Home | History | Annotate | Line # | Download | only in ic
atw.c revision 1.55
      1 /*	$NetBSD: atw.c,v 1.55 2004/07/15 07:01:20 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.55 2004/07/15 07:01:20 dyoung Exp $");
     45 
     46 #include "bpfilter.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/callout.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/malloc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/socket.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/errno.h>
     57 #include <sys/device.h>
     58 #include <sys/time.h>
     59 
     60 #include <machine/endian.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_media.h>
     67 #include <net/if_ether.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_compat.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #if NBPFILTER > 0
     74 #include <net/bpf.h>
     75 #endif
     76 
     77 #include <machine/bus.h>
     78 #include <machine/intr.h>
     79 
     80 #include <dev/ic/atwreg.h>
     81 #include <dev/ic/rf3000reg.h>
     82 #include <dev/ic/si4136reg.h>
     83 #include <dev/ic/atwvar.h>
     84 #include <dev/ic/smc93cx6var.h>
     85 
     86 /* XXX TBD open questions
     87  *
     88  *
     89  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
     90  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
     91  * handle this for me?
     92  *
     93  */
     94 /* device attachment
     95  *
     96  *    print TOFS[012]
     97  *
     98  * device initialization
     99  *
    100  *    clear ATW_FRCTL_MAXPSP to disable max power saving
    101  *    set ATW_TXBR_ALCUPDATE to enable ALC
    102  *    set TOFS[012]? (hope not)
    103  *    disable rx/tx
    104  *    set ATW_PAR_SWR (software reset)
    105  *    wait for ATW_PAR_SWR clear
    106  *    disable interrupts
    107  *    ack status register
    108  *    enable interrupts
    109  *
    110  * rx/tx initialization
    111  *
    112  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    113  *    allocate and init descriptor rings
    114  *    write ATW_PAR_DSL (descriptor skip length)
    115  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
    116  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    118  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    119  *
    120  * rx/tx end
    121  *
    122  *    stop DMA
    123  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    124  *    flush tx w/ ATW_NAR_HF
    125  *
    126  * scan
    127  *
    128  *    initialize rx/tx
    129  *
    130  * BSS join: (re)association response
    131  *
    132  *    set ATW_FRCTL_AID
    133  *
    134  * optimizations ???
    135  *
    136  */
    137 
    138 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
    139 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
    140 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
    141 
    142 int atw_rfio_enable_delay = 20 * 1000;
    143 int atw_rfio_disable_delay = 2 * 1000;
    144 int atw_writewep_delay = 5;
    145 int atw_beacon_len_adjust = 4;
    146 int atw_dwelltime = 200;
    147 
    148 #ifdef ATW_DEBUG
    149 int atw_debug = 0;
    150 
    151 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
    152 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
    153 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
    154 #define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
    155 #define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
    156 #define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
    157 
    158 static void atw_print_regs(struct atw_softc *, const char *);
    159 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
    160 
    161 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
    162 #	ifdef ATW_BBPDEBUG
    163 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    164 static void atw_rf3000_print(struct atw_softc *);
    165 #	endif /* ATW_BBPDEBUG */
    166 
    167 #	ifdef ATW_SYNDEBUG
    168 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
    169 static void atw_si4126_print(struct atw_softc *);
    170 #	endif /* ATW_SYNDEBUG */
    171 
    172 #else
    173 #define ATW_DPRINTF(x)
    174 #define ATW_DPRINTF2(x)
    175 #define ATW_DPRINTF3(x)
    176 #define	DPRINTF(sc, x)	/* nothing */
    177 #define	DPRINTF2(sc, x)	/* nothing */
    178 #define	DPRINTF3(sc, x)	/* nothing */
    179 #endif
    180 
    181 #ifdef ATW_STATS
    182 void	atw_print_stats(struct atw_softc *);
    183 #endif
    184 
    185 void	atw_start(struct ifnet *);
    186 void	atw_watchdog(struct ifnet *);
    187 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
    188 int	atw_init(struct ifnet *);
    189 void	atw_txdrain(struct atw_softc *);
    190 void	atw_stop(struct ifnet *, int);
    191 
    192 void	atw_reset(struct atw_softc *);
    193 int	atw_read_srom(struct atw_softc *);
    194 
    195 void	atw_shutdown(void *);
    196 
    197 void	atw_rxdrain(struct atw_softc *);
    198 int	atw_add_rxbuf(struct atw_softc *, int);
    199 void	atw_idle(struct atw_softc *, u_int32_t);
    200 
    201 int	atw_enable(struct atw_softc *);
    202 void	atw_disable(struct atw_softc *);
    203 void	atw_power(int, void *);
    204 
    205 void	atw_rxintr(struct atw_softc *);
    206 void	atw_txintr(struct atw_softc *);
    207 void	atw_linkintr(struct atw_softc *, u_int32_t);
    208 
    209 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
    210 static void atw_tsf(struct atw_softc *);
    211 static void atw_start_beacon(struct atw_softc *, int);
    212 static void atw_write_wep(struct atw_softc *);
    213 static void atw_write_bssid(struct atw_softc *);
    214 static void atw_write_ssid(struct atw_softc *);
    215 static void atw_write_sup_rates(struct atw_softc *);
    216 static void atw_clear_sram(struct atw_softc *);
    217 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
    218 static int atw_media_change(struct ifnet *);
    219 static void atw_media_status(struct ifnet *, struct ifmediareq *);
    220 static void atw_filter_setup(struct atw_softc *);
    221 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
    222 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
    223 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
    224     struct ieee80211_node *, int, int, u_int32_t);
    225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
    226     struct ieee80211_node *, int, int, u_int32_t);
    227 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
    228 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
    229 
    230 static int atw_tune(struct atw_softc *);
    231 
    232 static void atw_rfio_enable(struct atw_softc *, int);
    233 
    234 /* RFMD RF3000 Baseband Processor */
    235 static int atw_rf3000_init(struct atw_softc *);
    236 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
    237 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
    238 #ifdef ATW_DEBUG
    239 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    240 #endif /* ATW_DEBUG */
    241 
    242 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
    243 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
    244 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
    245 #ifdef ATW_DEBUG
    246 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
    247 #endif /* ATW_DEBUG */
    248 
    249 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
    250 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
    251 
    252 const char *atw_tx_state[] = {
    253 	"STOPPED",
    254 	"RUNNING - read descriptor",
    255 	"RUNNING - transmitting",
    256 	"RUNNING - filling fifo",	/* XXX */
    257 	"SUSPENDED",
    258 	"RUNNING -- write descriptor",
    259 	"RUNNING -- write last descriptor",
    260 	"RUNNING - fifo full"
    261 };
    262 
    263 const char *atw_rx_state[] = {
    264 	"STOPPED",
    265 	"RUNNING - read descriptor",
    266 	"RUNNING - check this packet, pre-fetch next",
    267 	"RUNNING - wait for reception",
    268 	"SUSPENDED",
    269 	"RUNNING - write descriptor",
    270 	"RUNNING - flush fifo",
    271 	"RUNNING - fifo drain"
    272 };
    273 
    274 int
    275 atw_activate(struct device *self, enum devact act)
    276 {
    277 	struct atw_softc *sc = (struct atw_softc *)self;
    278 	int rv = 0, s;
    279 
    280 	s = splnet();
    281 	switch (act) {
    282 	case DVACT_ACTIVATE:
    283 		rv = EOPNOTSUPP;
    284 		break;
    285 
    286 	case DVACT_DEACTIVATE:
    287 		if_deactivate(&sc->sc_ic.ic_if);
    288 		break;
    289 	}
    290 	splx(s);
    291 	return rv;
    292 }
    293 
    294 /*
    295  * atw_enable:
    296  *
    297  *	Enable the ADM8211 chip.
    298  */
    299 int
    300 atw_enable(struct atw_softc *sc)
    301 {
    302 
    303 	if (ATW_IS_ENABLED(sc) == 0) {
    304 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    305 			printf("%s: device enable failed\n",
    306 			    sc->sc_dev.dv_xname);
    307 			return (EIO);
    308 		}
    309 		sc->sc_flags |= ATWF_ENABLED;
    310 	}
    311 	return (0);
    312 }
    313 
    314 /*
    315  * atw_disable:
    316  *
    317  *	Disable the ADM8211 chip.
    318  */
    319 void
    320 atw_disable(struct atw_softc *sc)
    321 {
    322 	if (!ATW_IS_ENABLED(sc))
    323 		return;
    324 	if (sc->sc_disable != NULL)
    325 		(*sc->sc_disable)(sc);
    326 	sc->sc_flags &= ~ATWF_ENABLED;
    327 }
    328 
    329 /* Returns -1 on failure. */
    330 int
    331 atw_read_srom(struct atw_softc *sc)
    332 {
    333 	struct seeprom_descriptor sd;
    334 	u_int32_t reg;
    335 
    336 	(void)memset(&sd, 0, sizeof(sd));
    337 
    338 	reg = ATW_READ(sc, ATW_TEST0);
    339 
    340 	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
    341 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
    342 		return -1;
    343 	}
    344 
    345 	switch (reg & ATW_TEST0_EPTYP_MASK) {
    346 	case ATW_TEST0_EPTYP_93c66:
    347 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
    348 		sc->sc_sromsz = 512;
    349 		sd.sd_chip = C56_66;
    350 		break;
    351 	case ATW_TEST0_EPTYP_93c46:
    352 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
    353 		sc->sc_sromsz = 128;
    354 		sd.sd_chip = C46;
    355 		break;
    356 	default:
    357 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
    358 		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
    359 		return -1;
    360 	}
    361 
    362 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
    363 
    364 	if (sc->sc_srom == NULL) {
    365 		printf("%s: unable to allocate SROM buffer\n",
    366 		    sc->sc_dev.dv_xname);
    367 		return -1;
    368 	}
    369 
    370 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
    371 
    372 	/* ADM8211 has a single 32-bit register for controlling the
    373 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
    374 	 * "ready" bit. The ADM8211 input/output sense is the reverse
    375 	 * of read_seeprom's.
    376 	 */
    377 	sd.sd_tag = sc->sc_st;
    378 	sd.sd_bsh = sc->sc_sh;
    379 	sd.sd_regsize = 4;
    380 	sd.sd_control_offset = ATW_SPR;
    381 	sd.sd_status_offset = ATW_SPR;
    382 	sd.sd_dataout_offset = ATW_SPR;
    383 	sd.sd_CK = ATW_SPR_SCLK;
    384 	sd.sd_CS = ATW_SPR_SCS;
    385 	sd.sd_DI = ATW_SPR_SDO;
    386 	sd.sd_DO = ATW_SPR_SDI;
    387 	sd.sd_MS = ATW_SPR_SRS;
    388 	sd.sd_RDY = 0;
    389 
    390 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
    391 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
    392 		free(sc->sc_srom, M_DEVBUF);
    393 		return -1;
    394 	}
    395 #ifdef ATW_DEBUG
    396 	{
    397 		int i;
    398 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
    399 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
    400 			if (((i % 8) == 0) && (i != 0)) {
    401 				ATW_DPRINTF(("\n\t"));
    402 			}
    403 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
    404 		}
    405 		ATW_DPRINTF(("\n"));
    406 	}
    407 #endif /* ATW_DEBUG */
    408 	return 0;
    409 }
    410 
    411 #ifdef ATW_DEBUG
    412 static void
    413 atw_print_regs(struct atw_softc *sc, const char *where)
    414 {
    415 #define PRINTREG(sc, reg) \
    416 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
    417 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
    418 
    419 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
    420 
    421 	PRINTREG(sc, ATW_PAR);
    422 	PRINTREG(sc, ATW_FRCTL);
    423 	PRINTREG(sc, ATW_TDR);
    424 	PRINTREG(sc, ATW_WTDP);
    425 	PRINTREG(sc, ATW_RDR);
    426 	PRINTREG(sc, ATW_WRDP);
    427 	PRINTREG(sc, ATW_RDB);
    428 	PRINTREG(sc, ATW_CSR3A);
    429 	PRINTREG(sc, ATW_TDBD);
    430 	PRINTREG(sc, ATW_TDBP);
    431 	PRINTREG(sc, ATW_STSR);
    432 	PRINTREG(sc, ATW_CSR5A);
    433 	PRINTREG(sc, ATW_NAR);
    434 	PRINTREG(sc, ATW_CSR6A);
    435 	PRINTREG(sc, ATW_IER);
    436 	PRINTREG(sc, ATW_CSR7A);
    437 	PRINTREG(sc, ATW_LPC);
    438 	PRINTREG(sc, ATW_TEST1);
    439 	PRINTREG(sc, ATW_SPR);
    440 	PRINTREG(sc, ATW_TEST0);
    441 	PRINTREG(sc, ATW_WCSR);
    442 	PRINTREG(sc, ATW_WPDR);
    443 	PRINTREG(sc, ATW_GPTMR);
    444 	PRINTREG(sc, ATW_GPIO);
    445 	PRINTREG(sc, ATW_BBPCTL);
    446 	PRINTREG(sc, ATW_SYNCTL);
    447 	PRINTREG(sc, ATW_PLCPHD);
    448 	PRINTREG(sc, ATW_MMIWADDR);
    449 	PRINTREG(sc, ATW_MMIRADDR1);
    450 	PRINTREG(sc, ATW_MMIRADDR2);
    451 	PRINTREG(sc, ATW_TXBR);
    452 	PRINTREG(sc, ATW_CSR15A);
    453 	PRINTREG(sc, ATW_ALCSTAT);
    454 	PRINTREG(sc, ATW_TOFS2);
    455 	PRINTREG(sc, ATW_CMDR);
    456 	PRINTREG(sc, ATW_PCIC);
    457 	PRINTREG(sc, ATW_PMCSR);
    458 	PRINTREG(sc, ATW_PAR0);
    459 	PRINTREG(sc, ATW_PAR1);
    460 	PRINTREG(sc, ATW_MAR0);
    461 	PRINTREG(sc, ATW_MAR1);
    462 	PRINTREG(sc, ATW_ATIMDA0);
    463 	PRINTREG(sc, ATW_ABDA1);
    464 	PRINTREG(sc, ATW_BSSID0);
    465 	PRINTREG(sc, ATW_TXLMT);
    466 	PRINTREG(sc, ATW_MIBCNT);
    467 	PRINTREG(sc, ATW_BCNT);
    468 	PRINTREG(sc, ATW_TSFTH);
    469 	PRINTREG(sc, ATW_TSC);
    470 	PRINTREG(sc, ATW_SYNRF);
    471 	PRINTREG(sc, ATW_BPLI);
    472 	PRINTREG(sc, ATW_CAP0);
    473 	PRINTREG(sc, ATW_CAP1);
    474 	PRINTREG(sc, ATW_RMD);
    475 	PRINTREG(sc, ATW_CFPP);
    476 	PRINTREG(sc, ATW_TOFS0);
    477 	PRINTREG(sc, ATW_TOFS1);
    478 	PRINTREG(sc, ATW_IFST);
    479 	PRINTREG(sc, ATW_RSPT);
    480 	PRINTREG(sc, ATW_TSFTL);
    481 	PRINTREG(sc, ATW_WEPCTL);
    482 	PRINTREG(sc, ATW_WESK);
    483 	PRINTREG(sc, ATW_WEPCNT);
    484 	PRINTREG(sc, ATW_MACTEST);
    485 	PRINTREG(sc, ATW_FER);
    486 	PRINTREG(sc, ATW_FEMR);
    487 	PRINTREG(sc, ATW_FPSR);
    488 	PRINTREG(sc, ATW_FFER);
    489 #undef PRINTREG
    490 }
    491 #endif /* ATW_DEBUG */
    492 
    493 /*
    494  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
    495  */
    496 void
    497 atw_attach(struct atw_softc *sc)
    498 {
    499 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
    500 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    501 	};
    502 	struct ieee80211com *ic = &sc->sc_ic;
    503 	struct ifnet *ifp = &ic->ic_if;
    504 	int country_code, error, i, nrate;
    505 	u_int32_t reg;
    506 	static const char *type_strings[] = {"Intersil (not supported)",
    507 	    "RFMD", "Marvel (not supported)"};
    508 
    509 	sc->sc_txth = atw_txthresh_tab_lo;
    510 
    511 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    512 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    513 
    514 #ifdef ATW_DEBUG
    515 	atw_print_regs(sc, "atw_attach");
    516 #endif /* ATW_DEBUG */
    517 
    518 	/*
    519 	 * Allocate the control data structures, and create and load the
    520 	 * DMA map for it.
    521 	 */
    522 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    523 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    524 	    1, &sc->sc_cdnseg, 0)) != 0) {
    525 		printf("%s: unable to allocate control data, error = %d\n",
    526 		    sc->sc_dev.dv_xname, error);
    527 		goto fail_0;
    528 	}
    529 
    530 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
    531 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
    532 	    BUS_DMA_COHERENT)) != 0) {
    533 		printf("%s: unable to map control data, error = %d\n",
    534 		    sc->sc_dev.dv_xname, error);
    535 		goto fail_1;
    536 	}
    537 
    538 	if ((error = bus_dmamap_create(sc->sc_dmat,
    539 	    sizeof(struct atw_control_data), 1,
    540 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    541 		printf("%s: unable to create control data DMA map, "
    542 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    543 		goto fail_2;
    544 	}
    545 
    546 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    547 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
    548 	    0)) != 0) {
    549 		printf("%s: unable to load control data DMA map, error = %d\n",
    550 		    sc->sc_dev.dv_xname, error);
    551 		goto fail_3;
    552 	}
    553 
    554 	/*
    555 	 * Create the transmit buffer DMA maps.
    556 	 */
    557 	sc->sc_ntxsegs = ATW_NTXSEGS;
    558 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    559 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    560 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
    561 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    562 			printf("%s: unable to create tx DMA map %d, "
    563 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    564 			goto fail_4;
    565 		}
    566 	}
    567 
    568 	/*
    569 	 * Create the receive buffer DMA maps.
    570 	 */
    571 	for (i = 0; i < ATW_NRXDESC; i++) {
    572 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    573 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    574 			printf("%s: unable to create rx DMA map %d, "
    575 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    576 			goto fail_5;
    577 		}
    578 	}
    579 	for (i = 0; i < ATW_NRXDESC; i++) {
    580 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    581 	}
    582 
    583 	/* Reset the chip to a known state. */
    584 	atw_reset(sc);
    585 
    586 	if (atw_read_srom(sc) == -1)
    587 		return;
    588 
    589 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    590 	    ATW_SR_RFTYPE_MASK);
    591 
    592 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    593 	    ATW_SR_BBPTYPE_MASK);
    594 
    595 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
    596 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
    597 		return;
    598 	}
    599 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
    600 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
    601 		return;
    602 	}
    603 
    604 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
    605 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
    606 
    607 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
    608 	 * MARVEL. My bug, or theirs?
    609 	 */
    610 
    611 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
    612 
    613 	switch (sc->sc_rftype) {
    614 	case ATW_RFTYPE_INTERSIL:
    615 		reg |= ATW_SYNCTL_CS1;
    616 		break;
    617 	case ATW_RFTYPE_RFMD:
    618 		reg |= ATW_SYNCTL_CS0;
    619 		break;
    620 	case ATW_RFTYPE_MARVEL:
    621 		break;
    622 	}
    623 
    624 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
    625 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
    626 
    627 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
    628 
    629 	switch (sc->sc_bbptype) {
    630 	case ATW_BBPTYPE_INTERSIL:
    631 		reg |= ATW_BBPCTL_TWI;
    632 		break;
    633 	case ATW_BBPTYPE_RFMD:
    634 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
    635 		    ATW_BBPCTL_CCA_ACTLO;
    636 		break;
    637 	case ATW_BBPTYPE_MARVEL:
    638 		break;
    639 	case ATW_C_BBPTYPE_RFMD:
    640 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
    641 		    sc->sc_dev.dv_xname);
    642 		break;
    643 	}
    644 
    645 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
    646 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
    647 
    648 	/*
    649 	 * From this point forward, the attachment cannot fail.  A failure
    650 	 * before this point releases all resources that may have been
    651 	 * allocated.
    652 	 */
    653 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
    654 
    655 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
    656 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
    657 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
    658 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
    659 
    660 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    661 	    ATW_SR_CTRY_MASK);
    662 
    663 #define ADD_CHANNEL(_ic, _chan) do {					\
    664 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
    665 	_ic->ic_channels[_chan].ic_freq =				\
    666 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
    667 } while (0)
    668 
    669 	/* Find available channels */
    670 	switch (country_code) {
    671 	case COUNTRY_MMK2:	/* 1-14 */
    672 		ADD_CHANNEL(ic, 14);
    673 		/*FALLTHROUGH*/
    674 	case COUNTRY_ETSI:	/* 1-13 */
    675 		for (i = 1; i <= 13; i++)
    676 			ADD_CHANNEL(ic, i);
    677 		break;
    678 	case COUNTRY_FCC:	/* 1-11 */
    679 	case COUNTRY_IC:	/* 1-11 */
    680 		for (i = 1; i <= 11; i++)
    681 			ADD_CHANNEL(ic, i);
    682 		break;
    683 	case COUNTRY_MMK:	/* 14 */
    684 		ADD_CHANNEL(ic, 14);
    685 		break;
    686 	case COUNTRY_FRANCE:	/* 10-13 */
    687 		for (i = 10; i <= 13; i++)
    688 			ADD_CHANNEL(ic, i);
    689 		break;
    690 	default:	/* assume channels 10-11 */
    691 	case COUNTRY_SPAIN:	/* 10-11 */
    692 		for (i = 10; i <= 11; i++)
    693 			ADD_CHANNEL(ic, i);
    694 		break;
    695 	}
    696 
    697 	/* Read the MAC address. */
    698 	reg = ATW_READ(sc, ATW_PAR0);
    699 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
    700 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
    701 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
    702 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
    703 	reg = ATW_READ(sc, ATW_PAR1);
    704 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
    705 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
    706 
    707 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
    708 		printf(" could not get mac address, attach failed\n");
    709 		return;
    710 	}
    711 
    712 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
    713 
    714 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    715 	ifp->if_softc = sc;
    716 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
    717 	    IFF_NOTRAILERS;
    718 	ifp->if_ioctl = atw_ioctl;
    719 	ifp->if_start = atw_start;
    720 	ifp->if_watchdog = atw_watchdog;
    721 	ifp->if_init = atw_init;
    722 	ifp->if_stop = atw_stop;
    723 	IFQ_SET_READY(&ifp->if_snd);
    724 
    725 	ic->ic_phytype = IEEE80211_T_DS;
    726 	ic->ic_opmode = IEEE80211_M_STA;
    727 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
    728 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
    729 
    730 	nrate = 0;
    731 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
    732 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
    733 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
    734 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
    735 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
    736 
    737 	/*
    738 	 * Call MI attach routines.
    739 	 */
    740 
    741 	if_attach(ifp);
    742 	ieee80211_ifattach(ifp);
    743 
    744 	sc->sc_newstate = ic->ic_newstate;
    745 	ic->ic_newstate = atw_newstate;
    746 
    747 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    748 	ic->ic_recv_mgmt = atw_recv_mgmt;
    749 
    750 	sc->sc_node_free = ic->ic_node_free;
    751 	ic->ic_node_free = atw_node_free;
    752 
    753 	sc->sc_node_alloc = ic->ic_node_alloc;
    754 	ic->ic_node_alloc = atw_node_alloc;
    755 
    756 	/* possibly we should fill in our own sc_send_prresp, since
    757 	 * the ADM8211 is probably sending probe responses in ad hoc
    758 	 * mode.
    759 	 */
    760 
    761 	/* complete initialization */
    762 	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
    763 	callout_init(&sc->sc_scan_ch);
    764 
    765 #if NBPFILTER > 0
    766 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    767 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
    768 #endif
    769 
    770 	/*
    771 	 * Make sure the interface is shutdown during reboot.
    772 	 */
    773 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
    774 	if (sc->sc_sdhook == NULL)
    775 		printf("%s: WARNING: unable to establish shutdown hook\n",
    776 		    sc->sc_dev.dv_xname);
    777 
    778 	/*
    779 	 * Add a suspend hook to make sure we come back up after a
    780 	 * resume.
    781 	 */
    782 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
    783 	if (sc->sc_powerhook == NULL)
    784 		printf("%s: WARNING: unable to establish power hook\n",
    785 		    sc->sc_dev.dv_xname);
    786 
    787 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
    788 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
    789 	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
    790 
    791 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
    792 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
    793 	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
    794 
    795 	return;
    796 
    797 	/*
    798 	 * Free any resources we've allocated during the failed attach
    799 	 * attempt.  Do this in reverse order and fall through.
    800 	 */
    801  fail_5:
    802 	for (i = 0; i < ATW_NRXDESC; i++) {
    803 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
    804 			continue;
    805 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
    806 	}
    807  fail_4:
    808 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    809 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
    810 			continue;
    811 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
    812 	}
    813 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    814  fail_3:
    815 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    816  fail_2:
    817 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    818 	    sizeof(struct atw_control_data));
    819  fail_1:
    820 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
    821  fail_0:
    822 	return;
    823 }
    824 
    825 static struct ieee80211_node *
    826 atw_node_alloc(struct ieee80211com *ic)
    827 {
    828 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    829 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
    830 
    831 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
    832 	return ni;
    833 }
    834 
    835 static void
    836 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
    837 {
    838 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    839 
    840 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
    841 	    ether_sprintf(ni->ni_bssid)));
    842 	(*sc->sc_node_free)(ic, ni);
    843 }
    844 
    845 /*
    846  * atw_reset:
    847  *
    848  *	Perform a soft reset on the ADM8211.
    849  */
    850 void
    851 atw_reset(struct atw_softc *sc)
    852 {
    853 	int i;
    854 
    855 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
    856 
    857 	for (i = 0; i < 10000; i++) {
    858 		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
    859 			break;
    860 		DELAY(1);
    861 	}
    862 
    863 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
    864 
    865 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
    866 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
    867 
    868 	/* Turn off maximum power saving. */
    869 	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
    870 
    871 	/* Recall EEPROM. */
    872 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
    873 
    874 	DELAY(10 * 1000);
    875 
    876 	/* A reset seems to affect the SRAM contents, so put them into
    877 	 * a known state.
    878 	 */
    879 	atw_clear_sram(sc);
    880 
    881 	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
    882 }
    883 
    884 static void
    885 atw_clear_sram(struct atw_softc *sc)
    886 {
    887 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
    888 	/* XXX not for revision 0x20. */
    889 	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
    890 }
    891 
    892 /* TBD atw_init
    893  *
    894  * set MAC based on ic->ic_bss->myaddr
    895  * write WEP keys
    896  * set TX rate
    897  */
    898 
    899 /*
    900  * atw_init:		[ ifnet interface function ]
    901  *
    902  *	Initialize the interface.  Must be called at splnet().
    903  */
    904 int
    905 atw_init(struct ifnet *ifp)
    906 {
    907 	struct atw_softc *sc = ifp->if_softc;
    908 	struct ieee80211com *ic = &sc->sc_ic;
    909 	struct atw_txsoft *txs;
    910 	struct atw_rxsoft *rxs;
    911 	u_int32_t reg;
    912 	int i, error = 0;
    913 
    914 	if ((error = atw_enable(sc)) != 0)
    915 		goto out;
    916 
    917 	/*
    918 	 * Cancel any pending I/O. This also resets.
    919 	 */
    920 	atw_stop(ifp, 0);
    921 
    922 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
    923 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
    924 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
    925 	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
    926 
    927 	/* Turn off APM??? (A binary-only driver does this.)
    928 	 *
    929 	 * Set Rx store-and-forward mode.
    930 	 */
    931 	reg = ATW_READ(sc, ATW_CMDR);
    932 	reg &= ~ATW_CMDR_APM;
    933 	reg &= ~ATW_CMDR_DRT_MASK;
    934 	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
    935 
    936 	ATW_WRITE(sc, ATW_CMDR, reg);
    937 
    938 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
    939 	 *
    940 	 * XXX a binary-only driver sets a different service field than
    941 	 * 0. why?
    942 	 */
    943 	reg = ATW_READ(sc, ATW_PLCPHD);
    944 	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
    945 	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
    946 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
    947 	ATW_WRITE(sc, ATW_PLCPHD, reg);
    948 
    949 	/* XXX this magic can probably be figured out from the RFMD docs */
    950 	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
    951 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
    952 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
    953 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
    954 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
    955 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
    956 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
    957 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
    958 	ATW_WRITE(sc, ATW_TOFS2, reg);
    959 
    960 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
    961 	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
    962 
    963 	/* XXX this resets an Intersil RF front-end? */
    964 	/* TBD condition on Intersil RFType? */
    965 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
    966 	DELAY(10 * 1000);
    967 	ATW_WRITE(sc, ATW_SYNRF, 0);
    968 	DELAY(5 * 1000);
    969 
    970 	/* 16 TU max duration for contention-free period */
    971 	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
    972 	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
    973 
    974 	/* XXX I guess that the Cardbus clock is 22MHz?
    975 	 * I am assuming that the role of ATW_TOFS0_USCNT is
    976 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
    977 	 * very clear on this point. It says in the datasheet that it is
    978 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
    979 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
    980 	 * these values. These values are also the power-on default.
    981 	 */
    982 	ATW_WRITE(sc, ATW_TOFS0,
    983 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
    984 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
    985 
    986 	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
    987 	 * driver. Go figure.
    988 	 */
    989 	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
    990 	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
    991 	             ATW_IFST_SIFS_MASK) |
    992 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
    993 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
    994 
    995 	ATW_WRITE(sc, ATW_IFST, reg);
    996 
    997 	/* XXX More magic. Might relate to ACK timing. */
    998 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
    999 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
   1000 
   1001 	/* Set up the MMI read/write addresses for the BBP.
   1002 	 *
   1003 	 * TBD find out the Marvel settings.
   1004 	 */
   1005 	switch (sc->sc_bbptype) {
   1006 	case ATW_BBPTYPE_INTERSIL:
   1007 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
   1008 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
   1009 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
   1010 		break;
   1011 	case ATW_BBPTYPE_MARVEL:
   1012 		break;
   1013 	case ATW_BBPTYPE_RFMD:
   1014 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
   1015 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
   1016 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
   1017 	default:
   1018 		break;
   1019 	}
   1020 
   1021 	sc->sc_wepctl = 0;
   1022 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
   1023 
   1024 	if ((error = atw_rf3000_init(sc)) != 0)
   1025 		goto out;
   1026 
   1027 	/*
   1028 	 * Initialize the PCI Access Register.
   1029 	 */
   1030 	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
   1031 
   1032 	/*
   1033 	 * If we're allowed to do so, use Memory Read Line
   1034 	 * and Memory Read Multiple.
   1035 	 *
   1036 	 * XXX Should we use Memory Write and Invalidate?
   1037 	 */
   1038 	if (sc->sc_flags & ATWF_MRL)
   1039 		sc->sc_busmode |= ATW_PAR_MRLE;
   1040 	if (sc->sc_flags & ATWF_MRM)
   1041 		sc->sc_busmode |= ATW_PAR_MRME;
   1042 	if (sc->sc_flags & ATWF_MWI)
   1043 		sc->sc_busmode |= ATW_PAR_MWIE;
   1044 	if (sc->sc_maxburst == 0)
   1045 		sc->sc_maxburst = 8;	/* ADM8211 default */
   1046 
   1047 	switch (sc->sc_cacheline) {
   1048 	default:
   1049 		/* Use burst length. */
   1050 		break;
   1051 	case 8:
   1052 		sc->sc_busmode |= ATW_PAR_CAL_8DW;
   1053 		break;
   1054 	case 16:
   1055 		sc->sc_busmode |= ATW_PAR_CAL_16DW;
   1056 		break;
   1057 	case 32:
   1058 		sc->sc_busmode |= ATW_PAR_CAL_32DW;
   1059 		break;
   1060 	}
   1061 	switch (sc->sc_maxburst) {
   1062 	case 1:
   1063 		sc->sc_busmode |= ATW_PAR_PBL_1DW;
   1064 		break;
   1065 	case 2:
   1066 		sc->sc_busmode |= ATW_PAR_PBL_2DW;
   1067 		break;
   1068 	case 4:
   1069 		sc->sc_busmode |= ATW_PAR_PBL_4DW;
   1070 		break;
   1071 	case 8:
   1072 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1073 		break;
   1074 	case 16:
   1075 		sc->sc_busmode |= ATW_PAR_PBL_16DW;
   1076 		break;
   1077 	case 32:
   1078 		sc->sc_busmode |= ATW_PAR_PBL_32DW;
   1079 		break;
   1080 	default:
   1081 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1082 		break;
   1083 	}
   1084 
   1085 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
   1086 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
   1087 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
   1088 
   1089 	/*
   1090 	 * Initialize the OPMODE register.  We don't write it until
   1091 	 * we're ready to begin the transmit and receive processes.
   1092 	 */
   1093 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
   1094 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
   1095 
   1096 	/*
   1097 	 * Initialize the transmit descriptor ring.
   1098 	 */
   1099 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1100 	for (i = 0; i < ATW_NTXDESC; i++) {
   1101 		sc->sc_txdescs[i].at_ctl = 0;
   1102 		/* no transmit chaining */
   1103 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
   1104 		sc->sc_txdescs[i].at_buf2 =
   1105 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
   1106 	}
   1107 	/* use ring mode */
   1108 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
   1109 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
   1110 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1111 	sc->sc_txfree = ATW_NTXDESC;
   1112 	sc->sc_txnext = 0;
   1113 
   1114 	/*
   1115 	 * Initialize the transmit job descriptors.
   1116 	 */
   1117 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1118 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1119 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   1120 		txs = &sc->sc_txsoft[i];
   1121 		txs->txs_mbuf = NULL;
   1122 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1123 	}
   1124 
   1125 	/*
   1126 	 * Initialize the receive descriptor and receive job
   1127 	 * descriptor rings.
   1128 	 */
   1129 	for (i = 0; i < ATW_NRXDESC; i++) {
   1130 		rxs = &sc->sc_rxsoft[i];
   1131 		if (rxs->rxs_mbuf == NULL) {
   1132 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
   1133 				printf("%s: unable to allocate or map rx "
   1134 				    "buffer %d, error = %d\n",
   1135 				    sc->sc_dev.dv_xname, i, error);
   1136 				/*
   1137 				 * XXX Should attempt to run with fewer receive
   1138 				 * XXX buffers instead of just failing.
   1139 				 */
   1140 				atw_rxdrain(sc);
   1141 				goto out;
   1142 			}
   1143 		} else
   1144 			ATW_INIT_RXDESC(sc, i);
   1145 	}
   1146 	sc->sc_rxptr = 0;
   1147 
   1148 	/* disable all wake-up events */
   1149 	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
   1150 	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
   1151 			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
   1152 			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
   1153 
   1154 	/* ack all wake-up events */
   1155 	ATW_SET(sc, ATW_WCSR, 0);
   1156 
   1157 	/*
   1158 	 * Initialize the interrupt mask and enable interrupts.
   1159 	 */
   1160 	/* normal interrupts */
   1161 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
   1162 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
   1163 
   1164 	/* abnormal interrupts */
   1165 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
   1166 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
   1167 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1168 
   1169 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
   1170 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1171 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
   1172 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
   1173 	    ATW_INTR_TRT;
   1174 
   1175 	sc->sc_linkint_mask &= sc->sc_inten;
   1176 	sc->sc_rxint_mask &= sc->sc_inten;
   1177 	sc->sc_txint_mask &= sc->sc_inten;
   1178 
   1179 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
   1180 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1181 	if (sc->sc_intr_ack != NULL)
   1182 		(*sc->sc_intr_ack)(sc);
   1183 
   1184 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
   1185 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
   1186 
   1187 	/*
   1188 	 * Give the transmit and receive rings to the ADM8211.
   1189 	 */
   1190 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
   1191 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
   1192 
   1193 	/* common 802.11 configuration */
   1194 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
   1195 	switch (ic->ic_opmode) {
   1196 	case IEEE80211_M_STA:
   1197 		break;
   1198 	case IEEE80211_M_AHDEMO: /* XXX */
   1199 	case IEEE80211_M_IBSS:
   1200 		ic->ic_flags |= IEEE80211_F_IBSSON;
   1201 		/*FALLTHROUGH*/
   1202 	case IEEE80211_M_HOSTAP: /* XXX */
   1203 		break;
   1204 	case IEEE80211_M_MONITOR: /* XXX */
   1205 		break;
   1206 	}
   1207 
   1208 	atw_start_beacon(sc, 0);
   1209 
   1210 	switch (ic->ic_opmode) {
   1211 	case IEEE80211_M_AHDEMO:
   1212 	case IEEE80211_M_HOSTAP:
   1213 		ic->ic_bss->ni_intval = ic->ic_lintval;
   1214 		ic->ic_bss->ni_rssi = 0;
   1215 		ic->ic_bss->ni_rstamp = 0;
   1216 		break;
   1217 	default:					/* XXX */
   1218 		break;
   1219 	}
   1220 
   1221 	atw_write_ssid(sc);
   1222 	atw_write_sup_rates(sc);
   1223 	if (ic->ic_caps & IEEE80211_C_WEP)
   1224 		atw_write_wep(sc);
   1225 
   1226 	/*
   1227 	 * Set the receive filter.  This will start the transmit and
   1228 	 * receive processes.
   1229 	 */
   1230 	atw_filter_setup(sc);
   1231 
   1232 	/*
   1233 	 * Start the receive process.
   1234 	 */
   1235 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1236 
   1237 	/*
   1238 	 * Note that the interface is now running.
   1239 	 */
   1240 	ifp->if_flags |= IFF_RUNNING;
   1241 	ifp->if_flags &= ~IFF_OACTIVE;
   1242 	ic->ic_state = IEEE80211_S_INIT;
   1243 
   1244 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1245 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1246 	else
   1247 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1248  out:
   1249 	if (error) {
   1250 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1251 		ifp->if_timer = 0;
   1252 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1253 	}
   1254 #ifdef ATW_DEBUG
   1255 	atw_print_regs(sc, "end of init");
   1256 #endif /* ATW_DEBUG */
   1257 
   1258 	return (error);
   1259 }
   1260 
   1261 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
   1262  *           0: MAC control of RF3000/Si4126.
   1263  *
   1264  * Applies power, or selects RF front-end? Sets reset condition.
   1265  *
   1266  * TBD support non-RFMD BBP, non-SiLabs synth.
   1267  */
   1268 static void
   1269 atw_rfio_enable(struct atw_softc *sc, int enable)
   1270 {
   1271 	if (enable) {
   1272 		ATW_WRITE(sc, ATW_SYNRF,
   1273 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
   1274 		DELAY(atw_rfio_enable_delay);
   1275 	} else {
   1276 		ATW_WRITE(sc, ATW_SYNRF, 0);
   1277 		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
   1278 	}
   1279 }
   1280 
   1281 static int
   1282 atw_tune(struct atw_softc *sc)
   1283 {
   1284 	int rc;
   1285 	u_int32_t reg;
   1286 	int chan;
   1287 	struct ieee80211com *ic = &sc->sc_ic;
   1288 
   1289 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
   1290 	if (chan == IEEE80211_CHAN_ANY)
   1291 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
   1292 
   1293 	if (chan == sc->sc_cur_chan)
   1294 		return 0;
   1295 
   1296 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
   1297 	    sc->sc_cur_chan, chan));
   1298 
   1299 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1300 
   1301 	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
   1302 	    (rc = atw_rf3000_tune(sc, chan)) != 0)
   1303 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
   1304 		    chan);
   1305 
   1306 	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
   1307 	ATW_WRITE(sc, ATW_CAP0,
   1308 	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
   1309 
   1310 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1311 
   1312 	if (rc == 0)
   1313 		sc->sc_cur_chan = chan;
   1314 
   1315 	return rc;
   1316 }
   1317 
   1318 #ifdef ATW_DEBUG
   1319 static void
   1320 atw_si4126_print(struct atw_softc *sc)
   1321 {
   1322 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1323 	u_int addr, val;
   1324 
   1325 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1326 		return;
   1327 
   1328 	for (addr = 0; addr <= 8; addr++) {
   1329 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
   1330 		if (atw_si4126_read(sc, addr, &val) == 0) {
   1331 			printf("<unknown> (quitting print-out)\n");
   1332 			break;
   1333 		}
   1334 		printf("%05x\n", val);
   1335 	}
   1336 }
   1337 #endif /* ATW_DEBUG */
   1338 
   1339 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
   1340  *
   1341  * The RF/IF synthesizer produces two reference frequencies for
   1342  * the RF2948B transceiver.  The first frequency the RF2948B requires
   1343  * is two times the so-called "intermediate frequency" (IF). Since
   1344  * a SAW filter on the radio fixes the IF at 374MHz, I program the
   1345  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
   1346  * frequency required by the transceiver is the radio frequency
   1347  * (RF). This is a superheterodyne transceiver; for f(chan) the
   1348  * center frequency of the channel we are tuning, RF = f(chan) -
   1349  * IF.
   1350  *
   1351  * XXX I am told by SiLabs that the Si4126 will accept a broader range
   1352  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
   1353  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
   1354  * works, but I have still programmed for XINDIV2 = 1 to be safe.
   1355  */
   1356 static int
   1357 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
   1358 {
   1359 	int rc = 0;
   1360 	u_int mhz;
   1361 	u_int R;
   1362 	u_int32_t reg;
   1363 	u_int16_t gain;
   1364 
   1365 #ifdef ATW_DEBUG
   1366 	atw_si4126_print(sc);
   1367 #endif /* ATW_DEBUG */
   1368 
   1369 	if (chan == 14)
   1370 		mhz = 2484;
   1371 	else
   1372 		mhz = 2412 + 5 * (chan - 1);
   1373 
   1374 	/* Tune IF to 748MHz to suit the IF LO input of the
   1375 	 * RF2494B, which is 2 x IF. No need to set an IF divider
   1376          * because an IF in 526MHz - 952MHz is allowed.
   1377 	 *
   1378 	 * XIN is 44.000MHz, so divide it by two to get allowable
   1379 	 * range of 2-25MHz. SiLabs tells me that this is not
   1380 	 * strictly necessary.
   1381 	 */
   1382 
   1383 	R = 44;
   1384 
   1385 	atw_rfio_enable(sc, 1);
   1386 
   1387 	/* Power-up RF, IF synthesizers. */
   1388 	if ((rc = atw_si4126_write(sc, SI4126_POWER,
   1389 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
   1390 		goto out;
   1391 
   1392 	/* If RF2 N > 2047, then set KP2 to 1. */
   1393 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
   1394 
   1395 	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
   1396 		goto out;
   1397 
   1398 	/* set LPWR, too? */
   1399 	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
   1400 	    SI4126_MAIN_XINDIV2)) != 0)
   1401 		goto out;
   1402 
   1403 	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
   1404 	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
   1405 	 */
   1406 	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
   1407 		goto out;
   1408 
   1409 	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
   1410 		goto out;
   1411 
   1412 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
   1413 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
   1414 	 * which has no RF1!
   1415 	 */
   1416 	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
   1417 		goto out;
   1418 
   1419 	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
   1420 		goto out;
   1421 
   1422 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
   1423 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
   1424 	 * Now let's multiply it to mhz. So mhz - IF = N.
   1425 	 */
   1426 	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
   1427 		goto out;
   1428 
   1429 	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
   1430 		goto out;
   1431 
   1432 	/* wait 100us from power-up for RF, IF to settle */
   1433 	DELAY(100);
   1434 
   1435 	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
   1436 		/* XXX there is a binary driver which sends
   1437 		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
   1438 		 * that this enables the Si4126 by raising its PWDN#, but I
   1439 		 * think that it actually sets the Prism RF front-end
   1440 		 * to a special mode for channel 14.
   1441 		 */
   1442 		reg = ATW_READ(sc, ATW_GPIO);
   1443 		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
   1444 		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
   1445 		ATW_WRITE(sc, ATW_GPIO, reg);
   1446 	}
   1447 
   1448 #ifdef ATW_DEBUG
   1449 	atw_si4126_print(sc);
   1450 #endif /* ATW_DEBUG */
   1451 
   1452 out:
   1453 	atw_rfio_enable(sc, 0);
   1454 
   1455 	return rc;
   1456 }
   1457 
   1458 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
   1459  * diversity.
   1460  *
   1461  * Call this w/ Tx/Rx suspended.
   1462  */
   1463 static int
   1464 atw_rf3000_init(struct atw_softc *sc)
   1465 {
   1466 	int rc = 0;
   1467 
   1468 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1469 
   1470 	atw_rfio_enable(sc, 1);
   1471 
   1472 	/* enable diversity */
   1473 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
   1474 
   1475 	if (rc != 0)
   1476 		goto out;
   1477 
   1478 	/* sensible setting from a binary-only driver */
   1479 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1480 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
   1481 
   1482 	if (rc != 0)
   1483 		goto out;
   1484 
   1485 	/* magic from a binary-only driver */
   1486 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
   1487 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
   1488 
   1489 	if (rc != 0)
   1490 		goto out;
   1491 
   1492 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
   1493 
   1494 	if (rc != 0)
   1495 		goto out;
   1496 
   1497 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
   1498 
   1499 	if (rc != 0)
   1500 		goto out;
   1501 
   1502 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
   1503 
   1504 	if (rc != 0)
   1505 		goto out;
   1506 
   1507 	/* CCA is acquisition sensitive */
   1508 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
   1509 	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
   1510 
   1511 	if (rc != 0)
   1512 		goto out;
   1513 
   1514 out:
   1515 	atw_rfio_enable(sc, 0);
   1516 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1517 	return rc;
   1518 }
   1519 
   1520 #ifdef ATW_DEBUG
   1521 static void
   1522 atw_rf3000_print(struct atw_softc *sc)
   1523 {
   1524 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1525 	u_int addr, val;
   1526 
   1527 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1528 		return;
   1529 
   1530 	for (addr = 0x01; addr <= 0x15; addr++) {
   1531 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
   1532 		if (atw_rf3000_read(sc, addr, &val) != 0) {
   1533 			printf("<unknown> (quitting print-out)\n");
   1534 			break;
   1535 		}
   1536 		printf("%08x\n", val);
   1537 	}
   1538 }
   1539 #endif /* ATW_DEBUG */
   1540 
   1541 /* Set the power settings on the BBP for channel `chan'. */
   1542 static int
   1543 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
   1544 {
   1545 	int rc = 0;
   1546 	u_int32_t reg;
   1547 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
   1548 
   1549 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
   1550 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
   1551 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
   1552 
   1553 	/* odd channels: LSB, even channels: MSB */
   1554 	if (chan % 2 == 1) {
   1555 		txpower &= 0xFF;
   1556 		lpf_cutoff &= 0xFF;
   1557 		lna_gs_thresh &= 0xFF;
   1558 	} else {
   1559 		txpower >>= 8;
   1560 		lpf_cutoff >>= 8;
   1561 		lna_gs_thresh >>= 8;
   1562 	}
   1563 
   1564 #ifdef ATW_DEBUG
   1565 	atw_rf3000_print(sc);
   1566 #endif /* ATW_DEBUG */
   1567 
   1568 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
   1569 	    "lna_gs_thresh %02x\n",
   1570 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
   1571 
   1572 	atw_rfio_enable(sc, 1);
   1573 
   1574 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1575 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
   1576 		goto out;
   1577 
   1578 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
   1579 		goto out;
   1580 
   1581 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
   1582 		goto out;
   1583 
   1584 	/* from a binary-only driver. */
   1585 	reg = ATW_READ(sc, ATW_PLCPHD);
   1586 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
   1587 	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
   1588 	    ATW_PLCPHD_SERVICE_MASK);
   1589 	ATW_WRITE(sc, ATW_PLCPHD, reg);
   1590 
   1591 #ifdef ATW_DEBUG
   1592 	atw_rf3000_print(sc);
   1593 #endif /* ATW_DEBUG */
   1594 
   1595 out:
   1596 	atw_rfio_enable(sc, 0);
   1597 
   1598 	return rc;
   1599 }
   1600 
   1601 /* Write a register on the RF3000 baseband processor using the
   1602  * registers provided by the ADM8211 for this purpose.
   1603  *
   1604  * Return 0 on success.
   1605  */
   1606 static int
   1607 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
   1608 {
   1609 	u_int32_t reg;
   1610 	int i;
   1611 
   1612 	for (i = 1000; --i >= 0; ) {
   1613 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1614 			break;
   1615 		DELAY(100);
   1616 	}
   1617 
   1618 	if (i < 0) {
   1619 		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
   1620 		return ETIMEDOUT;
   1621 	}
   1622 
   1623 	reg = sc->sc_bbpctl_wr |
   1624 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
   1625 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1626 
   1627 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1628 
   1629 	for (i = 1000; --i >= 0; ) {
   1630 		DELAY(100);
   1631 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
   1632 			break;
   1633 	}
   1634 
   1635 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
   1636 
   1637 	if (i < 0) {
   1638 		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
   1639 		return ETIMEDOUT;
   1640 	}
   1641 	return 0;
   1642 }
   1643 
   1644 /* Read a register on the RF3000 baseband processor using the registers
   1645  * the ADM8211 provides for this purpose.
   1646  *
   1647  * The 7-bit register address is addr.  Record the 8-bit data in the register
   1648  * in *val.
   1649  *
   1650  * Return 0 on success.
   1651  *
   1652  * XXX This does not seem to work. The ADM8211 must require more or
   1653  * different magic to read the chip than to write it. Possibly some
   1654  * of the magic I have derived from a binary-only driver concerns
   1655  * the "chip address" (see the RF3000 manual).
   1656  */
   1657 #ifdef ATW_DEBUG
   1658 static int
   1659 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
   1660 {
   1661 	u_int32_t reg;
   1662 	int i;
   1663 
   1664 	for (i = 1000; --i >= 0; ) {
   1665 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1666 			break;
   1667 		DELAY(100);
   1668 	}
   1669 
   1670 	if (i < 0) {
   1671 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
   1672 		    sc->sc_dev.dv_xname);
   1673 		return ETIMEDOUT;
   1674 	}
   1675 
   1676 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1677 
   1678 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1679 
   1680 	for (i = 1000; --i >= 0; ) {
   1681 		DELAY(100);
   1682 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
   1683 			break;
   1684 	}
   1685 
   1686 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
   1687 
   1688 	if (i < 0) {
   1689 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
   1690 		    sc->sc_dev.dv_xname, reg);
   1691 		return ETIMEDOUT;
   1692 	}
   1693 	if (val != NULL)
   1694 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
   1695 	return 0;
   1696 }
   1697 #endif /* ATW_DEBUG */
   1698 
   1699 /* Write a register on the Si4126 RF/IF synthesizer using the registers
   1700  * provided by the ADM8211 for that purpose.
   1701  *
   1702  * val is 18 bits of data, and val is the 4-bit address of the register.
   1703  *
   1704  * Return 0 on success.
   1705  */
   1706 static int
   1707 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
   1708 {
   1709 	u_int32_t bits, reg;
   1710 	int i;
   1711 
   1712 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1713 	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
   1714 
   1715 	for (i = 1000; --i >= 0; ) {
   1716 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1717 			break;
   1718 		DELAY(100);
   1719 	}
   1720 
   1721 	if (i < 0) {
   1722 		printf("%s: start atw_si4126_write, SYNCTL busy\n",
   1723 		    sc->sc_dev.dv_xname);
   1724 		return ETIMEDOUT;
   1725 	}
   1726 
   1727 	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
   1728 	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
   1729 
   1730 	reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
   1731 
   1732 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1733 
   1734 	for (i = 1000; --i >= 0; ) {
   1735 		DELAY(100);
   1736 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
   1737 			break;
   1738 	}
   1739 
   1740 	/* restore to acceptable starting condition */
   1741 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
   1742 
   1743 	if (i < 0) {
   1744 		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
   1745 		    sc->sc_dev.dv_xname, reg);
   1746 		return ETIMEDOUT;
   1747 	}
   1748 	return 0;
   1749 }
   1750 
   1751 /* Read 18-bit data from the 4-bit address addr in Si4126
   1752  * RF synthesizer and write the data to *val. Return 0 on success.
   1753  *
   1754  * XXX This does not seem to work. The ADM8211 must require more or
   1755  * different magic to read the chip than to write it.
   1756  */
   1757 #ifdef ATW_DEBUG
   1758 static int
   1759 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
   1760 {
   1761 	u_int32_t reg;
   1762 	int i;
   1763 
   1764 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1765 
   1766 	for (i = 1000; --i >= 0; ) {
   1767 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1768 			break;
   1769 		DELAY(100);
   1770 	}
   1771 
   1772 	if (i < 0) {
   1773 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
   1774 		    sc->sc_dev.dv_xname);
   1775 		return ETIMEDOUT;
   1776 	}
   1777 
   1778 	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
   1779 
   1780 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1781 
   1782 	for (i = 1000; --i >= 0; ) {
   1783 		DELAY(100);
   1784 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
   1785 			break;
   1786 	}
   1787 
   1788 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
   1789 
   1790 	if (i < 0) {
   1791 		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
   1792 		    sc->sc_dev.dv_xname, reg);
   1793 		return ETIMEDOUT;
   1794 	}
   1795 	if (val != NULL)
   1796 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
   1797 		                       ATW_SYNCTL_DATA_MASK);
   1798 	return 0;
   1799 }
   1800 #endif /* ATW_DEBUG */
   1801 
   1802 /* XXX is the endianness correct? test. */
   1803 #define	atw_calchash(addr) \
   1804 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
   1805 
   1806 /*
   1807  * atw_filter_setup:
   1808  *
   1809  *	Set the ADM8211's receive filter.
   1810  */
   1811 static void
   1812 atw_filter_setup(struct atw_softc *sc)
   1813 {
   1814 	struct ieee80211com *ic = &sc->sc_ic;
   1815 	struct ethercom *ec = &ic->ic_ec;
   1816 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1817 	int hash;
   1818 	u_int32_t hashes[2] = { 0, 0 };
   1819 	struct ether_multi *enm;
   1820 	struct ether_multistep step;
   1821 
   1822 	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
   1823 	    sc->sc_dev.dv_xname, sc->sc_flags));
   1824 
   1825 	/*
   1826 	 * If we're running, idle the receive engine.  If we're NOT running,
   1827 	 * we're being called from atw_init(), and our writing ATW_NAR will
   1828 	 * start the transmit and receive processes in motion.
   1829 	 */
   1830 	if (ifp->if_flags & IFF_RUNNING)
   1831 		atw_idle(sc, ATW_NAR_SR);
   1832 
   1833 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
   1834 
   1835 	ifp->if_flags &= ~IFF_ALLMULTI;
   1836 
   1837 	if (ifp->if_flags & IFF_PROMISC) {
   1838 		sc->sc_opmode |= ATW_NAR_PR;
   1839 allmulti:
   1840 		ifp->if_flags |= IFF_ALLMULTI;
   1841 		goto setit;
   1842 	}
   1843 
   1844 	/*
   1845 	 * Program the 64-bit multicast hash filter.
   1846 	 */
   1847 	ETHER_FIRST_MULTI(step, ec, enm);
   1848 	while (enm != NULL) {
   1849 		/* XXX */
   1850 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1851 		    ETHER_ADDR_LEN) != 0)
   1852 			goto allmulti;
   1853 
   1854 		hash = atw_calchash(enm->enm_addrlo);
   1855 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1856 		ETHER_NEXT_MULTI(step, enm);
   1857 	}
   1858 
   1859 	if (ifp->if_flags & IFF_BROADCAST) {
   1860 		hash = atw_calchash(etherbroadcastaddr);
   1861 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1862 	}
   1863 
   1864 	/* all bits set => hash is useless */
   1865 	if (~(hashes[0] & hashes[1]) == 0)
   1866 		goto allmulti;
   1867 
   1868  setit:
   1869 	if (ifp->if_flags & IFF_ALLMULTI)
   1870 		sc->sc_opmode |= ATW_NAR_MM;
   1871 
   1872 	/* XXX in scan mode, do not filter packets. maybe this is
   1873 	 * unnecessary.
   1874 	 */
   1875 	if (ic->ic_state == IEEE80211_S_SCAN)
   1876 		sc->sc_opmode |= ATW_NAR_PR;
   1877 
   1878 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
   1879 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
   1880 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1881 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
   1882 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
   1883 
   1884 	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
   1885 }
   1886 
   1887 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
   1888  * a beacon's BSSID and SSID against the preferred BSSID and SSID
   1889  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
   1890  * no beacon with the preferred BSSID and SSID in the number of
   1891  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
   1892  */
   1893 static void
   1894 atw_write_bssid(struct atw_softc *sc)
   1895 {
   1896 	struct ieee80211com *ic = &sc->sc_ic;
   1897 	u_int8_t *bssid;
   1898 
   1899 	bssid = ic->ic_bss->ni_bssid;
   1900 
   1901 	ATW_WRITE(sc, ATW_BSSID0,
   1902 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
   1903 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
   1904 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
   1905 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
   1906 
   1907 	ATW_WRITE(sc, ATW_ABDA1,
   1908 	    (ATW_READ(sc, ATW_ABDA1) &
   1909 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
   1910 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
   1911 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
   1912 
   1913 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
   1914 	    ether_sprintf(sc->sc_bssid)));
   1915 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
   1916 
   1917 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
   1918 }
   1919 
   1920 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
   1921  * 16-bit word.
   1922  */
   1923 static void
   1924 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
   1925 {
   1926 	u_int i;
   1927 	u_int8_t *ptr;
   1928 
   1929 	memcpy(&sc->sc_sram[ofs], buf, buflen);
   1930 
   1931 	if (ofs % 2 != 0) {
   1932 		ofs--;
   1933 		buflen++;
   1934 	}
   1935 
   1936 	if (buflen % 2 != 0)
   1937 		buflen++;
   1938 
   1939 	assert(buflen + ofs <= ATW_SRAM_SIZE);
   1940 
   1941 	ptr = &sc->sc_sram[ofs];
   1942 
   1943 	for (i = 0; i < buflen; i += 2) {
   1944 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
   1945 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
   1946 		DELAY(atw_writewep_delay);
   1947 
   1948 		ATW_WRITE(sc, ATW_WESK,
   1949 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
   1950 		DELAY(atw_writewep_delay);
   1951 	}
   1952 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
   1953 
   1954 	if (sc->sc_if.if_flags & IFF_DEBUG) {
   1955 		int n_octets = 0;
   1956 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
   1957 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
   1958 		for (i = 0; i < buflen; i++) {
   1959 			printf(" %02x", ptr[i]);
   1960 			if (++n_octets % 24 == 0)
   1961 				printf("\n");
   1962 		}
   1963 		if (n_octets % 24 != 0)
   1964 			printf("\n");
   1965 	}
   1966 }
   1967 
   1968 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
   1969 static void
   1970 atw_write_wep(struct atw_softc *sc)
   1971 {
   1972 	struct ieee80211com *ic = &sc->sc_ic;
   1973 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
   1974 	u_int8_t buf[IEEE80211_WEP_NKID]
   1975 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
   1976 	u_int32_t reg;
   1977 	int i;
   1978 
   1979 	sc->sc_wepctl = 0;
   1980 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
   1981 
   1982 	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
   1983 		return;
   1984 
   1985 	memset(&buf[0][0], 0, sizeof(buf));
   1986 
   1987 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1988 		if (ic->ic_nw_keys[i].wk_len > 5) {
   1989 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
   1990 		} else if (ic->ic_nw_keys[i].wk_len != 0) {
   1991 			buf[i][1] = ATW_WEP_ENABLED;
   1992 		} else {
   1993 			buf[i][1] = 0;
   1994 			continue;
   1995 		}
   1996 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
   1997 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
   1998 		    ic->ic_nw_keys[i].wk_len - 1);
   1999 	}
   2000 
   2001 	reg = ATW_READ(sc, ATW_MACTEST);
   2002 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
   2003 	reg &= ~ATW_MACTEST_KEYID_MASK;
   2004 	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
   2005 	ATW_WRITE(sc, ATW_MACTEST, reg);
   2006 
   2007 	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
   2008 	 * throughout.)
   2009 	 */
   2010 	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
   2011 	if (sc->sc_if.if_flags & IFF_LINK2)
   2012 		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
   2013 
   2014 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
   2015 	    sizeof(buf));
   2016 }
   2017 
   2018 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
   2019 
   2020 static void
   2021 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2022     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2023 {
   2024 	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
   2025 
   2026 	switch (subtype) {
   2027 	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
   2028 		/* do nothing: hardware answers probe request */
   2029 		break;
   2030 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2031 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2032 		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
   2033 		break;
   2034 	default:
   2035 		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
   2036 		break;
   2037 	}
   2038 	return;
   2039 }
   2040 
   2041 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
   2042  * of IBSSs with like SSID/channel but different BSSID. It joins the
   2043  * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
   2044  * convention. Possibly the ADMtek chip does this for us; I will have
   2045  * to test to find out.
   2046  *
   2047  * XXX we should add the duration field of the received beacon to
   2048  * the TSF time it contains before comparing it with the ADM8211's
   2049  * TSF.
   2050  */
   2051 static void
   2052 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
   2053     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2054 {
   2055 	struct atw_softc *sc;
   2056 	struct ieee80211_frame *wh;
   2057 	u_int64_t tsft, bcn_tsft;
   2058 	u_int32_t tsftl, tsfth;
   2059 	int do_print = 0;
   2060 
   2061 	sc = (struct atw_softc*)ic->ic_if.if_softc;
   2062 
   2063 	if (ic->ic_if.if_flags & IFF_LINK0) {
   2064 		do_print = (ic->ic_if.if_flags & IFF_DEBUG)
   2065 		    ? 1 : ratecheck(&sc->sc_last_beacon,
   2066 		    &atw_beacon_mininterval);
   2067 	}
   2068 
   2069 	wh = mtod(m0, struct ieee80211_frame *);
   2070 
   2071 	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
   2072 
   2073 	if (ic->ic_state != IEEE80211_S_RUN)
   2074 		return;
   2075 
   2076 	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
   2077 	    ic->ic_bss->ni_chan)) == NULL) {
   2078 		if (do_print)
   2079 			printf("%s: atw_recv_beacon: no node %s\n",
   2080 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2081 		return;
   2082 	}
   2083 
   2084 	if (ieee80211_match_bss(ic, ni) != 0)
   2085 		return;
   2086 
   2087 	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
   2088 		return;
   2089 
   2090 	if (do_print)
   2091 		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
   2092 		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
   2093 
   2094 	if (ic->ic_opmode != IEEE80211_M_IBSS)
   2095 		return;
   2096 
   2097 	/* If we read TSFTL right before rollover, we read a TSF timer
   2098 	 * that is too high rather than too low. This prevents a spurious
   2099 	 * synchronization down the line, however, our IBSS could suffer
   2100 	 * from a creeping TSF....
   2101 	 */
   2102 	tsftl = ATW_READ(sc, ATW_TSFTL);
   2103 	tsfth = ATW_READ(sc, ATW_TSFTH);
   2104 
   2105 	tsft = (u_int64_t)tsfth << 32 | tsftl;
   2106 	bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
   2107 
   2108 	if (do_print)
   2109 		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
   2110 		    sc->sc_dev.dv_xname, tsft, bcn_tsft);
   2111 
   2112 	/* we are faster, let the other guy catch up */
   2113 	if (bcn_tsft < tsft)
   2114 		return;
   2115 
   2116 	if (do_print)
   2117 		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
   2118 		    ether_sprintf(wh->i_addr2));
   2119 
   2120 	ic->ic_flags &= ~IEEE80211_F_SIBSS;
   2121 
   2122 	atw_tsf(sc);
   2123 
   2124 	/* negotiate rates with new IBSS */
   2125 	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
   2126 	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
   2127 	if (ni->ni_rates.rs_nrates == 0) {
   2128 		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
   2129 			ether_sprintf(ni->ni_bssid));
   2130 		return;
   2131 	}
   2132 
   2133 	if (do_print) {
   2134 		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
   2135 		    ether_sprintf(ic->ic_bss->ni_bssid));
   2136 		printf("%s ", ether_sprintf(ni->ni_bssid));
   2137 		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
   2138 	}
   2139 
   2140 	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
   2141 
   2142 	atw_write_bssid(sc);
   2143 	atw_start_beacon(sc, 1);
   2144 }
   2145 
   2146 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
   2147  * In ad hoc mode, the SSID is written to the beacons sent by the
   2148  * ADM8211. In both ad hoc and infrastructure mode, beacons received
   2149  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
   2150  * indications.
   2151  */
   2152 static void
   2153 atw_write_ssid(struct atw_softc *sc)
   2154 {
   2155 	struct ieee80211com *ic = &sc->sc_ic;
   2156 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
   2157 	 * it only expects the element length, not its ID.
   2158 	 */
   2159 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
   2160 
   2161 	memset(buf, 0, sizeof(buf));
   2162 	buf[0] = ic->ic_bss->ni_esslen;
   2163 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
   2164 
   2165 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
   2166 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
   2167 }
   2168 
   2169 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
   2170  * In ad hoc mode, the supported rates are written to beacons sent by the
   2171  * ADM8211.
   2172  */
   2173 static void
   2174 atw_write_sup_rates(struct atw_softc *sc)
   2175 {
   2176 	struct ieee80211com *ic = &sc->sc_ic;
   2177 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
   2178 	 * supported rates
   2179 	 */
   2180 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
   2181 
   2182 	memset(buf, 0, sizeof(buf));
   2183 
   2184 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
   2185 
   2186 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
   2187 	    ic->ic_bss->ni_rates.rs_nrates);
   2188 
   2189 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
   2190 }
   2191 
   2192 /* Start/stop sending beacons. */
   2193 void
   2194 atw_start_beacon(struct atw_softc *sc, int start)
   2195 {
   2196 	struct ieee80211com *ic = &sc->sc_ic;
   2197 	uint16_t chan;
   2198 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
   2199 	size_t len;
   2200 
   2201 	if (ATW_IS_ENABLED(sc) == 0)
   2202 		return;
   2203 
   2204 	/* start beacons */
   2205 	len = sizeof(struct ieee80211_frame) +
   2206 	    8 /* timestamp */ + 2 /* beacon interval */ +
   2207 	    2 /* capability info */ +
   2208 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
   2209 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
   2210 	    3 /* DS parameters */ +
   2211 	    IEEE80211_CRC_LEN;
   2212 
   2213 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
   2214 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
   2215 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
   2216 
   2217 	ATW_WRITE(sc, ATW_BCNT, bcnt);
   2218 	ATW_WRITE(sc, ATW_CAP1, cap1);
   2219 
   2220 	if (!start)
   2221 		return;
   2222 
   2223 	/* TBD use ni_capinfo */
   2224 
   2225 	capinfo = 0;
   2226 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
   2227 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   2228 	if (ic->ic_flags & IEEE80211_F_WEPON)
   2229 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   2230 
   2231 	switch (ic->ic_opmode) {
   2232 	case IEEE80211_M_IBSS:
   2233 		len += 4; /* IBSS parameters */
   2234 		capinfo |= IEEE80211_CAPINFO_IBSS;
   2235 		break;
   2236 	case IEEE80211_M_HOSTAP:
   2237 		/* XXX 6-byte minimum TIM */
   2238 		len += atw_beacon_len_adjust;
   2239 		capinfo |= IEEE80211_CAPINFO_ESS;
   2240 		break;
   2241 	default:
   2242 		return;
   2243 	}
   2244 
   2245 	/* set listen interval
   2246 	 * XXX do software units agree w/ hardware?
   2247 	 */
   2248 	bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2249 	    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
   2250 
   2251 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
   2252 
   2253 	bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
   2254 	cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
   2255 	cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
   2256 
   2257 	ATW_WRITE(sc, ATW_BCNT, bcnt);
   2258 	ATW_WRITE(sc, ATW_BPLI, bpli);
   2259 	ATW_WRITE(sc, ATW_CAP0, cap0);
   2260 	ATW_WRITE(sc, ATW_CAP1, cap1);
   2261 
   2262 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
   2263 	    sc->sc_dev.dv_xname, bcnt));
   2264 
   2265 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
   2266 	    sc->sc_dev.dv_xname, cap1));
   2267 }
   2268 
   2269 /* First beacon was sent at time 0 microseconds, current time is
   2270  * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
   2271  * microseconds.  Return the expected time in microseconds for the
   2272  * beacon after next.
   2273  */
   2274 static __inline u_int64_t
   2275 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
   2276 {
   2277 	return tsft + (tbtt - tsft % tbtt);
   2278 }
   2279 
   2280 /* If we've created an IBSS, write the TSF time in the ADM8211 to
   2281  * the ieee80211com.
   2282  *
   2283  * Predict the next target beacon transmission time (TBTT) and
   2284  * write it to the ADM8211.
   2285  */
   2286 static void
   2287 atw_tsf(struct atw_softc *sc)
   2288 {
   2289 #define TBTTOFS 20 /* TU */
   2290 
   2291 	struct ieee80211com *ic = &sc->sc_ic;
   2292 	u_int64_t tsft, tbtt;
   2293 
   2294 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
   2295 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
   2296 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
   2297 		tsft = ATW_READ(sc, ATW_TSFTH);
   2298 		tsft <<= 32;
   2299 		tsft |= ATW_READ(sc, ATW_TSFTL);
   2300 		*(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
   2301 	} else
   2302 		tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
   2303 
   2304 	tbtt = atw_predict_beacon(tsft,
   2305 	    ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
   2306 
   2307 	/* skip one more beacon so that the TBTT cannot pass before
   2308 	 * we've programmed it, and also so that we can subtract a
   2309 	 * few TU so that we wake a little before TBTT.
   2310 	 */
   2311 	tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
   2312 
   2313 	/* wake up a little early */
   2314 	tbtt -= TBTTOFS * IEEE80211_DUR_TU;
   2315 
   2316 	DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
   2317 	    sc->sc_dev.dv_xname, tsft, tbtt));
   2318 
   2319 	ATW_WRITE(sc, ATW_TOFS1,
   2320 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
   2321 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
   2322 	    LSHIFT(
   2323 		MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
   2324 		ATW_TOFS1_TBTTPRE_MASK));
   2325 #undef TBTTOFS
   2326 }
   2327 
   2328 static void
   2329 atw_next_scan(void *arg)
   2330 {
   2331 	struct atw_softc *sc = arg;
   2332 	struct ieee80211com *ic = &sc->sc_ic;
   2333 	struct ifnet *ifp = &ic->ic_if;
   2334 	int s;
   2335 
   2336 	/* don't call atw_start w/o network interrupts blocked */
   2337 	s = splnet();
   2338 	if (ic->ic_state == IEEE80211_S_SCAN)
   2339 		ieee80211_next_scan(ifp);
   2340 	splx(s);
   2341 }
   2342 
   2343 /* Synchronize the hardware state with the software state. */
   2344 static int
   2345 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   2346 {
   2347 	struct ifnet *ifp = &ic->ic_if;
   2348 	struct atw_softc *sc = ifp->if_softc;
   2349 	enum ieee80211_state ostate;
   2350 	int error;
   2351 
   2352 	ostate = ic->ic_state;
   2353 
   2354 	if (nstate == IEEE80211_S_INIT) {
   2355 		callout_stop(&sc->sc_scan_ch);
   2356 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
   2357 		atw_start_beacon(sc, 0);
   2358 		return (*sc->sc_newstate)(ic, nstate, arg);
   2359 	}
   2360 
   2361 	if ((error = atw_tune(sc)) != 0)
   2362 		return error;
   2363 
   2364 	switch (nstate) {
   2365 	case IEEE80211_S_ASSOC:
   2366 		break;
   2367 	case IEEE80211_S_INIT:
   2368 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
   2369 		break;
   2370 	case IEEE80211_S_SCAN:
   2371 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
   2372 		    atw_next_scan, sc);
   2373 
   2374 		break;
   2375 	case IEEE80211_S_RUN:
   2376 		if (ic->ic_opmode == IEEE80211_M_STA)
   2377 			break;
   2378 		/*FALLTHROUGH*/
   2379 	case IEEE80211_S_AUTH:
   2380 		atw_write_bssid(sc);
   2381 		atw_write_ssid(sc);
   2382 		atw_write_sup_rates(sc);
   2383 
   2384 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
   2385 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   2386 			break;
   2387 
   2388 		/* set listen interval
   2389 		 * XXX do software units agree w/ hardware?
   2390 		 */
   2391 		ATW_WRITE(sc, ATW_BPLI,
   2392 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2393 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
   2394 			   ATW_BPLI_LI_MASK));
   2395 
   2396 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
   2397 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
   2398 
   2399 		atw_tsf(sc);
   2400 		break;
   2401 	}
   2402 
   2403 	if (nstate != IEEE80211_S_SCAN)
   2404 		callout_stop(&sc->sc_scan_ch);
   2405 
   2406 	if (nstate == IEEE80211_S_RUN &&
   2407 	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   2408 	     ic->ic_opmode == IEEE80211_M_IBSS))
   2409 		atw_start_beacon(sc, 1);
   2410 	else
   2411 		atw_start_beacon(sc, 0);
   2412 
   2413 	error = (*sc->sc_newstate)(ic, nstate, arg);
   2414 
   2415 	if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
   2416 		atw_write_bssid(sc);
   2417 
   2418 	return error;
   2419 }
   2420 
   2421 /*
   2422  * atw_add_rxbuf:
   2423  *
   2424  *	Add a receive buffer to the indicated descriptor.
   2425  */
   2426 int
   2427 atw_add_rxbuf(struct atw_softc *sc, int idx)
   2428 {
   2429 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2430 	struct mbuf *m;
   2431 	int error;
   2432 
   2433 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2434 	if (m == NULL)
   2435 		return (ENOBUFS);
   2436 
   2437 	MCLGET(m, M_DONTWAIT);
   2438 	if ((m->m_flags & M_EXT) == 0) {
   2439 		m_freem(m);
   2440 		return (ENOBUFS);
   2441 	}
   2442 
   2443 	if (rxs->rxs_mbuf != NULL)
   2444 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2445 
   2446 	rxs->rxs_mbuf = m;
   2447 
   2448 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2449 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2450 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2451 	if (error) {
   2452 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2453 		    sc->sc_dev.dv_xname, idx, error);
   2454 		panic("atw_add_rxbuf");	/* XXX */
   2455 	}
   2456 
   2457 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2458 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2459 
   2460 	ATW_INIT_RXDESC(sc, idx);
   2461 
   2462 	return (0);
   2463 }
   2464 
   2465 /*
   2466  * Release any queued transmit buffers.
   2467  */
   2468 void
   2469 atw_txdrain(struct atw_softc *sc)
   2470 {
   2471 	struct atw_txsoft *txs;
   2472 
   2473 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2474 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2475 		if (txs->txs_mbuf != NULL) {
   2476 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2477 			m_freem(txs->txs_mbuf);
   2478 			txs->txs_mbuf = NULL;
   2479 		}
   2480 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2481 	}
   2482 	sc->sc_tx_timer = 0;
   2483 }
   2484 
   2485 /*
   2486  * atw_stop:		[ ifnet interface function ]
   2487  *
   2488  *	Stop transmission on the interface.
   2489  */
   2490 void
   2491 atw_stop(struct ifnet *ifp, int disable)
   2492 {
   2493 	struct atw_softc *sc = ifp->if_softc;
   2494 	struct ieee80211com *ic = &sc->sc_ic;
   2495 
   2496 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   2497 
   2498 	/* Disable interrupts. */
   2499 	ATW_WRITE(sc, ATW_IER, 0);
   2500 
   2501 	/* Stop the transmit and receive processes. */
   2502 	sc->sc_opmode = 0;
   2503 	ATW_WRITE(sc, ATW_NAR, 0);
   2504 	DELAY(20 * 1000);
   2505 	ATW_WRITE(sc, ATW_TDBD, 0);
   2506 	ATW_WRITE(sc, ATW_TDBP, 0);
   2507 	ATW_WRITE(sc, ATW_RDB, 0);
   2508 
   2509 	atw_txdrain(sc);
   2510 
   2511 	if (disable) {
   2512 		atw_rxdrain(sc);
   2513 		atw_disable(sc);
   2514 	}
   2515 
   2516 	/*
   2517 	 * Mark the interface down and cancel the watchdog timer.
   2518 	 */
   2519 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2520 	ifp->if_timer = 0;
   2521 
   2522 	if (!disable)
   2523 		atw_reset(sc);
   2524 }
   2525 
   2526 /*
   2527  * atw_rxdrain:
   2528  *
   2529  *	Drain the receive queue.
   2530  */
   2531 void
   2532 atw_rxdrain(struct atw_softc *sc)
   2533 {
   2534 	struct atw_rxsoft *rxs;
   2535 	int i;
   2536 
   2537 	for (i = 0; i < ATW_NRXDESC; i++) {
   2538 		rxs = &sc->sc_rxsoft[i];
   2539 		if (rxs->rxs_mbuf == NULL)
   2540 			continue;
   2541 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2542 		m_freem(rxs->rxs_mbuf);
   2543 		rxs->rxs_mbuf = NULL;
   2544 	}
   2545 }
   2546 
   2547 /*
   2548  * atw_detach:
   2549  *
   2550  *	Detach an ADM8211 interface.
   2551  */
   2552 int
   2553 atw_detach(struct atw_softc *sc)
   2554 {
   2555 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2556 	struct atw_rxsoft *rxs;
   2557 	struct atw_txsoft *txs;
   2558 	int i;
   2559 
   2560 	/*
   2561 	 * Succeed now if there isn't any work to do.
   2562 	 */
   2563 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
   2564 		return (0);
   2565 
   2566 	ieee80211_ifdetach(ifp);
   2567 	if_detach(ifp);
   2568 
   2569 	for (i = 0; i < ATW_NRXDESC; i++) {
   2570 		rxs = &sc->sc_rxsoft[i];
   2571 		if (rxs->rxs_mbuf != NULL) {
   2572 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2573 			m_freem(rxs->rxs_mbuf);
   2574 			rxs->rxs_mbuf = NULL;
   2575 		}
   2576 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
   2577 	}
   2578 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   2579 		txs = &sc->sc_txsoft[i];
   2580 		if (txs->txs_mbuf != NULL) {
   2581 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2582 			m_freem(txs->txs_mbuf);
   2583 			txs->txs_mbuf = NULL;
   2584 		}
   2585 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
   2586 	}
   2587 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2588 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2589 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2590 	    sizeof(struct atw_control_data));
   2591 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2592 
   2593 	shutdownhook_disestablish(sc->sc_sdhook);
   2594 	powerhook_disestablish(sc->sc_powerhook);
   2595 
   2596 	if (sc->sc_srom)
   2597 		free(sc->sc_srom, M_DEVBUF);
   2598 
   2599 	return (0);
   2600 }
   2601 
   2602 /* atw_shutdown: make sure the interface is stopped at reboot time. */
   2603 void
   2604 atw_shutdown(void *arg)
   2605 {
   2606 	struct atw_softc *sc = arg;
   2607 
   2608 	atw_stop(&sc->sc_ic.ic_if, 1);
   2609 }
   2610 
   2611 int
   2612 atw_intr(void *arg)
   2613 {
   2614 	struct atw_softc *sc = arg;
   2615 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2616 	u_int32_t status, rxstatus, txstatus, linkstatus;
   2617 	int handled = 0, txthresh;
   2618 
   2619 #ifdef DEBUG
   2620 	if (ATW_IS_ENABLED(sc) == 0)
   2621 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
   2622 #endif
   2623 
   2624 	/*
   2625 	 * If the interface isn't running, the interrupt couldn't
   2626 	 * possibly have come from us.
   2627 	 */
   2628 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   2629 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   2630 		return (0);
   2631 
   2632 	for (;;) {
   2633 		status = ATW_READ(sc, ATW_STSR);
   2634 
   2635 		if (status)
   2636 			ATW_WRITE(sc, ATW_STSR, status);
   2637 
   2638 #ifdef ATW_DEBUG
   2639 #define PRINTINTR(flag) do { \
   2640 	if ((status & flag) != 0) { \
   2641 		printf("%s" #flag, delim); \
   2642 		delim = ","; \
   2643 	} \
   2644 } while (0)
   2645 
   2646 		if (atw_debug > 1 && status) {
   2647 			const char *delim = "<";
   2648 
   2649 			printf("%s: reg[STSR] = %x",
   2650 			    sc->sc_dev.dv_xname, status);
   2651 
   2652 			PRINTINTR(ATW_INTR_FBE);
   2653 			PRINTINTR(ATW_INTR_LINKOFF);
   2654 			PRINTINTR(ATW_INTR_LINKON);
   2655 			PRINTINTR(ATW_INTR_RCI);
   2656 			PRINTINTR(ATW_INTR_RDU);
   2657 			PRINTINTR(ATW_INTR_REIS);
   2658 			PRINTINTR(ATW_INTR_RPS);
   2659 			PRINTINTR(ATW_INTR_TCI);
   2660 			PRINTINTR(ATW_INTR_TDU);
   2661 			PRINTINTR(ATW_INTR_TLT);
   2662 			PRINTINTR(ATW_INTR_TPS);
   2663 			PRINTINTR(ATW_INTR_TRT);
   2664 			PRINTINTR(ATW_INTR_TUF);
   2665 			PRINTINTR(ATW_INTR_BCNTC);
   2666 			PRINTINTR(ATW_INTR_ATIME);
   2667 			PRINTINTR(ATW_INTR_TBTT);
   2668 			PRINTINTR(ATW_INTR_TSCZ);
   2669 			PRINTINTR(ATW_INTR_TSFTF);
   2670 			printf(">\n");
   2671 		}
   2672 #undef PRINTINTR
   2673 #endif /* ATW_DEBUG */
   2674 
   2675 		if ((status & sc->sc_inten) == 0)
   2676 			break;
   2677 
   2678 		handled = 1;
   2679 
   2680 		rxstatus = status & sc->sc_rxint_mask;
   2681 		txstatus = status & sc->sc_txint_mask;
   2682 		linkstatus = status & sc->sc_linkint_mask;
   2683 
   2684 		if (linkstatus) {
   2685 			atw_linkintr(sc, linkstatus);
   2686 		}
   2687 
   2688 		if (rxstatus) {
   2689 			/* Grab any new packets. */
   2690 			atw_rxintr(sc);
   2691 
   2692 			if (rxstatus & ATW_INTR_RDU) {
   2693 				printf("%s: receive ring overrun\n",
   2694 				    sc->sc_dev.dv_xname);
   2695 				/* Get the receive process going again. */
   2696 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2697 				break;
   2698 			}
   2699 		}
   2700 
   2701 		if (txstatus) {
   2702 			/* Sweep up transmit descriptors. */
   2703 			atw_txintr(sc);
   2704 
   2705 			if (txstatus & ATW_INTR_TLT)
   2706 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
   2707 				    sc->sc_dev.dv_xname));
   2708 
   2709 			if (txstatus & ATW_INTR_TRT)
   2710 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
   2711 				    sc->sc_dev.dv_xname));
   2712 
   2713 			/* If Tx under-run, increase our transmit threshold
   2714 			 * if another is available.
   2715 			 */
   2716 			txthresh = sc->sc_txthresh + 1;
   2717 			if ((txstatus & ATW_INTR_TUF) &&
   2718 			    sc->sc_txth[txthresh].txth_name != NULL) {
   2719 				/* Idle the transmit process. */
   2720 				atw_idle(sc, ATW_NAR_ST);
   2721 
   2722 				sc->sc_txthresh = txthresh;
   2723 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
   2724 				sc->sc_opmode |=
   2725 				    sc->sc_txth[txthresh].txth_opmode;
   2726 				printf("%s: transmit underrun; new "
   2727 				    "threshold: %s\n", sc->sc_dev.dv_xname,
   2728 				    sc->sc_txth[txthresh].txth_name);
   2729 
   2730 				/* Set the new threshold and restart
   2731 				 * the transmit process.
   2732 				 */
   2733 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2734 				DELAY(20 * 1000);
   2735 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2736 				/* XXX Log every Nth underrun from
   2737 				 * XXX now on?
   2738 				 */
   2739 			}
   2740 		}
   2741 
   2742 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
   2743 			if (status & ATW_INTR_TPS)
   2744 				printf("%s: transmit process stopped\n",
   2745 				    sc->sc_dev.dv_xname);
   2746 			if (status & ATW_INTR_RPS)
   2747 				printf("%s: receive process stopped\n",
   2748 				    sc->sc_dev.dv_xname);
   2749 			(void)atw_init(ifp);
   2750 			break;
   2751 		}
   2752 
   2753 		if (status & ATW_INTR_FBE) {
   2754 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
   2755 			(void)atw_init(ifp);
   2756 			break;
   2757 		}
   2758 
   2759 		/*
   2760 		 * Not handled:
   2761 		 *
   2762 		 *	Transmit buffer unavailable -- normal
   2763 		 *	condition, nothing to do, really.
   2764 		 *
   2765 		 *	Early receive interrupt -- not available on
   2766 		 *	all chips, we just use RI.  We also only
   2767 		 *	use single-segment receive DMA, so this
   2768 		 *	is mostly useless.
   2769 		 *
   2770 		 *      TBD others
   2771 		 */
   2772 	}
   2773 
   2774 	/* Try to get more packets going. */
   2775 	atw_start(ifp);
   2776 
   2777 	return (handled);
   2778 }
   2779 
   2780 /*
   2781  * atw_idle:
   2782  *
   2783  *	Cause the transmit and/or receive processes to go idle.
   2784  *
   2785  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
   2786  *	process in STSR if I clear SR or ST after the process has already
   2787  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
   2788  *      do not seem to be too reliable. Perhaps I have the sense of the
   2789  *	Rx bits switched with the Tx bits?
   2790  */
   2791 void
   2792 atw_idle(struct atw_softc *sc, u_int32_t bits)
   2793 {
   2794 	u_int32_t ackmask = 0, opmode, stsr, test0;
   2795 	int i, s;
   2796 
   2797 	s = splnet();
   2798 
   2799 	opmode = sc->sc_opmode & ~bits;
   2800 
   2801 	if (bits & ATW_NAR_SR)
   2802 		ackmask |= ATW_INTR_RPS;
   2803 
   2804 	if (bits & ATW_NAR_ST) {
   2805 		ackmask |= ATW_INTR_TPS;
   2806 		/* set ATW_NAR_HF to flush TX FIFO. */
   2807 		opmode |= ATW_NAR_HF;
   2808 	}
   2809 
   2810 	ATW_WRITE(sc, ATW_NAR, opmode);
   2811 	DELAY(20 * 1000);
   2812 
   2813 	for (i = 0; i < 10; i++) {
   2814 		stsr = ATW_READ(sc, ATW_STSR);
   2815 		if ((stsr & ackmask) == ackmask)
   2816 			break;
   2817 		DELAY(1000);
   2818 	}
   2819 
   2820 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
   2821 
   2822 	if ((stsr & ackmask) == ackmask)
   2823 		goto out;
   2824 
   2825 	test0 = ATW_READ(sc, ATW_TEST0);
   2826 
   2827 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
   2828 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
   2829 		printf("%s: transmit process not idle [%s]\n",
   2830 		    sc->sc_dev.dv_xname,
   2831 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
   2832 		printf("%s: bits %08x test0 %08x stsr %08x\n",
   2833 		    sc->sc_dev.dv_xname, bits, test0, stsr);
   2834 	}
   2835 
   2836 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
   2837 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
   2838 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
   2839 		    sc->sc_dev.dv_xname,
   2840 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
   2841 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
   2842 		    sc->sc_dev.dv_xname, bits, test0, stsr));
   2843 	}
   2844 out:
   2845 	if ((bits & ATW_NAR_ST) != 0)
   2846 		atw_txdrain(sc);
   2847 	splx(s);
   2848 	return;
   2849 }
   2850 
   2851 /*
   2852  * atw_linkintr:
   2853  *
   2854  *	Helper; handle link-status interrupts.
   2855  */
   2856 void
   2857 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
   2858 {
   2859 	struct ieee80211com *ic = &sc->sc_ic;
   2860 
   2861 	if (ic->ic_state != IEEE80211_S_RUN)
   2862 		return;
   2863 
   2864 	if (linkstatus & ATW_INTR_LINKON) {
   2865 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
   2866 		sc->sc_rescan_timer = 0;
   2867 	} else if (linkstatus & ATW_INTR_LINKOFF) {
   2868 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
   2869 		if (ic->ic_opmode != IEEE80211_M_STA)
   2870 			return;
   2871 		sc->sc_rescan_timer = 3;
   2872 		ic->ic_if.if_timer = 1;
   2873 	}
   2874 }
   2875 
   2876 /*
   2877  * atw_rxintr:
   2878  *
   2879  *	Helper; handle receive interrupts.
   2880  */
   2881 void
   2882 atw_rxintr(struct atw_softc *sc)
   2883 {
   2884 	static int rate_tbl[] = {2, 4, 11, 22, 44};
   2885 	struct ieee80211com *ic = &sc->sc_ic;
   2886 	struct ieee80211_node *ni;
   2887 	struct ieee80211_frame *wh;
   2888 	struct ifnet *ifp = &ic->ic_if;
   2889 	struct atw_rxsoft *rxs;
   2890 	struct mbuf *m;
   2891 	u_int32_t rxstat;
   2892 	int i, len, rate, rate0;
   2893 	u_int32_t rssi;
   2894 
   2895 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
   2896 		rxs = &sc->sc_rxsoft[i];
   2897 
   2898 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2899 
   2900 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
   2901 		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
   2902 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
   2903 
   2904 		if (rxstat & ATW_RXSTAT_OWN)
   2905 			break; /* We have processed all receive buffers. */
   2906 
   2907 		DPRINTF3(sc,
   2908 		    ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
   2909 		    sc->sc_dev.dv_xname,
   2910 		    le32toh(sc->sc_rxdescs[i].ar_stat),
   2911 		    le32toh(sc->sc_rxdescs[i].ar_rssi),
   2912 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
   2913 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
   2914 
   2915 		/*
   2916 		 * Make sure the packet fits in one buffer.  This should
   2917 		 * always be the case.
   2918 		 */
   2919 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
   2920 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
   2921 			printf("%s: incoming packet spilled, resetting\n",
   2922 			    sc->sc_dev.dv_xname);
   2923 			(void)atw_init(ifp);
   2924 			return;
   2925 		}
   2926 
   2927 		/*
   2928 		 * If an error occurred, update stats, clear the status
   2929 		 * word, and leave the packet buffer in place.  It will
   2930 		 * simply be reused the next time the ring comes around.
   2931 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
   2932 		 * error.
   2933 		 */
   2934 
   2935 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
   2936 		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
   2937 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
   2938 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
   2939 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
   2940 				ATW_RXSTAT_ICVE)) != 0)) {
   2941 #define	PRINTERR(bit, str)						\
   2942 			if (rxstat & (bit))				\
   2943 				printf("%s: receive error: %s\n",	\
   2944 				    sc->sc_dev.dv_xname, str)
   2945 			ifp->if_ierrors++;
   2946 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
   2947 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
   2948 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
   2949 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
   2950 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
   2951 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
   2952 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
   2953 #undef PRINTERR
   2954 			ATW_INIT_RXDESC(sc, i);
   2955 			continue;
   2956 		}
   2957 
   2958 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2959 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2960 
   2961 		/*
   2962 		 * No errors; receive the packet.  Note the ADM8211
   2963 		 * includes the CRC in promiscuous mode.
   2964 		 */
   2965 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
   2966 
   2967 		/*
   2968 		 * Allocate a new mbuf cluster.  If that fails, we are
   2969 		 * out of memory, and must drop the packet and recycle
   2970 		 * the buffer that's already attached to this descriptor.
   2971 		 */
   2972 		m = rxs->rxs_mbuf;
   2973 		if (atw_add_rxbuf(sc, i) != 0) {
   2974 			ifp->if_ierrors++;
   2975 			ATW_INIT_RXDESC(sc, i);
   2976 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2977 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2978 			continue;
   2979 		}
   2980 
   2981 		ifp->if_ipackets++;
   2982 		if (sc->sc_opmode & ATW_NAR_PR)
   2983 			m->m_flags |= M_HASFCS;
   2984 		m->m_pkthdr.rcvif = ifp;
   2985 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
   2986 
   2987 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
   2988 			rate = 0;
   2989 		else
   2990 			rate = rate_tbl[rate0];
   2991 
   2992  #if NBPFILTER > 0
   2993 		/* Pass this up to any BPF listeners. */
   2994 		if (sc->sc_radiobpf != NULL) {
   2995 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
   2996 
   2997 			tap->ar_rate = rate;
   2998 			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   2999 			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3000 
   3001 			/* TBD verify units are dB */
   3002 			tap->ar_antsignal = (int)rssi;
   3003 			/* TBD tap->ar_flags */
   3004 
   3005 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3006 			    tap->ar_ihdr.it_len, m);
   3007  		}
   3008  #endif /* NPBFILTER > 0 */
   3009 
   3010 		wh = mtod(m, struct ieee80211_frame *);
   3011 		ni = ieee80211_find_rxnode(ic, wh);
   3012 		ieee80211_input(ifp, m, ni, (int)rssi, 0);
   3013 		/*
   3014 		 * The frame may have caused the node to be marked for
   3015 		 * reclamation (e.g. in response to a DEAUTH message)
   3016 		 * so use free_node here instead of unref_node.
   3017 		 */
   3018 		if (ni == ic->ic_bss)
   3019 			ieee80211_unref_node(&ni);
   3020 		else
   3021 			ieee80211_free_node(ic, ni);
   3022 	}
   3023 
   3024 	/* Update the receive pointer. */
   3025 	sc->sc_rxptr = i;
   3026 }
   3027 
   3028 /*
   3029  * atw_txintr:
   3030  *
   3031  *	Helper; handle transmit interrupts.
   3032  */
   3033 void
   3034 atw_txintr(struct atw_softc *sc)
   3035 {
   3036 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
   3037     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
   3038 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
   3039     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
   3040 
   3041 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
   3042 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3043 	struct atw_txsoft *txs;
   3044 	u_int32_t txstat;
   3045 
   3046 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
   3047 	    sc->sc_dev.dv_xname, sc->sc_flags));
   3048 
   3049 	ifp->if_flags &= ~IFF_OACTIVE;
   3050 
   3051 	/*
   3052 	 * Go through our Tx list and free mbufs for those
   3053 	 * frames that have been transmitted.
   3054 	 */
   3055 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   3056 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   3057 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3058 
   3059 #ifdef ATW_DEBUG
   3060 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3061 			int i;
   3062 			printf("    txsoft %p transmit chain:\n", txs);
   3063 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
   3064 			    txs->txs_ndescs - 1,
   3065 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3066 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
   3067 				printf("     descriptor %d:\n", i);
   3068 				printf("       at_status:   0x%08x\n",
   3069 				    le32toh(sc->sc_txdescs[i].at_stat));
   3070 				printf("       at_flags:      0x%08x\n",
   3071 				    le32toh(sc->sc_txdescs[i].at_flags));
   3072 				printf("       at_buf1: 0x%08x\n",
   3073 				    le32toh(sc->sc_txdescs[i].at_buf1));
   3074 				printf("       at_buf2: 0x%08x\n",
   3075 				    le32toh(sc->sc_txdescs[i].at_buf2));
   3076 				if (i == txs->txs_lastdesc)
   3077 					break;
   3078 			}
   3079 		}
   3080 #endif
   3081 
   3082 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
   3083 		if (txstat & ATW_TXSTAT_OWN)
   3084 			break;
   3085 
   3086 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   3087 
   3088 		sc->sc_txfree += txs->txs_ndescs;
   3089 
   3090 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   3091 		    0, txs->txs_dmamap->dm_mapsize,
   3092 		    BUS_DMASYNC_POSTWRITE);
   3093 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3094 		m_freem(txs->txs_mbuf);
   3095 		txs->txs_mbuf = NULL;
   3096 
   3097 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   3098 
   3099 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   3100 		    (txstat & TXSTAT_ERRMASK) != 0) {
   3101 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
   3102 			    txstat_buf, sizeof(txstat_buf));
   3103 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
   3104 			    txstat_buf,
   3105 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
   3106 		}
   3107 
   3108 		/*
   3109 		 * Check for errors and collisions.
   3110 		 */
   3111 		if (txstat & ATW_TXSTAT_TUF)
   3112 			sc->sc_stats.ts_tx_tuf++;
   3113 		if (txstat & ATW_TXSTAT_TLT)
   3114 			sc->sc_stats.ts_tx_tlt++;
   3115 		if (txstat & ATW_TXSTAT_TRT)
   3116 			sc->sc_stats.ts_tx_trt++;
   3117 		if (txstat & ATW_TXSTAT_TRO)
   3118 			sc->sc_stats.ts_tx_tro++;
   3119 		if (txstat & ATW_TXSTAT_SOFBR) {
   3120 			sc->sc_stats.ts_tx_sofbr++;
   3121 		}
   3122 
   3123 		if ((txstat & ATW_TXSTAT_ES) == 0)
   3124 			ifp->if_collisions +=
   3125 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
   3126 		else
   3127 			ifp->if_oerrors++;
   3128 
   3129 		ifp->if_opackets++;
   3130 	}
   3131 
   3132 	/*
   3133 	 * If there are no more pending transmissions, cancel the watchdog
   3134 	 * timer.
   3135 	 */
   3136 	if (txs == NULL)
   3137 		sc->sc_tx_timer = 0;
   3138 #undef TXSTAT_ERRMASK
   3139 #undef TXSTAT_FMT
   3140 }
   3141 
   3142 /*
   3143  * atw_watchdog:	[ifnet interface function]
   3144  *
   3145  *	Watchdog timer handler.
   3146  */
   3147 void
   3148 atw_watchdog(struct ifnet *ifp)
   3149 {
   3150 	struct atw_softc *sc = ifp->if_softc;
   3151 	struct ieee80211com *ic = &sc->sc_ic;
   3152 
   3153 	ifp->if_timer = 0;
   3154 	if (ATW_IS_ENABLED(sc) == 0)
   3155 		return;
   3156 
   3157 	if (sc->sc_rescan_timer) {
   3158 		if (--sc->sc_rescan_timer == 0)
   3159 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3160 	}
   3161 	if (sc->sc_tx_timer) {
   3162 		if (--sc->sc_tx_timer == 0 &&
   3163 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
   3164 			printf("%s: transmit timeout\n", ifp->if_xname);
   3165 			ifp->if_oerrors++;
   3166 			(void)atw_init(ifp);
   3167 			atw_start(ifp);
   3168 		}
   3169 	}
   3170 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
   3171 		ifp->if_timer = 1;
   3172 	ieee80211_watchdog(ifp);
   3173 }
   3174 
   3175 /* Compute the 802.11 Duration field and the PLCP Length fields for
   3176  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
   3177  * Write the fields to the ADM8211 Tx header, frm.
   3178  *
   3179  * TBD use the fragmentation threshold to find the right duration for
   3180  * the first & last fragments.
   3181  *
   3182  * TBD make certain of the duration fields applied by the ADM8211 to each
   3183  * fragment. I think that the ADM8211 knows how to subtract the CTS
   3184  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
   3185  * I also think that the ADM8211 does *some* arithmetic for us, because
   3186  * otherwise I think we would have to set a first duration for CTS/first
   3187  * fragment, a second duration for fragments between the first and the
   3188  * last, and a third duration for the last fragment.
   3189  *
   3190  * TBD make certain that duration fields reflect addition of FCS/WEP
   3191  * and correct duration arithmetic as necessary.
   3192  */
   3193 static void
   3194 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
   3195     int len)
   3196 {
   3197 	int remainder;
   3198 
   3199 	/* deal also with encrypted fragments */
   3200 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
   3201 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
   3202 		    sc->sc_dev.dv_xname));
   3203 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
   3204 		       IEEE80211_WEP_CRCLEN;
   3205 	}
   3206 
   3207 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
   3208 	 * duration (XXX added by MAC?).
   3209 	 */
   3210 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
   3211 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
   3212 
   3213 	if (rate <= 4)
   3214 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
   3215 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3216 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3217 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3218 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
   3219 	else
   3220 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
   3221 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3222 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3223 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3224 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
   3225 
   3226 	/* lengthen duration if long preamble */
   3227 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
   3228 		frm->atw_head_dur +=
   3229 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
   3230 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
   3231 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
   3232 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
   3233 
   3234 	if (remainder != 0)
   3235 		frm->atw_head_dur++;
   3236 
   3237 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
   3238 	    (rate == 2 || rate == 4)) {
   3239 		/* derived from Linux: how could this be right? */
   3240 		frm->atw_head_plcplen = frm->atw_head_dur;
   3241 	} else {
   3242 		frm->atw_head_plcplen = (16 * len) / rate;
   3243 		remainder = (80 * len) % (rate * 5);
   3244 
   3245 		if (remainder != 0) {
   3246 			frm->atw_head_plcplen++;
   3247 
   3248 			/* XXX magic */
   3249 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
   3250 			    rate == 22 && remainder <= 30)
   3251 				frm->atw_head_plcplen |= 0x8000;
   3252 		}
   3253 	}
   3254 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
   3255 	    htole16(frm->atw_head_plcplen);
   3256 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
   3257 }
   3258 
   3259 #ifdef ATW_DEBUG
   3260 static void
   3261 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
   3262 {
   3263 	struct atw_softc *sc = ifp->if_softc;
   3264 	struct mbuf *m;
   3265 	int i, noctets = 0;
   3266 
   3267 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
   3268 	    m0->m_pkthdr.len);
   3269 
   3270 	for (m = m0; m; m = m->m_next) {
   3271 		if (m->m_len == 0)
   3272 			continue;
   3273 		for (i = 0; i < m->m_len; i++) {
   3274 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
   3275 			if (++noctets % 24 == 0)
   3276 				printf("\n");
   3277 		}
   3278 	}
   3279 	printf("%s%s: %d bytes emitted\n",
   3280 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
   3281 }
   3282 #endif /* ATW_DEBUG */
   3283 
   3284 /*
   3285  * atw_start:		[ifnet interface function]
   3286  *
   3287  *	Start packet transmission on the interface.
   3288  */
   3289 void
   3290 atw_start(struct ifnet *ifp)
   3291 {
   3292 	struct atw_softc *sc = ifp->if_softc;
   3293 	struct ieee80211com *ic = &sc->sc_ic;
   3294 	struct ieee80211_node *ni;
   3295 	struct ieee80211_frame *wh;
   3296 	struct atw_frame *hh;
   3297 	struct mbuf *m0, *m;
   3298 	struct atw_txsoft *txs, *last_txs;
   3299 	struct atw_txdesc *txd;
   3300 	int do_encrypt, rate;
   3301 	bus_dmamap_t dmamap;
   3302 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
   3303 
   3304 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
   3305 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
   3306 
   3307 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3308 		return;
   3309 
   3310 	/*
   3311 	 * Remember the previous number of free descriptors and
   3312 	 * the first descriptor we'll use.
   3313 	 */
   3314 	ofree = sc->sc_txfree;
   3315 	firsttx = sc->sc_txnext;
   3316 
   3317 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
   3318 	    sc->sc_dev.dv_xname, ofree, firsttx));
   3319 
   3320 	/*
   3321 	 * Loop through the send queue, setting up transmit descriptors
   3322 	 * until we drain the queue, or use up all available transmit
   3323 	 * descriptors.
   3324 	 */
   3325 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   3326 	       sc->sc_txfree != 0) {
   3327 
   3328 		/*
   3329 		 * Grab a packet off the management queue, if it
   3330 		 * is not empty. Otherwise, from the data queue.
   3331 		 */
   3332 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   3333 		if (m0 != NULL) {
   3334 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   3335 			m0->m_pkthdr.rcvif = NULL;
   3336 		} else {
   3337 			/* send no data packets until we are associated */
   3338 			if (ic->ic_state != IEEE80211_S_RUN)
   3339 				break;
   3340 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   3341 			if (m0 == NULL)
   3342 				break;
   3343 #if NBPFILTER > 0
   3344 			if (ifp->if_bpf != NULL)
   3345 				bpf_mtap(ifp->if_bpf, m0);
   3346 #endif /* NBPFILTER > 0 */
   3347 			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
   3348 				ifp->if_oerrors++;
   3349 				break;
   3350 			}
   3351 		}
   3352 
   3353 		rate = MAX(ieee80211_get_rate(ic), 2);
   3354 
   3355 #if NBPFILTER > 0
   3356 		/*
   3357 		 * Pass the packet to any BPF listeners.
   3358 		 */
   3359 		if (ic->ic_rawbpf != NULL)
   3360 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
   3361 
   3362 		if (sc->sc_radiobpf != NULL) {
   3363 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
   3364 
   3365 			tap->at_rate = rate;
   3366 			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3367 			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3368 
   3369 			/* TBD tap->at_flags */
   3370 
   3371 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3372 			    tap->at_ihdr.it_len, m0);
   3373 		}
   3374 #endif /* NBPFILTER > 0 */
   3375 
   3376 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
   3377 
   3378 		if (ni != NULL && ni != ic->ic_bss)
   3379 			ieee80211_free_node(ic, ni);
   3380 
   3381 		if (m0 == NULL) {
   3382 			ifp->if_oerrors++;
   3383 			break;
   3384 		}
   3385 
   3386 		/* just to make sure. */
   3387 		m0 = m_pullup(m0, sizeof(struct atw_frame));
   3388 
   3389 		if (m0 == NULL) {
   3390 			ifp->if_oerrors++;
   3391 			break;
   3392 		}
   3393 
   3394 		hh = mtod(m0, struct atw_frame *);
   3395 		wh = &hh->atw_ihdr;
   3396 
   3397 		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
   3398 
   3399 		/* Copy everything we need from the 802.11 header:
   3400 		 * Frame Control; address 1, address 3, or addresses
   3401 		 * 3 and 4. NIC fills in BSSID, SA.
   3402 		 */
   3403 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
   3404 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
   3405 				panic("%s: illegal WDS frame",
   3406 				    sc->sc_dev.dv_xname);
   3407 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
   3408 		} else
   3409 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
   3410 
   3411 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
   3412 
   3413 		/* initialize remaining Tx parameters */
   3414 		memset(&hh->u, 0, sizeof(hh->u));
   3415 
   3416 		hh->atw_rate = rate * 5;
   3417 		/* XXX this could be incorrect if M_FCS. _encap should
   3418 		 * probably strip FCS just in case it sticks around in
   3419 		 * bridged packets.
   3420 		 */
   3421 		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
   3422 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
   3423 		    sizeof(struct atw_frame));
   3424 
   3425 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3426 		hh->atw_rtylmt = 3;
   3427 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
   3428 		if (do_encrypt) {
   3429 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
   3430 			hh->atw_keyid = ic->ic_wep_txkey;
   3431 		}
   3432 
   3433 		/* TBD 4-addr frames */
   3434 		atw_frame_setdurs(sc, hh, rate,
   3435 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
   3436 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
   3437 
   3438 		/* never fragment multicast frames */
   3439 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
   3440 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3441 		} else if (sc->sc_flags & ATWF_RTSCTS) {
   3442 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
   3443 		}
   3444 
   3445 #ifdef ATW_DEBUG
   3446 		hh->atw_fragnum = 0;
   3447 
   3448 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3449 			printf("%s: dst = %s, rate = 0x%02x, "
   3450 			    "service = 0x%02x, paylen = 0x%04x\n",
   3451 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
   3452 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
   3453 
   3454 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
   3455 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
   3456 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
   3457 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
   3458 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
   3459 			    hh->atw_tail_dur, hh->atw_head_dur);
   3460 
   3461 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
   3462 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
   3463 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
   3464 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
   3465 
   3466 			printf("%s: keyid = %d\n",
   3467 			    sc->sc_dev.dv_xname, hh->atw_keyid);
   3468 
   3469 			atw_dump_pkt(ifp, m0);
   3470 		}
   3471 #endif /* ATW_DEBUG */
   3472 
   3473 		dmamap = txs->txs_dmamap;
   3474 
   3475 		/*
   3476 		 * Load the DMA map.  Copy and try (once) again if the packet
   3477 		 * didn't fit in the alloted number of segments.
   3478 		 */
   3479 		for (first = 1;
   3480 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   3481 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
   3482 		     first = 0) {
   3483 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   3484 			if (m == NULL) {
   3485 				printf("%s: unable to allocate Tx mbuf\n",
   3486 				    sc->sc_dev.dv_xname);
   3487 				break;
   3488 			}
   3489 			if (m0->m_pkthdr.len > MHLEN) {
   3490 				MCLGET(m, M_DONTWAIT);
   3491 				if ((m->m_flags & M_EXT) == 0) {
   3492 					printf("%s: unable to allocate Tx "
   3493 					    "cluster\n", sc->sc_dev.dv_xname);
   3494 					m_freem(m);
   3495 					break;
   3496 				}
   3497 			}
   3498 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   3499 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   3500 			m_freem(m0);
   3501 			m0 = m;
   3502 			m = NULL;
   3503 		}
   3504 		if (error != 0) {
   3505 			printf("%s: unable to load Tx buffer, "
   3506 			    "error = %d\n", sc->sc_dev.dv_xname, error);
   3507 			m_freem(m0);
   3508 			break;
   3509 		}
   3510 
   3511 		/*
   3512 		 * Ensure we have enough descriptors free to describe
   3513 		 * the packet.
   3514 		 */
   3515 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   3516 			/*
   3517 			 * Not enough free descriptors to transmit
   3518 			 * this packet.  Unload the DMA map and
   3519 			 * drop the packet.  Notify the upper layer
   3520 			 * that there are no more slots left.
   3521 			 *
   3522 			 * XXX We could allocate an mbuf and copy, but
   3523 			 * XXX it is worth it?
   3524 			 */
   3525 			ifp->if_flags |= IFF_OACTIVE;
   3526 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   3527 			m_freem(m0);
   3528 			break;
   3529 		}
   3530 
   3531 		/*
   3532 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   3533 		 */
   3534 
   3535 		/* Sync the DMA map. */
   3536 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   3537 		    BUS_DMASYNC_PREWRITE);
   3538 
   3539 		/* XXX arbitrary retry limit; 8 because I have seen it in
   3540 		 * use already and maybe 0 means "no tries" !
   3541 		 */
   3542 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
   3543 
   3544 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
   3545 		    sc->sc_dev.dv_xname, rate * 5));
   3546 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
   3547 
   3548 		/*
   3549 		 * Initialize the transmit descriptors.
   3550 		 */
   3551 		for (nexttx = sc->sc_txnext, seg = 0;
   3552 		     seg < dmamap->dm_nsegs;
   3553 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
   3554 			/*
   3555 			 * If this is the first descriptor we're
   3556 			 * enqueueing, don't set the OWN bit just
   3557 			 * yet.  That could cause a race condition.
   3558 			 * We'll do it below.
   3559 			 */
   3560 			txd = &sc->sc_txdescs[nexttx];
   3561 			txd->at_ctl = ctl |
   3562 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
   3563 
   3564 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
   3565 			txd->at_flags =
   3566 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
   3567 			                   ATW_TXFLAG_TBS1_MASK)) |
   3568 			    ((nexttx == (ATW_NTXDESC - 1))
   3569 			        ? htole32(ATW_TXFLAG_TER) : 0);
   3570 			lasttx = nexttx;
   3571 		}
   3572 
   3573 		IASSERT(lasttx != -1, ("bad lastx"));
   3574 		/* Set `first segment' and `last segment' appropriately. */
   3575 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
   3576 		    htole32(ATW_TXFLAG_FS);
   3577 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
   3578 
   3579 #ifdef ATW_DEBUG
   3580 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3581 			printf("     txsoft %p transmit chain:\n", txs);
   3582 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
   3583 				printf("     descriptor %d:\n", seg);
   3584 				printf("       at_ctl:   0x%08x\n",
   3585 				    le32toh(sc->sc_txdescs[seg].at_ctl));
   3586 				printf("       at_flags:      0x%08x\n",
   3587 				    le32toh(sc->sc_txdescs[seg].at_flags));
   3588 				printf("       at_buf1: 0x%08x\n",
   3589 				    le32toh(sc->sc_txdescs[seg].at_buf1));
   3590 				printf("       at_buf2: 0x%08x\n",
   3591 				    le32toh(sc->sc_txdescs[seg].at_buf2));
   3592 				if (seg == lasttx)
   3593 					break;
   3594 			}
   3595 		}
   3596 #endif
   3597 
   3598 		/* Sync the descriptors we're using. */
   3599 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   3600 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3601 
   3602 		/*
   3603 		 * Store a pointer to the packet so we can free it later,
   3604 		 * and remember what txdirty will be once the packet is
   3605 		 * done.
   3606 		 */
   3607 		txs->txs_mbuf = m0;
   3608 		txs->txs_firstdesc = sc->sc_txnext;
   3609 		txs->txs_lastdesc = lasttx;
   3610 		txs->txs_ndescs = dmamap->dm_nsegs;
   3611 
   3612 		/* Advance the tx pointer. */
   3613 		sc->sc_txfree -= dmamap->dm_nsegs;
   3614 		sc->sc_txnext = nexttx;
   3615 
   3616 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   3617 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   3618 
   3619 		last_txs = txs;
   3620 	}
   3621 
   3622 	if (txs == NULL || sc->sc_txfree == 0) {
   3623 		/* No more slots left; notify upper layer. */
   3624 		ifp->if_flags |= IFF_OACTIVE;
   3625 	}
   3626 
   3627 	if (sc->sc_txfree != ofree) {
   3628 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   3629 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   3630 		/*
   3631 		 * Cause a transmit interrupt to happen on the
   3632 		 * last packet we enqueued.
   3633 		 */
   3634 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
   3635 		ATW_CDTXSYNC(sc, lasttx, 1,
   3636 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3637 
   3638 		/*
   3639 		 * The entire packet chain is set up.  Give the
   3640 		 * first descriptor to the chip now.
   3641 		 */
   3642 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
   3643 		ATW_CDTXSYNC(sc, firsttx, 1,
   3644 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3645 
   3646 		/* Wake up the transmitter. */
   3647 		ATW_WRITE(sc, ATW_TDR, 0x1);
   3648 
   3649 		/* Set a watchdog timer in case the chip flakes out. */
   3650 		sc->sc_tx_timer = 5;
   3651 		ifp->if_timer = 1;
   3652 	}
   3653 }
   3654 
   3655 /*
   3656  * atw_power:
   3657  *
   3658  *	Power management (suspend/resume) hook.
   3659  */
   3660 void
   3661 atw_power(int why, void *arg)
   3662 {
   3663 	struct atw_softc *sc = arg;
   3664 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3665 	int s;
   3666 
   3667 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
   3668 
   3669 	s = splnet();
   3670 	switch (why) {
   3671 	case PWR_STANDBY:
   3672 		/* XXX do nothing. */
   3673 		break;
   3674 	case PWR_SUSPEND:
   3675 		atw_stop(ifp, 0);
   3676 		if (sc->sc_power != NULL)
   3677 			(*sc->sc_power)(sc, why);
   3678 		break;
   3679 	case PWR_RESUME:
   3680 		if (ifp->if_flags & IFF_UP) {
   3681 			if (sc->sc_power != NULL)
   3682 				(*sc->sc_power)(sc, why);
   3683 			atw_init(ifp);
   3684 		}
   3685 		break;
   3686 	case PWR_SOFTSUSPEND:
   3687 	case PWR_SOFTSTANDBY:
   3688 	case PWR_SOFTRESUME:
   3689 		break;
   3690 	}
   3691 	splx(s);
   3692 }
   3693 
   3694 /*
   3695  * atw_ioctl:		[ifnet interface function]
   3696  *
   3697  *	Handle control requests from the operator.
   3698  */
   3699 int
   3700 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   3701 {
   3702 	struct atw_softc *sc = ifp->if_softc;
   3703 	struct ifreq *ifr = (struct ifreq *)data;
   3704 	int s, error = 0;
   3705 
   3706 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
   3707 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   3708 		return ENXIO;
   3709 
   3710 	s = splnet();
   3711 
   3712 	switch (cmd) {
   3713 	case SIOCSIFFLAGS:
   3714 		if (ifp->if_flags & IFF_UP) {
   3715 			if (ATW_IS_ENABLED(sc)) {
   3716 				/*
   3717 				 * To avoid rescanning another access point,
   3718 				 * do not call atw_init() here.  Instead,
   3719 				 * only reflect media settings.
   3720 				 */
   3721 				atw_filter_setup(sc);
   3722 			} else
   3723 				error = atw_init(ifp);
   3724 		} else if (ATW_IS_ENABLED(sc))
   3725 			atw_stop(ifp, 1);
   3726 		break;
   3727 	case SIOCADDMULTI:
   3728 	case SIOCDELMULTI:
   3729 		error = (cmd == SIOCADDMULTI) ?
   3730 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
   3731 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
   3732 		if (error == ENETRESET) {
   3733 			if (ATW_IS_ENABLED(sc))
   3734 				atw_filter_setup(sc); /* do not rescan */
   3735 			error = 0;
   3736 		}
   3737 		break;
   3738 	default:
   3739 		error = ieee80211_ioctl(ifp, cmd, data);
   3740 		if (error == ENETRESET) {
   3741 			if (ATW_IS_ENABLED(sc))
   3742 				error = atw_init(ifp);
   3743 			else
   3744 				error = 0;
   3745 		}
   3746 		break;
   3747 	}
   3748 
   3749 	/* Try to get more packets going. */
   3750 	if (ATW_IS_ENABLED(sc))
   3751 		atw_start(ifp);
   3752 
   3753 	splx(s);
   3754 	return (error);
   3755 }
   3756 
   3757 static int
   3758 atw_media_change(struct ifnet *ifp)
   3759 {
   3760 	int error;
   3761 
   3762 	error = ieee80211_media_change(ifp);
   3763 	if (error == ENETRESET) {
   3764 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   3765 		    (IFF_RUNNING|IFF_UP))
   3766 			atw_init(ifp);		/* XXX lose error */
   3767 		error = 0;
   3768 	}
   3769 	return error;
   3770 }
   3771 
   3772 static void
   3773 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
   3774 {
   3775 	struct atw_softc *sc = ifp->if_softc;
   3776 
   3777 	if (ATW_IS_ENABLED(sc) == 0) {
   3778 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
   3779 		imr->ifm_status = 0;
   3780 		return;
   3781 	}
   3782 	ieee80211_media_status(ifp, imr);
   3783 }
   3784