reg_bcnt));
2257
2258 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2259 sc->sc_dev.dv_xname, reg_cap1));
2260 }
2261
2262 /* First beacon was sent at time 0 microseconds, current time is
2263 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2264 * microseconds. Return the expected time in microseconds for the
2265 * beacon after next.
2266 */
2267 static __inline u_int64_t
2268 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2269 {
2270 return tsft + (tbtt - tsft % tbtt);
2271 }
2272
2273 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2274 * the ieee80211com.
2275 *
2276 * Predict the next target beacon transmission time (TBTT) and
2277 * write it to the ADM8211.
2278 */
2279 static void
2280 atw_tsf(struct atw_softc *sc)
2281 {
2282 #define TBTTOFS 20 /* TU */
2283
2284 struct ieee80211com *ic = &sc->sc_ic;
2285 u_int64_t tsft, tbtt;
2286
2287 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2288 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2289 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2290 tsft = ATW_READ(sc, ATW_TSFTH);
2291 tsft <<= 32;
2292 tsft |= ATW_READ(sc, ATW_TSFTL);
2293 *(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2294 } else
2295 tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2296
2297 tbtt = atw_predict_beacon(tsft,
2298 ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2299
2300 /* skip one more beacon so that the TBTT cannot pass before
2301 * we've programmed it, and also so that we can subtract a
2302 * few TU so that we wake a little before TBTT.
2303 */
2304 tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2305
2306 /* wake up a little early */
2307 tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2308
2309 DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2310 sc->sc_dev.dv_xname, tsft, tbtt));
2311
2312 ATW_WRITE(sc, ATW_TOFS1,
2313 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2314 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2315 LSHIFT(
2316 MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2317 ATW_TOFS1_TBTTPRE_MASK));
2318 #undef TBTTOFS
2319 }
2320
2321 static void
2322 atw_next_scan(void *arg)
2323 {
2324 struct atw_softc *sc = arg;
2325 struct ieee80211com *ic = &sc->sc_ic;
2326 struct ifnet *ifp = &ic->ic_if;
2327 int s;
2328
2329 /* don't call atw_start w/o network interrupts blocked */
2330 s = splnet();
2331 if (ic->ic_state == IEEE80211_S_SCAN)
2332 ieee80211_next_scan(ifp);
2333 splx(s);
2334 }
2335
2336 /* Synchronize the hardware state with the software state. */
2337 static int
2338 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2339 {
2340 struct ifnet *ifp = &ic->ic_if;
2341 struct atw_softc *sc = ifp->if_softc;
2342 enum ieee80211_state ostate;
2343 int error;
2344
2345 ostate = ic->ic_state;
2346
2347 if (nstate == IEEE80211_S_INIT) {
2348 callout_stop(&sc->sc_scan_ch);
2349 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2350 atw_start_beacon(sc, 0);
2351 return (*sc->sc_newstate)(ic, nstate, arg);
2352 }
2353
2354 if ((error = atw_tune(sc)) != 0)
2355 return error;
2356
2357 switch (nstate) {
2358 case IEEE80211_S_ASSOC:
2359 break;
2360 case IEEE80211_S_INIT:
2361 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2362 break;
2363 case IEEE80211_S_SCAN:
2364 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2365 atw_next_scan, sc);
2366
2367 break;
2368 case IEEE80211_S_RUN:
2369 if (ic->ic_opmode == IEEE80211_M_STA)
2370 break;
2371 /*FALLTHROUGH*/
2372 case IEEE80211_S_AUTH:
2373 atw_write_bssid(sc);
2374 atw_write_ssid(sc);
2375 atw_write_sup_rates(sc);
2376
2377 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2378 ic->ic_opmode == IEEE80211_M_MONITOR)
2379 break;
2380
2381 /* set listen interval
2382 * XXX do software units agree w/ hardware?
2383 */
2384 ATW_WRITE(sc, ATW_BPLI,
2385 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2386 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2387 ATW_BPLI_LI_MASK));
2388
2389 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2390 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2391
2392 atw_tsf(sc);
2393 break;
2394 }
2395
2396 if (nstate != IEEE80211_S_SCAN)
2397 callout_stop(&sc->sc_scan_ch);
2398
2399 if (nstate == IEEE80211_S_RUN &&
2400 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2401 ic->ic_opmode == IEEE80211_M_IBSS))
2402 atw_start_beacon(sc, 1);
2403 else
2404 atw_start_beacon(sc, 0);
2405
2406 error = (*sc->sc_newstate)(ic, nstate, arg);
2407
2408 if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2409 atw_write_bssid(sc);
2410
2411 return error;
2412 }
2413
2414 /*
2415 * atw_add_rxbuf:
2416 *
2417 * Add a receive buffer to the indicated descriptor.
2418 */
2419 int
2420 atw_add_rxbuf(struct atw_softc *sc, int idx)
2421 {
2422 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2423 struct mbuf *m;
2424 int error;
2425
2426 MGETHDR(m, M_DONTWAIT, MT_DATA);
2427 if (m == NULL)
2428 return (ENOBUFS);
2429
2430 MCLGET(m, M_DONTWAIT);
2431 if ((m->m_flags & M_EXT) == 0) {
2432 m_freem(m);
2433 return (ENOBUFS);
2434 }
2435
2436 if (rxs->rxs_mbuf != NULL)
2437 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2438
2439 rxs->rxs_mbuf = m;
2440
2441 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2442 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2443 BUS_DMA_READ|BUS_DMA_NOWAIT);
2444 if (error) {
2445 printf("%s: can't load rx DMA map %d, error = %d\n",
2446 sc->sc_dev.dv_xname, idx, error);
2447 panic("atw_add_rxbuf"); /* XXX */
2448 }
2449
2450 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2451 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2452
2453 ATW_INIT_RXDESC(sc, idx);
2454
2455 return (0);
2456 }
2457
2458 /*
2459 * Release any queued transmit buffers.
2460 */
2461 void
2462 atw_txdrain(struct atw_softc *sc)
2463 {
2464 struct atw_txsoft *txs;
2465
2466 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2467 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2468 if (txs->txs_mbuf != NULL) {
2469 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2470 m_freem(txs->txs_mbuf);
2471 txs->txs_mbuf = NULL;
2472 }
2473 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2474 }
2475 sc->sc_tx_timer = 0;
2476 }
2477
2478 /*
2479 * atw_stop: [ ifnet interface function ]
2480 *
2481 * Stop transmission on the interface.
2482 */
2483 void
2484 atw_stop(struct ifnet *ifp, int disable)
2485 {
2486 struct atw_softc *sc = ifp->if_softc;
2487 struct ieee80211com *ic = &sc->sc_ic;
2488
2489 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2490
2491 /* Disable interrupts. */
2492 ATW_WRITE(sc, ATW_IER, 0);
2493
2494 /* Stop the transmit and receive processes. */
2495 sc->sc_opmode = 0;
2496 ATW_WRITE(sc, ATW_NAR, 0);
2497 DELAY(20 * 1000);
2498 ATW_WRITE(sc, ATW_TDBD, 0);
2499 ATW_WRITE(sc, ATW_TDBP, 0);
2500 ATW_WRITE(sc, ATW_RDB, 0);
2501
2502 atw_txdrain(sc);
2503
2504 if (disable) {
2505 atw_rxdrain(sc);
2506 atw_disable(sc);
2507 }
2508
2509 /*
2510 * Mark the interface down and cancel the watchdog timer.
2511 */
2512 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2513 ifp->if_timer = 0;
2514
2515 if (!disable)
2516 atw_reset(sc);
2517 }
2518
2519 /*
2520 * atw_rxdrain:
2521 *
2522 * Drain the receive queue.
2523 */
2524 void
2525 atw_rxdrain(struct atw_softc *sc)
2526 {
2527 struct atw_rxsoft *rxs;
2528 int i;
2529
2530 for (i = 0; i < ATW_NRXDESC; i++) {
2531 rxs = &sc->sc_rxsoft[i];
2532 if (rxs->rxs_mbuf == NULL)
2533 continue;
2534 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2535 m_freem(rxs->rxs_mbuf);
2536 rxs->rxs_mbuf = NULL;
2537 }
2538 }
2539
2540 /*
2541 * atw_detach:
2542 *
2543 * Detach an ADM8211 interface.
2544 */
2545 int
2546 atw_detach(struct atw_softc *sc)
2547 {
2548 struct ifnet *ifp = &sc->sc_ic.ic_if;
2549 struct atw_rxsoft *rxs;
2550 struct atw_txsoft *txs;
2551 int i;
2552
2553 /*
2554 * Succeed now if there isn't any work to do.
2555 */
2556 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2557 return (0);
2558
2559 ieee80211_ifdetach(ifp);
2560 if_detach(ifp);
2561
2562 for (i = 0; i < ATW_NRXDESC; i++) {
2563 rxs = &sc->sc_rxsoft[i];
2564 if (rxs->rxs_mbuf != NULL) {
2565 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2566 m_freem(rxs->rxs_mbuf);
2567 rxs->rxs_mbuf = NULL;
2568 }
2569 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2570 }
2571 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2572 txs = &sc->sc_txsoft[i];
2573 if (txs->txs_mbuf != NULL) {
2574 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2575 m_freem(txs->txs_mbuf);
2576 txs->txs_mbuf = NULL;
2577 }
2578 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2579 }
2580 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2581 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2582 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2583 sizeof(struct atw_control_data));
2584 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2585
2586 shutdownhook_disestablish(sc->sc_sdhook);
2587 powerhook_disestablish(sc->sc_powerhook);
2588
2589 if (sc->sc_srom)
2590 free(sc->sc_srom, M_DEVBUF);
2591
2592 return (0);
2593 }
2594
2595 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2596 void
2597 atw_shutdown(void *arg)
2598 {
2599 struct atw_softc *sc = arg;
2600
2601 atw_stop(&sc->sc_ic.ic_if, 1);
2602 }
2603
2604 int
2605 atw_intr(void *arg)
2606 {
2607 struct atw_softc *sc = arg;
2608 struct ifnet *ifp = &sc->sc_ic.ic_if;
2609 u_int32_t status, rxstatus, txstatus, linkstatus;
2610 int handled = 0, txthresh;
2611
2612 #ifdef DEBUG
2613 if (ATW_IS_ENABLED(sc) == 0)
2614 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2615 #endif
2616
2617 /*
2618 * If the interface isn't running, the interrupt couldn't
2619 * possibly have come from us.
2620 */
2621 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2622 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2623 return (0);
2624
2625 for (;;) {
2626 status = ATW_READ(sc, ATW_STSR);
2627
2628 if (status)
2629 ATW_WRITE(sc, ATW_STSR, status);
2630
2631 #ifdef ATW_DEBUG
2632 #define PRINTINTR(flag) do { \
2633 if ((status & flag) != 0) { \
2634 printf("%s" #flag, delim); \
2635 delim = ","; \
2636 } \
2637 } while (0)
2638
2639 if (atw_debug > 1 && status) {
2640 const char *delim = "<";
2641
2642 printf("%s: reg[STSR] = %x",
2643 sc->sc_dev.dv_xname, status);
2644
2645 PRINTINTR(ATW_INTR_FBE);
2646 PRINTINTR(ATW_INTR_LINKOFF);
2647 PRINTINTR(ATW_INTR_LINKON);
2648 PRINTINTR(ATW_INTR_RCI);
2649 PRINTINTR(ATW_INTR_RDU);
2650 PRINTINTR(ATW_INTR_REIS);
2651 PRINTINTR(ATW_INTR_RPS);
2652 PRINTINTR(ATW_INTR_TCI);
2653 PRINTINTR(ATW_INTR_TDU);
2654 PRINTINTR(ATW_INTR_TLT);
2655 PRINTINTR(ATW_INTR_TPS);
2656 PRINTINTR(ATW_INTR_TRT);
2657 PRINTINTR(ATW_INTR_TUF);
2658 PRINTINTR(ATW_INTR_BCNTC);
2659 PRINTINTR(ATW_INTR_ATIME);
2660 PRINTINTR(ATW_INTR_TBTT);
2661 PRINTINTR(ATW_INTR_TSCZ);
2662 PRINTINTR(ATW_INTR_TSFTF);
2663 printf(">\n");
2664 }
2665 #undef PRINTINTR
2666 #endif /* ATW_DEBUG */
2667
2668 if ((status & sc->sc_inten) == 0)
2669 break;
2670
2671 handled = 1;
2672
2673 rxstatus = status & sc->sc_rxint_mask;
2674 txstatus = status & sc->sc_txint_mask;
2675 linkstatus = status & sc->sc_linkint_mask;
2676
2677 if (linkstatus) {
2678 atw_linkintr(sc, linkstatus);
2679 }
2680
2681 if (rxstatus) {
2682 /* Grab any new packets. */
2683 atw_rxintr(sc);
2684
2685 if (rxstatus & ATW_INTR_RDU) {
2686 printf("%s: receive ring overrun\n",
2687 sc->sc_dev.dv_xname);
2688 /* Get the receive process going again. */
2689 ATW_WRITE(sc, ATW_RDR, 0x1);
2690 break;
2691 }
2692 }
2693
2694 if (txstatus) {
2695 /* Sweep up transmit descriptors. */
2696 atw_txintr(sc);
2697
2698 if (txstatus & ATW_INTR_TLT)
2699 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2700 sc->sc_dev.dv_xname));
2701
2702 if (txstatus & ATW_INTR_TRT)
2703 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2704 sc->sc_dev.dv_xname));
2705
2706 /* If Tx under-run, increase our transmit threshold
2707 * if another is available.
2708 */
2709 txthresh = sc->sc_txthresh + 1;
2710 if ((txstatus & ATW_INTR_TUF) &&
2711 sc->sc_txth[txthresh].txth_name != NULL) {
2712 /* Idle the transmit process. */
2713 atw_idle(sc, ATW_NAR_ST);
2714
2715 sc->sc_txthresh = txthresh;
2716 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2717 sc->sc_opmode |=
2718 sc->sc_txth[txthresh].txth_opmode;
2719 printf("%s: transmit underrun; new "
2720 "threshold: %s\n", sc->sc_dev.dv_xname,
2721 sc->sc_txth[txthresh].txth_name);
2722
2723 /* Set the new threshold and restart
2724 * the transmit process.
2725 */
2726 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2727 DELAY(20 * 1000);
2728 ATW_WRITE(sc, ATW_RDR, 0x1);
2729 /* XXX Log every Nth underrun from
2730 * XXX now on?
2731 */
2732 }
2733 }
2734
2735 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2736 if (status & ATW_INTR_TPS)
2737 printf("%s: transmit process stopped\n",
2738 sc->sc_dev.dv_xname);
2739 if (status & ATW_INTR_RPS)
2740 printf("%s: receive process stopped\n",
2741 sc->sc_dev.dv_xname);
2742 (void)atw_init(ifp);
2743 break;
2744 }
2745
2746 if (status & ATW_INTR_FBE) {
2747 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2748 (void)atw_init(ifp);
2749 break;
2750 }
2751
2752 /*
2753 * Not handled:
2754 *
2755 * Transmit buffer unavailable -- normal
2756 * condition, nothing to do, really.
2757 *
2758 * Early receive interrupt -- not available on
2759 * all chips, we just use RI. We also only
2760 * use single-segment receive DMA, so this
2761 * is mostly useless.
2762 *
2763 * TBD others
2764 */
2765 }
2766
2767 /* Try to get more packets going. */
2768 atw_start(ifp);
2769
2770 return (handled);
2771 }
2772
2773 /*
2774 * atw_idle:
2775 *
2776 * Cause the transmit and/or receive processes to go idle.
2777 *
2778 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2779 * process in STSR if I clear SR or ST after the process has already
2780 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2781 * do not seem to be too reliable. Perhaps I have the sense of the
2782 * Rx bits switched with the Tx bits?
2783 */
2784 void
2785 atw_idle(struct atw_softc *sc, u_int32_t bits)
2786 {
2787 u_int32_t ackmask = 0, opmode, stsr, test0;
2788 int i, s;
2789
2790 s = splnet();
2791
2792 opmode = sc->sc_opmode & ~bits;
2793
2794 if (bits & ATW_NAR_SR)
2795 ackmask |= ATW_INTR_RPS;
2796
2797 if (bits & ATW_NAR_ST) {
2798 ackmask |= ATW_INTR_TPS;
2799 /* set ATW_NAR_HF to flush TX FIFO. */
2800 opmode |= ATW_NAR_HF;
2801 }
2802
2803 ATW_WRITE(sc, ATW_NAR, opmode);
2804 DELAY(20 * 1000);
2805
2806 for (i = 0; i < 10; i++) {
2807 stsr = ATW_READ(sc, ATW_STSR);
2808 if ((stsr & ackmask) == ackmask)
2809 break;
2810 DELAY(1000);
2811 }
2812
2813 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2814
2815 if ((stsr & ackmask) == ackmask)
2816 goto out;
2817
2818 test0 = ATW_READ(sc, ATW_TEST0);
2819
2820 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2821 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2822 printf("%s: transmit process not idle [%s]\n",
2823 sc->sc_dev.dv_xname,
2824 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2825 printf("%s: bits %08x test0 %08x stsr %08x\n",
2826 sc->sc_dev.dv_xname, bits, test0, stsr);
2827 }
2828
2829 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2830 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2831 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2832 sc->sc_dev.dv_xname,
2833 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2834 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2835 sc->sc_dev.dv_xname, bits, test0, stsr));
2836 }
2837 out:
2838 if ((bits & ATW_NAR_ST) != 0)
2839 atw_txdrain(sc);
2840 splx(s);
2841 return;
2842 }
2843
2844 /*
2845 * atw_linkintr:
2846 *
2847 * Helper; handle link-status interrupts.
2848 */
2849 void
2850 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2851 {
2852 struct ieee80211com *ic = &sc->sc_ic;
2853
2854 if (ic->ic_state != IEEE80211_S_RUN)
2855 return;
2856
2857 if (linkstatus & ATW_INTR_LINKON) {
2858 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2859 sc->sc_rescan_timer = 0;
2860 } else if (linkstatus & ATW_INTR_LINKOFF) {
2861 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2862 if (ic->ic_opmode != IEEE80211_M_STA)
2863 return;
2864 sc->sc_rescan_timer = 3;
2865 ic->ic_if.if_timer = 1;
2866 }
2867 }
2868
2869 /*
2870 * atw_rxintr:
2871 *
2872 * Helper; handle receive interrupts.
2873 */
2874 void
2875 atw_rxintr(struct atw_softc *sc)
2876 {
2877 static int rate_tbl[] = {2, 4, 11, 22, 44};
2878 struct ieee80211com *ic = &sc->sc_ic;
2879 struct ieee80211_node *ni;
2880 struct ieee80211_frame *wh;
2881 struct ifnet *ifp = &ic->ic_if;
2882 struct atw_rxsoft *rxs;
2883 struct mbuf *m;
2884 u_int32_t rxstat;
2885 int i, len, rate, rate0;
2886 u_int32_t rssi;
2887
2888 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2889 rxs = &sc->sc_rxsoft[i];
2890
2891 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2892
2893 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2894 rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2895 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2896
2897 if (rxstat & ATW_RXSTAT_OWN)
2898 break; /* We have processed all receive buffers. */
2899
2900 DPRINTF3(sc,
2901 ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2902 sc->sc_dev.dv_xname,
2903 le32toh(sc->sc_rxdescs[i].ar_stat),
2904 le32toh(sc->sc_rxdescs[i].ar_rssi),
2905 le32toh(sc->sc_rxdescs[i].ar_buf1),
2906 le32toh(sc->sc_rxdescs[i].ar_buf2)));
2907
2908 /*
2909 * Make sure the packet fits in one buffer. This should
2910 * always be the case.
2911 */
2912 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2913 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2914 printf("%s: incoming packet spilled, resetting\n",
2915 sc->sc_dev.dv_xname);
2916 (void)atw_init(ifp);
2917 return;
2918 }
2919
2920 /*
2921 * If an error occurred, update stats, clear the status
2922 * word, and leave the packet buffer in place. It will
2923 * simply be reused the next time the ring comes around.
2924 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2925 * error.
2926 */
2927
2928 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
2929 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
2930 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
2931 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
2932 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
2933 ATW_RXSTAT_ICVE)) != 0)) {
2934 #define PRINTERR(bit, str) \
2935 if (rxstat & (bit)) \
2936 printf("%s: receive error: %s\n", \
2937 sc->sc_dev.dv_xname, str)
2938 ifp->if_ierrors++;
2939 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
2940 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
2941 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
2942 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
2943 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
2944 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
2945 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
2946 #undef PRINTERR
2947 ATW_INIT_RXDESC(sc, i);
2948 continue;
2949 }
2950
2951 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2952 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2953
2954 /*
2955 * No errors; receive the packet. Note the ADM8211
2956 * includes the CRC in promiscuous mode.
2957 */
2958 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
2959
2960 /*
2961 * Allocate a new mbuf cluster. If that fails, we are
2962 * out of memory, and must drop the packet and recycle
2963 * the buffer that's already attached to this descriptor.
2964 */
2965 m = rxs->rxs_mbuf;
2966 if (atw_add_rxbuf(sc, i) != 0) {
2967 ifp->if_ierrors++;
2968 ATW_INIT_RXDESC(sc, i);
2969 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2970 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2971 continue;
2972 }
2973
2974 ifp->if_ipackets++;
2975 if (sc->sc_opmode & ATW_NAR_PR)
2976 m->m_flags |= M_HASFCS;
2977 m->m_pkthdr.rcvif = ifp;
2978 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
2979
2980 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
2981 rate = 0;
2982 else
2983 rate = rate_tbl[rate0];
2984
2985 #if NBPFILTER > 0
2986 /* Pass this up to any BPF listeners. */
2987 if (sc->sc_radiobpf != NULL) {
2988 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
2989
2990 tap->ar_rate = rate;
2991 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
2992 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
2993
2994 /* TBD verify units are dB */
2995 tap->ar_antsignal = (int)rssi;
2996 /* TBD tap->ar_flags */
2997
2998 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
2999 tap->ar_ihdr.it_len, m);
3000 }
3001 #endif /* NPBFILTER > 0 */
3002
3003 wh = mtod(m, struct ieee80211_frame *);
3004 ni = ieee80211_find_rxnode(ic, wh);
3005 ieee80211_input(ifp, m, ni, (int)rssi, 0);
3006 /*
3007 * The frame may have caused the node to be marked for
3008 * reclamation (e.g. in response to a DEAUTH message)
3009 * so use free_node here instead of unref_node.
3010 */
3011 if (ni == ic->ic_bss)
3012 ieee80211_unref_node(&ni);
3013 else
3014 ieee80211_free_node(ic, ni);
3015 }
3016
3017 /* Update the receive pointer. */
3018 sc->sc_rxptr = i;
3019 }
3020
3021 /*
3022 * atw_txintr:
3023 *
3024 * Helper; handle transmit interrupts.
3025 */
3026 void
3027 atw_txintr(struct atw_softc *sc)
3028 {
3029 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3030 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3031 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3032 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3033
3034 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3035 struct ifnet *ifp = &sc->sc_ic.ic_if;
3036 struct atw_txsoft *txs;
3037 u_int32_t txstat;
3038
3039 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3040 sc->sc_dev.dv_xname, sc->sc_flags));
3041
3042 ifp->if_flags &= ~IFF_OACTIVE;
3043
3044 /*
3045 * Go through our Tx list and free mbufs for those
3046 * frames that have been transmitted.
3047 */
3048 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3049 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3050 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3051
3052 #ifdef ATW_DEBUG
3053 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3054 int i;
3055 printf(" txsoft %p transmit chain:\n", txs);
3056 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3057 txs->txs_ndescs - 1,
3058 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3059 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3060 printf(" descriptor %d:\n", i);
3061 printf(" at_status: 0x%08x\n",
3062 le32toh(sc->sc_txdescs[i].at_stat));
3063 printf(" at_flags: 0x%08x\n",
3064 le32toh(sc->sc_txdescs[i].at_flags));
3065 printf(" at_buf1: 0x%08x\n",
3066 le32toh(sc->sc_txdescs[i].at_buf1));
3067 printf(" at_buf2: 0x%08x\n",
3068 le32toh(sc->sc_txdescs[i].at_buf2));
3069 if (i == txs->txs_lastdesc)
3070 break;
3071 }
3072 }
3073 #endif
3074
3075 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3076 if (txstat & ATW_TXSTAT_OWN)
3077 break;
3078
3079 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3080
3081 sc->sc_txfree += txs->txs_ndescs;
3082
3083 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3084 0, txs->txs_dmamap->dm_mapsize,
3085 BUS_DMASYNC_POSTWRITE);
3086 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3087 m_freem(txs->txs_mbuf);
3088 txs->txs_mbuf = NULL;
3089
3090 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3091
3092 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3093 (txstat & TXSTAT_ERRMASK) != 0) {
3094 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3095 txstat_buf, sizeof(txstat_buf));
3096 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3097 txstat_buf,
3098 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3099 }
3100
3101 /*
3102 * Check for errors and collisions.
3103 */
3104 if (txstat & ATW_TXSTAT_TUF)
3105 sc->sc_stats.ts_tx_tuf++;
3106 if (txstat & ATW_TXSTAT_TLT)
3107 sc->sc_stats.ts_tx_tlt++;
3108 if (txstat & ATW_TXSTAT_TRT)
3109 sc->sc_stats.ts_tx_trt++;
3110 if (txstat & ATW_TXSTAT_TRO)
3111 sc->sc_stats.ts_tx_tro++;
3112 if (txstat & ATW_TXSTAT_SOFBR) {
3113 sc->sc_stats.ts_tx_sofbr++;
3114 }
3115
3116 if ((txstat & ATW_TXSTAT_ES) == 0)
3117 ifp->if_collisions +=
3118 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3119 else
3120 ifp->if_oerrors++;
3121
3122 ifp->if_opackets++;
3123 }
3124
3125 /*
3126 * If there are no more pending transmissions, cancel the watchdog
3127 * timer.
3128 */
3129 if (txs == NULL)
3130 sc->sc_tx_timer = 0;
3131 #undef TXSTAT_ERRMASK
3132 #undef TXSTAT_FMT
3133 }
3134
3135 /*
3136 * atw_watchdog: [ifnet interface function]
3137 *
3138 * Watchdog timer handler.
3139 */
3140 void
3141 atw_watchdog(struct ifnet *ifp)
3142 {
3143 struct atw_softc *sc = ifp->if_softc;
3144 struct ieee80211com *ic = &sc->sc_ic;
3145
3146 ifp->if_timer = 0;
3147 if (ATW_IS_ENABLED(sc) == 0)
3148 return;
3149
3150 if (sc->sc_rescan_timer) {
3151 if (--sc->sc_rescan_timer == 0)
3152 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3153 }
3154 if (sc->sc_tx_timer) {
3155 if (--sc->sc_tx_timer == 0 &&
3156 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3157 printf("%s: transmit timeout\n", ifp->if_xname);
3158 ifp->if_oerrors++;
3159 (void)atw_init(ifp);
3160 atw_start(ifp);
3161 }
3162 }
3163 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3164 ifp->if_timer = 1;
3165 ieee80211_watchdog(ifp);
3166 }
3167
3168 /* Compute the 802.11 Duration field and the PLCP Length fields for
3169 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3170 * Write the fields to the ADM8211 Tx header, frm.
3171 *
3172 * TBD use the fragmentation threshold to find the right duration for
3173 * the first & last fragments.
3174 *
3175 * TBD make certain of the duration fields applied by the ADM8211 to each
3176 * fragment. I think that the ADM8211 knows how to subtract the CTS
3177 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3178 * I also think that the ADM8211 does *some* arithmetic for us, because
3179 * otherwise I think we would have to set a first duration for CTS/first
3180 * fragment, a second duration for fragments between the first and the
3181 * last, and a third duration for the last fragment.
3182 *
3183 * TBD make certain that duration fields reflect addition of FCS/WEP
3184 * and correct duration arithmetic as necessary.
3185 */
3186 static void
3187 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3188 int len)
3189 {
3190 int remainder;
3191
3192 /* deal also with encrypted fragments */
3193 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3194 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3195 sc->sc_dev.dv_xname));
3196 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3197 IEEE80211_WEP_CRCLEN;
3198 }
3199
3200 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3201 * duration (XXX added by MAC?).
3202 */
3203 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3204 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3205
3206 if (rate <= 4)
3207 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3208 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3209 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3210 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3211 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3212 else
3213 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3214 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3215 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3216 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3217 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3218
3219 /* lengthen duration if long preamble */
3220 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3221 frm->atw_head_dur +=
3222 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3223 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3224 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3225 IEEE80211_DUR_DS_FAST_PLCPHDR);
3226
3227 if (remainder != 0)
3228 frm->atw_head_dur++;
3229
3230 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3231 (rate == 2 || rate == 4)) {
3232 /* derived from Linux: how could this be right? */
3233 frm->atw_head_plcplen = frm->atw_head_dur;
3234 } else {
3235 frm->atw_head_plcplen = (16 * len) / rate;
3236 remainder = (80 * len) % (rate * 5);
3237
3238 if (remainder != 0) {
3239 frm->atw_head_plcplen++;
3240
3241 /* XXX magic */
3242 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3243 rate == 22 && remainder <= 30)
3244 frm->atw_head_plcplen |= 0x8000;
3245 }
3246 }
3247 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3248 htole16(frm->atw_head_plcplen);
3249 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3250 }
3251
3252 #ifdef ATW_DEBUG
3253 static void
3254 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3255 {
3256 struct atw_softc *sc = ifp->if_softc;
3257 struct mbuf *m;
3258 int i, noctets = 0;
3259
3260 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3261 m0->m_pkthdr.len);
3262
3263 for (m = m0; m; m = m->m_next) {
3264 if (m->m_len == 0)
3265 continue;
3266 for (i = 0; i < m->m_len; i++) {
3267 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3268 if (++noctets % 24 == 0)
3269 printf("\n");
3270 }
3271 }
3272 printf("%s%s: %d bytes emitted\n",
3273 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3274 }
3275 #endif /* ATW_DEBUG */
3276
3277 /*
3278 * atw_start: [ifnet interface function]
3279 *
3280 * Start packet transmission on the interface.
3281 */
3282 void
3283 atw_start(struct ifnet *ifp)
3284 {
3285 struct atw_softc *sc = ifp->if_softc;
3286 struct ieee80211com *ic = &sc->sc_ic;
3287 struct ieee80211_node *ni;
3288 struct ieee80211_frame *wh;
3289 struct atw_frame *hh;
3290 struct mbuf *m0, *m;
3291 struct atw_txsoft *txs, *last_txs;
3292 struct atw_txdesc *txd;
3293 int do_encrypt, rate;
3294 bus_dmamap_t dmamap;
3295 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3296
3297 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3298 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3299
3300 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3301 return;
3302
3303 /*
3304 * Remember the previous number of free descriptors and
3305 * the first descriptor we'll use.
3306 */
3307 ofree = sc->sc_txfree;
3308 firsttx = sc->sc_txnext;
3309
3310 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3311 sc->sc_dev.dv_xname, ofree, firsttx));
3312
3313 /*
3314 * Loop through the send queue, setting up transmit descriptors
3315 * until we drain the queue, or use up all available transmit
3316 * descriptors.
3317 */
3318 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3319 sc->sc_txfree != 0) {
3320
3321 /*
3322 * Grab a packet off the management queue, if it
3323 * is not empty. Otherwise, from the data queue.
3324 */
3325 IF_DEQUEUE(&ic->ic_mgtq, m0);
3326 if (m0 != NULL) {
3327 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3328 m0->m_pkthdr.rcvif = NULL;
3329 } else {
3330 /* send no data packets until we are associated */
3331 if (ic->ic_state != IEEE80211_S_RUN)
3332 break;
3333 IFQ_DEQUEUE(&ifp->if_snd, m0);
3334 if (m0 == NULL)
3335 break;
3336 #if NBPFILTER > 0
3337 if (ifp->if_bpf != NULL)
3338 bpf_mtap(ifp->if_bpf, m0);
3339 #endif /* NBPFILTER > 0 */
3340 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3341 ifp->if_oerrors++;
3342 break;
3343 }
3344 }
3345
3346 rate = MAX(ieee80211_get_rate(ic), 2);
3347
3348 #if NBPFILTER > 0
3349 /*
3350 * Pass the packet to any BPF listeners.
3351 */
3352 if (ic->ic_rawbpf != NULL)
3353 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3354
3355 if (sc->sc_radiobpf != NULL) {
3356 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3357
3358 tap->at_rate = rate;
3359 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3360 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3361
3362 /* TBD tap->at_flags */
3363
3364 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3365 tap->at_ihdr.it_len, m0);
3366 }
3367 #endif /* NBPFILTER > 0 */
3368
3369 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3370
3371 if (ni != NULL && ni != ic->ic_bss)
3372 ieee80211_free_node(ic, ni);
3373
3374 if (m0 == NULL) {
3375 ifp->if_oerrors++;
3376 break;
3377 }
3378
3379 /* just to make sure. */
3380 m0 = m_pullup(m0, sizeof(struct atw_frame));
3381
3382 if (m0 == NULL) {
3383 ifp->if_oerrors++;
3384 break;
3385 }
3386
3387 hh = mtod(m0, struct atw_frame *);
3388 wh = &hh->atw_ihdr;
3389
3390 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3391
3392 /* Copy everything we need from the 802.11 header:
3393 * Frame Control; address 1, address 3, or addresses
3394 * 3 and 4. NIC fills in BSSID, SA.
3395 */
3396 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3397 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3398 panic("%s: illegal WDS frame",
3399 sc->sc_dev.dv_xname);
3400 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3401 } else
3402 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3403
3404 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3405
3406 /* initialize remaining Tx parameters */
3407 memset(&hh->u, 0, sizeof(hh->u));
3408
3409 hh->atw_rate = rate * 5;
3410 /* XXX this could be incorrect if M_FCS. _encap should
3411 * probably strip FCS just in case it sticks around in
3412 * bridged packets.
3413 */
3414 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3415 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3416 sizeof(struct atw_frame));
3417
3418 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3419 hh->atw_rtylmt = 3;
3420 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3421 if (do_encrypt) {
3422 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3423 hh->atw_keyid = ic->ic_wep_txkey;
3424 }
3425
3426 /* TBD 4-addr frames */
3427 atw_frame_setdurs(sc, hh, rate,
3428 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3429 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3430
3431 /* never fragment multicast frames */
3432 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3433 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3434 } else if (sc->sc_flags & ATWF_RTSCTS) {
3435 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3436 }
3437
3438 #ifdef ATW_DEBUG
3439 hh->atw_fragnum = 0;
3440
3441 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3442 printf("%s: dst = %s, rate = 0x%02x, "
3443 "service = 0x%02x, paylen = 0x%04x\n",
3444 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3445 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3446
3447 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3448 "dur1 = 0x%04x, dur2 = 0x%04x, "
3449 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3450 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3451 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3452 hh->atw_tail_dur, hh->atw_head_dur);
3453
3454 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3455 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3456 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3457 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3458
3459 printf("%s: keyid = %d\n",
3460 sc->sc_dev.dv_xname, hh->atw_keyid);
3461
3462 atw_dump_pkt(ifp, m0);
3463 }
3464 #endif /* ATW_DEBUG */
3465
3466 dmamap = txs->txs_dmamap;
3467
3468 /*
3469 * Load the DMA map. Copy and try (once) again if the packet
3470 * didn't fit in the alloted number of segments.
3471 */
3472 for (first = 1;
3473 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3474 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3475 first = 0) {
3476 MGETHDR(m, M_DONTWAIT, MT_DATA);
3477 if (m == NULL) {
3478 printf("%s: unable to allocate Tx mbuf\n",
3479 sc->sc_dev.dv_xname);
3480 break;
3481 }
3482 if (m0->m_pkthdr.len > MHLEN) {
3483 MCLGET(m, M_DONTWAIT);
3484 if ((m->m_flags & M_EXT) == 0) {
3485 printf("%s: unable to allocate Tx "
3486 "cluster\n", sc->sc_dev.dv_xname);
3487 m_freem(m);
3488 break;
3489 }
3490 }
3491 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3492 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3493 m_freem(m0);
3494 m0 = m;
3495 m = NULL;
3496 }
3497 if (error != 0) {
3498 printf("%s: unable to load Tx buffer, "
3499 "error = %d\n", sc->sc_dev.dv_xname, error);
3500 m_freem(m0);
3501 break;
3502 }
3503
3504 /*
3505 * Ensure we have enough descriptors free to describe
3506 * the packet.
3507 */
3508 if (dmamap->dm_nsegs > sc->sc_txfree) {
3509 /*
3510 * Not enough free descriptors to transmit
3511 * this packet. Unload the DMA map and
3512 * drop the packet. Notify the upper layer
3513 * that there are no more slots left.
3514 *
3515 * XXX We could allocate an mbuf and copy, but
3516 * XXX it is worth it?
3517 */
3518 ifp->if_flags |= IFF_OACTIVE;
3519 bus_dmamap_unload(sc->sc_dmat, dmamap);
3520 m_freem(m0);
3521 break;
3522 }
3523
3524 /*
3525 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3526 */
3527
3528 /* Sync the DMA map. */
3529 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3530 BUS_DMASYNC_PREWRITE);
3531
3532 /* XXX arbitrary retry limit; 8 because I have seen it in
3533 * use already and maybe 0 means "no tries" !
3534 */
3535 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3536
3537 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3538 sc->sc_dev.dv_xname, rate * 5));
3539 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3540
3541 /*
3542 * Initialize the transmit descriptors.
3543 */
3544 for (nexttx = sc->sc_txnext, seg = 0;
3545 seg < dmamap->dm_nsegs;
3546 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3547 /*
3548 * If this is the first descriptor we're
3549 * enqueueing, don't set the OWN bit just
3550 * yet. That could cause a race condition.
3551 * We'll do it below.
3552 */
3553 txd = &sc->sc_txdescs[nexttx];
3554 txd->at_ctl = ctl |
3555 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3556
3557 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3558 txd->at_flags =
3559 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3560 ATW_TXFLAG_TBS1_MASK)) |
3561 ((nexttx == (ATW_NTXDESC - 1))
3562 ? htole32(ATW_TXFLAG_TER) : 0);
3563 lasttx = nexttx;
3564 }
3565
3566 IASSERT(lasttx != -1, ("bad lastx"));
3567 /* Set `first segment' and `last segment' appropriately. */
3568 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3569 htole32(ATW_TXFLAG_FS);
3570 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3571
3572 #ifdef ATW_DEBUG
3573 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3574 printf(" txsoft %p transmit chain:\n", txs);
3575 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3576 printf(" descriptor %d:\n", seg);
3577 printf(" at_ctl: 0x%08x\n",
3578 le32toh(sc->sc_txdescs[seg].at_ctl));
3579 printf(" at_flags: 0x%08x\n",
3580 le32toh(sc->sc_txdescs[seg].at_flags));
3581 printf(" at_buf1: 0x%08x\n",
3582 le32toh(sc->sc_txdescs[seg].at_buf1));
3583 printf(" at_buf2: 0x%08x\n",
3584 le32toh(sc->sc_txdescs[seg].at_buf2));
3585 if (seg == lasttx)
3586 break;
3587 }
3588 }
3589 #endif
3590
3591 /* Sync the descriptors we're using. */
3592 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3593 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3594
3595 /*
3596 * Store a pointer to the packet so we can free it later,
3597 * and remember what txdirty will be once the packet is
3598 * done.
3599 */
3600 txs->txs_mbuf = m0;
3601 txs->txs_firstdesc = sc->sc_txnext;
3602 txs->txs_lastdesc = lasttx;
3603 txs->txs_ndescs = dmamap->dm_nsegs;
3604
3605 /* Advance the tx pointer. */
3606 sc->sc_txfree -= dmamap->dm_nsegs;
3607 sc->sc_txnext = nexttx;
3608
3609 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3610 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3611
3612 last_txs = txs;
3613 }
3614
3615 if (txs == NULL || sc->sc_txfree == 0) {
3616 /* No more slots left; notify upper layer. */
3617 ifp->if_flags |= IFF_OACTIVE;
3618 }
3619
3620 if (sc->sc_txfree != ofree) {
3621 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3622 sc->sc_dev.dv_xname, lasttx, firsttx));
3623 /*
3624 * Cause a transmit interrupt to happen on the
3625 * last packet we enqueued.
3626 */
3627 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3628 ATW_CDTXSYNC(sc, lasttx, 1,
3629 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3630
3631 /*
3632 * The entire packet chain is set up. Give the
3633 * first descriptor to the chip now.
3634 */
3635 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3636 ATW_CDTXSYNC(sc, firsttx, 1,
3637 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3638
3639 /* Wake up the transmitter. */
3640 ATW_WRITE(sc, ATW_TDR, 0x1);
3641
3642 /* Set a watchdog timer in case the chip flakes out. */
3643 sc->sc_tx_timer = 5;
3644 ifp->if_timer = 1;
3645 }
3646 }
3647
3648 /*
3649 * atw_power:
3650 *
3651 * Power management (suspend/resume) hook.
3652 */
3653 void
3654 atw_power(int why, void *arg)
3655 {
3656 struct atw_softc *sc = arg;
3657 struct ifnet *ifp = &sc->sc_ic.ic_if;
3658 int s;
3659
3660 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3661
3662 s = splnet();
3663 switch (why) {
3664 case PWR_STANDBY:
3665 /* XXX do nothing. */
3666 break;
3667 case PWR_SUSPEND:
3668 atw_stop(ifp, 0);
3669 if (sc->sc_power != NULL)
3670 (*sc->sc_power)(sc, why);
3671 break;
3672 case PWR_RESUME:
3673 if (ifp->if_flags & IFF_UP) {
3674 if (sc->sc_power != NULL)
3675 (*sc->sc_power)(sc, why);
3676 atw_init(ifp);
3677 }
3678 break;
3679 case PWR_SOFTSUSPEND:
3680 case PWR_SOFTSTANDBY:
3681 case PWR_SOFTRESUME:
3682 break;
3683 }
3684 splx(s);
3685 }
3686
3687 /*
3688 * atw_ioctl: [ifnet interface function]
3689 *
3690 * Handle control requests from the operator.
3691 */
3692 int
3693 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3694 {
3695 struct atw_softc *sc = ifp->if_softc;
3696 struct ifreq *ifr = (struct ifreq *)data;
3697 int s, error = 0;
3698
3699 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3700 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3701 return ENXIO;
3702
3703 s = splnet();
3704
3705 switch (cmd) {
3706 case SIOCSIFFLAGS:
3707 if (ifp->if_flags & IFF_UP) {
3708 if (ATW_IS_ENABLED(sc)) {
3709 /*
3710 * To avoid rescanning another access point,
3711 * do not call atw_init() here. Instead,
3712 * only reflect media settings.
3713 */
3714 atw_filter_setup(sc);
3715 } else
3716 error = atw_init(ifp);
3717 } else if (ATW_IS_ENABLED(sc))
3718 atw_stop(ifp, 1);
3719 break;
3720 case SIOCADDMULTI:
3721 case SIOCDELMULTI:
3722 error = (cmd == SIOCADDMULTI) ?
3723 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3724 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3725 if (error == ENETRESET) {
3726 if (ATW_IS_ENABLED(sc))
3727 atw_filter_setup(sc); /* do not rescan */
3728 error = 0;
3729 }
3730 break;
3731 default:
3732 error = ieee80211_ioctl(ifp, cmd, data);
3733 if (error == ENETRESET) {
3734 if (ATW_IS_ENABLED(sc))
3735 error = atw_init(ifp);
3736 else
3737 error = 0;
3738 }
3739 break;
3740 }
3741
3742 /* Try to get more packets going. */
3743 if (ATW_IS_ENABLED(sc))
3744 atw_start(ifp);
3745
3746 splx(s);
3747 return (error);
3748 }
3749
3750 static int
3751 atw_media_change(struct ifnet *ifp)
3752 {
3753 int error;
3754
3755 error = ieee80211_media_change(ifp);
3756 if (error == ENETRESET) {
3757 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3758 (IFF_RUNNING|IFF_UP))
3759 atw_init(ifp); /* XXX lose error */
3760 error = 0;
3761 }
3762 return error;
3763 }
3764
3765 static void
3766 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3767 {
3768 struct atw_softc *sc = ifp->if_softc;
3769
3770 if (ATW_IS_ENABLED(sc) == 0) {
3771 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3772 imr->ifm_status = 0;
3773 return;
3774 }
3775 ieee80211_media_status(ifp, imr);
3776 }
3777