atw.c revision 1.76 1 /* $NetBSD: atw.c,v 1.76 2004/07/24 23:53:49 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.76 2004/07/24 23:53:49 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162
163 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
166 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
167 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
171 static void atw_print_regs(struct atw_softc *, const char *);
172
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 # ifdef ATW_BBPDEBUG
175 static void atw_rf3000_print(struct atw_softc *);
176 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177 # endif /* ATW_BBPDEBUG */
178
179 # ifdef ATW_SYNDEBUG
180 static void atw_si4126_print(struct atw_softc *);
181 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
182 # endif /* ATW_SYNDEBUG */
183
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define DPRINTF(sc, x) /* nothing */
189 #define DPRINTF2(sc, x) /* nothing */
190 #define DPRINTF3(sc, x) /* nothing */
191 #endif
192
193 /* ifnet methods */
194 int atw_init(struct ifnet *);
195 int atw_ioctl(struct ifnet *, u_long, caddr_t);
196 void atw_start(struct ifnet *);
197 void atw_stop(struct ifnet *, int);
198 void atw_watchdog(struct ifnet *);
199
200 /* Device attachment */
201 void atw_attach(struct atw_softc *);
202 int atw_detach(struct atw_softc *);
203
204 /* Rx/Tx process */
205 int atw_add_rxbuf(struct atw_softc *, int);
206 void atw_idle(struct atw_softc *, u_int32_t);
207 void atw_rxdrain(struct atw_softc *);
208 void atw_txdrain(struct atw_softc *);
209
210 /* Device (de)activation and power state */
211 void atw_disable(struct atw_softc *);
212 int atw_enable(struct atw_softc *);
213 void atw_power(int, void *);
214 void atw_reset(struct atw_softc *);
215 void atw_shutdown(void *);
216
217 /* Interrupt handlers */
218 void atw_linkintr(struct atw_softc *, u_int32_t);
219 void atw_rxintr(struct atw_softc *);
220 void atw_txintr(struct atw_softc *);
221
222 /* 802.11 state machine */
223 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static void atw_next_scan(void *);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static int atw_tune(struct atw_softc *);
228
229 /* Device initialization */
230 static void atw_bbp_io_init(struct atw_softc *);
231 static void atw_cfp_init(struct atw_softc *);
232 static void atw_cmdr_init(struct atw_softc *);
233 static void atw_ifs_init(struct atw_softc *);
234 static void atw_nar_init(struct atw_softc *);
235 static void atw_response_times_init(struct atw_softc *);
236 static void atw_rf_reset(struct atw_softc *);
237 static void atw_test1_init(struct atw_softc *);
238 static void atw_tofs0_init(struct atw_softc *);
239 static void atw_tofs2_init(struct atw_softc *);
240 static void atw_txlmt_init(struct atw_softc *);
241 static void atw_wcsr_init(struct atw_softc *);
242
243 /* RAM/ROM utilities */
244 static void atw_clear_sram(struct atw_softc *);
245 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
246 static int atw_read_srom(struct atw_softc *);
247
248 /* BSS setup */
249 static void atw_predict_beacon(struct atw_softc *);
250 static void atw_start_beacon(struct atw_softc *, int);
251 static void atw_write_bssid(struct atw_softc *);
252 static void atw_write_ssid(struct atw_softc *);
253 static void atw_write_sup_rates(struct atw_softc *);
254 static void atw_write_wep(struct atw_softc *);
255
256 /* Media */
257 static int atw_media_change(struct ifnet *);
258 static void atw_media_status(struct ifnet *, struct ifmediareq *);
259
260 static void atw_filter_setup(struct atw_softc *);
261
262 /* 802.11 utilities */
263 static void atw_change_ibss(struct ieee80211com *);
264 static void atw_frame_setdurs(struct atw_softc *,
265 struct atw_frame *, int, int);
266 static void atw_get_tsft(struct ieee80211com *, uint32_t *,
267 uint32_t *);
268 static __inline void atw_get_tsft1(struct atw_softc *, uint32_t *,
269 uint32_t *);
270 static __inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
271 uint32_t);
272 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
273 static void atw_node_free(struct ieee80211com *,
274 struct ieee80211_node *);
275
276 /*
277 * Tuner/transceiver/modem
278 */
279 static void atw_bbp_io_enable(struct atw_softc *, int);
280
281 /* RFMD RF3000 Baseband Processor */
282 static int atw_rf3000_init(struct atw_softc *);
283 static int atw_rf3000_tune(struct atw_softc *, u_int);
284 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
285
286 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
287 static void atw_si4126_tune(struct atw_softc *, u_int);
288 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
289
290 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
291 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
292
293 const char *atw_tx_state[] = {
294 "STOPPED",
295 "RUNNING - read descriptor",
296 "RUNNING - transmitting",
297 "RUNNING - filling fifo", /* XXX */
298 "SUSPENDED",
299 "RUNNING -- write descriptor",
300 "RUNNING -- write last descriptor",
301 "RUNNING - fifo full"
302 };
303
304 const char *atw_rx_state[] = {
305 "STOPPED",
306 "RUNNING - read descriptor",
307 "RUNNING - check this packet, pre-fetch next",
308 "RUNNING - wait for reception",
309 "SUSPENDED",
310 "RUNNING - write descriptor",
311 "RUNNING - flush fifo",
312 "RUNNING - fifo drain"
313 };
314
315 int
316 atw_activate(struct device *self, enum devact act)
317 {
318 struct atw_softc *sc = (struct atw_softc *)self;
319 int rv = 0, s;
320
321 s = splnet();
322 switch (act) {
323 case DVACT_ACTIVATE:
324 rv = EOPNOTSUPP;
325 break;
326
327 case DVACT_DEACTIVATE:
328 if_deactivate(&sc->sc_ic.ic_if);
329 break;
330 }
331 splx(s);
332 return rv;
333 }
334
335 /*
336 * atw_enable:
337 *
338 * Enable the ADM8211 chip.
339 */
340 int
341 atw_enable(struct atw_softc *sc)
342 {
343
344 if (ATW_IS_ENABLED(sc) == 0) {
345 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
346 printf("%s: device enable failed\n",
347 sc->sc_dev.dv_xname);
348 return (EIO);
349 }
350 sc->sc_flags |= ATWF_ENABLED;
351 }
352 return (0);
353 }
354
355 /*
356 * atw_disable:
357 *
358 * Disable the ADM8211 chip.
359 */
360 void
361 atw_disable(struct atw_softc *sc)
362 {
363 if (!ATW_IS_ENABLED(sc))
364 return;
365 if (sc->sc_disable != NULL)
366 (*sc->sc_disable)(sc);
367 sc->sc_flags &= ~ATWF_ENABLED;
368 }
369
370 /* Returns -1 on failure. */
371 static int
372 atw_read_srom(struct atw_softc *sc)
373 {
374 struct seeprom_descriptor sd;
375 uint32_t test0, fail_bits;
376
377 (void)memset(&sd, 0, sizeof(sd));
378
379 test0 = ATW_READ(sc, ATW_TEST0);
380
381 switch (sc->sc_rev) {
382 case ATW_REVISION_BA:
383 case ATW_REVISION_CA:
384 fail_bits = ATW_TEST0_EPNE;
385 break;
386 default:
387 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
388 break;
389 }
390 if ((test0 & fail_bits) != 0) {
391 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
392 return -1;
393 }
394
395 switch (test0 & ATW_TEST0_EPTYP_MASK) {
396 case ATW_TEST0_EPTYP_93c66:
397 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
398 sc->sc_sromsz = 512;
399 sd.sd_chip = C56_66;
400 break;
401 case ATW_TEST0_EPTYP_93c46:
402 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
403 sc->sc_sromsz = 128;
404 sd.sd_chip = C46;
405 break;
406 default:
407 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
408 MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
409 return -1;
410 }
411
412 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
413
414 if (sc->sc_srom == NULL) {
415 printf("%s: unable to allocate SROM buffer\n",
416 sc->sc_dev.dv_xname);
417 return -1;
418 }
419
420 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
421
422 /* ADM8211 has a single 32-bit register for controlling the
423 * 93cx6 SROM. Bit SRS enables the serial port. There is no
424 * "ready" bit. The ADM8211 input/output sense is the reverse
425 * of read_seeprom's.
426 */
427 sd.sd_tag = sc->sc_st;
428 sd.sd_bsh = sc->sc_sh;
429 sd.sd_regsize = 4;
430 sd.sd_control_offset = ATW_SPR;
431 sd.sd_status_offset = ATW_SPR;
432 sd.sd_dataout_offset = ATW_SPR;
433 sd.sd_CK = ATW_SPR_SCLK;
434 sd.sd_CS = ATW_SPR_SCS;
435 sd.sd_DI = ATW_SPR_SDO;
436 sd.sd_DO = ATW_SPR_SDI;
437 sd.sd_MS = ATW_SPR_SRS;
438 sd.sd_RDY = 0;
439
440 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
441 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
442 free(sc->sc_srom, M_DEVBUF);
443 return -1;
444 }
445 #ifdef ATW_DEBUG
446 {
447 int i;
448 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
449 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
450 if (((i % 8) == 0) && (i != 0)) {
451 ATW_DPRINTF(("\n\t"));
452 }
453 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
454 }
455 ATW_DPRINTF(("\n"));
456 }
457 #endif /* ATW_DEBUG */
458 return 0;
459 }
460
461 #ifdef ATW_DEBUG
462 static void
463 atw_print_regs(struct atw_softc *sc, const char *where)
464 {
465 #define PRINTREG(sc, reg) \
466 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
467 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
468
469 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
470
471 PRINTREG(sc, ATW_PAR);
472 PRINTREG(sc, ATW_FRCTL);
473 PRINTREG(sc, ATW_TDR);
474 PRINTREG(sc, ATW_WTDP);
475 PRINTREG(sc, ATW_RDR);
476 PRINTREG(sc, ATW_WRDP);
477 PRINTREG(sc, ATW_RDB);
478 PRINTREG(sc, ATW_CSR3A);
479 PRINTREG(sc, ATW_TDBD);
480 PRINTREG(sc, ATW_TDBP);
481 PRINTREG(sc, ATW_STSR);
482 PRINTREG(sc, ATW_CSR5A);
483 PRINTREG(sc, ATW_NAR);
484 PRINTREG(sc, ATW_CSR6A);
485 PRINTREG(sc, ATW_IER);
486 PRINTREG(sc, ATW_CSR7A);
487 PRINTREG(sc, ATW_LPC);
488 PRINTREG(sc, ATW_TEST1);
489 PRINTREG(sc, ATW_SPR);
490 PRINTREG(sc, ATW_TEST0);
491 PRINTREG(sc, ATW_WCSR);
492 PRINTREG(sc, ATW_WPDR);
493 PRINTREG(sc, ATW_GPTMR);
494 PRINTREG(sc, ATW_GPIO);
495 PRINTREG(sc, ATW_BBPCTL);
496 PRINTREG(sc, ATW_SYNCTL);
497 PRINTREG(sc, ATW_PLCPHD);
498 PRINTREG(sc, ATW_MMIWADDR);
499 PRINTREG(sc, ATW_MMIRADDR1);
500 PRINTREG(sc, ATW_MMIRADDR2);
501 PRINTREG(sc, ATW_TXBR);
502 PRINTREG(sc, ATW_CSR15A);
503 PRINTREG(sc, ATW_ALCSTAT);
504 PRINTREG(sc, ATW_TOFS2);
505 PRINTREG(sc, ATW_CMDR);
506 PRINTREG(sc, ATW_PCIC);
507 PRINTREG(sc, ATW_PMCSR);
508 PRINTREG(sc, ATW_PAR0);
509 PRINTREG(sc, ATW_PAR1);
510 PRINTREG(sc, ATW_MAR0);
511 PRINTREG(sc, ATW_MAR1);
512 PRINTREG(sc, ATW_ATIMDA0);
513 PRINTREG(sc, ATW_ABDA1);
514 PRINTREG(sc, ATW_BSSID0);
515 PRINTREG(sc, ATW_TXLMT);
516 PRINTREG(sc, ATW_MIBCNT);
517 PRINTREG(sc, ATW_BCNT);
518 PRINTREG(sc, ATW_TSFTH);
519 PRINTREG(sc, ATW_TSC);
520 PRINTREG(sc, ATW_SYNRF);
521 PRINTREG(sc, ATW_BPLI);
522 PRINTREG(sc, ATW_CAP0);
523 PRINTREG(sc, ATW_CAP1);
524 PRINTREG(sc, ATW_RMD);
525 PRINTREG(sc, ATW_CFPP);
526 PRINTREG(sc, ATW_TOFS0);
527 PRINTREG(sc, ATW_TOFS1);
528 PRINTREG(sc, ATW_IFST);
529 PRINTREG(sc, ATW_RSPT);
530 PRINTREG(sc, ATW_TSFTL);
531 PRINTREG(sc, ATW_WEPCTL);
532 PRINTREG(sc, ATW_WESK);
533 PRINTREG(sc, ATW_WEPCNT);
534 PRINTREG(sc, ATW_MACTEST);
535 PRINTREG(sc, ATW_FER);
536 PRINTREG(sc, ATW_FEMR);
537 PRINTREG(sc, ATW_FPSR);
538 PRINTREG(sc, ATW_FFER);
539 #undef PRINTREG
540 }
541 #endif /* ATW_DEBUG */
542
543 /*
544 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
545 */
546 void
547 atw_attach(struct atw_softc *sc)
548 {
549 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
550 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
551 };
552 struct ieee80211com *ic = &sc->sc_ic;
553 struct ifnet *ifp = &ic->ic_if;
554 int country_code, error, i, nrate, srom_major;
555 u_int32_t reg;
556 static const char *type_strings[] = {"Intersil (not supported)",
557 "RFMD", "Marvel (not supported)"};
558
559 sc->sc_txth = atw_txthresh_tab_lo;
560
561 SIMPLEQ_INIT(&sc->sc_txfreeq);
562 SIMPLEQ_INIT(&sc->sc_txdirtyq);
563
564 #ifdef ATW_DEBUG
565 atw_print_regs(sc, "atw_attach");
566 #endif /* ATW_DEBUG */
567
568 /*
569 * Allocate the control data structures, and create and load the
570 * DMA map for it.
571 */
572 if ((error = bus_dmamem_alloc(sc->sc_dmat,
573 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
574 1, &sc->sc_cdnseg, 0)) != 0) {
575 printf("%s: unable to allocate control data, error = %d\n",
576 sc->sc_dev.dv_xname, error);
577 goto fail_0;
578 }
579
580 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
581 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
582 BUS_DMA_COHERENT)) != 0) {
583 printf("%s: unable to map control data, error = %d\n",
584 sc->sc_dev.dv_xname, error);
585 goto fail_1;
586 }
587
588 if ((error = bus_dmamap_create(sc->sc_dmat,
589 sizeof(struct atw_control_data), 1,
590 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
591 printf("%s: unable to create control data DMA map, "
592 "error = %d\n", sc->sc_dev.dv_xname, error);
593 goto fail_2;
594 }
595
596 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
597 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
598 0)) != 0) {
599 printf("%s: unable to load control data DMA map, error = %d\n",
600 sc->sc_dev.dv_xname, error);
601 goto fail_3;
602 }
603
604 /*
605 * Create the transmit buffer DMA maps.
606 */
607 sc->sc_ntxsegs = ATW_NTXSEGS;
608 for (i = 0; i < ATW_TXQUEUELEN; i++) {
609 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
610 sc->sc_ntxsegs, MCLBYTES, 0, 0,
611 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
612 printf("%s: unable to create tx DMA map %d, "
613 "error = %d\n", sc->sc_dev.dv_xname, i, error);
614 goto fail_4;
615 }
616 }
617
618 /*
619 * Create the receive buffer DMA maps.
620 */
621 for (i = 0; i < ATW_NRXDESC; i++) {
622 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
623 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
624 printf("%s: unable to create rx DMA map %d, "
625 "error = %d\n", sc->sc_dev.dv_xname, i, error);
626 goto fail_5;
627 }
628 }
629 for (i = 0; i < ATW_NRXDESC; i++) {
630 sc->sc_rxsoft[i].rxs_mbuf = NULL;
631 }
632
633 switch (sc->sc_rev) {
634 case ATW_REVISION_AB:
635 case ATW_REVISION_AF:
636 sc->sc_sramlen = ATW_SRAM_A_SIZE;
637 break;
638 case ATW_REVISION_BA:
639 case ATW_REVISION_CA:
640 sc->sc_sramlen = ATW_SRAM_B_SIZE;
641 break;
642 }
643
644 /* Reset the chip to a known state. */
645 atw_reset(sc);
646
647 if (atw_read_srom(sc) == -1)
648 return;
649
650 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
651 ATW_SR_RFTYPE_MASK);
652
653 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
654 ATW_SR_BBPTYPE_MASK);
655
656 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
657 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
658 return;
659 }
660 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
661 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
662 return;
663 }
664
665 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
666 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
667
668 /* XXX There exists a Linux driver which seems to use RFType = 0 for
669 * MARVEL. My bug, or theirs?
670 */
671
672 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
673
674 switch (sc->sc_rftype) {
675 case ATW_RFTYPE_INTERSIL:
676 reg |= ATW_SYNCTL_CS1;
677 break;
678 case ATW_RFTYPE_RFMD:
679 reg |= ATW_SYNCTL_CS0;
680 break;
681 case ATW_RFTYPE_MARVEL:
682 break;
683 }
684
685 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
686 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
687
688 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
689
690 switch (sc->sc_bbptype) {
691 case ATW_BBPTYPE_INTERSIL:
692 reg |= ATW_BBPCTL_TWI;
693 break;
694 case ATW_BBPTYPE_RFMD:
695 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
696 ATW_BBPCTL_CCA_ACTLO;
697 break;
698 case ATW_BBPTYPE_MARVEL:
699 break;
700 case ATW_C_BBPTYPE_RFMD:
701 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
702 sc->sc_dev.dv_xname);
703 break;
704 }
705
706 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
707 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
708
709 /*
710 * From this point forward, the attachment cannot fail. A failure
711 * before this point releases all resources that may have been
712 * allocated.
713 */
714 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
715
716 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
717 htole16(sc->sc_srom[ATW_SR_MAC00]),
718 htole16(sc->sc_srom[ATW_SR_MAC01]),
719 htole16(sc->sc_srom[ATW_SR_MAC10])));
720
721 srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
722 ATW_SR_MAJOR_MASK);
723
724 if (srom_major < 2)
725 sc->sc_rf3000_options1 = 0;
726 else if (sc->sc_rev == ATW_REVISION_BA) {
727 sc->sc_rf3000_options1 =
728 MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
729 ATW_SR_CR28_MASK);
730 } else
731 sc->sc_rf3000_options1 = 0;
732
733 sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
734 ATW_SR_CR29_MASK);
735
736 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
737 ATW_SR_CTRY_MASK);
738
739 #define ADD_CHANNEL(_ic, _chan) do { \
740 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
741 _ic->ic_channels[_chan].ic_freq = \
742 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
743 } while (0)
744
745 /* Find available channels */
746 switch (country_code) {
747 case COUNTRY_MMK2: /* 1-14 */
748 ADD_CHANNEL(ic, 14);
749 /*FALLTHROUGH*/
750 case COUNTRY_ETSI: /* 1-13 */
751 for (i = 1; i <= 13; i++)
752 ADD_CHANNEL(ic, i);
753 break;
754 case COUNTRY_FCC: /* 1-11 */
755 case COUNTRY_IC: /* 1-11 */
756 for (i = 1; i <= 11; i++)
757 ADD_CHANNEL(ic, i);
758 break;
759 case COUNTRY_MMK: /* 14 */
760 ADD_CHANNEL(ic, 14);
761 break;
762 case COUNTRY_FRANCE: /* 10-13 */
763 for (i = 10; i <= 13; i++)
764 ADD_CHANNEL(ic, i);
765 break;
766 default: /* assume channels 10-11 */
767 case COUNTRY_SPAIN: /* 10-11 */
768 for (i = 10; i <= 11; i++)
769 ADD_CHANNEL(ic, i);
770 break;
771 }
772
773 /* Read the MAC address. */
774 reg = ATW_READ(sc, ATW_PAR0);
775 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
776 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
777 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
778 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
779 reg = ATW_READ(sc, ATW_PAR1);
780 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
781 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
782
783 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
784 printf(" could not get mac address, attach failed\n");
785 return;
786 }
787
788 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
789
790 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
791 ifp->if_softc = sc;
792 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
793 IFF_NOTRAILERS;
794 ifp->if_ioctl = atw_ioctl;
795 ifp->if_start = atw_start;
796 ifp->if_watchdog = atw_watchdog;
797 ifp->if_init = atw_init;
798 ifp->if_stop = atw_stop;
799 IFQ_SET_READY(&ifp->if_snd);
800
801 ic->ic_phytype = IEEE80211_T_DS;
802 ic->ic_opmode = IEEE80211_M_STA;
803 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
804 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
805
806 nrate = 0;
807 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
808 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
809 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
810 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
811 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
812
813 /*
814 * Call MI attach routines.
815 */
816
817 if_attach(ifp);
818 ieee80211_ifattach(ifp);
819
820 sc->sc_newstate = ic->ic_newstate;
821 ic->ic_newstate = atw_newstate;
822
823 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
824 ic->ic_recv_mgmt = atw_recv_mgmt;
825
826 sc->sc_node_free = ic->ic_node_free;
827 ic->ic_node_free = atw_node_free;
828
829 sc->sc_node_alloc = ic->ic_node_alloc;
830 ic->ic_node_alloc = atw_node_alloc;
831
832 ic->ic_get_tsft = atw_get_tsft;
833 ic->ic_change_ibss = atw_change_ibss;
834
835 /* possibly we should fill in our own sc_send_prresp, since
836 * the ADM8211 is probably sending probe responses in ad hoc
837 * mode.
838 */
839
840 /* complete initialization */
841 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
842 callout_init(&sc->sc_scan_ch);
843
844 #if NBPFILTER > 0
845 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
846 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
847 #endif
848
849 /*
850 * Make sure the interface is shutdown during reboot.
851 */
852 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
853 if (sc->sc_sdhook == NULL)
854 printf("%s: WARNING: unable to establish shutdown hook\n",
855 sc->sc_dev.dv_xname);
856
857 /*
858 * Add a suspend hook to make sure we come back up after a
859 * resume.
860 */
861 sc->sc_powerhook = powerhook_establish(atw_power, sc);
862 if (sc->sc_powerhook == NULL)
863 printf("%s: WARNING: unable to establish power hook\n",
864 sc->sc_dev.dv_xname);
865
866 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
867 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
868 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
869
870 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
871 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
872 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
873
874 return;
875
876 /*
877 * Free any resources we've allocated during the failed attach
878 * attempt. Do this in reverse order and fall through.
879 */
880 fail_5:
881 for (i = 0; i < ATW_NRXDESC; i++) {
882 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
883 continue;
884 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
885 }
886 fail_4:
887 for (i = 0; i < ATW_TXQUEUELEN; i++) {
888 if (sc->sc_txsoft[i].txs_dmamap == NULL)
889 continue;
890 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
891 }
892 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
893 fail_3:
894 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
895 fail_2:
896 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
897 sizeof(struct atw_control_data));
898 fail_1:
899 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
900 fail_0:
901 return;
902 }
903
904 static struct ieee80211_node *
905 atw_node_alloc(struct ieee80211com *ic)
906 {
907 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
908 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
909
910 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
911 return ni;
912 }
913
914 static void
915 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
916 {
917 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
918
919 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
920 ether_sprintf(ni->ni_bssid)));
921 (*sc->sc_node_free)(ic, ni);
922 }
923
924
925 static void
926 atw_test1_reset(struct atw_softc *sc)
927 {
928 switch (sc->sc_rev) {
929 case ATW_REVISION_BA:
930 if (1 /* XXX condition on transceiver type */) {
931 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
932 }
933 break;
934 case ATW_REVISION_CA:
935 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
936 break;
937 default:
938 break;
939 }
940 }
941
942 /*
943 * atw_reset:
944 *
945 * Perform a soft reset on the ADM8211.
946 */
947 void
948 atw_reset(struct atw_softc *sc)
949 {
950 int i;
951 uint32_t lpc;
952
953 ATW_WRITE(sc, ATW_NAR, 0x0);
954 DELAY(atw_nar_delay);
955
956 /* Reference driver has a cryptic remark indicating that this might
957 * power-on the chip. I know that it turns off power-saving....
958 */
959 ATW_WRITE(sc, ATW_FRCTL, 0x0);
960
961 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
962
963 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
964 if (ATW_READ(sc, ATW_PAR) == 0)
965 break;
966 DELAY(atw_pseudo_milli);
967 }
968
969 /* ... and then pause 100ms longer for good measure. */
970 DELAY(atw_magic_delay1);
971
972 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
973
974 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
975 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
976
977 atw_test1_reset(sc);
978 /*
979 * Initialize the PCI Access Register.
980 */
981 sc->sc_busmode = ATW_PAR_PBL_8DW;
982
983 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
984 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
985 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
986
987 /* Turn off maximum power saving, etc.
988 *
989 * XXX Following example of reference driver, should I set
990 * an AID of 1? It didn't seem to help....
991 */
992 ATW_WRITE(sc, ATW_FRCTL, 0x0);
993
994 DELAY(atw_magic_delay2);
995
996 /* Recall EEPROM. */
997 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
998
999 DELAY(atw_magic_delay4);
1000
1001 lpc = ATW_READ(sc, ATW_LPC);
1002
1003 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1004
1005 /* A reset seems to affect the SRAM contents, so put them into
1006 * a known state.
1007 */
1008 atw_clear_sram(sc);
1009
1010 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1011 }
1012
1013 static void
1014 atw_clear_sram(struct atw_softc *sc)
1015 {
1016 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1017 /* XXX not for revision 0x20. */
1018 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1019 }
1020
1021 /* TBD atw_init
1022 *
1023 * set MAC based on ic->ic_bss->myaddr
1024 * write WEP keys
1025 * set TX rate
1026 */
1027
1028 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1029 * without receiving a beacon with the preferred BSSID & SSID.
1030 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1031 */
1032 static void
1033 atw_wcsr_init(struct atw_softc *sc)
1034 {
1035 uint32_t wcsr;
1036
1037 wcsr = ATW_READ(sc, ATW_WCSR);
1038 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1039 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1040 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1041
1042 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1043 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1044 }
1045
1046 /* Turn off power management. Set Rx store-and-forward mode. */
1047 static void
1048 atw_cmdr_init(struct atw_softc *sc)
1049 {
1050 uint32_t cmdr;
1051 cmdr = ATW_READ(sc, ATW_CMDR);
1052 cmdr &= ~ATW_CMDR_APM;
1053 cmdr |= ATW_CMDR_RTE;
1054 cmdr &= ~ATW_CMDR_DRT_MASK;
1055 cmdr |= ATW_CMDR_DRT_SF;
1056
1057 ATW_WRITE(sc, ATW_CMDR, cmdr);
1058 }
1059
1060 static void
1061 atw_tofs2_init(struct atw_softc *sc)
1062 {
1063 uint32_t tofs2;
1064 /* XXX this magic can probably be figured out from the RFMD docs */
1065 #ifndef ATW_REFSLAVE
1066 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1067 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1068 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1069 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1070 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1071 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1072 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1073 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1074 #else
1075 /* XXX new magic from reference driver source */
1076 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1077 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1078 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1079 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1080 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1081 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1082 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1083 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1084 #endif
1085 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1086 }
1087
1088 static void
1089 atw_nar_init(struct atw_softc *sc)
1090 {
1091 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1092 }
1093
1094 static void
1095 atw_txlmt_init(struct atw_softc *sc)
1096 {
1097 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1098 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1099 }
1100
1101 static void
1102 atw_test1_init(struct atw_softc *sc)
1103 {
1104 uint32_t test1;
1105
1106 test1 = ATW_READ(sc, ATW_TEST1);
1107 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1108 /* XXX magic 0x1 */
1109 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1110 ATW_WRITE(sc, ATW_TEST1, test1);
1111 }
1112
1113 static void
1114 atw_rf_reset(struct atw_softc *sc)
1115 {
1116 /* XXX this resets an Intersil RF front-end? */
1117 /* TBD condition on Intersil RFType? */
1118 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1119 DELAY(atw_rf_delay1);
1120 ATW_WRITE(sc, ATW_SYNRF, 0);
1121 DELAY(atw_rf_delay2);
1122 }
1123
1124 /* Set 16 TU max duration for the contention-free period (CFP). */
1125 static void
1126 atw_cfp_init(struct atw_softc *sc)
1127 {
1128 uint32_t cfpp;
1129
1130 cfpp = ATW_READ(sc, ATW_CFPP);
1131 cfpp &= ~ATW_CFPP_CFPMD;
1132 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1133 ATW_WRITE(sc, ATW_CFPP, cfpp);
1134 }
1135
1136 static void
1137 atw_tofs0_init(struct atw_softc *sc)
1138 {
1139 /* XXX I guess that the Cardbus clock is 22MHz?
1140 * I am assuming that the role of ATW_TOFS0_USCNT is
1141 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1142 * very clear on this point. It says in the datasheet that it is
1143 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1144 * and 33MHz; maybe this is the way? I see a binary-only driver write
1145 * these values. These values are also the power-on default.
1146 */
1147 ATW_WRITE(sc, ATW_TOFS0,
1148 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1149 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1150 }
1151
1152 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1153 static void
1154 atw_ifs_init(struct atw_softc *sc)
1155 {
1156 uint32_t ifst;
1157 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1158 * Go figure.
1159 */
1160 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1161 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1162 ATW_IFST_SIFS_MASK) |
1163 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1164 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1165
1166 ATW_WRITE(sc, ATW_IFST, ifst);
1167 }
1168
1169 static void
1170 atw_response_times_init(struct atw_softc *sc)
1171 {
1172 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1173 * indicate that the MAC expects at least SIFS + MIRT microseconds
1174 * to pass after it transmits a frame that requires a response;
1175 * it waits at most SIFS + MART microseconds for the response.
1176 * Surely this is not the ACK timeout?
1177 */
1178 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1179 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1180 }
1181
1182 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1183 * engines read and write baseband registers after Rx and before
1184 * Tx, respectively.
1185 */
1186 static void
1187 atw_bbp_io_init(struct atw_softc *sc)
1188 {
1189 uint32_t mmiraddr2;
1190
1191 /* XXX The reference driver does this, but is it *really*
1192 * necessary?
1193 */
1194 switch (sc->sc_rev) {
1195 case ATW_REVISION_AB:
1196 case ATW_REVISION_AF:
1197 mmiraddr2 = 0x0;
1198 break;
1199 default:
1200 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1201 mmiraddr2 &=
1202 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1203 break;
1204 }
1205
1206 switch (sc->sc_bbptype) {
1207 case ATW_BBPTYPE_INTERSIL:
1208 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1209 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1210 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1211 break;
1212 case ATW_BBPTYPE_MARVEL:
1213 /* TBD find out the Marvel settings. */
1214 break;
1215 case ATW_BBPTYPE_RFMD:
1216 default:
1217 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1218 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1219 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1220 break;
1221 }
1222 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1223 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1224 }
1225
1226 /*
1227 * atw_init: [ ifnet interface function ]
1228 *
1229 * Initialize the interface. Must be called at splnet().
1230 */
1231 int
1232 atw_init(struct ifnet *ifp)
1233 {
1234 struct atw_softc *sc = ifp->if_softc;
1235 struct ieee80211com *ic = &sc->sc_ic;
1236 struct atw_txsoft *txs;
1237 struct atw_rxsoft *rxs;
1238 int i, error = 0;
1239
1240 if ((error = atw_enable(sc)) != 0)
1241 goto out;
1242
1243 /*
1244 * Cancel any pending I/O. This also resets.
1245 */
1246 atw_stop(ifp, 0);
1247
1248 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1249 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1250 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
1251 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
1252
1253 atw_wcsr_init(sc);
1254
1255 atw_cmdr_init(sc);
1256
1257 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1258 *
1259 * XXX Set transmit power for ATIM, RTS, Beacon.
1260 */
1261 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1262 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1263
1264 atw_tofs2_init(sc);
1265
1266 atw_nar_init(sc);
1267
1268 atw_txlmt_init(sc);
1269
1270 atw_test1_init(sc);
1271
1272 atw_rf_reset(sc);
1273
1274 atw_cfp_init(sc);
1275
1276 atw_tofs0_init(sc);
1277
1278 atw_ifs_init(sc);
1279
1280 /* XXX Fall asleep after one second of inactivity.
1281 * XXX A frame may only dribble in for 65536us.
1282 */
1283 ATW_WRITE(sc, ATW_RMD,
1284 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1285
1286 atw_response_times_init(sc);
1287
1288 atw_bbp_io_init(sc);
1289
1290 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1291
1292 if ((error = atw_rf3000_init(sc)) != 0)
1293 goto out;
1294
1295 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1296 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1297 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1298
1299 /*
1300 * Initialize the transmit descriptor ring.
1301 */
1302 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1303 for (i = 0; i < ATW_NTXDESC; i++) {
1304 sc->sc_txdescs[i].at_ctl = 0;
1305 /* no transmit chaining */
1306 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1307 sc->sc_txdescs[i].at_buf2 =
1308 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1309 }
1310 /* use ring mode */
1311 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1312 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1313 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1314 sc->sc_txfree = ATW_NTXDESC;
1315 sc->sc_txnext = 0;
1316
1317 /*
1318 * Initialize the transmit job descriptors.
1319 */
1320 SIMPLEQ_INIT(&sc->sc_txfreeq);
1321 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1322 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1323 txs = &sc->sc_txsoft[i];
1324 txs->txs_mbuf = NULL;
1325 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1326 }
1327
1328 /*
1329 * Initialize the receive descriptor and receive job
1330 * descriptor rings.
1331 */
1332 for (i = 0; i < ATW_NRXDESC; i++) {
1333 rxs = &sc->sc_rxsoft[i];
1334 if (rxs->rxs_mbuf == NULL) {
1335 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1336 printf("%s: unable to allocate or map rx "
1337 "buffer %d, error = %d\n",
1338 sc->sc_dev.dv_xname, i, error);
1339 /*
1340 * XXX Should attempt to run with fewer receive
1341 * XXX buffers instead of just failing.
1342 */
1343 atw_rxdrain(sc);
1344 goto out;
1345 }
1346 } else
1347 ATW_INIT_RXDESC(sc, i);
1348 }
1349 sc->sc_rxptr = 0;
1350
1351 /*
1352 * Initialize the interrupt mask and enable interrupts.
1353 */
1354 /* normal interrupts */
1355 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1356 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1357
1358 /* abnormal interrupts */
1359 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1360 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1361 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1362
1363 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1364 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1365 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1366 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1367 ATW_INTR_TRT;
1368
1369 sc->sc_linkint_mask &= sc->sc_inten;
1370 sc->sc_rxint_mask &= sc->sc_inten;
1371 sc->sc_txint_mask &= sc->sc_inten;
1372
1373 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1374 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1375
1376 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1377 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1378
1379 /*
1380 * Give the transmit and receive rings to the ADM8211.
1381 */
1382 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1383 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1384
1385 sc->sc_txthresh = 0;
1386 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1387 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1388
1389 /* common 802.11 configuration */
1390 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1391 switch (ic->ic_opmode) {
1392 case IEEE80211_M_STA:
1393 break;
1394 case IEEE80211_M_AHDEMO: /* XXX */
1395 case IEEE80211_M_IBSS:
1396 ic->ic_flags |= IEEE80211_F_IBSSON;
1397 /*FALLTHROUGH*/
1398 case IEEE80211_M_HOSTAP: /* XXX */
1399 break;
1400 case IEEE80211_M_MONITOR: /* XXX */
1401 break;
1402 }
1403
1404 switch (ic->ic_opmode) {
1405 case IEEE80211_M_AHDEMO:
1406 case IEEE80211_M_HOSTAP:
1407 ic->ic_bss->ni_intval = ic->ic_lintval;
1408 ic->ic_bss->ni_rssi = 0;
1409 ic->ic_bss->ni_rstamp = 0;
1410 break;
1411 default: /* XXX */
1412 break;
1413 }
1414
1415 sc->sc_wepctl = 0;
1416
1417 atw_write_ssid(sc);
1418 atw_write_sup_rates(sc);
1419 if (ic->ic_caps & IEEE80211_C_WEP)
1420 atw_write_wep(sc);
1421
1422 ic->ic_state = IEEE80211_S_INIT;
1423
1424 /*
1425 * Set the receive filter. This will start the transmit and
1426 * receive processes.
1427 */
1428 atw_filter_setup(sc);
1429
1430 /*
1431 * Start the receive process.
1432 */
1433 ATW_WRITE(sc, ATW_RDR, 0x1);
1434
1435 /*
1436 * Note that the interface is now running.
1437 */
1438 ifp->if_flags |= IFF_RUNNING;
1439 ifp->if_flags &= ~IFF_OACTIVE;
1440
1441 /* send no beacons, yet. */
1442 atw_start_beacon(sc, 0);
1443
1444 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1445 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1446 else
1447 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1448 out:
1449 if (error) {
1450 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1451 ifp->if_timer = 0;
1452 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1453 }
1454 #ifdef ATW_DEBUG
1455 atw_print_regs(sc, "end of init");
1456 #endif /* ATW_DEBUG */
1457
1458 return (error);
1459 }
1460
1461 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1462 * 0: MAC control of RF3000/Si4126.
1463 *
1464 * Applies power, or selects RF front-end? Sets reset condition.
1465 *
1466 * TBD support non-RFMD BBP, non-SiLabs synth.
1467 */
1468 static void
1469 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1470 {
1471 if (enable) {
1472 ATW_WRITE(sc, ATW_SYNRF,
1473 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1474 DELAY(atw_bbp_io_enable_delay);
1475 } else {
1476 ATW_WRITE(sc, ATW_SYNRF, 0);
1477 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1478 }
1479 }
1480
1481 static int
1482 atw_tune(struct atw_softc *sc)
1483 {
1484 int rc;
1485 u_int chan;
1486 struct ieee80211com *ic = &sc->sc_ic;
1487
1488 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1489 if (chan == IEEE80211_CHAN_ANY)
1490 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1491
1492 if (chan == sc->sc_cur_chan)
1493 return 0;
1494
1495 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1496 sc->sc_cur_chan, chan));
1497
1498 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1499
1500 atw_si4126_tune(sc, chan);
1501 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1502 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1503 chan);
1504
1505 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1506 DELAY(atw_nar_delay);
1507 ATW_WRITE(sc, ATW_RDR, 0x1);
1508
1509 if (rc == 0)
1510 sc->sc_cur_chan = chan;
1511
1512 return rc;
1513 }
1514
1515 #ifdef ATW_SYNDEBUG
1516 static void
1517 atw_si4126_print(struct atw_softc *sc)
1518 {
1519 struct ifnet *ifp = &sc->sc_ic.ic_if;
1520 u_int addr, val;
1521
1522 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1523 return;
1524
1525 for (addr = 0; addr <= 8; addr++) {
1526 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1527 if (atw_si4126_read(sc, addr, &val) == 0) {
1528 printf("<unknown> (quitting print-out)\n");
1529 break;
1530 }
1531 printf("%05x\n", val);
1532 }
1533 }
1534 #endif /* ATW_SYNDEBUG */
1535
1536 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1537 *
1538 * The RF/IF synthesizer produces two reference frequencies for
1539 * the RF2948B transceiver. The first frequency the RF2948B requires
1540 * is two times the so-called "intermediate frequency" (IF). Since
1541 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1542 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1543 * frequency required by the transceiver is the radio frequency
1544 * (RF). This is a superheterodyne transceiver; for f(chan) the
1545 * center frequency of the channel we are tuning, RF = f(chan) -
1546 * IF.
1547 *
1548 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1549 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1550 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1551 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1552 */
1553 static void
1554 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1555 {
1556 u_int mhz;
1557 u_int R;
1558 u_int32_t gpio;
1559 u_int16_t gain;
1560
1561 #ifdef ATW_SYNDEBUG
1562 atw_si4126_print(sc);
1563 #endif /* ATW_SYNDEBUG */
1564
1565 if (chan == 14)
1566 mhz = 2484;
1567 else
1568 mhz = 2412 + 5 * (chan - 1);
1569
1570 /* Tune IF to 748MHz to suit the IF LO input of the
1571 * RF2494B, which is 2 x IF. No need to set an IF divider
1572 * because an IF in 526MHz - 952MHz is allowed.
1573 *
1574 * XIN is 44.000MHz, so divide it by two to get allowable
1575 * range of 2-25MHz. SiLabs tells me that this is not
1576 * strictly necessary.
1577 */
1578
1579 if (atw_xindiv2)
1580 R = 44;
1581 else
1582 R = 88;
1583
1584 /* Power-up RF, IF synthesizers. */
1585 atw_si4126_write(sc, SI4126_POWER,
1586 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1587
1588 /* set LPWR, too? */
1589 atw_si4126_write(sc, SI4126_MAIN,
1590 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1591
1592 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1593 * set KP2 to 1.
1594 *
1595 * REFDIF This is different from the reference driver, which
1596 * always sets SI4126_GAIN to 0.
1597 */
1598 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1599
1600 atw_si4126_write(sc, SI4126_GAIN, gain);
1601
1602 /* XIN = 44MHz.
1603 *
1604 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1605 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1606 *
1607 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1608 * so that 1496/88 * 44MHz = 748MHz.
1609 */
1610 atw_si4126_write(sc, SI4126_IFN, 1496);
1611
1612 atw_si4126_write(sc, SI4126_IFR, R);
1613
1614 #ifndef ATW_REFSLAVE
1615 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1616 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1617 * which has no RF1!
1618 */
1619 atw_si4126_write(sc, SI4126_RF1R, R);
1620
1621 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1622 #endif
1623
1624 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1625 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1626 * Now let's multiply it to mhz. So mhz - IF = N.
1627 */
1628 atw_si4126_write(sc, SI4126_RF2R, R);
1629
1630 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1631
1632 /* wait 100us from power-up for RF, IF to settle */
1633 DELAY(100);
1634
1635 gpio = ATW_READ(sc, ATW_GPIO);
1636 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1637 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1638
1639 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1640 /* Set a Prism RF front-end to a special mode for channel 14?
1641 *
1642 * Apparently the SMC2635W needs this, although I don't think
1643 * it has a Prism RF.
1644 */
1645 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1646 }
1647 ATW_WRITE(sc, ATW_GPIO, gpio);
1648
1649 #ifdef ATW_SYNDEBUG
1650 atw_si4126_print(sc);
1651 #endif /* ATW_SYNDEBUG */
1652 }
1653
1654 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1655 * diversity.
1656 *
1657 * !!!
1658 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1659 * !!!
1660 */
1661 static int
1662 atw_rf3000_init(struct atw_softc *sc)
1663 {
1664 int rc = 0;
1665
1666 atw_bbp_io_enable(sc, 1);
1667
1668 /* CCA is acquisition sensitive */
1669 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1670 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1671
1672 if (rc != 0)
1673 goto out;
1674
1675 /* enable diversity */
1676 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1677
1678 if (rc != 0)
1679 goto out;
1680
1681 /* sensible setting from a binary-only driver */
1682 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1683 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1684
1685 if (rc != 0)
1686 goto out;
1687
1688 /* magic from a binary-only driver */
1689 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1690 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1691
1692 if (rc != 0)
1693 goto out;
1694
1695 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1696
1697 if (rc != 0)
1698 goto out;
1699
1700 /* XXX Reference driver remarks that Abocom sets this to 50.
1701 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1702 * in the "reserved" area of register RF3000_OPTIONS1.
1703 */
1704 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1705
1706 if (rc != 0)
1707 goto out;
1708
1709 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1710
1711 if (rc != 0)
1712 goto out;
1713
1714 out:
1715 atw_bbp_io_enable(sc, 0);
1716 return rc;
1717 }
1718
1719 #ifdef ATW_BBPDEBUG
1720 static void
1721 atw_rf3000_print(struct atw_softc *sc)
1722 {
1723 struct ifnet *ifp = &sc->sc_ic.ic_if;
1724 u_int addr, val;
1725
1726 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1727 return;
1728
1729 for (addr = 0x01; addr <= 0x15; addr++) {
1730 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1731 if (atw_rf3000_read(sc, addr, &val) != 0) {
1732 printf("<unknown> (quitting print-out)\n");
1733 break;
1734 }
1735 printf("%08x\n", val);
1736 }
1737 }
1738 #endif /* ATW_BBPDEBUG */
1739
1740 /* Set the power settings on the BBP for channel `chan'. */
1741 static int
1742 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1743 {
1744 int rc = 0;
1745 u_int32_t reg;
1746 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1747
1748 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1749 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1750 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1751
1752 /* odd channels: LSB, even channels: MSB */
1753 if (chan % 2 == 1) {
1754 txpower &= 0xFF;
1755 lpf_cutoff &= 0xFF;
1756 lna_gs_thresh &= 0xFF;
1757 } else {
1758 txpower >>= 8;
1759 lpf_cutoff >>= 8;
1760 lna_gs_thresh >>= 8;
1761 }
1762
1763 #ifdef ATW_BBPDEBUG
1764 atw_rf3000_print(sc);
1765 #endif /* ATW_BBPDEBUG */
1766
1767 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1768 "lna_gs_thresh %02x\n",
1769 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1770
1771 atw_bbp_io_enable(sc, 1);
1772
1773 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1774 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1775 goto out;
1776
1777 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1778 goto out;
1779
1780 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1781 goto out;
1782
1783 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1784
1785 if (rc != 0)
1786 goto out;
1787
1788 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1789
1790 if (rc != 0)
1791 goto out;
1792
1793 #ifdef ATW_BBPDEBUG
1794 atw_rf3000_print(sc);
1795 #endif /* ATW_BBPDEBUG */
1796
1797 out:
1798 atw_bbp_io_enable(sc, 0);
1799
1800 /* set beacon, rts, atim transmit power */
1801 reg = ATW_READ(sc, ATW_PLCPHD);
1802 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1803 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1804 ATW_PLCPHD_SERVICE_MASK);
1805 ATW_WRITE(sc, ATW_PLCPHD, reg);
1806 DELAY(atw_plcphd_delay);
1807
1808 return rc;
1809 }
1810
1811 /* Write a register on the RF3000 baseband processor using the
1812 * registers provided by the ADM8211 for this purpose.
1813 *
1814 * Return 0 on success.
1815 */
1816 static int
1817 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1818 {
1819 u_int32_t reg;
1820 int i;
1821
1822 reg = sc->sc_bbpctl_wr |
1823 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1824 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1825
1826 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1827 ATW_WRITE(sc, ATW_BBPCTL, reg);
1828 DELAY(2 * atw_pseudo_milli);
1829 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1830 break;
1831 }
1832
1833 if (i < 0) {
1834 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1835 return ETIMEDOUT;
1836 }
1837 return 0;
1838 }
1839
1840 /* Read a register on the RF3000 baseband processor using the registers
1841 * the ADM8211 provides for this purpose.
1842 *
1843 * The 7-bit register address is addr. Record the 8-bit data in the register
1844 * in *val.
1845 *
1846 * Return 0 on success.
1847 *
1848 * XXX This does not seem to work. The ADM8211 must require more or
1849 * different magic to read the chip than to write it. Possibly some
1850 * of the magic I have derived from a binary-only driver concerns
1851 * the "chip address" (see the RF3000 manual).
1852 */
1853 #ifdef ATW_BBPDEBUG
1854 static int
1855 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1856 {
1857 u_int32_t reg;
1858 int i;
1859
1860 for (i = 1000; --i >= 0; ) {
1861 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1862 break;
1863 DELAY(100);
1864 }
1865
1866 if (i < 0) {
1867 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1868 sc->sc_dev.dv_xname);
1869 return ETIMEDOUT;
1870 }
1871
1872 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1873
1874 ATW_WRITE(sc, ATW_BBPCTL, reg);
1875
1876 for (i = 1000; --i >= 0; ) {
1877 DELAY(100);
1878 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1879 break;
1880 }
1881
1882 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1883
1884 if (i < 0) {
1885 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1886 sc->sc_dev.dv_xname, reg);
1887 return ETIMEDOUT;
1888 }
1889 if (val != NULL)
1890 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1891 return 0;
1892 }
1893 #endif /* ATW_BBPDEBUG */
1894
1895 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1896 * provided by the ADM8211 for that purpose.
1897 *
1898 * val is 18 bits of data, and val is the 4-bit address of the register.
1899 *
1900 * Return 0 on success.
1901 */
1902 static void
1903 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1904 {
1905 uint32_t bits, mask, reg;
1906 const int nbits = 22;
1907
1908 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1909 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1910
1911 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1912 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1913
1914 reg = ATW_SYNRF_SELSYN;
1915 /* reference driver: reset Si4126 serial bus to initial
1916 * conditions?
1917 */
1918 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1919 ATW_WRITE(sc, ATW_SYNRF, reg);
1920
1921 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1922 if ((bits & mask) != 0)
1923 reg |= ATW_SYNRF_SYNDATA;
1924 else
1925 reg &= ~ATW_SYNRF_SYNDATA;
1926 ATW_WRITE(sc, ATW_SYNRF, reg);
1927 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1928 ATW_WRITE(sc, ATW_SYNRF, reg);
1929 }
1930 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1931 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1932 }
1933
1934 /* Read 18-bit data from the 4-bit address addr in Si4126
1935 * RF synthesizer and write the data to *val. Return 0 on success.
1936 *
1937 * XXX This does not seem to work. The ADM8211 must require more or
1938 * different magic to read the chip than to write it.
1939 */
1940 #ifdef ATW_SYNDEBUG
1941 static int
1942 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1943 {
1944 u_int32_t reg;
1945 int i;
1946
1947 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1948
1949 for (i = 1000; --i >= 0; ) {
1950 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1951 break;
1952 DELAY(100);
1953 }
1954
1955 if (i < 0) {
1956 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1957 sc->sc_dev.dv_xname);
1958 return ETIMEDOUT;
1959 }
1960
1961 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1962
1963 ATW_WRITE(sc, ATW_SYNCTL, reg);
1964
1965 for (i = 1000; --i >= 0; ) {
1966 DELAY(100);
1967 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1968 break;
1969 }
1970
1971 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1972
1973 if (i < 0) {
1974 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1975 sc->sc_dev.dv_xname, reg);
1976 return ETIMEDOUT;
1977 }
1978 if (val != NULL)
1979 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1980 ATW_SYNCTL_DATA_MASK);
1981 return 0;
1982 }
1983 #endif /* ATW_SYNDEBUG */
1984
1985 /* XXX is the endianness correct? test. */
1986 #define atw_calchash(addr) \
1987 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1988
1989 /*
1990 * atw_filter_setup:
1991 *
1992 * Set the ADM8211's receive filter.
1993 */
1994 static void
1995 atw_filter_setup(struct atw_softc *sc)
1996 {
1997 struct ieee80211com *ic = &sc->sc_ic;
1998 struct ethercom *ec = &ic->ic_ec;
1999 struct ifnet *ifp = &sc->sc_ic.ic_if;
2000 int hash;
2001 u_int32_t hashes[2];
2002 struct ether_multi *enm;
2003 struct ether_multistep step;
2004
2005 /* According to comments in tlp_al981_filter_setup
2006 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2007 * multicast filter to be set while it is running. Hopefully
2008 * the ADM8211 is not the same!
2009 */
2010 if ((ifp->if_flags & IFF_RUNNING) != 0)
2011 atw_idle(sc, ATW_NAR_SR);
2012
2013 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2014
2015 /* XXX in scan mode, do not filter packets. Maybe this is
2016 * unnecessary.
2017 */
2018 if (ic->ic_state == IEEE80211_S_SCAN ||
2019 (ifp->if_flags & IFF_PROMISC) != 0) {
2020 sc->sc_opmode |= ATW_NAR_PR;
2021 goto allmulti;
2022 }
2023
2024 hashes[0] = hashes[1] = 0x0;
2025
2026 /*
2027 * Program the 64-bit multicast hash filter.
2028 */
2029 ETHER_FIRST_MULTI(step, ec, enm);
2030 while (enm != NULL) {
2031 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2032 ETHER_ADDR_LEN) != 0)
2033 goto allmulti;
2034
2035 hash = atw_calchash(enm->enm_addrlo);
2036 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2037 ETHER_NEXT_MULTI(step, enm);
2038 sc->sc_opmode |= ATW_NAR_MM;
2039 }
2040 ifp->if_flags &= ~IFF_ALLMULTI;
2041 goto setit;
2042
2043 allmulti:
2044 sc->sc_opmode |= ATW_NAR_MM;
2045 ifp->if_flags |= IFF_ALLMULTI;
2046 hashes[0] = hashes[1] = 0xffffffff;
2047
2048 setit:
2049 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2050 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2051 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2052 DELAY(atw_nar_delay);
2053
2054 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2055 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2056 }
2057
2058 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2059 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2060 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2061 * no beacon with the preferred BSSID and SSID in the number of
2062 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2063 */
2064 static void
2065 atw_write_bssid(struct atw_softc *sc)
2066 {
2067 struct ieee80211com *ic = &sc->sc_ic;
2068 u_int8_t *bssid;
2069
2070 bssid = ic->ic_bss->ni_bssid;
2071
2072 ATW_WRITE(sc, ATW_BSSID0,
2073 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2074 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2075 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2076 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2077
2078 ATW_WRITE(sc, ATW_ABDA1,
2079 (ATW_READ(sc, ATW_ABDA1) &
2080 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2081 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2082 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2083
2084 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2085 ether_sprintf(sc->sc_bssid)));
2086 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2087
2088 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2089 }
2090
2091 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2092 * 16-bit word.
2093 */
2094 static void
2095 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2096 {
2097 u_int i;
2098 u_int8_t *ptr;
2099
2100 memcpy(&sc->sc_sram[ofs], buf, buflen);
2101
2102 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2103
2104 KASSERT(buflen + ofs <= sc->sc_sramlen);
2105
2106 ptr = &sc->sc_sram[ofs];
2107
2108 for (i = 0; i < buflen; i += 2) {
2109 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2110 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2111 DELAY(atw_writewep_delay);
2112
2113 ATW_WRITE(sc, ATW_WESK,
2114 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2115 DELAY(atw_writewep_delay);
2116 }
2117 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2118
2119 if (sc->sc_if.if_flags & IFF_DEBUG) {
2120 int n_octets = 0;
2121 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2122 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2123 for (i = 0; i < buflen; i++) {
2124 printf(" %02x", ptr[i]);
2125 if (++n_octets % 24 == 0)
2126 printf("\n");
2127 }
2128 if (n_octets % 24 != 0)
2129 printf("\n");
2130 }
2131 }
2132
2133 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2134 static void
2135 atw_write_wep(struct atw_softc *sc)
2136 {
2137 struct ieee80211com *ic = &sc->sc_ic;
2138 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2139 u_int8_t buf[IEEE80211_WEP_NKID]
2140 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2141 u_int32_t reg;
2142 int i;
2143
2144 sc->sc_wepctl = 0;
2145 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2146
2147 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0)
2148 return;
2149
2150 memset(&buf[0][0], 0, sizeof(buf));
2151
2152 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2153 if (ic->ic_nw_keys[i].wk_len > 5) {
2154 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2155 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2156 buf[i][1] = ATW_WEP_ENABLED;
2157 } else {
2158 buf[i][1] = 0;
2159 continue;
2160 }
2161 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2162 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2163 ic->ic_nw_keys[i].wk_len - 1);
2164 }
2165
2166 reg = ATW_READ(sc, ATW_MACTEST);
2167 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2168 reg &= ~ATW_MACTEST_KEYID_MASK;
2169 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2170 ATW_WRITE(sc, ATW_MACTEST, reg);
2171
2172 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE;
2173
2174 switch (sc->sc_rev) {
2175 case ATW_REVISION_AB:
2176 case ATW_REVISION_AF:
2177 /* Bypass WEP on Rx. */
2178 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2179 break;
2180 default:
2181 break;
2182 }
2183
2184 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2185 sizeof(buf));
2186 }
2187
2188 static void
2189 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2190 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2191 {
2192 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2193
2194 switch (subtype) {
2195 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2196 /* do nothing: hardware answers probe request */
2197 break;
2198 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2199 case IEEE80211_FC0_SUBTYPE_BEACON:
2200 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2201 ic->ic_state == IEEE80211_S_RUN) {
2202 ieee80211_ibss_merge(ic, sc->sc_recv_mgmt, m, ni,
2203 subtype, rssi, rstamp);
2204 return;
2205 }
2206 break;
2207 default:
2208 break;
2209 }
2210 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2211 return;
2212 }
2213
2214 static void
2215 atw_change_ibss(struct ieee80211com *ic)
2216 {
2217 struct atw_softc *sc;
2218
2219 sc = (struct atw_softc *)ic->ic_if.if_softc;
2220 atw_predict_beacon(sc);
2221 atw_write_bssid(sc);
2222 atw_start_beacon(sc, 1);
2223 }
2224
2225 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2226 * In ad hoc mode, the SSID is written to the beacons sent by the
2227 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2228 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2229 * indications.
2230 */
2231 static void
2232 atw_write_ssid(struct atw_softc *sc)
2233 {
2234 struct ieee80211com *ic = &sc->sc_ic;
2235 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2236 * it only expects the element length, not its ID.
2237 */
2238 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2239
2240 memset(buf, 0, sizeof(buf));
2241 buf[0] = ic->ic_bss->ni_esslen;
2242 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2243
2244 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2245 roundup(1 + ic->ic_bss->ni_esslen, 2));
2246 }
2247
2248 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2249 * In ad hoc mode, the supported rates are written to beacons sent by the
2250 * ADM8211.
2251 */
2252 static void
2253 atw_write_sup_rates(struct atw_softc *sc)
2254 {
2255 struct ieee80211com *ic = &sc->sc_ic;
2256 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2257 * supported rates
2258 */
2259 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2260
2261 memset(buf, 0, sizeof(buf));
2262
2263 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2264
2265 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2266 ic->ic_bss->ni_rates.rs_nrates);
2267
2268 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2269 }
2270
2271 /* Start/stop sending beacons. */
2272 void
2273 atw_start_beacon(struct atw_softc *sc, int start)
2274 {
2275 struct ieee80211com *ic = &sc->sc_ic;
2276 uint16_t chan;
2277 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2278 size_t len;
2279
2280 if (ATW_IS_ENABLED(sc) == 0)
2281 return;
2282
2283 /* start beacons */
2284 len = sizeof(struct ieee80211_frame) +
2285 8 /* timestamp */ + 2 /* beacon interval */ +
2286 2 /* capability info */ +
2287 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2288 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2289 3 /* DS parameters */ +
2290 IEEE80211_CRC_LEN;
2291
2292 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2293 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2294 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2295
2296 ATW_WRITE(sc, ATW_BCNT, bcnt);
2297 ATW_WRITE(sc, ATW_CAP1, cap1);
2298
2299 if (!start)
2300 return;
2301
2302 /* TBD use ni_capinfo */
2303
2304 capinfo = 0;
2305 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2306 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2307 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2308 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2309
2310 switch (ic->ic_opmode) {
2311 case IEEE80211_M_IBSS:
2312 len += 4; /* IBSS parameters */
2313 capinfo |= IEEE80211_CAPINFO_IBSS;
2314 break;
2315 case IEEE80211_M_HOSTAP:
2316 /* XXX 6-byte minimum TIM */
2317 len += atw_beacon_len_adjust;
2318 capinfo |= IEEE80211_CAPINFO_ESS;
2319 break;
2320 default:
2321 return;
2322 }
2323
2324 /* set listen interval
2325 * XXX do software units agree w/ hardware?
2326 */
2327 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2328 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2329
2330 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
2331
2332 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2333 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2334 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2335
2336 ATW_WRITE(sc, ATW_BCNT, bcnt);
2337 ATW_WRITE(sc, ATW_BPLI, bpli);
2338 ATW_WRITE(sc, ATW_CAP0, cap0);
2339 ATW_WRITE(sc, ATW_CAP1, cap1);
2340
2341 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2342 sc->sc_dev.dv_xname, bcnt));
2343
2344 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2345 sc->sc_dev.dv_xname, cap1));
2346 }
2347
2348 /* Return the 32 lsb of the last TSFT divisible by ival. */
2349 static __inline uint32_t
2350 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2351 {
2352 /* Following the reference driver's lead, I compute
2353 *
2354 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2355 *
2356 * without using 64-bit arithmetic, using the following
2357 * relationship:
2358 *
2359 * (0x100000000 * H + L) % m
2360 * = ((0x100000000 % m) * H + L) % m
2361 * = (((0xffffffff + 1) % m) * H + L) % m
2362 * = ((0xffffffff % m + 1 % m) * H + L) % m
2363 * = ((0xffffffff % m + 1) * H + L) % m
2364 */
2365 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2366 }
2367
2368 static __inline void
2369 atw_get_tsft1(struct atw_softc *sc, uint32_t *tsfth, uint32_t *tsftl)
2370 {
2371 int i;
2372 for (i = 0; i < 2; i++) {
2373 *tsfth = ATW_READ(sc, ATW_TSFTH);
2374 *tsftl = ATW_READ(sc, ATW_TSFTL);
2375 if (ATW_READ(sc, ATW_TSFTH) == *tsfth)
2376 break;
2377 }
2378 }
2379
2380 static void
2381 atw_get_tsft(struct ieee80211com *ic, uint32_t *tsfth, uint32_t *tsftl)
2382 {
2383 struct atw_softc *sc;
2384
2385 sc = (struct atw_softc *)ic->ic_if.if_softc;
2386
2387 atw_get_tsft1(sc, tsfth, tsftl);
2388 }
2389
2390 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2391 * the ieee80211com.
2392 *
2393 * Predict the next target beacon transmission time (TBTT) and
2394 * write it to the ADM8211.
2395 */
2396 static void
2397 atw_predict_beacon(struct atw_softc *sc)
2398 {
2399 #define TBTTOFS 20 /* TU */
2400
2401 struct ieee80211com *ic = &sc->sc_ic;
2402 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2403 union {
2404 uint32_t words[2];
2405 uint8_t tstamp[8];
2406 } u;
2407
2408 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2409 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2410 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2411 atw_get_tsft1(sc, &tsfth, &tsftl);
2412 u.words[0] = htole32(tsftl);
2413 u.words[1] = htole32(tsfth);
2414 (void)memcpy(&ic->ic_bss->ni_tstamp[0], &u,
2415 sizeof(ic->ic_bss->ni_tstamp));
2416 } else {
2417 (void)memcpy(&u, &ic->ic_bss->ni_tstamp[0], sizeof(u));
2418 tsftl = le32toh(u.words[0]);
2419 tsfth = le32toh(u.words[1]);
2420 }
2421
2422 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2423
2424 /* We sent/received the last beacon `past' microseconds
2425 * after the interval divided the TSF timer.
2426 */
2427 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2428
2429 /* Skip ten beacons so that the TBTT cannot pass before
2430 * we've programmed it. Ten is an arbitrary number.
2431 */
2432 tbtt = past_even + ival * 10;
2433
2434 ATW_WRITE(sc, ATW_TOFS1,
2435 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2436 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2437 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2438 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2439 #undef TBTTOFS
2440 }
2441
2442 static void
2443 atw_next_scan(void *arg)
2444 {
2445 struct atw_softc *sc = arg;
2446 struct ieee80211com *ic = &sc->sc_ic;
2447 int s;
2448
2449 /* don't call atw_start w/o network interrupts blocked */
2450 s = splnet();
2451 if (ic->ic_state == IEEE80211_S_SCAN)
2452 ieee80211_next_scan(ic);
2453 splx(s);
2454 }
2455
2456 /* Synchronize the hardware state with the software state. */
2457 static int
2458 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2459 {
2460 struct ifnet *ifp = &ic->ic_if;
2461 struct atw_softc *sc = ifp->if_softc;
2462 enum ieee80211_state ostate;
2463 int error;
2464
2465 ostate = ic->ic_state;
2466
2467 if (nstate == IEEE80211_S_INIT) {
2468 callout_stop(&sc->sc_scan_ch);
2469 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2470 atw_start_beacon(sc, 0);
2471 return (*sc->sc_newstate)(ic, nstate, arg);
2472 }
2473
2474 if ((error = atw_tune(sc)) != 0)
2475 return error;
2476
2477 switch (nstate) {
2478 case IEEE80211_S_ASSOC:
2479 break;
2480 case IEEE80211_S_INIT:
2481 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2482 break;
2483 case IEEE80211_S_SCAN:
2484 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2485 atw_next_scan, sc);
2486
2487 break;
2488 case IEEE80211_S_RUN:
2489 if (ic->ic_opmode == IEEE80211_M_STA)
2490 break;
2491 /*FALLTHROUGH*/
2492 case IEEE80211_S_AUTH:
2493 atw_write_bssid(sc);
2494 atw_write_ssid(sc);
2495 atw_write_sup_rates(sc);
2496
2497 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2498 ic->ic_opmode == IEEE80211_M_MONITOR)
2499 break;
2500
2501 /* set listen interval
2502 * XXX do software units agree w/ hardware?
2503 */
2504 ATW_WRITE(sc, ATW_BPLI,
2505 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2506 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2507 ATW_BPLI_LI_MASK));
2508
2509 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2510 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2511
2512 atw_predict_beacon(sc);
2513 break;
2514 }
2515
2516 if (nstate != IEEE80211_S_SCAN)
2517 callout_stop(&sc->sc_scan_ch);
2518
2519 if (nstate == IEEE80211_S_RUN &&
2520 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2521 ic->ic_opmode == IEEE80211_M_IBSS))
2522 atw_start_beacon(sc, 1);
2523 else
2524 atw_start_beacon(sc, 0);
2525
2526 error = (*sc->sc_newstate)(ic, nstate, arg);
2527
2528 if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2529 atw_write_bssid(sc);
2530
2531 return error;
2532 }
2533
2534 /*
2535 * atw_add_rxbuf:
2536 *
2537 * Add a receive buffer to the indicated descriptor.
2538 */
2539 int
2540 atw_add_rxbuf(struct atw_softc *sc, int idx)
2541 {
2542 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2543 struct mbuf *m;
2544 int error;
2545
2546 MGETHDR(m, M_DONTWAIT, MT_DATA);
2547 if (m == NULL)
2548 return (ENOBUFS);
2549
2550 MCLGET(m, M_DONTWAIT);
2551 if ((m->m_flags & M_EXT) == 0) {
2552 m_freem(m);
2553 return (ENOBUFS);
2554 }
2555
2556 if (rxs->rxs_mbuf != NULL)
2557 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2558
2559 rxs->rxs_mbuf = m;
2560
2561 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2562 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2563 BUS_DMA_READ|BUS_DMA_NOWAIT);
2564 if (error) {
2565 printf("%s: can't load rx DMA map %d, error = %d\n",
2566 sc->sc_dev.dv_xname, idx, error);
2567 panic("atw_add_rxbuf"); /* XXX */
2568 }
2569
2570 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2571 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2572
2573 ATW_INIT_RXDESC(sc, idx);
2574
2575 return (0);
2576 }
2577
2578 /*
2579 * Release any queued transmit buffers.
2580 */
2581 void
2582 atw_txdrain(struct atw_softc *sc)
2583 {
2584 struct atw_txsoft *txs;
2585
2586 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2587 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2588 if (txs->txs_mbuf != NULL) {
2589 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2590 m_freem(txs->txs_mbuf);
2591 txs->txs_mbuf = NULL;
2592 }
2593 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2594 }
2595 sc->sc_tx_timer = 0;
2596 }
2597
2598 /*
2599 * atw_stop: [ ifnet interface function ]
2600 *
2601 * Stop transmission on the interface.
2602 */
2603 void
2604 atw_stop(struct ifnet *ifp, int disable)
2605 {
2606 struct atw_softc *sc = ifp->if_softc;
2607 struct ieee80211com *ic = &sc->sc_ic;
2608
2609 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2610
2611 /* Disable interrupts. */
2612 ATW_WRITE(sc, ATW_IER, 0);
2613
2614 /* Stop the transmit and receive processes. */
2615 sc->sc_opmode = 0;
2616 ATW_WRITE(sc, ATW_NAR, 0);
2617 DELAY(atw_nar_delay);
2618 ATW_WRITE(sc, ATW_TDBD, 0);
2619 ATW_WRITE(sc, ATW_TDBP, 0);
2620 ATW_WRITE(sc, ATW_RDB, 0);
2621
2622 atw_txdrain(sc);
2623
2624 if (disable) {
2625 atw_rxdrain(sc);
2626 atw_disable(sc);
2627 }
2628
2629 /*
2630 * Mark the interface down and cancel the watchdog timer.
2631 */
2632 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2633 ifp->if_timer = 0;
2634
2635 if (!disable)
2636 atw_reset(sc);
2637 }
2638
2639 /*
2640 * atw_rxdrain:
2641 *
2642 * Drain the receive queue.
2643 */
2644 void
2645 atw_rxdrain(struct atw_softc *sc)
2646 {
2647 struct atw_rxsoft *rxs;
2648 int i;
2649
2650 for (i = 0; i < ATW_NRXDESC; i++) {
2651 rxs = &sc->sc_rxsoft[i];
2652 if (rxs->rxs_mbuf == NULL)
2653 continue;
2654 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2655 m_freem(rxs->rxs_mbuf);
2656 rxs->rxs_mbuf = NULL;
2657 }
2658 }
2659
2660 /*
2661 * atw_detach:
2662 *
2663 * Detach an ADM8211 interface.
2664 */
2665 int
2666 atw_detach(struct atw_softc *sc)
2667 {
2668 struct ifnet *ifp = &sc->sc_ic.ic_if;
2669 struct atw_rxsoft *rxs;
2670 struct atw_txsoft *txs;
2671 int i;
2672
2673 /*
2674 * Succeed now if there isn't any work to do.
2675 */
2676 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2677 return (0);
2678
2679 ieee80211_ifdetach(ifp);
2680 if_detach(ifp);
2681
2682 for (i = 0; i < ATW_NRXDESC; i++) {
2683 rxs = &sc->sc_rxsoft[i];
2684 if (rxs->rxs_mbuf != NULL) {
2685 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2686 m_freem(rxs->rxs_mbuf);
2687 rxs->rxs_mbuf = NULL;
2688 }
2689 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2690 }
2691 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2692 txs = &sc->sc_txsoft[i];
2693 if (txs->txs_mbuf != NULL) {
2694 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2695 m_freem(txs->txs_mbuf);
2696 txs->txs_mbuf = NULL;
2697 }
2698 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2699 }
2700 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2701 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2702 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2703 sizeof(struct atw_control_data));
2704 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2705
2706 shutdownhook_disestablish(sc->sc_sdhook);
2707 powerhook_disestablish(sc->sc_powerhook);
2708
2709 if (sc->sc_srom)
2710 free(sc->sc_srom, M_DEVBUF);
2711
2712 return (0);
2713 }
2714
2715 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2716 void
2717 atw_shutdown(void *arg)
2718 {
2719 struct atw_softc *sc = arg;
2720
2721 atw_stop(&sc->sc_ic.ic_if, 1);
2722 }
2723
2724 int
2725 atw_intr(void *arg)
2726 {
2727 struct atw_softc *sc = arg;
2728 struct ifnet *ifp = &sc->sc_ic.ic_if;
2729 u_int32_t status, rxstatus, txstatus, linkstatus;
2730 int handled = 0, txthresh;
2731
2732 #ifdef DEBUG
2733 if (ATW_IS_ENABLED(sc) == 0)
2734 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2735 #endif
2736
2737 /*
2738 * If the interface isn't running, the interrupt couldn't
2739 * possibly have come from us.
2740 */
2741 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2742 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2743 return (0);
2744
2745 for (;;) {
2746 status = ATW_READ(sc, ATW_STSR);
2747
2748 if (status)
2749 ATW_WRITE(sc, ATW_STSR, status);
2750
2751 #ifdef ATW_DEBUG
2752 #define PRINTINTR(flag) do { \
2753 if ((status & flag) != 0) { \
2754 printf("%s" #flag, delim); \
2755 delim = ","; \
2756 } \
2757 } while (0)
2758
2759 if (atw_debug > 1 && status) {
2760 const char *delim = "<";
2761
2762 printf("%s: reg[STSR] = %x",
2763 sc->sc_dev.dv_xname, status);
2764
2765 PRINTINTR(ATW_INTR_FBE);
2766 PRINTINTR(ATW_INTR_LINKOFF);
2767 PRINTINTR(ATW_INTR_LINKON);
2768 PRINTINTR(ATW_INTR_RCI);
2769 PRINTINTR(ATW_INTR_RDU);
2770 PRINTINTR(ATW_INTR_REIS);
2771 PRINTINTR(ATW_INTR_RPS);
2772 PRINTINTR(ATW_INTR_TCI);
2773 PRINTINTR(ATW_INTR_TDU);
2774 PRINTINTR(ATW_INTR_TLT);
2775 PRINTINTR(ATW_INTR_TPS);
2776 PRINTINTR(ATW_INTR_TRT);
2777 PRINTINTR(ATW_INTR_TUF);
2778 PRINTINTR(ATW_INTR_BCNTC);
2779 PRINTINTR(ATW_INTR_ATIME);
2780 PRINTINTR(ATW_INTR_TBTT);
2781 PRINTINTR(ATW_INTR_TSCZ);
2782 PRINTINTR(ATW_INTR_TSFTF);
2783 printf(">\n");
2784 }
2785 #undef PRINTINTR
2786 #endif /* ATW_DEBUG */
2787
2788 if ((status & sc->sc_inten) == 0)
2789 break;
2790
2791 handled = 1;
2792
2793 rxstatus = status & sc->sc_rxint_mask;
2794 txstatus = status & sc->sc_txint_mask;
2795 linkstatus = status & sc->sc_linkint_mask;
2796
2797 if (linkstatus) {
2798 atw_linkintr(sc, linkstatus);
2799 }
2800
2801 if (rxstatus) {
2802 /* Grab any new packets. */
2803 atw_rxintr(sc);
2804
2805 if (rxstatus & ATW_INTR_RDU) {
2806 printf("%s: receive ring overrun\n",
2807 sc->sc_dev.dv_xname);
2808 /* Get the receive process going again. */
2809 ATW_WRITE(sc, ATW_RDR, 0x1);
2810 break;
2811 }
2812 }
2813
2814 if (txstatus) {
2815 /* Sweep up transmit descriptors. */
2816 atw_txintr(sc);
2817
2818 if (txstatus & ATW_INTR_TLT)
2819 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2820 sc->sc_dev.dv_xname));
2821
2822 if (txstatus & ATW_INTR_TRT)
2823 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2824 sc->sc_dev.dv_xname));
2825
2826 /* If Tx under-run, increase our transmit threshold
2827 * if another is available.
2828 */
2829 txthresh = sc->sc_txthresh + 1;
2830 if ((txstatus & ATW_INTR_TUF) &&
2831 sc->sc_txth[txthresh].txth_name != NULL) {
2832 /* Idle the transmit process. */
2833 atw_idle(sc, ATW_NAR_ST);
2834
2835 sc->sc_txthresh = txthresh;
2836 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2837 sc->sc_opmode |=
2838 sc->sc_txth[txthresh].txth_opmode;
2839 printf("%s: transmit underrun; new "
2840 "threshold: %s\n", sc->sc_dev.dv_xname,
2841 sc->sc_txth[txthresh].txth_name);
2842
2843 /* Set the new threshold and restart
2844 * the transmit process.
2845 */
2846 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2847 DELAY(atw_nar_delay);
2848 ATW_WRITE(sc, ATW_RDR, 0x1);
2849 /* XXX Log every Nth underrun from
2850 * XXX now on?
2851 */
2852 }
2853 }
2854
2855 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2856 if (status & ATW_INTR_TPS)
2857 printf("%s: transmit process stopped\n",
2858 sc->sc_dev.dv_xname);
2859 if (status & ATW_INTR_RPS)
2860 printf("%s: receive process stopped\n",
2861 sc->sc_dev.dv_xname);
2862 (void)atw_init(ifp);
2863 break;
2864 }
2865
2866 if (status & ATW_INTR_FBE) {
2867 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2868 (void)atw_init(ifp);
2869 break;
2870 }
2871
2872 /*
2873 * Not handled:
2874 *
2875 * Transmit buffer unavailable -- normal
2876 * condition, nothing to do, really.
2877 *
2878 * Early receive interrupt -- not available on
2879 * all chips, we just use RI. We also only
2880 * use single-segment receive DMA, so this
2881 * is mostly useless.
2882 *
2883 * TBD others
2884 */
2885 }
2886
2887 /* Try to get more packets going. */
2888 atw_start(ifp);
2889
2890 return (handled);
2891 }
2892
2893 /*
2894 * atw_idle:
2895 *
2896 * Cause the transmit and/or receive processes to go idle.
2897 *
2898 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2899 * process in STSR if I clear SR or ST after the process has already
2900 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2901 * do not seem to be too reliable. Perhaps I have the sense of the
2902 * Rx bits switched with the Tx bits?
2903 */
2904 void
2905 atw_idle(struct atw_softc *sc, u_int32_t bits)
2906 {
2907 u_int32_t ackmask = 0, opmode, stsr, test0;
2908 int i, s;
2909
2910 s = splnet();
2911
2912 opmode = sc->sc_opmode & ~bits;
2913
2914 if (bits & ATW_NAR_SR)
2915 ackmask |= ATW_INTR_RPS;
2916
2917 if (bits & ATW_NAR_ST) {
2918 ackmask |= ATW_INTR_TPS;
2919 /* set ATW_NAR_HF to flush TX FIFO. */
2920 opmode |= ATW_NAR_HF;
2921 }
2922
2923 ATW_WRITE(sc, ATW_NAR, opmode);
2924 DELAY(atw_nar_delay);
2925
2926 for (i = 0; i < 1000; i++) {
2927 stsr = ATW_READ(sc, ATW_STSR);
2928 if ((stsr & ackmask) == ackmask)
2929 break;
2930 DELAY(10);
2931 }
2932
2933 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2934
2935 if ((stsr & ackmask) == ackmask)
2936 goto out;
2937
2938 test0 = ATW_READ(sc, ATW_TEST0);
2939
2940 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2941 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2942 printf("%s: transmit process not idle [%s]\n",
2943 sc->sc_dev.dv_xname,
2944 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2945 printf("%s: bits %08x test0 %08x stsr %08x\n",
2946 sc->sc_dev.dv_xname, bits, test0, stsr);
2947 }
2948
2949 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2950 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2951 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2952 sc->sc_dev.dv_xname,
2953 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2954 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2955 sc->sc_dev.dv_xname, bits, test0, stsr));
2956 }
2957 out:
2958 if ((bits & ATW_NAR_ST) != 0)
2959 atw_txdrain(sc);
2960 splx(s);
2961 return;
2962 }
2963
2964 /*
2965 * atw_linkintr:
2966 *
2967 * Helper; handle link-status interrupts.
2968 */
2969 void
2970 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2971 {
2972 struct ieee80211com *ic = &sc->sc_ic;
2973
2974 if (ic->ic_state != IEEE80211_S_RUN)
2975 return;
2976
2977 if (linkstatus & ATW_INTR_LINKON) {
2978 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2979 sc->sc_rescan_timer = 0;
2980 } else if (linkstatus & ATW_INTR_LINKOFF) {
2981 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2982 if (ic->ic_opmode != IEEE80211_M_STA)
2983 return;
2984 sc->sc_rescan_timer = 3;
2985 ic->ic_if.if_timer = 1;
2986 }
2987 }
2988
2989 static __inline int
2990 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame *wh)
2991 {
2992 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
2993 return 0;
2994 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
2995 return 0;
2996 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
2997 }
2998
2999 /*
3000 * atw_rxintr:
3001 *
3002 * Helper; handle receive interrupts.
3003 */
3004 void
3005 atw_rxintr(struct atw_softc *sc)
3006 {
3007 static int rate_tbl[] = {2, 4, 11, 22, 44};
3008 struct ieee80211com *ic = &sc->sc_ic;
3009 struct ieee80211_node *ni;
3010 struct ieee80211_frame *wh;
3011 struct ifnet *ifp = &ic->ic_if;
3012 struct atw_rxsoft *rxs;
3013 struct mbuf *m;
3014 u_int32_t rxstat;
3015 int i, len, rate, rate0;
3016 u_int32_t rssi, rssi0;
3017
3018 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3019 rxs = &sc->sc_rxsoft[i];
3020
3021 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3022
3023 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3024 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3025 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3026
3027 if (rxstat & ATW_RXSTAT_OWN)
3028 break; /* We have processed all receive buffers. */
3029
3030 DPRINTF3(sc,
3031 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3032 sc->sc_dev.dv_xname,
3033 rxstat, rssi0,
3034 le32toh(sc->sc_rxdescs[i].ar_buf1),
3035 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3036
3037 /*
3038 * Make sure the packet fits in one buffer. This should
3039 * always be the case.
3040 */
3041 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3042 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3043 printf("%s: incoming packet spilled, resetting\n",
3044 sc->sc_dev.dv_xname);
3045 (void)atw_init(ifp);
3046 return;
3047 }
3048
3049 /*
3050 * If an error occurred, update stats, clear the status
3051 * word, and leave the packet buffer in place. It will
3052 * simply be reused the next time the ring comes around.
3053 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3054 * error.
3055 */
3056
3057 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3058 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3059 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3060 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3061 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3062 ATW_RXSTAT_ICVE)) != 0)) {
3063 #define PRINTERR(bit, str) \
3064 if (rxstat & (bit)) \
3065 printf("%s: receive error: %s\n", \
3066 sc->sc_dev.dv_xname, str)
3067 ifp->if_ierrors++;
3068 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3069 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3070 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3071 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3072 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3073 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3074 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3075 #undef PRINTERR
3076 ATW_INIT_RXDESC(sc, i);
3077 continue;
3078 }
3079
3080 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3081 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3082
3083 /*
3084 * No errors; receive the packet. Note the ADM8211
3085 * includes the CRC in promiscuous mode.
3086 */
3087 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3088
3089 /*
3090 * Allocate a new mbuf cluster. If that fails, we are
3091 * out of memory, and must drop the packet and recycle
3092 * the buffer that's already attached to this descriptor.
3093 */
3094 m = rxs->rxs_mbuf;
3095 if (atw_add_rxbuf(sc, i) != 0) {
3096 ifp->if_ierrors++;
3097 ATW_INIT_RXDESC(sc, i);
3098 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3099 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3100 continue;
3101 }
3102
3103 ifp->if_ipackets++;
3104 if (sc->sc_opmode & ATW_NAR_PR)
3105 m->m_flags |= M_HASFCS;
3106 m->m_pkthdr.rcvif = ifp;
3107 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3108
3109 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3110 rate = 0;
3111 else
3112 rate = rate_tbl[rate0];
3113
3114 /* The RSSI comes straight from a register in the
3115 * baseband processor. I know that for the RF3000,
3116 * the RSSI register also contains the antenna-selection
3117 * bits. Mask those off.
3118 *
3119 * TBD Treat other basebands.
3120 */
3121 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3122 rssi = rssi0 & RF3000_RSSI_MASK;
3123 else
3124 rssi = rssi0;
3125
3126 #if NBPFILTER > 0
3127 /* Pass this up to any BPF listeners. */
3128 if (sc->sc_radiobpf != NULL) {
3129 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3130
3131 tap->ar_rate = rate;
3132 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3133 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3134
3135 /* TBD verify units are dB */
3136 tap->ar_antsignal = (int)rssi;
3137 /* TBD tap->ar_flags */
3138
3139 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3140 tap->ar_ihdr.it_len, m);
3141 }
3142 #endif /* NPBFILTER > 0 */
3143
3144 wh = mtod(m, struct ieee80211_frame *);
3145 ni = ieee80211_find_rxnode(ic, wh);
3146 if (atw_hw_decrypted(sc, wh))
3147 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3148 ieee80211_input(ifp, m, ni, (int)rssi, 0);
3149 /*
3150 * The frame may have caused the node to be marked for
3151 * reclamation (e.g. in response to a DEAUTH message)
3152 * so use free_node here instead of unref_node.
3153 */
3154 if (ni == ic->ic_bss)
3155 ieee80211_unref_node(&ni);
3156 else
3157 ieee80211_free_node(ic, ni);
3158 }
3159
3160 /* Update the receive pointer. */
3161 sc->sc_rxptr = i;
3162 }
3163
3164 /*
3165 * atw_txintr:
3166 *
3167 * Helper; handle transmit interrupts.
3168 */
3169 void
3170 atw_txintr(struct atw_softc *sc)
3171 {
3172 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3173 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3174 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3175 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3176
3177 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3178 struct ifnet *ifp = &sc->sc_ic.ic_if;
3179 struct atw_txsoft *txs;
3180 u_int32_t txstat;
3181
3182 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3183 sc->sc_dev.dv_xname, sc->sc_flags));
3184
3185 ifp->if_flags &= ~IFF_OACTIVE;
3186
3187 /*
3188 * Go through our Tx list and free mbufs for those
3189 * frames that have been transmitted.
3190 */
3191 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3192 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3193 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3194
3195 #ifdef ATW_DEBUG
3196 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3197 int i;
3198 printf(" txsoft %p transmit chain:\n", txs);
3199 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3200 txs->txs_ndescs - 1,
3201 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3202 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3203 printf(" descriptor %d:\n", i);
3204 printf(" at_status: 0x%08x\n",
3205 le32toh(sc->sc_txdescs[i].at_stat));
3206 printf(" at_flags: 0x%08x\n",
3207 le32toh(sc->sc_txdescs[i].at_flags));
3208 printf(" at_buf1: 0x%08x\n",
3209 le32toh(sc->sc_txdescs[i].at_buf1));
3210 printf(" at_buf2: 0x%08x\n",
3211 le32toh(sc->sc_txdescs[i].at_buf2));
3212 if (i == txs->txs_lastdesc)
3213 break;
3214 }
3215 }
3216 #endif
3217
3218 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3219 if (txstat & ATW_TXSTAT_OWN)
3220 break;
3221
3222 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3223
3224 sc->sc_txfree += txs->txs_ndescs;
3225
3226 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3227 0, txs->txs_dmamap->dm_mapsize,
3228 BUS_DMASYNC_POSTWRITE);
3229 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3230 m_freem(txs->txs_mbuf);
3231 txs->txs_mbuf = NULL;
3232
3233 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3234
3235 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3236 (txstat & TXSTAT_ERRMASK) != 0) {
3237 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3238 txstat_buf, sizeof(txstat_buf));
3239 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3240 txstat_buf,
3241 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3242 }
3243
3244 /*
3245 * Check for errors and collisions.
3246 */
3247 if (txstat & ATW_TXSTAT_TUF)
3248 sc->sc_stats.ts_tx_tuf++;
3249 if (txstat & ATW_TXSTAT_TLT)
3250 sc->sc_stats.ts_tx_tlt++;
3251 if (txstat & ATW_TXSTAT_TRT)
3252 sc->sc_stats.ts_tx_trt++;
3253 if (txstat & ATW_TXSTAT_TRO)
3254 sc->sc_stats.ts_tx_tro++;
3255 if (txstat & ATW_TXSTAT_SOFBR) {
3256 sc->sc_stats.ts_tx_sofbr++;
3257 }
3258
3259 if ((txstat & ATW_TXSTAT_ES) == 0)
3260 ifp->if_collisions +=
3261 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3262 else
3263 ifp->if_oerrors++;
3264
3265 ifp->if_opackets++;
3266 }
3267
3268 /*
3269 * If there are no more pending transmissions, cancel the watchdog
3270 * timer.
3271 */
3272 if (txs == NULL)
3273 sc->sc_tx_timer = 0;
3274 #undef TXSTAT_ERRMASK
3275 #undef TXSTAT_FMT
3276 }
3277
3278 /*
3279 * atw_watchdog: [ifnet interface function]
3280 *
3281 * Watchdog timer handler.
3282 */
3283 void
3284 atw_watchdog(struct ifnet *ifp)
3285 {
3286 struct atw_softc *sc = ifp->if_softc;
3287 struct ieee80211com *ic = &sc->sc_ic;
3288
3289 ifp->if_timer = 0;
3290 if (ATW_IS_ENABLED(sc) == 0)
3291 return;
3292
3293 if (sc->sc_rescan_timer) {
3294 if (--sc->sc_rescan_timer == 0)
3295 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3296 }
3297 if (sc->sc_tx_timer) {
3298 if (--sc->sc_tx_timer == 0 &&
3299 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3300 printf("%s: transmit timeout\n", ifp->if_xname);
3301 ifp->if_oerrors++;
3302 (void)atw_init(ifp);
3303 atw_start(ifp);
3304 }
3305 }
3306 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3307 ifp->if_timer = 1;
3308 ieee80211_watchdog(ifp);
3309 }
3310
3311 /* Compute the 802.11 Duration field and the PLCP Length fields for
3312 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3313 * Write the fields to the ADM8211 Tx header, frm.
3314 *
3315 * TBD use the fragmentation threshold to find the right duration for
3316 * the first & last fragments.
3317 *
3318 * TBD make certain of the duration fields applied by the ADM8211 to each
3319 * fragment. I think that the ADM8211 knows how to subtract the CTS
3320 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3321 * I also think that the ADM8211 does *some* arithmetic for us, because
3322 * otherwise I think we would have to set a first duration for CTS/first
3323 * fragment, a second duration for fragments between the first and the
3324 * last, and a third duration for the last fragment.
3325 *
3326 * TBD make certain that duration fields reflect addition of FCS/WEP
3327 * and correct duration arithmetic as necessary.
3328 */
3329 static void
3330 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3331 int len)
3332 {
3333 int remainder;
3334
3335 /* deal also with encrypted fragments */
3336 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3337 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3338 sc->sc_dev.dv_xname));
3339 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3340 IEEE80211_WEP_CRCLEN;
3341 }
3342
3343 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3344 * duration (XXX added by MAC?).
3345 */
3346 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3347 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3348
3349 if (rate <= 4)
3350 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3351 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3352 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3353 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3354 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3355 else
3356 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3357 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3358 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3359 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3360 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3361
3362 /* lengthen duration if long preamble */
3363 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3364 frm->atw_head_dur +=
3365 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3366 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3367 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3368 IEEE80211_DUR_DS_FAST_PLCPHDR);
3369
3370 if (remainder != 0)
3371 frm->atw_head_dur++;
3372
3373 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3374 (rate == 2 || rate == 4)) {
3375 /* derived from Linux: how could this be right? */
3376 frm->atw_head_plcplen = frm->atw_head_dur;
3377 } else {
3378 frm->atw_head_plcplen = (16 * len) / rate;
3379 remainder = (80 * len) % (rate * 5);
3380
3381 if (remainder != 0) {
3382 frm->atw_head_plcplen++;
3383
3384 /* XXX magic */
3385 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3386 rate == 22 && remainder <= 30)
3387 frm->atw_head_plcplen |= 0x8000;
3388 }
3389 }
3390 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3391 htole16(frm->atw_head_plcplen);
3392 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3393 }
3394
3395 #ifdef ATW_DEBUG
3396 static void
3397 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3398 {
3399 struct atw_softc *sc = ifp->if_softc;
3400 struct mbuf *m;
3401 int i, noctets = 0;
3402
3403 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3404 m0->m_pkthdr.len);
3405
3406 for (m = m0; m; m = m->m_next) {
3407 if (m->m_len == 0)
3408 continue;
3409 for (i = 0; i < m->m_len; i++) {
3410 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3411 if (++noctets % 24 == 0)
3412 printf("\n");
3413 }
3414 }
3415 printf("%s%s: %d bytes emitted\n",
3416 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3417 }
3418 #endif /* ATW_DEBUG */
3419
3420 /*
3421 * atw_start: [ifnet interface function]
3422 *
3423 * Start packet transmission on the interface.
3424 */
3425 void
3426 atw_start(struct ifnet *ifp)
3427 {
3428 struct atw_softc *sc = ifp->if_softc;
3429 struct ieee80211com *ic = &sc->sc_ic;
3430 struct ieee80211_node *ni;
3431 struct ieee80211_frame *wh;
3432 struct atw_frame *hh;
3433 struct mbuf *m0, *m;
3434 struct atw_txsoft *txs, *last_txs;
3435 struct atw_txdesc *txd;
3436 int do_encrypt, rate;
3437 bus_dmamap_t dmamap;
3438 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3439
3440 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3441 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3442
3443 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3444 return;
3445
3446 /*
3447 * Remember the previous number of free descriptors and
3448 * the first descriptor we'll use.
3449 */
3450 ofree = sc->sc_txfree;
3451 firsttx = sc->sc_txnext;
3452
3453 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3454 sc->sc_dev.dv_xname, ofree, firsttx));
3455
3456 /*
3457 * Loop through the send queue, setting up transmit descriptors
3458 * until we drain the queue, or use up all available transmit
3459 * descriptors.
3460 */
3461 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3462 sc->sc_txfree != 0) {
3463
3464 /*
3465 * Grab a packet off the management queue, if it
3466 * is not empty. Otherwise, from the data queue.
3467 */
3468 IF_DEQUEUE(&ic->ic_mgtq, m0);
3469 if (m0 != NULL) {
3470 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3471 m0->m_pkthdr.rcvif = NULL;
3472 } else {
3473 /* send no data packets until we are associated */
3474 if (ic->ic_state != IEEE80211_S_RUN)
3475 break;
3476 IFQ_DEQUEUE(&ifp->if_snd, m0);
3477 if (m0 == NULL)
3478 break;
3479 #if NBPFILTER > 0
3480 if (ifp->if_bpf != NULL)
3481 bpf_mtap(ifp->if_bpf, m0);
3482 #endif /* NBPFILTER > 0 */
3483 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3484 ifp->if_oerrors++;
3485 break;
3486 }
3487 }
3488
3489 rate = MAX(ieee80211_get_rate(ic), 2);
3490
3491 #if NBPFILTER > 0
3492 /*
3493 * Pass the packet to any BPF listeners.
3494 */
3495 if (ic->ic_rawbpf != NULL)
3496 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3497
3498 if (sc->sc_radiobpf != NULL) {
3499 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3500
3501 tap->at_rate = rate;
3502 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3503 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3504
3505 /* TBD tap->at_flags */
3506
3507 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3508 tap->at_ihdr.it_len, m0);
3509 }
3510 #endif /* NBPFILTER > 0 */
3511
3512 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3513
3514 if (ni != NULL && ni != ic->ic_bss)
3515 ieee80211_free_node(ic, ni);
3516
3517 if (m0 == NULL) {
3518 ifp->if_oerrors++;
3519 break;
3520 }
3521
3522 /* just to make sure. */
3523 m0 = m_pullup(m0, sizeof(struct atw_frame));
3524
3525 if (m0 == NULL) {
3526 ifp->if_oerrors++;
3527 break;
3528 }
3529
3530 hh = mtod(m0, struct atw_frame *);
3531 wh = &hh->atw_ihdr;
3532
3533 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3534
3535 /* Copy everything we need from the 802.11 header:
3536 * Frame Control; address 1, address 3, or addresses
3537 * 3 and 4. NIC fills in BSSID, SA.
3538 */
3539 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3540 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3541 panic("%s: illegal WDS frame",
3542 sc->sc_dev.dv_xname);
3543 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3544 } else
3545 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3546
3547 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3548
3549 /* initialize remaining Tx parameters */
3550 memset(&hh->u, 0, sizeof(hh->u));
3551
3552 hh->atw_rate = rate * 5;
3553 /* XXX this could be incorrect if M_FCS. _encap should
3554 * probably strip FCS just in case it sticks around in
3555 * bridged packets.
3556 */
3557 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3558 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3559 sizeof(struct atw_frame));
3560
3561 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3562 hh->atw_rtylmt = 3;
3563 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3564 if (do_encrypt) {
3565 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3566 hh->atw_keyid = ic->ic_wep_txkey;
3567 }
3568
3569 /* TBD 4-addr frames */
3570 atw_frame_setdurs(sc, hh, rate,
3571 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3572 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3573
3574 /* never fragment multicast frames */
3575 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3576 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3577 } else if (sc->sc_flags & ATWF_RTSCTS) {
3578 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3579 }
3580
3581 #ifdef ATW_DEBUG
3582 hh->atw_fragnum = 0;
3583
3584 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3585 printf("%s: dst = %s, rate = 0x%02x, "
3586 "service = 0x%02x, paylen = 0x%04x\n",
3587 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3588 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3589
3590 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3591 "dur1 = 0x%04x, dur2 = 0x%04x, "
3592 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3593 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3594 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3595 hh->atw_tail_dur, hh->atw_head_dur);
3596
3597 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3598 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3599 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3600 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3601
3602 printf("%s: keyid = %d\n",
3603 sc->sc_dev.dv_xname, hh->atw_keyid);
3604
3605 atw_dump_pkt(ifp, m0);
3606 }
3607 #endif /* ATW_DEBUG */
3608
3609 dmamap = txs->txs_dmamap;
3610
3611 /*
3612 * Load the DMA map. Copy and try (once) again if the packet
3613 * didn't fit in the alloted number of segments.
3614 */
3615 for (first = 1;
3616 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3617 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3618 first = 0) {
3619 MGETHDR(m, M_DONTWAIT, MT_DATA);
3620 if (m == NULL) {
3621 printf("%s: unable to allocate Tx mbuf\n",
3622 sc->sc_dev.dv_xname);
3623 break;
3624 }
3625 if (m0->m_pkthdr.len > MHLEN) {
3626 MCLGET(m, M_DONTWAIT);
3627 if ((m->m_flags & M_EXT) == 0) {
3628 printf("%s: unable to allocate Tx "
3629 "cluster\n", sc->sc_dev.dv_xname);
3630 m_freem(m);
3631 break;
3632 }
3633 }
3634 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3635 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3636 m_freem(m0);
3637 m0 = m;
3638 m = NULL;
3639 }
3640 if (error != 0) {
3641 printf("%s: unable to load Tx buffer, "
3642 "error = %d\n", sc->sc_dev.dv_xname, error);
3643 m_freem(m0);
3644 break;
3645 }
3646
3647 /*
3648 * Ensure we have enough descriptors free to describe
3649 * the packet.
3650 */
3651 if (dmamap->dm_nsegs > sc->sc_txfree) {
3652 /*
3653 * Not enough free descriptors to transmit
3654 * this packet. Unload the DMA map and
3655 * drop the packet. Notify the upper layer
3656 * that there are no more slots left.
3657 *
3658 * XXX We could allocate an mbuf and copy, but
3659 * XXX it is worth it?
3660 */
3661 ifp->if_flags |= IFF_OACTIVE;
3662 bus_dmamap_unload(sc->sc_dmat, dmamap);
3663 m_freem(m0);
3664 break;
3665 }
3666
3667 /*
3668 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3669 */
3670
3671 /* Sync the DMA map. */
3672 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3673 BUS_DMASYNC_PREWRITE);
3674
3675 /* XXX arbitrary retry limit; 8 because I have seen it in
3676 * use already and maybe 0 means "no tries" !
3677 */
3678 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3679
3680 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3681 sc->sc_dev.dv_xname, rate * 5));
3682 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3683
3684 /*
3685 * Initialize the transmit descriptors.
3686 */
3687 for (nexttx = sc->sc_txnext, seg = 0;
3688 seg < dmamap->dm_nsegs;
3689 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3690 /*
3691 * If this is the first descriptor we're
3692 * enqueueing, don't set the OWN bit just
3693 * yet. That could cause a race condition.
3694 * We'll do it below.
3695 */
3696 txd = &sc->sc_txdescs[nexttx];
3697 txd->at_ctl = ctl |
3698 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3699
3700 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3701 txd->at_flags =
3702 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3703 ATW_TXFLAG_TBS1_MASK)) |
3704 ((nexttx == (ATW_NTXDESC - 1))
3705 ? htole32(ATW_TXFLAG_TER) : 0);
3706 lasttx = nexttx;
3707 }
3708
3709 IASSERT(lasttx != -1, ("bad lastx"));
3710 /* Set `first segment' and `last segment' appropriately. */
3711 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3712 htole32(ATW_TXFLAG_FS);
3713 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3714
3715 #ifdef ATW_DEBUG
3716 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3717 printf(" txsoft %p transmit chain:\n", txs);
3718 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3719 printf(" descriptor %d:\n", seg);
3720 printf(" at_ctl: 0x%08x\n",
3721 le32toh(sc->sc_txdescs[seg].at_ctl));
3722 printf(" at_flags: 0x%08x\n",
3723 le32toh(sc->sc_txdescs[seg].at_flags));
3724 printf(" at_buf1: 0x%08x\n",
3725 le32toh(sc->sc_txdescs[seg].at_buf1));
3726 printf(" at_buf2: 0x%08x\n",
3727 le32toh(sc->sc_txdescs[seg].at_buf2));
3728 if (seg == lasttx)
3729 break;
3730 }
3731 }
3732 #endif
3733
3734 /* Sync the descriptors we're using. */
3735 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3736 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3737
3738 /*
3739 * Store a pointer to the packet so we can free it later,
3740 * and remember what txdirty will be once the packet is
3741 * done.
3742 */
3743 txs->txs_mbuf = m0;
3744 txs->txs_firstdesc = sc->sc_txnext;
3745 txs->txs_lastdesc = lasttx;
3746 txs->txs_ndescs = dmamap->dm_nsegs;
3747
3748 /* Advance the tx pointer. */
3749 sc->sc_txfree -= dmamap->dm_nsegs;
3750 sc->sc_txnext = nexttx;
3751
3752 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3753 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3754
3755 last_txs = txs;
3756 }
3757
3758 if (txs == NULL || sc->sc_txfree == 0) {
3759 /* No more slots left; notify upper layer. */
3760 ifp->if_flags |= IFF_OACTIVE;
3761 }
3762
3763 if (sc->sc_txfree != ofree) {
3764 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3765 sc->sc_dev.dv_xname, lasttx, firsttx));
3766 /*
3767 * Cause a transmit interrupt to happen on the
3768 * last packet we enqueued.
3769 */
3770 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3771 ATW_CDTXSYNC(sc, lasttx, 1,
3772 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3773
3774 /*
3775 * The entire packet chain is set up. Give the
3776 * first descriptor to the chip now.
3777 */
3778 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3779 ATW_CDTXSYNC(sc, firsttx, 1,
3780 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3781
3782 /* Wake up the transmitter. */
3783 ATW_WRITE(sc, ATW_TDR, 0x1);
3784
3785 /* Set a watchdog timer in case the chip flakes out. */
3786 sc->sc_tx_timer = 5;
3787 ifp->if_timer = 1;
3788 }
3789 }
3790
3791 /*
3792 * atw_power:
3793 *
3794 * Power management (suspend/resume) hook.
3795 */
3796 void
3797 atw_power(int why, void *arg)
3798 {
3799 struct atw_softc *sc = arg;
3800 struct ifnet *ifp = &sc->sc_ic.ic_if;
3801 int s;
3802
3803 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3804
3805 s = splnet();
3806 switch (why) {
3807 case PWR_STANDBY:
3808 /* XXX do nothing. */
3809 break;
3810 case PWR_SUSPEND:
3811 atw_stop(ifp, 0);
3812 if (sc->sc_power != NULL)
3813 (*sc->sc_power)(sc, why);
3814 break;
3815 case PWR_RESUME:
3816 if (ifp->if_flags & IFF_UP) {
3817 if (sc->sc_power != NULL)
3818 (*sc->sc_power)(sc, why);
3819 atw_init(ifp);
3820 }
3821 break;
3822 case PWR_SOFTSUSPEND:
3823 case PWR_SOFTSTANDBY:
3824 case PWR_SOFTRESUME:
3825 break;
3826 }
3827 splx(s);
3828 }
3829
3830 /*
3831 * atw_ioctl: [ifnet interface function]
3832 *
3833 * Handle control requests from the operator.
3834 */
3835 int
3836 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3837 {
3838 struct atw_softc *sc = ifp->if_softc;
3839 struct ifreq *ifr = (struct ifreq *)data;
3840 int s, error = 0;
3841
3842 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3843 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3844 return ENXIO;
3845
3846 s = splnet();
3847
3848 switch (cmd) {
3849 case SIOCSIFFLAGS:
3850 if (ifp->if_flags & IFF_UP) {
3851 if (ATW_IS_ENABLED(sc)) {
3852 /*
3853 * To avoid rescanning another access point,
3854 * do not call atw_init() here. Instead,
3855 * only reflect media settings.
3856 */
3857 atw_filter_setup(sc);
3858 } else
3859 error = atw_init(ifp);
3860 } else if (ATW_IS_ENABLED(sc))
3861 atw_stop(ifp, 1);
3862 break;
3863 case SIOCADDMULTI:
3864 case SIOCDELMULTI:
3865 error = (cmd == SIOCADDMULTI) ?
3866 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3867 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3868 if (error == ENETRESET) {
3869 if (ATW_IS_ENABLED(sc))
3870 atw_filter_setup(sc); /* do not rescan */
3871 error = 0;
3872 }
3873 break;
3874 default:
3875 error = ieee80211_ioctl(ifp, cmd, data);
3876 if (error == ENETRESET) {
3877 if (ATW_IS_ENABLED(sc))
3878 error = atw_init(ifp);
3879 else
3880 error = 0;
3881 }
3882 break;
3883 }
3884
3885 /* Try to get more packets going. */
3886 if (ATW_IS_ENABLED(sc))
3887 atw_start(ifp);
3888
3889 splx(s);
3890 return (error);
3891 }
3892
3893 static int
3894 atw_media_change(struct ifnet *ifp)
3895 {
3896 int error;
3897
3898 error = ieee80211_media_change(ifp);
3899 if (error == ENETRESET) {
3900 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3901 (IFF_RUNNING|IFF_UP))
3902 atw_init(ifp); /* XXX lose error */
3903 error = 0;
3904 }
3905 return error;
3906 }
3907
3908 static void
3909 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3910 {
3911 struct atw_softc *sc = ifp->if_softc;
3912
3913 if (ATW_IS_ENABLED(sc) == 0) {
3914 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3915 imr->ifm_status = 0;
3916 return;
3917 }
3918 ieee80211_media_status(ifp, imr);
3919 }
3920