atw.c revision 1.55 1 /* $NetBSD: atw.c,v 1.55 2004/07/15 07:01:20 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.55 2004/07/15 07:01:20 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
139 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
140 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
141
142 int atw_rfio_enable_delay = 20 * 1000;
143 int atw_rfio_disable_delay = 2 * 1000;
144 int atw_writewep_delay = 5;
145 int atw_beacon_len_adjust = 4;
146 int atw_dwelltime = 200;
147
148 #ifdef ATW_DEBUG
149 int atw_debug = 0;
150
151 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
152 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
153 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
154 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
155 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157
158 static void atw_print_regs(struct atw_softc *, const char *);
159 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
160
161 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162 # ifdef ATW_BBPDEBUG
163 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
164 static void atw_rf3000_print(struct atw_softc *);
165 # endif /* ATW_BBPDEBUG */
166
167 # ifdef ATW_SYNDEBUG
168 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
169 static void atw_si4126_print(struct atw_softc *);
170 # endif /* ATW_SYNDEBUG */
171
172 #else
173 #define ATW_DPRINTF(x)
174 #define ATW_DPRINTF2(x)
175 #define ATW_DPRINTF3(x)
176 #define DPRINTF(sc, x) /* nothing */
177 #define DPRINTF2(sc, x) /* nothing */
178 #define DPRINTF3(sc, x) /* nothing */
179 #endif
180
181 #ifdef ATW_STATS
182 void atw_print_stats(struct atw_softc *);
183 #endif
184
185 void atw_start(struct ifnet *);
186 void atw_watchdog(struct ifnet *);
187 int atw_ioctl(struct ifnet *, u_long, caddr_t);
188 int atw_init(struct ifnet *);
189 void atw_txdrain(struct atw_softc *);
190 void atw_stop(struct ifnet *, int);
191
192 void atw_reset(struct atw_softc *);
193 int atw_read_srom(struct atw_softc *);
194
195 void atw_shutdown(void *);
196
197 void atw_rxdrain(struct atw_softc *);
198 int atw_add_rxbuf(struct atw_softc *, int);
199 void atw_idle(struct atw_softc *, u_int32_t);
200
201 int atw_enable(struct atw_softc *);
202 void atw_disable(struct atw_softc *);
203 void atw_power(int, void *);
204
205 void atw_rxintr(struct atw_softc *);
206 void atw_txintr(struct atw_softc *);
207 void atw_linkintr(struct atw_softc *, u_int32_t);
208
209 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
210 static void atw_tsf(struct atw_softc *);
211 static void atw_start_beacon(struct atw_softc *, int);
212 static void atw_write_wep(struct atw_softc *);
213 static void atw_write_bssid(struct atw_softc *);
214 static void atw_write_ssid(struct atw_softc *);
215 static void atw_write_sup_rates(struct atw_softc *);
216 static void atw_clear_sram(struct atw_softc *);
217 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
218 static int atw_media_change(struct ifnet *);
219 static void atw_media_status(struct ifnet *, struct ifmediareq *);
220 static void atw_filter_setup(struct atw_softc *);
221 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
222 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
223 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
224 struct ieee80211_node *, int, int, u_int32_t);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
228 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
229
230 static int atw_tune(struct atw_softc *);
231
232 static void atw_rfio_enable(struct atw_softc *, int);
233
234 /* RFMD RF3000 Baseband Processor */
235 static int atw_rf3000_init(struct atw_softc *);
236 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
237 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
238 #ifdef ATW_DEBUG
239 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
240 #endif /* ATW_DEBUG */
241
242 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
243 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
244 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
245 #ifdef ATW_DEBUG
246 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
247 #endif /* ATW_DEBUG */
248
249 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
250 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
251
252 const char *atw_tx_state[] = {
253 "STOPPED",
254 "RUNNING - read descriptor",
255 "RUNNING - transmitting",
256 "RUNNING - filling fifo", /* XXX */
257 "SUSPENDED",
258 "RUNNING -- write descriptor",
259 "RUNNING -- write last descriptor",
260 "RUNNING - fifo full"
261 };
262
263 const char *atw_rx_state[] = {
264 "STOPPED",
265 "RUNNING - read descriptor",
266 "RUNNING - check this packet, pre-fetch next",
267 "RUNNING - wait for reception",
268 "SUSPENDED",
269 "RUNNING - write descriptor",
270 "RUNNING - flush fifo",
271 "RUNNING - fifo drain"
272 };
273
274 int
275 atw_activate(struct device *self, enum devact act)
276 {
277 struct atw_softc *sc = (struct atw_softc *)self;
278 int rv = 0, s;
279
280 s = splnet();
281 switch (act) {
282 case DVACT_ACTIVATE:
283 rv = EOPNOTSUPP;
284 break;
285
286 case DVACT_DEACTIVATE:
287 if_deactivate(&sc->sc_ic.ic_if);
288 break;
289 }
290 splx(s);
291 return rv;
292 }
293
294 /*
295 * atw_enable:
296 *
297 * Enable the ADM8211 chip.
298 */
299 int
300 atw_enable(struct atw_softc *sc)
301 {
302
303 if (ATW_IS_ENABLED(sc) == 0) {
304 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
305 printf("%s: device enable failed\n",
306 sc->sc_dev.dv_xname);
307 return (EIO);
308 }
309 sc->sc_flags |= ATWF_ENABLED;
310 }
311 return (0);
312 }
313
314 /*
315 * atw_disable:
316 *
317 * Disable the ADM8211 chip.
318 */
319 void
320 atw_disable(struct atw_softc *sc)
321 {
322 if (!ATW_IS_ENABLED(sc))
323 return;
324 if (sc->sc_disable != NULL)
325 (*sc->sc_disable)(sc);
326 sc->sc_flags &= ~ATWF_ENABLED;
327 }
328
329 /* Returns -1 on failure. */
330 int
331 atw_read_srom(struct atw_softc *sc)
332 {
333 struct seeprom_descriptor sd;
334 u_int32_t reg;
335
336 (void)memset(&sd, 0, sizeof(sd));
337
338 reg = ATW_READ(sc, ATW_TEST0);
339
340 if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
341 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
342 return -1;
343 }
344
345 switch (reg & ATW_TEST0_EPTYP_MASK) {
346 case ATW_TEST0_EPTYP_93c66:
347 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
348 sc->sc_sromsz = 512;
349 sd.sd_chip = C56_66;
350 break;
351 case ATW_TEST0_EPTYP_93c46:
352 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
353 sc->sc_sromsz = 128;
354 sd.sd_chip = C46;
355 break;
356 default:
357 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
358 MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
359 return -1;
360 }
361
362 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
363
364 if (sc->sc_srom == NULL) {
365 printf("%s: unable to allocate SROM buffer\n",
366 sc->sc_dev.dv_xname);
367 return -1;
368 }
369
370 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
371
372 /* ADM8211 has a single 32-bit register for controlling the
373 * 93cx6 SROM. Bit SRS enables the serial port. There is no
374 * "ready" bit. The ADM8211 input/output sense is the reverse
375 * of read_seeprom's.
376 */
377 sd.sd_tag = sc->sc_st;
378 sd.sd_bsh = sc->sc_sh;
379 sd.sd_regsize = 4;
380 sd.sd_control_offset = ATW_SPR;
381 sd.sd_status_offset = ATW_SPR;
382 sd.sd_dataout_offset = ATW_SPR;
383 sd.sd_CK = ATW_SPR_SCLK;
384 sd.sd_CS = ATW_SPR_SCS;
385 sd.sd_DI = ATW_SPR_SDO;
386 sd.sd_DO = ATW_SPR_SDI;
387 sd.sd_MS = ATW_SPR_SRS;
388 sd.sd_RDY = 0;
389
390 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
391 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
392 free(sc->sc_srom, M_DEVBUF);
393 return -1;
394 }
395 #ifdef ATW_DEBUG
396 {
397 int i;
398 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
399 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
400 if (((i % 8) == 0) && (i != 0)) {
401 ATW_DPRINTF(("\n\t"));
402 }
403 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
404 }
405 ATW_DPRINTF(("\n"));
406 }
407 #endif /* ATW_DEBUG */
408 return 0;
409 }
410
411 #ifdef ATW_DEBUG
412 static void
413 atw_print_regs(struct atw_softc *sc, const char *where)
414 {
415 #define PRINTREG(sc, reg) \
416 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
417 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
418
419 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
420
421 PRINTREG(sc, ATW_PAR);
422 PRINTREG(sc, ATW_FRCTL);
423 PRINTREG(sc, ATW_TDR);
424 PRINTREG(sc, ATW_WTDP);
425 PRINTREG(sc, ATW_RDR);
426 PRINTREG(sc, ATW_WRDP);
427 PRINTREG(sc, ATW_RDB);
428 PRINTREG(sc, ATW_CSR3A);
429 PRINTREG(sc, ATW_TDBD);
430 PRINTREG(sc, ATW_TDBP);
431 PRINTREG(sc, ATW_STSR);
432 PRINTREG(sc, ATW_CSR5A);
433 PRINTREG(sc, ATW_NAR);
434 PRINTREG(sc, ATW_CSR6A);
435 PRINTREG(sc, ATW_IER);
436 PRINTREG(sc, ATW_CSR7A);
437 PRINTREG(sc, ATW_LPC);
438 PRINTREG(sc, ATW_TEST1);
439 PRINTREG(sc, ATW_SPR);
440 PRINTREG(sc, ATW_TEST0);
441 PRINTREG(sc, ATW_WCSR);
442 PRINTREG(sc, ATW_WPDR);
443 PRINTREG(sc, ATW_GPTMR);
444 PRINTREG(sc, ATW_GPIO);
445 PRINTREG(sc, ATW_BBPCTL);
446 PRINTREG(sc, ATW_SYNCTL);
447 PRINTREG(sc, ATW_PLCPHD);
448 PRINTREG(sc, ATW_MMIWADDR);
449 PRINTREG(sc, ATW_MMIRADDR1);
450 PRINTREG(sc, ATW_MMIRADDR2);
451 PRINTREG(sc, ATW_TXBR);
452 PRINTREG(sc, ATW_CSR15A);
453 PRINTREG(sc, ATW_ALCSTAT);
454 PRINTREG(sc, ATW_TOFS2);
455 PRINTREG(sc, ATW_CMDR);
456 PRINTREG(sc, ATW_PCIC);
457 PRINTREG(sc, ATW_PMCSR);
458 PRINTREG(sc, ATW_PAR0);
459 PRINTREG(sc, ATW_PAR1);
460 PRINTREG(sc, ATW_MAR0);
461 PRINTREG(sc, ATW_MAR1);
462 PRINTREG(sc, ATW_ATIMDA0);
463 PRINTREG(sc, ATW_ABDA1);
464 PRINTREG(sc, ATW_BSSID0);
465 PRINTREG(sc, ATW_TXLMT);
466 PRINTREG(sc, ATW_MIBCNT);
467 PRINTREG(sc, ATW_BCNT);
468 PRINTREG(sc, ATW_TSFTH);
469 PRINTREG(sc, ATW_TSC);
470 PRINTREG(sc, ATW_SYNRF);
471 PRINTREG(sc, ATW_BPLI);
472 PRINTREG(sc, ATW_CAP0);
473 PRINTREG(sc, ATW_CAP1);
474 PRINTREG(sc, ATW_RMD);
475 PRINTREG(sc, ATW_CFPP);
476 PRINTREG(sc, ATW_TOFS0);
477 PRINTREG(sc, ATW_TOFS1);
478 PRINTREG(sc, ATW_IFST);
479 PRINTREG(sc, ATW_RSPT);
480 PRINTREG(sc, ATW_TSFTL);
481 PRINTREG(sc, ATW_WEPCTL);
482 PRINTREG(sc, ATW_WESK);
483 PRINTREG(sc, ATW_WEPCNT);
484 PRINTREG(sc, ATW_MACTEST);
485 PRINTREG(sc, ATW_FER);
486 PRINTREG(sc, ATW_FEMR);
487 PRINTREG(sc, ATW_FPSR);
488 PRINTREG(sc, ATW_FFER);
489 #undef PRINTREG
490 }
491 #endif /* ATW_DEBUG */
492
493 /*
494 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
495 */
496 void
497 atw_attach(struct atw_softc *sc)
498 {
499 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
500 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
501 };
502 struct ieee80211com *ic = &sc->sc_ic;
503 struct ifnet *ifp = &ic->ic_if;
504 int country_code, error, i, nrate;
505 u_int32_t reg;
506 static const char *type_strings[] = {"Intersil (not supported)",
507 "RFMD", "Marvel (not supported)"};
508
509 sc->sc_txth = atw_txthresh_tab_lo;
510
511 SIMPLEQ_INIT(&sc->sc_txfreeq);
512 SIMPLEQ_INIT(&sc->sc_txdirtyq);
513
514 #ifdef ATW_DEBUG
515 atw_print_regs(sc, "atw_attach");
516 #endif /* ATW_DEBUG */
517
518 /*
519 * Allocate the control data structures, and create and load the
520 * DMA map for it.
521 */
522 if ((error = bus_dmamem_alloc(sc->sc_dmat,
523 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
524 1, &sc->sc_cdnseg, 0)) != 0) {
525 printf("%s: unable to allocate control data, error = %d\n",
526 sc->sc_dev.dv_xname, error);
527 goto fail_0;
528 }
529
530 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
531 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
532 BUS_DMA_COHERENT)) != 0) {
533 printf("%s: unable to map control data, error = %d\n",
534 sc->sc_dev.dv_xname, error);
535 goto fail_1;
536 }
537
538 if ((error = bus_dmamap_create(sc->sc_dmat,
539 sizeof(struct atw_control_data), 1,
540 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
541 printf("%s: unable to create control data DMA map, "
542 "error = %d\n", sc->sc_dev.dv_xname, error);
543 goto fail_2;
544 }
545
546 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
547 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
548 0)) != 0) {
549 printf("%s: unable to load control data DMA map, error = %d\n",
550 sc->sc_dev.dv_xname, error);
551 goto fail_3;
552 }
553
554 /*
555 * Create the transmit buffer DMA maps.
556 */
557 sc->sc_ntxsegs = ATW_NTXSEGS;
558 for (i = 0; i < ATW_TXQUEUELEN; i++) {
559 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
560 sc->sc_ntxsegs, MCLBYTES, 0, 0,
561 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
562 printf("%s: unable to create tx DMA map %d, "
563 "error = %d\n", sc->sc_dev.dv_xname, i, error);
564 goto fail_4;
565 }
566 }
567
568 /*
569 * Create the receive buffer DMA maps.
570 */
571 for (i = 0; i < ATW_NRXDESC; i++) {
572 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
573 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
574 printf("%s: unable to create rx DMA map %d, "
575 "error = %d\n", sc->sc_dev.dv_xname, i, error);
576 goto fail_5;
577 }
578 }
579 for (i = 0; i < ATW_NRXDESC; i++) {
580 sc->sc_rxsoft[i].rxs_mbuf = NULL;
581 }
582
583 /* Reset the chip to a known state. */
584 atw_reset(sc);
585
586 if (atw_read_srom(sc) == -1)
587 return;
588
589 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
590 ATW_SR_RFTYPE_MASK);
591
592 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
593 ATW_SR_BBPTYPE_MASK);
594
595 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
596 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
597 return;
598 }
599 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
600 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
601 return;
602 }
603
604 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
605 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
606
607 /* XXX There exists a Linux driver which seems to use RFType = 0 for
608 * MARVEL. My bug, or theirs?
609 */
610
611 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
612
613 switch (sc->sc_rftype) {
614 case ATW_RFTYPE_INTERSIL:
615 reg |= ATW_SYNCTL_CS1;
616 break;
617 case ATW_RFTYPE_RFMD:
618 reg |= ATW_SYNCTL_CS0;
619 break;
620 case ATW_RFTYPE_MARVEL:
621 break;
622 }
623
624 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
625 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
626
627 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
628
629 switch (sc->sc_bbptype) {
630 case ATW_BBPTYPE_INTERSIL:
631 reg |= ATW_BBPCTL_TWI;
632 break;
633 case ATW_BBPTYPE_RFMD:
634 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
635 ATW_BBPCTL_CCA_ACTLO;
636 break;
637 case ATW_BBPTYPE_MARVEL:
638 break;
639 case ATW_C_BBPTYPE_RFMD:
640 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
641 sc->sc_dev.dv_xname);
642 break;
643 }
644
645 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
646 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
647
648 /*
649 * From this point forward, the attachment cannot fail. A failure
650 * before this point releases all resources that may have been
651 * allocated.
652 */
653 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
654
655 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
656 htole16(sc->sc_srom[ATW_SR_MAC00]),
657 htole16(sc->sc_srom[ATW_SR_MAC01]),
658 htole16(sc->sc_srom[ATW_SR_MAC10])));
659
660 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
661 ATW_SR_CTRY_MASK);
662
663 #define ADD_CHANNEL(_ic, _chan) do { \
664 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
665 _ic->ic_channels[_chan].ic_freq = \
666 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
667 } while (0)
668
669 /* Find available channels */
670 switch (country_code) {
671 case COUNTRY_MMK2: /* 1-14 */
672 ADD_CHANNEL(ic, 14);
673 /*FALLTHROUGH*/
674 case COUNTRY_ETSI: /* 1-13 */
675 for (i = 1; i <= 13; i++)
676 ADD_CHANNEL(ic, i);
677 break;
678 case COUNTRY_FCC: /* 1-11 */
679 case COUNTRY_IC: /* 1-11 */
680 for (i = 1; i <= 11; i++)
681 ADD_CHANNEL(ic, i);
682 break;
683 case COUNTRY_MMK: /* 14 */
684 ADD_CHANNEL(ic, 14);
685 break;
686 case COUNTRY_FRANCE: /* 10-13 */
687 for (i = 10; i <= 13; i++)
688 ADD_CHANNEL(ic, i);
689 break;
690 default: /* assume channels 10-11 */
691 case COUNTRY_SPAIN: /* 10-11 */
692 for (i = 10; i <= 11; i++)
693 ADD_CHANNEL(ic, i);
694 break;
695 }
696
697 /* Read the MAC address. */
698 reg = ATW_READ(sc, ATW_PAR0);
699 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
700 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
701 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
702 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
703 reg = ATW_READ(sc, ATW_PAR1);
704 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
705 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
706
707 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
708 printf(" could not get mac address, attach failed\n");
709 return;
710 }
711
712 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
713
714 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
715 ifp->if_softc = sc;
716 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
717 IFF_NOTRAILERS;
718 ifp->if_ioctl = atw_ioctl;
719 ifp->if_start = atw_start;
720 ifp->if_watchdog = atw_watchdog;
721 ifp->if_init = atw_init;
722 ifp->if_stop = atw_stop;
723 IFQ_SET_READY(&ifp->if_snd);
724
725 ic->ic_phytype = IEEE80211_T_DS;
726 ic->ic_opmode = IEEE80211_M_STA;
727 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
728 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
729
730 nrate = 0;
731 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
732 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
733 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
734 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
735 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
736
737 /*
738 * Call MI attach routines.
739 */
740
741 if_attach(ifp);
742 ieee80211_ifattach(ifp);
743
744 sc->sc_newstate = ic->ic_newstate;
745 ic->ic_newstate = atw_newstate;
746
747 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
748 ic->ic_recv_mgmt = atw_recv_mgmt;
749
750 sc->sc_node_free = ic->ic_node_free;
751 ic->ic_node_free = atw_node_free;
752
753 sc->sc_node_alloc = ic->ic_node_alloc;
754 ic->ic_node_alloc = atw_node_alloc;
755
756 /* possibly we should fill in our own sc_send_prresp, since
757 * the ADM8211 is probably sending probe responses in ad hoc
758 * mode.
759 */
760
761 /* complete initialization */
762 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
763 callout_init(&sc->sc_scan_ch);
764
765 #if NBPFILTER > 0
766 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
767 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
768 #endif
769
770 /*
771 * Make sure the interface is shutdown during reboot.
772 */
773 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
774 if (sc->sc_sdhook == NULL)
775 printf("%s: WARNING: unable to establish shutdown hook\n",
776 sc->sc_dev.dv_xname);
777
778 /*
779 * Add a suspend hook to make sure we come back up after a
780 * resume.
781 */
782 sc->sc_powerhook = powerhook_establish(atw_power, sc);
783 if (sc->sc_powerhook == NULL)
784 printf("%s: WARNING: unable to establish power hook\n",
785 sc->sc_dev.dv_xname);
786
787 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
788 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
789 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
790
791 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
792 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
793 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
794
795 return;
796
797 /*
798 * Free any resources we've allocated during the failed attach
799 * attempt. Do this in reverse order and fall through.
800 */
801 fail_5:
802 for (i = 0; i < ATW_NRXDESC; i++) {
803 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
804 continue;
805 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
806 }
807 fail_4:
808 for (i = 0; i < ATW_TXQUEUELEN; i++) {
809 if (sc->sc_txsoft[i].txs_dmamap == NULL)
810 continue;
811 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
812 }
813 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
814 fail_3:
815 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
816 fail_2:
817 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
818 sizeof(struct atw_control_data));
819 fail_1:
820 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
821 fail_0:
822 return;
823 }
824
825 static struct ieee80211_node *
826 atw_node_alloc(struct ieee80211com *ic)
827 {
828 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
829 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
830
831 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
832 return ni;
833 }
834
835 static void
836 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
837 {
838 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
839
840 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
841 ether_sprintf(ni->ni_bssid)));
842 (*sc->sc_node_free)(ic, ni);
843 }
844
845 /*
846 * atw_reset:
847 *
848 * Perform a soft reset on the ADM8211.
849 */
850 void
851 atw_reset(struct atw_softc *sc)
852 {
853 int i;
854
855 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
856
857 for (i = 0; i < 10000; i++) {
858 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
859 break;
860 DELAY(1);
861 }
862
863 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
864
865 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
866 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
867
868 /* Turn off maximum power saving. */
869 ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
870
871 /* Recall EEPROM. */
872 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
873
874 DELAY(10 * 1000);
875
876 /* A reset seems to affect the SRAM contents, so put them into
877 * a known state.
878 */
879 atw_clear_sram(sc);
880
881 memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
882 }
883
884 static void
885 atw_clear_sram(struct atw_softc *sc)
886 {
887 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
888 /* XXX not for revision 0x20. */
889 atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
890 }
891
892 /* TBD atw_init
893 *
894 * set MAC based on ic->ic_bss->myaddr
895 * write WEP keys
896 * set TX rate
897 */
898
899 /*
900 * atw_init: [ ifnet interface function ]
901 *
902 * Initialize the interface. Must be called at splnet().
903 */
904 int
905 atw_init(struct ifnet *ifp)
906 {
907 struct atw_softc *sc = ifp->if_softc;
908 struct ieee80211com *ic = &sc->sc_ic;
909 struct atw_txsoft *txs;
910 struct atw_rxsoft *rxs;
911 u_int32_t reg;
912 int i, error = 0;
913
914 if ((error = atw_enable(sc)) != 0)
915 goto out;
916
917 /*
918 * Cancel any pending I/O. This also resets.
919 */
920 atw_stop(ifp, 0);
921
922 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
923 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
924 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
925 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
926
927 /* Turn off APM??? (A binary-only driver does this.)
928 *
929 * Set Rx store-and-forward mode.
930 */
931 reg = ATW_READ(sc, ATW_CMDR);
932 reg &= ~ATW_CMDR_APM;
933 reg &= ~ATW_CMDR_DRT_MASK;
934 reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
935
936 ATW_WRITE(sc, ATW_CMDR, reg);
937
938 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
939 *
940 * XXX a binary-only driver sets a different service field than
941 * 0. why?
942 */
943 reg = ATW_READ(sc, ATW_PLCPHD);
944 reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
945 reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
946 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
947 ATW_WRITE(sc, ATW_PLCPHD, reg);
948
949 /* XXX this magic can probably be figured out from the RFMD docs */
950 reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
951 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
952 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
953 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
954 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
955 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
956 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
957 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
958 ATW_WRITE(sc, ATW_TOFS2, reg);
959
960 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
961 LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
962
963 /* XXX this resets an Intersil RF front-end? */
964 /* TBD condition on Intersil RFType? */
965 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
966 DELAY(10 * 1000);
967 ATW_WRITE(sc, ATW_SYNRF, 0);
968 DELAY(5 * 1000);
969
970 /* 16 TU max duration for contention-free period */
971 reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
972 ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
973
974 /* XXX I guess that the Cardbus clock is 22MHz?
975 * I am assuming that the role of ATW_TOFS0_USCNT is
976 * to divide the bus clock to get a 1MHz clock---the datasheet is not
977 * very clear on this point. It says in the datasheet that it is
978 * possible for the ADM8211 to accomodate bus speeds between 22MHz
979 * and 33MHz; maybe this is the way? I see a binary-only driver write
980 * these values. These values are also the power-on default.
981 */
982 ATW_WRITE(sc, ATW_TOFS0,
983 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
984 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
985
986 /* Initialize interframe spacing. EIFS=0x64 is used by a binary-only
987 * driver. Go figure.
988 */
989 reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
990 LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
991 ATW_IFST_SIFS_MASK) |
992 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
993 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
994
995 ATW_WRITE(sc, ATW_IFST, reg);
996
997 /* XXX More magic. Might relate to ACK timing. */
998 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
999 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1000
1001 /* Set up the MMI read/write addresses for the BBP.
1002 *
1003 * TBD find out the Marvel settings.
1004 */
1005 switch (sc->sc_bbptype) {
1006 case ATW_BBPTYPE_INTERSIL:
1007 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1008 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1009 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1010 break;
1011 case ATW_BBPTYPE_MARVEL:
1012 break;
1013 case ATW_BBPTYPE_RFMD:
1014 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1015 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1016 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1017 default:
1018 break;
1019 }
1020
1021 sc->sc_wepctl = 0;
1022 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1023
1024 if ((error = atw_rf3000_init(sc)) != 0)
1025 goto out;
1026
1027 /*
1028 * Initialize the PCI Access Register.
1029 */
1030 sc->sc_busmode = ATW_PAR_BAR; /* XXX what is this? */
1031
1032 /*
1033 * If we're allowed to do so, use Memory Read Line
1034 * and Memory Read Multiple.
1035 *
1036 * XXX Should we use Memory Write and Invalidate?
1037 */
1038 if (sc->sc_flags & ATWF_MRL)
1039 sc->sc_busmode |= ATW_PAR_MRLE;
1040 if (sc->sc_flags & ATWF_MRM)
1041 sc->sc_busmode |= ATW_PAR_MRME;
1042 if (sc->sc_flags & ATWF_MWI)
1043 sc->sc_busmode |= ATW_PAR_MWIE;
1044 if (sc->sc_maxburst == 0)
1045 sc->sc_maxburst = 8; /* ADM8211 default */
1046
1047 switch (sc->sc_cacheline) {
1048 default:
1049 /* Use burst length. */
1050 break;
1051 case 8:
1052 sc->sc_busmode |= ATW_PAR_CAL_8DW;
1053 break;
1054 case 16:
1055 sc->sc_busmode |= ATW_PAR_CAL_16DW;
1056 break;
1057 case 32:
1058 sc->sc_busmode |= ATW_PAR_CAL_32DW;
1059 break;
1060 }
1061 switch (sc->sc_maxburst) {
1062 case 1:
1063 sc->sc_busmode |= ATW_PAR_PBL_1DW;
1064 break;
1065 case 2:
1066 sc->sc_busmode |= ATW_PAR_PBL_2DW;
1067 break;
1068 case 4:
1069 sc->sc_busmode |= ATW_PAR_PBL_4DW;
1070 break;
1071 case 8:
1072 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1073 break;
1074 case 16:
1075 sc->sc_busmode |= ATW_PAR_PBL_16DW;
1076 break;
1077 case 32:
1078 sc->sc_busmode |= ATW_PAR_PBL_32DW;
1079 break;
1080 default:
1081 sc->sc_busmode |= ATW_PAR_PBL_8DW;
1082 break;
1083 }
1084
1085 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1086 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1087 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1088
1089 /*
1090 * Initialize the OPMODE register. We don't write it until
1091 * we're ready to begin the transmit and receive processes.
1092 */
1093 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1094 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1095
1096 /*
1097 * Initialize the transmit descriptor ring.
1098 */
1099 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1100 for (i = 0; i < ATW_NTXDESC; i++) {
1101 sc->sc_txdescs[i].at_ctl = 0;
1102 /* no transmit chaining */
1103 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1104 sc->sc_txdescs[i].at_buf2 =
1105 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1106 }
1107 /* use ring mode */
1108 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1109 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1110 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1111 sc->sc_txfree = ATW_NTXDESC;
1112 sc->sc_txnext = 0;
1113
1114 /*
1115 * Initialize the transmit job descriptors.
1116 */
1117 SIMPLEQ_INIT(&sc->sc_txfreeq);
1118 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1119 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1120 txs = &sc->sc_txsoft[i];
1121 txs->txs_mbuf = NULL;
1122 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1123 }
1124
1125 /*
1126 * Initialize the receive descriptor and receive job
1127 * descriptor rings.
1128 */
1129 for (i = 0; i < ATW_NRXDESC; i++) {
1130 rxs = &sc->sc_rxsoft[i];
1131 if (rxs->rxs_mbuf == NULL) {
1132 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1133 printf("%s: unable to allocate or map rx "
1134 "buffer %d, error = %d\n",
1135 sc->sc_dev.dv_xname, i, error);
1136 /*
1137 * XXX Should attempt to run with fewer receive
1138 * XXX buffers instead of just failing.
1139 */
1140 atw_rxdrain(sc);
1141 goto out;
1142 }
1143 } else
1144 ATW_INIT_RXDESC(sc, i);
1145 }
1146 sc->sc_rxptr = 0;
1147
1148 /* disable all wake-up events */
1149 ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1150 ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1151 ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1152 ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1153
1154 /* ack all wake-up events */
1155 ATW_SET(sc, ATW_WCSR, 0);
1156
1157 /*
1158 * Initialize the interrupt mask and enable interrupts.
1159 */
1160 /* normal interrupts */
1161 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1162 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1163
1164 /* abnormal interrupts */
1165 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1166 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1167 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1168
1169 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1170 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1171 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1172 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1173 ATW_INTR_TRT;
1174
1175 sc->sc_linkint_mask &= sc->sc_inten;
1176 sc->sc_rxint_mask &= sc->sc_inten;
1177 sc->sc_txint_mask &= sc->sc_inten;
1178
1179 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1180 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1181 if (sc->sc_intr_ack != NULL)
1182 (*sc->sc_intr_ack)(sc);
1183
1184 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1185 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1186
1187 /*
1188 * Give the transmit and receive rings to the ADM8211.
1189 */
1190 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1191 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1192
1193 /* common 802.11 configuration */
1194 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1195 switch (ic->ic_opmode) {
1196 case IEEE80211_M_STA:
1197 break;
1198 case IEEE80211_M_AHDEMO: /* XXX */
1199 case IEEE80211_M_IBSS:
1200 ic->ic_flags |= IEEE80211_F_IBSSON;
1201 /*FALLTHROUGH*/
1202 case IEEE80211_M_HOSTAP: /* XXX */
1203 break;
1204 case IEEE80211_M_MONITOR: /* XXX */
1205 break;
1206 }
1207
1208 atw_start_beacon(sc, 0);
1209
1210 switch (ic->ic_opmode) {
1211 case IEEE80211_M_AHDEMO:
1212 case IEEE80211_M_HOSTAP:
1213 ic->ic_bss->ni_intval = ic->ic_lintval;
1214 ic->ic_bss->ni_rssi = 0;
1215 ic->ic_bss->ni_rstamp = 0;
1216 break;
1217 default: /* XXX */
1218 break;
1219 }
1220
1221 atw_write_ssid(sc);
1222 atw_write_sup_rates(sc);
1223 if (ic->ic_caps & IEEE80211_C_WEP)
1224 atw_write_wep(sc);
1225
1226 /*
1227 * Set the receive filter. This will start the transmit and
1228 * receive processes.
1229 */
1230 atw_filter_setup(sc);
1231
1232 /*
1233 * Start the receive process.
1234 */
1235 ATW_WRITE(sc, ATW_RDR, 0x1);
1236
1237 /*
1238 * Note that the interface is now running.
1239 */
1240 ifp->if_flags |= IFF_RUNNING;
1241 ifp->if_flags &= ~IFF_OACTIVE;
1242 ic->ic_state = IEEE80211_S_INIT;
1243
1244 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1245 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1246 else
1247 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1248 out:
1249 if (error) {
1250 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1251 ifp->if_timer = 0;
1252 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1253 }
1254 #ifdef ATW_DEBUG
1255 atw_print_regs(sc, "end of init");
1256 #endif /* ATW_DEBUG */
1257
1258 return (error);
1259 }
1260
1261 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1262 * 0: MAC control of RF3000/Si4126.
1263 *
1264 * Applies power, or selects RF front-end? Sets reset condition.
1265 *
1266 * TBD support non-RFMD BBP, non-SiLabs synth.
1267 */
1268 static void
1269 atw_rfio_enable(struct atw_softc *sc, int enable)
1270 {
1271 if (enable) {
1272 ATW_WRITE(sc, ATW_SYNRF,
1273 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1274 DELAY(atw_rfio_enable_delay);
1275 } else {
1276 ATW_WRITE(sc, ATW_SYNRF, 0);
1277 DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1278 }
1279 }
1280
1281 static int
1282 atw_tune(struct atw_softc *sc)
1283 {
1284 int rc;
1285 u_int32_t reg;
1286 int chan;
1287 struct ieee80211com *ic = &sc->sc_ic;
1288
1289 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1290 if (chan == IEEE80211_CHAN_ANY)
1291 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1292
1293 if (chan == sc->sc_cur_chan)
1294 return 0;
1295
1296 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1297 sc->sc_cur_chan, chan));
1298
1299 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1300
1301 if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1302 (rc = atw_rf3000_tune(sc, chan)) != 0)
1303 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1304 chan);
1305
1306 reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1307 ATW_WRITE(sc, ATW_CAP0,
1308 reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1309
1310 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1311
1312 if (rc == 0)
1313 sc->sc_cur_chan = chan;
1314
1315 return rc;
1316 }
1317
1318 #ifdef ATW_DEBUG
1319 static void
1320 atw_si4126_print(struct atw_softc *sc)
1321 {
1322 struct ifnet *ifp = &sc->sc_ic.ic_if;
1323 u_int addr, val;
1324
1325 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1326 return;
1327
1328 for (addr = 0; addr <= 8; addr++) {
1329 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1330 if (atw_si4126_read(sc, addr, &val) == 0) {
1331 printf("<unknown> (quitting print-out)\n");
1332 break;
1333 }
1334 printf("%05x\n", val);
1335 }
1336 }
1337 #endif /* ATW_DEBUG */
1338
1339 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1340 *
1341 * The RF/IF synthesizer produces two reference frequencies for
1342 * the RF2948B transceiver. The first frequency the RF2948B requires
1343 * is two times the so-called "intermediate frequency" (IF). Since
1344 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1345 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1346 * frequency required by the transceiver is the radio frequency
1347 * (RF). This is a superheterodyne transceiver; for f(chan) the
1348 * center frequency of the channel we are tuning, RF = f(chan) -
1349 * IF.
1350 *
1351 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1352 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1353 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1354 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1355 */
1356 static int
1357 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
1358 {
1359 int rc = 0;
1360 u_int mhz;
1361 u_int R;
1362 u_int32_t reg;
1363 u_int16_t gain;
1364
1365 #ifdef ATW_DEBUG
1366 atw_si4126_print(sc);
1367 #endif /* ATW_DEBUG */
1368
1369 if (chan == 14)
1370 mhz = 2484;
1371 else
1372 mhz = 2412 + 5 * (chan - 1);
1373
1374 /* Tune IF to 748MHz to suit the IF LO input of the
1375 * RF2494B, which is 2 x IF. No need to set an IF divider
1376 * because an IF in 526MHz - 952MHz is allowed.
1377 *
1378 * XIN is 44.000MHz, so divide it by two to get allowable
1379 * range of 2-25MHz. SiLabs tells me that this is not
1380 * strictly necessary.
1381 */
1382
1383 R = 44;
1384
1385 atw_rfio_enable(sc, 1);
1386
1387 /* Power-up RF, IF synthesizers. */
1388 if ((rc = atw_si4126_write(sc, SI4126_POWER,
1389 SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1390 goto out;
1391
1392 /* If RF2 N > 2047, then set KP2 to 1. */
1393 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1394
1395 if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1396 goto out;
1397
1398 /* set LPWR, too? */
1399 if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1400 SI4126_MAIN_XINDIV2)) != 0)
1401 goto out;
1402
1403 /* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN. XIN = 44MHz.
1404 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1405 */
1406 if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1407 goto out;
1408
1409 if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1410 goto out;
1411
1412 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1413 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1414 * which has no RF1!
1415 */
1416 if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1417 goto out;
1418
1419 if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1420 goto out;
1421
1422 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1423 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1424 * Now let's multiply it to mhz. So mhz - IF = N.
1425 */
1426 if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1427 goto out;
1428
1429 if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1430 goto out;
1431
1432 /* wait 100us from power-up for RF, IF to settle */
1433 DELAY(100);
1434
1435 if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1436 /* XXX there is a binary driver which sends
1437 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1438 * that this enables the Si4126 by raising its PWDN#, but I
1439 * think that it actually sets the Prism RF front-end
1440 * to a special mode for channel 14.
1441 */
1442 reg = ATW_READ(sc, ATW_GPIO);
1443 reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1444 reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1445 ATW_WRITE(sc, ATW_GPIO, reg);
1446 }
1447
1448 #ifdef ATW_DEBUG
1449 atw_si4126_print(sc);
1450 #endif /* ATW_DEBUG */
1451
1452 out:
1453 atw_rfio_enable(sc, 0);
1454
1455 return rc;
1456 }
1457
1458 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1459 * diversity.
1460 *
1461 * Call this w/ Tx/Rx suspended.
1462 */
1463 static int
1464 atw_rf3000_init(struct atw_softc *sc)
1465 {
1466 int rc = 0;
1467
1468 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1469
1470 atw_rfio_enable(sc, 1);
1471
1472 /* enable diversity */
1473 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1474
1475 if (rc != 0)
1476 goto out;
1477
1478 /* sensible setting from a binary-only driver */
1479 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1480 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1481
1482 if (rc != 0)
1483 goto out;
1484
1485 /* magic from a binary-only driver */
1486 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1487 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1488
1489 if (rc != 0)
1490 goto out;
1491
1492 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1493
1494 if (rc != 0)
1495 goto out;
1496
1497 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1498
1499 if (rc != 0)
1500 goto out;
1501
1502 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1503
1504 if (rc != 0)
1505 goto out;
1506
1507 /* CCA is acquisition sensitive */
1508 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1509 LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1510
1511 if (rc != 0)
1512 goto out;
1513
1514 out:
1515 atw_rfio_enable(sc, 0);
1516 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1517 return rc;
1518 }
1519
1520 #ifdef ATW_DEBUG
1521 static void
1522 atw_rf3000_print(struct atw_softc *sc)
1523 {
1524 struct ifnet *ifp = &sc->sc_ic.ic_if;
1525 u_int addr, val;
1526
1527 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1528 return;
1529
1530 for (addr = 0x01; addr <= 0x15; addr++) {
1531 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1532 if (atw_rf3000_read(sc, addr, &val) != 0) {
1533 printf("<unknown> (quitting print-out)\n");
1534 break;
1535 }
1536 printf("%08x\n", val);
1537 }
1538 }
1539 #endif /* ATW_DEBUG */
1540
1541 /* Set the power settings on the BBP for channel `chan'. */
1542 static int
1543 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
1544 {
1545 int rc = 0;
1546 u_int32_t reg;
1547 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1548
1549 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1550 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1551 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1552
1553 /* odd channels: LSB, even channels: MSB */
1554 if (chan % 2 == 1) {
1555 txpower &= 0xFF;
1556 lpf_cutoff &= 0xFF;
1557 lna_gs_thresh &= 0xFF;
1558 } else {
1559 txpower >>= 8;
1560 lpf_cutoff >>= 8;
1561 lna_gs_thresh >>= 8;
1562 }
1563
1564 #ifdef ATW_DEBUG
1565 atw_rf3000_print(sc);
1566 #endif /* ATW_DEBUG */
1567
1568 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1569 "lna_gs_thresh %02x\n",
1570 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1571
1572 atw_rfio_enable(sc, 1);
1573
1574 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1575 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1576 goto out;
1577
1578 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1579 goto out;
1580
1581 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1582 goto out;
1583
1584 /* from a binary-only driver. */
1585 reg = ATW_READ(sc, ATW_PLCPHD);
1586 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1587 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1588 ATW_PLCPHD_SERVICE_MASK);
1589 ATW_WRITE(sc, ATW_PLCPHD, reg);
1590
1591 #ifdef ATW_DEBUG
1592 atw_rf3000_print(sc);
1593 #endif /* ATW_DEBUG */
1594
1595 out:
1596 atw_rfio_enable(sc, 0);
1597
1598 return rc;
1599 }
1600
1601 /* Write a register on the RF3000 baseband processor using the
1602 * registers provided by the ADM8211 for this purpose.
1603 *
1604 * Return 0 on success.
1605 */
1606 static int
1607 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1608 {
1609 u_int32_t reg;
1610 int i;
1611
1612 for (i = 1000; --i >= 0; ) {
1613 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1614 break;
1615 DELAY(100);
1616 }
1617
1618 if (i < 0) {
1619 printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1620 return ETIMEDOUT;
1621 }
1622
1623 reg = sc->sc_bbpctl_wr |
1624 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1625 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1626
1627 ATW_WRITE(sc, ATW_BBPCTL, reg);
1628
1629 for (i = 1000; --i >= 0; ) {
1630 DELAY(100);
1631 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1632 break;
1633 }
1634
1635 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1636
1637 if (i < 0) {
1638 printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1639 return ETIMEDOUT;
1640 }
1641 return 0;
1642 }
1643
1644 /* Read a register on the RF3000 baseband processor using the registers
1645 * the ADM8211 provides for this purpose.
1646 *
1647 * The 7-bit register address is addr. Record the 8-bit data in the register
1648 * in *val.
1649 *
1650 * Return 0 on success.
1651 *
1652 * XXX This does not seem to work. The ADM8211 must require more or
1653 * different magic to read the chip than to write it. Possibly some
1654 * of the magic I have derived from a binary-only driver concerns
1655 * the "chip address" (see the RF3000 manual).
1656 */
1657 #ifdef ATW_DEBUG
1658 static int
1659 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1660 {
1661 u_int32_t reg;
1662 int i;
1663
1664 for (i = 1000; --i >= 0; ) {
1665 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1666 break;
1667 DELAY(100);
1668 }
1669
1670 if (i < 0) {
1671 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1672 sc->sc_dev.dv_xname);
1673 return ETIMEDOUT;
1674 }
1675
1676 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1677
1678 ATW_WRITE(sc, ATW_BBPCTL, reg);
1679
1680 for (i = 1000; --i >= 0; ) {
1681 DELAY(100);
1682 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1683 break;
1684 }
1685
1686 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1687
1688 if (i < 0) {
1689 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1690 sc->sc_dev.dv_xname, reg);
1691 return ETIMEDOUT;
1692 }
1693 if (val != NULL)
1694 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1695 return 0;
1696 }
1697 #endif /* ATW_DEBUG */
1698
1699 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1700 * provided by the ADM8211 for that purpose.
1701 *
1702 * val is 18 bits of data, and val is the 4-bit address of the register.
1703 *
1704 * Return 0 on success.
1705 */
1706 static int
1707 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1708 {
1709 u_int32_t bits, reg;
1710 int i;
1711
1712 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1713 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1714
1715 for (i = 1000; --i >= 0; ) {
1716 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1717 break;
1718 DELAY(100);
1719 }
1720
1721 if (i < 0) {
1722 printf("%s: start atw_si4126_write, SYNCTL busy\n",
1723 sc->sc_dev.dv_xname);
1724 return ETIMEDOUT;
1725 }
1726
1727 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1728 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1729
1730 reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
1731
1732 ATW_WRITE(sc, ATW_SYNCTL, reg);
1733
1734 for (i = 1000; --i >= 0; ) {
1735 DELAY(100);
1736 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1737 break;
1738 }
1739
1740 /* restore to acceptable starting condition */
1741 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1742
1743 if (i < 0) {
1744 printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1745 sc->sc_dev.dv_xname, reg);
1746 return ETIMEDOUT;
1747 }
1748 return 0;
1749 }
1750
1751 /* Read 18-bit data from the 4-bit address addr in Si4126
1752 * RF synthesizer and write the data to *val. Return 0 on success.
1753 *
1754 * XXX This does not seem to work. The ADM8211 must require more or
1755 * different magic to read the chip than to write it.
1756 */
1757 #ifdef ATW_DEBUG
1758 static int
1759 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1760 {
1761 u_int32_t reg;
1762 int i;
1763
1764 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1765
1766 for (i = 1000; --i >= 0; ) {
1767 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1768 break;
1769 DELAY(100);
1770 }
1771
1772 if (i < 0) {
1773 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1774 sc->sc_dev.dv_xname);
1775 return ETIMEDOUT;
1776 }
1777
1778 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1779
1780 ATW_WRITE(sc, ATW_SYNCTL, reg);
1781
1782 for (i = 1000; --i >= 0; ) {
1783 DELAY(100);
1784 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1785 break;
1786 }
1787
1788 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1789
1790 if (i < 0) {
1791 printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1792 sc->sc_dev.dv_xname, reg);
1793 return ETIMEDOUT;
1794 }
1795 if (val != NULL)
1796 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1797 ATW_SYNCTL_DATA_MASK);
1798 return 0;
1799 }
1800 #endif /* ATW_DEBUG */
1801
1802 /* XXX is the endianness correct? test. */
1803 #define atw_calchash(addr) \
1804 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1805
1806 /*
1807 * atw_filter_setup:
1808 *
1809 * Set the ADM8211's receive filter.
1810 */
1811 static void
1812 atw_filter_setup(struct atw_softc *sc)
1813 {
1814 struct ieee80211com *ic = &sc->sc_ic;
1815 struct ethercom *ec = &ic->ic_ec;
1816 struct ifnet *ifp = &sc->sc_ic.ic_if;
1817 int hash;
1818 u_int32_t hashes[2] = { 0, 0 };
1819 struct ether_multi *enm;
1820 struct ether_multistep step;
1821
1822 DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1823 sc->sc_dev.dv_xname, sc->sc_flags));
1824
1825 /*
1826 * If we're running, idle the receive engine. If we're NOT running,
1827 * we're being called from atw_init(), and our writing ATW_NAR will
1828 * start the transmit and receive processes in motion.
1829 */
1830 if (ifp->if_flags & IFF_RUNNING)
1831 atw_idle(sc, ATW_NAR_SR);
1832
1833 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1834
1835 ifp->if_flags &= ~IFF_ALLMULTI;
1836
1837 if (ifp->if_flags & IFF_PROMISC) {
1838 sc->sc_opmode |= ATW_NAR_PR;
1839 allmulti:
1840 ifp->if_flags |= IFF_ALLMULTI;
1841 goto setit;
1842 }
1843
1844 /*
1845 * Program the 64-bit multicast hash filter.
1846 */
1847 ETHER_FIRST_MULTI(step, ec, enm);
1848 while (enm != NULL) {
1849 /* XXX */
1850 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1851 ETHER_ADDR_LEN) != 0)
1852 goto allmulti;
1853
1854 hash = atw_calchash(enm->enm_addrlo);
1855 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1856 ETHER_NEXT_MULTI(step, enm);
1857 }
1858
1859 if (ifp->if_flags & IFF_BROADCAST) {
1860 hash = atw_calchash(etherbroadcastaddr);
1861 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1862 }
1863
1864 /* all bits set => hash is useless */
1865 if (~(hashes[0] & hashes[1]) == 0)
1866 goto allmulti;
1867
1868 setit:
1869 if (ifp->if_flags & IFF_ALLMULTI)
1870 sc->sc_opmode |= ATW_NAR_MM;
1871
1872 /* XXX in scan mode, do not filter packets. maybe this is
1873 * unnecessary.
1874 */
1875 if (ic->ic_state == IEEE80211_S_SCAN)
1876 sc->sc_opmode |= ATW_NAR_PR;
1877
1878 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1879 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1880 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1881 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1882 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1883
1884 DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1885 }
1886
1887 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1888 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1889 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1890 * no beacon with the preferred BSSID and SSID in the number of
1891 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1892 */
1893 static void
1894 atw_write_bssid(struct atw_softc *sc)
1895 {
1896 struct ieee80211com *ic = &sc->sc_ic;
1897 u_int8_t *bssid;
1898
1899 bssid = ic->ic_bss->ni_bssid;
1900
1901 ATW_WRITE(sc, ATW_BSSID0,
1902 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1903 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1904 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1905 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1906
1907 ATW_WRITE(sc, ATW_ABDA1,
1908 (ATW_READ(sc, ATW_ABDA1) &
1909 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1910 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1911 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1912
1913 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1914 ether_sprintf(sc->sc_bssid)));
1915 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1916
1917 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1918 }
1919
1920 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1921 * 16-bit word.
1922 */
1923 static void
1924 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
1925 {
1926 u_int i;
1927 u_int8_t *ptr;
1928
1929 memcpy(&sc->sc_sram[ofs], buf, buflen);
1930
1931 if (ofs % 2 != 0) {
1932 ofs--;
1933 buflen++;
1934 }
1935
1936 if (buflen % 2 != 0)
1937 buflen++;
1938
1939 assert(buflen + ofs <= ATW_SRAM_SIZE);
1940
1941 ptr = &sc->sc_sram[ofs];
1942
1943 for (i = 0; i < buflen; i += 2) {
1944 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
1945 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
1946 DELAY(atw_writewep_delay);
1947
1948 ATW_WRITE(sc, ATW_WESK,
1949 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
1950 DELAY(atw_writewep_delay);
1951 }
1952 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
1953
1954 if (sc->sc_if.if_flags & IFF_DEBUG) {
1955 int n_octets = 0;
1956 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
1957 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
1958 for (i = 0; i < buflen; i++) {
1959 printf(" %02x", ptr[i]);
1960 if (++n_octets % 24 == 0)
1961 printf("\n");
1962 }
1963 if (n_octets % 24 != 0)
1964 printf("\n");
1965 }
1966 }
1967
1968 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
1969 static void
1970 atw_write_wep(struct atw_softc *sc)
1971 {
1972 struct ieee80211com *ic = &sc->sc_ic;
1973 /* SRAM shared-key record format: key0 flags key1 ... key12 */
1974 u_int8_t buf[IEEE80211_WEP_NKID]
1975 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
1976 u_int32_t reg;
1977 int i;
1978
1979 sc->sc_wepctl = 0;
1980 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
1981
1982 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
1983 return;
1984
1985 memset(&buf[0][0], 0, sizeof(buf));
1986
1987 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1988 if (ic->ic_nw_keys[i].wk_len > 5) {
1989 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
1990 } else if (ic->ic_nw_keys[i].wk_len != 0) {
1991 buf[i][1] = ATW_WEP_ENABLED;
1992 } else {
1993 buf[i][1] = 0;
1994 continue;
1995 }
1996 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
1997 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
1998 ic->ic_nw_keys[i].wk_len - 1);
1999 }
2000
2001 reg = ATW_READ(sc, ATW_MACTEST);
2002 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2003 reg &= ~ATW_MACTEST_KEYID_MASK;
2004 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2005 ATW_WRITE(sc, ATW_MACTEST, reg);
2006
2007 /* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2008 * throughout.)
2009 */
2010 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2011 if (sc->sc_if.if_flags & IFF_LINK2)
2012 sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2013
2014 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2015 sizeof(buf));
2016 }
2017
2018 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2019
2020 static void
2021 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2022 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2023 {
2024 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2025
2026 switch (subtype) {
2027 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2028 /* do nothing: hardware answers probe request */
2029 break;
2030 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2031 case IEEE80211_FC0_SUBTYPE_BEACON:
2032 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2033 break;
2034 default:
2035 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2036 break;
2037 }
2038 return;
2039 }
2040
2041 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2042 * of IBSSs with like SSID/channel but different BSSID. It joins the
2043 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2044 * convention. Possibly the ADMtek chip does this for us; I will have
2045 * to test to find out.
2046 *
2047 * XXX we should add the duration field of the received beacon to
2048 * the TSF time it contains before comparing it with the ADM8211's
2049 * TSF.
2050 */
2051 static void
2052 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2053 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2054 {
2055 struct atw_softc *sc;
2056 struct ieee80211_frame *wh;
2057 u_int64_t tsft, bcn_tsft;
2058 u_int32_t tsftl, tsfth;
2059 int do_print = 0;
2060
2061 sc = (struct atw_softc*)ic->ic_if.if_softc;
2062
2063 if (ic->ic_if.if_flags & IFF_LINK0) {
2064 do_print = (ic->ic_if.if_flags & IFF_DEBUG)
2065 ? 1 : ratecheck(&sc->sc_last_beacon,
2066 &atw_beacon_mininterval);
2067 }
2068
2069 wh = mtod(m0, struct ieee80211_frame *);
2070
2071 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2072
2073 if (ic->ic_state != IEEE80211_S_RUN)
2074 return;
2075
2076 if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2077 ic->ic_bss->ni_chan)) == NULL) {
2078 if (do_print)
2079 printf("%s: atw_recv_beacon: no node %s\n",
2080 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2081 return;
2082 }
2083
2084 if (ieee80211_match_bss(ic, ni) != 0)
2085 return;
2086
2087 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2088 return;
2089
2090 if (do_print)
2091 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2092 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2093
2094 if (ic->ic_opmode != IEEE80211_M_IBSS)
2095 return;
2096
2097 /* If we read TSFTL right before rollover, we read a TSF timer
2098 * that is too high rather than too low. This prevents a spurious
2099 * synchronization down the line, however, our IBSS could suffer
2100 * from a creeping TSF....
2101 */
2102 tsftl = ATW_READ(sc, ATW_TSFTL);
2103 tsfth = ATW_READ(sc, ATW_TSFTH);
2104
2105 tsft = (u_int64_t)tsfth << 32 | tsftl;
2106 bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2107
2108 if (do_print)
2109 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2110 sc->sc_dev.dv_xname, tsft, bcn_tsft);
2111
2112 /* we are faster, let the other guy catch up */
2113 if (bcn_tsft < tsft)
2114 return;
2115
2116 if (do_print)
2117 printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2118 ether_sprintf(wh->i_addr2));
2119
2120 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2121
2122 atw_tsf(sc);
2123
2124 /* negotiate rates with new IBSS */
2125 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2126 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2127 if (ni->ni_rates.rs_nrates == 0) {
2128 printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2129 ether_sprintf(ni->ni_bssid));
2130 return;
2131 }
2132
2133 if (do_print) {
2134 printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2135 ether_sprintf(ic->ic_bss->ni_bssid));
2136 printf("%s ", ether_sprintf(ni->ni_bssid));
2137 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2138 }
2139
2140 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2141
2142 atw_write_bssid(sc);
2143 atw_start_beacon(sc, 1);
2144 }
2145
2146 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2147 * In ad hoc mode, the SSID is written to the beacons sent by the
2148 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2149 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2150 * indications.
2151 */
2152 static void
2153 atw_write_ssid(struct atw_softc *sc)
2154 {
2155 struct ieee80211com *ic = &sc->sc_ic;
2156 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2157 * it only expects the element length, not its ID.
2158 */
2159 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2160
2161 memset(buf, 0, sizeof(buf));
2162 buf[0] = ic->ic_bss->ni_esslen;
2163 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2164
2165 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2166 roundup(1 + ic->ic_bss->ni_esslen, 2));
2167 }
2168
2169 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2170 * In ad hoc mode, the supported rates are written to beacons sent by the
2171 * ADM8211.
2172 */
2173 static void
2174 atw_write_sup_rates(struct atw_softc *sc)
2175 {
2176 struct ieee80211com *ic = &sc->sc_ic;
2177 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2178 * supported rates
2179 */
2180 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2181
2182 memset(buf, 0, sizeof(buf));
2183
2184 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2185
2186 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2187 ic->ic_bss->ni_rates.rs_nrates);
2188
2189 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2190 }
2191
2192 /* Start/stop sending beacons. */
2193 void
2194 atw_start_beacon(struct atw_softc *sc, int start)
2195 {
2196 struct ieee80211com *ic = &sc->sc_ic;
2197 uint16_t chan;
2198 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2199 size_t len;
2200
2201 if (ATW_IS_ENABLED(sc) == 0)
2202 return;
2203
2204 /* start beacons */
2205 len = sizeof(struct ieee80211_frame) +
2206 8 /* timestamp */ + 2 /* beacon interval */ +
2207 2 /* capability info */ +
2208 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2209 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2210 3 /* DS parameters */ +
2211 IEEE80211_CRC_LEN;
2212
2213 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2214 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2215 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2216
2217 ATW_WRITE(sc, ATW_BCNT, bcnt);
2218 ATW_WRITE(sc, ATW_CAP1, cap1);
2219
2220 if (!start)
2221 return;
2222
2223 /* TBD use ni_capinfo */
2224
2225 capinfo = 0;
2226 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2227 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2228 if (ic->ic_flags & IEEE80211_F_WEPON)
2229 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2230
2231 switch (ic->ic_opmode) {
2232 case IEEE80211_M_IBSS:
2233 len += 4; /* IBSS parameters */
2234 capinfo |= IEEE80211_CAPINFO_IBSS;
2235 break;
2236 case IEEE80211_M_HOSTAP:
2237 /* XXX 6-byte minimum TIM */
2238 len += atw_beacon_len_adjust;
2239 capinfo |= IEEE80211_CAPINFO_ESS;
2240 break;
2241 default:
2242 return;
2243 }
2244
2245 /* set listen interval
2246 * XXX do software units agree w/ hardware?
2247 */
2248 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2249 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2250
2251 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
2252
2253 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2254 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2255 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2256
2257 ATW_WRITE(sc, ATW_BCNT, bcnt);
2258 ATW_WRITE(sc, ATW_BPLI, bpli);
2259 ATW_WRITE(sc, ATW_CAP0, cap0);
2260 ATW_WRITE(sc, ATW_CAP1, cap1);
2261
2262 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2263 sc->sc_dev.dv_xname, bcnt));
2264
2265 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2266 sc->sc_dev.dv_xname, cap1));
2267 }
2268
2269 /* First beacon was sent at time 0 microseconds, current time is
2270 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2271 * microseconds. Return the expected time in microseconds for the
2272 * beacon after next.
2273 */
2274 static __inline u_int64_t
2275 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2276 {
2277 return tsft + (tbtt - tsft % tbtt);
2278 }
2279
2280 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2281 * the ieee80211com.
2282 *
2283 * Predict the next target beacon transmission time (TBTT) and
2284 * write it to the ADM8211.
2285 */
2286 static void
2287 atw_tsf(struct atw_softc *sc)
2288 {
2289 #define TBTTOFS 20 /* TU */
2290
2291 struct ieee80211com *ic = &sc->sc_ic;
2292 u_int64_t tsft, tbtt;
2293
2294 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2295 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2296 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2297 tsft = ATW_READ(sc, ATW_TSFTH);
2298 tsft <<= 32;
2299 tsft |= ATW_READ(sc, ATW_TSFTL);
2300 *(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2301 } else
2302 tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2303
2304 tbtt = atw_predict_beacon(tsft,
2305 ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2306
2307 /* skip one more beacon so that the TBTT cannot pass before
2308 * we've programmed it, and also so that we can subtract a
2309 * few TU so that we wake a little before TBTT.
2310 */
2311 tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2312
2313 /* wake up a little early */
2314 tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2315
2316 DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2317 sc->sc_dev.dv_xname, tsft, tbtt));
2318
2319 ATW_WRITE(sc, ATW_TOFS1,
2320 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2321 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2322 LSHIFT(
2323 MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2324 ATW_TOFS1_TBTTPRE_MASK));
2325 #undef TBTTOFS
2326 }
2327
2328 static void
2329 atw_next_scan(void *arg)
2330 {
2331 struct atw_softc *sc = arg;
2332 struct ieee80211com *ic = &sc->sc_ic;
2333 struct ifnet *ifp = &ic->ic_if;
2334 int s;
2335
2336 /* don't call atw_start w/o network interrupts blocked */
2337 s = splnet();
2338 if (ic->ic_state == IEEE80211_S_SCAN)
2339 ieee80211_next_scan(ifp);
2340 splx(s);
2341 }
2342
2343 /* Synchronize the hardware state with the software state. */
2344 static int
2345 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2346 {
2347 struct ifnet *ifp = &ic->ic_if;
2348 struct atw_softc *sc = ifp->if_softc;
2349 enum ieee80211_state ostate;
2350 int error;
2351
2352 ostate = ic->ic_state;
2353
2354 if (nstate == IEEE80211_S_INIT) {
2355 callout_stop(&sc->sc_scan_ch);
2356 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2357 atw_start_beacon(sc, 0);
2358 return (*sc->sc_newstate)(ic, nstate, arg);
2359 }
2360
2361 if ((error = atw_tune(sc)) != 0)
2362 return error;
2363
2364 switch (nstate) {
2365 case IEEE80211_S_ASSOC:
2366 break;
2367 case IEEE80211_S_INIT:
2368 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2369 break;
2370 case IEEE80211_S_SCAN:
2371 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2372 atw_next_scan, sc);
2373
2374 break;
2375 case IEEE80211_S_RUN:
2376 if (ic->ic_opmode == IEEE80211_M_STA)
2377 break;
2378 /*FALLTHROUGH*/
2379 case IEEE80211_S_AUTH:
2380 atw_write_bssid(sc);
2381 atw_write_ssid(sc);
2382 atw_write_sup_rates(sc);
2383
2384 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2385 ic->ic_opmode == IEEE80211_M_MONITOR)
2386 break;
2387
2388 /* set listen interval
2389 * XXX do software units agree w/ hardware?
2390 */
2391 ATW_WRITE(sc, ATW_BPLI,
2392 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2393 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2394 ATW_BPLI_LI_MASK));
2395
2396 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2397 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2398
2399 atw_tsf(sc);
2400 break;
2401 }
2402
2403 if (nstate != IEEE80211_S_SCAN)
2404 callout_stop(&sc->sc_scan_ch);
2405
2406 if (nstate == IEEE80211_S_RUN &&
2407 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2408 ic->ic_opmode == IEEE80211_M_IBSS))
2409 atw_start_beacon(sc, 1);
2410 else
2411 atw_start_beacon(sc, 0);
2412
2413 error = (*sc->sc_newstate)(ic, nstate, arg);
2414
2415 if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2416 atw_write_bssid(sc);
2417
2418 return error;
2419 }
2420
2421 /*
2422 * atw_add_rxbuf:
2423 *
2424 * Add a receive buffer to the indicated descriptor.
2425 */
2426 int
2427 atw_add_rxbuf(struct atw_softc *sc, int idx)
2428 {
2429 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2430 struct mbuf *m;
2431 int error;
2432
2433 MGETHDR(m, M_DONTWAIT, MT_DATA);
2434 if (m == NULL)
2435 return (ENOBUFS);
2436
2437 MCLGET(m, M_DONTWAIT);
2438 if ((m->m_flags & M_EXT) == 0) {
2439 m_freem(m);
2440 return (ENOBUFS);
2441 }
2442
2443 if (rxs->rxs_mbuf != NULL)
2444 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2445
2446 rxs->rxs_mbuf = m;
2447
2448 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2449 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2450 BUS_DMA_READ|BUS_DMA_NOWAIT);
2451 if (error) {
2452 printf("%s: can't load rx DMA map %d, error = %d\n",
2453 sc->sc_dev.dv_xname, idx, error);
2454 panic("atw_add_rxbuf"); /* XXX */
2455 }
2456
2457 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2458 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2459
2460 ATW_INIT_RXDESC(sc, idx);
2461
2462 return (0);
2463 }
2464
2465 /*
2466 * Release any queued transmit buffers.
2467 */
2468 void
2469 atw_txdrain(struct atw_softc *sc)
2470 {
2471 struct atw_txsoft *txs;
2472
2473 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2474 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2475 if (txs->txs_mbuf != NULL) {
2476 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2477 m_freem(txs->txs_mbuf);
2478 txs->txs_mbuf = NULL;
2479 }
2480 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2481 }
2482 sc->sc_tx_timer = 0;
2483 }
2484
2485 /*
2486 * atw_stop: [ ifnet interface function ]
2487 *
2488 * Stop transmission on the interface.
2489 */
2490 void
2491 atw_stop(struct ifnet *ifp, int disable)
2492 {
2493 struct atw_softc *sc = ifp->if_softc;
2494 struct ieee80211com *ic = &sc->sc_ic;
2495
2496 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2497
2498 /* Disable interrupts. */
2499 ATW_WRITE(sc, ATW_IER, 0);
2500
2501 /* Stop the transmit and receive processes. */
2502 sc->sc_opmode = 0;
2503 ATW_WRITE(sc, ATW_NAR, 0);
2504 DELAY(20 * 1000);
2505 ATW_WRITE(sc, ATW_TDBD, 0);
2506 ATW_WRITE(sc, ATW_TDBP, 0);
2507 ATW_WRITE(sc, ATW_RDB, 0);
2508
2509 atw_txdrain(sc);
2510
2511 if (disable) {
2512 atw_rxdrain(sc);
2513 atw_disable(sc);
2514 }
2515
2516 /*
2517 * Mark the interface down and cancel the watchdog timer.
2518 */
2519 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2520 ifp->if_timer = 0;
2521
2522 if (!disable)
2523 atw_reset(sc);
2524 }
2525
2526 /*
2527 * atw_rxdrain:
2528 *
2529 * Drain the receive queue.
2530 */
2531 void
2532 atw_rxdrain(struct atw_softc *sc)
2533 {
2534 struct atw_rxsoft *rxs;
2535 int i;
2536
2537 for (i = 0; i < ATW_NRXDESC; i++) {
2538 rxs = &sc->sc_rxsoft[i];
2539 if (rxs->rxs_mbuf == NULL)
2540 continue;
2541 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2542 m_freem(rxs->rxs_mbuf);
2543 rxs->rxs_mbuf = NULL;
2544 }
2545 }
2546
2547 /*
2548 * atw_detach:
2549 *
2550 * Detach an ADM8211 interface.
2551 */
2552 int
2553 atw_detach(struct atw_softc *sc)
2554 {
2555 struct ifnet *ifp = &sc->sc_ic.ic_if;
2556 struct atw_rxsoft *rxs;
2557 struct atw_txsoft *txs;
2558 int i;
2559
2560 /*
2561 * Succeed now if there isn't any work to do.
2562 */
2563 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2564 return (0);
2565
2566 ieee80211_ifdetach(ifp);
2567 if_detach(ifp);
2568
2569 for (i = 0; i < ATW_NRXDESC; i++) {
2570 rxs = &sc->sc_rxsoft[i];
2571 if (rxs->rxs_mbuf != NULL) {
2572 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2573 m_freem(rxs->rxs_mbuf);
2574 rxs->rxs_mbuf = NULL;
2575 }
2576 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2577 }
2578 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2579 txs = &sc->sc_txsoft[i];
2580 if (txs->txs_mbuf != NULL) {
2581 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2582 m_freem(txs->txs_mbuf);
2583 txs->txs_mbuf = NULL;
2584 }
2585 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2586 }
2587 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2588 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2589 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2590 sizeof(struct atw_control_data));
2591 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2592
2593 shutdownhook_disestablish(sc->sc_sdhook);
2594 powerhook_disestablish(sc->sc_powerhook);
2595
2596 if (sc->sc_srom)
2597 free(sc->sc_srom, M_DEVBUF);
2598
2599 return (0);
2600 }
2601
2602 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2603 void
2604 atw_shutdown(void *arg)
2605 {
2606 struct atw_softc *sc = arg;
2607
2608 atw_stop(&sc->sc_ic.ic_if, 1);
2609 }
2610
2611 int
2612 atw_intr(void *arg)
2613 {
2614 struct atw_softc *sc = arg;
2615 struct ifnet *ifp = &sc->sc_ic.ic_if;
2616 u_int32_t status, rxstatus, txstatus, linkstatus;
2617 int handled = 0, txthresh;
2618
2619 #ifdef DEBUG
2620 if (ATW_IS_ENABLED(sc) == 0)
2621 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2622 #endif
2623
2624 /*
2625 * If the interface isn't running, the interrupt couldn't
2626 * possibly have come from us.
2627 */
2628 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2629 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2630 return (0);
2631
2632 for (;;) {
2633 status = ATW_READ(sc, ATW_STSR);
2634
2635 if (status)
2636 ATW_WRITE(sc, ATW_STSR, status);
2637
2638 #ifdef ATW_DEBUG
2639 #define PRINTINTR(flag) do { \
2640 if ((status & flag) != 0) { \
2641 printf("%s" #flag, delim); \
2642 delim = ","; \
2643 } \
2644 } while (0)
2645
2646 if (atw_debug > 1 && status) {
2647 const char *delim = "<";
2648
2649 printf("%s: reg[STSR] = %x",
2650 sc->sc_dev.dv_xname, status);
2651
2652 PRINTINTR(ATW_INTR_FBE);
2653 PRINTINTR(ATW_INTR_LINKOFF);
2654 PRINTINTR(ATW_INTR_LINKON);
2655 PRINTINTR(ATW_INTR_RCI);
2656 PRINTINTR(ATW_INTR_RDU);
2657 PRINTINTR(ATW_INTR_REIS);
2658 PRINTINTR(ATW_INTR_RPS);
2659 PRINTINTR(ATW_INTR_TCI);
2660 PRINTINTR(ATW_INTR_TDU);
2661 PRINTINTR(ATW_INTR_TLT);
2662 PRINTINTR(ATW_INTR_TPS);
2663 PRINTINTR(ATW_INTR_TRT);
2664 PRINTINTR(ATW_INTR_TUF);
2665 PRINTINTR(ATW_INTR_BCNTC);
2666 PRINTINTR(ATW_INTR_ATIME);
2667 PRINTINTR(ATW_INTR_TBTT);
2668 PRINTINTR(ATW_INTR_TSCZ);
2669 PRINTINTR(ATW_INTR_TSFTF);
2670 printf(">\n");
2671 }
2672 #undef PRINTINTR
2673 #endif /* ATW_DEBUG */
2674
2675 if ((status & sc->sc_inten) == 0)
2676 break;
2677
2678 handled = 1;
2679
2680 rxstatus = status & sc->sc_rxint_mask;
2681 txstatus = status & sc->sc_txint_mask;
2682 linkstatus = status & sc->sc_linkint_mask;
2683
2684 if (linkstatus) {
2685 atw_linkintr(sc, linkstatus);
2686 }
2687
2688 if (rxstatus) {
2689 /* Grab any new packets. */
2690 atw_rxintr(sc);
2691
2692 if (rxstatus & ATW_INTR_RDU) {
2693 printf("%s: receive ring overrun\n",
2694 sc->sc_dev.dv_xname);
2695 /* Get the receive process going again. */
2696 ATW_WRITE(sc, ATW_RDR, 0x1);
2697 break;
2698 }
2699 }
2700
2701 if (txstatus) {
2702 /* Sweep up transmit descriptors. */
2703 atw_txintr(sc);
2704
2705 if (txstatus & ATW_INTR_TLT)
2706 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2707 sc->sc_dev.dv_xname));
2708
2709 if (txstatus & ATW_INTR_TRT)
2710 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2711 sc->sc_dev.dv_xname));
2712
2713 /* If Tx under-run, increase our transmit threshold
2714 * if another is available.
2715 */
2716 txthresh = sc->sc_txthresh + 1;
2717 if ((txstatus & ATW_INTR_TUF) &&
2718 sc->sc_txth[txthresh].txth_name != NULL) {
2719 /* Idle the transmit process. */
2720 atw_idle(sc, ATW_NAR_ST);
2721
2722 sc->sc_txthresh = txthresh;
2723 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2724 sc->sc_opmode |=
2725 sc->sc_txth[txthresh].txth_opmode;
2726 printf("%s: transmit underrun; new "
2727 "threshold: %s\n", sc->sc_dev.dv_xname,
2728 sc->sc_txth[txthresh].txth_name);
2729
2730 /* Set the new threshold and restart
2731 * the transmit process.
2732 */
2733 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2734 DELAY(20 * 1000);
2735 ATW_WRITE(sc, ATW_RDR, 0x1);
2736 /* XXX Log every Nth underrun from
2737 * XXX now on?
2738 */
2739 }
2740 }
2741
2742 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2743 if (status & ATW_INTR_TPS)
2744 printf("%s: transmit process stopped\n",
2745 sc->sc_dev.dv_xname);
2746 if (status & ATW_INTR_RPS)
2747 printf("%s: receive process stopped\n",
2748 sc->sc_dev.dv_xname);
2749 (void)atw_init(ifp);
2750 break;
2751 }
2752
2753 if (status & ATW_INTR_FBE) {
2754 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2755 (void)atw_init(ifp);
2756 break;
2757 }
2758
2759 /*
2760 * Not handled:
2761 *
2762 * Transmit buffer unavailable -- normal
2763 * condition, nothing to do, really.
2764 *
2765 * Early receive interrupt -- not available on
2766 * all chips, we just use RI. We also only
2767 * use single-segment receive DMA, so this
2768 * is mostly useless.
2769 *
2770 * TBD others
2771 */
2772 }
2773
2774 /* Try to get more packets going. */
2775 atw_start(ifp);
2776
2777 return (handled);
2778 }
2779
2780 /*
2781 * atw_idle:
2782 *
2783 * Cause the transmit and/or receive processes to go idle.
2784 *
2785 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2786 * process in STSR if I clear SR or ST after the process has already
2787 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2788 * do not seem to be too reliable. Perhaps I have the sense of the
2789 * Rx bits switched with the Tx bits?
2790 */
2791 void
2792 atw_idle(struct atw_softc *sc, u_int32_t bits)
2793 {
2794 u_int32_t ackmask = 0, opmode, stsr, test0;
2795 int i, s;
2796
2797 s = splnet();
2798
2799 opmode = sc->sc_opmode & ~bits;
2800
2801 if (bits & ATW_NAR_SR)
2802 ackmask |= ATW_INTR_RPS;
2803
2804 if (bits & ATW_NAR_ST) {
2805 ackmask |= ATW_INTR_TPS;
2806 /* set ATW_NAR_HF to flush TX FIFO. */
2807 opmode |= ATW_NAR_HF;
2808 }
2809
2810 ATW_WRITE(sc, ATW_NAR, opmode);
2811 DELAY(20 * 1000);
2812
2813 for (i = 0; i < 10; i++) {
2814 stsr = ATW_READ(sc, ATW_STSR);
2815 if ((stsr & ackmask) == ackmask)
2816 break;
2817 DELAY(1000);
2818 }
2819
2820 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2821
2822 if ((stsr & ackmask) == ackmask)
2823 goto out;
2824
2825 test0 = ATW_READ(sc, ATW_TEST0);
2826
2827 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2828 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2829 printf("%s: transmit process not idle [%s]\n",
2830 sc->sc_dev.dv_xname,
2831 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2832 printf("%s: bits %08x test0 %08x stsr %08x\n",
2833 sc->sc_dev.dv_xname, bits, test0, stsr);
2834 }
2835
2836 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2837 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2838 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2839 sc->sc_dev.dv_xname,
2840 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2841 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2842 sc->sc_dev.dv_xname, bits, test0, stsr));
2843 }
2844 out:
2845 if ((bits & ATW_NAR_ST) != 0)
2846 atw_txdrain(sc);
2847 splx(s);
2848 return;
2849 }
2850
2851 /*
2852 * atw_linkintr:
2853 *
2854 * Helper; handle link-status interrupts.
2855 */
2856 void
2857 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2858 {
2859 struct ieee80211com *ic = &sc->sc_ic;
2860
2861 if (ic->ic_state != IEEE80211_S_RUN)
2862 return;
2863
2864 if (linkstatus & ATW_INTR_LINKON) {
2865 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2866 sc->sc_rescan_timer = 0;
2867 } else if (linkstatus & ATW_INTR_LINKOFF) {
2868 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2869 if (ic->ic_opmode != IEEE80211_M_STA)
2870 return;
2871 sc->sc_rescan_timer = 3;
2872 ic->ic_if.if_timer = 1;
2873 }
2874 }
2875
2876 /*
2877 * atw_rxintr:
2878 *
2879 * Helper; handle receive interrupts.
2880 */
2881 void
2882 atw_rxintr(struct atw_softc *sc)
2883 {
2884 static int rate_tbl[] = {2, 4, 11, 22, 44};
2885 struct ieee80211com *ic = &sc->sc_ic;
2886 struct ieee80211_node *ni;
2887 struct ieee80211_frame *wh;
2888 struct ifnet *ifp = &ic->ic_if;
2889 struct atw_rxsoft *rxs;
2890 struct mbuf *m;
2891 u_int32_t rxstat;
2892 int i, len, rate, rate0;
2893 u_int32_t rssi;
2894
2895 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2896 rxs = &sc->sc_rxsoft[i];
2897
2898 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2899
2900 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2901 rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2902 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2903
2904 if (rxstat & ATW_RXSTAT_OWN)
2905 break; /* We have processed all receive buffers. */
2906
2907 DPRINTF3(sc,
2908 ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2909 sc->sc_dev.dv_xname,
2910 le32toh(sc->sc_rxdescs[i].ar_stat),
2911 le32toh(sc->sc_rxdescs[i].ar_rssi),
2912 le32toh(sc->sc_rxdescs[i].ar_buf1),
2913 le32toh(sc->sc_rxdescs[i].ar_buf2)));
2914
2915 /*
2916 * Make sure the packet fits in one buffer. This should
2917 * always be the case.
2918 */
2919 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2920 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2921 printf("%s: incoming packet spilled, resetting\n",
2922 sc->sc_dev.dv_xname);
2923 (void)atw_init(ifp);
2924 return;
2925 }
2926
2927 /*
2928 * If an error occurred, update stats, clear the status
2929 * word, and leave the packet buffer in place. It will
2930 * simply be reused the next time the ring comes around.
2931 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2932 * error.
2933 */
2934
2935 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
2936 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
2937 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
2938 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
2939 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
2940 ATW_RXSTAT_ICVE)) != 0)) {
2941 #define PRINTERR(bit, str) \
2942 if (rxstat & (bit)) \
2943 printf("%s: receive error: %s\n", \
2944 sc->sc_dev.dv_xname, str)
2945 ifp->if_ierrors++;
2946 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
2947 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
2948 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
2949 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
2950 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
2951 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
2952 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
2953 #undef PRINTERR
2954 ATW_INIT_RXDESC(sc, i);
2955 continue;
2956 }
2957
2958 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2959 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2960
2961 /*
2962 * No errors; receive the packet. Note the ADM8211
2963 * includes the CRC in promiscuous mode.
2964 */
2965 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
2966
2967 /*
2968 * Allocate a new mbuf cluster. If that fails, we are
2969 * out of memory, and must drop the packet and recycle
2970 * the buffer that's already attached to this descriptor.
2971 */
2972 m = rxs->rxs_mbuf;
2973 if (atw_add_rxbuf(sc, i) != 0) {
2974 ifp->if_ierrors++;
2975 ATW_INIT_RXDESC(sc, i);
2976 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2977 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2978 continue;
2979 }
2980
2981 ifp->if_ipackets++;
2982 if (sc->sc_opmode & ATW_NAR_PR)
2983 m->m_flags |= M_HASFCS;
2984 m->m_pkthdr.rcvif = ifp;
2985 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
2986
2987 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
2988 rate = 0;
2989 else
2990 rate = rate_tbl[rate0];
2991
2992 #if NBPFILTER > 0
2993 /* Pass this up to any BPF listeners. */
2994 if (sc->sc_radiobpf != NULL) {
2995 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
2996
2997 tap->ar_rate = rate;
2998 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
2999 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3000
3001 /* TBD verify units are dB */
3002 tap->ar_antsignal = (int)rssi;
3003 /* TBD tap->ar_flags */
3004
3005 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3006 tap->ar_ihdr.it_len, m);
3007 }
3008 #endif /* NPBFILTER > 0 */
3009
3010 wh = mtod(m, struct ieee80211_frame *);
3011 ni = ieee80211_find_rxnode(ic, wh);
3012 ieee80211_input(ifp, m, ni, (int)rssi, 0);
3013 /*
3014 * The frame may have caused the node to be marked for
3015 * reclamation (e.g. in response to a DEAUTH message)
3016 * so use free_node here instead of unref_node.
3017 */
3018 if (ni == ic->ic_bss)
3019 ieee80211_unref_node(&ni);
3020 else
3021 ieee80211_free_node(ic, ni);
3022 }
3023
3024 /* Update the receive pointer. */
3025 sc->sc_rxptr = i;
3026 }
3027
3028 /*
3029 * atw_txintr:
3030 *
3031 * Helper; handle transmit interrupts.
3032 */
3033 void
3034 atw_txintr(struct atw_softc *sc)
3035 {
3036 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3037 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3038 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3039 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3040
3041 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3042 struct ifnet *ifp = &sc->sc_ic.ic_if;
3043 struct atw_txsoft *txs;
3044 u_int32_t txstat;
3045
3046 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3047 sc->sc_dev.dv_xname, sc->sc_flags));
3048
3049 ifp->if_flags &= ~IFF_OACTIVE;
3050
3051 /*
3052 * Go through our Tx list and free mbufs for those
3053 * frames that have been transmitted.
3054 */
3055 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3056 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3057 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3058
3059 #ifdef ATW_DEBUG
3060 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3061 int i;
3062 printf(" txsoft %p transmit chain:\n", txs);
3063 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3064 txs->txs_ndescs - 1,
3065 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3066 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3067 printf(" descriptor %d:\n", i);
3068 printf(" at_status: 0x%08x\n",
3069 le32toh(sc->sc_txdescs[i].at_stat));
3070 printf(" at_flags: 0x%08x\n",
3071 le32toh(sc->sc_txdescs[i].at_flags));
3072 printf(" at_buf1: 0x%08x\n",
3073 le32toh(sc->sc_txdescs[i].at_buf1));
3074 printf(" at_buf2: 0x%08x\n",
3075 le32toh(sc->sc_txdescs[i].at_buf2));
3076 if (i == txs->txs_lastdesc)
3077 break;
3078 }
3079 }
3080 #endif
3081
3082 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3083 if (txstat & ATW_TXSTAT_OWN)
3084 break;
3085
3086 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3087
3088 sc->sc_txfree += txs->txs_ndescs;
3089
3090 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3091 0, txs->txs_dmamap->dm_mapsize,
3092 BUS_DMASYNC_POSTWRITE);
3093 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3094 m_freem(txs->txs_mbuf);
3095 txs->txs_mbuf = NULL;
3096
3097 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3098
3099 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3100 (txstat & TXSTAT_ERRMASK) != 0) {
3101 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3102 txstat_buf, sizeof(txstat_buf));
3103 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3104 txstat_buf,
3105 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3106 }
3107
3108 /*
3109 * Check for errors and collisions.
3110 */
3111 if (txstat & ATW_TXSTAT_TUF)
3112 sc->sc_stats.ts_tx_tuf++;
3113 if (txstat & ATW_TXSTAT_TLT)
3114 sc->sc_stats.ts_tx_tlt++;
3115 if (txstat & ATW_TXSTAT_TRT)
3116 sc->sc_stats.ts_tx_trt++;
3117 if (txstat & ATW_TXSTAT_TRO)
3118 sc->sc_stats.ts_tx_tro++;
3119 if (txstat & ATW_TXSTAT_SOFBR) {
3120 sc->sc_stats.ts_tx_sofbr++;
3121 }
3122
3123 if ((txstat & ATW_TXSTAT_ES) == 0)
3124 ifp->if_collisions +=
3125 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3126 else
3127 ifp->if_oerrors++;
3128
3129 ifp->if_opackets++;
3130 }
3131
3132 /*
3133 * If there are no more pending transmissions, cancel the watchdog
3134 * timer.
3135 */
3136 if (txs == NULL)
3137 sc->sc_tx_timer = 0;
3138 #undef TXSTAT_ERRMASK
3139 #undef TXSTAT_FMT
3140 }
3141
3142 /*
3143 * atw_watchdog: [ifnet interface function]
3144 *
3145 * Watchdog timer handler.
3146 */
3147 void
3148 atw_watchdog(struct ifnet *ifp)
3149 {
3150 struct atw_softc *sc = ifp->if_softc;
3151 struct ieee80211com *ic = &sc->sc_ic;
3152
3153 ifp->if_timer = 0;
3154 if (ATW_IS_ENABLED(sc) == 0)
3155 return;
3156
3157 if (sc->sc_rescan_timer) {
3158 if (--sc->sc_rescan_timer == 0)
3159 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3160 }
3161 if (sc->sc_tx_timer) {
3162 if (--sc->sc_tx_timer == 0 &&
3163 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3164 printf("%s: transmit timeout\n", ifp->if_xname);
3165 ifp->if_oerrors++;
3166 (void)atw_init(ifp);
3167 atw_start(ifp);
3168 }
3169 }
3170 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3171 ifp->if_timer = 1;
3172 ieee80211_watchdog(ifp);
3173 }
3174
3175 /* Compute the 802.11 Duration field and the PLCP Length fields for
3176 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3177 * Write the fields to the ADM8211 Tx header, frm.
3178 *
3179 * TBD use the fragmentation threshold to find the right duration for
3180 * the first & last fragments.
3181 *
3182 * TBD make certain of the duration fields applied by the ADM8211 to each
3183 * fragment. I think that the ADM8211 knows how to subtract the CTS
3184 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3185 * I also think that the ADM8211 does *some* arithmetic for us, because
3186 * otherwise I think we would have to set a first duration for CTS/first
3187 * fragment, a second duration for fragments between the first and the
3188 * last, and a third duration for the last fragment.
3189 *
3190 * TBD make certain that duration fields reflect addition of FCS/WEP
3191 * and correct duration arithmetic as necessary.
3192 */
3193 static void
3194 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3195 int len)
3196 {
3197 int remainder;
3198
3199 /* deal also with encrypted fragments */
3200 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3201 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3202 sc->sc_dev.dv_xname));
3203 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3204 IEEE80211_WEP_CRCLEN;
3205 }
3206
3207 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3208 * duration (XXX added by MAC?).
3209 */
3210 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3211 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3212
3213 if (rate <= 4)
3214 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3215 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3216 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3217 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3218 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3219 else
3220 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3221 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3222 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3223 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3224 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3225
3226 /* lengthen duration if long preamble */
3227 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3228 frm->atw_head_dur +=
3229 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3230 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3231 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3232 IEEE80211_DUR_DS_FAST_PLCPHDR);
3233
3234 if (remainder != 0)
3235 frm->atw_head_dur++;
3236
3237 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3238 (rate == 2 || rate == 4)) {
3239 /* derived from Linux: how could this be right? */
3240 frm->atw_head_plcplen = frm->atw_head_dur;
3241 } else {
3242 frm->atw_head_plcplen = (16 * len) / rate;
3243 remainder = (80 * len) % (rate * 5);
3244
3245 if (remainder != 0) {
3246 frm->atw_head_plcplen++;
3247
3248 /* XXX magic */
3249 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3250 rate == 22 && remainder <= 30)
3251 frm->atw_head_plcplen |= 0x8000;
3252 }
3253 }
3254 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3255 htole16(frm->atw_head_plcplen);
3256 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3257 }
3258
3259 #ifdef ATW_DEBUG
3260 static void
3261 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3262 {
3263 struct atw_softc *sc = ifp->if_softc;
3264 struct mbuf *m;
3265 int i, noctets = 0;
3266
3267 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3268 m0->m_pkthdr.len);
3269
3270 for (m = m0; m; m = m->m_next) {
3271 if (m->m_len == 0)
3272 continue;
3273 for (i = 0; i < m->m_len; i++) {
3274 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3275 if (++noctets % 24 == 0)
3276 printf("\n");
3277 }
3278 }
3279 printf("%s%s: %d bytes emitted\n",
3280 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3281 }
3282 #endif /* ATW_DEBUG */
3283
3284 /*
3285 * atw_start: [ifnet interface function]
3286 *
3287 * Start packet transmission on the interface.
3288 */
3289 void
3290 atw_start(struct ifnet *ifp)
3291 {
3292 struct atw_softc *sc = ifp->if_softc;
3293 struct ieee80211com *ic = &sc->sc_ic;
3294 struct ieee80211_node *ni;
3295 struct ieee80211_frame *wh;
3296 struct atw_frame *hh;
3297 struct mbuf *m0, *m;
3298 struct atw_txsoft *txs, *last_txs;
3299 struct atw_txdesc *txd;
3300 int do_encrypt, rate;
3301 bus_dmamap_t dmamap;
3302 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3303
3304 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3305 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3306
3307 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3308 return;
3309
3310 /*
3311 * Remember the previous number of free descriptors and
3312 * the first descriptor we'll use.
3313 */
3314 ofree = sc->sc_txfree;
3315 firsttx = sc->sc_txnext;
3316
3317 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3318 sc->sc_dev.dv_xname, ofree, firsttx));
3319
3320 /*
3321 * Loop through the send queue, setting up transmit descriptors
3322 * until we drain the queue, or use up all available transmit
3323 * descriptors.
3324 */
3325 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3326 sc->sc_txfree != 0) {
3327
3328 /*
3329 * Grab a packet off the management queue, if it
3330 * is not empty. Otherwise, from the data queue.
3331 */
3332 IF_DEQUEUE(&ic->ic_mgtq, m0);
3333 if (m0 != NULL) {
3334 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3335 m0->m_pkthdr.rcvif = NULL;
3336 } else {
3337 /* send no data packets until we are associated */
3338 if (ic->ic_state != IEEE80211_S_RUN)
3339 break;
3340 IFQ_DEQUEUE(&ifp->if_snd, m0);
3341 if (m0 == NULL)
3342 break;
3343 #if NBPFILTER > 0
3344 if (ifp->if_bpf != NULL)
3345 bpf_mtap(ifp->if_bpf, m0);
3346 #endif /* NBPFILTER > 0 */
3347 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3348 ifp->if_oerrors++;
3349 break;
3350 }
3351 }
3352
3353 rate = MAX(ieee80211_get_rate(ic), 2);
3354
3355 #if NBPFILTER > 0
3356 /*
3357 * Pass the packet to any BPF listeners.
3358 */
3359 if (ic->ic_rawbpf != NULL)
3360 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3361
3362 if (sc->sc_radiobpf != NULL) {
3363 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3364
3365 tap->at_rate = rate;
3366 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3367 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3368
3369 /* TBD tap->at_flags */
3370
3371 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3372 tap->at_ihdr.it_len, m0);
3373 }
3374 #endif /* NBPFILTER > 0 */
3375
3376 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3377
3378 if (ni != NULL && ni != ic->ic_bss)
3379 ieee80211_free_node(ic, ni);
3380
3381 if (m0 == NULL) {
3382 ifp->if_oerrors++;
3383 break;
3384 }
3385
3386 /* just to make sure. */
3387 m0 = m_pullup(m0, sizeof(struct atw_frame));
3388
3389 if (m0 == NULL) {
3390 ifp->if_oerrors++;
3391 break;
3392 }
3393
3394 hh = mtod(m0, struct atw_frame *);
3395 wh = &hh->atw_ihdr;
3396
3397 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3398
3399 /* Copy everything we need from the 802.11 header:
3400 * Frame Control; address 1, address 3, or addresses
3401 * 3 and 4. NIC fills in BSSID, SA.
3402 */
3403 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3404 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3405 panic("%s: illegal WDS frame",
3406 sc->sc_dev.dv_xname);
3407 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3408 } else
3409 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3410
3411 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3412
3413 /* initialize remaining Tx parameters */
3414 memset(&hh->u, 0, sizeof(hh->u));
3415
3416 hh->atw_rate = rate * 5;
3417 /* XXX this could be incorrect if M_FCS. _encap should
3418 * probably strip FCS just in case it sticks around in
3419 * bridged packets.
3420 */
3421 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3422 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3423 sizeof(struct atw_frame));
3424
3425 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3426 hh->atw_rtylmt = 3;
3427 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3428 if (do_encrypt) {
3429 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3430 hh->atw_keyid = ic->ic_wep_txkey;
3431 }
3432
3433 /* TBD 4-addr frames */
3434 atw_frame_setdurs(sc, hh, rate,
3435 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3436 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3437
3438 /* never fragment multicast frames */
3439 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3440 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3441 } else if (sc->sc_flags & ATWF_RTSCTS) {
3442 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3443 }
3444
3445 #ifdef ATW_DEBUG
3446 hh->atw_fragnum = 0;
3447
3448 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3449 printf("%s: dst = %s, rate = 0x%02x, "
3450 "service = 0x%02x, paylen = 0x%04x\n",
3451 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3452 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3453
3454 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3455 "dur1 = 0x%04x, dur2 = 0x%04x, "
3456 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3457 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3458 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3459 hh->atw_tail_dur, hh->atw_head_dur);
3460
3461 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3462 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3463 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3464 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3465
3466 printf("%s: keyid = %d\n",
3467 sc->sc_dev.dv_xname, hh->atw_keyid);
3468
3469 atw_dump_pkt(ifp, m0);
3470 }
3471 #endif /* ATW_DEBUG */
3472
3473 dmamap = txs->txs_dmamap;
3474
3475 /*
3476 * Load the DMA map. Copy and try (once) again if the packet
3477 * didn't fit in the alloted number of segments.
3478 */
3479 for (first = 1;
3480 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3481 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3482 first = 0) {
3483 MGETHDR(m, M_DONTWAIT, MT_DATA);
3484 if (m == NULL) {
3485 printf("%s: unable to allocate Tx mbuf\n",
3486 sc->sc_dev.dv_xname);
3487 break;
3488 }
3489 if (m0->m_pkthdr.len > MHLEN) {
3490 MCLGET(m, M_DONTWAIT);
3491 if ((m->m_flags & M_EXT) == 0) {
3492 printf("%s: unable to allocate Tx "
3493 "cluster\n", sc->sc_dev.dv_xname);
3494 m_freem(m);
3495 break;
3496 }
3497 }
3498 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3499 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3500 m_freem(m0);
3501 m0 = m;
3502 m = NULL;
3503 }
3504 if (error != 0) {
3505 printf("%s: unable to load Tx buffer, "
3506 "error = %d\n", sc->sc_dev.dv_xname, error);
3507 m_freem(m0);
3508 break;
3509 }
3510
3511 /*
3512 * Ensure we have enough descriptors free to describe
3513 * the packet.
3514 */
3515 if (dmamap->dm_nsegs > sc->sc_txfree) {
3516 /*
3517 * Not enough free descriptors to transmit
3518 * this packet. Unload the DMA map and
3519 * drop the packet. Notify the upper layer
3520 * that there are no more slots left.
3521 *
3522 * XXX We could allocate an mbuf and copy, but
3523 * XXX it is worth it?
3524 */
3525 ifp->if_flags |= IFF_OACTIVE;
3526 bus_dmamap_unload(sc->sc_dmat, dmamap);
3527 m_freem(m0);
3528 break;
3529 }
3530
3531 /*
3532 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3533 */
3534
3535 /* Sync the DMA map. */
3536 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3537 BUS_DMASYNC_PREWRITE);
3538
3539 /* XXX arbitrary retry limit; 8 because I have seen it in
3540 * use already and maybe 0 means "no tries" !
3541 */
3542 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3543
3544 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3545 sc->sc_dev.dv_xname, rate * 5));
3546 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3547
3548 /*
3549 * Initialize the transmit descriptors.
3550 */
3551 for (nexttx = sc->sc_txnext, seg = 0;
3552 seg < dmamap->dm_nsegs;
3553 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3554 /*
3555 * If this is the first descriptor we're
3556 * enqueueing, don't set the OWN bit just
3557 * yet. That could cause a race condition.
3558 * We'll do it below.
3559 */
3560 txd = &sc->sc_txdescs[nexttx];
3561 txd->at_ctl = ctl |
3562 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3563
3564 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3565 txd->at_flags =
3566 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3567 ATW_TXFLAG_TBS1_MASK)) |
3568 ((nexttx == (ATW_NTXDESC - 1))
3569 ? htole32(ATW_TXFLAG_TER) : 0);
3570 lasttx = nexttx;
3571 }
3572
3573 IASSERT(lasttx != -1, ("bad lastx"));
3574 /* Set `first segment' and `last segment' appropriately. */
3575 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3576 htole32(ATW_TXFLAG_FS);
3577 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3578
3579 #ifdef ATW_DEBUG
3580 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3581 printf(" txsoft %p transmit chain:\n", txs);
3582 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3583 printf(" descriptor %d:\n", seg);
3584 printf(" at_ctl: 0x%08x\n",
3585 le32toh(sc->sc_txdescs[seg].at_ctl));
3586 printf(" at_flags: 0x%08x\n",
3587 le32toh(sc->sc_txdescs[seg].at_flags));
3588 printf(" at_buf1: 0x%08x\n",
3589 le32toh(sc->sc_txdescs[seg].at_buf1));
3590 printf(" at_buf2: 0x%08x\n",
3591 le32toh(sc->sc_txdescs[seg].at_buf2));
3592 if (seg == lasttx)
3593 break;
3594 }
3595 }
3596 #endif
3597
3598 /* Sync the descriptors we're using. */
3599 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3600 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3601
3602 /*
3603 * Store a pointer to the packet so we can free it later,
3604 * and remember what txdirty will be once the packet is
3605 * done.
3606 */
3607 txs->txs_mbuf = m0;
3608 txs->txs_firstdesc = sc->sc_txnext;
3609 txs->txs_lastdesc = lasttx;
3610 txs->txs_ndescs = dmamap->dm_nsegs;
3611
3612 /* Advance the tx pointer. */
3613 sc->sc_txfree -= dmamap->dm_nsegs;
3614 sc->sc_txnext = nexttx;
3615
3616 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3617 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3618
3619 last_txs = txs;
3620 }
3621
3622 if (txs == NULL || sc->sc_txfree == 0) {
3623 /* No more slots left; notify upper layer. */
3624 ifp->if_flags |= IFF_OACTIVE;
3625 }
3626
3627 if (sc->sc_txfree != ofree) {
3628 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3629 sc->sc_dev.dv_xname, lasttx, firsttx));
3630 /*
3631 * Cause a transmit interrupt to happen on the
3632 * last packet we enqueued.
3633 */
3634 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3635 ATW_CDTXSYNC(sc, lasttx, 1,
3636 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3637
3638 /*
3639 * The entire packet chain is set up. Give the
3640 * first descriptor to the chip now.
3641 */
3642 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3643 ATW_CDTXSYNC(sc, firsttx, 1,
3644 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3645
3646 /* Wake up the transmitter. */
3647 ATW_WRITE(sc, ATW_TDR, 0x1);
3648
3649 /* Set a watchdog timer in case the chip flakes out. */
3650 sc->sc_tx_timer = 5;
3651 ifp->if_timer = 1;
3652 }
3653 }
3654
3655 /*
3656 * atw_power:
3657 *
3658 * Power management (suspend/resume) hook.
3659 */
3660 void
3661 atw_power(int why, void *arg)
3662 {
3663 struct atw_softc *sc = arg;
3664 struct ifnet *ifp = &sc->sc_ic.ic_if;
3665 int s;
3666
3667 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3668
3669 s = splnet();
3670 switch (why) {
3671 case PWR_STANDBY:
3672 /* XXX do nothing. */
3673 break;
3674 case PWR_SUSPEND:
3675 atw_stop(ifp, 0);
3676 if (sc->sc_power != NULL)
3677 (*sc->sc_power)(sc, why);
3678 break;
3679 case PWR_RESUME:
3680 if (ifp->if_flags & IFF_UP) {
3681 if (sc->sc_power != NULL)
3682 (*sc->sc_power)(sc, why);
3683 atw_init(ifp);
3684 }
3685 break;
3686 case PWR_SOFTSUSPEND:
3687 case PWR_SOFTSTANDBY:
3688 case PWR_SOFTRESUME:
3689 break;
3690 }
3691 splx(s);
3692 }
3693
3694 /*
3695 * atw_ioctl: [ifnet interface function]
3696 *
3697 * Handle control requests from the operator.
3698 */
3699 int
3700 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3701 {
3702 struct atw_softc *sc = ifp->if_softc;
3703 struct ifreq *ifr = (struct ifreq *)data;
3704 int s, error = 0;
3705
3706 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3707 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3708 return ENXIO;
3709
3710 s = splnet();
3711
3712 switch (cmd) {
3713 case SIOCSIFFLAGS:
3714 if (ifp->if_flags & IFF_UP) {
3715 if (ATW_IS_ENABLED(sc)) {
3716 /*
3717 * To avoid rescanning another access point,
3718 * do not call atw_init() here. Instead,
3719 * only reflect media settings.
3720 */
3721 atw_filter_setup(sc);
3722 } else
3723 error = atw_init(ifp);
3724 } else if (ATW_IS_ENABLED(sc))
3725 atw_stop(ifp, 1);
3726 break;
3727 case SIOCADDMULTI:
3728 case SIOCDELMULTI:
3729 error = (cmd == SIOCADDMULTI) ?
3730 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3731 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3732 if (error == ENETRESET) {
3733 if (ATW_IS_ENABLED(sc))
3734 atw_filter_setup(sc); /* do not rescan */
3735 error = 0;
3736 }
3737 break;
3738 default:
3739 error = ieee80211_ioctl(ifp, cmd, data);
3740 if (error == ENETRESET) {
3741 if (ATW_IS_ENABLED(sc))
3742 error = atw_init(ifp);
3743 else
3744 error = 0;
3745 }
3746 break;
3747 }
3748
3749 /* Try to get more packets going. */
3750 if (ATW_IS_ENABLED(sc))
3751 atw_start(ifp);
3752
3753 splx(s);
3754 return (error);
3755 }
3756
3757 static int
3758 atw_media_change(struct ifnet *ifp)
3759 {
3760 int error;
3761
3762 error = ieee80211_media_change(ifp);
3763 if (error == ENETRESET) {
3764 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3765 (IFF_RUNNING|IFF_UP))
3766 atw_init(ifp); /* XXX lose error */
3767 error = 0;
3768 }
3769 return error;
3770 }
3771
3772 static void
3773 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3774 {
3775 struct atw_softc *sc = ifp->if_softc;
3776
3777 if (ATW_IS_ENABLED(sc) == 0) {
3778 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3779 imr->ifm_status = 0;
3780 return;
3781 }
3782 ieee80211_media_status(ifp, imr);
3783 }
3784