atw.c revision 1.65 1 /* $NetBSD: atw.c,v 1.65 2004/07/15 07:31:05 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.65 2004/07/15 07:31:05 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_bbp_io_enable_delay = 20 * 1000;
145 int atw_bbp_io_disable_delay = 2 * 1000;
146 int atw_writewep_delay = 1000;
147 int atw_beacon_len_adjust = 4;
148 int atw_dwelltime = 200;
149 int atw_xindiv2 = 0;
150
151 #ifdef ATW_DEBUG
152 int atw_debug = 0;
153
154 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
155 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
156 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
157 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
158 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
159 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
160
161 static void atw_print_regs(struct atw_softc *, const char *);
162 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
163
164 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
165 # ifdef ATW_BBPDEBUG
166 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
167 static void atw_rf3000_print(struct atw_softc *);
168 # endif /* ATW_BBPDEBUG */
169
170 # ifdef ATW_SYNDEBUG
171 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
172 static void atw_si4126_print(struct atw_softc *);
173 # endif /* ATW_SYNDEBUG */
174
175 #else
176 #define ATW_DPRINTF(x)
177 #define ATW_DPRINTF2(x)
178 #define ATW_DPRINTF3(x)
179 #define DPRINTF(sc, x) /* nothing */
180 #define DPRINTF2(sc, x) /* nothing */
181 #define DPRINTF3(sc, x) /* nothing */
182 #endif
183
184 /* ifnet methods */
185 void atw_start(struct ifnet *);
186 void atw_watchdog(struct ifnet *);
187 int atw_ioctl(struct ifnet *, u_long, caddr_t);
188 int atw_init(struct ifnet *);
189 void atw_stop(struct ifnet *, int);
190
191 /* Device attachment */
192 void atw_attach(struct atw_softc *);
193 int atw_detach(struct atw_softc *);
194
195 /* Rx/Tx process */
196 void atw_rxdrain(struct atw_softc *);
197 void atw_txdrain(struct atw_softc *);
198 int atw_add_rxbuf(struct atw_softc *, int);
199 void atw_idle(struct atw_softc *, u_int32_t);
200
201 /* Device (de)activation and power state */
202 int atw_enable(struct atw_softc *);
203 void atw_disable(struct atw_softc *);
204 void atw_power(int, void *);
205 void atw_shutdown(void *);
206 void atw_reset(struct atw_softc *);
207
208 /* Interrupt handlers */
209 void atw_rxintr(struct atw_softc *);
210 void atw_txintr(struct atw_softc *);
211 void atw_linkintr(struct atw_softc *, u_int32_t);
212
213 /* 802.11 state machine */
214 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
215 static int atw_tune(struct atw_softc *);
216 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
217 struct ieee80211_node *, int, int, u_int32_t);
218
219 /* Device initialization */
220 static void atw_wcsr_init(struct atw_softc *);
221 static void atw_cmdr_init(struct atw_softc *);
222 static void atw_tofs2_init(struct atw_softc *);
223 static void atw_txlmt_init(struct atw_softc *);
224 static void atw_test1_init(struct atw_softc *);
225 static void atw_rf_reset(struct atw_softc *);
226 static void atw_cfp_init(struct atw_softc *);
227 static void atw_tofs0_init(struct atw_softc *);
228 static void atw_ifs_init(struct atw_softc *);
229 static void atw_response_times_init(struct atw_softc *);
230 static void atw_bbp_io_init(struct atw_softc *);
231
232 /* RAM/ROM utilities */
233 static void atw_clear_sram(struct atw_softc *);
234 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
235 static int atw_read_srom(struct atw_softc *);
236
237 /* BSS setup */
238 static void atw_tsf(struct atw_softc *);
239 static void atw_start_beacon(struct atw_softc *, int);
240 static void atw_write_bssid(struct atw_softc *);
241 static void atw_write_ssid(struct atw_softc *);
242 static void atw_write_sup_rates(struct atw_softc *);
243 static void atw_write_wep(struct atw_softc *);
244
245 /* Media */
246 static int atw_media_change(struct ifnet *);
247 static void atw_media_status(struct ifnet *, struct ifmediareq *);
248
249 static void atw_filter_setup(struct atw_softc *);
250
251 /* 802.11 utilities */
252 static void atw_frame_setdurs(struct atw_softc *,
253 struct atw_frame *, int, int);
254 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
255 static void atw_node_free(struct ieee80211com *,
256 struct ieee80211_node *);
257 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
258 struct ieee80211_node *, int, int,
259 u_int32_t);
260 static __inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
261 uint32_t);
262 static __inline void atw_tsft(struct atw_softc *, uint32_t *,
263 uint32_t *);
264
265 /*
266 * Tuner/transceiver/modem
267 */
268 static void atw_bbp_io_enable(struct atw_softc *, int);
269
270 /* RFMD RF3000 Baseband Processor */
271 static int atw_rf3000_init(struct atw_softc *);
272 static int atw_rf3000_tune(struct atw_softc *, u_int);
273 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
274
275 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
276 static void atw_si4126_tune(struct atw_softc *, u_int);
277 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
278
279 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
280 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
281
282 const char *atw_tx_state[] = {
283 "STOPPED",
284 "RUNNING - read descriptor",
285 "RUNNING - transmitting",
286 "RUNNING - filling fifo", /* XXX */
287 "SUSPENDED",
288 "RUNNING -- write descriptor",
289 "RUNNING -- write last descriptor",
290 "RUNNING - fifo full"
291 };
292
293 const char *atw_rx_state[] = {
294 "STOPPED",
295 "RUNNING - read descriptor",
296 "RUNNING - check this packet, pre-fetch next",
297 "RUNNING - wait for reception",
298 "SUSPENDED",
299 "RUNNING - write descriptor",
300 "RUNNING - flush fifo",
301 "RUNNING - fifo drain"
302 };
303
304 int
305 atw_activate(struct device *self, enum devact act)
306 {
307 struct atw_softc *sc = (struct atw_softc *)self;
308 int rv = 0, s;
309
310 s = splnet();
311 switch (act) {
312 case DVACT_ACTIVATE:
313 rv = EOPNOTSUPP;
314 break;
315
316 case DVACT_DEACTIVATE:
317 if_deactivate(&sc->sc_ic.ic_if);
318 break;
319 }
320 splx(s);
321 return rv;
322 }
323
324 /*
325 * atw_enable:
326 *
327 * Enable the ADM8211 chip.
328 */
329 int
330 atw_enable(struct atw_softc *sc)
331 {
332
333 if (ATW_IS_ENABLED(sc) == 0) {
334 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
335 printf("%s: device enable failed\n",
336 sc->sc_dev.dv_xname);
337 return (EIO);
338 }
339 sc->sc_flags |= ATWF_ENABLED;
340 }
341 return (0);
342 }
343
344 /*
345 * atw_disable:
346 *
347 * Disable the ADM8211 chip.
348 */
349 void
350 atw_disable(struct atw_softc *sc)
351 {
352 if (!ATW_IS_ENABLED(sc))
353 return;
354 if (sc->sc_disable != NULL)
355 (*sc->sc_disable)(sc);
356 sc->sc_flags &= ~ATWF_ENABLED;
357 }
358
359 /* Returns -1 on failure. */
360 static int
361 atw_read_srom(struct atw_softc *sc)
362 {
363 struct seeprom_descriptor sd;
364 u_int32_t reg;
365
366 (void)memset(&sd, 0, sizeof(sd));
367
368 reg = ATW_READ(sc, ATW_TEST0);
369
370 if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
371 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
372 return -1;
373 }
374
375 switch (reg & ATW_TEST0_EPTYP_MASK) {
376 case ATW_TEST0_EPTYP_93c66:
377 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
378 sc->sc_sromsz = 512;
379 sd.sd_chip = C56_66;
380 break;
381 case ATW_TEST0_EPTYP_93c46:
382 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
383 sc->sc_sromsz = 128;
384 sd.sd_chip = C46;
385 break;
386 default:
387 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
388 MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
389 return -1;
390 }
391
392 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
393
394 if (sc->sc_srom == NULL) {
395 printf("%s: unable to allocate SROM buffer\n",
396 sc->sc_dev.dv_xname);
397 return -1;
398 }
399
400 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
401
402 /* ADM8211 has a single 32-bit register for controlling the
403 * 93cx6 SROM. Bit SRS enables the serial port. There is no
404 * "ready" bit. The ADM8211 input/output sense is the reverse
405 * of read_seeprom's.
406 */
407 sd.sd_tag = sc->sc_st;
408 sd.sd_bsh = sc->sc_sh;
409 sd.sd_regsize = 4;
410 sd.sd_control_offset = ATW_SPR;
411 sd.sd_status_offset = ATW_SPR;
412 sd.sd_dataout_offset = ATW_SPR;
413 sd.sd_CK = ATW_SPR_SCLK;
414 sd.sd_CS = ATW_SPR_SCS;
415 sd.sd_DI = ATW_SPR_SDO;
416 sd.sd_DO = ATW_SPR_SDI;
417 sd.sd_MS = ATW_SPR_SRS;
418 sd.sd_RDY = 0;
419
420 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
421 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
422 free(sc->sc_srom, M_DEVBUF);
423 return -1;
424 }
425 #ifdef ATW_DEBUG
426 {
427 int i;
428 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
429 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
430 if (((i % 8) == 0) && (i != 0)) {
431 ATW_DPRINTF(("\n\t"));
432 }
433 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
434 }
435 ATW_DPRINTF(("\n"));
436 }
437 #endif /* ATW_DEBUG */
438 return 0;
439 }
440
441 #ifdef ATW_DEBUG
442 static void
443 atw_print_regs(struct atw_softc *sc, const char *where)
444 {
445 #define PRINTREG(sc, reg) \
446 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
447 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
448
449 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
450
451 PRINTREG(sc, ATW_PAR);
452 PRINTREG(sc, ATW_FRCTL);
453 PRINTREG(sc, ATW_TDR);
454 PRINTREG(sc, ATW_WTDP);
455 PRINTREG(sc, ATW_RDR);
456 PRINTREG(sc, ATW_WRDP);
457 PRINTREG(sc, ATW_RDB);
458 PRINTREG(sc, ATW_CSR3A);
459 PRINTREG(sc, ATW_TDBD);
460 PRINTREG(sc, ATW_TDBP);
461 PRINTREG(sc, ATW_STSR);
462 PRINTREG(sc, ATW_CSR5A);
463 PRINTREG(sc, ATW_NAR);
464 PRINTREG(sc, ATW_CSR6A);
465 PRINTREG(sc, ATW_IER);
466 PRINTREG(sc, ATW_CSR7A);
467 PRINTREG(sc, ATW_LPC);
468 PRINTREG(sc, ATW_TEST1);
469 PRINTREG(sc, ATW_SPR);
470 PRINTREG(sc, ATW_TEST0);
471 PRINTREG(sc, ATW_WCSR);
472 PRINTREG(sc, ATW_WPDR);
473 PRINTREG(sc, ATW_GPTMR);
474 PRINTREG(sc, ATW_GPIO);
475 PRINTREG(sc, ATW_BBPCTL);
476 PRINTREG(sc, ATW_SYNCTL);
477 PRINTREG(sc, ATW_PLCPHD);
478 PRINTREG(sc, ATW_MMIWADDR);
479 PRINTREG(sc, ATW_MMIRADDR1);
480 PRINTREG(sc, ATW_MMIRADDR2);
481 PRINTREG(sc, ATW_TXBR);
482 PRINTREG(sc, ATW_CSR15A);
483 PRINTREG(sc, ATW_ALCSTAT);
484 PRINTREG(sc, ATW_TOFS2);
485 PRINTREG(sc, ATW_CMDR);
486 PRINTREG(sc, ATW_PCIC);
487 PRINTREG(sc, ATW_PMCSR);
488 PRINTREG(sc, ATW_PAR0);
489 PRINTREG(sc, ATW_PAR1);
490 PRINTREG(sc, ATW_MAR0);
491 PRINTREG(sc, ATW_MAR1);
492 PRINTREG(sc, ATW_ATIMDA0);
493 PRINTREG(sc, ATW_ABDA1);
494 PRINTREG(sc, ATW_BSSID0);
495 PRINTREG(sc, ATW_TXLMT);
496 PRINTREG(sc, ATW_MIBCNT);
497 PRINTREG(sc, ATW_BCNT);
498 PRINTREG(sc, ATW_TSFTH);
499 PRINTREG(sc, ATW_TSC);
500 PRINTREG(sc, ATW_SYNRF);
501 PRINTREG(sc, ATW_BPLI);
502 PRINTREG(sc, ATW_CAP0);
503 PRINTREG(sc, ATW_CAP1);
504 PRINTREG(sc, ATW_RMD);
505 PRINTREG(sc, ATW_CFPP);
506 PRINTREG(sc, ATW_TOFS0);
507 PRINTREG(sc, ATW_TOFS1);
508 PRINTREG(sc, ATW_IFST);
509 PRINTREG(sc, ATW_RSPT);
510 PRINTREG(sc, ATW_TSFTL);
511 PRINTREG(sc, ATW_WEPCTL);
512 PRINTREG(sc, ATW_WESK);
513 PRINTREG(sc, ATW_WEPCNT);
514 PRINTREG(sc, ATW_MACTEST);
515 PRINTREG(sc, ATW_FER);
516 PRINTREG(sc, ATW_FEMR);
517 PRINTREG(sc, ATW_FPSR);
518 PRINTREG(sc, ATW_FFER);
519 #undef PRINTREG
520 }
521 #endif /* ATW_DEBUG */
522
523 /*
524 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
525 */
526 void
527 atw_attach(struct atw_softc *sc)
528 {
529 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
530 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
531 };
532 struct ieee80211com *ic = &sc->sc_ic;
533 struct ifnet *ifp = &ic->ic_if;
534 int country_code, error, i, nrate;
535 u_int32_t reg;
536 static const char *type_strings[] = {"Intersil (not supported)",
537 "RFMD", "Marvel (not supported)"};
538
539 sc->sc_txth = atw_txthresh_tab_lo;
540
541 SIMPLEQ_INIT(&sc->sc_txfreeq);
542 SIMPLEQ_INIT(&sc->sc_txdirtyq);
543
544 #ifdef ATW_DEBUG
545 atw_print_regs(sc, "atw_attach");
546 #endif /* ATW_DEBUG */
547
548 /*
549 * Allocate the control data structures, and create and load the
550 * DMA map for it.
551 */
552 if ((error = bus_dmamem_alloc(sc->sc_dmat,
553 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
554 1, &sc->sc_cdnseg, 0)) != 0) {
555 printf("%s: unable to allocate control data, error = %d\n",
556 sc->sc_dev.dv_xname, error);
557 goto fail_0;
558 }
559
560 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
561 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
562 BUS_DMA_COHERENT)) != 0) {
563 printf("%s: unable to map control data, error = %d\n",
564 sc->sc_dev.dv_xname, error);
565 goto fail_1;
566 }
567
568 if ((error = bus_dmamap_create(sc->sc_dmat,
569 sizeof(struct atw_control_data), 1,
570 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
571 printf("%s: unable to create control data DMA map, "
572 "error = %d\n", sc->sc_dev.dv_xname, error);
573 goto fail_2;
574 }
575
576 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
577 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
578 0)) != 0) {
579 printf("%s: unable to load control data DMA map, error = %d\n",
580 sc->sc_dev.dv_xname, error);
581 goto fail_3;
582 }
583
584 /*
585 * Create the transmit buffer DMA maps.
586 */
587 sc->sc_ntxsegs = ATW_NTXSEGS;
588 for (i = 0; i < ATW_TXQUEUELEN; i++) {
589 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
590 sc->sc_ntxsegs, MCLBYTES, 0, 0,
591 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
592 printf("%s: unable to create tx DMA map %d, "
593 "error = %d\n", sc->sc_dev.dv_xname, i, error);
594 goto fail_4;
595 }
596 }
597
598 /*
599 * Create the receive buffer DMA maps.
600 */
601 for (i = 0; i < ATW_NRXDESC; i++) {
602 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
603 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
604 printf("%s: unable to create rx DMA map %d, "
605 "error = %d\n", sc->sc_dev.dv_xname, i, error);
606 goto fail_5;
607 }
608 }
609 for (i = 0; i < ATW_NRXDESC; i++) {
610 sc->sc_rxsoft[i].rxs_mbuf = NULL;
611 }
612
613 /* Reset the chip to a known state. */
614 atw_reset(sc);
615
616 if (atw_read_srom(sc) == -1)
617 return;
618
619 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
620 ATW_SR_RFTYPE_MASK);
621
622 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
623 ATW_SR_BBPTYPE_MASK);
624
625 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
626 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
627 return;
628 }
629 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
630 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
631 return;
632 }
633
634 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
635 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
636
637 /* XXX There exists a Linux driver which seems to use RFType = 0 for
638 * MARVEL. My bug, or theirs?
639 */
640
641 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
642
643 switch (sc->sc_rftype) {
644 case ATW_RFTYPE_INTERSIL:
645 reg |= ATW_SYNCTL_CS1;
646 break;
647 case ATW_RFTYPE_RFMD:
648 reg |= ATW_SYNCTL_CS0;
649 break;
650 case ATW_RFTYPE_MARVEL:
651 break;
652 }
653
654 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
655 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
656
657 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
658
659 switch (sc->sc_bbptype) {
660 case ATW_BBPTYPE_INTERSIL:
661 reg |= ATW_BBPCTL_TWI;
662 break;
663 case ATW_BBPTYPE_RFMD:
664 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
665 ATW_BBPCTL_CCA_ACTLO;
666 break;
667 case ATW_BBPTYPE_MARVEL:
668 break;
669 case ATW_C_BBPTYPE_RFMD:
670 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
671 sc->sc_dev.dv_xname);
672 break;
673 }
674
675 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
676 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
677
678 /*
679 * From this point forward, the attachment cannot fail. A failure
680 * before this point releases all resources that may have been
681 * allocated.
682 */
683 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
684
685 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
686 htole16(sc->sc_srom[ATW_SR_MAC00]),
687 htole16(sc->sc_srom[ATW_SR_MAC01]),
688 htole16(sc->sc_srom[ATW_SR_MAC10])));
689
690 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
691 ATW_SR_CTRY_MASK);
692
693 #define ADD_CHANNEL(_ic, _chan) do { \
694 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
695 _ic->ic_channels[_chan].ic_freq = \
696 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
697 } while (0)
698
699 /* Find available channels */
700 switch (country_code) {
701 case COUNTRY_MMK2: /* 1-14 */
702 ADD_CHANNEL(ic, 14);
703 /*FALLTHROUGH*/
704 case COUNTRY_ETSI: /* 1-13 */
705 for (i = 1; i <= 13; i++)
706 ADD_CHANNEL(ic, i);
707 break;
708 case COUNTRY_FCC: /* 1-11 */
709 case COUNTRY_IC: /* 1-11 */
710 for (i = 1; i <= 11; i++)
711 ADD_CHANNEL(ic, i);
712 break;
713 case COUNTRY_MMK: /* 14 */
714 ADD_CHANNEL(ic, 14);
715 break;
716 case COUNTRY_FRANCE: /* 10-13 */
717 for (i = 10; i <= 13; i++)
718 ADD_CHANNEL(ic, i);
719 break;
720 default: /* assume channels 10-11 */
721 case COUNTRY_SPAIN: /* 10-11 */
722 for (i = 10; i <= 11; i++)
723 ADD_CHANNEL(ic, i);
724 break;
725 }
726
727 /* Read the MAC address. */
728 reg = ATW_READ(sc, ATW_PAR0);
729 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
730 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
731 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
732 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
733 reg = ATW_READ(sc, ATW_PAR1);
734 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
735 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
736
737 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
738 printf(" could not get mac address, attach failed\n");
739 return;
740 }
741
742 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
743
744 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
745 ifp->if_softc = sc;
746 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
747 IFF_NOTRAILERS;
748 ifp->if_ioctl = atw_ioctl;
749 ifp->if_start = atw_start;
750 ifp->if_watchdog = atw_watchdog;
751 ifp->if_init = atw_init;
752 ifp->if_stop = atw_stop;
753 IFQ_SET_READY(&ifp->if_snd);
754
755 ic->ic_phytype = IEEE80211_T_DS;
756 ic->ic_opmode = IEEE80211_M_STA;
757 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
758 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
759
760 nrate = 0;
761 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
762 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
763 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
764 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
765 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
766
767 /*
768 * Call MI attach routines.
769 */
770
771 if_attach(ifp);
772 ieee80211_ifattach(ifp);
773
774 sc->sc_newstate = ic->ic_newstate;
775 ic->ic_newstate = atw_newstate;
776
777 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
778 ic->ic_recv_mgmt = atw_recv_mgmt;
779
780 sc->sc_node_free = ic->ic_node_free;
781 ic->ic_node_free = atw_node_free;
782
783 sc->sc_node_alloc = ic->ic_node_alloc;
784 ic->ic_node_alloc = atw_node_alloc;
785
786 /* possibly we should fill in our own sc_send_prresp, since
787 * the ADM8211 is probably sending probe responses in ad hoc
788 * mode.
789 */
790
791 /* complete initialization */
792 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
793 callout_init(&sc->sc_scan_ch);
794
795 #if NBPFILTER > 0
796 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
797 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
798 #endif
799
800 /*
801 * Make sure the interface is shutdown during reboot.
802 */
803 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
804 if (sc->sc_sdhook == NULL)
805 printf("%s: WARNING: unable to establish shutdown hook\n",
806 sc->sc_dev.dv_xname);
807
808 /*
809 * Add a suspend hook to make sure we come back up after a
810 * resume.
811 */
812 sc->sc_powerhook = powerhook_establish(atw_power, sc);
813 if (sc->sc_powerhook == NULL)
814 printf("%s: WARNING: unable to establish power hook\n",
815 sc->sc_dev.dv_xname);
816
817 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
818 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
819 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
820
821 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
822 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
823 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
824
825 return;
826
827 /*
828 * Free any resources we've allocated during the failed attach
829 * attempt. Do this in reverse order and fall through.
830 */
831 fail_5:
832 for (i = 0; i < ATW_NRXDESC; i++) {
833 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
834 continue;
835 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
836 }
837 fail_4:
838 for (i = 0; i < ATW_TXQUEUELEN; i++) {
839 if (sc->sc_txsoft[i].txs_dmamap == NULL)
840 continue;
841 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
842 }
843 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
844 fail_3:
845 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
846 fail_2:
847 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
848 sizeof(struct atw_control_data));
849 fail_1:
850 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
851 fail_0:
852 return;
853 }
854
855 static struct ieee80211_node *
856 atw_node_alloc(struct ieee80211com *ic)
857 {
858 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
859 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
860
861 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
862 return ni;
863 }
864
865 static void
866 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
867 {
868 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
869
870 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
871 ether_sprintf(ni->ni_bssid)));
872 (*sc->sc_node_free)(ic, ni);
873 }
874
875 /*
876 * atw_reset:
877 *
878 * Perform a soft reset on the ADM8211.
879 */
880 void
881 atw_reset(struct atw_softc *sc)
882 {
883 int i;
884 uint32_t lpc;
885
886 ATW_WRITE(sc, ATW_NAR, 0x0);
887 DELAY(20 * 1000);
888
889 /* Reference driver has a cryptic remark indicating that this might
890 * power-on the chip. I know that it turns off power-saving....
891 */
892 ATW_WRITE(sc, ATW_FRCTL, 0x0);
893
894 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
895
896 for (i = 0; i < 50; i++) {
897 if (ATW_READ(sc, ATW_PAR) == 0)
898 break;
899 DELAY(1000);
900 }
901
902 /* ... and then pause 100ms longer for good measure. */
903 DELAY(100 * 1000);
904
905 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
906
907 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
908 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
909
910 /*
911 * Initialize the PCI Access Register.
912 */
913 sc->sc_busmode = ATW_PAR_PBL_8DW;
914
915 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
916 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
917 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
918
919 /* Turn off maximum power saving, etc.
920 *
921 * XXX Following example of reference driver, should I set
922 * an AID of 1? It didn't seem to help....
923 */
924 ATW_WRITE(sc, ATW_FRCTL, 0x0);
925
926 DELAY(100 * 1000);
927
928 /* Recall EEPROM. */
929 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
930
931 DELAY(10 * 1000);
932
933 lpc = ATW_READ(sc, ATW_LPC);
934
935 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
936
937 /* A reset seems to affect the SRAM contents, so put them into
938 * a known state.
939 */
940 atw_clear_sram(sc);
941
942 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
943 }
944
945 static void
946 atw_clear_sram(struct atw_softc *sc)
947 {
948 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
949 /* XXX not for revision 0x20. */
950 atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
951 }
952
953 /* TBD atw_init
954 *
955 * set MAC based on ic->ic_bss->myaddr
956 * write WEP keys
957 * set TX rate
958 */
959
960 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
961 * without receiving a beacon with the preferred BSSID & SSID.
962 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
963 */
964 static void
965 atw_wcsr_init(struct atw_softc *sc)
966 {
967 uint32_t wcsr;
968
969 wcsr = ATW_READ(sc, ATW_WCSR);
970 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
971 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
972 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
973
974 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
975 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
976 }
977
978 /* Turn off power management. Set Rx store-and-forward mode. */
979 static void
980 atw_cmdr_init(struct atw_softc *sc)
981 {
982 uint32_t cmdr;
983 cmdr = ATW_READ(sc, ATW_CMDR);
984 cmdr &= ~ATW_CMDR_APM;
985 cmdr |= ATW_CMDR_RTE;
986 cmdr &= ~ATW_CMDR_DRT_MASK;
987 cmdr |= ATW_CMDR_DRT_SF;
988
989 ATW_WRITE(sc, ATW_CMDR, cmdr);
990 }
991
992 static void
993 atw_tofs2_init(struct atw_softc *sc)
994 {
995 uint32_t tofs2;
996 /* XXX this magic can probably be figured out from the RFMD docs */
997 #ifndef ATW_REFSLAVE
998 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
999 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1000 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1001 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1002 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1003 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1004 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1005 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1006 #else
1007 /* XXX new magic from reference driver source */
1008 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1009 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1010 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1011 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1012 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1013 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1014 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1015 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1016 #endif
1017 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1018 }
1019
1020 static void
1021 atw_nar_init(struct atw_softc *sc)
1022 {
1023 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1024 }
1025
1026 static void
1027 atw_txlmt_init(struct atw_softc *sc)
1028 {
1029 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1030 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1031 }
1032
1033 static void
1034 atw_test1_init(struct atw_softc *sc)
1035 {
1036 uint32_t test1;
1037
1038 test1 = ATW_READ(sc, ATW_TEST1);
1039 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1040 /* XXX magic 0x1 */
1041 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1042 ATW_WRITE(sc, ATW_TEST1, test1);
1043 }
1044
1045 static void
1046 atw_rf_reset(struct atw_softc *sc)
1047 {
1048 /* XXX this resets an Intersil RF front-end? */
1049 /* TBD condition on Intersil RFType? */
1050 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1051 DELAY(10 * 1000);
1052 ATW_WRITE(sc, ATW_SYNRF, 0);
1053 DELAY(5 * 1000);
1054 }
1055
1056 /* Set 16 TU max duration for the contention-free period (CFP). */
1057 static void
1058 atw_cfp_init(struct atw_softc *sc)
1059 {
1060 uint32_t cfpp;
1061
1062 cfpp = ATW_READ(sc, ATW_CFPP);
1063 cfpp &= ~ATW_CFPP_CFPMD;
1064 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1065 ATW_WRITE(sc, ATW_CFPP, cfpp);
1066 }
1067
1068 static void
1069 atw_tofs0_init(struct atw_softc *sc)
1070 {
1071 /* XXX I guess that the Cardbus clock is 22MHz?
1072 * I am assuming that the role of ATW_TOFS0_USCNT is
1073 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1074 * very clear on this point. It says in the datasheet that it is
1075 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1076 * and 33MHz; maybe this is the way? I see a binary-only driver write
1077 * these values. These values are also the power-on default.
1078 */
1079 ATW_WRITE(sc, ATW_TOFS0,
1080 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1081 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1082 }
1083
1084 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1085 static void
1086 atw_ifs_init(struct atw_softc *sc)
1087 {
1088 uint32_t ifst;
1089 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1090 * Go figure.
1091 */
1092 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1093 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1094 ATW_IFST_SIFS_MASK) |
1095 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1096 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1097
1098 ATW_WRITE(sc, ATW_IFST, ifst);
1099 }
1100
1101 static void
1102 atw_response_times_init(struct atw_softc *sc)
1103 {
1104 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1105 * indicate that the MAC expects at least SIFS + MIRT microseconds
1106 * to pass after it transmits a frame that requires a response;
1107 * it waits at most SIFS + MART microseconds for the response.
1108 * Surely this is not the ACK timeout?
1109 */
1110 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1111 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1112 }
1113
1114 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1115 * engines read and write baseband registers after Rx and before
1116 * Tx, respectively.
1117 */
1118 static void
1119 atw_bbp_io_init(struct atw_softc *sc)
1120 {
1121 switch (sc->sc_bbptype) {
1122 case ATW_BBPTYPE_INTERSIL:
1123 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1124 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1125 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1126 break;
1127 case ATW_BBPTYPE_MARVEL:
1128 /* TBD find out the Marvel settings. */
1129 break;
1130 case ATW_BBPTYPE_RFMD:
1131 default:
1132 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1133 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1134 ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1135 break;
1136 }
1137 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1138 }
1139
1140 /*
1141 * atw_init: [ ifnet interface function ]
1142 *
1143 * Initialize the interface. Must be called at splnet().
1144 */
1145 int
1146 atw_init(struct ifnet *ifp)
1147 {
1148 struct atw_softc *sc = ifp->if_softc;
1149 struct ieee80211com *ic = &sc->sc_ic;
1150 struct atw_txsoft *txs;
1151 struct atw_rxsoft *rxs;
1152 int i, error = 0;
1153
1154 if ((error = atw_enable(sc)) != 0)
1155 goto out;
1156
1157 /*
1158 * Cancel any pending I/O. This also resets.
1159 */
1160 atw_stop(ifp, 0);
1161
1162 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1163 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1164 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
1165 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
1166
1167 atw_wcsr_init(sc);
1168
1169 atw_cmdr_init(sc);
1170
1171 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1172 *
1173 * XXX Set transmit power for ATIM, RTS, Beacon.
1174 */
1175 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1176 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1177
1178 atw_tofs2_init(sc);
1179
1180 atw_nar_init(sc);
1181
1182 atw_txlmt_init(sc);
1183
1184 atw_test1_init(sc);
1185
1186 atw_rf_reset(sc);
1187
1188 atw_cfp_init(sc);
1189
1190 atw_tofs0_init(sc);
1191
1192 atw_ifs_init(sc);
1193
1194 /* XXX Fall asleep after one second of inactivity.
1195 * XXX A frame may only dribble in for 65536us.
1196 */
1197 ATW_WRITE(sc, ATW_RMD,
1198 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1199
1200 atw_response_times_init(sc);
1201
1202 atw_bbp_io_init(sc);
1203
1204 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1205
1206 if ((error = atw_rf3000_init(sc)) != 0)
1207 goto out;
1208
1209 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1210 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1211 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1212
1213 /*
1214 * Initialize the transmit descriptor ring.
1215 */
1216 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1217 for (i = 0; i < ATW_NTXDESC; i++) {
1218 sc->sc_txdescs[i].at_ctl = 0;
1219 /* no transmit chaining */
1220 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1221 sc->sc_txdescs[i].at_buf2 =
1222 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1223 }
1224 /* use ring mode */
1225 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1226 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1227 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1228 sc->sc_txfree = ATW_NTXDESC;
1229 sc->sc_txnext = 0;
1230
1231 /*
1232 * Initialize the transmit job descriptors.
1233 */
1234 SIMPLEQ_INIT(&sc->sc_txfreeq);
1235 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1236 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1237 txs = &sc->sc_txsoft[i];
1238 txs->txs_mbuf = NULL;
1239 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1240 }
1241
1242 /*
1243 * Initialize the receive descriptor and receive job
1244 * descriptor rings.
1245 */
1246 for (i = 0; i < ATW_NRXDESC; i++) {
1247 rxs = &sc->sc_rxsoft[i];
1248 if (rxs->rxs_mbuf == NULL) {
1249 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1250 printf("%s: unable to allocate or map rx "
1251 "buffer %d, error = %d\n",
1252 sc->sc_dev.dv_xname, i, error);
1253 /*
1254 * XXX Should attempt to run with fewer receive
1255 * XXX buffers instead of just failing.
1256 */
1257 atw_rxdrain(sc);
1258 goto out;
1259 }
1260 } else
1261 ATW_INIT_RXDESC(sc, i);
1262 }
1263 sc->sc_rxptr = 0;
1264
1265 /*
1266 * Initialize the interrupt mask and enable interrupts.
1267 */
1268 /* normal interrupts */
1269 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1270 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1271
1272 /* abnormal interrupts */
1273 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1274 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1275 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1276
1277 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1278 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1279 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1280 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1281 ATW_INTR_TRT;
1282
1283 sc->sc_linkint_mask &= sc->sc_inten;
1284 sc->sc_rxint_mask &= sc->sc_inten;
1285 sc->sc_txint_mask &= sc->sc_inten;
1286
1287 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1288 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1289
1290 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1291 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1292
1293 /*
1294 * Give the transmit and receive rings to the ADM8211.
1295 */
1296 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1297 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1298
1299 sc->sc_txthresh = 0;
1300 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1301 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1302
1303 /* common 802.11 configuration */
1304 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1305 switch (ic->ic_opmode) {
1306 case IEEE80211_M_STA:
1307 break;
1308 case IEEE80211_M_AHDEMO: /* XXX */
1309 case IEEE80211_M_IBSS:
1310 ic->ic_flags |= IEEE80211_F_IBSSON;
1311 /*FALLTHROUGH*/
1312 case IEEE80211_M_HOSTAP: /* XXX */
1313 break;
1314 case IEEE80211_M_MONITOR: /* XXX */
1315 break;
1316 }
1317
1318 switch (ic->ic_opmode) {
1319 case IEEE80211_M_AHDEMO:
1320 case IEEE80211_M_HOSTAP:
1321 ic->ic_bss->ni_intval = ic->ic_lintval;
1322 ic->ic_bss->ni_rssi = 0;
1323 ic->ic_bss->ni_rstamp = 0;
1324 break;
1325 default: /* XXX */
1326 break;
1327 }
1328
1329 sc->sc_wepctl = 0;
1330
1331 atw_write_ssid(sc);
1332 atw_write_sup_rates(sc);
1333 if (ic->ic_caps & IEEE80211_C_WEP)
1334 atw_write_wep(sc);
1335
1336 ic->ic_state = IEEE80211_S_INIT;
1337
1338 /*
1339 * Set the receive filter. This will start the transmit and
1340 * receive processes.
1341 */
1342 atw_filter_setup(sc);
1343
1344 /*
1345 * Start the receive process.
1346 */
1347 ATW_WRITE(sc, ATW_RDR, 0x1);
1348
1349 /*
1350 * Note that the interface is now running.
1351 */
1352 ifp->if_flags |= IFF_RUNNING;
1353 ifp->if_flags &= ~IFF_OACTIVE;
1354
1355 /* send no beacons, yet. */
1356 atw_start_beacon(sc, 0);
1357
1358 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1359 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1360 else
1361 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1362 out:
1363 if (error) {
1364 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1365 ifp->if_timer = 0;
1366 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1367 }
1368 #ifdef ATW_DEBUG
1369 atw_print_regs(sc, "end of init");
1370 #endif /* ATW_DEBUG */
1371
1372 return (error);
1373 }
1374
1375 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1376 * 0: MAC control of RF3000/Si4126.
1377 *
1378 * Applies power, or selects RF front-end? Sets reset condition.
1379 *
1380 * TBD support non-RFMD BBP, non-SiLabs synth.
1381 */
1382 static void
1383 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1384 {
1385 if (enable) {
1386 ATW_WRITE(sc, ATW_SYNRF,
1387 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1388 DELAY(atw_bbp_io_enable_delay);
1389 } else {
1390 ATW_WRITE(sc, ATW_SYNRF, 0);
1391 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1392 }
1393 }
1394
1395 static int
1396 atw_tune(struct atw_softc *sc)
1397 {
1398 int rc;
1399 u_int chan;
1400 struct ieee80211com *ic = &sc->sc_ic;
1401
1402 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1403 if (chan == IEEE80211_CHAN_ANY)
1404 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1405
1406 if (chan == sc->sc_cur_chan)
1407 return 0;
1408
1409 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1410 sc->sc_cur_chan, chan));
1411
1412 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1413
1414 atw_si4126_tune(sc, chan);
1415 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1416 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1417 chan);
1418
1419 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1420 DELAY(20 * 1000);
1421 ATW_WRITE(sc, ATW_RDR, 0x1);
1422
1423 if (rc == 0)
1424 sc->sc_cur_chan = chan;
1425
1426 return rc;
1427 }
1428
1429 #ifdef ATW_SYNDEBUG
1430 static void
1431 atw_si4126_print(struct atw_softc *sc)
1432 {
1433 struct ifnet *ifp = &sc->sc_ic.ic_if;
1434 u_int addr, val;
1435
1436 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1437 return;
1438
1439 for (addr = 0; addr <= 8; addr++) {
1440 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1441 if (atw_si4126_read(sc, addr, &val) == 0) {
1442 printf("<unknown> (quitting print-out)\n");
1443 break;
1444 }
1445 printf("%05x\n", val);
1446 }
1447 }
1448 #endif /* ATW_SYNDEBUG */
1449
1450 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1451 *
1452 * The RF/IF synthesizer produces two reference frequencies for
1453 * the RF2948B transceiver. The first frequency the RF2948B requires
1454 * is two times the so-called "intermediate frequency" (IF). Since
1455 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1456 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1457 * frequency required by the transceiver is the radio frequency
1458 * (RF). This is a superheterodyne transceiver; for f(chan) the
1459 * center frequency of the channel we are tuning, RF = f(chan) -
1460 * IF.
1461 *
1462 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1463 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1464 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1465 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1466 */
1467 static void
1468 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1469 {
1470 u_int mhz;
1471 u_int R;
1472 u_int32_t gpio;
1473 u_int16_t gain;
1474
1475 #ifdef ATW_SYNDEBUG
1476 atw_si4126_print(sc);
1477 #endif /* ATW_SYNDEBUG */
1478
1479 if (chan == 14)
1480 mhz = 2484;
1481 else
1482 mhz = 2412 + 5 * (chan - 1);
1483
1484 /* Tune IF to 748MHz to suit the IF LO input of the
1485 * RF2494B, which is 2 x IF. No need to set an IF divider
1486 * because an IF in 526MHz - 952MHz is allowed.
1487 *
1488 * XIN is 44.000MHz, so divide it by two to get allowable
1489 * range of 2-25MHz. SiLabs tells me that this is not
1490 * strictly necessary.
1491 */
1492
1493 if (atw_xindiv2)
1494 R = 44;
1495 else
1496 R = 88;
1497
1498 /* Power-up RF, IF synthesizers. */
1499 atw_si4126_write(sc, SI4126_POWER,
1500 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1501
1502 /* set LPWR, too? */
1503 atw_si4126_write(sc, SI4126_MAIN,
1504 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1505
1506 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1507 * set KP2 to 1.
1508 *
1509 * REFDIF This is different from the reference driver, which
1510 * always sets SI4126_GAIN to 0.
1511 */
1512 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1513
1514 atw_si4126_write(sc, SI4126_GAIN, gain);
1515
1516 /* XIN = 44MHz.
1517 *
1518 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1519 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1520 *
1521 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1522 * so that 1496/88 * 44MHz = 748MHz.
1523 */
1524 atw_si4126_write(sc, SI4126_IFN, 1496);
1525
1526 atw_si4126_write(sc, SI4126_IFR, R);
1527
1528 #ifndef ATW_REFSLAVE
1529 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1530 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1531 * which has no RF1!
1532 */
1533 atw_si4126_write(sc, SI4126_RF1R, R);
1534
1535 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1536 #endif
1537
1538 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1539 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1540 * Now let's multiply it to mhz. So mhz - IF = N.
1541 */
1542 atw_si4126_write(sc, SI4126_RF2R, R);
1543
1544 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1545
1546 /* wait 100us from power-up for RF, IF to settle */
1547 DELAY(100);
1548
1549 gpio = ATW_READ(sc, ATW_GPIO);
1550 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1551 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1552
1553 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1554 /* Set a Prism RF front-end to a special mode for channel 14?
1555 *
1556 * Apparently the SMC2635W needs this, although I don't think
1557 * it has a Prism RF.
1558 */
1559 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1560 }
1561 ATW_WRITE(sc, ATW_GPIO, gpio);
1562
1563 #ifdef ATW_SYNDEBUG
1564 atw_si4126_print(sc);
1565 #endif /* ATW_SYNDEBUG */
1566 }
1567
1568 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1569 * diversity.
1570 *
1571 * !!!
1572 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1573 * !!!
1574 */
1575 static int
1576 atw_rf3000_init(struct atw_softc *sc)
1577 {
1578 int rc = 0;
1579
1580 atw_bbp_io_enable(sc, 1);
1581
1582 /* CCA is acquisition sensitive */
1583 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1584 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1585
1586 if (rc != 0)
1587 goto out;
1588
1589 /* enable diversity */
1590 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1591
1592 if (rc != 0)
1593 goto out;
1594
1595 /* sensible setting from a binary-only driver */
1596 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1597 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1598
1599 if (rc != 0)
1600 goto out;
1601
1602 /* magic from a binary-only driver */
1603 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1604 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1605
1606 if (rc != 0)
1607 goto out;
1608
1609 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1610
1611 if (rc != 0)
1612 goto out;
1613
1614 /* XXX Reference driver remarks that Abocom sets this to 50.
1615 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1616 * in the "reserved" area of register RF3000_OPTIONS1.
1617 *
1618 * EEPROMs for the ADM8211B contain a setting for this register.
1619 */
1620 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1621
1622 if (rc != 0)
1623 goto out;
1624
1625 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1626
1627 if (rc != 0)
1628 goto out;
1629
1630 out:
1631 atw_bbp_io_enable(sc, 0);
1632 return rc;
1633 }
1634
1635 #ifdef ATW_BBPDEBUG
1636 static void
1637 atw_rf3000_print(struct atw_softc *sc)
1638 {
1639 struct ifnet *ifp = &sc->sc_ic.ic_if;
1640 u_int addr, val;
1641
1642 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1643 return;
1644
1645 for (addr = 0x01; addr <= 0x15; addr++) {
1646 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1647 if (atw_rf3000_read(sc, addr, &val) != 0) {
1648 printf("<unknown> (quitting print-out)\n");
1649 break;
1650 }
1651 printf("%08x\n", val);
1652 }
1653 }
1654 #endif /* ATW_BBPDEBUG */
1655
1656 /* Set the power settings on the BBP for channel `chan'. */
1657 static int
1658 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1659 {
1660 int rc = 0;
1661 u_int32_t reg;
1662 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1663
1664 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1665 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1666 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1667
1668 /* odd channels: LSB, even channels: MSB */
1669 if (chan % 2 == 1) {
1670 txpower &= 0xFF;
1671 lpf_cutoff &= 0xFF;
1672 lna_gs_thresh &= 0xFF;
1673 } else {
1674 txpower >>= 8;
1675 lpf_cutoff >>= 8;
1676 lna_gs_thresh >>= 8;
1677 }
1678
1679 #ifdef ATW_BBPDEBUG
1680 atw_rf3000_print(sc);
1681 #endif /* ATW_BBPDEBUG */
1682
1683 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1684 "lna_gs_thresh %02x\n",
1685 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1686
1687 atw_bbp_io_enable(sc, 1);
1688
1689 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1690 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1691 goto out;
1692
1693 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1694 goto out;
1695
1696 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1697 goto out;
1698
1699 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1700
1701 if (rc != 0)
1702 goto out;
1703
1704 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1705
1706 if (rc != 0)
1707 goto out;
1708
1709 #ifdef ATW_BBPDEBUG
1710 atw_rf3000_print(sc);
1711 #endif /* ATW_BBPDEBUG */
1712
1713 out:
1714 atw_bbp_io_enable(sc, 0);
1715
1716 /* set beacon, rts, atim transmit power */
1717 reg = ATW_READ(sc, ATW_PLCPHD);
1718 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1719 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1720 ATW_PLCPHD_SERVICE_MASK);
1721 ATW_WRITE(sc, ATW_PLCPHD, reg);
1722 DELAY(2 * 1000);
1723
1724 return rc;
1725 }
1726
1727 /* Write a register on the RF3000 baseband processor using the
1728 * registers provided by the ADM8211 for this purpose.
1729 *
1730 * Return 0 on success.
1731 */
1732 static int
1733 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1734 {
1735 u_int32_t reg;
1736 int i;
1737
1738 reg = sc->sc_bbpctl_wr |
1739 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1740 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1741
1742 for (i = 10; --i >= 0; ) {
1743 ATW_WRITE(sc, ATW_BBPCTL, reg);
1744 DELAY(2000);
1745 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1746 break;
1747 }
1748
1749 if (i < 0) {
1750 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1751 return ETIMEDOUT;
1752 }
1753 return 0;
1754 }
1755
1756 /* Read a register on the RF3000 baseband processor using the registers
1757 * the ADM8211 provides for this purpose.
1758 *
1759 * The 7-bit register address is addr. Record the 8-bit data in the register
1760 * in *val.
1761 *
1762 * Return 0 on success.
1763 *
1764 * XXX This does not seem to work. The ADM8211 must require more or
1765 * different magic to read the chip than to write it. Possibly some
1766 * of the magic I have derived from a binary-only driver concerns
1767 * the "chip address" (see the RF3000 manual).
1768 */
1769 #ifdef ATW_BBPDEBUG
1770 static int
1771 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1772 {
1773 u_int32_t reg;
1774 int i;
1775
1776 for (i = 1000; --i >= 0; ) {
1777 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1778 break;
1779 DELAY(100);
1780 }
1781
1782 if (i < 0) {
1783 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1784 sc->sc_dev.dv_xname);
1785 return ETIMEDOUT;
1786 }
1787
1788 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1789
1790 ATW_WRITE(sc, ATW_BBPCTL, reg);
1791
1792 for (i = 1000; --i >= 0; ) {
1793 DELAY(100);
1794 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1795 break;
1796 }
1797
1798 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1799
1800 if (i < 0) {
1801 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1802 sc->sc_dev.dv_xname, reg);
1803 return ETIMEDOUT;
1804 }
1805 if (val != NULL)
1806 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1807 return 0;
1808 }
1809 #endif /* ATW_BBPDEBUG */
1810
1811 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1812 * provided by the ADM8211 for that purpose.
1813 *
1814 * val is 18 bits of data, and val is the 4-bit address of the register.
1815 *
1816 * Return 0 on success.
1817 */
1818 static void
1819 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1820 {
1821 uint32_t bits, mask, reg;
1822 const int nbits = 22;
1823
1824 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1825 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1826
1827 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1828 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1829
1830 reg = ATW_SYNRF_SELSYN;
1831 /* reference driver: reset Si4126 serial bus to initial
1832 * conditions?
1833 */
1834 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1835 ATW_WRITE(sc, ATW_SYNRF, reg);
1836
1837 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1838 if ((bits & mask) != 0)
1839 reg |= ATW_SYNRF_SYNDATA;
1840 else
1841 reg &= ~ATW_SYNRF_SYNDATA;
1842 ATW_WRITE(sc, ATW_SYNRF, reg);
1843 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1844 ATW_WRITE(sc, ATW_SYNRF, reg);
1845 }
1846 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1847 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1848 }
1849
1850 /* Read 18-bit data from the 4-bit address addr in Si4126
1851 * RF synthesizer and write the data to *val. Return 0 on success.
1852 *
1853 * XXX This does not seem to work. The ADM8211 must require more or
1854 * different magic to read the chip than to write it.
1855 */
1856 #ifdef ATW_SYNDEBUG
1857 static int
1858 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1859 {
1860 u_int32_t reg;
1861 int i;
1862
1863 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1864
1865 for (i = 1000; --i >= 0; ) {
1866 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1867 break;
1868 DELAY(100);
1869 }
1870
1871 if (i < 0) {
1872 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1873 sc->sc_dev.dv_xname);
1874 return ETIMEDOUT;
1875 }
1876
1877 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1878
1879 ATW_WRITE(sc, ATW_SYNCTL, reg);
1880
1881 for (i = 1000; --i >= 0; ) {
1882 DELAY(100);
1883 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1884 break;
1885 }
1886
1887 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1888
1889 if (i < 0) {
1890 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1891 sc->sc_dev.dv_xname, reg);
1892 return ETIMEDOUT;
1893 }
1894 if (val != NULL)
1895 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1896 ATW_SYNCTL_DATA_MASK);
1897 return 0;
1898 }
1899 #endif /* ATW_SYNDEBUG */
1900
1901 /* XXX is the endianness correct? test. */
1902 #define atw_calchash(addr) \
1903 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1904
1905 /*
1906 * atw_filter_setup:
1907 *
1908 * Set the ADM8211's receive filter.
1909 */
1910 static void
1911 atw_filter_setup(struct atw_softc *sc)
1912 {
1913 struct ieee80211com *ic = &sc->sc_ic;
1914 struct ethercom *ec = &ic->ic_ec;
1915 struct ifnet *ifp = &sc->sc_ic.ic_if;
1916 int hash;
1917 u_int32_t hashes[2];
1918 struct ether_multi *enm;
1919 struct ether_multistep step;
1920
1921 /* According to comments in tlp_al981_filter_setup
1922 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1923 * multicast filter to be set while it is running. Hopefully
1924 * the ADM8211 is not the same!
1925 */
1926 if ((ifp->if_flags & IFF_RUNNING) != 0)
1927 atw_idle(sc, ATW_NAR_SR);
1928
1929 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1930
1931 /* XXX in scan mode, do not filter packets. Maybe this is
1932 * unnecessary.
1933 */
1934 if (ic->ic_state == IEEE80211_S_SCAN ||
1935 (ifp->if_flags & IFF_PROMISC) != 0) {
1936 sc->sc_opmode |= ATW_NAR_PR;
1937 goto allmulti;
1938 }
1939
1940 hashes[0] = hashes[1] = 0x0;
1941
1942 /*
1943 * Program the 64-bit multicast hash filter.
1944 */
1945 ETHER_FIRST_MULTI(step, ec, enm);
1946 while (enm != NULL) {
1947 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1948 ETHER_ADDR_LEN) != 0)
1949 goto allmulti;
1950
1951 hash = atw_calchash(enm->enm_addrlo);
1952 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1953 ETHER_NEXT_MULTI(step, enm);
1954 }
1955 ifp->if_flags &= ~IFF_ALLMULTI;
1956 goto setit;
1957
1958 allmulti:
1959 ifp->if_flags |= IFF_ALLMULTI;
1960 hashes[0] = hashes[1] = 0xffffffff;
1961
1962 setit:
1963 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1964 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1965 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1966 DELAY(20 * 1000);
1967
1968 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1969 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1970 }
1971
1972 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1973 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1974 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1975 * no beacon with the preferred BSSID and SSID in the number of
1976 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1977 */
1978 static void
1979 atw_write_bssid(struct atw_softc *sc)
1980 {
1981 struct ieee80211com *ic = &sc->sc_ic;
1982 u_int8_t *bssid;
1983
1984 bssid = ic->ic_bss->ni_bssid;
1985
1986 ATW_WRITE(sc, ATW_BSSID0,
1987 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1988 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1989 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1990 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1991
1992 ATW_WRITE(sc, ATW_ABDA1,
1993 (ATW_READ(sc, ATW_ABDA1) &
1994 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1995 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1996 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1997
1998 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1999 ether_sprintf(sc->sc_bssid)));
2000 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2001
2002 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2003 }
2004
2005 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2006 * 16-bit word.
2007 */
2008 static void
2009 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2010 {
2011 u_int i;
2012 u_int8_t *ptr;
2013
2014 memcpy(&sc->sc_sram[ofs], buf, buflen);
2015
2016 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2017
2018 KASSERT(buflen + ofs <= ATW_SRAM_SIZE);
2019
2020 ptr = &sc->sc_sram[ofs];
2021
2022 for (i = 0; i < buflen; i += 2) {
2023 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2024 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2025 DELAY(atw_writewep_delay);
2026
2027 ATW_WRITE(sc, ATW_WESK,
2028 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2029 DELAY(atw_writewep_delay);
2030 }
2031 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2032
2033 if (sc->sc_if.if_flags & IFF_DEBUG) {
2034 int n_octets = 0;
2035 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2036 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2037 for (i = 0; i < buflen; i++) {
2038 printf(" %02x", ptr[i]);
2039 if (++n_octets % 24 == 0)
2040 printf("\n");
2041 }
2042 if (n_octets % 24 != 0)
2043 printf("\n");
2044 }
2045 }
2046
2047 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2048 static void
2049 atw_write_wep(struct atw_softc *sc)
2050 {
2051 struct ieee80211com *ic = &sc->sc_ic;
2052 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2053 u_int8_t buf[IEEE80211_WEP_NKID]
2054 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2055 u_int32_t reg;
2056 int i;
2057
2058 sc->sc_wepctl = 0;
2059 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2060
2061 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2062 return;
2063
2064 memset(&buf[0][0], 0, sizeof(buf));
2065
2066 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2067 if (ic->ic_nw_keys[i].wk_len > 5) {
2068 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2069 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2070 buf[i][1] = ATW_WEP_ENABLED;
2071 } else {
2072 buf[i][1] = 0;
2073 continue;
2074 }
2075 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2076 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2077 ic->ic_nw_keys[i].wk_len - 1);
2078 }
2079
2080 reg = ATW_READ(sc, ATW_MACTEST);
2081 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2082 reg &= ~ATW_MACTEST_KEYID_MASK;
2083 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2084 ATW_WRITE(sc, ATW_MACTEST, reg);
2085
2086 /* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2087 * throughout.)
2088 */
2089 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2090 if (sc->sc_if.if_flags & IFF_LINK2)
2091 sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2092
2093 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2094 sizeof(buf));
2095 }
2096
2097 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2098
2099 static void
2100 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2101 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2102 {
2103 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2104
2105 switch (subtype) {
2106 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2107 /* do nothing: hardware answers probe request */
2108 break;
2109 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2110 case IEEE80211_FC0_SUBTYPE_BEACON:
2111 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2112 break;
2113 default:
2114 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2115 break;
2116 }
2117 return;
2118 }
2119
2120 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2121 * of IBSSs with like SSID/channel but different BSSID. It joins the
2122 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2123 * convention. Possibly the ADMtek chip does this for us; I will have
2124 * to test to find out.
2125 *
2126 * XXX we should add the duration field of the received beacon to
2127 * the TSF time it contains before comparing it with the ADM8211's
2128 * TSF.
2129 */
2130 static void
2131 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2132 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2133 {
2134 struct atw_softc *sc;
2135 struct ieee80211_frame *wh;
2136 uint32_t tsftl, tsfth;
2137 uint32_t bcn_tsftl, bcn_tsfth;
2138 int do_print = 0;
2139 union {
2140 uint32_t words[2];
2141 uint8_t tstamp[8];
2142 } u;
2143
2144 sc = (struct atw_softc*)ic->ic_if.if_softc;
2145
2146 if (ic->ic_if.if_flags & IFF_LINK0) {
2147 do_print = (ic->ic_if.if_flags & IFF_DEBUG)
2148 ? 1 : ratecheck(&sc->sc_last_beacon,
2149 &atw_beacon_mininterval);
2150 }
2151
2152 wh = mtod(m0, struct ieee80211_frame *);
2153
2154 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2155
2156 if (ic->ic_state != IEEE80211_S_RUN)
2157 return;
2158
2159 if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2160 ic->ic_bss->ni_chan)) == NULL) {
2161 if (do_print)
2162 printf("%s: atw_recv_beacon: no node %s\n",
2163 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2164 return;
2165 }
2166
2167 if (ieee80211_match_bss(ic, ni) != 0)
2168 return;
2169
2170 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2171 return;
2172
2173 if (do_print)
2174 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2175 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2176
2177 if (ic->ic_opmode != IEEE80211_M_IBSS)
2178 return;
2179
2180 atw_tsft(sc, &tsfth, &tsftl);
2181
2182 (void)memcpy(&u, &ic->ic_bss->ni_tstamp[0], sizeof(u));
2183 bcn_tsftl = le32toh(u.words[0]);
2184 bcn_tsfth = le32toh(u.words[1]);
2185
2186 if (do_print)
2187 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2188 sc->sc_dev.dv_xname, ((uint64_t)tsfth << 32) | tsftl,
2189 ((uint64_t)bcn_tsfth << 32) | bcn_tsftl);
2190
2191 /* we are faster, let the other guy catch up */
2192 if (bcn_tsfth < tsfth)
2193 return;
2194 else if (bcn_tsfth == tsfth && bcn_tsftl < tsftl)
2195 return;
2196
2197 if (do_print)
2198 printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2199 ether_sprintf(wh->i_addr2));
2200
2201 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2202
2203 atw_tsf(sc);
2204
2205 /* negotiate rates with new IBSS */
2206 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2207 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2208 if (ni->ni_rates.rs_nrates == 0) {
2209 printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2210 ether_sprintf(ni->ni_bssid));
2211 return;
2212 }
2213
2214 if (do_print) {
2215 printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2216 ether_sprintf(ic->ic_bss->ni_bssid));
2217 printf("%s ", ether_sprintf(ni->ni_bssid));
2218 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2219 }
2220
2221 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2222
2223 atw_write_bssid(sc);
2224 atw_start_beacon(sc, 1);
2225 }
2226
2227 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2228 * In ad hoc mode, the SSID is written to the beacons sent by the
2229 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2230 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2231 * indications.
2232 */
2233 static void
2234 atw_write_ssid(struct atw_softc *sc)
2235 {
2236 struct ieee80211com *ic = &sc->sc_ic;
2237 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2238 * it only expects the element length, not its ID.
2239 */
2240 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2241
2242 memset(buf, 0, sizeof(buf));
2243 buf[0] = ic->ic_bss->ni_esslen;
2244 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2245
2246 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2247 roundup(1 + ic->ic_bss->ni_esslen, 2));
2248 }
2249
2250 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2251 * In ad hoc mode, the supported rates are written to beacons sent by the
2252 * ADM8211.
2253 */
2254 static void
2255 atw_write_sup_rates(struct atw_softc *sc)
2256 {
2257 struct ieee80211com *ic = &sc->sc_ic;
2258 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2259 * supported rates
2260 */
2261 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2262
2263 memset(buf, 0, sizeof(buf));
2264
2265 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2266
2267 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2268 ic->ic_bss->ni_rates.rs_nrates);
2269
2270 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2271 }
2272
2273 /* Start/stop sending beacons. */
2274 void
2275 atw_start_beacon(struct atw_softc *sc, int start)
2276 {
2277 struct ieee80211com *ic = &sc->sc_ic;
2278 uint16_t chan;
2279 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2280 size_t len;
2281
2282 if (ATW_IS_ENABLED(sc) == 0)
2283 return;
2284
2285 /* start beacons */
2286 len = sizeof(struct ieee80211_frame) +
2287 8 /* timestamp */ + 2 /* beacon interval */ +
2288 2 /* capability info */ +
2289 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2290 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2291 3 /* DS parameters */ +
2292 IEEE80211_CRC_LEN;
2293
2294 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2295 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2296 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2297
2298 ATW_WRITE(sc, ATW_BCNT, bcnt);
2299 ATW_WRITE(sc, ATW_CAP1, cap1);
2300
2301 if (!start)
2302 return;
2303
2304 /* TBD use ni_capinfo */
2305
2306 capinfo = 0;
2307 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2308 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2309 if (ic->ic_flags & IEEE80211_F_WEPON)
2310 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2311
2312 switch (ic->ic_opmode) {
2313 case IEEE80211_M_IBSS:
2314 len += 4; /* IBSS parameters */
2315 capinfo |= IEEE80211_CAPINFO_IBSS;
2316 break;
2317 case IEEE80211_M_HOSTAP:
2318 /* XXX 6-byte minimum TIM */
2319 len += atw_beacon_len_adjust;
2320 capinfo |= IEEE80211_CAPINFO_ESS;
2321 break;
2322 default:
2323 return;
2324 }
2325
2326 /* set listen interval
2327 * XXX do software units agree w/ hardware?
2328 */
2329 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2330 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2331
2332 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
2333
2334 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2335 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2336 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2337
2338 ATW_WRITE(sc, ATW_BCNT, bcnt);
2339 ATW_WRITE(sc, ATW_BPLI, bpli);
2340 ATW_WRITE(sc, ATW_CAP0, cap0);
2341 ATW_WRITE(sc, ATW_CAP1, cap1);
2342
2343 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2344 sc->sc_dev.dv_xname, bcnt));
2345
2346 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2347 sc->sc_dev.dv_xname, cap1));
2348 }
2349
2350 /* Return the 32 lsb of the last TSFT divisible by ival. */
2351 static __inline uint32_t
2352 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2353 {
2354 /* Following the reference driver's lead, I compute
2355 *
2356 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2357 *
2358 * without using 64-bit arithmetic, using the following
2359 * relationship:
2360 *
2361 * (0x100000000 * H + L) % m
2362 * = ((0x100000000 % m) * H + L) % m
2363 * = (((0xffffffff + 1) % m) * H + L) % m
2364 * = ((0xffffffff % m + 1 % m) * H + L) % m
2365 * = ((0xffffffff % m + 1) * H + L) % m
2366 */
2367 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2368 }
2369
2370 static __inline void
2371 atw_tsft(struct atw_softc *sc, uint32_t *tsfth, uint32_t *tsftl)
2372 {
2373 int i;
2374 for (i = 0; i < 2; i++) {
2375 *tsfth = ATW_READ(sc, ATW_TSFTH);
2376 *tsftl = ATW_READ(sc, ATW_TSFTL);
2377 if (ATW_READ(sc, ATW_TSFTH) == *tsfth)
2378 break;
2379 }
2380 }
2381
2382 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2383 * the ieee80211com.
2384 *
2385 * Predict the next target beacon transmission time (TBTT) and
2386 * write it to the ADM8211.
2387 */
2388 static void
2389 atw_tsf(struct atw_softc *sc)
2390 {
2391 #define TBTTOFS 20 /* TU */
2392
2393 struct ieee80211com *ic = &sc->sc_ic;
2394 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2395 union {
2396 uint32_t words[2];
2397 uint8_t tstamp[8];
2398 } u;
2399
2400 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2401 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2402 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2403 atw_tsft(sc, &tsfth, &tsftl);
2404 u.words[0] = htole32(tsftl);
2405 u.words[1] = htole32(tsfth);
2406 (void)memcpy(&ic->ic_bss->ni_tstamp[0], &u,
2407 sizeof(ic->ic_bss->ni_tstamp));
2408 } else {
2409 (void)memcpy(&u, &ic->ic_bss->ni_tstamp[0], sizeof(u));
2410 tsftl = le32toh(u.words[0]);
2411 tsfth = le32toh(u.words[1]);
2412 }
2413
2414 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2415
2416 /* We sent/received the last beacon `past' microseconds
2417 * after the interval divided the TSF timer.
2418 */
2419 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2420
2421 /* Skip ten beacons so that the TBTT cannot pass before
2422 * we've programmed it. Ten is an arbitrary number.
2423 */
2424 tbtt = past_even + ival * 10;
2425
2426 ATW_WRITE(sc, ATW_TOFS1,
2427 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2428 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2429 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2430 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2431 #undef TBTTOFS
2432 }
2433
2434 static void
2435 atw_next_scan(void *arg)
2436 {
2437 struct atw_softc *sc = arg;
2438 struct ieee80211com *ic = &sc->sc_ic;
2439 struct ifnet *ifp = &ic->ic_if;
2440 int s;
2441
2442 /* don't call atw_start w/o network interrupts blocked */
2443 s = splnet();
2444 if (ic->ic_state == IEEE80211_S_SCAN)
2445 ieee80211_next_scan(ifp);
2446 splx(s);
2447 }
2448
2449 /* Synchronize the hardware state with the software state. */
2450 static int
2451 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2452 {
2453 struct ifnet *ifp = &ic->ic_if;
2454 struct atw_softc *sc = ifp->if_softc;
2455 enum ieee80211_state ostate;
2456 int error;
2457
2458 ostate = ic->ic_state;
2459
2460 if (nstate == IEEE80211_S_INIT) {
2461 callout_stop(&sc->sc_scan_ch);
2462 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2463 atw_start_beacon(sc, 0);
2464 return (*sc->sc_newstate)(ic, nstate, arg);
2465 }
2466
2467 if ((error = atw_tune(sc)) != 0)
2468 return error;
2469
2470 switch (nstate) {
2471 case IEEE80211_S_ASSOC:
2472 break;
2473 case IEEE80211_S_INIT:
2474 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2475 break;
2476 case IEEE80211_S_SCAN:
2477 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2478 atw_next_scan, sc);
2479
2480 break;
2481 case IEEE80211_S_RUN:
2482 if (ic->ic_opmode == IEEE80211_M_STA)
2483 break;
2484 /*FALLTHROUGH*/
2485 case IEEE80211_S_AUTH:
2486 atw_write_bssid(sc);
2487 atw_write_ssid(sc);
2488 atw_write_sup_rates(sc);
2489
2490 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2491 ic->ic_opmode == IEEE80211_M_MONITOR)
2492 break;
2493
2494 /* set listen interval
2495 * XXX do software units agree w/ hardware?
2496 */
2497 ATW_WRITE(sc, ATW_BPLI,
2498 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2499 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2500 ATW_BPLI_LI_MASK));
2501
2502 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2503 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2504
2505 atw_tsf(sc);
2506 break;
2507 }
2508
2509 if (nstate != IEEE80211_S_SCAN)
2510 callout_stop(&sc->sc_scan_ch);
2511
2512 if (nstate == IEEE80211_S_RUN &&
2513 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2514 ic->ic_opmode == IEEE80211_M_IBSS))
2515 atw_start_beacon(sc, 1);
2516 else
2517 atw_start_beacon(sc, 0);
2518
2519 error = (*sc->sc_newstate)(ic, nstate, arg);
2520
2521 if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2522 atw_write_bssid(sc);
2523
2524 return error;
2525 }
2526
2527 /*
2528 * atw_add_rxbuf:
2529 *
2530 * Add a receive buffer to the indicated descriptor.
2531 */
2532 int
2533 atw_add_rxbuf(struct atw_softc *sc, int idx)
2534 {
2535 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2536 struct mbuf *m;
2537 int error;
2538
2539 MGETHDR(m, M_DONTWAIT, MT_DATA);
2540 if (m == NULL)
2541 return (ENOBUFS);
2542
2543 MCLGET(m, M_DONTWAIT);
2544 if ((m->m_flags & M_EXT) == 0) {
2545 m_freem(m);
2546 return (ENOBUFS);
2547 }
2548
2549 if (rxs->rxs_mbuf != NULL)
2550 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2551
2552 rxs->rxs_mbuf = m;
2553
2554 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2555 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2556 BUS_DMA_READ|BUS_DMA_NOWAIT);
2557 if (error) {
2558 printf("%s: can't load rx DMA map %d, error = %d\n",
2559 sc->sc_dev.dv_xname, idx, error);
2560 panic("atw_add_rxbuf"); /* XXX */
2561 }
2562
2563 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2564 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2565
2566 ATW_INIT_RXDESC(sc, idx);
2567
2568 return (0);
2569 }
2570
2571 /*
2572 * Release any queued transmit buffers.
2573 */
2574 void
2575 atw_txdrain(struct atw_softc *sc)
2576 {
2577 struct atw_txsoft *txs;
2578
2579 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2580 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2581 if (txs->txs_mbuf != NULL) {
2582 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2583 m_freem(txs->txs_mbuf);
2584 txs->txs_mbuf = NULL;
2585 }
2586 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2587 }
2588 sc->sc_tx_timer = 0;
2589 }
2590
2591 /*
2592 * atw_stop: [ ifnet interface function ]
2593 *
2594 * Stop transmission on the interface.
2595 */
2596 void
2597 atw_stop(struct ifnet *ifp, int disable)
2598 {
2599 struct atw_softc *sc = ifp->if_softc;
2600 struct ieee80211com *ic = &sc->sc_ic;
2601
2602 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2603
2604 /* Disable interrupts. */
2605 ATW_WRITE(sc, ATW_IER, 0);
2606
2607 /* Stop the transmit and receive processes. */
2608 sc->sc_opmode = 0;
2609 ATW_WRITE(sc, ATW_NAR, 0);
2610 DELAY(20 * 1000);
2611 ATW_WRITE(sc, ATW_TDBD, 0);
2612 ATW_WRITE(sc, ATW_TDBP, 0);
2613 ATW_WRITE(sc, ATW_RDB, 0);
2614
2615 atw_txdrain(sc);
2616
2617 if (disable) {
2618 atw_rxdrain(sc);
2619 atw_disable(sc);
2620 }
2621
2622 /*
2623 * Mark the interface down and cancel the watchdog timer.
2624 */
2625 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2626 ifp->if_timer = 0;
2627
2628 if (!disable)
2629 atw_reset(sc);
2630 }
2631
2632 /*
2633 * atw_rxdrain:
2634 *
2635 * Drain the receive queue.
2636 */
2637 void
2638 atw_rxdrain(struct atw_softc *sc)
2639 {
2640 struct atw_rxsoft *rxs;
2641 int i;
2642
2643 for (i = 0; i < ATW_NRXDESC; i++) {
2644 rxs = &sc->sc_rxsoft[i];
2645 if (rxs->rxs_mbuf == NULL)
2646 continue;
2647 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2648 m_freem(rxs->rxs_mbuf);
2649 rxs->rxs_mbuf = NULL;
2650 }
2651 }
2652
2653 /*
2654 * atw_detach:
2655 *
2656 * Detach an ADM8211 interface.
2657 */
2658 int
2659 atw_detach(struct atw_softc *sc)
2660 {
2661 struct ifnet *ifp = &sc->sc_ic.ic_if;
2662 struct atw_rxsoft *rxs;
2663 struct atw_txsoft *txs;
2664 int i;
2665
2666 /*
2667 * Succeed now if there isn't any work to do.
2668 */
2669 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2670 return (0);
2671
2672 ieee80211_ifdetach(ifp);
2673 if_detach(ifp);
2674
2675 for (i = 0; i < ATW_NRXDESC; i++) {
2676 rxs = &sc->sc_rxsoft[i];
2677 if (rxs->rxs_mbuf != NULL) {
2678 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2679 m_freem(rxs->rxs_mbuf);
2680 rxs->rxs_mbuf = NULL;
2681 }
2682 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2683 }
2684 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2685 txs = &sc->sc_txsoft[i];
2686 if (txs->txs_mbuf != NULL) {
2687 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2688 m_freem(txs->txs_mbuf);
2689 txs->txs_mbuf = NULL;
2690 }
2691 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2692 }
2693 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2694 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2695 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2696 sizeof(struct atw_control_data));
2697 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2698
2699 shutdownhook_disestablish(sc->sc_sdhook);
2700 powerhook_disestablish(sc->sc_powerhook);
2701
2702 if (sc->sc_srom)
2703 free(sc->sc_srom, M_DEVBUF);
2704
2705 return (0);
2706 }
2707
2708 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2709 void
2710 atw_shutdown(void *arg)
2711 {
2712 struct atw_softc *sc = arg;
2713
2714 atw_stop(&sc->sc_ic.ic_if, 1);
2715 }
2716
2717 int
2718 atw_intr(void *arg)
2719 {
2720 struct atw_softc *sc = arg;
2721 struct ifnet *ifp = &sc->sc_ic.ic_if;
2722 u_int32_t status, rxstatus, txstatus, linkstatus;
2723 int handled = 0, txthresh;
2724
2725 #ifdef DEBUG
2726 if (ATW_IS_ENABLED(sc) == 0)
2727 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2728 #endif
2729
2730 /*
2731 * If the interface isn't running, the interrupt couldn't
2732 * possibly have come from us.
2733 */
2734 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2735 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2736 return (0);
2737
2738 for (;;) {
2739 status = ATW_READ(sc, ATW_STSR);
2740
2741 if (status)
2742 ATW_WRITE(sc, ATW_STSR, status);
2743
2744 #ifdef ATW_DEBUG
2745 #define PRINTINTR(flag) do { \
2746 if ((status & flag) != 0) { \
2747 printf("%s" #flag, delim); \
2748 delim = ","; \
2749 } \
2750 } while (0)
2751
2752 if (atw_debug > 1 && status) {
2753 const char *delim = "<";
2754
2755 printf("%s: reg[STSR] = %x",
2756 sc->sc_dev.dv_xname, status);
2757
2758 PRINTINTR(ATW_INTR_FBE);
2759 PRINTINTR(ATW_INTR_LINKOFF);
2760 PRINTINTR(ATW_INTR_LINKON);
2761 PRINTINTR(ATW_INTR_RCI);
2762 PRINTINTR(ATW_INTR_RDU);
2763 PRINTINTR(ATW_INTR_REIS);
2764 PRINTINTR(ATW_INTR_RPS);
2765 PRINTINTR(ATW_INTR_TCI);
2766 PRINTINTR(ATW_INTR_TDU);
2767 PRINTINTR(ATW_INTR_TLT);
2768 PRINTINTR(ATW_INTR_TPS);
2769 PRINTINTR(ATW_INTR_TRT);
2770 PRINTINTR(ATW_INTR_TUF);
2771 PRINTINTR(ATW_INTR_BCNTC);
2772 PRINTINTR(ATW_INTR_ATIME);
2773 PRINTINTR(ATW_INTR_TBTT);
2774 PRINTINTR(ATW_INTR_TSCZ);
2775 PRINTINTR(ATW_INTR_TSFTF);
2776 printf(">\n");
2777 }
2778 #undef PRINTINTR
2779 #endif /* ATW_DEBUG */
2780
2781 if ((status & sc->sc_inten) == 0)
2782 break;
2783
2784 handled = 1;
2785
2786 rxstatus = status & sc->sc_rxint_mask;
2787 txstatus = status & sc->sc_txint_mask;
2788 linkstatus = status & sc->sc_linkint_mask;
2789
2790 if (linkstatus) {
2791 atw_linkintr(sc, linkstatus);
2792 }
2793
2794 if (rxstatus) {
2795 /* Grab any new packets. */
2796 atw_rxintr(sc);
2797
2798 if (rxstatus & ATW_INTR_RDU) {
2799 printf("%s: receive ring overrun\n",
2800 sc->sc_dev.dv_xname);
2801 /* Get the receive process going again. */
2802 ATW_WRITE(sc, ATW_RDR, 0x1);
2803 break;
2804 }
2805 }
2806
2807 if (txstatus) {
2808 /* Sweep up transmit descriptors. */
2809 atw_txintr(sc);
2810
2811 if (txstatus & ATW_INTR_TLT)
2812 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2813 sc->sc_dev.dv_xname));
2814
2815 if (txstatus & ATW_INTR_TRT)
2816 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2817 sc->sc_dev.dv_xname));
2818
2819 /* If Tx under-run, increase our transmit threshold
2820 * if another is available.
2821 */
2822 txthresh = sc->sc_txthresh + 1;
2823 if ((txstatus & ATW_INTR_TUF) &&
2824 sc->sc_txth[txthresh].txth_name != NULL) {
2825 /* Idle the transmit process. */
2826 atw_idle(sc, ATW_NAR_ST);
2827
2828 sc->sc_txthresh = txthresh;
2829 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2830 sc->sc_opmode |=
2831 sc->sc_txth[txthresh].txth_opmode;
2832 printf("%s: transmit underrun; new "
2833 "threshold: %s\n", sc->sc_dev.dv_xname,
2834 sc->sc_txth[txthresh].txth_name);
2835
2836 /* Set the new threshold and restart
2837 * the transmit process.
2838 */
2839 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2840 DELAY(20 * 1000);
2841 ATW_WRITE(sc, ATW_RDR, 0x1);
2842 /* XXX Log every Nth underrun from
2843 * XXX now on?
2844 */
2845 }
2846 }
2847
2848 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2849 if (status & ATW_INTR_TPS)
2850 printf("%s: transmit process stopped\n",
2851 sc->sc_dev.dv_xname);
2852 if (status & ATW_INTR_RPS)
2853 printf("%s: receive process stopped\n",
2854 sc->sc_dev.dv_xname);
2855 (void)atw_init(ifp);
2856 break;
2857 }
2858
2859 if (status & ATW_INTR_FBE) {
2860 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2861 (void)atw_init(ifp);
2862 break;
2863 }
2864
2865 /*
2866 * Not handled:
2867 *
2868 * Transmit buffer unavailable -- normal
2869 * condition, nothing to do, really.
2870 *
2871 * Early receive interrupt -- not available on
2872 * all chips, we just use RI. We also only
2873 * use single-segment receive DMA, so this
2874 * is mostly useless.
2875 *
2876 * TBD others
2877 */
2878 }
2879
2880 /* Try to get more packets going. */
2881 atw_start(ifp);
2882
2883 return (handled);
2884 }
2885
2886 /*
2887 * atw_idle:
2888 *
2889 * Cause the transmit and/or receive processes to go idle.
2890 *
2891 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2892 * process in STSR if I clear SR or ST after the process has already
2893 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2894 * do not seem to be too reliable. Perhaps I have the sense of the
2895 * Rx bits switched with the Tx bits?
2896 */
2897 void
2898 atw_idle(struct atw_softc *sc, u_int32_t bits)
2899 {
2900 u_int32_t ackmask = 0, opmode, stsr, test0;
2901 int i, s;
2902
2903 s = splnet();
2904
2905 opmode = sc->sc_opmode & ~bits;
2906
2907 if (bits & ATW_NAR_SR)
2908 ackmask |= ATW_INTR_RPS;
2909
2910 if (bits & ATW_NAR_ST) {
2911 ackmask |= ATW_INTR_TPS;
2912 /* set ATW_NAR_HF to flush TX FIFO. */
2913 opmode |= ATW_NAR_HF;
2914 }
2915
2916 ATW_WRITE(sc, ATW_NAR, opmode);
2917 DELAY(20 * 1000);
2918
2919 for (i = 0; i < 10; i++) {
2920 stsr = ATW_READ(sc, ATW_STSR);
2921 if ((stsr & ackmask) == ackmask)
2922 break;
2923 DELAY(1000);
2924 }
2925
2926 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2927
2928 if ((stsr & ackmask) == ackmask)
2929 goto out;
2930
2931 test0 = ATW_READ(sc, ATW_TEST0);
2932
2933 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2934 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2935 printf("%s: transmit process not idle [%s]\n",
2936 sc->sc_dev.dv_xname,
2937 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2938 printf("%s: bits %08x test0 %08x stsr %08x\n",
2939 sc->sc_dev.dv_xname, bits, test0, stsr);
2940 }
2941
2942 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2943 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2944 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2945 sc->sc_dev.dv_xname,
2946 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2947 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2948 sc->sc_dev.dv_xname, bits, test0, stsr));
2949 }
2950 out:
2951 if ((bits & ATW_NAR_ST) != 0)
2952 atw_txdrain(sc);
2953 splx(s);
2954 return;
2955 }
2956
2957 /*
2958 * atw_linkintr:
2959 *
2960 * Helper; handle link-status interrupts.
2961 */
2962 void
2963 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2964 {
2965 struct ieee80211com *ic = &sc->sc_ic;
2966
2967 if (ic->ic_state != IEEE80211_S_RUN)
2968 return;
2969
2970 if (linkstatus & ATW_INTR_LINKON) {
2971 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2972 sc->sc_rescan_timer = 0;
2973 } else if (linkstatus & ATW_INTR_LINKOFF) {
2974 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2975 if (ic->ic_opmode != IEEE80211_M_STA)
2976 return;
2977 sc->sc_rescan_timer = 3;
2978 ic->ic_if.if_timer = 1;
2979 }
2980 }
2981
2982 /*
2983 * atw_rxintr:
2984 *
2985 * Helper; handle receive interrupts.
2986 */
2987 void
2988 atw_rxintr(struct atw_softc *sc)
2989 {
2990 static int rate_tbl[] = {2, 4, 11, 22, 44};
2991 struct ieee80211com *ic = &sc->sc_ic;
2992 struct ieee80211_node *ni;
2993 struct ieee80211_frame *wh;
2994 struct ifnet *ifp = &ic->ic_if;
2995 struct atw_rxsoft *rxs;
2996 struct mbuf *m;
2997 u_int32_t rxstat;
2998 int i, len, rate, rate0;
2999 u_int32_t rssi;
3000
3001 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3002 rxs = &sc->sc_rxsoft[i];
3003
3004 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3005
3006 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3007 rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
3008 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3009
3010 if (rxstat & ATW_RXSTAT_OWN)
3011 break; /* We have processed all receive buffers. */
3012
3013 DPRINTF3(sc,
3014 ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
3015 sc->sc_dev.dv_xname,
3016 le32toh(sc->sc_rxdescs[i].ar_stat),
3017 le32toh(sc->sc_rxdescs[i].ar_rssi),
3018 le32toh(sc->sc_rxdescs[i].ar_buf1),
3019 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3020
3021 /*
3022 * Make sure the packet fits in one buffer. This should
3023 * always be the case.
3024 */
3025 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3026 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3027 printf("%s: incoming packet spilled, resetting\n",
3028 sc->sc_dev.dv_xname);
3029 (void)atw_init(ifp);
3030 return;
3031 }
3032
3033 /*
3034 * If an error occurred, update stats, clear the status
3035 * word, and leave the packet buffer in place. It will
3036 * simply be reused the next time the ring comes around.
3037 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3038 * error.
3039 */
3040
3041 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3042 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3043 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3044 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3045 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3046 ATW_RXSTAT_ICVE)) != 0)) {
3047 #define PRINTERR(bit, str) \
3048 if (rxstat & (bit)) \
3049 printf("%s: receive error: %s\n", \
3050 sc->sc_dev.dv_xname, str)
3051 ifp->if_ierrors++;
3052 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3053 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3054 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3055 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3056 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3057 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3058 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3059 #undef PRINTERR
3060 ATW_INIT_RXDESC(sc, i);
3061 continue;
3062 }
3063
3064 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3065 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3066
3067 /*
3068 * No errors; receive the packet. Note the ADM8211
3069 * includes the CRC in promiscuous mode.
3070 */
3071 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3072
3073 /*
3074 * Allocate a new mbuf cluster. If that fails, we are
3075 * out of memory, and must drop the packet and recycle
3076 * the buffer that's already attached to this descriptor.
3077 */
3078 m = rxs->rxs_mbuf;
3079 if (atw_add_rxbuf(sc, i) != 0) {
3080 ifp->if_ierrors++;
3081 ATW_INIT_RXDESC(sc, i);
3082 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3083 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3084 continue;
3085 }
3086
3087 ifp->if_ipackets++;
3088 if (sc->sc_opmode & ATW_NAR_PR)
3089 m->m_flags |= M_HASFCS;
3090 m->m_pkthdr.rcvif = ifp;
3091 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3092
3093 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3094 rate = 0;
3095 else
3096 rate = rate_tbl[rate0];
3097
3098 #if NBPFILTER > 0
3099 /* Pass this up to any BPF listeners. */
3100 if (sc->sc_radiobpf != NULL) {
3101 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3102
3103 tap->ar_rate = rate;
3104 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3105 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3106
3107 /* TBD verify units are dB */
3108 tap->ar_antsignal = (int)rssi;
3109 /* TBD tap->ar_flags */
3110
3111 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3112 tap->ar_ihdr.it_len, m);
3113 }
3114 #endif /* NPBFILTER > 0 */
3115
3116 wh = mtod(m, struct ieee80211_frame *);
3117 ni = ieee80211_find_rxnode(ic, wh);
3118 ieee80211_input(ifp, m, ni, (int)rssi, 0);
3119 /*
3120 * The frame may have caused the node to be marked for
3121 * reclamation (e.g. in response to a DEAUTH message)
3122 * so use free_node here instead of unref_node.
3123 */
3124 if (ni == ic->ic_bss)
3125 ieee80211_unref_node(&ni);
3126 else
3127 ieee80211_free_node(ic, ni);
3128 }
3129
3130 /* Update the receive pointer. */
3131 sc->sc_rxptr = i;
3132 }
3133
3134 /*
3135 * atw_txintr:
3136 *
3137 * Helper; handle transmit interrupts.
3138 */
3139 void
3140 atw_txintr(struct atw_softc *sc)
3141 {
3142 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3143 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3144 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3145 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3146
3147 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3148 struct ifnet *ifp = &sc->sc_ic.ic_if;
3149 struct atw_txsoft *txs;
3150 u_int32_t txstat;
3151
3152 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3153 sc->sc_dev.dv_xname, sc->sc_flags));
3154
3155 ifp->if_flags &= ~IFF_OACTIVE;
3156
3157 /*
3158 * Go through our Tx list and free mbufs for those
3159 * frames that have been transmitted.
3160 */
3161 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3162 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3163 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3164
3165 #ifdef ATW_DEBUG
3166 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3167 int i;
3168 printf(" txsoft %p transmit chain:\n", txs);
3169 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3170 txs->txs_ndescs - 1,
3171 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3172 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3173 printf(" descriptor %d:\n", i);
3174 printf(" at_status: 0x%08x\n",
3175 le32toh(sc->sc_txdescs[i].at_stat));
3176 printf(" at_flags: 0x%08x\n",
3177 le32toh(sc->sc_txdescs[i].at_flags));
3178 printf(" at_buf1: 0x%08x\n",
3179 le32toh(sc->sc_txdescs[i].at_buf1));
3180 printf(" at_buf2: 0x%08x\n",
3181 le32toh(sc->sc_txdescs[i].at_buf2));
3182 if (i == txs->txs_lastdesc)
3183 break;
3184 }
3185 }
3186 #endif
3187
3188 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3189 if (txstat & ATW_TXSTAT_OWN)
3190 break;
3191
3192 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3193
3194 sc->sc_txfree += txs->txs_ndescs;
3195
3196 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3197 0, txs->txs_dmamap->dm_mapsize,
3198 BUS_DMASYNC_POSTWRITE);
3199 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3200 m_freem(txs->txs_mbuf);
3201 txs->txs_mbuf = NULL;
3202
3203 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3204
3205 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3206 (txstat & TXSTAT_ERRMASK) != 0) {
3207 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3208 txstat_buf, sizeof(txstat_buf));
3209 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3210 txstat_buf,
3211 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3212 }
3213
3214 /*
3215 * Check for errors and collisions.
3216 */
3217 if (txstat & ATW_TXSTAT_TUF)
3218 sc->sc_stats.ts_tx_tuf++;
3219 if (txstat & ATW_TXSTAT_TLT)
3220 sc->sc_stats.ts_tx_tlt++;
3221 if (txstat & ATW_TXSTAT_TRT)
3222 sc->sc_stats.ts_tx_trt++;
3223 if (txstat & ATW_TXSTAT_TRO)
3224 sc->sc_stats.ts_tx_tro++;
3225 if (txstat & ATW_TXSTAT_SOFBR) {
3226 sc->sc_stats.ts_tx_sofbr++;
3227 }
3228
3229 if ((txstat & ATW_TXSTAT_ES) == 0)
3230 ifp->if_collisions +=
3231 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3232 else
3233 ifp->if_oerrors++;
3234
3235 ifp->if_opackets++;
3236 }
3237
3238 /*
3239 * If there are no more pending transmissions, cancel the watchdog
3240 * timer.
3241 */
3242 if (txs == NULL)
3243 sc->sc_tx_timer = 0;
3244 #undef TXSTAT_ERRMASK
3245 #undef TXSTAT_FMT
3246 }
3247
3248 /*
3249 * atw_watchdog: [ifnet interface function]
3250 *
3251 * Watchdog timer handler.
3252 */
3253 void
3254 atw_watchdog(struct ifnet *ifp)
3255 {
3256 struct atw_softc *sc = ifp->if_softc;
3257 struct ieee80211com *ic = &sc->sc_ic;
3258
3259 ifp->if_timer = 0;
3260 if (ATW_IS_ENABLED(sc) == 0)
3261 return;
3262
3263 if (sc->sc_rescan_timer) {
3264 if (--sc->sc_rescan_timer == 0)
3265 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3266 }
3267 if (sc->sc_tx_timer) {
3268 if (--sc->sc_tx_timer == 0 &&
3269 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3270 printf("%s: transmit timeout\n", ifp->if_xname);
3271 ifp->if_oerrors++;
3272 (void)atw_init(ifp);
3273 atw_start(ifp);
3274 }
3275 }
3276 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3277 ifp->if_timer = 1;
3278 ieee80211_watchdog(ifp);
3279 }
3280
3281 /* Compute the 802.11 Duration field and the PLCP Length fields for
3282 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3283 * Write the fields to the ADM8211 Tx header, frm.
3284 *
3285 * TBD use the fragmentation threshold to find the right duration for
3286 * the first & last fragments.
3287 *
3288 * TBD make certain of the duration fields applied by the ADM8211 to each
3289 * fragment. I think that the ADM8211 knows how to subtract the CTS
3290 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3291 * I also think that the ADM8211 does *some* arithmetic for us, because
3292 * otherwise I think we would have to set a first duration for CTS/first
3293 * fragment, a second duration for fragments between the first and the
3294 * last, and a third duration for the last fragment.
3295 *
3296 * TBD make certain that duration fields reflect addition of FCS/WEP
3297 * and correct duration arithmetic as necessary.
3298 */
3299 static void
3300 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3301 int len)
3302 {
3303 int remainder;
3304
3305 /* deal also with encrypted fragments */
3306 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3307 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3308 sc->sc_dev.dv_xname));
3309 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3310 IEEE80211_WEP_CRCLEN;
3311 }
3312
3313 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3314 * duration (XXX added by MAC?).
3315 */
3316 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3317 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3318
3319 if (rate <= 4)
3320 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3321 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3322 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3323 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3324 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3325 else
3326 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3327 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3328 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3329 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3330 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3331
3332 /* lengthen duration if long preamble */
3333 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3334 frm->atw_head_dur +=
3335 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3336 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3337 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3338 IEEE80211_DUR_DS_FAST_PLCPHDR);
3339
3340 if (remainder != 0)
3341 frm->atw_head_dur++;
3342
3343 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3344 (rate == 2 || rate == 4)) {
3345 /* derived from Linux: how could this be right? */
3346 frm->atw_head_plcplen = frm->atw_head_dur;
3347 } else {
3348 frm->atw_head_plcplen = (16 * len) / rate;
3349 remainder = (80 * len) % (rate * 5);
3350
3351 if (remainder != 0) {
3352 frm->atw_head_plcplen++;
3353
3354 /* XXX magic */
3355 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3356 rate == 22 && remainder <= 30)
3357 frm->atw_head_plcplen |= 0x8000;
3358 }
3359 }
3360 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3361 htole16(frm->atw_head_plcplen);
3362 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3363 }
3364
3365 #ifdef ATW_DEBUG
3366 static void
3367 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3368 {
3369 struct atw_softc *sc = ifp->if_softc;
3370 struct mbuf *m;
3371 int i, noctets = 0;
3372
3373 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3374 m0->m_pkthdr.len);
3375
3376 for (m = m0; m; m = m->m_next) {
3377 if (m->m_len == 0)
3378 continue;
3379 for (i = 0; i < m->m_len; i++) {
3380 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3381 if (++noctets % 24 == 0)
3382 printf("\n");
3383 }
3384 }
3385 printf("%s%s: %d bytes emitted\n",
3386 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3387 }
3388 #endif /* ATW_DEBUG */
3389
3390 /*
3391 * atw_start: [ifnet interface function]
3392 *
3393 * Start packet transmission on the interface.
3394 */
3395 void
3396 atw_start(struct ifnet *ifp)
3397 {
3398 struct atw_softc *sc = ifp->if_softc;
3399 struct ieee80211com *ic = &sc->sc_ic;
3400 struct ieee80211_node *ni;
3401 struct ieee80211_frame *wh;
3402 struct atw_frame *hh;
3403 struct mbuf *m0, *m;
3404 struct atw_txsoft *txs, *last_txs;
3405 struct atw_txdesc *txd;
3406 int do_encrypt, rate;
3407 bus_dmamap_t dmamap;
3408 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3409
3410 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3411 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3412
3413 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3414 return;
3415
3416 /*
3417 * Remember the previous number of free descriptors and
3418 * the first descriptor we'll use.
3419 */
3420 ofree = sc->sc_txfree;
3421 firsttx = sc->sc_txnext;
3422
3423 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3424 sc->sc_dev.dv_xname, ofree, firsttx));
3425
3426 /*
3427 * Loop through the send queue, setting up transmit descriptors
3428 * until we drain the queue, or use up all available transmit
3429 * descriptors.
3430 */
3431 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3432 sc->sc_txfree != 0) {
3433
3434 /*
3435 * Grab a packet off the management queue, if it
3436 * is not empty. Otherwise, from the data queue.
3437 */
3438 IF_DEQUEUE(&ic->ic_mgtq, m0);
3439 if (m0 != NULL) {
3440 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3441 m0->m_pkthdr.rcvif = NULL;
3442 } else {
3443 /* send no data packets until we are associated */
3444 if (ic->ic_state != IEEE80211_S_RUN)
3445 break;
3446 IFQ_DEQUEUE(&ifp->if_snd, m0);
3447 if (m0 == NULL)
3448 break;
3449 #if NBPFILTER > 0
3450 if (ifp->if_bpf != NULL)
3451 bpf_mtap(ifp->if_bpf, m0);
3452 #endif /* NBPFILTER > 0 */
3453 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3454 ifp->if_oerrors++;
3455 break;
3456 }
3457 }
3458
3459 rate = MAX(ieee80211_get_rate(ic), 2);
3460
3461 #if NBPFILTER > 0
3462 /*
3463 * Pass the packet to any BPF listeners.
3464 */
3465 if (ic->ic_rawbpf != NULL)
3466 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3467
3468 if (sc->sc_radiobpf != NULL) {
3469 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3470
3471 tap->at_rate = rate;
3472 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3473 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3474
3475 /* TBD tap->at_flags */
3476
3477 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3478 tap->at_ihdr.it_len, m0);
3479 }
3480 #endif /* NBPFILTER > 0 */
3481
3482 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3483
3484 if (ni != NULL && ni != ic->ic_bss)
3485 ieee80211_free_node(ic, ni);
3486
3487 if (m0 == NULL) {
3488 ifp->if_oerrors++;
3489 break;
3490 }
3491
3492 /* just to make sure. */
3493 m0 = m_pullup(m0, sizeof(struct atw_frame));
3494
3495 if (m0 == NULL) {
3496 ifp->if_oerrors++;
3497 break;
3498 }
3499
3500 hh = mtod(m0, struct atw_frame *);
3501 wh = &hh->atw_ihdr;
3502
3503 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3504
3505 /* Copy everything we need from the 802.11 header:
3506 * Frame Control; address 1, address 3, or addresses
3507 * 3 and 4. NIC fills in BSSID, SA.
3508 */
3509 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3510 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3511 panic("%s: illegal WDS frame",
3512 sc->sc_dev.dv_xname);
3513 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3514 } else
3515 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3516
3517 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3518
3519 /* initialize remaining Tx parameters */
3520 memset(&hh->u, 0, sizeof(hh->u));
3521
3522 hh->atw_rate = rate * 5;
3523 /* XXX this could be incorrect if M_FCS. _encap should
3524 * probably strip FCS just in case it sticks around in
3525 * bridged packets.
3526 */
3527 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3528 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3529 sizeof(struct atw_frame));
3530
3531 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3532 hh->atw_rtylmt = 3;
3533 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3534 if (do_encrypt) {
3535 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3536 hh->atw_keyid = ic->ic_wep_txkey;
3537 }
3538
3539 /* TBD 4-addr frames */
3540 atw_frame_setdurs(sc, hh, rate,
3541 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3542 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3543
3544 /* never fragment multicast frames */
3545 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3546 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3547 } else if (sc->sc_flags & ATWF_RTSCTS) {
3548 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3549 }
3550
3551 #ifdef ATW_DEBUG
3552 hh->atw_fragnum = 0;
3553
3554 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3555 printf("%s: dst = %s, rate = 0x%02x, "
3556 "service = 0x%02x, paylen = 0x%04x\n",
3557 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3558 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3559
3560 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3561 "dur1 = 0x%04x, dur2 = 0x%04x, "
3562 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3563 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3564 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3565 hh->atw_tail_dur, hh->atw_head_dur);
3566
3567 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3568 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3569 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3570 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3571
3572 printf("%s: keyid = %d\n",
3573 sc->sc_dev.dv_xname, hh->atw_keyid);
3574
3575 atw_dump_pkt(ifp, m0);
3576 }
3577 #endif /* ATW_DEBUG */
3578
3579 dmamap = txs->txs_dmamap;
3580
3581 /*
3582 * Load the DMA map. Copy and try (once) again if the packet
3583 * didn't fit in the alloted number of segments.
3584 */
3585 for (first = 1;
3586 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3587 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3588 first = 0) {
3589 MGETHDR(m, M_DONTWAIT, MT_DATA);
3590 if (m == NULL) {
3591 printf("%s: unable to allocate Tx mbuf\n",
3592 sc->sc_dev.dv_xname);
3593 break;
3594 }
3595 if (m0->m_pkthdr.len > MHLEN) {
3596 MCLGET(m, M_DONTWAIT);
3597 if ((m->m_flags & M_EXT) == 0) {
3598 printf("%s: unable to allocate Tx "
3599 "cluster\n", sc->sc_dev.dv_xname);
3600 m_freem(m);
3601 break;
3602 }
3603 }
3604 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3605 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3606 m_freem(m0);
3607 m0 = m;
3608 m = NULL;
3609 }
3610 if (error != 0) {
3611 printf("%s: unable to load Tx buffer, "
3612 "error = %d\n", sc->sc_dev.dv_xname, error);
3613 m_freem(m0);
3614 break;
3615 }
3616
3617 /*
3618 * Ensure we have enough descriptors free to describe
3619 * the packet.
3620 */
3621 if (dmamap->dm_nsegs > sc->sc_txfree) {
3622 /*
3623 * Not enough free descriptors to transmit
3624 * this packet. Unload the DMA map and
3625 * drop the packet. Notify the upper layer
3626 * that there are no more slots left.
3627 *
3628 * XXX We could allocate an mbuf and copy, but
3629 * XXX it is worth it?
3630 */
3631 ifp->if_flags |= IFF_OACTIVE;
3632 bus_dmamap_unload(sc->sc_dmat, dmamap);
3633 m_freem(m0);
3634 break;
3635 }
3636
3637 /*
3638 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3639 */
3640
3641 /* Sync the DMA map. */
3642 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3643 BUS_DMASYNC_PREWRITE);
3644
3645 /* XXX arbitrary retry limit; 8 because I have seen it in
3646 * use already and maybe 0 means "no tries" !
3647 */
3648 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3649
3650 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3651 sc->sc_dev.dv_xname, rate * 5));
3652 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3653
3654 /*
3655 * Initialize the transmit descriptors.
3656 */
3657 for (nexttx = sc->sc_txnext, seg = 0;
3658 seg < dmamap->dm_nsegs;
3659 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3660 /*
3661 * If this is the first descriptor we're
3662 * enqueueing, don't set the OWN bit just
3663 * yet. That could cause a race condition.
3664 * We'll do it below.
3665 */
3666 txd = &sc->sc_txdescs[nexttx];
3667 txd->at_ctl = ctl |
3668 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3669
3670 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3671 txd->at_flags =
3672 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3673 ATW_TXFLAG_TBS1_MASK)) |
3674 ((nexttx == (ATW_NTXDESC - 1))
3675 ? htole32(ATW_TXFLAG_TER) : 0);
3676 lasttx = nexttx;
3677 }
3678
3679 IASSERT(lasttx != -1, ("bad lastx"));
3680 /* Set `first segment' and `last segment' appropriately. */
3681 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3682 htole32(ATW_TXFLAG_FS);
3683 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3684
3685 #ifdef ATW_DEBUG
3686 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3687 printf(" txsoft %p transmit chain:\n", txs);
3688 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3689 printf(" descriptor %d:\n", seg);
3690 printf(" at_ctl: 0x%08x\n",
3691 le32toh(sc->sc_txdescs[seg].at_ctl));
3692 printf(" at_flags: 0x%08x\n",
3693 le32toh(sc->sc_txdescs[seg].at_flags));
3694 printf(" at_buf1: 0x%08x\n",
3695 le32toh(sc->sc_txdescs[seg].at_buf1));
3696 printf(" at_buf2: 0x%08x\n",
3697 le32toh(sc->sc_txdescs[seg].at_buf2));
3698 if (seg == lasttx)
3699 break;
3700 }
3701 }
3702 #endif
3703
3704 /* Sync the descriptors we're using. */
3705 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3706 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3707
3708 /*
3709 * Store a pointer to the packet so we can free it later,
3710 * and remember what txdirty will be once the packet is
3711 * done.
3712 */
3713 txs->txs_mbuf = m0;
3714 txs->txs_firstdesc = sc->sc_txnext;
3715 txs->txs_lastdesc = lasttx;
3716 txs->txs_ndescs = dmamap->dm_nsegs;
3717
3718 /* Advance the tx pointer. */
3719 sc->sc_txfree -= dmamap->dm_nsegs;
3720 sc->sc_txnext = nexttx;
3721
3722 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3723 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3724
3725 last_txs = txs;
3726 }
3727
3728 if (txs == NULL || sc->sc_txfree == 0) {
3729 /* No more slots left; notify upper layer. */
3730 ifp->if_flags |= IFF_OACTIVE;
3731 }
3732
3733 if (sc->sc_txfree != ofree) {
3734 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3735 sc->sc_dev.dv_xname, lasttx, firsttx));
3736 /*
3737 * Cause a transmit interrupt to happen on the
3738 * last packet we enqueued.
3739 */
3740 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3741 ATW_CDTXSYNC(sc, lasttx, 1,
3742 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3743
3744 /*
3745 * The entire packet chain is set up. Give the
3746 * first descriptor to the chip now.
3747 */
3748 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3749 ATW_CDTXSYNC(sc, firsttx, 1,
3750 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3751
3752 /* Wake up the transmitter. */
3753 ATW_WRITE(sc, ATW_TDR, 0x1);
3754
3755 /* Set a watchdog timer in case the chip flakes out. */
3756 sc->sc_tx_timer = 5;
3757 ifp->if_timer = 1;
3758 }
3759 }
3760
3761 /*
3762 * atw_power:
3763 *
3764 * Power management (suspend/resume) hook.
3765 */
3766 void
3767 atw_power(int why, void *arg)
3768 {
3769 struct atw_softc *sc = arg;
3770 struct ifnet *ifp = &sc->sc_ic.ic_if;
3771 int s;
3772
3773 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3774
3775 s = splnet();
3776 switch (why) {
3777 case PWR_STANDBY:
3778 /* XXX do nothing. */
3779 break;
3780 case PWR_SUSPEND:
3781 atw_stop(ifp, 0);
3782 if (sc->sc_power != NULL)
3783 (*sc->sc_power)(sc, why);
3784 break;
3785 case PWR_RESUME:
3786 if (ifp->if_flags & IFF_UP) {
3787 if (sc->sc_power != NULL)
3788 (*sc->sc_power)(sc, why);
3789 atw_init(ifp);
3790 }
3791 break;
3792 case PWR_SOFTSUSPEND:
3793 case PWR_SOFTSTANDBY:
3794 case PWR_SOFTRESUME:
3795 break;
3796 }
3797 splx(s);
3798 }
3799
3800 /*
3801 * atw_ioctl: [ifnet interface function]
3802 *
3803 * Handle control requests from the operator.
3804 */
3805 int
3806 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3807 {
3808 struct atw_softc *sc = ifp->if_softc;
3809 struct ifreq *ifr = (struct ifreq *)data;
3810 int s, error = 0;
3811
3812 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3813 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3814 return ENXIO;
3815
3816 s = splnet();
3817
3818 switch (cmd) {
3819 case SIOCSIFFLAGS:
3820 if (ifp->if_flags & IFF_UP) {
3821 if (ATW_IS_ENABLED(sc)) {
3822 /*
3823 * To avoid rescanning another access point,
3824 * do not call atw_init() here. Instead,
3825 * only reflect media settings.
3826 */
3827 atw_filter_setup(sc);
3828 } else
3829 error = atw_init(ifp);
3830 } else if (ATW_IS_ENABLED(sc))
3831 atw_stop(ifp, 1);
3832 break;
3833 case SIOCADDMULTI:
3834 case SIOCDELMULTI:
3835 error = (cmd == SIOCADDMULTI) ?
3836 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3837 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3838 if (error == ENETRESET) {
3839 if (ATW_IS_ENABLED(sc))
3840 atw_filter_setup(sc); /* do not rescan */
3841 error = 0;
3842 }
3843 break;
3844 default:
3845 error = ieee80211_ioctl(ifp, cmd, data);
3846 if (error == ENETRESET) {
3847 if (ATW_IS_ENABLED(sc))
3848 error = atw_init(ifp);
3849 else
3850 error = 0;
3851 }
3852 break;
3853 }
3854
3855 /* Try to get more packets going. */
3856 if (ATW_IS_ENABLED(sc))
3857 atw_start(ifp);
3858
3859 splx(s);
3860 return (error);
3861 }
3862
3863 static int
3864 atw_media_change(struct ifnet *ifp)
3865 {
3866 int error;
3867
3868 error = ieee80211_media_change(ifp);
3869 if (error == ENETRESET) {
3870 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3871 (IFF_RUNNING|IFF_UP))
3872 atw_init(ifp); /* XXX lose error */
3873 error = 0;
3874 }
3875 return error;
3876 }
3877
3878 static void
3879 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3880 {
3881 struct atw_softc *sc = ifp->if_softc;
3882
3883 if (ATW_IS_ENABLED(sc) == 0) {
3884 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3885 imr->ifm_status = 0;
3886 return;
3887 }
3888 ieee80211_media_status(ifp, imr);
3889 }
3890