atw.c revision 1.69 1 /* $NetBSD: atw.c,v 1.69 2004/07/23 07:07:55 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.69 2004/07/23 07:07:55 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_bbp_io_enable_delay = 20 * 1000;
145 int atw_bbp_io_disable_delay = 2 * 1000;
146 int atw_writewep_delay = 1000;
147 int atw_beacon_len_adjust = 4;
148 int atw_dwelltime = 200;
149 int atw_xindiv2 = 0;
150
151 #ifdef ATW_DEBUG
152 int atw_debug = 0;
153
154 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
155 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
156 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
157 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
158 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
159 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
160
161 static void atw_print_regs(struct atw_softc *, const char *);
162 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
163
164 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
165 # ifdef ATW_BBPDEBUG
166 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
167 static void atw_rf3000_print(struct atw_softc *);
168 # endif /* ATW_BBPDEBUG */
169
170 # ifdef ATW_SYNDEBUG
171 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
172 static void atw_si4126_print(struct atw_softc *);
173 # endif /* ATW_SYNDEBUG */
174
175 #else
176 #define ATW_DPRINTF(x)
177 #define ATW_DPRINTF2(x)
178 #define ATW_DPRINTF3(x)
179 #define DPRINTF(sc, x) /* nothing */
180 #define DPRINTF2(sc, x) /* nothing */
181 #define DPRINTF3(sc, x) /* nothing */
182 #endif
183
184 /* ifnet methods */
185 void atw_start(struct ifnet *);
186 void atw_watchdog(struct ifnet *);
187 int atw_ioctl(struct ifnet *, u_long, caddr_t);
188 int atw_init(struct ifnet *);
189 void atw_stop(struct ifnet *, int);
190
191 /* Device attachment */
192 void atw_attach(struct atw_softc *);
193 int atw_detach(struct atw_softc *);
194
195 /* Rx/Tx process */
196 void atw_rxdrain(struct atw_softc *);
197 void atw_txdrain(struct atw_softc *);
198 int atw_add_rxbuf(struct atw_softc *, int);
199 void atw_idle(struct atw_softc *, u_int32_t);
200
201 /* Device (de)activation and power state */
202 int atw_enable(struct atw_softc *);
203 void atw_disable(struct atw_softc *);
204 void atw_power(int, void *);
205 void atw_shutdown(void *);
206 void atw_reset(struct atw_softc *);
207
208 /* Interrupt handlers */
209 void atw_rxintr(struct atw_softc *);
210 void atw_txintr(struct atw_softc *);
211 void atw_linkintr(struct atw_softc *, u_int32_t);
212
213 /* 802.11 state machine */
214 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
215 static int atw_tune(struct atw_softc *);
216 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
217 struct ieee80211_node *, int, int, u_int32_t);
218
219 /* Device initialization */
220 static void atw_wcsr_init(struct atw_softc *);
221 static void atw_cmdr_init(struct atw_softc *);
222 static void atw_tofs2_init(struct atw_softc *);
223 static void atw_txlmt_init(struct atw_softc *);
224 static void atw_test1_init(struct atw_softc *);
225 static void atw_rf_reset(struct atw_softc *);
226 static void atw_cfp_init(struct atw_softc *);
227 static void atw_tofs0_init(struct atw_softc *);
228 static void atw_ifs_init(struct atw_softc *);
229 static void atw_response_times_init(struct atw_softc *);
230 static void atw_bbp_io_init(struct atw_softc *);
231
232 /* RAM/ROM utilities */
233 static void atw_clear_sram(struct atw_softc *);
234 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
235 static int atw_read_srom(struct atw_softc *);
236
237 /* BSS setup */
238 static void atw_tsf(struct atw_softc *);
239 static void atw_start_beacon(struct atw_softc *, int);
240 static void atw_write_bssid(struct atw_softc *);
241 static void atw_write_ssid(struct atw_softc *);
242 static void atw_write_sup_rates(struct atw_softc *);
243 static void atw_write_wep(struct atw_softc *);
244
245 /* Media */
246 static int atw_media_change(struct ifnet *);
247 static void atw_media_status(struct ifnet *, struct ifmediareq *);
248
249 static void atw_filter_setup(struct atw_softc *);
250
251 /* 802.11 utilities */
252 static void atw_frame_setdurs(struct atw_softc *,
253 struct atw_frame *, int, int);
254 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
255 static void atw_node_free(struct ieee80211com *,
256 struct ieee80211_node *);
257 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
258 struct ieee80211_node *, int, int,
259 u_int32_t);
260 static __inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
261 uint32_t);
262 static __inline void atw_tsft(struct atw_softc *, uint32_t *,
263 uint32_t *);
264
265 /*
266 * Tuner/transceiver/modem
267 */
268 static void atw_bbp_io_enable(struct atw_softc *, int);
269
270 /* RFMD RF3000 Baseband Processor */
271 static int atw_rf3000_init(struct atw_softc *);
272 static int atw_rf3000_tune(struct atw_softc *, u_int);
273 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
274
275 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
276 static void atw_si4126_tune(struct atw_softc *, u_int);
277 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
278
279 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
280 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
281
282 const char *atw_tx_state[] = {
283 "STOPPED",
284 "RUNNING - read descriptor",
285 "RUNNING - transmitting",
286 "RUNNING - filling fifo", /* XXX */
287 "SUSPENDED",
288 "RUNNING -- write descriptor",
289 "RUNNING -- write last descriptor",
290 "RUNNING - fifo full"
291 };
292
293 const char *atw_rx_state[] = {
294 "STOPPED",
295 "RUNNING - read descriptor",
296 "RUNNING - check this packet, pre-fetch next",
297 "RUNNING - wait for reception",
298 "SUSPENDED",
299 "RUNNING - write descriptor",
300 "RUNNING - flush fifo",
301 "RUNNING - fifo drain"
302 };
303
304 int
305 atw_activate(struct device *self, enum devact act)
306 {
307 struct atw_softc *sc = (struct atw_softc *)self;
308 int rv = 0, s;
309
310 s = splnet();
311 switch (act) {
312 case DVACT_ACTIVATE:
313 rv = EOPNOTSUPP;
314 break;
315
316 case DVACT_DEACTIVATE:
317 if_deactivate(&sc->sc_ic.ic_if);
318 break;
319 }
320 splx(s);
321 return rv;
322 }
323
324 /*
325 * atw_enable:
326 *
327 * Enable the ADM8211 chip.
328 */
329 int
330 atw_enable(struct atw_softc *sc)
331 {
332
333 if (ATW_IS_ENABLED(sc) == 0) {
334 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
335 printf("%s: device enable failed\n",
336 sc->sc_dev.dv_xname);
337 return (EIO);
338 }
339 sc->sc_flags |= ATWF_ENABLED;
340 }
341 return (0);
342 }
343
344 /*
345 * atw_disable:
346 *
347 * Disable the ADM8211 chip.
348 */
349 void
350 atw_disable(struct atw_softc *sc)
351 {
352 if (!ATW_IS_ENABLED(sc))
353 return;
354 if (sc->sc_disable != NULL)
355 (*sc->sc_disable)(sc);
356 sc->sc_flags &= ~ATWF_ENABLED;
357 }
358
359 /* Returns -1 on failure. */
360 static int
361 atw_read_srom(struct atw_softc *sc)
362 {
363 struct seeprom_descriptor sd;
364 uint32_t test0, fail_bits;
365
366 (void)memset(&sd, 0, sizeof(sd));
367
368 test0 = ATW_READ(sc, ATW_TEST0);
369
370 switch (sc->sc_rev) {
371 case ATW_REVISION_BA:
372 case ATW_REVISION_CA:
373 fail_bits = ATW_TEST0_EPNE;
374 break;
375 default:
376 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
377 break;
378 }
379 if ((test0 & fail_bits) != 0) {
380 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
381 return -1;
382 }
383
384 switch (test0 & ATW_TEST0_EPTYP_MASK) {
385 case ATW_TEST0_EPTYP_93c66:
386 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
387 sc->sc_sromsz = 512;
388 sd.sd_chip = C56_66;
389 break;
390 case ATW_TEST0_EPTYP_93c46:
391 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
392 sc->sc_sromsz = 128;
393 sd.sd_chip = C46;
394 break;
395 default:
396 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
397 MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
398 return -1;
399 }
400
401 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
402
403 if (sc->sc_srom == NULL) {
404 printf("%s: unable to allocate SROM buffer\n",
405 sc->sc_dev.dv_xname);
406 return -1;
407 }
408
409 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
410
411 /* ADM8211 has a single 32-bit register for controlling the
412 * 93cx6 SROM. Bit SRS enables the serial port. There is no
413 * "ready" bit. The ADM8211 input/output sense is the reverse
414 * of read_seeprom's.
415 */
416 sd.sd_tag = sc->sc_st;
417 sd.sd_bsh = sc->sc_sh;
418 sd.sd_regsize = 4;
419 sd.sd_control_offset = ATW_SPR;
420 sd.sd_status_offset = ATW_SPR;
421 sd.sd_dataout_offset = ATW_SPR;
422 sd.sd_CK = ATW_SPR_SCLK;
423 sd.sd_CS = ATW_SPR_SCS;
424 sd.sd_DI = ATW_SPR_SDO;
425 sd.sd_DO = ATW_SPR_SDI;
426 sd.sd_MS = ATW_SPR_SRS;
427 sd.sd_RDY = 0;
428
429 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
430 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
431 free(sc->sc_srom, M_DEVBUF);
432 return -1;
433 }
434 #ifdef ATW_DEBUG
435 {
436 int i;
437 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
438 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
439 if (((i % 8) == 0) && (i != 0)) {
440 ATW_DPRINTF(("\n\t"));
441 }
442 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
443 }
444 ATW_DPRINTF(("\n"));
445 }
446 #endif /* ATW_DEBUG */
447 return 0;
448 }
449
450 #ifdef ATW_DEBUG
451 static void
452 atw_print_regs(struct atw_softc *sc, const char *where)
453 {
454 #define PRINTREG(sc, reg) \
455 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
456 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
457
458 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
459
460 PRINTREG(sc, ATW_PAR);
461 PRINTREG(sc, ATW_FRCTL);
462 PRINTREG(sc, ATW_TDR);
463 PRINTREG(sc, ATW_WTDP);
464 PRINTREG(sc, ATW_RDR);
465 PRINTREG(sc, ATW_WRDP);
466 PRINTREG(sc, ATW_RDB);
467 PRINTREG(sc, ATW_CSR3A);
468 PRINTREG(sc, ATW_TDBD);
469 PRINTREG(sc, ATW_TDBP);
470 PRINTREG(sc, ATW_STSR);
471 PRINTREG(sc, ATW_CSR5A);
472 PRINTREG(sc, ATW_NAR);
473 PRINTREG(sc, ATW_CSR6A);
474 PRINTREG(sc, ATW_IER);
475 PRINTREG(sc, ATW_CSR7A);
476 PRINTREG(sc, ATW_LPC);
477 PRINTREG(sc, ATW_TEST1);
478 PRINTREG(sc, ATW_SPR);
479 PRINTREG(sc, ATW_TEST0);
480 PRINTREG(sc, ATW_WCSR);
481 PRINTREG(sc, ATW_WPDR);
482 PRINTREG(sc, ATW_GPTMR);
483 PRINTREG(sc, ATW_GPIO);
484 PRINTREG(sc, ATW_BBPCTL);
485 PRINTREG(sc, ATW_SYNCTL);
486 PRINTREG(sc, ATW_PLCPHD);
487 PRINTREG(sc, ATW_MMIWADDR);
488 PRINTREG(sc, ATW_MMIRADDR1);
489 PRINTREG(sc, ATW_MMIRADDR2);
490 PRINTREG(sc, ATW_TXBR);
491 PRINTREG(sc, ATW_CSR15A);
492 PRINTREG(sc, ATW_ALCSTAT);
493 PRINTREG(sc, ATW_TOFS2);
494 PRINTREG(sc, ATW_CMDR);
495 PRINTREG(sc, ATW_PCIC);
496 PRINTREG(sc, ATW_PMCSR);
497 PRINTREG(sc, ATW_PAR0);
498 PRINTREG(sc, ATW_PAR1);
499 PRINTREG(sc, ATW_MAR0);
500 PRINTREG(sc, ATW_MAR1);
501 PRINTREG(sc, ATW_ATIMDA0);
502 PRINTREG(sc, ATW_ABDA1);
503 PRINTREG(sc, ATW_BSSID0);
504 PRINTREG(sc, ATW_TXLMT);
505 PRINTREG(sc, ATW_MIBCNT);
506 PRINTREG(sc, ATW_BCNT);
507 PRINTREG(sc, ATW_TSFTH);
508 PRINTREG(sc, ATW_TSC);
509 PRINTREG(sc, ATW_SYNRF);
510 PRINTREG(sc, ATW_BPLI);
511 PRINTREG(sc, ATW_CAP0);
512 PRINTREG(sc, ATW_CAP1);
513 PRINTREG(sc, ATW_RMD);
514 PRINTREG(sc, ATW_CFPP);
515 PRINTREG(sc, ATW_TOFS0);
516 PRINTREG(sc, ATW_TOFS1);
517 PRINTREG(sc, ATW_IFST);
518 PRINTREG(sc, ATW_RSPT);
519 PRINTREG(sc, ATW_TSFTL);
520 PRINTREG(sc, ATW_WEPCTL);
521 PRINTREG(sc, ATW_WESK);
522 PRINTREG(sc, ATW_WEPCNT);
523 PRINTREG(sc, ATW_MACTEST);
524 PRINTREG(sc, ATW_FER);
525 PRINTREG(sc, ATW_FEMR);
526 PRINTREG(sc, ATW_FPSR);
527 PRINTREG(sc, ATW_FFER);
528 #undef PRINTREG
529 }
530 #endif /* ATW_DEBUG */
531
532 /*
533 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
534 */
535 void
536 atw_attach(struct atw_softc *sc)
537 {
538 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
539 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
540 };
541 struct ieee80211com *ic = &sc->sc_ic;
542 struct ifnet *ifp = &ic->ic_if;
543 int country_code, error, i, nrate, srom_major;
544 u_int32_t reg;
545 static const char *type_strings[] = {"Intersil (not supported)",
546 "RFMD", "Marvel (not supported)"};
547
548 sc->sc_txth = atw_txthresh_tab_lo;
549
550 SIMPLEQ_INIT(&sc->sc_txfreeq);
551 SIMPLEQ_INIT(&sc->sc_txdirtyq);
552
553 #ifdef ATW_DEBUG
554 atw_print_regs(sc, "atw_attach");
555 #endif /* ATW_DEBUG */
556
557 /*
558 * Allocate the control data structures, and create and load the
559 * DMA map for it.
560 */
561 if ((error = bus_dmamem_alloc(sc->sc_dmat,
562 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
563 1, &sc->sc_cdnseg, 0)) != 0) {
564 printf("%s: unable to allocate control data, error = %d\n",
565 sc->sc_dev.dv_xname, error);
566 goto fail_0;
567 }
568
569 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
570 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
571 BUS_DMA_COHERENT)) != 0) {
572 printf("%s: unable to map control data, error = %d\n",
573 sc->sc_dev.dv_xname, error);
574 goto fail_1;
575 }
576
577 if ((error = bus_dmamap_create(sc->sc_dmat,
578 sizeof(struct atw_control_data), 1,
579 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
580 printf("%s: unable to create control data DMA map, "
581 "error = %d\n", sc->sc_dev.dv_xname, error);
582 goto fail_2;
583 }
584
585 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
586 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
587 0)) != 0) {
588 printf("%s: unable to load control data DMA map, error = %d\n",
589 sc->sc_dev.dv_xname, error);
590 goto fail_3;
591 }
592
593 /*
594 * Create the transmit buffer DMA maps.
595 */
596 sc->sc_ntxsegs = ATW_NTXSEGS;
597 for (i = 0; i < ATW_TXQUEUELEN; i++) {
598 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
599 sc->sc_ntxsegs, MCLBYTES, 0, 0,
600 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
601 printf("%s: unable to create tx DMA map %d, "
602 "error = %d\n", sc->sc_dev.dv_xname, i, error);
603 goto fail_4;
604 }
605 }
606
607 /*
608 * Create the receive buffer DMA maps.
609 */
610 for (i = 0; i < ATW_NRXDESC; i++) {
611 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
612 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
613 printf("%s: unable to create rx DMA map %d, "
614 "error = %d\n", sc->sc_dev.dv_xname, i, error);
615 goto fail_5;
616 }
617 }
618 for (i = 0; i < ATW_NRXDESC; i++) {
619 sc->sc_rxsoft[i].rxs_mbuf = NULL;
620 }
621
622 switch (sc->sc_rev) {
623 case ATW_REVISION_AB:
624 case ATW_REVISION_AF:
625 sc->sc_sramlen = ATW_SRAM_A_SIZE;
626 break;
627 case ATW_REVISION_BA:
628 case ATW_REVISION_CA:
629 sc->sc_sramlen = ATW_SRAM_B_SIZE;
630 break;
631 }
632
633 /* Reset the chip to a known state. */
634 atw_reset(sc);
635
636 if (atw_read_srom(sc) == -1)
637 return;
638
639 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
640 ATW_SR_RFTYPE_MASK);
641
642 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
643 ATW_SR_BBPTYPE_MASK);
644
645 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
646 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
647 return;
648 }
649 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
650 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
651 return;
652 }
653
654 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
655 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
656
657 /* XXX There exists a Linux driver which seems to use RFType = 0 for
658 * MARVEL. My bug, or theirs?
659 */
660
661 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
662
663 switch (sc->sc_rftype) {
664 case ATW_RFTYPE_INTERSIL:
665 reg |= ATW_SYNCTL_CS1;
666 break;
667 case ATW_RFTYPE_RFMD:
668 reg |= ATW_SYNCTL_CS0;
669 break;
670 case ATW_RFTYPE_MARVEL:
671 break;
672 }
673
674 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
675 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
676
677 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
678
679 switch (sc->sc_bbptype) {
680 case ATW_BBPTYPE_INTERSIL:
681 reg |= ATW_BBPCTL_TWI;
682 break;
683 case ATW_BBPTYPE_RFMD:
684 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
685 ATW_BBPCTL_CCA_ACTLO;
686 break;
687 case ATW_BBPTYPE_MARVEL:
688 break;
689 case ATW_C_BBPTYPE_RFMD:
690 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
691 sc->sc_dev.dv_xname);
692 break;
693 }
694
695 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
696 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
697
698 /*
699 * From this point forward, the attachment cannot fail. A failure
700 * before this point releases all resources that may have been
701 * allocated.
702 */
703 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
704
705 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
706 htole16(sc->sc_srom[ATW_SR_MAC00]),
707 htole16(sc->sc_srom[ATW_SR_MAC01]),
708 htole16(sc->sc_srom[ATW_SR_MAC10])));
709
710 srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
711 ATW_SR_MAJOR_MASK);
712
713 if (srom_major < 2)
714 sc->sc_rf3000_options1 = 0;
715 else if (sc->sc_rev == ATW_REVISION_BA) {
716 sc->sc_rf3000_options1 =
717 MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
718 ATW_SR_CR28_MASK);
719 } else
720 sc->sc_rf3000_options1 = 0;
721
722 sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
723 ATW_SR_CR29_MASK);
724
725 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
726 ATW_SR_CTRY_MASK);
727
728 #define ADD_CHANNEL(_ic, _chan) do { \
729 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
730 _ic->ic_channels[_chan].ic_freq = \
731 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
732 } while (0)
733
734 /* Find available channels */
735 switch (country_code) {
736 case COUNTRY_MMK2: /* 1-14 */
737 ADD_CHANNEL(ic, 14);
738 /*FALLTHROUGH*/
739 case COUNTRY_ETSI: /* 1-13 */
740 for (i = 1; i <= 13; i++)
741 ADD_CHANNEL(ic, i);
742 break;
743 case COUNTRY_FCC: /* 1-11 */
744 case COUNTRY_IC: /* 1-11 */
745 for (i = 1; i <= 11; i++)
746 ADD_CHANNEL(ic, i);
747 break;
748 case COUNTRY_MMK: /* 14 */
749 ADD_CHANNEL(ic, 14);
750 break;
751 case COUNTRY_FRANCE: /* 10-13 */
752 for (i = 10; i <= 13; i++)
753 ADD_CHANNEL(ic, i);
754 break;
755 default: /* assume channels 10-11 */
756 case COUNTRY_SPAIN: /* 10-11 */
757 for (i = 10; i <= 11; i++)
758 ADD_CHANNEL(ic, i);
759 break;
760 }
761
762 /* Read the MAC address. */
763 reg = ATW_READ(sc, ATW_PAR0);
764 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
765 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
766 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
767 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
768 reg = ATW_READ(sc, ATW_PAR1);
769 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
770 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
771
772 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
773 printf(" could not get mac address, attach failed\n");
774 return;
775 }
776
777 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
778
779 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
780 ifp->if_softc = sc;
781 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
782 IFF_NOTRAILERS;
783 ifp->if_ioctl = atw_ioctl;
784 ifp->if_start = atw_start;
785 ifp->if_watchdog = atw_watchdog;
786 ifp->if_init = atw_init;
787 ifp->if_stop = atw_stop;
788 IFQ_SET_READY(&ifp->if_snd);
789
790 ic->ic_phytype = IEEE80211_T_DS;
791 ic->ic_opmode = IEEE80211_M_STA;
792 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
793 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
794
795 nrate = 0;
796 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
797 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
798 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
799 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
800 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
801
802 /*
803 * Call MI attach routines.
804 */
805
806 if_attach(ifp);
807 ieee80211_ifattach(ifp);
808
809 sc->sc_newstate = ic->ic_newstate;
810 ic->ic_newstate = atw_newstate;
811
812 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
813 ic->ic_recv_mgmt = atw_recv_mgmt;
814
815 sc->sc_node_free = ic->ic_node_free;
816 ic->ic_node_free = atw_node_free;
817
818 sc->sc_node_alloc = ic->ic_node_alloc;
819 ic->ic_node_alloc = atw_node_alloc;
820
821 /* possibly we should fill in our own sc_send_prresp, since
822 * the ADM8211 is probably sending probe responses in ad hoc
823 * mode.
824 */
825
826 /* complete initialization */
827 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
828 callout_init(&sc->sc_scan_ch);
829
830 #if NBPFILTER > 0
831 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
832 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
833 #endif
834
835 /*
836 * Make sure the interface is shutdown during reboot.
837 */
838 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
839 if (sc->sc_sdhook == NULL)
840 printf("%s: WARNING: unable to establish shutdown hook\n",
841 sc->sc_dev.dv_xname);
842
843 /*
844 * Add a suspend hook to make sure we come back up after a
845 * resume.
846 */
847 sc->sc_powerhook = powerhook_establish(atw_power, sc);
848 if (sc->sc_powerhook == NULL)
849 printf("%s: WARNING: unable to establish power hook\n",
850 sc->sc_dev.dv_xname);
851
852 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
853 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
854 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
855
856 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
857 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
858 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
859
860 return;
861
862 /*
863 * Free any resources we've allocated during the failed attach
864 * attempt. Do this in reverse order and fall through.
865 */
866 fail_5:
867 for (i = 0; i < ATW_NRXDESC; i++) {
868 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
869 continue;
870 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
871 }
872 fail_4:
873 for (i = 0; i < ATW_TXQUEUELEN; i++) {
874 if (sc->sc_txsoft[i].txs_dmamap == NULL)
875 continue;
876 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
877 }
878 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
879 fail_3:
880 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
881 fail_2:
882 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
883 sizeof(struct atw_control_data));
884 fail_1:
885 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
886 fail_0:
887 return;
888 }
889
890 static struct ieee80211_node *
891 atw_node_alloc(struct ieee80211com *ic)
892 {
893 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
894 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
895
896 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
897 return ni;
898 }
899
900 static void
901 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
902 {
903 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
904
905 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
906 ether_sprintf(ni->ni_bssid)));
907 (*sc->sc_node_free)(ic, ni);
908 }
909
910
911 static void
912 atw_test1_reset(struct atw_softc *sc)
913 {
914 switch (sc->sc_rev) {
915 case ATW_REVISION_BA:
916 if (1 /* XXX condition on transceiver type */) {
917 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
918 }
919 break;
920 case ATW_REVISION_CA:
921 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
922 break;
923 default:
924 break;
925 }
926 }
927
928 /*
929 * atw_reset:
930 *
931 * Perform a soft reset on the ADM8211.
932 */
933 void
934 atw_reset(struct atw_softc *sc)
935 {
936 int i;
937 uint32_t lpc;
938
939 ATW_WRITE(sc, ATW_NAR, 0x0);
940 DELAY(20 * 1000);
941
942 /* Reference driver has a cryptic remark indicating that this might
943 * power-on the chip. I know that it turns off power-saving....
944 */
945 ATW_WRITE(sc, ATW_FRCTL, 0x0);
946
947 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
948
949 for (i = 0; i < 50; i++) {
950 if (ATW_READ(sc, ATW_PAR) == 0)
951 break;
952 DELAY(1000);
953 }
954
955 /* ... and then pause 100ms longer for good measure. */
956 DELAY(100 * 1000);
957
958 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
959
960 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
961 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
962
963 atw_test1_reset(sc);
964 /*
965 * Initialize the PCI Access Register.
966 */
967 sc->sc_busmode = ATW_PAR_PBL_8DW;
968
969 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
970 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
971 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
972
973 /* Turn off maximum power saving, etc.
974 *
975 * XXX Following example of reference driver, should I set
976 * an AID of 1? It didn't seem to help....
977 */
978 ATW_WRITE(sc, ATW_FRCTL, 0x0);
979
980 DELAY(100 * 1000);
981
982 /* Recall EEPROM. */
983 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
984
985 DELAY(10 * 1000);
986
987 lpc = ATW_READ(sc, ATW_LPC);
988
989 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
990
991 /* A reset seems to affect the SRAM contents, so put them into
992 * a known state.
993 */
994 atw_clear_sram(sc);
995
996 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
997 }
998
999 static void
1000 atw_clear_sram(struct atw_softc *sc)
1001 {
1002 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1003 /* XXX not for revision 0x20. */
1004 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1005 }
1006
1007 /* TBD atw_init
1008 *
1009 * set MAC based on ic->ic_bss->myaddr
1010 * write WEP keys
1011 * set TX rate
1012 */
1013
1014 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1015 * without receiving a beacon with the preferred BSSID & SSID.
1016 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1017 */
1018 static void
1019 atw_wcsr_init(struct atw_softc *sc)
1020 {
1021 uint32_t wcsr;
1022
1023 wcsr = ATW_READ(sc, ATW_WCSR);
1024 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1025 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1026 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1027
1028 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1029 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1030 }
1031
1032 /* Turn off power management. Set Rx store-and-forward mode. */
1033 static void
1034 atw_cmdr_init(struct atw_softc *sc)
1035 {
1036 uint32_t cmdr;
1037 cmdr = ATW_READ(sc, ATW_CMDR);
1038 cmdr &= ~ATW_CMDR_APM;
1039 cmdr |= ATW_CMDR_RTE;
1040 cmdr &= ~ATW_CMDR_DRT_MASK;
1041 cmdr |= ATW_CMDR_DRT_SF;
1042
1043 ATW_WRITE(sc, ATW_CMDR, cmdr);
1044 }
1045
1046 static void
1047 atw_tofs2_init(struct atw_softc *sc)
1048 {
1049 uint32_t tofs2;
1050 /* XXX this magic can probably be figured out from the RFMD docs */
1051 #ifndef ATW_REFSLAVE
1052 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1053 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1054 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1055 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1056 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1057 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1058 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1059 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1060 #else
1061 /* XXX new magic from reference driver source */
1062 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1063 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1064 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1065 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1066 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1067 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1068 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1069 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1070 #endif
1071 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1072 }
1073
1074 static void
1075 atw_nar_init(struct atw_softc *sc)
1076 {
1077 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1078 }
1079
1080 static void
1081 atw_txlmt_init(struct atw_softc *sc)
1082 {
1083 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1084 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1085 }
1086
1087 static void
1088 atw_test1_init(struct atw_softc *sc)
1089 {
1090 uint32_t test1;
1091
1092 test1 = ATW_READ(sc, ATW_TEST1);
1093 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1094 /* XXX magic 0x1 */
1095 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1096 ATW_WRITE(sc, ATW_TEST1, test1);
1097 }
1098
1099 static void
1100 atw_rf_reset(struct atw_softc *sc)
1101 {
1102 /* XXX this resets an Intersil RF front-end? */
1103 /* TBD condition on Intersil RFType? */
1104 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1105 DELAY(10 * 1000);
1106 ATW_WRITE(sc, ATW_SYNRF, 0);
1107 DELAY(5 * 1000);
1108 }
1109
1110 /* Set 16 TU max duration for the contention-free period (CFP). */
1111 static void
1112 atw_cfp_init(struct atw_softc *sc)
1113 {
1114 uint32_t cfpp;
1115
1116 cfpp = ATW_READ(sc, ATW_CFPP);
1117 cfpp &= ~ATW_CFPP_CFPMD;
1118 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1119 ATW_WRITE(sc, ATW_CFPP, cfpp);
1120 }
1121
1122 static void
1123 atw_tofs0_init(struct atw_softc *sc)
1124 {
1125 /* XXX I guess that the Cardbus clock is 22MHz?
1126 * I am assuming that the role of ATW_TOFS0_USCNT is
1127 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1128 * very clear on this point. It says in the datasheet that it is
1129 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1130 * and 33MHz; maybe this is the way? I see a binary-only driver write
1131 * these values. These values are also the power-on default.
1132 */
1133 ATW_WRITE(sc, ATW_TOFS0,
1134 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1135 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1136 }
1137
1138 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1139 static void
1140 atw_ifs_init(struct atw_softc *sc)
1141 {
1142 uint32_t ifst;
1143 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1144 * Go figure.
1145 */
1146 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1147 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1148 ATW_IFST_SIFS_MASK) |
1149 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1150 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1151
1152 ATW_WRITE(sc, ATW_IFST, ifst);
1153 }
1154
1155 static void
1156 atw_response_times_init(struct atw_softc *sc)
1157 {
1158 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1159 * indicate that the MAC expects at least SIFS + MIRT microseconds
1160 * to pass after it transmits a frame that requires a response;
1161 * it waits at most SIFS + MART microseconds for the response.
1162 * Surely this is not the ACK timeout?
1163 */
1164 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1165 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1166 }
1167
1168 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1169 * engines read and write baseband registers after Rx and before
1170 * Tx, respectively.
1171 */
1172 static void
1173 atw_bbp_io_init(struct atw_softc *sc)
1174 {
1175 uint32_t mmiraddr2;
1176
1177 /* XXX The reference driver does this, but is it *really*
1178 * necessary?
1179 */
1180 switch (sc->sc_rev) {
1181 case ATW_REVISION_AB:
1182 case ATW_REVISION_AF:
1183 mmiraddr2 = 0x0;
1184 break;
1185 default:
1186 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1187 mmiraddr2 &=
1188 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1189 break;
1190 }
1191
1192 switch (sc->sc_bbptype) {
1193 case ATW_BBPTYPE_INTERSIL:
1194 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1195 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1196 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1197 break;
1198 case ATW_BBPTYPE_MARVEL:
1199 /* TBD find out the Marvel settings. */
1200 break;
1201 case ATW_BBPTYPE_RFMD:
1202 default:
1203 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1204 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1205 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1206 break;
1207 }
1208 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1209 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1210 }
1211
1212 /*
1213 * atw_init: [ ifnet interface function ]
1214 *
1215 * Initialize the interface. Must be called at splnet().
1216 */
1217 int
1218 atw_init(struct ifnet *ifp)
1219 {
1220 struct atw_softc *sc = ifp->if_softc;
1221 struct ieee80211com *ic = &sc->sc_ic;
1222 struct atw_txsoft *txs;
1223 struct atw_rxsoft *rxs;
1224 int i, error = 0;
1225
1226 if ((error = atw_enable(sc)) != 0)
1227 goto out;
1228
1229 /*
1230 * Cancel any pending I/O. This also resets.
1231 */
1232 atw_stop(ifp, 0);
1233
1234 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1235 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1236 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
1237 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
1238
1239 atw_wcsr_init(sc);
1240
1241 atw_cmdr_init(sc);
1242
1243 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1244 *
1245 * XXX Set transmit power for ATIM, RTS, Beacon.
1246 */
1247 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1248 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1249
1250 atw_tofs2_init(sc);
1251
1252 atw_nar_init(sc);
1253
1254 atw_txlmt_init(sc);
1255
1256 atw_test1_init(sc);
1257
1258 atw_rf_reset(sc);
1259
1260 atw_cfp_init(sc);
1261
1262 atw_tofs0_init(sc);
1263
1264 atw_ifs_init(sc);
1265
1266 /* XXX Fall asleep after one second of inactivity.
1267 * XXX A frame may only dribble in for 65536us.
1268 */
1269 ATW_WRITE(sc, ATW_RMD,
1270 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1271
1272 atw_response_times_init(sc);
1273
1274 atw_bbp_io_init(sc);
1275
1276 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1277
1278 if ((error = atw_rf3000_init(sc)) != 0)
1279 goto out;
1280
1281 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1282 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1283 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1284
1285 /*
1286 * Initialize the transmit descriptor ring.
1287 */
1288 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1289 for (i = 0; i < ATW_NTXDESC; i++) {
1290 sc->sc_txdescs[i].at_ctl = 0;
1291 /* no transmit chaining */
1292 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1293 sc->sc_txdescs[i].at_buf2 =
1294 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1295 }
1296 /* use ring mode */
1297 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1298 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1299 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1300 sc->sc_txfree = ATW_NTXDESC;
1301 sc->sc_txnext = 0;
1302
1303 /*
1304 * Initialize the transmit job descriptors.
1305 */
1306 SIMPLEQ_INIT(&sc->sc_txfreeq);
1307 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1308 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1309 txs = &sc->sc_txsoft[i];
1310 txs->txs_mbuf = NULL;
1311 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1312 }
1313
1314 /*
1315 * Initialize the receive descriptor and receive job
1316 * descriptor rings.
1317 */
1318 for (i = 0; i < ATW_NRXDESC; i++) {
1319 rxs = &sc->sc_rxsoft[i];
1320 if (rxs->rxs_mbuf == NULL) {
1321 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1322 printf("%s: unable to allocate or map rx "
1323 "buffer %d, error = %d\n",
1324 sc->sc_dev.dv_xname, i, error);
1325 /*
1326 * XXX Should attempt to run with fewer receive
1327 * XXX buffers instead of just failing.
1328 */
1329 atw_rxdrain(sc);
1330 goto out;
1331 }
1332 } else
1333 ATW_INIT_RXDESC(sc, i);
1334 }
1335 sc->sc_rxptr = 0;
1336
1337 /*
1338 * Initialize the interrupt mask and enable interrupts.
1339 */
1340 /* normal interrupts */
1341 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1342 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1343
1344 /* abnormal interrupts */
1345 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1346 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1347 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1348
1349 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1350 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1351 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1352 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1353 ATW_INTR_TRT;
1354
1355 sc->sc_linkint_mask &= sc->sc_inten;
1356 sc->sc_rxint_mask &= sc->sc_inten;
1357 sc->sc_txint_mask &= sc->sc_inten;
1358
1359 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1360 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1361
1362 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1363 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1364
1365 /*
1366 * Give the transmit and receive rings to the ADM8211.
1367 */
1368 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1369 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1370
1371 sc->sc_txthresh = 0;
1372 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1373 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1374
1375 /* common 802.11 configuration */
1376 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1377 switch (ic->ic_opmode) {
1378 case IEEE80211_M_STA:
1379 break;
1380 case IEEE80211_M_AHDEMO: /* XXX */
1381 case IEEE80211_M_IBSS:
1382 ic->ic_flags |= IEEE80211_F_IBSSON;
1383 /*FALLTHROUGH*/
1384 case IEEE80211_M_HOSTAP: /* XXX */
1385 break;
1386 case IEEE80211_M_MONITOR: /* XXX */
1387 break;
1388 }
1389
1390 switch (ic->ic_opmode) {
1391 case IEEE80211_M_AHDEMO:
1392 case IEEE80211_M_HOSTAP:
1393 ic->ic_bss->ni_intval = ic->ic_lintval;
1394 ic->ic_bss->ni_rssi = 0;
1395 ic->ic_bss->ni_rstamp = 0;
1396 break;
1397 default: /* XXX */
1398 break;
1399 }
1400
1401 sc->sc_wepctl = 0;
1402
1403 atw_write_ssid(sc);
1404 atw_write_sup_rates(sc);
1405 if (ic->ic_caps & IEEE80211_C_WEP)
1406 atw_write_wep(sc);
1407
1408 ic->ic_state = IEEE80211_S_INIT;
1409
1410 /*
1411 * Set the receive filter. This will start the transmit and
1412 * receive processes.
1413 */
1414 atw_filter_setup(sc);
1415
1416 /*
1417 * Start the receive process.
1418 */
1419 ATW_WRITE(sc, ATW_RDR, 0x1);
1420
1421 /*
1422 * Note that the interface is now running.
1423 */
1424 ifp->if_flags |= IFF_RUNNING;
1425 ifp->if_flags &= ~IFF_OACTIVE;
1426
1427 /* send no beacons, yet. */
1428 atw_start_beacon(sc, 0);
1429
1430 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1431 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1432 else
1433 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1434 out:
1435 if (error) {
1436 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1437 ifp->if_timer = 0;
1438 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1439 }
1440 #ifdef ATW_DEBUG
1441 atw_print_regs(sc, "end of init");
1442 #endif /* ATW_DEBUG */
1443
1444 return (error);
1445 }
1446
1447 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1448 * 0: MAC control of RF3000/Si4126.
1449 *
1450 * Applies power, or selects RF front-end? Sets reset condition.
1451 *
1452 * TBD support non-RFMD BBP, non-SiLabs synth.
1453 */
1454 static void
1455 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1456 {
1457 if (enable) {
1458 ATW_WRITE(sc, ATW_SYNRF,
1459 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1460 DELAY(atw_bbp_io_enable_delay);
1461 } else {
1462 ATW_WRITE(sc, ATW_SYNRF, 0);
1463 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1464 }
1465 }
1466
1467 static int
1468 atw_tune(struct atw_softc *sc)
1469 {
1470 int rc;
1471 u_int chan;
1472 struct ieee80211com *ic = &sc->sc_ic;
1473
1474 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1475 if (chan == IEEE80211_CHAN_ANY)
1476 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1477
1478 if (chan == sc->sc_cur_chan)
1479 return 0;
1480
1481 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1482 sc->sc_cur_chan, chan));
1483
1484 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1485
1486 atw_si4126_tune(sc, chan);
1487 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1488 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1489 chan);
1490
1491 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1492 DELAY(20 * 1000);
1493 ATW_WRITE(sc, ATW_RDR, 0x1);
1494
1495 if (rc == 0)
1496 sc->sc_cur_chan = chan;
1497
1498 return rc;
1499 }
1500
1501 #ifdef ATW_SYNDEBUG
1502 static void
1503 atw_si4126_print(struct atw_softc *sc)
1504 {
1505 struct ifnet *ifp = &sc->sc_ic.ic_if;
1506 u_int addr, val;
1507
1508 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1509 return;
1510
1511 for (addr = 0; addr <= 8; addr++) {
1512 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1513 if (atw_si4126_read(sc, addr, &val) == 0) {
1514 printf("<unknown> (quitting print-out)\n");
1515 break;
1516 }
1517 printf("%05x\n", val);
1518 }
1519 }
1520 #endif /* ATW_SYNDEBUG */
1521
1522 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1523 *
1524 * The RF/IF synthesizer produces two reference frequencies for
1525 * the RF2948B transceiver. The first frequency the RF2948B requires
1526 * is two times the so-called "intermediate frequency" (IF). Since
1527 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1528 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1529 * frequency required by the transceiver is the radio frequency
1530 * (RF). This is a superheterodyne transceiver; for f(chan) the
1531 * center frequency of the channel we are tuning, RF = f(chan) -
1532 * IF.
1533 *
1534 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1535 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1536 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1537 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1538 */
1539 static void
1540 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1541 {
1542 u_int mhz;
1543 u_int R;
1544 u_int32_t gpio;
1545 u_int16_t gain;
1546
1547 #ifdef ATW_SYNDEBUG
1548 atw_si4126_print(sc);
1549 #endif /* ATW_SYNDEBUG */
1550
1551 if (chan == 14)
1552 mhz = 2484;
1553 else
1554 mhz = 2412 + 5 * (chan - 1);
1555
1556 /* Tune IF to 748MHz to suit the IF LO input of the
1557 * RF2494B, which is 2 x IF. No need to set an IF divider
1558 * because an IF in 526MHz - 952MHz is allowed.
1559 *
1560 * XIN is 44.000MHz, so divide it by two to get allowable
1561 * range of 2-25MHz. SiLabs tells me that this is not
1562 * strictly necessary.
1563 */
1564
1565 if (atw_xindiv2)
1566 R = 44;
1567 else
1568 R = 88;
1569
1570 /* Power-up RF, IF synthesizers. */
1571 atw_si4126_write(sc, SI4126_POWER,
1572 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1573
1574 /* set LPWR, too? */
1575 atw_si4126_write(sc, SI4126_MAIN,
1576 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1577
1578 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1579 * set KP2 to 1.
1580 *
1581 * REFDIF This is different from the reference driver, which
1582 * always sets SI4126_GAIN to 0.
1583 */
1584 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1585
1586 atw_si4126_write(sc, SI4126_GAIN, gain);
1587
1588 /* XIN = 44MHz.
1589 *
1590 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1591 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1592 *
1593 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1594 * so that 1496/88 * 44MHz = 748MHz.
1595 */
1596 atw_si4126_write(sc, SI4126_IFN, 1496);
1597
1598 atw_si4126_write(sc, SI4126_IFR, R);
1599
1600 #ifndef ATW_REFSLAVE
1601 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1602 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1603 * which has no RF1!
1604 */
1605 atw_si4126_write(sc, SI4126_RF1R, R);
1606
1607 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1608 #endif
1609
1610 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1611 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1612 * Now let's multiply it to mhz. So mhz - IF = N.
1613 */
1614 atw_si4126_write(sc, SI4126_RF2R, R);
1615
1616 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1617
1618 /* wait 100us from power-up for RF, IF to settle */
1619 DELAY(100);
1620
1621 gpio = ATW_READ(sc, ATW_GPIO);
1622 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1623 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1624
1625 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1626 /* Set a Prism RF front-end to a special mode for channel 14?
1627 *
1628 * Apparently the SMC2635W needs this, although I don't think
1629 * it has a Prism RF.
1630 */
1631 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1632 }
1633 ATW_WRITE(sc, ATW_GPIO, gpio);
1634
1635 #ifdef ATW_SYNDEBUG
1636 atw_si4126_print(sc);
1637 #endif /* ATW_SYNDEBUG */
1638 }
1639
1640 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1641 * diversity.
1642 *
1643 * !!!
1644 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1645 * !!!
1646 */
1647 static int
1648 atw_rf3000_init(struct atw_softc *sc)
1649 {
1650 int rc = 0;
1651
1652 atw_bbp_io_enable(sc, 1);
1653
1654 /* CCA is acquisition sensitive */
1655 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1656 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1657
1658 if (rc != 0)
1659 goto out;
1660
1661 /* enable diversity */
1662 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1663
1664 if (rc != 0)
1665 goto out;
1666
1667 /* sensible setting from a binary-only driver */
1668 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1669 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1670
1671 if (rc != 0)
1672 goto out;
1673
1674 /* magic from a binary-only driver */
1675 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1676 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1677
1678 if (rc != 0)
1679 goto out;
1680
1681 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1682
1683 if (rc != 0)
1684 goto out;
1685
1686 /* XXX Reference driver remarks that Abocom sets this to 50.
1687 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1688 * in the "reserved" area of register RF3000_OPTIONS1.
1689 */
1690 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1691
1692 if (rc != 0)
1693 goto out;
1694
1695 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1696
1697 if (rc != 0)
1698 goto out;
1699
1700 out:
1701 atw_bbp_io_enable(sc, 0);
1702 return rc;
1703 }
1704
1705 #ifdef ATW_BBPDEBUG
1706 static void
1707 atw_rf3000_print(struct atw_softc *sc)
1708 {
1709 struct ifnet *ifp = &sc->sc_ic.ic_if;
1710 u_int addr, val;
1711
1712 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1713 return;
1714
1715 for (addr = 0x01; addr <= 0x15; addr++) {
1716 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1717 if (atw_rf3000_read(sc, addr, &val) != 0) {
1718 printf("<unknown> (quitting print-out)\n");
1719 break;
1720 }
1721 printf("%08x\n", val);
1722 }
1723 }
1724 #endif /* ATW_BBPDEBUG */
1725
1726 /* Set the power settings on the BBP for channel `chan'. */
1727 static int
1728 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1729 {
1730 int rc = 0;
1731 u_int32_t reg;
1732 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1733
1734 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1735 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1736 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1737
1738 /* odd channels: LSB, even channels: MSB */
1739 if (chan % 2 == 1) {
1740 txpower &= 0xFF;
1741 lpf_cutoff &= 0xFF;
1742 lna_gs_thresh &= 0xFF;
1743 } else {
1744 txpower >>= 8;
1745 lpf_cutoff >>= 8;
1746 lna_gs_thresh >>= 8;
1747 }
1748
1749 #ifdef ATW_BBPDEBUG
1750 atw_rf3000_print(sc);
1751 #endif /* ATW_BBPDEBUG */
1752
1753 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1754 "lna_gs_thresh %02x\n",
1755 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1756
1757 atw_bbp_io_enable(sc, 1);
1758
1759 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1760 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1761 goto out;
1762
1763 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1764 goto out;
1765
1766 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1767 goto out;
1768
1769 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1770
1771 if (rc != 0)
1772 goto out;
1773
1774 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1775
1776 if (rc != 0)
1777 goto out;
1778
1779 #ifdef ATW_BBPDEBUG
1780 atw_rf3000_print(sc);
1781 #endif /* ATW_BBPDEBUG */
1782
1783 out:
1784 atw_bbp_io_enable(sc, 0);
1785
1786 /* set beacon, rts, atim transmit power */
1787 reg = ATW_READ(sc, ATW_PLCPHD);
1788 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1789 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1790 ATW_PLCPHD_SERVICE_MASK);
1791 ATW_WRITE(sc, ATW_PLCPHD, reg);
1792 DELAY(2 * 1000);
1793
1794 return rc;
1795 }
1796
1797 /* Write a register on the RF3000 baseband processor using the
1798 * registers provided by the ADM8211 for this purpose.
1799 *
1800 * Return 0 on success.
1801 */
1802 static int
1803 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1804 {
1805 u_int32_t reg;
1806 int i;
1807
1808 reg = sc->sc_bbpctl_wr |
1809 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1810 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1811
1812 for (i = 10; --i >= 0; ) {
1813 ATW_WRITE(sc, ATW_BBPCTL, reg);
1814 DELAY(2000);
1815 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1816 break;
1817 }
1818
1819 if (i < 0) {
1820 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1821 return ETIMEDOUT;
1822 }
1823 return 0;
1824 }
1825
1826 /* Read a register on the RF3000 baseband processor using the registers
1827 * the ADM8211 provides for this purpose.
1828 *
1829 * The 7-bit register address is addr. Record the 8-bit data in the register
1830 * in *val.
1831 *
1832 * Return 0 on success.
1833 *
1834 * XXX This does not seem to work. The ADM8211 must require more or
1835 * different magic to read the chip than to write it. Possibly some
1836 * of the magic I have derived from a binary-only driver concerns
1837 * the "chip address" (see the RF3000 manual).
1838 */
1839 #ifdef ATW_BBPDEBUG
1840 static int
1841 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1842 {
1843 u_int32_t reg;
1844 int i;
1845
1846 for (i = 1000; --i >= 0; ) {
1847 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1848 break;
1849 DELAY(100);
1850 }
1851
1852 if (i < 0) {
1853 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1854 sc->sc_dev.dv_xname);
1855 return ETIMEDOUT;
1856 }
1857
1858 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1859
1860 ATW_WRITE(sc, ATW_BBPCTL, reg);
1861
1862 for (i = 1000; --i >= 0; ) {
1863 DELAY(100);
1864 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1865 break;
1866 }
1867
1868 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1869
1870 if (i < 0) {
1871 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1872 sc->sc_dev.dv_xname, reg);
1873 return ETIMEDOUT;
1874 }
1875 if (val != NULL)
1876 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1877 return 0;
1878 }
1879 #endif /* ATW_BBPDEBUG */
1880
1881 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1882 * provided by the ADM8211 for that purpose.
1883 *
1884 * val is 18 bits of data, and val is the 4-bit address of the register.
1885 *
1886 * Return 0 on success.
1887 */
1888 static void
1889 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1890 {
1891 uint32_t bits, mask, reg;
1892 const int nbits = 22;
1893
1894 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1895 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1896
1897 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1898 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1899
1900 reg = ATW_SYNRF_SELSYN;
1901 /* reference driver: reset Si4126 serial bus to initial
1902 * conditions?
1903 */
1904 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1905 ATW_WRITE(sc, ATW_SYNRF, reg);
1906
1907 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1908 if ((bits & mask) != 0)
1909 reg |= ATW_SYNRF_SYNDATA;
1910 else
1911 reg &= ~ATW_SYNRF_SYNDATA;
1912 ATW_WRITE(sc, ATW_SYNRF, reg);
1913 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1914 ATW_WRITE(sc, ATW_SYNRF, reg);
1915 }
1916 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1917 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1918 }
1919
1920 /* Read 18-bit data from the 4-bit address addr in Si4126
1921 * RF synthesizer and write the data to *val. Return 0 on success.
1922 *
1923 * XXX This does not seem to work. The ADM8211 must require more or
1924 * different magic to read the chip than to write it.
1925 */
1926 #ifdef ATW_SYNDEBUG
1927 static int
1928 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1929 {
1930 u_int32_t reg;
1931 int i;
1932
1933 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1934
1935 for (i = 1000; --i >= 0; ) {
1936 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1937 break;
1938 DELAY(100);
1939 }
1940
1941 if (i < 0) {
1942 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1943 sc->sc_dev.dv_xname);
1944 return ETIMEDOUT;
1945 }
1946
1947 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1948
1949 ATW_WRITE(sc, ATW_SYNCTL, reg);
1950
1951 for (i = 1000; --i >= 0; ) {
1952 DELAY(100);
1953 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1954 break;
1955 }
1956
1957 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1958
1959 if (i < 0) {
1960 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1961 sc->sc_dev.dv_xname, reg);
1962 return ETIMEDOUT;
1963 }
1964 if (val != NULL)
1965 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1966 ATW_SYNCTL_DATA_MASK);
1967 return 0;
1968 }
1969 #endif /* ATW_SYNDEBUG */
1970
1971 /* XXX is the endianness correct? test. */
1972 #define atw_calchash(addr) \
1973 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1974
1975 /*
1976 * atw_filter_setup:
1977 *
1978 * Set the ADM8211's receive filter.
1979 */
1980 static void
1981 atw_filter_setup(struct atw_softc *sc)
1982 {
1983 struct ieee80211com *ic = &sc->sc_ic;
1984 struct ethercom *ec = &ic->ic_ec;
1985 struct ifnet *ifp = &sc->sc_ic.ic_if;
1986 int hash;
1987 u_int32_t hashes[2];
1988 struct ether_multi *enm;
1989 struct ether_multistep step;
1990
1991 /* According to comments in tlp_al981_filter_setup
1992 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1993 * multicast filter to be set while it is running. Hopefully
1994 * the ADM8211 is not the same!
1995 */
1996 if ((ifp->if_flags & IFF_RUNNING) != 0)
1997 atw_idle(sc, ATW_NAR_SR);
1998
1999 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2000
2001 /* XXX in scan mode, do not filter packets. Maybe this is
2002 * unnecessary.
2003 */
2004 if (ic->ic_state == IEEE80211_S_SCAN ||
2005 (ifp->if_flags & IFF_PROMISC) != 0) {
2006 sc->sc_opmode |= ATW_NAR_PR;
2007 goto allmulti;
2008 }
2009
2010 hashes[0] = hashes[1] = 0x0;
2011
2012 /*
2013 * Program the 64-bit multicast hash filter.
2014 */
2015 ETHER_FIRST_MULTI(step, ec, enm);
2016 while (enm != NULL) {
2017 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2018 ETHER_ADDR_LEN) != 0)
2019 goto allmulti;
2020
2021 hash = atw_calchash(enm->enm_addrlo);
2022 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2023 ETHER_NEXT_MULTI(step, enm);
2024 }
2025 ifp->if_flags &= ~IFF_ALLMULTI;
2026 goto setit;
2027
2028 allmulti:
2029 ifp->if_flags |= IFF_ALLMULTI;
2030 hashes[0] = hashes[1] = 0xffffffff;
2031
2032 setit:
2033 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2034 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2035 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2036 DELAY(20 * 1000);
2037
2038 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2039 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2040 }
2041
2042 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2043 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2044 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2045 * no beacon with the preferred BSSID and SSID in the number of
2046 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2047 */
2048 static void
2049 atw_write_bssid(struct atw_softc *sc)
2050 {
2051 struct ieee80211com *ic = &sc->sc_ic;
2052 u_int8_t *bssid;
2053
2054 bssid = ic->ic_bss->ni_bssid;
2055
2056 ATW_WRITE(sc, ATW_BSSID0,
2057 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2058 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2059 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2060 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2061
2062 ATW_WRITE(sc, ATW_ABDA1,
2063 (ATW_READ(sc, ATW_ABDA1) &
2064 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2065 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2066 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2067
2068 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2069 ether_sprintf(sc->sc_bssid)));
2070 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2071
2072 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2073 }
2074
2075 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2076 * 16-bit word.
2077 */
2078 static void
2079 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2080 {
2081 u_int i;
2082 u_int8_t *ptr;
2083
2084 memcpy(&sc->sc_sram[ofs], buf, buflen);
2085
2086 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2087
2088 KASSERT(buflen + ofs <= sc->sc_sramlen);
2089
2090 ptr = &sc->sc_sram[ofs];
2091
2092 for (i = 0; i < buflen; i += 2) {
2093 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2094 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2095 DELAY(atw_writewep_delay);
2096
2097 ATW_WRITE(sc, ATW_WESK,
2098 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2099 DELAY(atw_writewep_delay);
2100 }
2101 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2102
2103 if (sc->sc_if.if_flags & IFF_DEBUG) {
2104 int n_octets = 0;
2105 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2106 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2107 for (i = 0; i < buflen; i++) {
2108 printf(" %02x", ptr[i]);
2109 if (++n_octets % 24 == 0)
2110 printf("\n");
2111 }
2112 if (n_octets % 24 != 0)
2113 printf("\n");
2114 }
2115 }
2116
2117 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2118 static void
2119 atw_write_wep(struct atw_softc *sc)
2120 {
2121 struct ieee80211com *ic = &sc->sc_ic;
2122 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2123 u_int8_t buf[IEEE80211_WEP_NKID]
2124 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2125 u_int32_t reg;
2126 int i;
2127
2128 sc->sc_wepctl = 0;
2129 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2130
2131 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2132 return;
2133
2134 memset(&buf[0][0], 0, sizeof(buf));
2135
2136 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2137 if (ic->ic_nw_keys[i].wk_len > 5) {
2138 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2139 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2140 buf[i][1] = ATW_WEP_ENABLED;
2141 } else {
2142 buf[i][1] = 0;
2143 continue;
2144 }
2145 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2146 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2147 ic->ic_nw_keys[i].wk_len - 1);
2148 }
2149
2150 reg = ATW_READ(sc, ATW_MACTEST);
2151 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2152 reg &= ~ATW_MACTEST_KEYID_MASK;
2153 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2154 ATW_WRITE(sc, ATW_MACTEST, reg);
2155
2156 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE;
2157
2158 switch (sc->sc_rev) {
2159 case ATW_REVISION_AB:
2160 case ATW_REVISION_AF:
2161 /* Bypass WEP on Rx. */
2162 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2163 break;
2164 default:
2165 break;
2166 }
2167
2168 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2169 sizeof(buf));
2170 }
2171
2172 const struct timeval atw_beacon_mininterval = {.tv_sec = 1, .tv_usec = 0};
2173
2174 static void
2175 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2176 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2177 {
2178 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2179
2180 switch (subtype) {
2181 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2182 /* do nothing: hardware answers probe request */
2183 break;
2184 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2185 case IEEE80211_FC0_SUBTYPE_BEACON:
2186 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2187 break;
2188 default:
2189 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2190 break;
2191 }
2192 return;
2193 }
2194
2195 static int
2196 do_slow_print(struct atw_softc *sc, int *did_print)
2197 {
2198 if ((sc->sc_if.if_flags & IFF_LINK0) == 0)
2199 return 0;
2200 if (!*did_print && (sc->sc_if.if_flags & IFF_DEBUG) == 0 &&
2201 !ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval))
2202 return 0;
2203
2204 *did_print = 1;
2205 return 1;
2206 }
2207
2208 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2209 * of IBSSs with like SSID/channel but different BSSID. It joins the
2210 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2211 * convention. Possibly the ADMtek chip does this for us; I will have
2212 * to test to find out.
2213 *
2214 * XXX we should add the duration field of the received beacon to
2215 * the TSF time it contains before comparing it with the ADM8211's
2216 * TSF.
2217 */
2218 static void
2219 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2220 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2221 {
2222 struct atw_softc *sc;
2223 struct ieee80211_frame *wh;
2224 uint32_t tsftl, tsfth;
2225 uint32_t bcn_tsftl, bcn_tsfth;
2226 int did_print = 0, sign;
2227 union {
2228 uint32_t words[2];
2229 uint8_t tstamp[8];
2230 } u;
2231
2232 sc = (struct atw_softc*)ic->ic_if.if_softc;
2233
2234 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2235
2236 if (ic->ic_state != IEEE80211_S_RUN)
2237 return;
2238
2239 atw_tsft(sc, &tsfth, &tsftl);
2240
2241 (void)memcpy(&u, &ni->ni_tstamp[0], sizeof(u));
2242 bcn_tsftl = le32toh(u.words[0]);
2243 bcn_tsfth = le32toh(u.words[1]);
2244
2245 /* we are faster, let the other guy catch up */
2246 if (bcn_tsfth < tsfth)
2247 sign = -1;
2248 else if (bcn_tsfth == tsfth && bcn_tsftl < tsftl)
2249 sign = -1;
2250 else
2251 sign = 1;
2252
2253 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid,
2254 IEEE80211_ADDR_LEN) == 0) {
2255 if (!do_slow_print(sc, &did_print))
2256 return;
2257 printf("%s: tsft offset %s%" PRIu64 "\n", sc->sc_dev.dv_xname,
2258 (sign < 0) ? "-" : "",
2259 (sign < 0)
2260 ? ((((uint64_t)tsfth << 32) | tsftl) -
2261 (((uint64_t)bcn_tsfth << 32) | bcn_tsftl))
2262 : ((((uint64_t)bcn_tsfth << 32) | bcn_tsftl) -
2263 (((uint64_t)tsfth << 32) | tsftl)));
2264 return;
2265 }
2266
2267 if (sign < 0)
2268 return;
2269
2270 if (ieee80211_match_bss(ic, ni) != 0)
2271 return;
2272
2273 if (do_slow_print(sc, &did_print)) {
2274 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2275 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2276 }
2277
2278 if (ic->ic_opmode != IEEE80211_M_IBSS)
2279 return;
2280
2281 if (do_slow_print(sc, &did_print)) {
2282 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2283 sc->sc_dev.dv_xname, ((uint64_t)tsfth << 32) | tsftl,
2284 ((uint64_t)bcn_tsfth << 32) | bcn_tsftl);
2285 }
2286
2287 wh = mtod(m0, struct ieee80211_frame *);
2288
2289 if (do_slow_print(sc, &did_print)) {
2290 printf("%s: sync TSF with %s\n",
2291 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2292 }
2293
2294 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2295
2296 (void)memcpy(&ic->ic_bss->ni_tstamp[0], &u, sizeof(u));
2297
2298 atw_tsf(sc);
2299
2300 /* negotiate rates with new IBSS */
2301 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2302 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2303 if (ni->ni_rates.rs_nrates == 0) {
2304 if (do_slow_print(sc, &did_print)) {
2305 printf("%s: rates mismatch, BSSID %s\n",
2306 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2307 }
2308 return;
2309 }
2310
2311 if (do_slow_print(sc, &did_print)) {
2312 printf("%s: sync BSSID %s -> ",
2313 sc->sc_dev.dv_xname, ether_sprintf(ic->ic_bss->ni_bssid));
2314 printf("%s ", ether_sprintf(ni->ni_bssid));
2315 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2316 }
2317
2318 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2319
2320 atw_write_bssid(sc);
2321 atw_start_beacon(sc, 1);
2322 }
2323
2324 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2325 * In ad hoc mode, the SSID is written to the beacons sent by the
2326 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2327 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2328 * indications.
2329 */
2330 static void
2331 atw_write_ssid(struct atw_softc *sc)
2332 {
2333 struct ieee80211com *ic = &sc->sc_ic;
2334 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2335 * it only expects the element length, not its ID.
2336 */
2337 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2338
2339 memset(buf, 0, sizeof(buf));
2340 buf[0] = ic->ic_bss->ni_esslen;
2341 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2342
2343 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2344 roundup(1 + ic->ic_bss->ni_esslen, 2));
2345 }
2346
2347 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2348 * In ad hoc mode, the supported rates are written to beacons sent by the
2349 * ADM8211.
2350 */
2351 static void
2352 atw_write_sup_rates(struct atw_softc *sc)
2353 {
2354 struct ieee80211com *ic = &sc->sc_ic;
2355 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2356 * supported rates
2357 */
2358 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2359
2360 memset(buf, 0, sizeof(buf));
2361
2362 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2363
2364 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2365 ic->ic_bss->ni_rates.rs_nrates);
2366
2367 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2368 }
2369
2370 /* Start/stop sending beacons. */
2371 void
2372 atw_start_beacon(struct atw_softc *sc, int start)
2373 {
2374 struct ieee80211com *ic = &sc->sc_ic;
2375 uint16_t chan;
2376 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2377 size_t len;
2378
2379 if (ATW_IS_ENABLED(sc) == 0)
2380 return;
2381
2382 /* start beacons */
2383 len = sizeof(struct ieee80211_frame) +
2384 8 /* timestamp */ + 2 /* beacon interval */ +
2385 2 /* capability info */ +
2386 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2387 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2388 3 /* DS parameters */ +
2389 IEEE80211_CRC_LEN;
2390
2391 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2392 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2393 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2394
2395 ATW_WRITE(sc, ATW_BCNT, bcnt);
2396 ATW_WRITE(sc, ATW_CAP1, cap1);
2397
2398 if (!start)
2399 return;
2400
2401 /* TBD use ni_capinfo */
2402
2403 capinfo = 0;
2404 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2405 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2406 if (ic->ic_flags & IEEE80211_F_WEPON)
2407 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2408
2409 switch (ic->ic_opmode) {
2410 case IEEE80211_M_IBSS:
2411 len += 4; /* IBSS parameters */
2412 capinfo |= IEEE80211_CAPINFO_IBSS;
2413 break;
2414 case IEEE80211_M_HOSTAP:
2415 /* XXX 6-byte minimum TIM */
2416 len += atw_beacon_len_adjust;
2417 capinfo |= IEEE80211_CAPINFO_ESS;
2418 break;
2419 default:
2420 return;
2421 }
2422
2423 /* set listen interval
2424 * XXX do software units agree w/ hardware?
2425 */
2426 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2427 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2428
2429 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
2430
2431 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2432 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2433 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2434
2435 ATW_WRITE(sc, ATW_BCNT, bcnt);
2436 ATW_WRITE(sc, ATW_BPLI, bpli);
2437 ATW_WRITE(sc, ATW_CAP0, cap0);
2438 ATW_WRITE(sc, ATW_CAP1, cap1);
2439
2440 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2441 sc->sc_dev.dv_xname, bcnt));
2442
2443 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2444 sc->sc_dev.dv_xname, cap1));
2445 }
2446
2447 /* Return the 32 lsb of the last TSFT divisible by ival. */
2448 static __inline uint32_t
2449 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2450 {
2451 /* Following the reference driver's lead, I compute
2452 *
2453 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2454 *
2455 * without using 64-bit arithmetic, using the following
2456 * relationship:
2457 *
2458 * (0x100000000 * H + L) % m
2459 * = ((0x100000000 % m) * H + L) % m
2460 * = (((0xffffffff + 1) % m) * H + L) % m
2461 * = ((0xffffffff % m + 1 % m) * H + L) % m
2462 * = ((0xffffffff % m + 1) * H + L) % m
2463 */
2464 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2465 }
2466
2467 static __inline void
2468 atw_tsft(struct atw_softc *sc, uint32_t *tsfth, uint32_t *tsftl)
2469 {
2470 int i;
2471 for (i = 0; i < 2; i++) {
2472 *tsfth = ATW_READ(sc, ATW_TSFTH);
2473 *tsftl = ATW_READ(sc, ATW_TSFTL);
2474 if (ATW_READ(sc, ATW_TSFTH) == *tsfth)
2475 break;
2476 }
2477 }
2478
2479 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2480 * the ieee80211com.
2481 *
2482 * Predict the next target beacon transmission time (TBTT) and
2483 * write it to the ADM8211.
2484 */
2485 static void
2486 atw_tsf(struct atw_softc *sc)
2487 {
2488 #define TBTTOFS 20 /* TU */
2489
2490 struct ieee80211com *ic = &sc->sc_ic;
2491 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2492 union {
2493 uint32_t words[2];
2494 uint8_t tstamp[8];
2495 } u;
2496
2497 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2498 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2499 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2500 atw_tsft(sc, &tsfth, &tsftl);
2501 u.words[0] = htole32(tsftl);
2502 u.words[1] = htole32(tsfth);
2503 (void)memcpy(&ic->ic_bss->ni_tstamp[0], &u,
2504 sizeof(ic->ic_bss->ni_tstamp));
2505 } else {
2506 (void)memcpy(&u, &ic->ic_bss->ni_tstamp[0], sizeof(u));
2507 tsftl = le32toh(u.words[0]);
2508 tsfth = le32toh(u.words[1]);
2509 }
2510
2511 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2512
2513 /* We sent/received the last beacon `past' microseconds
2514 * after the interval divided the TSF timer.
2515 */
2516 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2517
2518 /* Skip ten beacons so that the TBTT cannot pass before
2519 * we've programmed it. Ten is an arbitrary number.
2520 */
2521 tbtt = past_even + ival * 10;
2522
2523 ATW_WRITE(sc, ATW_TOFS1,
2524 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2525 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2526 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2527 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2528 #undef TBTTOFS
2529 }
2530
2531 static void
2532 atw_next_scan(void *arg)
2533 {
2534 struct atw_softc *sc = arg;
2535 struct ieee80211com *ic = &sc->sc_ic;
2536 struct ifnet *ifp = &ic->ic_if;
2537 int s;
2538
2539 /* don't call atw_start w/o network interrupts blocked */
2540 s = splnet();
2541 if (ic->ic_state == IEEE80211_S_SCAN)
2542 ieee80211_next_scan(ifp);
2543 splx(s);
2544 }
2545
2546 /* Synchronize the hardware state with the software state. */
2547 static int
2548 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2549 {
2550 struct ifnet *ifp = &ic->ic_if;
2551 struct atw_softc *sc = ifp->if_softc;
2552 enum ieee80211_state ostate;
2553 int error;
2554
2555 ostate = ic->ic_state;
2556
2557 if (nstate == IEEE80211_S_INIT) {
2558 callout_stop(&sc->sc_scan_ch);
2559 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2560 atw_start_beacon(sc, 0);
2561 return (*sc->sc_newstate)(ic, nstate, arg);
2562 }
2563
2564 if ((error = atw_tune(sc)) != 0)
2565 return error;
2566
2567 switch (nstate) {
2568 case IEEE80211_S_ASSOC:
2569 break;
2570 case IEEE80211_S_INIT:
2571 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2572 break;
2573 case IEEE80211_S_SCAN:
2574 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2575 atw_next_scan, sc);
2576
2577 break;
2578 case IEEE80211_S_RUN:
2579 if (ic->ic_opmode == IEEE80211_M_STA)
2580 break;
2581 /*FALLTHROUGH*/
2582 case IEEE80211_S_AUTH:
2583 atw_write_bssid(sc);
2584 atw_write_ssid(sc);
2585 atw_write_sup_rates(sc);
2586
2587 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2588 ic->ic_opmode == IEEE80211_M_MONITOR)
2589 break;
2590
2591 /* set listen interval
2592 * XXX do software units agree w/ hardware?
2593 */
2594 ATW_WRITE(sc, ATW_BPLI,
2595 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2596 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2597 ATW_BPLI_LI_MASK));
2598
2599 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2600 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2601
2602 atw_tsf(sc);
2603 break;
2604 }
2605
2606 if (nstate != IEEE80211_S_SCAN)
2607 callout_stop(&sc->sc_scan_ch);
2608
2609 if (nstate == IEEE80211_S_RUN &&
2610 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2611 ic->ic_opmode == IEEE80211_M_IBSS))
2612 atw_start_beacon(sc, 1);
2613 else
2614 atw_start_beacon(sc, 0);
2615
2616 error = (*sc->sc_newstate)(ic, nstate, arg);
2617
2618 if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2619 atw_write_bssid(sc);
2620
2621 return error;
2622 }
2623
2624 /*
2625 * atw_add_rxbuf:
2626 *
2627 * Add a receive buffer to the indicated descriptor.
2628 */
2629 int
2630 atw_add_rxbuf(struct atw_softc *sc, int idx)
2631 {
2632 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2633 struct mbuf *m;
2634 int error;
2635
2636 MGETHDR(m, M_DONTWAIT, MT_DATA);
2637 if (m == NULL)
2638 return (ENOBUFS);
2639
2640 MCLGET(m, M_DONTWAIT);
2641 if ((m->m_flags & M_EXT) == 0) {
2642 m_freem(m);
2643 return (ENOBUFS);
2644 }
2645
2646 if (rxs->rxs_mbuf != NULL)
2647 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2648
2649 rxs->rxs_mbuf = m;
2650
2651 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2652 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2653 BUS_DMA_READ|BUS_DMA_NOWAIT);
2654 if (error) {
2655 printf("%s: can't load rx DMA map %d, error = %d\n",
2656 sc->sc_dev.dv_xname, idx, error);
2657 panic("atw_add_rxbuf"); /* XXX */
2658 }
2659
2660 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2661 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2662
2663 ATW_INIT_RXDESC(sc, idx);
2664
2665 return (0);
2666 }
2667
2668 /*
2669 * Release any queued transmit buffers.
2670 */
2671 void
2672 atw_txdrain(struct atw_softc *sc)
2673 {
2674 struct atw_txsoft *txs;
2675
2676 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2677 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2678 if (txs->txs_mbuf != NULL) {
2679 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2680 m_freem(txs->txs_mbuf);
2681 txs->txs_mbuf = NULL;
2682 }
2683 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2684 }
2685 sc->sc_tx_timer = 0;
2686 }
2687
2688 /*
2689 * atw_stop: [ ifnet interface function ]
2690 *
2691 * Stop transmission on the interface.
2692 */
2693 void
2694 atw_stop(struct ifnet *ifp, int disable)
2695 {
2696 struct atw_softc *sc = ifp->if_softc;
2697 struct ieee80211com *ic = &sc->sc_ic;
2698
2699 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2700
2701 /* Disable interrupts. */
2702 ATW_WRITE(sc, ATW_IER, 0);
2703
2704 /* Stop the transmit and receive processes. */
2705 sc->sc_opmode = 0;
2706 ATW_WRITE(sc, ATW_NAR, 0);
2707 DELAY(20 * 1000);
2708 ATW_WRITE(sc, ATW_TDBD, 0);
2709 ATW_WRITE(sc, ATW_TDBP, 0);
2710 ATW_WRITE(sc, ATW_RDB, 0);
2711
2712 atw_txdrain(sc);
2713
2714 if (disable) {
2715 atw_rxdrain(sc);
2716 atw_disable(sc);
2717 }
2718
2719 /*
2720 * Mark the interface down and cancel the watchdog timer.
2721 */
2722 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2723 ifp->if_timer = 0;
2724
2725 if (!disable)
2726 atw_reset(sc);
2727 }
2728
2729 /*
2730 * atw_rxdrain:
2731 *
2732 * Drain the receive queue.
2733 */
2734 void
2735 atw_rxdrain(struct atw_softc *sc)
2736 {
2737 struct atw_rxsoft *rxs;
2738 int i;
2739
2740 for (i = 0; i < ATW_NRXDESC; i++) {
2741 rxs = &sc->sc_rxsoft[i];
2742 if (rxs->rxs_mbuf == NULL)
2743 continue;
2744 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2745 m_freem(rxs->rxs_mbuf);
2746 rxs->rxs_mbuf = NULL;
2747 }
2748 }
2749
2750 /*
2751 * atw_detach:
2752 *
2753 * Detach an ADM8211 interface.
2754 */
2755 int
2756 atw_detach(struct atw_softc *sc)
2757 {
2758 struct ifnet *ifp = &sc->sc_ic.ic_if;
2759 struct atw_rxsoft *rxs;
2760 struct atw_txsoft *txs;
2761 int i;
2762
2763 /*
2764 * Succeed now if there isn't any work to do.
2765 */
2766 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2767 return (0);
2768
2769 ieee80211_ifdetach(ifp);
2770 if_detach(ifp);
2771
2772 for (i = 0; i < ATW_NRXDESC; i++) {
2773 rxs = &sc->sc_rxsoft[i];
2774 if (rxs->rxs_mbuf != NULL) {
2775 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2776 m_freem(rxs->rxs_mbuf);
2777 rxs->rxs_mbuf = NULL;
2778 }
2779 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2780 }
2781 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2782 txs = &sc->sc_txsoft[i];
2783 if (txs->txs_mbuf != NULL) {
2784 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2785 m_freem(txs->txs_mbuf);
2786 txs->txs_mbuf = NULL;
2787 }
2788 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2789 }
2790 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2791 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2792 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2793 sizeof(struct atw_control_data));
2794 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2795
2796 shutdownhook_disestablish(sc->sc_sdhook);
2797 powerhook_disestablish(sc->sc_powerhook);
2798
2799 if (sc->sc_srom)
2800 free(sc->sc_srom, M_DEVBUF);
2801
2802 return (0);
2803 }
2804
2805 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2806 void
2807 atw_shutdown(void *arg)
2808 {
2809 struct atw_softc *sc = arg;
2810
2811 atw_stop(&sc->sc_ic.ic_if, 1);
2812 }
2813
2814 int
2815 atw_intr(void *arg)
2816 {
2817 struct atw_softc *sc = arg;
2818 struct ifnet *ifp = &sc->sc_ic.ic_if;
2819 u_int32_t status, rxstatus, txstatus, linkstatus;
2820 int handled = 0, txthresh;
2821
2822 #ifdef DEBUG
2823 if (ATW_IS_ENABLED(sc) == 0)
2824 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2825 #endif
2826
2827 /*
2828 * If the interface isn't running, the interrupt couldn't
2829 * possibly have come from us.
2830 */
2831 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2832 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2833 return (0);
2834
2835 for (;;) {
2836 status = ATW_READ(sc, ATW_STSR);
2837
2838 if (status)
2839 ATW_WRITE(sc, ATW_STSR, status);
2840
2841 #ifdef ATW_DEBUG
2842 #define PRINTINTR(flag) do { \
2843 if ((status & flag) != 0) { \
2844 printf("%s" #flag, delim); \
2845 delim = ","; \
2846 } \
2847 } while (0)
2848
2849 if (atw_debug > 1 && status) {
2850 const char *delim = "<";
2851
2852 printf("%s: reg[STSR] = %x",
2853 sc->sc_dev.dv_xname, status);
2854
2855 PRINTINTR(ATW_INTR_FBE);
2856 PRINTINTR(ATW_INTR_LINKOFF);
2857 PRINTINTR(ATW_INTR_LINKON);
2858 PRINTINTR(ATW_INTR_RCI);
2859 PRINTINTR(ATW_INTR_RDU);
2860 PRINTINTR(ATW_INTR_REIS);
2861 PRINTINTR(ATW_INTR_RPS);
2862 PRINTINTR(ATW_INTR_TCI);
2863 PRINTINTR(ATW_INTR_TDU);
2864 PRINTINTR(ATW_INTR_TLT);
2865 PRINTINTR(ATW_INTR_TPS);
2866 PRINTINTR(ATW_INTR_TRT);
2867 PRINTINTR(ATW_INTR_TUF);
2868 PRINTINTR(ATW_INTR_BCNTC);
2869 PRINTINTR(ATW_INTR_ATIME);
2870 PRINTINTR(ATW_INTR_TBTT);
2871 PRINTINTR(ATW_INTR_TSCZ);
2872 PRINTINTR(ATW_INTR_TSFTF);
2873 printf(">\n");
2874 }
2875 #undef PRINTINTR
2876 #endif /* ATW_DEBUG */
2877
2878 if ((status & sc->sc_inten) == 0)
2879 break;
2880
2881 handled = 1;
2882
2883 rxstatus = status & sc->sc_rxint_mask;
2884 txstatus = status & sc->sc_txint_mask;
2885 linkstatus = status & sc->sc_linkint_mask;
2886
2887 if (linkstatus) {
2888 atw_linkintr(sc, linkstatus);
2889 }
2890
2891 if (rxstatus) {
2892 /* Grab any new packets. */
2893 atw_rxintr(sc);
2894
2895 if (rxstatus & ATW_INTR_RDU) {
2896 printf("%s: receive ring overrun\n",
2897 sc->sc_dev.dv_xname);
2898 /* Get the receive process going again. */
2899 ATW_WRITE(sc, ATW_RDR, 0x1);
2900 break;
2901 }
2902 }
2903
2904 if (txstatus) {
2905 /* Sweep up transmit descriptors. */
2906 atw_txintr(sc);
2907
2908 if (txstatus & ATW_INTR_TLT)
2909 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2910 sc->sc_dev.dv_xname));
2911
2912 if (txstatus & ATW_INTR_TRT)
2913 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2914 sc->sc_dev.dv_xname));
2915
2916 /* If Tx under-run, increase our transmit threshold
2917 * if another is available.
2918 */
2919 txthresh = sc->sc_txthresh + 1;
2920 if ((txstatus & ATW_INTR_TUF) &&
2921 sc->sc_txth[txthresh].txth_name != NULL) {
2922 /* Idle the transmit process. */
2923 atw_idle(sc, ATW_NAR_ST);
2924
2925 sc->sc_txthresh = txthresh;
2926 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2927 sc->sc_opmode |=
2928 sc->sc_txth[txthresh].txth_opmode;
2929 printf("%s: transmit underrun; new "
2930 "threshold: %s\n", sc->sc_dev.dv_xname,
2931 sc->sc_txth[txthresh].txth_name);
2932
2933 /* Set the new threshold and restart
2934 * the transmit process.
2935 */
2936 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2937 DELAY(20 * 1000);
2938 ATW_WRITE(sc, ATW_RDR, 0x1);
2939 /* XXX Log every Nth underrun from
2940 * XXX now on?
2941 */
2942 }
2943 }
2944
2945 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2946 if (status & ATW_INTR_TPS)
2947 printf("%s: transmit process stopped\n",
2948 sc->sc_dev.dv_xname);
2949 if (status & ATW_INTR_RPS)
2950 printf("%s: receive process stopped\n",
2951 sc->sc_dev.dv_xname);
2952 (void)atw_init(ifp);
2953 break;
2954 }
2955
2956 if (status & ATW_INTR_FBE) {
2957 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2958 (void)atw_init(ifp);
2959 break;
2960 }
2961
2962 /*
2963 * Not handled:
2964 *
2965 * Transmit buffer unavailable -- normal
2966 * condition, nothing to do, really.
2967 *
2968 * Early receive interrupt -- not available on
2969 * all chips, we just use RI. We also only
2970 * use single-segment receive DMA, so this
2971 * is mostly useless.
2972 *
2973 * TBD others
2974 */
2975 }
2976
2977 /* Try to get more packets going. */
2978 atw_start(ifp);
2979
2980 return (handled);
2981 }
2982
2983 /*
2984 * atw_idle:
2985 *
2986 * Cause the transmit and/or receive processes to go idle.
2987 *
2988 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2989 * process in STSR if I clear SR or ST after the process has already
2990 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2991 * do not seem to be too reliable. Perhaps I have the sense of the
2992 * Rx bits switched with the Tx bits?
2993 */
2994 void
2995 atw_idle(struct atw_softc *sc, u_int32_t bits)
2996 {
2997 u_int32_t ackmask = 0, opmode, stsr, test0;
2998 int i, s;
2999
3000 s = splnet();
3001
3002 opmode = sc->sc_opmode & ~bits;
3003
3004 if (bits & ATW_NAR_SR)
3005 ackmask |= ATW_INTR_RPS;
3006
3007 if (bits & ATW_NAR_ST) {
3008 ackmask |= ATW_INTR_TPS;
3009 /* set ATW_NAR_HF to flush TX FIFO. */
3010 opmode |= ATW_NAR_HF;
3011 }
3012
3013 ATW_WRITE(sc, ATW_NAR, opmode);
3014 DELAY(20 * 1000);
3015
3016 for (i = 0; i < 10; i++) {
3017 stsr = ATW_READ(sc, ATW_STSR);
3018 if ((stsr & ackmask) == ackmask)
3019 break;
3020 DELAY(1000);
3021 }
3022
3023 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3024
3025 if ((stsr & ackmask) == ackmask)
3026 goto out;
3027
3028 test0 = ATW_READ(sc, ATW_TEST0);
3029
3030 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3031 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3032 printf("%s: transmit process not idle [%s]\n",
3033 sc->sc_dev.dv_xname,
3034 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
3035 printf("%s: bits %08x test0 %08x stsr %08x\n",
3036 sc->sc_dev.dv_xname, bits, test0, stsr);
3037 }
3038
3039 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3040 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3041 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3042 sc->sc_dev.dv_xname,
3043 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
3044 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3045 sc->sc_dev.dv_xname, bits, test0, stsr));
3046 }
3047 out:
3048 if ((bits & ATW_NAR_ST) != 0)
3049 atw_txdrain(sc);
3050 splx(s);
3051 return;
3052 }
3053
3054 /*
3055 * atw_linkintr:
3056 *
3057 * Helper; handle link-status interrupts.
3058 */
3059 void
3060 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3061 {
3062 struct ieee80211com *ic = &sc->sc_ic;
3063
3064 if (ic->ic_state != IEEE80211_S_RUN)
3065 return;
3066
3067 if (linkstatus & ATW_INTR_LINKON) {
3068 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3069 sc->sc_rescan_timer = 0;
3070 } else if (linkstatus & ATW_INTR_LINKOFF) {
3071 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3072 if (ic->ic_opmode != IEEE80211_M_STA)
3073 return;
3074 sc->sc_rescan_timer = 3;
3075 ic->ic_if.if_timer = 1;
3076 }
3077 }
3078
3079 static __inline int
3080 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame *wh)
3081 {
3082 if ((sc->sc_ic.ic_flags & IEEE80211_F_WEPON) == 0)
3083 return 0;
3084 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3085 return 0;
3086 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3087 }
3088
3089 /*
3090 * atw_rxintr:
3091 *
3092 * Helper; handle receive interrupts.
3093 */
3094 void
3095 atw_rxintr(struct atw_softc *sc)
3096 {
3097 static int rate_tbl[] = {2, 4, 11, 22, 44};
3098 struct ieee80211com *ic = &sc->sc_ic;
3099 struct ieee80211_node *ni;
3100 struct ieee80211_frame *wh;
3101 struct ifnet *ifp = &ic->ic_if;
3102 struct atw_rxsoft *rxs;
3103 struct mbuf *m;
3104 u_int32_t rxstat;
3105 int i, len, rate, rate0;
3106 u_int32_t rssi, rssi0;
3107
3108 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3109 rxs = &sc->sc_rxsoft[i];
3110
3111 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3112
3113 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3114 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3115 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3116
3117 if (rxstat & ATW_RXSTAT_OWN)
3118 break; /* We have processed all receive buffers. */
3119
3120 DPRINTF3(sc,
3121 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3122 sc->sc_dev.dv_xname,
3123 rxstat, rssi0,
3124 le32toh(sc->sc_rxdescs[i].ar_buf1),
3125 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3126
3127 /*
3128 * Make sure the packet fits in one buffer. This should
3129 * always be the case.
3130 */
3131 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3132 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3133 printf("%s: incoming packet spilled, resetting\n",
3134 sc->sc_dev.dv_xname);
3135 (void)atw_init(ifp);
3136 return;
3137 }
3138
3139 /*
3140 * If an error occurred, update stats, clear the status
3141 * word, and leave the packet buffer in place. It will
3142 * simply be reused the next time the ring comes around.
3143 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3144 * error.
3145 */
3146
3147 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3148 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3149 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3150 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3151 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3152 ATW_RXSTAT_ICVE)) != 0)) {
3153 #define PRINTERR(bit, str) \
3154 if (rxstat & (bit)) \
3155 printf("%s: receive error: %s\n", \
3156 sc->sc_dev.dv_xname, str)
3157 ifp->if_ierrors++;
3158 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3159 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3160 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3161 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3162 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3163 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3164 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3165 #undef PRINTERR
3166 ATW_INIT_RXDESC(sc, i);
3167 continue;
3168 }
3169
3170 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3171 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3172
3173 /*
3174 * No errors; receive the packet. Note the ADM8211
3175 * includes the CRC in promiscuous mode.
3176 */
3177 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3178
3179 /*
3180 * Allocate a new mbuf cluster. If that fails, we are
3181 * out of memory, and must drop the packet and recycle
3182 * the buffer that's already attached to this descriptor.
3183 */
3184 m = rxs->rxs_mbuf;
3185 if (atw_add_rxbuf(sc, i) != 0) {
3186 ifp->if_ierrors++;
3187 ATW_INIT_RXDESC(sc, i);
3188 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3189 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3190 continue;
3191 }
3192
3193 ifp->if_ipackets++;
3194 if (sc->sc_opmode & ATW_NAR_PR)
3195 m->m_flags |= M_HASFCS;
3196 m->m_pkthdr.rcvif = ifp;
3197 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3198
3199 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3200 rate = 0;
3201 else
3202 rate = rate_tbl[rate0];
3203
3204 /* The RSSI comes straight from a register in the
3205 * baseband processor. I know that for the RF3000,
3206 * the RSSI register also contains the antenna-selection
3207 * bits. Mask those off.
3208 *
3209 * TBD Treat other basebands.
3210 */
3211 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3212 rssi = rssi0 & RF3000_RSSI_MASK;
3213 else
3214 rssi = rssi0;
3215
3216 #if NBPFILTER > 0
3217 /* Pass this up to any BPF listeners. */
3218 if (sc->sc_radiobpf != NULL) {
3219 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3220
3221 tap->ar_rate = rate;
3222 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3223 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3224
3225 /* TBD verify units are dB */
3226 tap->ar_antsignal = (int)rssi;
3227 /* TBD tap->ar_flags */
3228
3229 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3230 tap->ar_ihdr.it_len, m);
3231 }
3232 #endif /* NPBFILTER > 0 */
3233
3234 wh = mtod(m, struct ieee80211_frame *);
3235 ni = ieee80211_find_rxnode(ic, wh);
3236 if (atw_hw_decrypted(sc, wh))
3237 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3238 ieee80211_input(ifp, m, ni, (int)rssi, 0);
3239 /*
3240 * The frame may have caused the node to be marked for
3241 * reclamation (e.g. in response to a DEAUTH message)
3242 * so use free_node here instead of unref_node.
3243 */
3244 if (ni == ic->ic_bss)
3245 ieee80211_unref_node(&ni);
3246 else
3247 ieee80211_free_node(ic, ni);
3248 }
3249
3250 /* Update the receive pointer. */
3251 sc->sc_rxptr = i;
3252 }
3253
3254 /*
3255 * atw_txintr:
3256 *
3257 * Helper; handle transmit interrupts.
3258 */
3259 void
3260 atw_txintr(struct atw_softc *sc)
3261 {
3262 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3263 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3264 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3265 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3266
3267 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3268 struct ifnet *ifp = &sc->sc_ic.ic_if;
3269 struct atw_txsoft *txs;
3270 u_int32_t txstat;
3271
3272 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3273 sc->sc_dev.dv_xname, sc->sc_flags));
3274
3275 ifp->if_flags &= ~IFF_OACTIVE;
3276
3277 /*
3278 * Go through our Tx list and free mbufs for those
3279 * frames that have been transmitted.
3280 */
3281 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3282 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3283 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3284
3285 #ifdef ATW_DEBUG
3286 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3287 int i;
3288 printf(" txsoft %p transmit chain:\n", txs);
3289 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3290 txs->txs_ndescs - 1,
3291 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3292 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3293 printf(" descriptor %d:\n", i);
3294 printf(" at_status: 0x%08x\n",
3295 le32toh(sc->sc_txdescs[i].at_stat));
3296 printf(" at_flags: 0x%08x\n",
3297 le32toh(sc->sc_txdescs[i].at_flags));
3298 printf(" at_buf1: 0x%08x\n",
3299 le32toh(sc->sc_txdescs[i].at_buf1));
3300 printf(" at_buf2: 0x%08x\n",
3301 le32toh(sc->sc_txdescs[i].at_buf2));
3302 if (i == txs->txs_lastdesc)
3303 break;
3304 }
3305 }
3306 #endif
3307
3308 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3309 if (txstat & ATW_TXSTAT_OWN)
3310 break;
3311
3312 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3313
3314 sc->sc_txfree += txs->txs_ndescs;
3315
3316 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3317 0, txs->txs_dmamap->dm_mapsize,
3318 BUS_DMASYNC_POSTWRITE);
3319 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3320 m_freem(txs->txs_mbuf);
3321 txs->txs_mbuf = NULL;
3322
3323 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3324
3325 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3326 (txstat & TXSTAT_ERRMASK) != 0) {
3327 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3328 txstat_buf, sizeof(txstat_buf));
3329 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3330 txstat_buf,
3331 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3332 }
3333
3334 /*
3335 * Check for errors and collisions.
3336 */
3337 if (txstat & ATW_TXSTAT_TUF)
3338 sc->sc_stats.ts_tx_tuf++;
3339 if (txstat & ATW_TXSTAT_TLT)
3340 sc->sc_stats.ts_tx_tlt++;
3341 if (txstat & ATW_TXSTAT_TRT)
3342 sc->sc_stats.ts_tx_trt++;
3343 if (txstat & ATW_TXSTAT_TRO)
3344 sc->sc_stats.ts_tx_tro++;
3345 if (txstat & ATW_TXSTAT_SOFBR) {
3346 sc->sc_stats.ts_tx_sofbr++;
3347 }
3348
3349 if ((txstat & ATW_TXSTAT_ES) == 0)
3350 ifp->if_collisions +=
3351 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3352 else
3353 ifp->if_oerrors++;
3354
3355 ifp->if_opackets++;
3356 }
3357
3358 /*
3359 * If there are no more pending transmissions, cancel the watchdog
3360 * timer.
3361 */
3362 if (txs == NULL)
3363 sc->sc_tx_timer = 0;
3364 #undef TXSTAT_ERRMASK
3365 #undef TXSTAT_FMT
3366 }
3367
3368 /*
3369 * atw_watchdog: [ifnet interface function]
3370 *
3371 * Watchdog timer handler.
3372 */
3373 void
3374 atw_watchdog(struct ifnet *ifp)
3375 {
3376 struct atw_softc *sc = ifp->if_softc;
3377 struct ieee80211com *ic = &sc->sc_ic;
3378
3379 ifp->if_timer = 0;
3380 if (ATW_IS_ENABLED(sc) == 0)
3381 return;
3382
3383 if (sc->sc_rescan_timer) {
3384 if (--sc->sc_rescan_timer == 0)
3385 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3386 }
3387 if (sc->sc_tx_timer) {
3388 if (--sc->sc_tx_timer == 0 &&
3389 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3390 printf("%s: transmit timeout\n", ifp->if_xname);
3391 ifp->if_oerrors++;
3392 (void)atw_init(ifp);
3393 atw_start(ifp);
3394 }
3395 }
3396 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3397 ifp->if_timer = 1;
3398 ieee80211_watchdog(ifp);
3399 }
3400
3401 /* Compute the 802.11 Duration field and the PLCP Length fields for
3402 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3403 * Write the fields to the ADM8211 Tx header, frm.
3404 *
3405 * TBD use the fragmentation threshold to find the right duration for
3406 * the first & last fragments.
3407 *
3408 * TBD make certain of the duration fields applied by the ADM8211 to each
3409 * fragment. I think that the ADM8211 knows how to subtract the CTS
3410 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3411 * I also think that the ADM8211 does *some* arithmetic for us, because
3412 * otherwise I think we would have to set a first duration for CTS/first
3413 * fragment, a second duration for fragments between the first and the
3414 * last, and a third duration for the last fragment.
3415 *
3416 * TBD make certain that duration fields reflect addition of FCS/WEP
3417 * and correct duration arithmetic as necessary.
3418 */
3419 static void
3420 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3421 int len)
3422 {
3423 int remainder;
3424
3425 /* deal also with encrypted fragments */
3426 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3427 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3428 sc->sc_dev.dv_xname));
3429 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3430 IEEE80211_WEP_CRCLEN;
3431 }
3432
3433 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3434 * duration (XXX added by MAC?).
3435 */
3436 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3437 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3438
3439 if (rate <= 4)
3440 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3441 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3442 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3443 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3444 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3445 else
3446 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3447 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3448 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3449 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3450 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3451
3452 /* lengthen duration if long preamble */
3453 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3454 frm->atw_head_dur +=
3455 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3456 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3457 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3458 IEEE80211_DUR_DS_FAST_PLCPHDR);
3459
3460 if (remainder != 0)
3461 frm->atw_head_dur++;
3462
3463 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3464 (rate == 2 || rate == 4)) {
3465 /* derived from Linux: how could this be right? */
3466 frm->atw_head_plcplen = frm->atw_head_dur;
3467 } else {
3468 frm->atw_head_plcplen = (16 * len) / rate;
3469 remainder = (80 * len) % (rate * 5);
3470
3471 if (remainder != 0) {
3472 frm->atw_head_plcplen++;
3473
3474 /* XXX magic */
3475 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3476 rate == 22 && remainder <= 30)
3477 frm->atw_head_plcplen |= 0x8000;
3478 }
3479 }
3480 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3481 htole16(frm->atw_head_plcplen);
3482 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3483 }
3484
3485 #ifdef ATW_DEBUG
3486 static void
3487 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3488 {
3489 struct atw_softc *sc = ifp->if_softc;
3490 struct mbuf *m;
3491 int i, noctets = 0;
3492
3493 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3494 m0->m_pkthdr.len);
3495
3496 for (m = m0; m; m = m->m_next) {
3497 if (m->m_len == 0)
3498 continue;
3499 for (i = 0; i < m->m_len; i++) {
3500 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3501 if (++noctets % 24 == 0)
3502 printf("\n");
3503 }
3504 }
3505 printf("%s%s: %d bytes emitted\n",
3506 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3507 }
3508 #endif /* ATW_DEBUG */
3509
3510 /*
3511 * atw_start: [ifnet interface function]
3512 *
3513 * Start packet transmission on the interface.
3514 */
3515 void
3516 atw_start(struct ifnet *ifp)
3517 {
3518 struct atw_softc *sc = ifp->if_softc;
3519 struct ieee80211com *ic = &sc->sc_ic;
3520 struct ieee80211_node *ni;
3521 struct ieee80211_frame *wh;
3522 struct atw_frame *hh;
3523 struct mbuf *m0, *m;
3524 struct atw_txsoft *txs, *last_txs;
3525 struct atw_txdesc *txd;
3526 int do_encrypt, rate;
3527 bus_dmamap_t dmamap;
3528 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3529
3530 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3531 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3532
3533 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3534 return;
3535
3536 /*
3537 * Remember the previous number of free descriptors and
3538 * the first descriptor we'll use.
3539 */
3540 ofree = sc->sc_txfree;
3541 firsttx = sc->sc_txnext;
3542
3543 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3544 sc->sc_dev.dv_xname, ofree, firsttx));
3545
3546 /*
3547 * Loop through the send queue, setting up transmit descriptors
3548 * until we drain the queue, or use up all available transmit
3549 * descriptors.
3550 */
3551 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3552 sc->sc_txfree != 0) {
3553
3554 /*
3555 * Grab a packet off the management queue, if it
3556 * is not empty. Otherwise, from the data queue.
3557 */
3558 IF_DEQUEUE(&ic->ic_mgtq, m0);
3559 if (m0 != NULL) {
3560 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3561 m0->m_pkthdr.rcvif = NULL;
3562 } else {
3563 /* send no data packets until we are associated */
3564 if (ic->ic_state != IEEE80211_S_RUN)
3565 break;
3566 IFQ_DEQUEUE(&ifp->if_snd, m0);
3567 if (m0 == NULL)
3568 break;
3569 #if NBPFILTER > 0
3570 if (ifp->if_bpf != NULL)
3571 bpf_mtap(ifp->if_bpf, m0);
3572 #endif /* NBPFILTER > 0 */
3573 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3574 ifp->if_oerrors++;
3575 break;
3576 }
3577 }
3578
3579 rate = MAX(ieee80211_get_rate(ic), 2);
3580
3581 #if NBPFILTER > 0
3582 /*
3583 * Pass the packet to any BPF listeners.
3584 */
3585 if (ic->ic_rawbpf != NULL)
3586 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3587
3588 if (sc->sc_radiobpf != NULL) {
3589 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3590
3591 tap->at_rate = rate;
3592 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3593 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3594
3595 /* TBD tap->at_flags */
3596
3597 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3598 tap->at_ihdr.it_len, m0);
3599 }
3600 #endif /* NBPFILTER > 0 */
3601
3602 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3603
3604 if (ni != NULL && ni != ic->ic_bss)
3605 ieee80211_free_node(ic, ni);
3606
3607 if (m0 == NULL) {
3608 ifp->if_oerrors++;
3609 break;
3610 }
3611
3612 /* just to make sure. */
3613 m0 = m_pullup(m0, sizeof(struct atw_frame));
3614
3615 if (m0 == NULL) {
3616 ifp->if_oerrors++;
3617 break;
3618 }
3619
3620 hh = mtod(m0, struct atw_frame *);
3621 wh = &hh->atw_ihdr;
3622
3623 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3624
3625 /* Copy everything we need from the 802.11 header:
3626 * Frame Control; address 1, address 3, or addresses
3627 * 3 and 4. NIC fills in BSSID, SA.
3628 */
3629 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3630 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3631 panic("%s: illegal WDS frame",
3632 sc->sc_dev.dv_xname);
3633 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3634 } else
3635 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3636
3637 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3638
3639 /* initialize remaining Tx parameters */
3640 memset(&hh->u, 0, sizeof(hh->u));
3641
3642 hh->atw_rate = rate * 5;
3643 /* XXX this could be incorrect if M_FCS. _encap should
3644 * probably strip FCS just in case it sticks around in
3645 * bridged packets.
3646 */
3647 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3648 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3649 sizeof(struct atw_frame));
3650
3651 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3652 hh->atw_rtylmt = 3;
3653 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3654 if (do_encrypt) {
3655 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3656 hh->atw_keyid = ic->ic_wep_txkey;
3657 }
3658
3659 /* TBD 4-addr frames */
3660 atw_frame_setdurs(sc, hh, rate,
3661 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3662 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3663
3664 /* never fragment multicast frames */
3665 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3666 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3667 } else if (sc->sc_flags & ATWF_RTSCTS) {
3668 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3669 }
3670
3671 #ifdef ATW_DEBUG
3672 hh->atw_fragnum = 0;
3673
3674 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3675 printf("%s: dst = %s, rate = 0x%02x, "
3676 "service = 0x%02x, paylen = 0x%04x\n",
3677 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3678 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3679
3680 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3681 "dur1 = 0x%04x, dur2 = 0x%04x, "
3682 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3683 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3684 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3685 hh->atw_tail_dur, hh->atw_head_dur);
3686
3687 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3688 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3689 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3690 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3691
3692 printf("%s: keyid = %d\n",
3693 sc->sc_dev.dv_xname, hh->atw_keyid);
3694
3695 atw_dump_pkt(ifp, m0);
3696 }
3697 #endif /* ATW_DEBUG */
3698
3699 dmamap = txs->txs_dmamap;
3700
3701 /*
3702 * Load the DMA map. Copy and try (once) again if the packet
3703 * didn't fit in the alloted number of segments.
3704 */
3705 for (first = 1;
3706 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3707 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3708 first = 0) {
3709 MGETHDR(m, M_DONTWAIT, MT_DATA);
3710 if (m == NULL) {
3711 printf("%s: unable to allocate Tx mbuf\n",
3712 sc->sc_dev.dv_xname);
3713 break;
3714 }
3715 if (m0->m_pkthdr.len > MHLEN) {
3716 MCLGET(m, M_DONTWAIT);
3717 if ((m->m_flags & M_EXT) == 0) {
3718 printf("%s: unable to allocate Tx "
3719 "cluster\n", sc->sc_dev.dv_xname);
3720 m_freem(m);
3721 break;
3722 }
3723 }
3724 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3725 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3726 m_freem(m0);
3727 m0 = m;
3728 m = NULL;
3729 }
3730 if (error != 0) {
3731 printf("%s: unable to load Tx buffer, "
3732 "error = %d\n", sc->sc_dev.dv_xname, error);
3733 m_freem(m0);
3734 break;
3735 }
3736
3737 /*
3738 * Ensure we have enough descriptors free to describe
3739 * the packet.
3740 */
3741 if (dmamap->dm_nsegs > sc->sc_txfree) {
3742 /*
3743 * Not enough free descriptors to transmit
3744 * this packet. Unload the DMA map and
3745 * drop the packet. Notify the upper layer
3746 * that there are no more slots left.
3747 *
3748 * XXX We could allocate an mbuf and copy, but
3749 * XXX it is worth it?
3750 */
3751 ifp->if_flags |= IFF_OACTIVE;
3752 bus_dmamap_unload(sc->sc_dmat, dmamap);
3753 m_freem(m0);
3754 break;
3755 }
3756
3757 /*
3758 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3759 */
3760
3761 /* Sync the DMA map. */
3762 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3763 BUS_DMASYNC_PREWRITE);
3764
3765 /* XXX arbitrary retry limit; 8 because I have seen it in
3766 * use already and maybe 0 means "no tries" !
3767 */
3768 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3769
3770 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3771 sc->sc_dev.dv_xname, rate * 5));
3772 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3773
3774 /*
3775 * Initialize the transmit descriptors.
3776 */
3777 for (nexttx = sc->sc_txnext, seg = 0;
3778 seg < dmamap->dm_nsegs;
3779 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3780 /*
3781 * If this is the first descriptor we're
3782 * enqueueing, don't set the OWN bit just
3783 * yet. That could cause a race condition.
3784 * We'll do it below.
3785 */
3786 txd = &sc->sc_txdescs[nexttx];
3787 txd->at_ctl = ctl |
3788 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3789
3790 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3791 txd->at_flags =
3792 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3793 ATW_TXFLAG_TBS1_MASK)) |
3794 ((nexttx == (ATW_NTXDESC - 1))
3795 ? htole32(ATW_TXFLAG_TER) : 0);
3796 lasttx = nexttx;
3797 }
3798
3799 IASSERT(lasttx != -1, ("bad lastx"));
3800 /* Set `first segment' and `last segment' appropriately. */
3801 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3802 htole32(ATW_TXFLAG_FS);
3803 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3804
3805 #ifdef ATW_DEBUG
3806 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3807 printf(" txsoft %p transmit chain:\n", txs);
3808 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3809 printf(" descriptor %d:\n", seg);
3810 printf(" at_ctl: 0x%08x\n",
3811 le32toh(sc->sc_txdescs[seg].at_ctl));
3812 printf(" at_flags: 0x%08x\n",
3813 le32toh(sc->sc_txdescs[seg].at_flags));
3814 printf(" at_buf1: 0x%08x\n",
3815 le32toh(sc->sc_txdescs[seg].at_buf1));
3816 printf(" at_buf2: 0x%08x\n",
3817 le32toh(sc->sc_txdescs[seg].at_buf2));
3818 if (seg == lasttx)
3819 break;
3820 }
3821 }
3822 #endif
3823
3824 /* Sync the descriptors we're using. */
3825 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3826 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3827
3828 /*
3829 * Store a pointer to the packet so we can free it later,
3830 * and remember what txdirty will be once the packet is
3831 * done.
3832 */
3833 txs->txs_mbuf = m0;
3834 txs->txs_firstdesc = sc->sc_txnext;
3835 txs->txs_lastdesc = lasttx;
3836 txs->txs_ndescs = dmamap->dm_nsegs;
3837
3838 /* Advance the tx pointer. */
3839 sc->sc_txfree -= dmamap->dm_nsegs;
3840 sc->sc_txnext = nexttx;
3841
3842 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3843 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3844
3845 last_txs = txs;
3846 }
3847
3848 if (txs == NULL || sc->sc_txfree == 0) {
3849 /* No more slots left; notify upper layer. */
3850 ifp->if_flags |= IFF_OACTIVE;
3851 }
3852
3853 if (sc->sc_txfree != ofree) {
3854 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3855 sc->sc_dev.dv_xname, lasttx, firsttx));
3856 /*
3857 * Cause a transmit interrupt to happen on the
3858 * last packet we enqueued.
3859 */
3860 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3861 ATW_CDTXSYNC(sc, lasttx, 1,
3862 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3863
3864 /*
3865 * The entire packet chain is set up. Give the
3866 * first descriptor to the chip now.
3867 */
3868 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3869 ATW_CDTXSYNC(sc, firsttx, 1,
3870 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3871
3872 /* Wake up the transmitter. */
3873 ATW_WRITE(sc, ATW_TDR, 0x1);
3874
3875 /* Set a watchdog timer in case the chip flakes out. */
3876 sc->sc_tx_timer = 5;
3877 ifp->if_timer = 1;
3878 }
3879 }
3880
3881 /*
3882 * atw_power:
3883 *
3884 * Power management (suspend/resume) hook.
3885 */
3886 void
3887 atw_power(int why, void *arg)
3888 {
3889 struct atw_softc *sc = arg;
3890 struct ifnet *ifp = &sc->sc_ic.ic_if;
3891 int s;
3892
3893 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3894
3895 s = splnet();
3896 switch (why) {
3897 case PWR_STANDBY:
3898 /* XXX do nothing. */
3899 break;
3900 case PWR_SUSPEND:
3901 atw_stop(ifp, 0);
3902 if (sc->sc_power != NULL)
3903 (*sc->sc_power)(sc, why);
3904 break;
3905 case PWR_RESUME:
3906 if (ifp->if_flags & IFF_UP) {
3907 if (sc->sc_power != NULL)
3908 (*sc->sc_power)(sc, why);
3909 atw_init(ifp);
3910 }
3911 break;
3912 case PWR_SOFTSUSPEND:
3913 case PWR_SOFTSTANDBY:
3914 case PWR_SOFTRESUME:
3915 break;
3916 }
3917 splx(s);
3918 }
3919
3920 /*
3921 * atw_ioctl: [ifnet interface function]
3922 *
3923 * Handle control requests from the operator.
3924 */
3925 int
3926 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3927 {
3928 struct atw_softc *sc = ifp->if_softc;
3929 struct ifreq *ifr = (struct ifreq *)data;
3930 int s, error = 0;
3931
3932 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3933 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3934 return ENXIO;
3935
3936 s = splnet();
3937
3938 switch (cmd) {
3939 case SIOCSIFFLAGS:
3940 if (ifp->if_flags & IFF_UP) {
3941 if (ATW_IS_ENABLED(sc)) {
3942 /*
3943 * To avoid rescanning another access point,
3944 * do not call atw_init() here. Instead,
3945 * only reflect media settings.
3946 */
3947 atw_filter_setup(sc);
3948 } else
3949 error = atw_init(ifp);
3950 } else if (ATW_IS_ENABLED(sc))
3951 atw_stop(ifp, 1);
3952 break;
3953 case SIOCADDMULTI:
3954 case SIOCDELMULTI:
3955 error = (cmd == SIOCADDMULTI) ?
3956 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3957 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3958 if (error == ENETRESET) {
3959 if (ATW_IS_ENABLED(sc))
3960 atw_filter_setup(sc); /* do not rescan */
3961 error = 0;
3962 }
3963 break;
3964 default:
3965 error = ieee80211_ioctl(ifp, cmd, data);
3966 if (error == ENETRESET) {
3967 if (ATW_IS_ENABLED(sc))
3968 error = atw_init(ifp);
3969 else
3970 error = 0;
3971 }
3972 break;
3973 }
3974
3975 /* Try to get more packets going. */
3976 if (ATW_IS_ENABLED(sc))
3977 atw_start(ifp);
3978
3979 splx(s);
3980 return (error);
3981 }
3982
3983 static int
3984 atw_media_change(struct ifnet *ifp)
3985 {
3986 int error;
3987
3988 error = ieee80211_media_change(ifp);
3989 if (error == ENETRESET) {
3990 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3991 (IFF_RUNNING|IFF_UP))
3992 atw_init(ifp); /* XXX lose error */
3993 error = 0;
3994 }
3995 return error;
3996 }
3997
3998 static void
3999 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
4000 {
4001 struct atw_softc *sc = ifp->if_softc;
4002
4003 if (ATW_IS_ENABLED(sc) == 0) {
4004 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
4005 imr->ifm_status = 0;
4006 return;
4007 }
4008 ieee80211_media_status(ifp, imr);
4009 }
4010