atw.c revision 1.73 1 /* $NetBSD: atw.c,v 1.73 2004/07/23 10:15:13 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.73 2004/07/23 10:15:13 mycroft Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162
163 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
166 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
167 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170 static void atw_print_regs(struct atw_softc *, const char *);
171 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
172
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 # ifdef ATW_BBPDEBUG
175 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
176 static void atw_rf3000_print(struct atw_softc *);
177 # endif /* ATW_BBPDEBUG */
178
179 # ifdef ATW_SYNDEBUG
180 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
181 static void atw_si4126_print(struct atw_softc *);
182 # endif /* ATW_SYNDEBUG */
183
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define DPRINTF(sc, x) /* nothing */
189 #define DPRINTF2(sc, x) /* nothing */
190 #define DPRINTF3(sc, x) /* nothing */
191 #endif
192
193 /* ifnet methods */
194 void atw_start(struct ifnet *);
195 void atw_watchdog(struct ifnet *);
196 int atw_ioctl(struct ifnet *, u_long, caddr_t);
197 int atw_init(struct ifnet *);
198 void atw_stop(struct ifnet *, int);
199
200 /* Device attachment */
201 void atw_attach(struct atw_softc *);
202 int atw_detach(struct atw_softc *);
203
204 /* Rx/Tx process */
205 void atw_rxdrain(struct atw_softc *);
206 void atw_txdrain(struct atw_softc *);
207 int atw_add_rxbuf(struct atw_softc *, int);
208 void atw_idle(struct atw_softc *, u_int32_t);
209
210 /* Device (de)activation and power state */
211 int atw_enable(struct atw_softc *);
212 void atw_disable(struct atw_softc *);
213 void atw_power(int, void *);
214 void atw_shutdown(void *);
215 void atw_reset(struct atw_softc *);
216
217 /* Interrupt handlers */
218 void atw_rxintr(struct atw_softc *);
219 void atw_txintr(struct atw_softc *);
220 void atw_linkintr(struct atw_softc *, u_int32_t);
221
222 /* 802.11 state machine */
223 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static int atw_tune(struct atw_softc *);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227
228 /* Device initialization */
229 static void atw_wcsr_init(struct atw_softc *);
230 static void atw_cmdr_init(struct atw_softc *);
231 static void atw_tofs2_init(struct atw_softc *);
232 static void atw_txlmt_init(struct atw_softc *);
233 static void atw_test1_init(struct atw_softc *);
234 static void atw_rf_reset(struct atw_softc *);
235 static void atw_cfp_init(struct atw_softc *);
236 static void atw_tofs0_init(struct atw_softc *);
237 static void atw_ifs_init(struct atw_softc *);
238 static void atw_response_times_init(struct atw_softc *);
239 static void atw_bbp_io_init(struct atw_softc *);
240
241 /* RAM/ROM utilities */
242 static void atw_clear_sram(struct atw_softc *);
243 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
244 static int atw_read_srom(struct atw_softc *);
245
246 /* BSS setup */
247 static void atw_tsf(struct atw_softc *);
248 static void atw_start_beacon(struct atw_softc *, int);
249 static void atw_write_bssid(struct atw_softc *);
250 static void atw_write_ssid(struct atw_softc *);
251 static void atw_write_sup_rates(struct atw_softc *);
252 static void atw_write_wep(struct atw_softc *);
253
254 /* Media */
255 static int atw_media_change(struct ifnet *);
256 static void atw_media_status(struct ifnet *, struct ifmediareq *);
257
258 static void atw_filter_setup(struct atw_softc *);
259
260 /* 802.11 utilities */
261 static void atw_frame_setdurs(struct atw_softc *,
262 struct atw_frame *, int, int);
263 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
264 static void atw_node_free(struct ieee80211com *,
265 struct ieee80211_node *);
266 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
267 struct ieee80211_node *, int, int,
268 u_int32_t);
269 static __inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
270 uint32_t);
271 static __inline void atw_tsft(struct atw_softc *, uint32_t *,
272 uint32_t *);
273
274 /*
275 * Tuner/transceiver/modem
276 */
277 static void atw_bbp_io_enable(struct atw_softc *, int);
278
279 /* RFMD RF3000 Baseband Processor */
280 static int atw_rf3000_init(struct atw_softc *);
281 static int atw_rf3000_tune(struct atw_softc *, u_int);
282 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
283
284 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
285 static void atw_si4126_tune(struct atw_softc *, u_int);
286 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
287
288 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
289 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
290
291 const char *atw_tx_state[] = {
292 "STOPPED",
293 "RUNNING - read descriptor",
294 "RUNNING - transmitting",
295 "RUNNING - filling fifo", /* XXX */
296 "SUSPENDED",
297 "RUNNING -- write descriptor",
298 "RUNNING -- write last descriptor",
299 "RUNNING - fifo full"
300 };
301
302 const char *atw_rx_state[] = {
303 "STOPPED",
304 "RUNNING - read descriptor",
305 "RUNNING - check this packet, pre-fetch next",
306 "RUNNING - wait for reception",
307 "SUSPENDED",
308 "RUNNING - write descriptor",
309 "RUNNING - flush fifo",
310 "RUNNING - fifo drain"
311 };
312
313 int
314 atw_activate(struct device *self, enum devact act)
315 {
316 struct atw_softc *sc = (struct atw_softc *)self;
317 int rv = 0, s;
318
319 s = splnet();
320 switch (act) {
321 case DVACT_ACTIVATE:
322 rv = EOPNOTSUPP;
323 break;
324
325 case DVACT_DEACTIVATE:
326 if_deactivate(&sc->sc_ic.ic_if);
327 break;
328 }
329 splx(s);
330 return rv;
331 }
332
333 /*
334 * atw_enable:
335 *
336 * Enable the ADM8211 chip.
337 */
338 int
339 atw_enable(struct atw_softc *sc)
340 {
341
342 if (ATW_IS_ENABLED(sc) == 0) {
343 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
344 printf("%s: device enable failed\n",
345 sc->sc_dev.dv_xname);
346 return (EIO);
347 }
348 sc->sc_flags |= ATWF_ENABLED;
349 }
350 return (0);
351 }
352
353 /*
354 * atw_disable:
355 *
356 * Disable the ADM8211 chip.
357 */
358 void
359 atw_disable(struct atw_softc *sc)
360 {
361 if (!ATW_IS_ENABLED(sc))
362 return;
363 if (sc->sc_disable != NULL)
364 (*sc->sc_disable)(sc);
365 sc->sc_flags &= ~ATWF_ENABLED;
366 }
367
368 /* Returns -1 on failure. */
369 static int
370 atw_read_srom(struct atw_softc *sc)
371 {
372 struct seeprom_descriptor sd;
373 uint32_t test0, fail_bits;
374
375 (void)memset(&sd, 0, sizeof(sd));
376
377 test0 = ATW_READ(sc, ATW_TEST0);
378
379 switch (sc->sc_rev) {
380 case ATW_REVISION_BA:
381 case ATW_REVISION_CA:
382 fail_bits = ATW_TEST0_EPNE;
383 break;
384 default:
385 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
386 break;
387 }
388 if ((test0 & fail_bits) != 0) {
389 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
390 return -1;
391 }
392
393 switch (test0 & ATW_TEST0_EPTYP_MASK) {
394 case ATW_TEST0_EPTYP_93c66:
395 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
396 sc->sc_sromsz = 512;
397 sd.sd_chip = C56_66;
398 break;
399 case ATW_TEST0_EPTYP_93c46:
400 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
401 sc->sc_sromsz = 128;
402 sd.sd_chip = C46;
403 break;
404 default:
405 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
406 MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
407 return -1;
408 }
409
410 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
411
412 if (sc->sc_srom == NULL) {
413 printf("%s: unable to allocate SROM buffer\n",
414 sc->sc_dev.dv_xname);
415 return -1;
416 }
417
418 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
419
420 /* ADM8211 has a single 32-bit register for controlling the
421 * 93cx6 SROM. Bit SRS enables the serial port. There is no
422 * "ready" bit. The ADM8211 input/output sense is the reverse
423 * of read_seeprom's.
424 */
425 sd.sd_tag = sc->sc_st;
426 sd.sd_bsh = sc->sc_sh;
427 sd.sd_regsize = 4;
428 sd.sd_control_offset = ATW_SPR;
429 sd.sd_status_offset = ATW_SPR;
430 sd.sd_dataout_offset = ATW_SPR;
431 sd.sd_CK = ATW_SPR_SCLK;
432 sd.sd_CS = ATW_SPR_SCS;
433 sd.sd_DI = ATW_SPR_SDO;
434 sd.sd_DO = ATW_SPR_SDI;
435 sd.sd_MS = ATW_SPR_SRS;
436 sd.sd_RDY = 0;
437
438 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
439 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
440 free(sc->sc_srom, M_DEVBUF);
441 return -1;
442 }
443 #ifdef ATW_DEBUG
444 {
445 int i;
446 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
447 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
448 if (((i % 8) == 0) && (i != 0)) {
449 ATW_DPRINTF(("\n\t"));
450 }
451 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
452 }
453 ATW_DPRINTF(("\n"));
454 }
455 #endif /* ATW_DEBUG */
456 return 0;
457 }
458
459 #ifdef ATW_DEBUG
460 static void
461 atw_print_regs(struct atw_softc *sc, const char *where)
462 {
463 #define PRINTREG(sc, reg) \
464 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
465 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
466
467 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
468
469 PRINTREG(sc, ATW_PAR);
470 PRINTREG(sc, ATW_FRCTL);
471 PRINTREG(sc, ATW_TDR);
472 PRINTREG(sc, ATW_WTDP);
473 PRINTREG(sc, ATW_RDR);
474 PRINTREG(sc, ATW_WRDP);
475 PRINTREG(sc, ATW_RDB);
476 PRINTREG(sc, ATW_CSR3A);
477 PRINTREG(sc, ATW_TDBD);
478 PRINTREG(sc, ATW_TDBP);
479 PRINTREG(sc, ATW_STSR);
480 PRINTREG(sc, ATW_CSR5A);
481 PRINTREG(sc, ATW_NAR);
482 PRINTREG(sc, ATW_CSR6A);
483 PRINTREG(sc, ATW_IER);
484 PRINTREG(sc, ATW_CSR7A);
485 PRINTREG(sc, ATW_LPC);
486 PRINTREG(sc, ATW_TEST1);
487 PRINTREG(sc, ATW_SPR);
488 PRINTREG(sc, ATW_TEST0);
489 PRINTREG(sc, ATW_WCSR);
490 PRINTREG(sc, ATW_WPDR);
491 PRINTREG(sc, ATW_GPTMR);
492 PRINTREG(sc, ATW_GPIO);
493 PRINTREG(sc, ATW_BBPCTL);
494 PRINTREG(sc, ATW_SYNCTL);
495 PRINTREG(sc, ATW_PLCPHD);
496 PRINTREG(sc, ATW_MMIWADDR);
497 PRINTREG(sc, ATW_MMIRADDR1);
498 PRINTREG(sc, ATW_MMIRADDR2);
499 PRINTREG(sc, ATW_TXBR);
500 PRINTREG(sc, ATW_CSR15A);
501 PRINTREG(sc, ATW_ALCSTAT);
502 PRINTREG(sc, ATW_TOFS2);
503 PRINTREG(sc, ATW_CMDR);
504 PRINTREG(sc, ATW_PCIC);
505 PRINTREG(sc, ATW_PMCSR);
506 PRINTREG(sc, ATW_PAR0);
507 PRINTREG(sc, ATW_PAR1);
508 PRINTREG(sc, ATW_MAR0);
509 PRINTREG(sc, ATW_MAR1);
510 PRINTREG(sc, ATW_ATIMDA0);
511 PRINTREG(sc, ATW_ABDA1);
512 PRINTREG(sc, ATW_BSSID0);
513 PRINTREG(sc, ATW_TXLMT);
514 PRINTREG(sc, ATW_MIBCNT);
515 PRINTREG(sc, ATW_BCNT);
516 PRINTREG(sc, ATW_TSFTH);
517 PRINTREG(sc, ATW_TSC);
518 PRINTREG(sc, ATW_SYNRF);
519 PRINTREG(sc, ATW_BPLI);
520 PRINTREG(sc, ATW_CAP0);
521 PRINTREG(sc, ATW_CAP1);
522 PRINTREG(sc, ATW_RMD);
523 PRINTREG(sc, ATW_CFPP);
524 PRINTREG(sc, ATW_TOFS0);
525 PRINTREG(sc, ATW_TOFS1);
526 PRINTREG(sc, ATW_IFST);
527 PRINTREG(sc, ATW_RSPT);
528 PRINTREG(sc, ATW_TSFTL);
529 PRINTREG(sc, ATW_WEPCTL);
530 PRINTREG(sc, ATW_WESK);
531 PRINTREG(sc, ATW_WEPCNT);
532 PRINTREG(sc, ATW_MACTEST);
533 PRINTREG(sc, ATW_FER);
534 PRINTREG(sc, ATW_FEMR);
535 PRINTREG(sc, ATW_FPSR);
536 PRINTREG(sc, ATW_FFER);
537 #undef PRINTREG
538 }
539 #endif /* ATW_DEBUG */
540
541 /*
542 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
543 */
544 void
545 atw_attach(struct atw_softc *sc)
546 {
547 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
548 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
549 };
550 struct ieee80211com *ic = &sc->sc_ic;
551 struct ifnet *ifp = &ic->ic_if;
552 int country_code, error, i, nrate, srom_major;
553 u_int32_t reg;
554 static const char *type_strings[] = {"Intersil (not supported)",
555 "RFMD", "Marvel (not supported)"};
556
557 sc->sc_txth = atw_txthresh_tab_lo;
558
559 SIMPLEQ_INIT(&sc->sc_txfreeq);
560 SIMPLEQ_INIT(&sc->sc_txdirtyq);
561
562 #ifdef ATW_DEBUG
563 atw_print_regs(sc, "atw_attach");
564 #endif /* ATW_DEBUG */
565
566 /*
567 * Allocate the control data structures, and create and load the
568 * DMA map for it.
569 */
570 if ((error = bus_dmamem_alloc(sc->sc_dmat,
571 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
572 1, &sc->sc_cdnseg, 0)) != 0) {
573 printf("%s: unable to allocate control data, error = %d\n",
574 sc->sc_dev.dv_xname, error);
575 goto fail_0;
576 }
577
578 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
579 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
580 BUS_DMA_COHERENT)) != 0) {
581 printf("%s: unable to map control data, error = %d\n",
582 sc->sc_dev.dv_xname, error);
583 goto fail_1;
584 }
585
586 if ((error = bus_dmamap_create(sc->sc_dmat,
587 sizeof(struct atw_control_data), 1,
588 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
589 printf("%s: unable to create control data DMA map, "
590 "error = %d\n", sc->sc_dev.dv_xname, error);
591 goto fail_2;
592 }
593
594 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
595 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
596 0)) != 0) {
597 printf("%s: unable to load control data DMA map, error = %d\n",
598 sc->sc_dev.dv_xname, error);
599 goto fail_3;
600 }
601
602 /*
603 * Create the transmit buffer DMA maps.
604 */
605 sc->sc_ntxsegs = ATW_NTXSEGS;
606 for (i = 0; i < ATW_TXQUEUELEN; i++) {
607 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
608 sc->sc_ntxsegs, MCLBYTES, 0, 0,
609 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
610 printf("%s: unable to create tx DMA map %d, "
611 "error = %d\n", sc->sc_dev.dv_xname, i, error);
612 goto fail_4;
613 }
614 }
615
616 /*
617 * Create the receive buffer DMA maps.
618 */
619 for (i = 0; i < ATW_NRXDESC; i++) {
620 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
621 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
622 printf("%s: unable to create rx DMA map %d, "
623 "error = %d\n", sc->sc_dev.dv_xname, i, error);
624 goto fail_5;
625 }
626 }
627 for (i = 0; i < ATW_NRXDESC; i++) {
628 sc->sc_rxsoft[i].rxs_mbuf = NULL;
629 }
630
631 switch (sc->sc_rev) {
632 case ATW_REVISION_AB:
633 case ATW_REVISION_AF:
634 sc->sc_sramlen = ATW_SRAM_A_SIZE;
635 break;
636 case ATW_REVISION_BA:
637 case ATW_REVISION_CA:
638 sc->sc_sramlen = ATW_SRAM_B_SIZE;
639 break;
640 }
641
642 /* Reset the chip to a known state. */
643 atw_reset(sc);
644
645 if (atw_read_srom(sc) == -1)
646 return;
647
648 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
649 ATW_SR_RFTYPE_MASK);
650
651 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
652 ATW_SR_BBPTYPE_MASK);
653
654 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
655 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
656 return;
657 }
658 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
659 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
660 return;
661 }
662
663 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
664 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
665
666 /* XXX There exists a Linux driver which seems to use RFType = 0 for
667 * MARVEL. My bug, or theirs?
668 */
669
670 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
671
672 switch (sc->sc_rftype) {
673 case ATW_RFTYPE_INTERSIL:
674 reg |= ATW_SYNCTL_CS1;
675 break;
676 case ATW_RFTYPE_RFMD:
677 reg |= ATW_SYNCTL_CS0;
678 break;
679 case ATW_RFTYPE_MARVEL:
680 break;
681 }
682
683 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
684 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
685
686 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
687
688 switch (sc->sc_bbptype) {
689 case ATW_BBPTYPE_INTERSIL:
690 reg |= ATW_BBPCTL_TWI;
691 break;
692 case ATW_BBPTYPE_RFMD:
693 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
694 ATW_BBPCTL_CCA_ACTLO;
695 break;
696 case ATW_BBPTYPE_MARVEL:
697 break;
698 case ATW_C_BBPTYPE_RFMD:
699 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
700 sc->sc_dev.dv_xname);
701 break;
702 }
703
704 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
705 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
706
707 /*
708 * From this point forward, the attachment cannot fail. A failure
709 * before this point releases all resources that may have been
710 * allocated.
711 */
712 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
713
714 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
715 htole16(sc->sc_srom[ATW_SR_MAC00]),
716 htole16(sc->sc_srom[ATW_SR_MAC01]),
717 htole16(sc->sc_srom[ATW_SR_MAC10])));
718
719 srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
720 ATW_SR_MAJOR_MASK);
721
722 if (srom_major < 2)
723 sc->sc_rf3000_options1 = 0;
724 else if (sc->sc_rev == ATW_REVISION_BA) {
725 sc->sc_rf3000_options1 =
726 MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
727 ATW_SR_CR28_MASK);
728 } else
729 sc->sc_rf3000_options1 = 0;
730
731 sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
732 ATW_SR_CR29_MASK);
733
734 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
735 ATW_SR_CTRY_MASK);
736
737 #define ADD_CHANNEL(_ic, _chan) do { \
738 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
739 _ic->ic_channels[_chan].ic_freq = \
740 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
741 } while (0)
742
743 /* Find available channels */
744 switch (country_code) {
745 case COUNTRY_MMK2: /* 1-14 */
746 ADD_CHANNEL(ic, 14);
747 /*FALLTHROUGH*/
748 case COUNTRY_ETSI: /* 1-13 */
749 for (i = 1; i <= 13; i++)
750 ADD_CHANNEL(ic, i);
751 break;
752 case COUNTRY_FCC: /* 1-11 */
753 case COUNTRY_IC: /* 1-11 */
754 for (i = 1; i <= 11; i++)
755 ADD_CHANNEL(ic, i);
756 break;
757 case COUNTRY_MMK: /* 14 */
758 ADD_CHANNEL(ic, 14);
759 break;
760 case COUNTRY_FRANCE: /* 10-13 */
761 for (i = 10; i <= 13; i++)
762 ADD_CHANNEL(ic, i);
763 break;
764 default: /* assume channels 10-11 */
765 case COUNTRY_SPAIN: /* 10-11 */
766 for (i = 10; i <= 11; i++)
767 ADD_CHANNEL(ic, i);
768 break;
769 }
770
771 /* Read the MAC address. */
772 reg = ATW_READ(sc, ATW_PAR0);
773 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
774 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
775 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
776 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
777 reg = ATW_READ(sc, ATW_PAR1);
778 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
779 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
780
781 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
782 printf(" could not get mac address, attach failed\n");
783 return;
784 }
785
786 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
787
788 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
789 ifp->if_softc = sc;
790 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
791 IFF_NOTRAILERS;
792 ifp->if_ioctl = atw_ioctl;
793 ifp->if_start = atw_start;
794 ifp->if_watchdog = atw_watchdog;
795 ifp->if_init = atw_init;
796 ifp->if_stop = atw_stop;
797 IFQ_SET_READY(&ifp->if_snd);
798
799 ic->ic_phytype = IEEE80211_T_DS;
800 ic->ic_opmode = IEEE80211_M_STA;
801 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
802 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
803
804 nrate = 0;
805 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
806 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
807 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
808 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
809 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
810
811 /*
812 * Call MI attach routines.
813 */
814
815 if_attach(ifp);
816 ieee80211_ifattach(ifp);
817
818 sc->sc_newstate = ic->ic_newstate;
819 ic->ic_newstate = atw_newstate;
820
821 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
822 ic->ic_recv_mgmt = atw_recv_mgmt;
823
824 sc->sc_node_free = ic->ic_node_free;
825 ic->ic_node_free = atw_node_free;
826
827 sc->sc_node_alloc = ic->ic_node_alloc;
828 ic->ic_node_alloc = atw_node_alloc;
829
830 /* possibly we should fill in our own sc_send_prresp, since
831 * the ADM8211 is probably sending probe responses in ad hoc
832 * mode.
833 */
834
835 /* complete initialization */
836 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
837 callout_init(&sc->sc_scan_ch);
838
839 #if NBPFILTER > 0
840 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
841 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
842 #endif
843
844 /*
845 * Make sure the interface is shutdown during reboot.
846 */
847 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
848 if (sc->sc_sdhook == NULL)
849 printf("%s: WARNING: unable to establish shutdown hook\n",
850 sc->sc_dev.dv_xname);
851
852 /*
853 * Add a suspend hook to make sure we come back up after a
854 * resume.
855 */
856 sc->sc_powerhook = powerhook_establish(atw_power, sc);
857 if (sc->sc_powerhook == NULL)
858 printf("%s: WARNING: unable to establish power hook\n",
859 sc->sc_dev.dv_xname);
860
861 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
862 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
863 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
864
865 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
866 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
867 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
868
869 return;
870
871 /*
872 * Free any resources we've allocated during the failed attach
873 * attempt. Do this in reverse order and fall through.
874 */
875 fail_5:
876 for (i = 0; i < ATW_NRXDESC; i++) {
877 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
878 continue;
879 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
880 }
881 fail_4:
882 for (i = 0; i < ATW_TXQUEUELEN; i++) {
883 if (sc->sc_txsoft[i].txs_dmamap == NULL)
884 continue;
885 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
886 }
887 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
888 fail_3:
889 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
890 fail_2:
891 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
892 sizeof(struct atw_control_data));
893 fail_1:
894 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
895 fail_0:
896 return;
897 }
898
899 static struct ieee80211_node *
900 atw_node_alloc(struct ieee80211com *ic)
901 {
902 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
903 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
904
905 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
906 return ni;
907 }
908
909 static void
910 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
911 {
912 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
913
914 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
915 ether_sprintf(ni->ni_bssid)));
916 (*sc->sc_node_free)(ic, ni);
917 }
918
919
920 static void
921 atw_test1_reset(struct atw_softc *sc)
922 {
923 switch (sc->sc_rev) {
924 case ATW_REVISION_BA:
925 if (1 /* XXX condition on transceiver type */) {
926 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
927 }
928 break;
929 case ATW_REVISION_CA:
930 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
931 break;
932 default:
933 break;
934 }
935 }
936
937 /*
938 * atw_reset:
939 *
940 * Perform a soft reset on the ADM8211.
941 */
942 void
943 atw_reset(struct atw_softc *sc)
944 {
945 int i;
946 uint32_t lpc;
947
948 ATW_WRITE(sc, ATW_NAR, 0x0);
949 DELAY(atw_nar_delay);
950
951 /* Reference driver has a cryptic remark indicating that this might
952 * power-on the chip. I know that it turns off power-saving....
953 */
954 ATW_WRITE(sc, ATW_FRCTL, 0x0);
955
956 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
957
958 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
959 if (ATW_READ(sc, ATW_PAR) == 0)
960 break;
961 DELAY(atw_pseudo_milli);
962 }
963
964 /* ... and then pause 100ms longer for good measure. */
965 DELAY(atw_magic_delay1);
966
967 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
968
969 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
970 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
971
972 atw_test1_reset(sc);
973 /*
974 * Initialize the PCI Access Register.
975 */
976 sc->sc_busmode = ATW_PAR_PBL_8DW;
977
978 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
979 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
980 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
981
982 /* Turn off maximum power saving, etc.
983 *
984 * XXX Following example of reference driver, should I set
985 * an AID of 1? It didn't seem to help....
986 */
987 ATW_WRITE(sc, ATW_FRCTL, 0x0);
988
989 DELAY(atw_magic_delay2);
990
991 /* Recall EEPROM. */
992 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
993
994 DELAY(atw_magic_delay4);
995
996 lpc = ATW_READ(sc, ATW_LPC);
997
998 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
999
1000 /* A reset seems to affect the SRAM contents, so put them into
1001 * a known state.
1002 */
1003 atw_clear_sram(sc);
1004
1005 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1006 }
1007
1008 static void
1009 atw_clear_sram(struct atw_softc *sc)
1010 {
1011 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1012 /* XXX not for revision 0x20. */
1013 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1014 }
1015
1016 /* TBD atw_init
1017 *
1018 * set MAC based on ic->ic_bss->myaddr
1019 * write WEP keys
1020 * set TX rate
1021 */
1022
1023 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1024 * without receiving a beacon with the preferred BSSID & SSID.
1025 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1026 */
1027 static void
1028 atw_wcsr_init(struct atw_softc *sc)
1029 {
1030 uint32_t wcsr;
1031
1032 wcsr = ATW_READ(sc, ATW_WCSR);
1033 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1034 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1035 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1036
1037 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1038 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1039 }
1040
1041 /* Turn off power management. Set Rx store-and-forward mode. */
1042 static void
1043 atw_cmdr_init(struct atw_softc *sc)
1044 {
1045 uint32_t cmdr;
1046 cmdr = ATW_READ(sc, ATW_CMDR);
1047 cmdr &= ~ATW_CMDR_APM;
1048 cmdr |= ATW_CMDR_RTE;
1049 cmdr &= ~ATW_CMDR_DRT_MASK;
1050 cmdr |= ATW_CMDR_DRT_SF;
1051
1052 ATW_WRITE(sc, ATW_CMDR, cmdr);
1053 }
1054
1055 static void
1056 atw_tofs2_init(struct atw_softc *sc)
1057 {
1058 uint32_t tofs2;
1059 /* XXX this magic can probably be figured out from the RFMD docs */
1060 #ifndef ATW_REFSLAVE
1061 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1062 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1063 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1064 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1065 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1066 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1067 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1068 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1069 #else
1070 /* XXX new magic from reference driver source */
1071 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1072 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1073 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1074 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1075 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1076 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1077 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1078 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1079 #endif
1080 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1081 }
1082
1083 static void
1084 atw_nar_init(struct atw_softc *sc)
1085 {
1086 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1087 }
1088
1089 static void
1090 atw_txlmt_init(struct atw_softc *sc)
1091 {
1092 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1093 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1094 }
1095
1096 static void
1097 atw_test1_init(struct atw_softc *sc)
1098 {
1099 uint32_t test1;
1100
1101 test1 = ATW_READ(sc, ATW_TEST1);
1102 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1103 /* XXX magic 0x1 */
1104 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1105 ATW_WRITE(sc, ATW_TEST1, test1);
1106 }
1107
1108 static void
1109 atw_rf_reset(struct atw_softc *sc)
1110 {
1111 /* XXX this resets an Intersil RF front-end? */
1112 /* TBD condition on Intersil RFType? */
1113 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1114 DELAY(atw_rf_delay1);
1115 ATW_WRITE(sc, ATW_SYNRF, 0);
1116 DELAY(atw_rf_delay2);
1117 }
1118
1119 /* Set 16 TU max duration for the contention-free period (CFP). */
1120 static void
1121 atw_cfp_init(struct atw_softc *sc)
1122 {
1123 uint32_t cfpp;
1124
1125 cfpp = ATW_READ(sc, ATW_CFPP);
1126 cfpp &= ~ATW_CFPP_CFPMD;
1127 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1128 ATW_WRITE(sc, ATW_CFPP, cfpp);
1129 }
1130
1131 static void
1132 atw_tofs0_init(struct atw_softc *sc)
1133 {
1134 /* XXX I guess that the Cardbus clock is 22MHz?
1135 * I am assuming that the role of ATW_TOFS0_USCNT is
1136 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1137 * very clear on this point. It says in the datasheet that it is
1138 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1139 * and 33MHz; maybe this is the way? I see a binary-only driver write
1140 * these values. These values are also the power-on default.
1141 */
1142 ATW_WRITE(sc, ATW_TOFS0,
1143 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1144 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1145 }
1146
1147 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1148 static void
1149 atw_ifs_init(struct atw_softc *sc)
1150 {
1151 uint32_t ifst;
1152 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1153 * Go figure.
1154 */
1155 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1156 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1157 ATW_IFST_SIFS_MASK) |
1158 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1159 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1160
1161 ATW_WRITE(sc, ATW_IFST, ifst);
1162 }
1163
1164 static void
1165 atw_response_times_init(struct atw_softc *sc)
1166 {
1167 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1168 * indicate that the MAC expects at least SIFS + MIRT microseconds
1169 * to pass after it transmits a frame that requires a response;
1170 * it waits at most SIFS + MART microseconds for the response.
1171 * Surely this is not the ACK timeout?
1172 */
1173 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1174 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1175 }
1176
1177 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1178 * engines read and write baseband registers after Rx and before
1179 * Tx, respectively.
1180 */
1181 static void
1182 atw_bbp_io_init(struct atw_softc *sc)
1183 {
1184 uint32_t mmiraddr2;
1185
1186 /* XXX The reference driver does this, but is it *really*
1187 * necessary?
1188 */
1189 switch (sc->sc_rev) {
1190 case ATW_REVISION_AB:
1191 case ATW_REVISION_AF:
1192 mmiraddr2 = 0x0;
1193 break;
1194 default:
1195 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1196 mmiraddr2 &=
1197 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1198 break;
1199 }
1200
1201 switch (sc->sc_bbptype) {
1202 case ATW_BBPTYPE_INTERSIL:
1203 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1204 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1205 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1206 break;
1207 case ATW_BBPTYPE_MARVEL:
1208 /* TBD find out the Marvel settings. */
1209 break;
1210 case ATW_BBPTYPE_RFMD:
1211 default:
1212 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1213 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1214 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1215 break;
1216 }
1217 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1218 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1219 }
1220
1221 /*
1222 * atw_init: [ ifnet interface function ]
1223 *
1224 * Initialize the interface. Must be called at splnet().
1225 */
1226 int
1227 atw_init(struct ifnet *ifp)
1228 {
1229 struct atw_softc *sc = ifp->if_softc;
1230 struct ieee80211com *ic = &sc->sc_ic;
1231 struct atw_txsoft *txs;
1232 struct atw_rxsoft *rxs;
1233 int i, error = 0;
1234
1235 if ((error = atw_enable(sc)) != 0)
1236 goto out;
1237
1238 /*
1239 * Cancel any pending I/O. This also resets.
1240 */
1241 atw_stop(ifp, 0);
1242
1243 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1244 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1245 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
1246 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
1247
1248 atw_wcsr_init(sc);
1249
1250 atw_cmdr_init(sc);
1251
1252 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1253 *
1254 * XXX Set transmit power for ATIM, RTS, Beacon.
1255 */
1256 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1257 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1258
1259 atw_tofs2_init(sc);
1260
1261 atw_nar_init(sc);
1262
1263 atw_txlmt_init(sc);
1264
1265 atw_test1_init(sc);
1266
1267 atw_rf_reset(sc);
1268
1269 atw_cfp_init(sc);
1270
1271 atw_tofs0_init(sc);
1272
1273 atw_ifs_init(sc);
1274
1275 /* XXX Fall asleep after one second of inactivity.
1276 * XXX A frame may only dribble in for 65536us.
1277 */
1278 ATW_WRITE(sc, ATW_RMD,
1279 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1280
1281 atw_response_times_init(sc);
1282
1283 atw_bbp_io_init(sc);
1284
1285 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1286
1287 if ((error = atw_rf3000_init(sc)) != 0)
1288 goto out;
1289
1290 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1291 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1292 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1293
1294 /*
1295 * Initialize the transmit descriptor ring.
1296 */
1297 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1298 for (i = 0; i < ATW_NTXDESC; i++) {
1299 sc->sc_txdescs[i].at_ctl = 0;
1300 /* no transmit chaining */
1301 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1302 sc->sc_txdescs[i].at_buf2 =
1303 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1304 }
1305 /* use ring mode */
1306 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1307 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1308 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1309 sc->sc_txfree = ATW_NTXDESC;
1310 sc->sc_txnext = 0;
1311
1312 /*
1313 * Initialize the transmit job descriptors.
1314 */
1315 SIMPLEQ_INIT(&sc->sc_txfreeq);
1316 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1317 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1318 txs = &sc->sc_txsoft[i];
1319 txs->txs_mbuf = NULL;
1320 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1321 }
1322
1323 /*
1324 * Initialize the receive descriptor and receive job
1325 * descriptor rings.
1326 */
1327 for (i = 0; i < ATW_NRXDESC; i++) {
1328 rxs = &sc->sc_rxsoft[i];
1329 if (rxs->rxs_mbuf == NULL) {
1330 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1331 printf("%s: unable to allocate or map rx "
1332 "buffer %d, error = %d\n",
1333 sc->sc_dev.dv_xname, i, error);
1334 /*
1335 * XXX Should attempt to run with fewer receive
1336 * XXX buffers instead of just failing.
1337 */
1338 atw_rxdrain(sc);
1339 goto out;
1340 }
1341 } else
1342 ATW_INIT_RXDESC(sc, i);
1343 }
1344 sc->sc_rxptr = 0;
1345
1346 /*
1347 * Initialize the interrupt mask and enable interrupts.
1348 */
1349 /* normal interrupts */
1350 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1351 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1352
1353 /* abnormal interrupts */
1354 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1355 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1356 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1357
1358 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1359 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1360 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1361 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1362 ATW_INTR_TRT;
1363
1364 sc->sc_linkint_mask &= sc->sc_inten;
1365 sc->sc_rxint_mask &= sc->sc_inten;
1366 sc->sc_txint_mask &= sc->sc_inten;
1367
1368 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1369 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1370
1371 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1372 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1373
1374 /*
1375 * Give the transmit and receive rings to the ADM8211.
1376 */
1377 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1378 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1379
1380 sc->sc_txthresh = 0;
1381 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1382 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1383
1384 /* common 802.11 configuration */
1385 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1386 switch (ic->ic_opmode) {
1387 case IEEE80211_M_STA:
1388 break;
1389 case IEEE80211_M_AHDEMO: /* XXX */
1390 case IEEE80211_M_IBSS:
1391 ic->ic_flags |= IEEE80211_F_IBSSON;
1392 /*FALLTHROUGH*/
1393 case IEEE80211_M_HOSTAP: /* XXX */
1394 break;
1395 case IEEE80211_M_MONITOR: /* XXX */
1396 break;
1397 }
1398
1399 switch (ic->ic_opmode) {
1400 case IEEE80211_M_AHDEMO:
1401 case IEEE80211_M_HOSTAP:
1402 ic->ic_bss->ni_intval = ic->ic_lintval;
1403 ic->ic_bss->ni_rssi = 0;
1404 ic->ic_bss->ni_rstamp = 0;
1405 break;
1406 default: /* XXX */
1407 break;
1408 }
1409
1410 sc->sc_wepctl = 0;
1411
1412 atw_write_ssid(sc);
1413 atw_write_sup_rates(sc);
1414 if (ic->ic_caps & IEEE80211_C_WEP)
1415 atw_write_wep(sc);
1416
1417 ic->ic_state = IEEE80211_S_INIT;
1418
1419 /*
1420 * Set the receive filter. This will start the transmit and
1421 * receive processes.
1422 */
1423 atw_filter_setup(sc);
1424
1425 /*
1426 * Start the receive process.
1427 */
1428 ATW_WRITE(sc, ATW_RDR, 0x1);
1429
1430 /*
1431 * Note that the interface is now running.
1432 */
1433 ifp->if_flags |= IFF_RUNNING;
1434 ifp->if_flags &= ~IFF_OACTIVE;
1435
1436 /* send no beacons, yet. */
1437 atw_start_beacon(sc, 0);
1438
1439 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1440 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1441 else
1442 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1443 out:
1444 if (error) {
1445 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1446 ifp->if_timer = 0;
1447 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1448 }
1449 #ifdef ATW_DEBUG
1450 atw_print_regs(sc, "end of init");
1451 #endif /* ATW_DEBUG */
1452
1453 return (error);
1454 }
1455
1456 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1457 * 0: MAC control of RF3000/Si4126.
1458 *
1459 * Applies power, or selects RF front-end? Sets reset condition.
1460 *
1461 * TBD support non-RFMD BBP, non-SiLabs synth.
1462 */
1463 static void
1464 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1465 {
1466 if (enable) {
1467 ATW_WRITE(sc, ATW_SYNRF,
1468 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1469 DELAY(atw_bbp_io_enable_delay);
1470 } else {
1471 ATW_WRITE(sc, ATW_SYNRF, 0);
1472 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1473 }
1474 }
1475
1476 static int
1477 atw_tune(struct atw_softc *sc)
1478 {
1479 int rc;
1480 u_int chan;
1481 struct ieee80211com *ic = &sc->sc_ic;
1482
1483 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1484 if (chan == IEEE80211_CHAN_ANY)
1485 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1486
1487 if (chan == sc->sc_cur_chan)
1488 return 0;
1489
1490 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1491 sc->sc_cur_chan, chan));
1492
1493 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1494
1495 atw_si4126_tune(sc, chan);
1496 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1497 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1498 chan);
1499
1500 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1501 DELAY(atw_nar_delay);
1502 ATW_WRITE(sc, ATW_RDR, 0x1);
1503
1504 if (rc == 0)
1505 sc->sc_cur_chan = chan;
1506
1507 return rc;
1508 }
1509
1510 #ifdef ATW_SYNDEBUG
1511 static void
1512 atw_si4126_print(struct atw_softc *sc)
1513 {
1514 struct ifnet *ifp = &sc->sc_ic.ic_if;
1515 u_int addr, val;
1516
1517 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1518 return;
1519
1520 for (addr = 0; addr <= 8; addr++) {
1521 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1522 if (atw_si4126_read(sc, addr, &val) == 0) {
1523 printf("<unknown> (quitting print-out)\n");
1524 break;
1525 }
1526 printf("%05x\n", val);
1527 }
1528 }
1529 #endif /* ATW_SYNDEBUG */
1530
1531 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1532 *
1533 * The RF/IF synthesizer produces two reference frequencies for
1534 * the RF2948B transceiver. The first frequency the RF2948B requires
1535 * is two times the so-called "intermediate frequency" (IF). Since
1536 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1537 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1538 * frequency required by the transceiver is the radio frequency
1539 * (RF). This is a superheterodyne transceiver; for f(chan) the
1540 * center frequency of the channel we are tuning, RF = f(chan) -
1541 * IF.
1542 *
1543 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1544 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1545 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1546 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1547 */
1548 static void
1549 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1550 {
1551 u_int mhz;
1552 u_int R;
1553 u_int32_t gpio;
1554 u_int16_t gain;
1555
1556 #ifdef ATW_SYNDEBUG
1557 atw_si4126_print(sc);
1558 #endif /* ATW_SYNDEBUG */
1559
1560 if (chan == 14)
1561 mhz = 2484;
1562 else
1563 mhz = 2412 + 5 * (chan - 1);
1564
1565 /* Tune IF to 748MHz to suit the IF LO input of the
1566 * RF2494B, which is 2 x IF. No need to set an IF divider
1567 * because an IF in 526MHz - 952MHz is allowed.
1568 *
1569 * XIN is 44.000MHz, so divide it by two to get allowable
1570 * range of 2-25MHz. SiLabs tells me that this is not
1571 * strictly necessary.
1572 */
1573
1574 if (atw_xindiv2)
1575 R = 44;
1576 else
1577 R = 88;
1578
1579 /* Power-up RF, IF synthesizers. */
1580 atw_si4126_write(sc, SI4126_POWER,
1581 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1582
1583 /* set LPWR, too? */
1584 atw_si4126_write(sc, SI4126_MAIN,
1585 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1586
1587 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1588 * set KP2 to 1.
1589 *
1590 * REFDIF This is different from the reference driver, which
1591 * always sets SI4126_GAIN to 0.
1592 */
1593 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1594
1595 atw_si4126_write(sc, SI4126_GAIN, gain);
1596
1597 /* XIN = 44MHz.
1598 *
1599 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1600 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1601 *
1602 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1603 * so that 1496/88 * 44MHz = 748MHz.
1604 */
1605 atw_si4126_write(sc, SI4126_IFN, 1496);
1606
1607 atw_si4126_write(sc, SI4126_IFR, R);
1608
1609 #ifndef ATW_REFSLAVE
1610 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1611 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1612 * which has no RF1!
1613 */
1614 atw_si4126_write(sc, SI4126_RF1R, R);
1615
1616 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1617 #endif
1618
1619 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1620 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1621 * Now let's multiply it to mhz. So mhz - IF = N.
1622 */
1623 atw_si4126_write(sc, SI4126_RF2R, R);
1624
1625 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1626
1627 /* wait 100us from power-up for RF, IF to settle */
1628 DELAY(100);
1629
1630 gpio = ATW_READ(sc, ATW_GPIO);
1631 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1632 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1633
1634 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1635 /* Set a Prism RF front-end to a special mode for channel 14?
1636 *
1637 * Apparently the SMC2635W needs this, although I don't think
1638 * it has a Prism RF.
1639 */
1640 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1641 }
1642 ATW_WRITE(sc, ATW_GPIO, gpio);
1643
1644 #ifdef ATW_SYNDEBUG
1645 atw_si4126_print(sc);
1646 #endif /* ATW_SYNDEBUG */
1647 }
1648
1649 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1650 * diversity.
1651 *
1652 * !!!
1653 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1654 * !!!
1655 */
1656 static int
1657 atw_rf3000_init(struct atw_softc *sc)
1658 {
1659 int rc = 0;
1660
1661 atw_bbp_io_enable(sc, 1);
1662
1663 /* CCA is acquisition sensitive */
1664 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1665 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1666
1667 if (rc != 0)
1668 goto out;
1669
1670 /* enable diversity */
1671 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1672
1673 if (rc != 0)
1674 goto out;
1675
1676 /* sensible setting from a binary-only driver */
1677 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1678 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1679
1680 if (rc != 0)
1681 goto out;
1682
1683 /* magic from a binary-only driver */
1684 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1685 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1686
1687 if (rc != 0)
1688 goto out;
1689
1690 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1691
1692 if (rc != 0)
1693 goto out;
1694
1695 /* XXX Reference driver remarks that Abocom sets this to 50.
1696 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1697 * in the "reserved" area of register RF3000_OPTIONS1.
1698 */
1699 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1700
1701 if (rc != 0)
1702 goto out;
1703
1704 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1705
1706 if (rc != 0)
1707 goto out;
1708
1709 out:
1710 atw_bbp_io_enable(sc, 0);
1711 return rc;
1712 }
1713
1714 #ifdef ATW_BBPDEBUG
1715 static void
1716 atw_rf3000_print(struct atw_softc *sc)
1717 {
1718 struct ifnet *ifp = &sc->sc_ic.ic_if;
1719 u_int addr, val;
1720
1721 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1722 return;
1723
1724 for (addr = 0x01; addr <= 0x15; addr++) {
1725 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1726 if (atw_rf3000_read(sc, addr, &val) != 0) {
1727 printf("<unknown> (quitting print-out)\n");
1728 break;
1729 }
1730 printf("%08x\n", val);
1731 }
1732 }
1733 #endif /* ATW_BBPDEBUG */
1734
1735 /* Set the power settings on the BBP for channel `chan'. */
1736 static int
1737 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1738 {
1739 int rc = 0;
1740 u_int32_t reg;
1741 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1742
1743 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1744 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1745 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1746
1747 /* odd channels: LSB, even channels: MSB */
1748 if (chan % 2 == 1) {
1749 txpower &= 0xFF;
1750 lpf_cutoff &= 0xFF;
1751 lna_gs_thresh &= 0xFF;
1752 } else {
1753 txpower >>= 8;
1754 lpf_cutoff >>= 8;
1755 lna_gs_thresh >>= 8;
1756 }
1757
1758 #ifdef ATW_BBPDEBUG
1759 atw_rf3000_print(sc);
1760 #endif /* ATW_BBPDEBUG */
1761
1762 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1763 "lna_gs_thresh %02x\n",
1764 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1765
1766 atw_bbp_io_enable(sc, 1);
1767
1768 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1769 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1770 goto out;
1771
1772 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1773 goto out;
1774
1775 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1776 goto out;
1777
1778 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1779
1780 if (rc != 0)
1781 goto out;
1782
1783 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1784
1785 if (rc != 0)
1786 goto out;
1787
1788 #ifdef ATW_BBPDEBUG
1789 atw_rf3000_print(sc);
1790 #endif /* ATW_BBPDEBUG */
1791
1792 out:
1793 atw_bbp_io_enable(sc, 0);
1794
1795 /* set beacon, rts, atim transmit power */
1796 reg = ATW_READ(sc, ATW_PLCPHD);
1797 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1798 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1799 ATW_PLCPHD_SERVICE_MASK);
1800 ATW_WRITE(sc, ATW_PLCPHD, reg);
1801 DELAY(atw_plcphd_delay);
1802
1803 return rc;
1804 }
1805
1806 /* Write a register on the RF3000 baseband processor using the
1807 * registers provided by the ADM8211 for this purpose.
1808 *
1809 * Return 0 on success.
1810 */
1811 static int
1812 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1813 {
1814 u_int32_t reg;
1815 int i;
1816
1817 reg = sc->sc_bbpctl_wr |
1818 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1819 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1820
1821 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1822 ATW_WRITE(sc, ATW_BBPCTL, reg);
1823 DELAY(2 * atw_pseudo_milli);
1824 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1825 break;
1826 }
1827
1828 if (i < 0) {
1829 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1830 return ETIMEDOUT;
1831 }
1832 return 0;
1833 }
1834
1835 /* Read a register on the RF3000 baseband processor using the registers
1836 * the ADM8211 provides for this purpose.
1837 *
1838 * The 7-bit register address is addr. Record the 8-bit data in the register
1839 * in *val.
1840 *
1841 * Return 0 on success.
1842 *
1843 * XXX This does not seem to work. The ADM8211 must require more or
1844 * different magic to read the chip than to write it. Possibly some
1845 * of the magic I have derived from a binary-only driver concerns
1846 * the "chip address" (see the RF3000 manual).
1847 */
1848 #ifdef ATW_BBPDEBUG
1849 static int
1850 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1851 {
1852 u_int32_t reg;
1853 int i;
1854
1855 for (i = 1000; --i >= 0; ) {
1856 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1857 break;
1858 DELAY(100);
1859 }
1860
1861 if (i < 0) {
1862 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1863 sc->sc_dev.dv_xname);
1864 return ETIMEDOUT;
1865 }
1866
1867 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1868
1869 ATW_WRITE(sc, ATW_BBPCTL, reg);
1870
1871 for (i = 1000; --i >= 0; ) {
1872 DELAY(100);
1873 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1874 break;
1875 }
1876
1877 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1878
1879 if (i < 0) {
1880 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1881 sc->sc_dev.dv_xname, reg);
1882 return ETIMEDOUT;
1883 }
1884 if (val != NULL)
1885 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1886 return 0;
1887 }
1888 #endif /* ATW_BBPDEBUG */
1889
1890 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1891 * provided by the ADM8211 for that purpose.
1892 *
1893 * val is 18 bits of data, and val is the 4-bit address of the register.
1894 *
1895 * Return 0 on success.
1896 */
1897 static void
1898 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1899 {
1900 uint32_t bits, mask, reg;
1901 const int nbits = 22;
1902
1903 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1904 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1905
1906 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1907 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1908
1909 reg = ATW_SYNRF_SELSYN;
1910 /* reference driver: reset Si4126 serial bus to initial
1911 * conditions?
1912 */
1913 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1914 ATW_WRITE(sc, ATW_SYNRF, reg);
1915
1916 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1917 if ((bits & mask) != 0)
1918 reg |= ATW_SYNRF_SYNDATA;
1919 else
1920 reg &= ~ATW_SYNRF_SYNDATA;
1921 ATW_WRITE(sc, ATW_SYNRF, reg);
1922 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1923 ATW_WRITE(sc, ATW_SYNRF, reg);
1924 }
1925 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1926 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1927 }
1928
1929 /* Read 18-bit data from the 4-bit address addr in Si4126
1930 * RF synthesizer and write the data to *val. Return 0 on success.
1931 *
1932 * XXX This does not seem to work. The ADM8211 must require more or
1933 * different magic to read the chip than to write it.
1934 */
1935 #ifdef ATW_SYNDEBUG
1936 static int
1937 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1938 {
1939 u_int32_t reg;
1940 int i;
1941
1942 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1943
1944 for (i = 1000; --i >= 0; ) {
1945 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1946 break;
1947 DELAY(100);
1948 }
1949
1950 if (i < 0) {
1951 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1952 sc->sc_dev.dv_xname);
1953 return ETIMEDOUT;
1954 }
1955
1956 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1957
1958 ATW_WRITE(sc, ATW_SYNCTL, reg);
1959
1960 for (i = 1000; --i >= 0; ) {
1961 DELAY(100);
1962 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1963 break;
1964 }
1965
1966 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1967
1968 if (i < 0) {
1969 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1970 sc->sc_dev.dv_xname, reg);
1971 return ETIMEDOUT;
1972 }
1973 if (val != NULL)
1974 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1975 ATW_SYNCTL_DATA_MASK);
1976 return 0;
1977 }
1978 #endif /* ATW_SYNDEBUG */
1979
1980 /* XXX is the endianness correct? test. */
1981 #define atw_calchash(addr) \
1982 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1983
1984 /*
1985 * atw_filter_setup:
1986 *
1987 * Set the ADM8211's receive filter.
1988 */
1989 static void
1990 atw_filter_setup(struct atw_softc *sc)
1991 {
1992 struct ieee80211com *ic = &sc->sc_ic;
1993 struct ethercom *ec = &ic->ic_ec;
1994 struct ifnet *ifp = &sc->sc_ic.ic_if;
1995 int hash;
1996 u_int32_t hashes[2];
1997 struct ether_multi *enm;
1998 struct ether_multistep step;
1999
2000 /* According to comments in tlp_al981_filter_setup
2001 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2002 * multicast filter to be set while it is running. Hopefully
2003 * the ADM8211 is not the same!
2004 */
2005 if ((ifp->if_flags & IFF_RUNNING) != 0)
2006 atw_idle(sc, ATW_NAR_SR);
2007
2008 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2009
2010 /* XXX in scan mode, do not filter packets. Maybe this is
2011 * unnecessary.
2012 */
2013 if (ic->ic_state == IEEE80211_S_SCAN ||
2014 (ifp->if_flags & IFF_PROMISC) != 0) {
2015 sc->sc_opmode |= ATW_NAR_PR;
2016 goto allmulti;
2017 }
2018
2019 hashes[0] = hashes[1] = 0x0;
2020
2021 /*
2022 * Program the 64-bit multicast hash filter.
2023 */
2024 ETHER_FIRST_MULTI(step, ec, enm);
2025 while (enm != NULL) {
2026 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2027 ETHER_ADDR_LEN) != 0)
2028 goto allmulti;
2029
2030 hash = atw_calchash(enm->enm_addrlo);
2031 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2032 ETHER_NEXT_MULTI(step, enm);
2033 }
2034 ifp->if_flags &= ~IFF_ALLMULTI;
2035 goto setit;
2036
2037 allmulti:
2038 ifp->if_flags |= IFF_ALLMULTI;
2039 hashes[0] = hashes[1] = 0xffffffff;
2040
2041 setit:
2042 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2043 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2044 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2045 DELAY(atw_nar_delay);
2046
2047 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2048 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2049 }
2050
2051 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2052 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2053 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2054 * no beacon with the preferred BSSID and SSID in the number of
2055 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2056 */
2057 static void
2058 atw_write_bssid(struct atw_softc *sc)
2059 {
2060 struct ieee80211com *ic = &sc->sc_ic;
2061 u_int8_t *bssid;
2062
2063 bssid = ic->ic_bss->ni_bssid;
2064
2065 ATW_WRITE(sc, ATW_BSSID0,
2066 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2067 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2068 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2069 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2070
2071 ATW_WRITE(sc, ATW_ABDA1,
2072 (ATW_READ(sc, ATW_ABDA1) &
2073 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2074 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2075 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2076
2077 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2078 ether_sprintf(sc->sc_bssid)));
2079 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2080
2081 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2082 }
2083
2084 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2085 * 16-bit word.
2086 */
2087 static void
2088 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2089 {
2090 u_int i;
2091 u_int8_t *ptr;
2092
2093 memcpy(&sc->sc_sram[ofs], buf, buflen);
2094
2095 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2096
2097 KASSERT(buflen + ofs <= sc->sc_sramlen);
2098
2099 ptr = &sc->sc_sram[ofs];
2100
2101 for (i = 0; i < buflen; i += 2) {
2102 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2103 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2104 DELAY(atw_writewep_delay);
2105
2106 ATW_WRITE(sc, ATW_WESK,
2107 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2108 DELAY(atw_writewep_delay);
2109 }
2110 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2111
2112 if (sc->sc_if.if_flags & IFF_DEBUG) {
2113 int n_octets = 0;
2114 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2115 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2116 for (i = 0; i < buflen; i++) {
2117 printf(" %02x", ptr[i]);
2118 if (++n_octets % 24 == 0)
2119 printf("\n");
2120 }
2121 if (n_octets % 24 != 0)
2122 printf("\n");
2123 }
2124 }
2125
2126 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2127 static void
2128 atw_write_wep(struct atw_softc *sc)
2129 {
2130 struct ieee80211com *ic = &sc->sc_ic;
2131 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2132 u_int8_t buf[IEEE80211_WEP_NKID]
2133 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2134 u_int32_t reg;
2135 int i;
2136
2137 sc->sc_wepctl = 0;
2138 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2139
2140 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0)
2141 return;
2142
2143 memset(&buf[0][0], 0, sizeof(buf));
2144
2145 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2146 if (ic->ic_nw_keys[i].wk_len > 5) {
2147 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2148 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2149 buf[i][1] = ATW_WEP_ENABLED;
2150 } else {
2151 buf[i][1] = 0;
2152 continue;
2153 }
2154 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2155 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2156 ic->ic_nw_keys[i].wk_len - 1);
2157 }
2158
2159 reg = ATW_READ(sc, ATW_MACTEST);
2160 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2161 reg &= ~ATW_MACTEST_KEYID_MASK;
2162 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2163 ATW_WRITE(sc, ATW_MACTEST, reg);
2164
2165 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE;
2166
2167 switch (sc->sc_rev) {
2168 case ATW_REVISION_AB:
2169 case ATW_REVISION_AF:
2170 /* Bypass WEP on Rx. */
2171 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2172 break;
2173 default:
2174 break;
2175 }
2176
2177 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2178 sizeof(buf));
2179 }
2180
2181 const struct timeval atw_beacon_mininterval = {.tv_sec = 1, .tv_usec = 0};
2182
2183 static void
2184 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2185 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2186 {
2187 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2188
2189 switch (subtype) {
2190 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2191 /* do nothing: hardware answers probe request */
2192 break;
2193 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2194 case IEEE80211_FC0_SUBTYPE_BEACON:
2195 atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2196 break;
2197 default:
2198 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2199 break;
2200 }
2201 return;
2202 }
2203
2204 static int
2205 do_slow_print(struct atw_softc *sc, int *did_print)
2206 {
2207 if ((sc->sc_if.if_flags & IFF_LINK0) == 0)
2208 return 0;
2209 if (!*did_print && (sc->sc_if.if_flags & IFF_DEBUG) == 0 &&
2210 !ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval))
2211 return 0;
2212
2213 *did_print = 1;
2214 return 1;
2215 }
2216
2217 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2218 * of IBSSs with like SSID/channel but different BSSID. It joins the
2219 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2220 * convention. Possibly the ADMtek chip does this for us; I will have
2221 * to test to find out.
2222 *
2223 * XXX we should add the duration field of the received beacon to
2224 * the TSF time it contains before comparing it with the ADM8211's
2225 * TSF.
2226 */
2227 static void
2228 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2229 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2230 {
2231 struct atw_softc *sc;
2232 struct ieee80211_frame *wh;
2233 uint32_t tsftl, tsfth;
2234 uint32_t bcn_tsftl, bcn_tsfth;
2235 int did_print = 0, sign;
2236 union {
2237 uint32_t words[2];
2238 uint8_t tstamp[8];
2239 } u;
2240
2241 sc = (struct atw_softc*)ic->ic_if.if_softc;
2242
2243 (*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2244
2245 if (ic->ic_state != IEEE80211_S_RUN)
2246 return;
2247
2248 atw_tsft(sc, &tsfth, &tsftl);
2249
2250 (void)memcpy(&u, &ni->ni_tstamp[0], sizeof(u));
2251 bcn_tsftl = le32toh(u.words[0]);
2252 bcn_tsfth = le32toh(u.words[1]);
2253
2254 /* we are faster, let the other guy catch up */
2255 if (bcn_tsfth < tsfth)
2256 sign = -1;
2257 else if (bcn_tsfth == tsfth && bcn_tsftl < tsftl)
2258 sign = -1;
2259 else
2260 sign = 1;
2261
2262 if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid,
2263 IEEE80211_ADDR_LEN) == 0) {
2264 if (!do_slow_print(sc, &did_print))
2265 return;
2266 printf("%s: tsft offset %s%" PRIu64 "\n", sc->sc_dev.dv_xname,
2267 (sign < 0) ? "-" : "",
2268 (sign < 0)
2269 ? ((((uint64_t)tsfth << 32) | tsftl) -
2270 (((uint64_t)bcn_tsfth << 32) | bcn_tsftl))
2271 : ((((uint64_t)bcn_tsfth << 32) | bcn_tsftl) -
2272 (((uint64_t)tsfth << 32) | tsftl)));
2273 return;
2274 }
2275
2276 if (sign < 0)
2277 return;
2278
2279 if (ieee80211_match_bss(ic, ni) != 0)
2280 return;
2281
2282 if (do_slow_print(sc, &did_print)) {
2283 printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2284 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2285 }
2286
2287 if (ic->ic_opmode != IEEE80211_M_IBSS)
2288 return;
2289
2290 if (do_slow_print(sc, &did_print)) {
2291 printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2292 sc->sc_dev.dv_xname, ((uint64_t)tsfth << 32) | tsftl,
2293 ((uint64_t)bcn_tsfth << 32) | bcn_tsftl);
2294 }
2295
2296 wh = mtod(m0, struct ieee80211_frame *);
2297
2298 if (do_slow_print(sc, &did_print)) {
2299 printf("%s: sync TSF with %s\n",
2300 sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2301 }
2302
2303 ic->ic_flags &= ~IEEE80211_F_SIBSS;
2304
2305 (void)memcpy(&ic->ic_bss->ni_tstamp[0], &u, sizeof(u));
2306
2307 atw_tsf(sc);
2308
2309 /* negotiate rates with new IBSS */
2310 ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2311 IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2312 if (ni->ni_rates.rs_nrates == 0) {
2313 if (do_slow_print(sc, &did_print)) {
2314 printf("%s: rates mismatch, BSSID %s\n",
2315 sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2316 }
2317 return;
2318 }
2319
2320 if (do_slow_print(sc, &did_print)) {
2321 printf("%s: sync BSSID %s -> ",
2322 sc->sc_dev.dv_xname, ether_sprintf(ic->ic_bss->ni_bssid));
2323 printf("%s ", ether_sprintf(ni->ni_bssid));
2324 printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2325 }
2326
2327 (*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2328
2329 atw_write_bssid(sc);
2330 atw_start_beacon(sc, 1);
2331 }
2332
2333 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2334 * In ad hoc mode, the SSID is written to the beacons sent by the
2335 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2336 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2337 * indications.
2338 */
2339 static void
2340 atw_write_ssid(struct atw_softc *sc)
2341 {
2342 struct ieee80211com *ic = &sc->sc_ic;
2343 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2344 * it only expects the element length, not its ID.
2345 */
2346 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2347
2348 memset(buf, 0, sizeof(buf));
2349 buf[0] = ic->ic_bss->ni_esslen;
2350 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2351
2352 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2353 roundup(1 + ic->ic_bss->ni_esslen, 2));
2354 }
2355
2356 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2357 * In ad hoc mode, the supported rates are written to beacons sent by the
2358 * ADM8211.
2359 */
2360 static void
2361 atw_write_sup_rates(struct atw_softc *sc)
2362 {
2363 struct ieee80211com *ic = &sc->sc_ic;
2364 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2365 * supported rates
2366 */
2367 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2368
2369 memset(buf, 0, sizeof(buf));
2370
2371 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2372
2373 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2374 ic->ic_bss->ni_rates.rs_nrates);
2375
2376 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2377 }
2378
2379 /* Start/stop sending beacons. */
2380 void
2381 atw_start_beacon(struct atw_softc *sc, int start)
2382 {
2383 struct ieee80211com *ic = &sc->sc_ic;
2384 uint16_t chan;
2385 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2386 size_t len;
2387
2388 if (ATW_IS_ENABLED(sc) == 0)
2389 return;
2390
2391 /* start beacons */
2392 len = sizeof(struct ieee80211_frame) +
2393 8 /* timestamp */ + 2 /* beacon interval */ +
2394 2 /* capability info */ +
2395 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2396 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2397 3 /* DS parameters */ +
2398 IEEE80211_CRC_LEN;
2399
2400 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2401 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2402 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2403
2404 ATW_WRITE(sc, ATW_BCNT, bcnt);
2405 ATW_WRITE(sc, ATW_CAP1, cap1);
2406
2407 if (!start)
2408 return;
2409
2410 /* TBD use ni_capinfo */
2411
2412 capinfo = 0;
2413 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2414 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2415 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2416 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2417
2418 switch (ic->ic_opmode) {
2419 case IEEE80211_M_IBSS:
2420 len += 4; /* IBSS parameters */
2421 capinfo |= IEEE80211_CAPINFO_IBSS;
2422 break;
2423 case IEEE80211_M_HOSTAP:
2424 /* XXX 6-byte minimum TIM */
2425 len += atw_beacon_len_adjust;
2426 capinfo |= IEEE80211_CAPINFO_ESS;
2427 break;
2428 default:
2429 return;
2430 }
2431
2432 /* set listen interval
2433 * XXX do software units agree w/ hardware?
2434 */
2435 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2436 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2437
2438 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
2439
2440 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2441 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2442 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2443
2444 ATW_WRITE(sc, ATW_BCNT, bcnt);
2445 ATW_WRITE(sc, ATW_BPLI, bpli);
2446 ATW_WRITE(sc, ATW_CAP0, cap0);
2447 ATW_WRITE(sc, ATW_CAP1, cap1);
2448
2449 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2450 sc->sc_dev.dv_xname, bcnt));
2451
2452 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2453 sc->sc_dev.dv_xname, cap1));
2454 }
2455
2456 /* Return the 32 lsb of the last TSFT divisible by ival. */
2457 static __inline uint32_t
2458 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2459 {
2460 /* Following the reference driver's lead, I compute
2461 *
2462 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2463 *
2464 * without using 64-bit arithmetic, using the following
2465 * relationship:
2466 *
2467 * (0x100000000 * H + L) % m
2468 * = ((0x100000000 % m) * H + L) % m
2469 * = (((0xffffffff + 1) % m) * H + L) % m
2470 * = ((0xffffffff % m + 1 % m) * H + L) % m
2471 * = ((0xffffffff % m + 1) * H + L) % m
2472 */
2473 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2474 }
2475
2476 static __inline void
2477 atw_tsft(struct atw_softc *sc, uint32_t *tsfth, uint32_t *tsftl)
2478 {
2479 int i;
2480 for (i = 0; i < 2; i++) {
2481 *tsfth = ATW_READ(sc, ATW_TSFTH);
2482 *tsftl = ATW_READ(sc, ATW_TSFTL);
2483 if (ATW_READ(sc, ATW_TSFTH) == *tsfth)
2484 break;
2485 }
2486 }
2487
2488 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2489 * the ieee80211com.
2490 *
2491 * Predict the next target beacon transmission time (TBTT) and
2492 * write it to the ADM8211.
2493 */
2494 static void
2495 atw_tsf(struct atw_softc *sc)
2496 {
2497 #define TBTTOFS 20 /* TU */
2498
2499 struct ieee80211com *ic = &sc->sc_ic;
2500 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2501 union {
2502 uint32_t words[2];
2503 uint8_t tstamp[8];
2504 } u;
2505
2506 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2507 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2508 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2509 atw_tsft(sc, &tsfth, &tsftl);
2510 u.words[0] = htole32(tsftl);
2511 u.words[1] = htole32(tsfth);
2512 (void)memcpy(&ic->ic_bss->ni_tstamp[0], &u,
2513 sizeof(ic->ic_bss->ni_tstamp));
2514 } else {
2515 (void)memcpy(&u, &ic->ic_bss->ni_tstamp[0], sizeof(u));
2516 tsftl = le32toh(u.words[0]);
2517 tsfth = le32toh(u.words[1]);
2518 }
2519
2520 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2521
2522 /* We sent/received the last beacon `past' microseconds
2523 * after the interval divided the TSF timer.
2524 */
2525 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2526
2527 /* Skip ten beacons so that the TBTT cannot pass before
2528 * we've programmed it. Ten is an arbitrary number.
2529 */
2530 tbtt = past_even + ival * 10;
2531
2532 ATW_WRITE(sc, ATW_TOFS1,
2533 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2534 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2535 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2536 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2537 #undef TBTTOFS
2538 }
2539
2540 static void
2541 atw_next_scan(void *arg)
2542 {
2543 struct atw_softc *sc = arg;
2544 struct ieee80211com *ic = &sc->sc_ic;
2545 int s;
2546
2547 /* don't call atw_start w/o network interrupts blocked */
2548 s = splnet();
2549 if (ic->ic_state == IEEE80211_S_SCAN)
2550 ieee80211_next_scan(ic);
2551 splx(s);
2552 }
2553
2554 /* Synchronize the hardware state with the software state. */
2555 static int
2556 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2557 {
2558 struct ifnet *ifp = &ic->ic_if;
2559 struct atw_softc *sc = ifp->if_softc;
2560 enum ieee80211_state ostate;
2561 int error;
2562
2563 ostate = ic->ic_state;
2564
2565 if (nstate == IEEE80211_S_INIT) {
2566 callout_stop(&sc->sc_scan_ch);
2567 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2568 atw_start_beacon(sc, 0);
2569 return (*sc->sc_newstate)(ic, nstate, arg);
2570 }
2571
2572 if ((error = atw_tune(sc)) != 0)
2573 return error;
2574
2575 switch (nstate) {
2576 case IEEE80211_S_ASSOC:
2577 break;
2578 case IEEE80211_S_INIT:
2579 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2580 break;
2581 case IEEE80211_S_SCAN:
2582 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2583 atw_next_scan, sc);
2584
2585 break;
2586 case IEEE80211_S_RUN:
2587 if (ic->ic_opmode == IEEE80211_M_STA)
2588 break;
2589 /*FALLTHROUGH*/
2590 case IEEE80211_S_AUTH:
2591 atw_write_bssid(sc);
2592 atw_write_ssid(sc);
2593 atw_write_sup_rates(sc);
2594
2595 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2596 ic->ic_opmode == IEEE80211_M_MONITOR)
2597 break;
2598
2599 /* set listen interval
2600 * XXX do software units agree w/ hardware?
2601 */
2602 ATW_WRITE(sc, ATW_BPLI,
2603 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2604 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2605 ATW_BPLI_LI_MASK));
2606
2607 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2608 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2609
2610 atw_tsf(sc);
2611 break;
2612 }
2613
2614 if (nstate != IEEE80211_S_SCAN)
2615 callout_stop(&sc->sc_scan_ch);
2616
2617 if (nstate == IEEE80211_S_RUN &&
2618 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2619 ic->ic_opmode == IEEE80211_M_IBSS))
2620 atw_start_beacon(sc, 1);
2621 else
2622 atw_start_beacon(sc, 0);
2623
2624 error = (*sc->sc_newstate)(ic, nstate, arg);
2625
2626 if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2627 atw_write_bssid(sc);
2628
2629 return error;
2630 }
2631
2632 /*
2633 * atw_add_rxbuf:
2634 *
2635 * Add a receive buffer to the indicated descriptor.
2636 */
2637 int
2638 atw_add_rxbuf(struct atw_softc *sc, int idx)
2639 {
2640 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2641 struct mbuf *m;
2642 int error;
2643
2644 MGETHDR(m, M_DONTWAIT, MT_DATA);
2645 if (m == NULL)
2646 return (ENOBUFS);
2647
2648 MCLGET(m, M_DONTWAIT);
2649 if ((m->m_flags & M_EXT) == 0) {
2650 m_freem(m);
2651 return (ENOBUFS);
2652 }
2653
2654 if (rxs->rxs_mbuf != NULL)
2655 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2656
2657 rxs->rxs_mbuf = m;
2658
2659 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2660 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2661 BUS_DMA_READ|BUS_DMA_NOWAIT);
2662 if (error) {
2663 printf("%s: can't load rx DMA map %d, error = %d\n",
2664 sc->sc_dev.dv_xname, idx, error);
2665 panic("atw_add_rxbuf"); /* XXX */
2666 }
2667
2668 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2669 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2670
2671 ATW_INIT_RXDESC(sc, idx);
2672
2673 return (0);
2674 }
2675
2676 /*
2677 * Release any queued transmit buffers.
2678 */
2679 void
2680 atw_txdrain(struct atw_softc *sc)
2681 {
2682 struct atw_txsoft *txs;
2683
2684 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2685 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2686 if (txs->txs_mbuf != NULL) {
2687 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2688 m_freem(txs->txs_mbuf);
2689 txs->txs_mbuf = NULL;
2690 }
2691 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2692 }
2693 sc->sc_tx_timer = 0;
2694 }
2695
2696 /*
2697 * atw_stop: [ ifnet interface function ]
2698 *
2699 * Stop transmission on the interface.
2700 */
2701 void
2702 atw_stop(struct ifnet *ifp, int disable)
2703 {
2704 struct atw_softc *sc = ifp->if_softc;
2705 struct ieee80211com *ic = &sc->sc_ic;
2706
2707 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2708
2709 /* Disable interrupts. */
2710 ATW_WRITE(sc, ATW_IER, 0);
2711
2712 /* Stop the transmit and receive processes. */
2713 sc->sc_opmode = 0;
2714 ATW_WRITE(sc, ATW_NAR, 0);
2715 DELAY(atw_nar_delay);
2716 ATW_WRITE(sc, ATW_TDBD, 0);
2717 ATW_WRITE(sc, ATW_TDBP, 0);
2718 ATW_WRITE(sc, ATW_RDB, 0);
2719
2720 atw_txdrain(sc);
2721
2722 if (disable) {
2723 atw_rxdrain(sc);
2724 atw_disable(sc);
2725 }
2726
2727 /*
2728 * Mark the interface down and cancel the watchdog timer.
2729 */
2730 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2731 ifp->if_timer = 0;
2732
2733 if (!disable)
2734 atw_reset(sc);
2735 }
2736
2737 /*
2738 * atw_rxdrain:
2739 *
2740 * Drain the receive queue.
2741 */
2742 void
2743 atw_rxdrain(struct atw_softc *sc)
2744 {
2745 struct atw_rxsoft *rxs;
2746 int i;
2747
2748 for (i = 0; i < ATW_NRXDESC; i++) {
2749 rxs = &sc->sc_rxsoft[i];
2750 if (rxs->rxs_mbuf == NULL)
2751 continue;
2752 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2753 m_freem(rxs->rxs_mbuf);
2754 rxs->rxs_mbuf = NULL;
2755 }
2756 }
2757
2758 /*
2759 * atw_detach:
2760 *
2761 * Detach an ADM8211 interface.
2762 */
2763 int
2764 atw_detach(struct atw_softc *sc)
2765 {
2766 struct ifnet *ifp = &sc->sc_ic.ic_if;
2767 struct atw_rxsoft *rxs;
2768 struct atw_txsoft *txs;
2769 int i;
2770
2771 /*
2772 * Succeed now if there isn't any work to do.
2773 */
2774 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2775 return (0);
2776
2777 ieee80211_ifdetach(ifp);
2778 if_detach(ifp);
2779
2780 for (i = 0; i < ATW_NRXDESC; i++) {
2781 rxs = &sc->sc_rxsoft[i];
2782 if (rxs->rxs_mbuf != NULL) {
2783 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2784 m_freem(rxs->rxs_mbuf);
2785 rxs->rxs_mbuf = NULL;
2786 }
2787 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2788 }
2789 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2790 txs = &sc->sc_txsoft[i];
2791 if (txs->txs_mbuf != NULL) {
2792 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2793 m_freem(txs->txs_mbuf);
2794 txs->txs_mbuf = NULL;
2795 }
2796 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2797 }
2798 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2799 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2800 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2801 sizeof(struct atw_control_data));
2802 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2803
2804 shutdownhook_disestablish(sc->sc_sdhook);
2805 powerhook_disestablish(sc->sc_powerhook);
2806
2807 if (sc->sc_srom)
2808 free(sc->sc_srom, M_DEVBUF);
2809
2810 return (0);
2811 }
2812
2813 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2814 void
2815 atw_shutdown(void *arg)
2816 {
2817 struct atw_softc *sc = arg;
2818
2819 atw_stop(&sc->sc_ic.ic_if, 1);
2820 }
2821
2822 int
2823 atw_intr(void *arg)
2824 {
2825 struct atw_softc *sc = arg;
2826 struct ifnet *ifp = &sc->sc_ic.ic_if;
2827 u_int32_t status, rxstatus, txstatus, linkstatus;
2828 int handled = 0, txthresh;
2829
2830 #ifdef DEBUG
2831 if (ATW_IS_ENABLED(sc) == 0)
2832 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2833 #endif
2834
2835 /*
2836 * If the interface isn't running, the interrupt couldn't
2837 * possibly have come from us.
2838 */
2839 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2840 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2841 return (0);
2842
2843 for (;;) {
2844 status = ATW_READ(sc, ATW_STSR);
2845
2846 if (status)
2847 ATW_WRITE(sc, ATW_STSR, status);
2848
2849 #ifdef ATW_DEBUG
2850 #define PRINTINTR(flag) do { \
2851 if ((status & flag) != 0) { \
2852 printf("%s" #flag, delim); \
2853 delim = ","; \
2854 } \
2855 } while (0)
2856
2857 if (atw_debug > 1 && status) {
2858 const char *delim = "<";
2859
2860 printf("%s: reg[STSR] = %x",
2861 sc->sc_dev.dv_xname, status);
2862
2863 PRINTINTR(ATW_INTR_FBE);
2864 PRINTINTR(ATW_INTR_LINKOFF);
2865 PRINTINTR(ATW_INTR_LINKON);
2866 PRINTINTR(ATW_INTR_RCI);
2867 PRINTINTR(ATW_INTR_RDU);
2868 PRINTINTR(ATW_INTR_REIS);
2869 PRINTINTR(ATW_INTR_RPS);
2870 PRINTINTR(ATW_INTR_TCI);
2871 PRINTINTR(ATW_INTR_TDU);
2872 PRINTINTR(ATW_INTR_TLT);
2873 PRINTINTR(ATW_INTR_TPS);
2874 PRINTINTR(ATW_INTR_TRT);
2875 PRINTINTR(ATW_INTR_TUF);
2876 PRINTINTR(ATW_INTR_BCNTC);
2877 PRINTINTR(ATW_INTR_ATIME);
2878 PRINTINTR(ATW_INTR_TBTT);
2879 PRINTINTR(ATW_INTR_TSCZ);
2880 PRINTINTR(ATW_INTR_TSFTF);
2881 printf(">\n");
2882 }
2883 #undef PRINTINTR
2884 #endif /* ATW_DEBUG */
2885
2886 if ((status & sc->sc_inten) == 0)
2887 break;
2888
2889 handled = 1;
2890
2891 rxstatus = status & sc->sc_rxint_mask;
2892 txstatus = status & sc->sc_txint_mask;
2893 linkstatus = status & sc->sc_linkint_mask;
2894
2895 if (linkstatus) {
2896 atw_linkintr(sc, linkstatus);
2897 }
2898
2899 if (rxstatus) {
2900 /* Grab any new packets. */
2901 atw_rxintr(sc);
2902
2903 if (rxstatus & ATW_INTR_RDU) {
2904 printf("%s: receive ring overrun\n",
2905 sc->sc_dev.dv_xname);
2906 /* Get the receive process going again. */
2907 ATW_WRITE(sc, ATW_RDR, 0x1);
2908 break;
2909 }
2910 }
2911
2912 if (txstatus) {
2913 /* Sweep up transmit descriptors. */
2914 atw_txintr(sc);
2915
2916 if (txstatus & ATW_INTR_TLT)
2917 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2918 sc->sc_dev.dv_xname));
2919
2920 if (txstatus & ATW_INTR_TRT)
2921 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2922 sc->sc_dev.dv_xname));
2923
2924 /* If Tx under-run, increase our transmit threshold
2925 * if another is available.
2926 */
2927 txthresh = sc->sc_txthresh + 1;
2928 if ((txstatus & ATW_INTR_TUF) &&
2929 sc->sc_txth[txthresh].txth_name != NULL) {
2930 /* Idle the transmit process. */
2931 atw_idle(sc, ATW_NAR_ST);
2932
2933 sc->sc_txthresh = txthresh;
2934 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2935 sc->sc_opmode |=
2936 sc->sc_txth[txthresh].txth_opmode;
2937 printf("%s: transmit underrun; new "
2938 "threshold: %s\n", sc->sc_dev.dv_xname,
2939 sc->sc_txth[txthresh].txth_name);
2940
2941 /* Set the new threshold and restart
2942 * the transmit process.
2943 */
2944 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2945 DELAY(atw_nar_delay);
2946 ATW_WRITE(sc, ATW_RDR, 0x1);
2947 /* XXX Log every Nth underrun from
2948 * XXX now on?
2949 */
2950 }
2951 }
2952
2953 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2954 if (status & ATW_INTR_TPS)
2955 printf("%s: transmit process stopped\n",
2956 sc->sc_dev.dv_xname);
2957 if (status & ATW_INTR_RPS)
2958 printf("%s: receive process stopped\n",
2959 sc->sc_dev.dv_xname);
2960 (void)atw_init(ifp);
2961 break;
2962 }
2963
2964 if (status & ATW_INTR_FBE) {
2965 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2966 (void)atw_init(ifp);
2967 break;
2968 }
2969
2970 /*
2971 * Not handled:
2972 *
2973 * Transmit buffer unavailable -- normal
2974 * condition, nothing to do, really.
2975 *
2976 * Early receive interrupt -- not available on
2977 * all chips, we just use RI. We also only
2978 * use single-segment receive DMA, so this
2979 * is mostly useless.
2980 *
2981 * TBD others
2982 */
2983 }
2984
2985 /* Try to get more packets going. */
2986 atw_start(ifp);
2987
2988 return (handled);
2989 }
2990
2991 /*
2992 * atw_idle:
2993 *
2994 * Cause the transmit and/or receive processes to go idle.
2995 *
2996 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2997 * process in STSR if I clear SR or ST after the process has already
2998 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2999 * do not seem to be too reliable. Perhaps I have the sense of the
3000 * Rx bits switched with the Tx bits?
3001 */
3002 void
3003 atw_idle(struct atw_softc *sc, u_int32_t bits)
3004 {
3005 u_int32_t ackmask = 0, opmode, stsr, test0;
3006 int i, s;
3007
3008 s = splnet();
3009
3010 opmode = sc->sc_opmode & ~bits;
3011
3012 if (bits & ATW_NAR_SR)
3013 ackmask |= ATW_INTR_RPS;
3014
3015 if (bits & ATW_NAR_ST) {
3016 ackmask |= ATW_INTR_TPS;
3017 /* set ATW_NAR_HF to flush TX FIFO. */
3018 opmode |= ATW_NAR_HF;
3019 }
3020
3021 ATW_WRITE(sc, ATW_NAR, opmode);
3022 DELAY(atw_nar_delay);
3023
3024 for (i = 0; i < 1000; i++) {
3025 stsr = ATW_READ(sc, ATW_STSR);
3026 if ((stsr & ackmask) == ackmask)
3027 break;
3028 DELAY(10);
3029 }
3030
3031 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3032
3033 if ((stsr & ackmask) == ackmask)
3034 goto out;
3035
3036 test0 = ATW_READ(sc, ATW_TEST0);
3037
3038 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3039 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3040 printf("%s: transmit process not idle [%s]\n",
3041 sc->sc_dev.dv_xname,
3042 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
3043 printf("%s: bits %08x test0 %08x stsr %08x\n",
3044 sc->sc_dev.dv_xname, bits, test0, stsr);
3045 }
3046
3047 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3048 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3049 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3050 sc->sc_dev.dv_xname,
3051 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
3052 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3053 sc->sc_dev.dv_xname, bits, test0, stsr));
3054 }
3055 out:
3056 if ((bits & ATW_NAR_ST) != 0)
3057 atw_txdrain(sc);
3058 splx(s);
3059 return;
3060 }
3061
3062 /*
3063 * atw_linkintr:
3064 *
3065 * Helper; handle link-status interrupts.
3066 */
3067 void
3068 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3069 {
3070 struct ieee80211com *ic = &sc->sc_ic;
3071
3072 if (ic->ic_state != IEEE80211_S_RUN)
3073 return;
3074
3075 if (linkstatus & ATW_INTR_LINKON) {
3076 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3077 sc->sc_rescan_timer = 0;
3078 } else if (linkstatus & ATW_INTR_LINKOFF) {
3079 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3080 if (ic->ic_opmode != IEEE80211_M_STA)
3081 return;
3082 sc->sc_rescan_timer = 3;
3083 ic->ic_if.if_timer = 1;
3084 }
3085 }
3086
3087 static __inline int
3088 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame *wh)
3089 {
3090 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3091 return 0;
3092 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3093 return 0;
3094 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3095 }
3096
3097 /*
3098 * atw_rxintr:
3099 *
3100 * Helper; handle receive interrupts.
3101 */
3102 void
3103 atw_rxintr(struct atw_softc *sc)
3104 {
3105 static int rate_tbl[] = {2, 4, 11, 22, 44};
3106 struct ieee80211com *ic = &sc->sc_ic;
3107 struct ieee80211_node *ni;
3108 struct ieee80211_frame *wh;
3109 struct ifnet *ifp = &ic->ic_if;
3110 struct atw_rxsoft *rxs;
3111 struct mbuf *m;
3112 u_int32_t rxstat;
3113 int i, len, rate, rate0;
3114 u_int32_t rssi, rssi0;
3115
3116 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3117 rxs = &sc->sc_rxsoft[i];
3118
3119 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3120
3121 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3122 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3123 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3124
3125 if (rxstat & ATW_RXSTAT_OWN)
3126 break; /* We have processed all receive buffers. */
3127
3128 DPRINTF3(sc,
3129 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3130 sc->sc_dev.dv_xname,
3131 rxstat, rssi0,
3132 le32toh(sc->sc_rxdescs[i].ar_buf1),
3133 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3134
3135 /*
3136 * Make sure the packet fits in one buffer. This should
3137 * always be the case.
3138 */
3139 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3140 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3141 printf("%s: incoming packet spilled, resetting\n",
3142 sc->sc_dev.dv_xname);
3143 (void)atw_init(ifp);
3144 return;
3145 }
3146
3147 /*
3148 * If an error occurred, update stats, clear the status
3149 * word, and leave the packet buffer in place. It will
3150 * simply be reused the next time the ring comes around.
3151 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3152 * error.
3153 */
3154
3155 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3156 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3157 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3158 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3159 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3160 ATW_RXSTAT_ICVE)) != 0)) {
3161 #define PRINTERR(bit, str) \
3162 if (rxstat & (bit)) \
3163 printf("%s: receive error: %s\n", \
3164 sc->sc_dev.dv_xname, str)
3165 ifp->if_ierrors++;
3166 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3167 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3168 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3169 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3170 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3171 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3172 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3173 #undef PRINTERR
3174 ATW_INIT_RXDESC(sc, i);
3175 continue;
3176 }
3177
3178 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3179 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3180
3181 /*
3182 * No errors; receive the packet. Note the ADM8211
3183 * includes the CRC in promiscuous mode.
3184 */
3185 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3186
3187 /*
3188 * Allocate a new mbuf cluster. If that fails, we are
3189 * out of memory, and must drop the packet and recycle
3190 * the buffer that's already attached to this descriptor.
3191 */
3192 m = rxs->rxs_mbuf;
3193 if (atw_add_rxbuf(sc, i) != 0) {
3194 ifp->if_ierrors++;
3195 ATW_INIT_RXDESC(sc, i);
3196 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3197 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3198 continue;
3199 }
3200
3201 ifp->if_ipackets++;
3202 if (sc->sc_opmode & ATW_NAR_PR)
3203 m->m_flags |= M_HASFCS;
3204 m->m_pkthdr.rcvif = ifp;
3205 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3206
3207 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3208 rate = 0;
3209 else
3210 rate = rate_tbl[rate0];
3211
3212 /* The RSSI comes straight from a register in the
3213 * baseband processor. I know that for the RF3000,
3214 * the RSSI register also contains the antenna-selection
3215 * bits. Mask those off.
3216 *
3217 * TBD Treat other basebands.
3218 */
3219 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3220 rssi = rssi0 & RF3000_RSSI_MASK;
3221 else
3222 rssi = rssi0;
3223
3224 #if NBPFILTER > 0
3225 /* Pass this up to any BPF listeners. */
3226 if (sc->sc_radiobpf != NULL) {
3227 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3228
3229 tap->ar_rate = rate;
3230 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3231 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3232
3233 /* TBD verify units are dB */
3234 tap->ar_antsignal = (int)rssi;
3235 /* TBD tap->ar_flags */
3236
3237 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3238 tap->ar_ihdr.it_len, m);
3239 }
3240 #endif /* NPBFILTER > 0 */
3241
3242 wh = mtod(m, struct ieee80211_frame *);
3243 ni = ieee80211_find_rxnode(ic, wh);
3244 if (atw_hw_decrypted(sc, wh))
3245 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3246 ieee80211_input(ifp, m, ni, (int)rssi, 0);
3247 /*
3248 * The frame may have caused the node to be marked for
3249 * reclamation (e.g. in response to a DEAUTH message)
3250 * so use free_node here instead of unref_node.
3251 */
3252 if (ni == ic->ic_bss)
3253 ieee80211_unref_node(&ni);
3254 else
3255 ieee80211_free_node(ic, ni);
3256 }
3257
3258 /* Update the receive pointer. */
3259 sc->sc_rxptr = i;
3260 }
3261
3262 /*
3263 * atw_txintr:
3264 *
3265 * Helper; handle transmit interrupts.
3266 */
3267 void
3268 atw_txintr(struct atw_softc *sc)
3269 {
3270 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3271 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3272 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3273 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3274
3275 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3276 struct ifnet *ifp = &sc->sc_ic.ic_if;
3277 struct atw_txsoft *txs;
3278 u_int32_t txstat;
3279
3280 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3281 sc->sc_dev.dv_xname, sc->sc_flags));
3282
3283 ifp->if_flags &= ~IFF_OACTIVE;
3284
3285 /*
3286 * Go through our Tx list and free mbufs for those
3287 * frames that have been transmitted.
3288 */
3289 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3290 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3291 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3292
3293 #ifdef ATW_DEBUG
3294 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3295 int i;
3296 printf(" txsoft %p transmit chain:\n", txs);
3297 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3298 txs->txs_ndescs - 1,
3299 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3300 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3301 printf(" descriptor %d:\n", i);
3302 printf(" at_status: 0x%08x\n",
3303 le32toh(sc->sc_txdescs[i].at_stat));
3304 printf(" at_flags: 0x%08x\n",
3305 le32toh(sc->sc_txdescs[i].at_flags));
3306 printf(" at_buf1: 0x%08x\n",
3307 le32toh(sc->sc_txdescs[i].at_buf1));
3308 printf(" at_buf2: 0x%08x\n",
3309 le32toh(sc->sc_txdescs[i].at_buf2));
3310 if (i == txs->txs_lastdesc)
3311 break;
3312 }
3313 }
3314 #endif
3315
3316 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3317 if (txstat & ATW_TXSTAT_OWN)
3318 break;
3319
3320 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3321
3322 sc->sc_txfree += txs->txs_ndescs;
3323
3324 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3325 0, txs->txs_dmamap->dm_mapsize,
3326 BUS_DMASYNC_POSTWRITE);
3327 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3328 m_freem(txs->txs_mbuf);
3329 txs->txs_mbuf = NULL;
3330
3331 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3332
3333 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3334 (txstat & TXSTAT_ERRMASK) != 0) {
3335 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3336 txstat_buf, sizeof(txstat_buf));
3337 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3338 txstat_buf,
3339 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3340 }
3341
3342 /*
3343 * Check for errors and collisions.
3344 */
3345 if (txstat & ATW_TXSTAT_TUF)
3346 sc->sc_stats.ts_tx_tuf++;
3347 if (txstat & ATW_TXSTAT_TLT)
3348 sc->sc_stats.ts_tx_tlt++;
3349 if (txstat & ATW_TXSTAT_TRT)
3350 sc->sc_stats.ts_tx_trt++;
3351 if (txstat & ATW_TXSTAT_TRO)
3352 sc->sc_stats.ts_tx_tro++;
3353 if (txstat & ATW_TXSTAT_SOFBR) {
3354 sc->sc_stats.ts_tx_sofbr++;
3355 }
3356
3357 if ((txstat & ATW_TXSTAT_ES) == 0)
3358 ifp->if_collisions +=
3359 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3360 else
3361 ifp->if_oerrors++;
3362
3363 ifp->if_opackets++;
3364 }
3365
3366 /*
3367 * If there are no more pending transmissions, cancel the watchdog
3368 * timer.
3369 */
3370 if (txs == NULL)
3371 sc->sc_tx_timer = 0;
3372 #undef TXSTAT_ERRMASK
3373 #undef TXSTAT_FMT
3374 }
3375
3376 /*
3377 * atw_watchdog: [ifnet interface function]
3378 *
3379 * Watchdog timer handler.
3380 */
3381 void
3382 atw_watchdog(struct ifnet *ifp)
3383 {
3384 struct atw_softc *sc = ifp->if_softc;
3385 struct ieee80211com *ic = &sc->sc_ic;
3386
3387 ifp->if_timer = 0;
3388 if (ATW_IS_ENABLED(sc) == 0)
3389 return;
3390
3391 if (sc->sc_rescan_timer) {
3392 if (--sc->sc_rescan_timer == 0)
3393 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3394 }
3395 if (sc->sc_tx_timer) {
3396 if (--sc->sc_tx_timer == 0 &&
3397 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3398 printf("%s: transmit timeout\n", ifp->if_xname);
3399 ifp->if_oerrors++;
3400 (void)atw_init(ifp);
3401 atw_start(ifp);
3402 }
3403 }
3404 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3405 ifp->if_timer = 1;
3406 ieee80211_watchdog(ifp);
3407 }
3408
3409 /* Compute the 802.11 Duration field and the PLCP Length fields for
3410 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3411 * Write the fields to the ADM8211 Tx header, frm.
3412 *
3413 * TBD use the fragmentation threshold to find the right duration for
3414 * the first & last fragments.
3415 *
3416 * TBD make certain of the duration fields applied by the ADM8211 to each
3417 * fragment. I think that the ADM8211 knows how to subtract the CTS
3418 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3419 * I also think that the ADM8211 does *some* arithmetic for us, because
3420 * otherwise I think we would have to set a first duration for CTS/first
3421 * fragment, a second duration for fragments between the first and the
3422 * last, and a third duration for the last fragment.
3423 *
3424 * TBD make certain that duration fields reflect addition of FCS/WEP
3425 * and correct duration arithmetic as necessary.
3426 */
3427 static void
3428 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3429 int len)
3430 {
3431 int remainder;
3432
3433 /* deal also with encrypted fragments */
3434 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3435 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3436 sc->sc_dev.dv_xname));
3437 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3438 IEEE80211_WEP_CRCLEN;
3439 }
3440
3441 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3442 * duration (XXX added by MAC?).
3443 */
3444 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3445 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3446
3447 if (rate <= 4)
3448 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3449 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3450 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3451 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3452 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3453 else
3454 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3455 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3456 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3457 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3458 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3459
3460 /* lengthen duration if long preamble */
3461 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3462 frm->atw_head_dur +=
3463 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3464 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3465 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3466 IEEE80211_DUR_DS_FAST_PLCPHDR);
3467
3468 if (remainder != 0)
3469 frm->atw_head_dur++;
3470
3471 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3472 (rate == 2 || rate == 4)) {
3473 /* derived from Linux: how could this be right? */
3474 frm->atw_head_plcplen = frm->atw_head_dur;
3475 } else {
3476 frm->atw_head_plcplen = (16 * len) / rate;
3477 remainder = (80 * len) % (rate * 5);
3478
3479 if (remainder != 0) {
3480 frm->atw_head_plcplen++;
3481
3482 /* XXX magic */
3483 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3484 rate == 22 && remainder <= 30)
3485 frm->atw_head_plcplen |= 0x8000;
3486 }
3487 }
3488 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3489 htole16(frm->atw_head_plcplen);
3490 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3491 }
3492
3493 #ifdef ATW_DEBUG
3494 static void
3495 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3496 {
3497 struct atw_softc *sc = ifp->if_softc;
3498 struct mbuf *m;
3499 int i, noctets = 0;
3500
3501 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3502 m0->m_pkthdr.len);
3503
3504 for (m = m0; m; m = m->m_next) {
3505 if (m->m_len == 0)
3506 continue;
3507 for (i = 0; i < m->m_len; i++) {
3508 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3509 if (++noctets % 24 == 0)
3510 printf("\n");
3511 }
3512 }
3513 printf("%s%s: %d bytes emitted\n",
3514 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3515 }
3516 #endif /* ATW_DEBUG */
3517
3518 /*
3519 * atw_start: [ifnet interface function]
3520 *
3521 * Start packet transmission on the interface.
3522 */
3523 void
3524 atw_start(struct ifnet *ifp)
3525 {
3526 struct atw_softc *sc = ifp->if_softc;
3527 struct ieee80211com *ic = &sc->sc_ic;
3528 struct ieee80211_node *ni;
3529 struct ieee80211_frame *wh;
3530 struct atw_frame *hh;
3531 struct mbuf *m0, *m;
3532 struct atw_txsoft *txs, *last_txs;
3533 struct atw_txdesc *txd;
3534 int do_encrypt, rate;
3535 bus_dmamap_t dmamap;
3536 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3537
3538 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3539 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3540
3541 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3542 return;
3543
3544 /*
3545 * Remember the previous number of free descriptors and
3546 * the first descriptor we'll use.
3547 */
3548 ofree = sc->sc_txfree;
3549 firsttx = sc->sc_txnext;
3550
3551 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3552 sc->sc_dev.dv_xname, ofree, firsttx));
3553
3554 /*
3555 * Loop through the send queue, setting up transmit descriptors
3556 * until we drain the queue, or use up all available transmit
3557 * descriptors.
3558 */
3559 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3560 sc->sc_txfree != 0) {
3561
3562 /*
3563 * Grab a packet off the management queue, if it
3564 * is not empty. Otherwise, from the data queue.
3565 */
3566 IF_DEQUEUE(&ic->ic_mgtq, m0);
3567 if (m0 != NULL) {
3568 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3569 m0->m_pkthdr.rcvif = NULL;
3570 } else {
3571 /* send no data packets until we are associated */
3572 if (ic->ic_state != IEEE80211_S_RUN)
3573 break;
3574 IFQ_DEQUEUE(&ifp->if_snd, m0);
3575 if (m0 == NULL)
3576 break;
3577 #if NBPFILTER > 0
3578 if (ifp->if_bpf != NULL)
3579 bpf_mtap(ifp->if_bpf, m0);
3580 #endif /* NBPFILTER > 0 */
3581 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3582 ifp->if_oerrors++;
3583 break;
3584 }
3585 }
3586
3587 rate = MAX(ieee80211_get_rate(ic), 2);
3588
3589 #if NBPFILTER > 0
3590 /*
3591 * Pass the packet to any BPF listeners.
3592 */
3593 if (ic->ic_rawbpf != NULL)
3594 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3595
3596 if (sc->sc_radiobpf != NULL) {
3597 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3598
3599 tap->at_rate = rate;
3600 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3601 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3602
3603 /* TBD tap->at_flags */
3604
3605 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3606 tap->at_ihdr.it_len, m0);
3607 }
3608 #endif /* NBPFILTER > 0 */
3609
3610 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3611
3612 if (ni != NULL && ni != ic->ic_bss)
3613 ieee80211_free_node(ic, ni);
3614
3615 if (m0 == NULL) {
3616 ifp->if_oerrors++;
3617 break;
3618 }
3619
3620 /* just to make sure. */
3621 m0 = m_pullup(m0, sizeof(struct atw_frame));
3622
3623 if (m0 == NULL) {
3624 ifp->if_oerrors++;
3625 break;
3626 }
3627
3628 hh = mtod(m0, struct atw_frame *);
3629 wh = &hh->atw_ihdr;
3630
3631 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3632
3633 /* Copy everything we need from the 802.11 header:
3634 * Frame Control; address 1, address 3, or addresses
3635 * 3 and 4. NIC fills in BSSID, SA.
3636 */
3637 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3638 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3639 panic("%s: illegal WDS frame",
3640 sc->sc_dev.dv_xname);
3641 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3642 } else
3643 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3644
3645 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3646
3647 /* initialize remaining Tx parameters */
3648 memset(&hh->u, 0, sizeof(hh->u));
3649
3650 hh->atw_rate = rate * 5;
3651 /* XXX this could be incorrect if M_FCS. _encap should
3652 * probably strip FCS just in case it sticks around in
3653 * bridged packets.
3654 */
3655 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3656 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3657 sizeof(struct atw_frame));
3658
3659 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3660 hh->atw_rtylmt = 3;
3661 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3662 if (do_encrypt) {
3663 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3664 hh->atw_keyid = ic->ic_wep_txkey;
3665 }
3666
3667 /* TBD 4-addr frames */
3668 atw_frame_setdurs(sc, hh, rate,
3669 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3670 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3671
3672 /* never fragment multicast frames */
3673 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3674 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3675 } else if (sc->sc_flags & ATWF_RTSCTS) {
3676 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3677 }
3678
3679 #ifdef ATW_DEBUG
3680 hh->atw_fragnum = 0;
3681
3682 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3683 printf("%s: dst = %s, rate = 0x%02x, "
3684 "service = 0x%02x, paylen = 0x%04x\n",
3685 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3686 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3687
3688 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3689 "dur1 = 0x%04x, dur2 = 0x%04x, "
3690 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3691 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3692 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3693 hh->atw_tail_dur, hh->atw_head_dur);
3694
3695 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3696 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3697 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3698 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3699
3700 printf("%s: keyid = %d\n",
3701 sc->sc_dev.dv_xname, hh->atw_keyid);
3702
3703 atw_dump_pkt(ifp, m0);
3704 }
3705 #endif /* ATW_DEBUG */
3706
3707 dmamap = txs->txs_dmamap;
3708
3709 /*
3710 * Load the DMA map. Copy and try (once) again if the packet
3711 * didn't fit in the alloted number of segments.
3712 */
3713 for (first = 1;
3714 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3715 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3716 first = 0) {
3717 MGETHDR(m, M_DONTWAIT, MT_DATA);
3718 if (m == NULL) {
3719 printf("%s: unable to allocate Tx mbuf\n",
3720 sc->sc_dev.dv_xname);
3721 break;
3722 }
3723 if (m0->m_pkthdr.len > MHLEN) {
3724 MCLGET(m, M_DONTWAIT);
3725 if ((m->m_flags & M_EXT) == 0) {
3726 printf("%s: unable to allocate Tx "
3727 "cluster\n", sc->sc_dev.dv_xname);
3728 m_freem(m);
3729 break;
3730 }
3731 }
3732 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3733 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3734 m_freem(m0);
3735 m0 = m;
3736 m = NULL;
3737 }
3738 if (error != 0) {
3739 printf("%s: unable to load Tx buffer, "
3740 "error = %d\n", sc->sc_dev.dv_xname, error);
3741 m_freem(m0);
3742 break;
3743 }
3744
3745 /*
3746 * Ensure we have enough descriptors free to describe
3747 * the packet.
3748 */
3749 if (dmamap->dm_nsegs > sc->sc_txfree) {
3750 /*
3751 * Not enough free descriptors to transmit
3752 * this packet. Unload the DMA map and
3753 * drop the packet. Notify the upper layer
3754 * that there are no more slots left.
3755 *
3756 * XXX We could allocate an mbuf and copy, but
3757 * XXX it is worth it?
3758 */
3759 ifp->if_flags |= IFF_OACTIVE;
3760 bus_dmamap_unload(sc->sc_dmat, dmamap);
3761 m_freem(m0);
3762 break;
3763 }
3764
3765 /*
3766 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3767 */
3768
3769 /* Sync the DMA map. */
3770 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3771 BUS_DMASYNC_PREWRITE);
3772
3773 /* XXX arbitrary retry limit; 8 because I have seen it in
3774 * use already and maybe 0 means "no tries" !
3775 */
3776 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3777
3778 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3779 sc->sc_dev.dv_xname, rate * 5));
3780 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3781
3782 /*
3783 * Initialize the transmit descriptors.
3784 */
3785 for (nexttx = sc->sc_txnext, seg = 0;
3786 seg < dmamap->dm_nsegs;
3787 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3788 /*
3789 * If this is the first descriptor we're
3790 * enqueueing, don't set the OWN bit just
3791 * yet. That could cause a race condition.
3792 * We'll do it below.
3793 */
3794 txd = &sc->sc_txdescs[nexttx];
3795 txd->at_ctl = ctl |
3796 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3797
3798 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3799 txd->at_flags =
3800 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3801 ATW_TXFLAG_TBS1_MASK)) |
3802 ((nexttx == (ATW_NTXDESC - 1))
3803 ? htole32(ATW_TXFLAG_TER) : 0);
3804 lasttx = nexttx;
3805 }
3806
3807 IASSERT(lasttx != -1, ("bad lastx"));
3808 /* Set `first segment' and `last segment' appropriately. */
3809 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3810 htole32(ATW_TXFLAG_FS);
3811 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3812
3813 #ifdef ATW_DEBUG
3814 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3815 printf(" txsoft %p transmit chain:\n", txs);
3816 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3817 printf(" descriptor %d:\n", seg);
3818 printf(" at_ctl: 0x%08x\n",
3819 le32toh(sc->sc_txdescs[seg].at_ctl));
3820 printf(" at_flags: 0x%08x\n",
3821 le32toh(sc->sc_txdescs[seg].at_flags));
3822 printf(" at_buf1: 0x%08x\n",
3823 le32toh(sc->sc_txdescs[seg].at_buf1));
3824 printf(" at_buf2: 0x%08x\n",
3825 le32toh(sc->sc_txdescs[seg].at_buf2));
3826 if (seg == lasttx)
3827 break;
3828 }
3829 }
3830 #endif
3831
3832 /* Sync the descriptors we're using. */
3833 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3834 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3835
3836 /*
3837 * Store a pointer to the packet so we can free it later,
3838 * and remember what txdirty will be once the packet is
3839 * done.
3840 */
3841 txs->txs_mbuf = m0;
3842 txs->txs_firstdesc = sc->sc_txnext;
3843 txs->txs_lastdesc = lasttx;
3844 txs->txs_ndescs = dmamap->dm_nsegs;
3845
3846 /* Advance the tx pointer. */
3847 sc->sc_txfree -= dmamap->dm_nsegs;
3848 sc->sc_txnext = nexttx;
3849
3850 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3851 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3852
3853 last_txs = txs;
3854 }
3855
3856 if (txs == NULL || sc->sc_txfree == 0) {
3857 /* No more slots left; notify upper layer. */
3858 ifp->if_flags |= IFF_OACTIVE;
3859 }
3860
3861 if (sc->sc_txfree != ofree) {
3862 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3863 sc->sc_dev.dv_xname, lasttx, firsttx));
3864 /*
3865 * Cause a transmit interrupt to happen on the
3866 * last packet we enqueued.
3867 */
3868 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3869 ATW_CDTXSYNC(sc, lasttx, 1,
3870 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3871
3872 /*
3873 * The entire packet chain is set up. Give the
3874 * first descriptor to the chip now.
3875 */
3876 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3877 ATW_CDTXSYNC(sc, firsttx, 1,
3878 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3879
3880 /* Wake up the transmitter. */
3881 ATW_WRITE(sc, ATW_TDR, 0x1);
3882
3883 /* Set a watchdog timer in case the chip flakes out. */
3884 sc->sc_tx_timer = 5;
3885 ifp->if_timer = 1;
3886 }
3887 }
3888
3889 /*
3890 * atw_power:
3891 *
3892 * Power management (suspend/resume) hook.
3893 */
3894 void
3895 atw_power(int why, void *arg)
3896 {
3897 struct atw_softc *sc = arg;
3898 struct ifnet *ifp = &sc->sc_ic.ic_if;
3899 int s;
3900
3901 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3902
3903 s = splnet();
3904 switch (why) {
3905 case PWR_STANDBY:
3906 /* XXX do nothing. */
3907 break;
3908 case PWR_SUSPEND:
3909 atw_stop(ifp, 0);
3910 if (sc->sc_power != NULL)
3911 (*sc->sc_power)(sc, why);
3912 break;
3913 case PWR_RESUME:
3914 if (ifp->if_flags & IFF_UP) {
3915 if (sc->sc_power != NULL)
3916 (*sc->sc_power)(sc, why);
3917 atw_init(ifp);
3918 }
3919 break;
3920 case PWR_SOFTSUSPEND:
3921 case PWR_SOFTSTANDBY:
3922 case PWR_SOFTRESUME:
3923 break;
3924 }
3925 splx(s);
3926 }
3927
3928 /*
3929 * atw_ioctl: [ifnet interface function]
3930 *
3931 * Handle control requests from the operator.
3932 */
3933 int
3934 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3935 {
3936 struct atw_softc *sc = ifp->if_softc;
3937 struct ifreq *ifr = (struct ifreq *)data;
3938 int s, error = 0;
3939
3940 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3941 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3942 return ENXIO;
3943
3944 s = splnet();
3945
3946 switch (cmd) {
3947 case SIOCSIFFLAGS:
3948 if (ifp->if_flags & IFF_UP) {
3949 if (ATW_IS_ENABLED(sc)) {
3950 /*
3951 * To avoid rescanning another access point,
3952 * do not call atw_init() here. Instead,
3953 * only reflect media settings.
3954 */
3955 atw_filter_setup(sc);
3956 } else
3957 error = atw_init(ifp);
3958 } else if (ATW_IS_ENABLED(sc))
3959 atw_stop(ifp, 1);
3960 break;
3961 case SIOCADDMULTI:
3962 case SIOCDELMULTI:
3963 error = (cmd == SIOCADDMULTI) ?
3964 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3965 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3966 if (error == ENETRESET) {
3967 if (ATW_IS_ENABLED(sc))
3968 atw_filter_setup(sc); /* do not rescan */
3969 error = 0;
3970 }
3971 break;
3972 default:
3973 error = ieee80211_ioctl(ifp, cmd, data);
3974 if (error == ENETRESET) {
3975 if (ATW_IS_ENABLED(sc))
3976 error = atw_init(ifp);
3977 else
3978 error = 0;
3979 }
3980 break;
3981 }
3982
3983 /* Try to get more packets going. */
3984 if (ATW_IS_ENABLED(sc))
3985 atw_start(ifp);
3986
3987 splx(s);
3988 return (error);
3989 }
3990
3991 static int
3992 atw_media_change(struct ifnet *ifp)
3993 {
3994 int error;
3995
3996 error = ieee80211_media_change(ifp);
3997 if (error == ENETRESET) {
3998 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3999 (IFF_RUNNING|IFF_UP))
4000 atw_init(ifp); /* XXX lose error */
4001 error = 0;
4002 }
4003 return error;
4004 }
4005
4006 static void
4007 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
4008 {
4009 struct atw_softc *sc = ifp->if_softc;
4010
4011 if (ATW_IS_ENABLED(sc) == 0) {
4012 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
4013 imr->ifm_status = 0;
4014 return;
4015 }
4016 ieee80211_media_status(ifp, imr);
4017 }
4018