atw.c revision 1.78.2.10 1 /* $NetBSD: atw.c,v 1.78.2.10 2005/11/10 14:04:14 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.78.2.10 2005/11/10 14:04:14 skrll Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_netbsd.h>
70 #include <net80211/ieee80211_var.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162
163 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
166 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
167 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
171 static void atw_print_regs(struct atw_softc *, const char *);
172
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 # ifdef ATW_BBPDEBUG
175 static void atw_rf3000_print(struct atw_softc *);
176 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177 # endif /* ATW_BBPDEBUG */
178
179 # ifdef ATW_SYNDEBUG
180 static void atw_si4126_print(struct atw_softc *);
181 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
182 # endif /* ATW_SYNDEBUG */
183
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define DPRINTF(sc, x) /* nothing */
189 #define DPRINTF2(sc, x) /* nothing */
190 #define DPRINTF3(sc, x) /* nothing */
191 #endif
192
193 /* ifnet methods */
194 int atw_init(struct ifnet *);
195 int atw_ioctl(struct ifnet *, u_long, caddr_t);
196 void atw_start(struct ifnet *);
197 void atw_stop(struct ifnet *, int);
198 void atw_watchdog(struct ifnet *);
199
200 /* Device attachment */
201 void atw_attach(struct atw_softc *);
202 int atw_detach(struct atw_softc *);
203
204 /* Rx/Tx process */
205 int atw_add_rxbuf(struct atw_softc *, int);
206 void atw_idle(struct atw_softc *, u_int32_t);
207 void atw_rxdrain(struct atw_softc *);
208 void atw_txdrain(struct atw_softc *);
209
210 /* Device (de)activation and power state */
211 void atw_disable(struct atw_softc *);
212 int atw_enable(struct atw_softc *);
213 void atw_power(int, void *);
214 void atw_reset(struct atw_softc *);
215 void atw_shutdown(void *);
216
217 /* Interrupt handlers */
218 void atw_linkintr(struct atw_softc *, u_int32_t);
219 void atw_rxintr(struct atw_softc *);
220 void atw_txintr(struct atw_softc *);
221
222 /* 802.11 state machine */
223 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static void atw_next_scan(void *);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static int atw_tune(struct atw_softc *);
228
229 /* Device initialization */
230 static void atw_bbp_io_init(struct atw_softc *);
231 static void atw_cfp_init(struct atw_softc *);
232 static void atw_cmdr_init(struct atw_softc *);
233 static void atw_ifs_init(struct atw_softc *);
234 static void atw_nar_init(struct atw_softc *);
235 static void atw_response_times_init(struct atw_softc *);
236 static void atw_rf_reset(struct atw_softc *);
237 static void atw_test1_init(struct atw_softc *);
238 static void atw_tofs0_init(struct atw_softc *);
239 static void atw_tofs2_init(struct atw_softc *);
240 static void atw_txlmt_init(struct atw_softc *);
241 static void atw_wcsr_init(struct atw_softc *);
242
243 /* Key management */
244 static int atw_key_alloc(struct ieee80211com *, const struct ieee80211_key *);
245 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
246 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
247 const u_int8_t[IEEE80211_ADDR_LEN]);
248 static void atw_key_update_begin(struct ieee80211com *);
249 static void atw_key_update_end(struct ieee80211com *);
250
251 /* RAM/ROM utilities */
252 static void atw_clear_sram(struct atw_softc *);
253 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
254 static int atw_read_srom(struct atw_softc *);
255
256 /* BSS setup */
257 static void atw_predict_beacon(struct atw_softc *);
258 static void atw_start_beacon(struct atw_softc *, int);
259 static void atw_write_bssid(struct atw_softc *);
260 static void atw_write_ssid(struct atw_softc *);
261 static void atw_write_sup_rates(struct atw_softc *);
262 static void atw_write_wep(struct atw_softc *);
263
264 /* Media */
265 static int atw_media_change(struct ifnet *);
266 static void atw_media_status(struct ifnet *, struct ifmediareq *);
267
268 static void atw_filter_setup(struct atw_softc *);
269
270 /* 802.11 utilities */
271 static void atw_frame_setdurs(struct atw_softc *,
272 struct atw_frame *, int, int);
273 static uint64_t atw_get_tsft(struct atw_softc *);
274 static __inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
275 uint32_t);
276 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
277 static void atw_node_free(struct ieee80211_node *);
278 static void atw_change_ibss(struct atw_softc *);
279
280 /*
281 * Tuner/transceiver/modem
282 */
283 static void atw_bbp_io_enable(struct atw_softc *, int);
284
285 /* RFMD RF3000 Baseband Processor */
286 static int atw_rf3000_init(struct atw_softc *);
287 static int atw_rf3000_tune(struct atw_softc *, u_int);
288 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
289
290 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
291 static void atw_si4126_tune(struct atw_softc *, u_int);
292 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
293
294 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
295 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
296
297 const char *atw_tx_state[] = {
298 "STOPPED",
299 "RUNNING - read descriptor",
300 "RUNNING - transmitting",
301 "RUNNING - filling fifo", /* XXX */
302 "SUSPENDED",
303 "RUNNING -- write descriptor",
304 "RUNNING -- write last descriptor",
305 "RUNNING - fifo full"
306 };
307
308 const char *atw_rx_state[] = {
309 "STOPPED",
310 "RUNNING - read descriptor",
311 "RUNNING - check this packet, pre-fetch next",
312 "RUNNING - wait for reception",
313 "SUSPENDED",
314 "RUNNING - write descriptor",
315 "RUNNING - flush fifo",
316 "RUNNING - fifo drain"
317 };
318
319 int
320 atw_activate(struct device *self, enum devact act)
321 {
322 struct atw_softc *sc = (struct atw_softc *)self;
323 int rv = 0, s;
324
325 s = splnet();
326 switch (act) {
327 case DVACT_ACTIVATE:
328 rv = EOPNOTSUPP;
329 break;
330
331 case DVACT_DEACTIVATE:
332 if_deactivate(&sc->sc_if);
333 break;
334 }
335 splx(s);
336 return rv;
337 }
338
339 /*
340 * atw_enable:
341 *
342 * Enable the ADM8211 chip.
343 */
344 int
345 atw_enable(struct atw_softc *sc)
346 {
347
348 if (ATW_IS_ENABLED(sc) == 0) {
349 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
350 printf("%s: device enable failed\n",
351 sc->sc_dev.dv_xname);
352 return (EIO);
353 }
354 sc->sc_flags |= ATWF_ENABLED;
355 }
356 return (0);
357 }
358
359 /*
360 * atw_disable:
361 *
362 * Disable the ADM8211 chip.
363 */
364 void
365 atw_disable(struct atw_softc *sc)
366 {
367 if (!ATW_IS_ENABLED(sc))
368 return;
369 if (sc->sc_disable != NULL)
370 (*sc->sc_disable)(sc);
371 sc->sc_flags &= ~ATWF_ENABLED;
372 }
373
374 /* Returns -1 on failure. */
375 static int
376 atw_read_srom(struct atw_softc *sc)
377 {
378 struct seeprom_descriptor sd;
379 uint32_t test0, fail_bits;
380
381 (void)memset(&sd, 0, sizeof(sd));
382
383 test0 = ATW_READ(sc, ATW_TEST0);
384
385 switch (sc->sc_rev) {
386 case ATW_REVISION_BA:
387 case ATW_REVISION_CA:
388 fail_bits = ATW_TEST0_EPNE;
389 break;
390 default:
391 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
392 break;
393 }
394 if ((test0 & fail_bits) != 0) {
395 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
396 return -1;
397 }
398
399 switch (test0 & ATW_TEST0_EPTYP_MASK) {
400 case ATW_TEST0_EPTYP_93c66:
401 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
402 sc->sc_sromsz = 512;
403 sd.sd_chip = C56_66;
404 break;
405 case ATW_TEST0_EPTYP_93c46:
406 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
407 sc->sc_sromsz = 128;
408 sd.sd_chip = C46;
409 break;
410 default:
411 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
412 MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
413 return -1;
414 }
415
416 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
417
418 if (sc->sc_srom == NULL) {
419 printf("%s: unable to allocate SROM buffer\n",
420 sc->sc_dev.dv_xname);
421 return -1;
422 }
423
424 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
425
426 /* ADM8211 has a single 32-bit register for controlling the
427 * 93cx6 SROM. Bit SRS enables the serial port. There is no
428 * "ready" bit. The ADM8211 input/output sense is the reverse
429 * of read_seeprom's.
430 */
431 sd.sd_tag = sc->sc_st;
432 sd.sd_bsh = sc->sc_sh;
433 sd.sd_regsize = 4;
434 sd.sd_control_offset = ATW_SPR;
435 sd.sd_status_offset = ATW_SPR;
436 sd.sd_dataout_offset = ATW_SPR;
437 sd.sd_CK = ATW_SPR_SCLK;
438 sd.sd_CS = ATW_SPR_SCS;
439 sd.sd_DI = ATW_SPR_SDO;
440 sd.sd_DO = ATW_SPR_SDI;
441 sd.sd_MS = ATW_SPR_SRS;
442 sd.sd_RDY = 0;
443
444 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
445 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
446 free(sc->sc_srom, M_DEVBUF);
447 return -1;
448 }
449 #ifdef ATW_DEBUG
450 {
451 int i;
452 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
453 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
454 if (((i % 8) == 0) && (i != 0)) {
455 ATW_DPRINTF(("\n\t"));
456 }
457 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
458 }
459 ATW_DPRINTF(("\n"));
460 }
461 #endif /* ATW_DEBUG */
462 return 0;
463 }
464
465 #ifdef ATW_DEBUG
466 static void
467 atw_print_regs(struct atw_softc *sc, const char *where)
468 {
469 #define PRINTREG(sc, reg) \
470 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
471 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
472
473 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
474
475 PRINTREG(sc, ATW_PAR);
476 PRINTREG(sc, ATW_FRCTL);
477 PRINTREG(sc, ATW_TDR);
478 PRINTREG(sc, ATW_WTDP);
479 PRINTREG(sc, ATW_RDR);
480 PRINTREG(sc, ATW_WRDP);
481 PRINTREG(sc, ATW_RDB);
482 PRINTREG(sc, ATW_CSR3A);
483 PRINTREG(sc, ATW_TDBD);
484 PRINTREG(sc, ATW_TDBP);
485 PRINTREG(sc, ATW_STSR);
486 PRINTREG(sc, ATW_CSR5A);
487 PRINTREG(sc, ATW_NAR);
488 PRINTREG(sc, ATW_CSR6A);
489 PRINTREG(sc, ATW_IER);
490 PRINTREG(sc, ATW_CSR7A);
491 PRINTREG(sc, ATW_LPC);
492 PRINTREG(sc, ATW_TEST1);
493 PRINTREG(sc, ATW_SPR);
494 PRINTREG(sc, ATW_TEST0);
495 PRINTREG(sc, ATW_WCSR);
496 PRINTREG(sc, ATW_WPDR);
497 PRINTREG(sc, ATW_GPTMR);
498 PRINTREG(sc, ATW_GPIO);
499 PRINTREG(sc, ATW_BBPCTL);
500 PRINTREG(sc, ATW_SYNCTL);
501 PRINTREG(sc, ATW_PLCPHD);
502 PRINTREG(sc, ATW_MMIWADDR);
503 PRINTREG(sc, ATW_MMIRADDR1);
504 PRINTREG(sc, ATW_MMIRADDR2);
505 PRINTREG(sc, ATW_TXBR);
506 PRINTREG(sc, ATW_CSR15A);
507 PRINTREG(sc, ATW_ALCSTAT);
508 PRINTREG(sc, ATW_TOFS2);
509 PRINTREG(sc, ATW_CMDR);
510 PRINTREG(sc, ATW_PCIC);
511 PRINTREG(sc, ATW_PMCSR);
512 PRINTREG(sc, ATW_PAR0);
513 PRINTREG(sc, ATW_PAR1);
514 PRINTREG(sc, ATW_MAR0);
515 PRINTREG(sc, ATW_MAR1);
516 PRINTREG(sc, ATW_ATIMDA0);
517 PRINTREG(sc, ATW_ABDA1);
518 PRINTREG(sc, ATW_BSSID0);
519 PRINTREG(sc, ATW_TXLMT);
520 PRINTREG(sc, ATW_MIBCNT);
521 PRINTREG(sc, ATW_BCNT);
522 PRINTREG(sc, ATW_TSFTH);
523 PRINTREG(sc, ATW_TSC);
524 PRINTREG(sc, ATW_SYNRF);
525 PRINTREG(sc, ATW_BPLI);
526 PRINTREG(sc, ATW_CAP0);
527 PRINTREG(sc, ATW_CAP1);
528 PRINTREG(sc, ATW_RMD);
529 PRINTREG(sc, ATW_CFPP);
530 PRINTREG(sc, ATW_TOFS0);
531 PRINTREG(sc, ATW_TOFS1);
532 PRINTREG(sc, ATW_IFST);
533 PRINTREG(sc, ATW_RSPT);
534 PRINTREG(sc, ATW_TSFTL);
535 PRINTREG(sc, ATW_WEPCTL);
536 PRINTREG(sc, ATW_WESK);
537 PRINTREG(sc, ATW_WEPCNT);
538 PRINTREG(sc, ATW_MACTEST);
539 PRINTREG(sc, ATW_FER);
540 PRINTREG(sc, ATW_FEMR);
541 PRINTREG(sc, ATW_FPSR);
542 PRINTREG(sc, ATW_FFER);
543 #undef PRINTREG
544 }
545 #endif /* ATW_DEBUG */
546
547 /*
548 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
549 */
550 void
551 atw_attach(struct atw_softc *sc)
552 {
553 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
554 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
555 };
556 struct ieee80211com *ic = &sc->sc_ic;
557 struct ifnet *ifp = &sc->sc_if;
558 int country_code, error, i, nrate, srom_major;
559 u_int32_t reg;
560 static const char *type_strings[] = {"Intersil (not supported)",
561 "RFMD", "Marvel (not supported)"};
562
563 sc->sc_txth = atw_txthresh_tab_lo;
564
565 SIMPLEQ_INIT(&sc->sc_txfreeq);
566 SIMPLEQ_INIT(&sc->sc_txdirtyq);
567
568 #ifdef ATW_DEBUG
569 atw_print_regs(sc, "atw_attach");
570 #endif /* ATW_DEBUG */
571
572 /*
573 * Allocate the control data structures, and create and load the
574 * DMA map for it.
575 */
576 if ((error = bus_dmamem_alloc(sc->sc_dmat,
577 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
578 1, &sc->sc_cdnseg, 0)) != 0) {
579 printf("%s: unable to allocate control data, error = %d\n",
580 sc->sc_dev.dv_xname, error);
581 goto fail_0;
582 }
583
584 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
585 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
586 BUS_DMA_COHERENT)) != 0) {
587 printf("%s: unable to map control data, error = %d\n",
588 sc->sc_dev.dv_xname, error);
589 goto fail_1;
590 }
591
592 if ((error = bus_dmamap_create(sc->sc_dmat,
593 sizeof(struct atw_control_data), 1,
594 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
595 printf("%s: unable to create control data DMA map, "
596 "error = %d\n", sc->sc_dev.dv_xname, error);
597 goto fail_2;
598 }
599
600 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
601 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
602 0)) != 0) {
603 printf("%s: unable to load control data DMA map, error = %d\n",
604 sc->sc_dev.dv_xname, error);
605 goto fail_3;
606 }
607
608 /*
609 * Create the transmit buffer DMA maps.
610 */
611 sc->sc_ntxsegs = ATW_NTXSEGS;
612 for (i = 0; i < ATW_TXQUEUELEN; i++) {
613 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
614 sc->sc_ntxsegs, MCLBYTES, 0, 0,
615 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
616 printf("%s: unable to create tx DMA map %d, "
617 "error = %d\n", sc->sc_dev.dv_xname, i, error);
618 goto fail_4;
619 }
620 }
621
622 /*
623 * Create the receive buffer DMA maps.
624 */
625 for (i = 0; i < ATW_NRXDESC; i++) {
626 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
627 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
628 printf("%s: unable to create rx DMA map %d, "
629 "error = %d\n", sc->sc_dev.dv_xname, i, error);
630 goto fail_5;
631 }
632 }
633 for (i = 0; i < ATW_NRXDESC; i++) {
634 sc->sc_rxsoft[i].rxs_mbuf = NULL;
635 }
636
637 switch (sc->sc_rev) {
638 case ATW_REVISION_AB:
639 case ATW_REVISION_AF:
640 sc->sc_sramlen = ATW_SRAM_A_SIZE;
641 break;
642 case ATW_REVISION_BA:
643 case ATW_REVISION_CA:
644 sc->sc_sramlen = ATW_SRAM_B_SIZE;
645 break;
646 }
647
648 /* Reset the chip to a known state. */
649 atw_reset(sc);
650
651 if (atw_read_srom(sc) == -1)
652 return;
653
654 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
655 ATW_SR_RFTYPE_MASK);
656
657 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
658 ATW_SR_BBPTYPE_MASK);
659
660 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
661 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
662 return;
663 }
664 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
665 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
666 return;
667 }
668
669 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
670 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
671
672 /* XXX There exists a Linux driver which seems to use RFType = 0 for
673 * MARVEL. My bug, or theirs?
674 */
675
676 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
677
678 switch (sc->sc_rftype) {
679 case ATW_RFTYPE_INTERSIL:
680 reg |= ATW_SYNCTL_CS1;
681 break;
682 case ATW_RFTYPE_RFMD:
683 reg |= ATW_SYNCTL_CS0;
684 break;
685 case ATW_RFTYPE_MARVEL:
686 break;
687 }
688
689 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
690 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
691
692 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
693
694 switch (sc->sc_bbptype) {
695 case ATW_BBPTYPE_INTERSIL:
696 reg |= ATW_BBPCTL_TWI;
697 break;
698 case ATW_BBPTYPE_RFMD:
699 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
700 ATW_BBPCTL_CCA_ACTLO;
701 break;
702 case ATW_BBPTYPE_MARVEL:
703 break;
704 case ATW_C_BBPTYPE_RFMD:
705 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
706 sc->sc_dev.dv_xname);
707 break;
708 }
709
710 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
711 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
712
713 /*
714 * From this point forward, the attachment cannot fail. A failure
715 * before this point releases all resources that may have been
716 * allocated.
717 */
718 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
719
720 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
721 htole16(sc->sc_srom[ATW_SR_MAC00]),
722 htole16(sc->sc_srom[ATW_SR_MAC01]),
723 htole16(sc->sc_srom[ATW_SR_MAC10])));
724
725 srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
726 ATW_SR_MAJOR_MASK);
727
728 if (srom_major < 2)
729 sc->sc_rf3000_options1 = 0;
730 else if (sc->sc_rev == ATW_REVISION_BA) {
731 sc->sc_rf3000_options1 =
732 MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
733 ATW_SR_CR28_MASK);
734 } else
735 sc->sc_rf3000_options1 = 0;
736
737 sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
738 ATW_SR_CR29_MASK);
739
740 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
741 ATW_SR_CTRY_MASK);
742
743 #define ADD_CHANNEL(_ic, _chan) do { \
744 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
745 _ic->ic_channels[_chan].ic_freq = \
746 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
747 } while (0)
748
749 /* Find available channels */
750 switch (country_code) {
751 case COUNTRY_MMK2: /* 1-14 */
752 ADD_CHANNEL(ic, 14);
753 /*FALLTHROUGH*/
754 case COUNTRY_ETSI: /* 1-13 */
755 for (i = 1; i <= 13; i++)
756 ADD_CHANNEL(ic, i);
757 break;
758 case COUNTRY_FCC: /* 1-11 */
759 case COUNTRY_IC: /* 1-11 */
760 for (i = 1; i <= 11; i++)
761 ADD_CHANNEL(ic, i);
762 break;
763 case COUNTRY_MMK: /* 14 */
764 ADD_CHANNEL(ic, 14);
765 break;
766 case COUNTRY_FRANCE: /* 10-13 */
767 for (i = 10; i <= 13; i++)
768 ADD_CHANNEL(ic, i);
769 break;
770 default: /* assume channels 10-11 */
771 case COUNTRY_SPAIN: /* 10-11 */
772 for (i = 10; i <= 11; i++)
773 ADD_CHANNEL(ic, i);
774 break;
775 }
776
777 /* Read the MAC address. */
778 reg = ATW_READ(sc, ATW_PAR0);
779 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
780 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
781 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
782 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
783 reg = ATW_READ(sc, ATW_PAR1);
784 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
785 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
786
787 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
788 printf(" could not get mac address, attach failed\n");
789 return;
790 }
791
792 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
793
794 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
795 ifp->if_softc = sc;
796 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
797 IFF_NOTRAILERS;
798 ifp->if_ioctl = atw_ioctl;
799 ifp->if_start = atw_start;
800 ifp->if_watchdog = atw_watchdog;
801 ifp->if_init = atw_init;
802 ifp->if_stop = atw_stop;
803 IFQ_SET_READY(&ifp->if_snd);
804
805 ic->ic_ifp = ifp;
806 ic->ic_phytype = IEEE80211_T_DS;
807 ic->ic_opmode = IEEE80211_M_STA;
808 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
809 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
810
811 nrate = 0;
812 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
813 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
814 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
815 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
816 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
817
818 /*
819 * Call MI attach routines.
820 */
821
822 if_attach(ifp);
823 ieee80211_ifattach(ic);
824
825 sc->sc_newstate = ic->ic_newstate;
826 ic->ic_newstate = atw_newstate;
827
828 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
829 ic->ic_recv_mgmt = atw_recv_mgmt;
830
831 sc->sc_node_free = ic->ic_node_free;
832 ic->ic_node_free = atw_node_free;
833
834 sc->sc_node_alloc = ic->ic_node_alloc;
835 ic->ic_node_alloc = atw_node_alloc;
836
837 ic->ic_crypto.cs_key_alloc = atw_key_alloc;
838 ic->ic_crypto.cs_key_delete = atw_key_delete;
839 ic->ic_crypto.cs_key_set = atw_key_set;
840 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
841 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
842
843 /* possibly we should fill in our own sc_send_prresp, since
844 * the ADM8211 is probably sending probe responses in ad hoc
845 * mode.
846 */
847
848 /* complete initialization */
849 ieee80211_media_init(ic, atw_media_change, atw_media_status);
850 callout_init(&sc->sc_scan_ch);
851
852 #if NBPFILTER > 0
853 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
854 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
855 #endif
856
857 /*
858 * Make sure the interface is shutdown during reboot.
859 */
860 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
861 if (sc->sc_sdhook == NULL)
862 printf("%s: WARNING: unable to establish shutdown hook\n",
863 sc->sc_dev.dv_xname);
864
865 /*
866 * Add a suspend hook to make sure we come back up after a
867 * resume.
868 */
869 sc->sc_powerhook = powerhook_establish(atw_power, sc);
870 if (sc->sc_powerhook == NULL)
871 printf("%s: WARNING: unable to establish power hook\n",
872 sc->sc_dev.dv_xname);
873
874 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
875 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
876 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
877
878 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
879 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
880 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
881
882 ieee80211_announce(ic);
883 return;
884
885 /*
886 * Free any resources we've allocated during the failed attach
887 * attempt. Do this in reverse order and fall through.
888 */
889 fail_5:
890 for (i = 0; i < ATW_NRXDESC; i++) {
891 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
892 continue;
893 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
894 }
895 fail_4:
896 for (i = 0; i < ATW_TXQUEUELEN; i++) {
897 if (sc->sc_txsoft[i].txs_dmamap == NULL)
898 continue;
899 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
900 }
901 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
902 fail_3:
903 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
904 fail_2:
905 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
906 sizeof(struct atw_control_data));
907 fail_1:
908 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
909 fail_0:
910 return;
911 }
912
913 static struct ieee80211_node *
914 atw_node_alloc(struct ieee80211_node_table *nt)
915 {
916 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
917 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
918
919 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
920 return ni;
921 }
922
923 static void
924 atw_node_free(struct ieee80211_node *ni)
925 {
926 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
927
928 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
929 ether_sprintf(ni->ni_bssid)));
930 (*sc->sc_node_free)(ni);
931 }
932
933
934 static void
935 atw_test1_reset(struct atw_softc *sc)
936 {
937 switch (sc->sc_rev) {
938 case ATW_REVISION_BA:
939 if (1 /* XXX condition on transceiver type */) {
940 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
941 }
942 break;
943 case ATW_REVISION_CA:
944 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
945 break;
946 default:
947 break;
948 }
949 }
950
951 /*
952 * atw_reset:
953 *
954 * Perform a soft reset on the ADM8211.
955 */
956 void
957 atw_reset(struct atw_softc *sc)
958 {
959 int i;
960 uint32_t lpc;
961
962 ATW_WRITE(sc, ATW_NAR, 0x0);
963 DELAY(atw_nar_delay);
964
965 /* Reference driver has a cryptic remark indicating that this might
966 * power-on the chip. I know that it turns off power-saving....
967 */
968 ATW_WRITE(sc, ATW_FRCTL, 0x0);
969
970 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
971
972 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
973 if (ATW_READ(sc, ATW_PAR) == 0)
974 break;
975 DELAY(atw_pseudo_milli);
976 }
977
978 /* ... and then pause 100ms longer for good measure. */
979 DELAY(atw_magic_delay1);
980
981 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
982
983 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
984 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
985
986 atw_test1_reset(sc);
987 /*
988 * Initialize the PCI Access Register.
989 */
990 sc->sc_busmode = ATW_PAR_PBL_8DW;
991
992 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
993 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
994 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
995
996 /* Turn off maximum power saving, etc.
997 *
998 * XXX Following example of reference driver, should I set
999 * an AID of 1? It didn't seem to help....
1000 */
1001 ATW_WRITE(sc, ATW_FRCTL, 0x0);
1002
1003 DELAY(atw_magic_delay2);
1004
1005 /* Recall EEPROM. */
1006 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1007
1008 DELAY(atw_magic_delay4);
1009
1010 lpc = ATW_READ(sc, ATW_LPC);
1011
1012 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1013
1014 /* A reset seems to affect the SRAM contents, so put them into
1015 * a known state.
1016 */
1017 atw_clear_sram(sc);
1018
1019 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1020 }
1021
1022 static void
1023 atw_clear_sram(struct atw_softc *sc)
1024 {
1025 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1026 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1027 /* XXX not for revision 0x20. */
1028 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1029 }
1030
1031 /* TBD atw_init
1032 *
1033 * set MAC based on ic->ic_bss->myaddr
1034 * write WEP keys
1035 * set TX rate
1036 */
1037
1038 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1039 * without receiving a beacon with the preferred BSSID & SSID.
1040 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1041 */
1042 static void
1043 atw_wcsr_init(struct atw_softc *sc)
1044 {
1045 uint32_t wcsr;
1046
1047 wcsr = ATW_READ(sc, ATW_WCSR);
1048 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1049 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1050 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1051
1052 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1053 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1054 }
1055
1056 /* Turn off power management. Set Rx store-and-forward mode. */
1057 static void
1058 atw_cmdr_init(struct atw_softc *sc)
1059 {
1060 uint32_t cmdr;
1061 cmdr = ATW_READ(sc, ATW_CMDR);
1062 cmdr &= ~ATW_CMDR_APM;
1063 cmdr |= ATW_CMDR_RTE;
1064 cmdr &= ~ATW_CMDR_DRT_MASK;
1065 cmdr |= ATW_CMDR_DRT_SF;
1066
1067 ATW_WRITE(sc, ATW_CMDR, cmdr);
1068 }
1069
1070 static void
1071 atw_tofs2_init(struct atw_softc *sc)
1072 {
1073 uint32_t tofs2;
1074 /* XXX this magic can probably be figured out from the RFMD docs */
1075 #ifndef ATW_REFSLAVE
1076 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1077 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1078 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1079 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1080 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1081 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1082 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1083 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1084 #else
1085 /* XXX new magic from reference driver source */
1086 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1087 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1088 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1089 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1090 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1091 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1092 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1093 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1094 #endif
1095 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1096 }
1097
1098 static void
1099 atw_nar_init(struct atw_softc *sc)
1100 {
1101 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1102 }
1103
1104 static void
1105 atw_txlmt_init(struct atw_softc *sc)
1106 {
1107 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1108 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1109 }
1110
1111 static void
1112 atw_test1_init(struct atw_softc *sc)
1113 {
1114 uint32_t test1;
1115
1116 test1 = ATW_READ(sc, ATW_TEST1);
1117 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1118 /* XXX magic 0x1 */
1119 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1120 ATW_WRITE(sc, ATW_TEST1, test1);
1121 }
1122
1123 static void
1124 atw_rf_reset(struct atw_softc *sc)
1125 {
1126 /* XXX this resets an Intersil RF front-end? */
1127 /* TBD condition on Intersil RFType? */
1128 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1129 DELAY(atw_rf_delay1);
1130 ATW_WRITE(sc, ATW_SYNRF, 0);
1131 DELAY(atw_rf_delay2);
1132 }
1133
1134 /* Set 16 TU max duration for the contention-free period (CFP). */
1135 static void
1136 atw_cfp_init(struct atw_softc *sc)
1137 {
1138 uint32_t cfpp;
1139
1140 cfpp = ATW_READ(sc, ATW_CFPP);
1141 cfpp &= ~ATW_CFPP_CFPMD;
1142 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1143 ATW_WRITE(sc, ATW_CFPP, cfpp);
1144 }
1145
1146 static void
1147 atw_tofs0_init(struct atw_softc *sc)
1148 {
1149 /* XXX I guess that the Cardbus clock is 22MHz?
1150 * I am assuming that the role of ATW_TOFS0_USCNT is
1151 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1152 * very clear on this point. It says in the datasheet that it is
1153 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1154 * and 33MHz; maybe this is the way? I see a binary-only driver write
1155 * these values. These values are also the power-on default.
1156 */
1157 ATW_WRITE(sc, ATW_TOFS0,
1158 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1159 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1160 }
1161
1162 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1163 static void
1164 atw_ifs_init(struct atw_softc *sc)
1165 {
1166 uint32_t ifst;
1167 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1168 * Go figure.
1169 */
1170 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1171 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1172 ATW_IFST_SIFS_MASK) |
1173 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1174 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1175
1176 ATW_WRITE(sc, ATW_IFST, ifst);
1177 }
1178
1179 static void
1180 atw_response_times_init(struct atw_softc *sc)
1181 {
1182 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1183 * indicate that the MAC expects at least SIFS + MIRT microseconds
1184 * to pass after it transmits a frame that requires a response;
1185 * it waits at most SIFS + MART microseconds for the response.
1186 * Surely this is not the ACK timeout?
1187 */
1188 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1189 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1190 }
1191
1192 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1193 * engines read and write baseband registers after Rx and before
1194 * Tx, respectively.
1195 */
1196 static void
1197 atw_bbp_io_init(struct atw_softc *sc)
1198 {
1199 uint32_t mmiraddr2;
1200
1201 /* XXX The reference driver does this, but is it *really*
1202 * necessary?
1203 */
1204 switch (sc->sc_rev) {
1205 case ATW_REVISION_AB:
1206 case ATW_REVISION_AF:
1207 mmiraddr2 = 0x0;
1208 break;
1209 default:
1210 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1211 mmiraddr2 &=
1212 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1213 break;
1214 }
1215
1216 switch (sc->sc_bbptype) {
1217 case ATW_BBPTYPE_INTERSIL:
1218 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1219 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1220 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1221 break;
1222 case ATW_BBPTYPE_MARVEL:
1223 /* TBD find out the Marvel settings. */
1224 break;
1225 case ATW_BBPTYPE_RFMD:
1226 default:
1227 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1228 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1229 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1230 break;
1231 }
1232 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1233 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1234 }
1235
1236 /*
1237 * atw_init: [ ifnet interface function ]
1238 *
1239 * Initialize the interface. Must be called at splnet().
1240 */
1241 int
1242 atw_init(struct ifnet *ifp)
1243 {
1244 struct atw_softc *sc = ifp->if_softc;
1245 struct ieee80211com *ic = &sc->sc_ic;
1246 struct atw_txsoft *txs;
1247 struct atw_rxsoft *rxs;
1248 int i, error = 0;
1249
1250 if ((error = atw_enable(sc)) != 0)
1251 goto out;
1252
1253 /*
1254 * Cancel any pending I/O. This also resets.
1255 */
1256 atw_stop(ifp, 0);
1257
1258 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1259 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1260 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
1261 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
1262
1263 atw_wcsr_init(sc);
1264
1265 atw_cmdr_init(sc);
1266
1267 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1268 *
1269 * XXX Set transmit power for ATIM, RTS, Beacon.
1270 */
1271 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1272 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1273
1274 atw_tofs2_init(sc);
1275
1276 atw_nar_init(sc);
1277
1278 atw_txlmt_init(sc);
1279
1280 atw_test1_init(sc);
1281
1282 atw_rf_reset(sc);
1283
1284 atw_cfp_init(sc);
1285
1286 atw_tofs0_init(sc);
1287
1288 atw_ifs_init(sc);
1289
1290 /* XXX Fall asleep after one second of inactivity.
1291 * XXX A frame may only dribble in for 65536us.
1292 */
1293 ATW_WRITE(sc, ATW_RMD,
1294 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1295
1296 atw_response_times_init(sc);
1297
1298 atw_bbp_io_init(sc);
1299
1300 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1301
1302 if ((error = atw_rf3000_init(sc)) != 0)
1303 goto out;
1304
1305 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1306 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1307 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1308
1309 /*
1310 * Initialize the transmit descriptor ring.
1311 */
1312 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1313 for (i = 0; i < ATW_NTXDESC; i++) {
1314 sc->sc_txdescs[i].at_ctl = 0;
1315 /* no transmit chaining */
1316 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1317 sc->sc_txdescs[i].at_buf2 =
1318 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1319 }
1320 /* use ring mode */
1321 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1322 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1323 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1324 sc->sc_txfree = ATW_NTXDESC;
1325 sc->sc_txnext = 0;
1326
1327 /*
1328 * Initialize the transmit job descriptors.
1329 */
1330 SIMPLEQ_INIT(&sc->sc_txfreeq);
1331 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1332 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1333 txs = &sc->sc_txsoft[i];
1334 txs->txs_mbuf = NULL;
1335 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1336 }
1337
1338 /*
1339 * Initialize the receive descriptor and receive job
1340 * descriptor rings.
1341 */
1342 for (i = 0; i < ATW_NRXDESC; i++) {
1343 rxs = &sc->sc_rxsoft[i];
1344 if (rxs->rxs_mbuf == NULL) {
1345 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1346 printf("%s: unable to allocate or map rx "
1347 "buffer %d, error = %d\n",
1348 sc->sc_dev.dv_xname, i, error);
1349 /*
1350 * XXX Should attempt to run with fewer receive
1351 * XXX buffers instead of just failing.
1352 */
1353 atw_rxdrain(sc);
1354 goto out;
1355 }
1356 } else
1357 ATW_INIT_RXDESC(sc, i);
1358 }
1359 sc->sc_rxptr = 0;
1360
1361 /*
1362 * Initialize the interrupt mask and enable interrupts.
1363 */
1364 /* normal interrupts */
1365 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1366 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1367
1368 /* abnormal interrupts */
1369 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1370 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1371 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1372
1373 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1374 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1375 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1376 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1377 ATW_INTR_TRT;
1378
1379 sc->sc_linkint_mask &= sc->sc_inten;
1380 sc->sc_rxint_mask &= sc->sc_inten;
1381 sc->sc_txint_mask &= sc->sc_inten;
1382
1383 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1384 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1385
1386 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1387 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1388
1389 /*
1390 * Give the transmit and receive rings to the ADM8211.
1391 */
1392 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1393 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1394
1395 sc->sc_txthresh = 0;
1396 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1397 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1398
1399 /* common 802.11 configuration */
1400 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1401 switch (ic->ic_opmode) {
1402 case IEEE80211_M_STA:
1403 break;
1404 case IEEE80211_M_AHDEMO: /* XXX */
1405 case IEEE80211_M_IBSS:
1406 ic->ic_flags |= IEEE80211_F_IBSSON;
1407 /*FALLTHROUGH*/
1408 case IEEE80211_M_HOSTAP: /* XXX */
1409 break;
1410 case IEEE80211_M_MONITOR: /* XXX */
1411 break;
1412 }
1413
1414 switch (ic->ic_opmode) {
1415 case IEEE80211_M_AHDEMO:
1416 case IEEE80211_M_HOSTAP:
1417 #ifndef IEEE80211_NO_HOSTAP
1418 ic->ic_bss->ni_intval = ic->ic_lintval;
1419 ic->ic_bss->ni_rssi = 0;
1420 ic->ic_bss->ni_rstamp = 0;
1421 #endif /* !IEEE80211_NO_HOSTAP */
1422 break;
1423 default: /* XXX */
1424 break;
1425 }
1426
1427 sc->sc_wepctl = 0;
1428
1429 atw_write_ssid(sc);
1430 atw_write_sup_rates(sc);
1431 if (ic->ic_caps & IEEE80211_C_WEP)
1432 atw_write_wep(sc);
1433
1434 ic->ic_state = IEEE80211_S_INIT;
1435
1436 /*
1437 * Set the receive filter. This will start the transmit and
1438 * receive processes.
1439 */
1440 atw_filter_setup(sc);
1441
1442 /*
1443 * Start the receive process.
1444 */
1445 ATW_WRITE(sc, ATW_RDR, 0x1);
1446
1447 /*
1448 * Note that the interface is now running.
1449 */
1450 ifp->if_flags |= IFF_RUNNING;
1451 ifp->if_flags &= ~IFF_OACTIVE;
1452
1453 /* send no beacons, yet. */
1454 atw_start_beacon(sc, 0);
1455
1456 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1457 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1458 else
1459 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1460 out:
1461 if (error) {
1462 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1463 ifp->if_timer = 0;
1464 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1465 }
1466 #ifdef ATW_DEBUG
1467 atw_print_regs(sc, "end of init");
1468 #endif /* ATW_DEBUG */
1469
1470 return (error);
1471 }
1472
1473 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1474 * 0: MAC control of RF3000/Si4126.
1475 *
1476 * Applies power, or selects RF front-end? Sets reset condition.
1477 *
1478 * TBD support non-RFMD BBP, non-SiLabs synth.
1479 */
1480 static void
1481 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1482 {
1483 if (enable) {
1484 ATW_WRITE(sc, ATW_SYNRF,
1485 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1486 DELAY(atw_bbp_io_enable_delay);
1487 } else {
1488 ATW_WRITE(sc, ATW_SYNRF, 0);
1489 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1490 }
1491 }
1492
1493 static int
1494 atw_tune(struct atw_softc *sc)
1495 {
1496 int rc;
1497 u_int chan;
1498 struct ieee80211com *ic = &sc->sc_ic;
1499
1500 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1501 if (chan == IEEE80211_CHAN_ANY)
1502 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1503
1504 if (chan == sc->sc_cur_chan)
1505 return 0;
1506
1507 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1508 sc->sc_cur_chan, chan));
1509
1510 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1511
1512 atw_si4126_tune(sc, chan);
1513 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1514 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1515 chan);
1516
1517 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1518 DELAY(atw_nar_delay);
1519 ATW_WRITE(sc, ATW_RDR, 0x1);
1520
1521 if (rc == 0)
1522 sc->sc_cur_chan = chan;
1523
1524 return rc;
1525 }
1526
1527 #ifdef ATW_SYNDEBUG
1528 static void
1529 atw_si4126_print(struct atw_softc *sc)
1530 {
1531 struct ifnet *ifp = &sc->sc_if;
1532 u_int addr, val;
1533
1534 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1535 return;
1536
1537 for (addr = 0; addr <= 8; addr++) {
1538 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1539 if (atw_si4126_read(sc, addr, &val) == 0) {
1540 printf("<unknown> (quitting print-out)\n");
1541 break;
1542 }
1543 printf("%05x\n", val);
1544 }
1545 }
1546 #endif /* ATW_SYNDEBUG */
1547
1548 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1549 *
1550 * The RF/IF synthesizer produces two reference frequencies for
1551 * the RF2948B transceiver. The first frequency the RF2948B requires
1552 * is two times the so-called "intermediate frequency" (IF). Since
1553 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1554 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1555 * frequency required by the transceiver is the radio frequency
1556 * (RF). This is a superheterodyne transceiver; for f(chan) the
1557 * center frequency of the channel we are tuning, RF = f(chan) -
1558 * IF.
1559 *
1560 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1561 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1562 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1563 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1564 */
1565 static void
1566 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1567 {
1568 u_int mhz;
1569 u_int R;
1570 u_int32_t gpio;
1571 u_int16_t gain;
1572
1573 #ifdef ATW_SYNDEBUG
1574 atw_si4126_print(sc);
1575 #endif /* ATW_SYNDEBUG */
1576
1577 if (chan == 14)
1578 mhz = 2484;
1579 else
1580 mhz = 2412 + 5 * (chan - 1);
1581
1582 /* Tune IF to 748MHz to suit the IF LO input of the
1583 * RF2494B, which is 2 x IF. No need to set an IF divider
1584 * because an IF in 526MHz - 952MHz is allowed.
1585 *
1586 * XIN is 44.000MHz, so divide it by two to get allowable
1587 * range of 2-25MHz. SiLabs tells me that this is not
1588 * strictly necessary.
1589 */
1590
1591 if (atw_xindiv2)
1592 R = 44;
1593 else
1594 R = 88;
1595
1596 /* Power-up RF, IF synthesizers. */
1597 atw_si4126_write(sc, SI4126_POWER,
1598 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1599
1600 /* set LPWR, too? */
1601 atw_si4126_write(sc, SI4126_MAIN,
1602 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1603
1604 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1605 * set KP2 to 1.
1606 *
1607 * REFDIF This is different from the reference driver, which
1608 * always sets SI4126_GAIN to 0.
1609 */
1610 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1611
1612 atw_si4126_write(sc, SI4126_GAIN, gain);
1613
1614 /* XIN = 44MHz.
1615 *
1616 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1617 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1618 *
1619 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1620 * so that 1496/88 * 44MHz = 748MHz.
1621 */
1622 atw_si4126_write(sc, SI4126_IFN, 1496);
1623
1624 atw_si4126_write(sc, SI4126_IFR, R);
1625
1626 #ifndef ATW_REFSLAVE
1627 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1628 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1629 * which has no RF1!
1630 */
1631 atw_si4126_write(sc, SI4126_RF1R, R);
1632
1633 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1634 #endif
1635
1636 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1637 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1638 * Now let's multiply it to mhz. So mhz - IF = N.
1639 */
1640 atw_si4126_write(sc, SI4126_RF2R, R);
1641
1642 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1643
1644 /* wait 100us from power-up for RF, IF to settle */
1645 DELAY(100);
1646
1647 gpio = ATW_READ(sc, ATW_GPIO);
1648 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1649 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1650
1651 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1652 /* Set a Prism RF front-end to a special mode for channel 14?
1653 *
1654 * Apparently the SMC2635W needs this, although I don't think
1655 * it has a Prism RF.
1656 */
1657 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1658 }
1659 ATW_WRITE(sc, ATW_GPIO, gpio);
1660
1661 #ifdef ATW_SYNDEBUG
1662 atw_si4126_print(sc);
1663 #endif /* ATW_SYNDEBUG */
1664 }
1665
1666 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1667 * diversity.
1668 *
1669 * !!!
1670 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1671 * !!!
1672 */
1673 static int
1674 atw_rf3000_init(struct atw_softc *sc)
1675 {
1676 int rc = 0;
1677
1678 atw_bbp_io_enable(sc, 1);
1679
1680 /* CCA is acquisition sensitive */
1681 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1682 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1683
1684 if (rc != 0)
1685 goto out;
1686
1687 /* enable diversity */
1688 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1689
1690 if (rc != 0)
1691 goto out;
1692
1693 /* sensible setting from a binary-only driver */
1694 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1695 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1696
1697 if (rc != 0)
1698 goto out;
1699
1700 /* magic from a binary-only driver */
1701 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1702 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1703
1704 if (rc != 0)
1705 goto out;
1706
1707 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1708
1709 if (rc != 0)
1710 goto out;
1711
1712 /* XXX Reference driver remarks that Abocom sets this to 50.
1713 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1714 * in the "reserved" area of register RF3000_OPTIONS1.
1715 */
1716 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1717
1718 if (rc != 0)
1719 goto out;
1720
1721 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1722
1723 if (rc != 0)
1724 goto out;
1725
1726 out:
1727 atw_bbp_io_enable(sc, 0);
1728 return rc;
1729 }
1730
1731 #ifdef ATW_BBPDEBUG
1732 static void
1733 atw_rf3000_print(struct atw_softc *sc)
1734 {
1735 struct ifnet *ifp = &sc->sc_if;
1736 u_int addr, val;
1737
1738 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1739 return;
1740
1741 for (addr = 0x01; addr <= 0x15; addr++) {
1742 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1743 if (atw_rf3000_read(sc, addr, &val) != 0) {
1744 printf("<unknown> (quitting print-out)\n");
1745 break;
1746 }
1747 printf("%08x\n", val);
1748 }
1749 }
1750 #endif /* ATW_BBPDEBUG */
1751
1752 /* Set the power settings on the BBP for channel `chan'. */
1753 static int
1754 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1755 {
1756 int rc = 0;
1757 u_int32_t reg;
1758 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1759
1760 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1761 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1762 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1763
1764 /* odd channels: LSB, even channels: MSB */
1765 if (chan % 2 == 1) {
1766 txpower &= 0xFF;
1767 lpf_cutoff &= 0xFF;
1768 lna_gs_thresh &= 0xFF;
1769 } else {
1770 txpower >>= 8;
1771 lpf_cutoff >>= 8;
1772 lna_gs_thresh >>= 8;
1773 }
1774
1775 #ifdef ATW_BBPDEBUG
1776 atw_rf3000_print(sc);
1777 #endif /* ATW_BBPDEBUG */
1778
1779 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1780 "lna_gs_thresh %02x\n",
1781 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1782
1783 atw_bbp_io_enable(sc, 1);
1784
1785 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1786 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1787 goto out;
1788
1789 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1790 goto out;
1791
1792 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1793 goto out;
1794
1795 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1796
1797 if (rc != 0)
1798 goto out;
1799
1800 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1801
1802 if (rc != 0)
1803 goto out;
1804
1805 #ifdef ATW_BBPDEBUG
1806 atw_rf3000_print(sc);
1807 #endif /* ATW_BBPDEBUG */
1808
1809 out:
1810 atw_bbp_io_enable(sc, 0);
1811
1812 /* set beacon, rts, atim transmit power */
1813 reg = ATW_READ(sc, ATW_PLCPHD);
1814 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1815 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1816 ATW_PLCPHD_SERVICE_MASK);
1817 ATW_WRITE(sc, ATW_PLCPHD, reg);
1818 DELAY(atw_plcphd_delay);
1819
1820 return rc;
1821 }
1822
1823 /* Write a register on the RF3000 baseband processor using the
1824 * registers provided by the ADM8211 for this purpose.
1825 *
1826 * Return 0 on success.
1827 */
1828 static int
1829 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1830 {
1831 u_int32_t reg;
1832 int i;
1833
1834 reg = sc->sc_bbpctl_wr |
1835 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1836 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1837
1838 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1839 ATW_WRITE(sc, ATW_BBPCTL, reg);
1840 DELAY(2 * atw_pseudo_milli);
1841 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1842 break;
1843 }
1844
1845 if (i < 0) {
1846 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1847 return ETIMEDOUT;
1848 }
1849 return 0;
1850 }
1851
1852 /* Read a register on the RF3000 baseband processor using the registers
1853 * the ADM8211 provides for this purpose.
1854 *
1855 * The 7-bit register address is addr. Record the 8-bit data in the register
1856 * in *val.
1857 *
1858 * Return 0 on success.
1859 *
1860 * XXX This does not seem to work. The ADM8211 must require more or
1861 * different magic to read the chip than to write it. Possibly some
1862 * of the magic I have derived from a binary-only driver concerns
1863 * the "chip address" (see the RF3000 manual).
1864 */
1865 #ifdef ATW_BBPDEBUG
1866 static int
1867 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1868 {
1869 u_int32_t reg;
1870 int i;
1871
1872 for (i = 1000; --i >= 0; ) {
1873 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1874 break;
1875 DELAY(100);
1876 }
1877
1878 if (i < 0) {
1879 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1880 sc->sc_dev.dv_xname);
1881 return ETIMEDOUT;
1882 }
1883
1884 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1885
1886 ATW_WRITE(sc, ATW_BBPCTL, reg);
1887
1888 for (i = 1000; --i >= 0; ) {
1889 DELAY(100);
1890 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1891 break;
1892 }
1893
1894 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1895
1896 if (i < 0) {
1897 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1898 sc->sc_dev.dv_xname, reg);
1899 return ETIMEDOUT;
1900 }
1901 if (val != NULL)
1902 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1903 return 0;
1904 }
1905 #endif /* ATW_BBPDEBUG */
1906
1907 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1908 * provided by the ADM8211 for that purpose.
1909 *
1910 * val is 18 bits of data, and val is the 4-bit address of the register.
1911 *
1912 * Return 0 on success.
1913 */
1914 static void
1915 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1916 {
1917 uint32_t bits, mask, reg;
1918 const int nbits = 22;
1919
1920 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1921 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1922
1923 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1924 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1925
1926 reg = ATW_SYNRF_SELSYN;
1927 /* reference driver: reset Si4126 serial bus to initial
1928 * conditions?
1929 */
1930 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1931 ATW_WRITE(sc, ATW_SYNRF, reg);
1932
1933 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1934 if ((bits & mask) != 0)
1935 reg |= ATW_SYNRF_SYNDATA;
1936 else
1937 reg &= ~ATW_SYNRF_SYNDATA;
1938 ATW_WRITE(sc, ATW_SYNRF, reg);
1939 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1940 ATW_WRITE(sc, ATW_SYNRF, reg);
1941 }
1942 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1943 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1944 }
1945
1946 /* Read 18-bit data from the 4-bit address addr in Si4126
1947 * RF synthesizer and write the data to *val. Return 0 on success.
1948 *
1949 * XXX This does not seem to work. The ADM8211 must require more or
1950 * different magic to read the chip than to write it.
1951 */
1952 #ifdef ATW_SYNDEBUG
1953 static int
1954 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1955 {
1956 u_int32_t reg;
1957 int i;
1958
1959 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1960
1961 for (i = 1000; --i >= 0; ) {
1962 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1963 break;
1964 DELAY(100);
1965 }
1966
1967 if (i < 0) {
1968 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1969 sc->sc_dev.dv_xname);
1970 return ETIMEDOUT;
1971 }
1972
1973 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1974
1975 ATW_WRITE(sc, ATW_SYNCTL, reg);
1976
1977 for (i = 1000; --i >= 0; ) {
1978 DELAY(100);
1979 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1980 break;
1981 }
1982
1983 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1984
1985 if (i < 0) {
1986 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1987 sc->sc_dev.dv_xname, reg);
1988 return ETIMEDOUT;
1989 }
1990 if (val != NULL)
1991 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1992 ATW_SYNCTL_DATA_MASK);
1993 return 0;
1994 }
1995 #endif /* ATW_SYNDEBUG */
1996
1997 /* XXX is the endianness correct? test. */
1998 #define atw_calchash(addr) \
1999 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
2000
2001 /*
2002 * atw_filter_setup:
2003 *
2004 * Set the ADM8211's receive filter.
2005 */
2006 static void
2007 atw_filter_setup(struct atw_softc *sc)
2008 {
2009 struct ieee80211com *ic = &sc->sc_ic;
2010 struct ethercom *ec = &sc->sc_ec;
2011 struct ifnet *ifp = &sc->sc_if;
2012 int hash;
2013 u_int32_t hashes[2];
2014 struct ether_multi *enm;
2015 struct ether_multistep step;
2016
2017 /* According to comments in tlp_al981_filter_setup
2018 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2019 * multicast filter to be set while it is running. Hopefully
2020 * the ADM8211 is not the same!
2021 */
2022 if ((ifp->if_flags & IFF_RUNNING) != 0)
2023 atw_idle(sc, ATW_NAR_SR);
2024
2025 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2026
2027 /* XXX in scan mode, do not filter packets. Maybe this is
2028 * unnecessary.
2029 */
2030 if (ic->ic_state == IEEE80211_S_SCAN ||
2031 (ifp->if_flags & IFF_PROMISC) != 0) {
2032 sc->sc_opmode |= ATW_NAR_PR;
2033 goto allmulti;
2034 }
2035
2036 hashes[0] = hashes[1] = 0x0;
2037
2038 /*
2039 * Program the 64-bit multicast hash filter.
2040 */
2041 ETHER_FIRST_MULTI(step, ec, enm);
2042 while (enm != NULL) {
2043 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2044 ETHER_ADDR_LEN) != 0)
2045 goto allmulti;
2046
2047 hash = atw_calchash(enm->enm_addrlo);
2048 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2049 ETHER_NEXT_MULTI(step, enm);
2050 sc->sc_opmode |= ATW_NAR_MM;
2051 }
2052 ifp->if_flags &= ~IFF_ALLMULTI;
2053 goto setit;
2054
2055 allmulti:
2056 sc->sc_opmode |= ATW_NAR_MM;
2057 ifp->if_flags |= IFF_ALLMULTI;
2058 hashes[0] = hashes[1] = 0xffffffff;
2059
2060 setit:
2061 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2062 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2063 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2064 DELAY(atw_nar_delay);
2065
2066 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2067 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2068 }
2069
2070 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2071 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2072 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2073 * no beacon with the preferred BSSID and SSID in the number of
2074 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2075 */
2076 static void
2077 atw_write_bssid(struct atw_softc *sc)
2078 {
2079 struct ieee80211com *ic = &sc->sc_ic;
2080 u_int8_t *bssid;
2081
2082 bssid = ic->ic_bss->ni_bssid;
2083
2084 ATW_WRITE(sc, ATW_BSSID0,
2085 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2086 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2087 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2088 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2089
2090 ATW_WRITE(sc, ATW_ABDA1,
2091 (ATW_READ(sc, ATW_ABDA1) &
2092 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2093 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2094 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2095
2096 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2097 ether_sprintf(sc->sc_bssid)));
2098 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2099
2100 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2101 }
2102
2103 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2104 * 16-bit word.
2105 */
2106 static void
2107 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2108 {
2109 u_int i;
2110 u_int8_t *ptr;
2111
2112 memcpy(&sc->sc_sram[ofs], buf, buflen);
2113
2114 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2115
2116 KASSERT(buflen + ofs <= sc->sc_sramlen);
2117
2118 ptr = &sc->sc_sram[ofs];
2119
2120 for (i = 0; i < buflen; i += 2) {
2121 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2122 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2123 DELAY(atw_writewep_delay);
2124
2125 ATW_WRITE(sc, ATW_WESK,
2126 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2127 DELAY(atw_writewep_delay);
2128 }
2129 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2130
2131 if (sc->sc_if.if_flags & IFF_DEBUG) {
2132 int n_octets = 0;
2133 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2134 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2135 for (i = 0; i < buflen; i++) {
2136 printf(" %02x", ptr[i]);
2137 if (++n_octets % 24 == 0)
2138 printf("\n");
2139 }
2140 if (n_octets % 24 != 0)
2141 printf("\n");
2142 }
2143 }
2144
2145 static int
2146 atw_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
2147 {
2148 int keyix;
2149 #ifdef ATW_DEBUG
2150 struct atw_softc *sc = ic->ic_ifp->if_softc;
2151 #endif
2152
2153 if (&ic->ic_nw_keys[0] <= k && k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])
2154 keyix = k - ic->ic_nw_keys;
2155 else
2156 keyix = IEEE80211_KEYIX_NONE;
2157
2158 DPRINTF(sc, ("%s: alloc key %u\n", __func__, keyix));
2159
2160 return keyix;
2161 }
2162
2163 static int
2164 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2165 {
2166 struct atw_softc *sc = ic->ic_ifp->if_softc;
2167 u_int keyix = k->wk_keyix;
2168
2169 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2170
2171 if (keyix >= IEEE80211_WEP_NKID)
2172 return 0;
2173 if (k->wk_keylen != 0)
2174 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2175
2176 return 1;
2177 }
2178
2179 static int
2180 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2181 const u_int8_t mac[IEEE80211_ADDR_LEN])
2182 {
2183 struct atw_softc *sc = ic->ic_ifp->if_softc;
2184
2185 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2186
2187 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2188 return 0;
2189
2190 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2191
2192 return 1;
2193 }
2194
2195 static void
2196 atw_key_update_begin(struct ieee80211com *ic)
2197 {
2198 #ifdef ATW_DEBUG
2199 struct ifnet *ifp = ic->ic_ifp;
2200 struct atw_softc *sc = ifp->if_softc;
2201 #endif
2202
2203 DPRINTF(sc, ("%s:\n", __func__));
2204 }
2205
2206 static void
2207 atw_key_update_end(struct ieee80211com *ic)
2208 {
2209 struct ifnet *ifp = ic->ic_ifp;
2210 struct atw_softc *sc = ifp->if_softc;
2211
2212 DPRINTF(sc, ("%s:\n", __func__));
2213
2214 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2215 return;
2216 if (ATW_IS_ENABLED(sc) == 0)
2217 return;
2218 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2219 atw_write_wep(sc);
2220 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2221 }
2222
2223 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2224 static void
2225 atw_write_wep(struct atw_softc *sc)
2226 {
2227 struct ieee80211com *ic = &sc->sc_ic;
2228 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2229 u_int8_t buf[IEEE80211_WEP_NKID]
2230 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2231 u_int32_t reg;
2232 int i;
2233
2234 sc->sc_wepctl = 0;
2235 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2236
2237 memset(&buf[0][0], 0, sizeof(buf));
2238
2239 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2240 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2241 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2242 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2243 buf[i][1] = ATW_WEP_ENABLED;
2244 } else {
2245 buf[i][1] = 0;
2246 continue;
2247 }
2248 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2249 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2250 ic->ic_nw_keys[i].wk_keylen - 1);
2251 }
2252
2253 reg = ATW_READ(sc, ATW_MACTEST);
2254 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2255 reg &= ~ATW_MACTEST_KEYID_MASK;
2256 reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2257 ATW_WRITE(sc, ATW_MACTEST, reg);
2258
2259 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2260 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2261
2262 switch (sc->sc_rev) {
2263 case ATW_REVISION_AB:
2264 case ATW_REVISION_AF:
2265 /* Bypass WEP on Rx. */
2266 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2267 break;
2268 default:
2269 break;
2270 }
2271
2272 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2273 sizeof(buf));
2274
2275 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2276 }
2277
2278 static void
2279 atw_change_ibss(struct atw_softc *sc)
2280 {
2281 atw_predict_beacon(sc);
2282 atw_write_bssid(sc);
2283 atw_start_beacon(sc, 1);
2284 }
2285
2286 static void
2287 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2288 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2289 {
2290 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2291
2292 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2293 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2294 return;
2295
2296 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2297
2298 switch (subtype) {
2299 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2300 case IEEE80211_FC0_SUBTYPE_BEACON:
2301 if (ic->ic_opmode != IEEE80211_M_IBSS ||
2302 ic->ic_state != IEEE80211_S_RUN)
2303 break;
2304 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc) &&
2305 ieee80211_ibss_merge(ic, ni) == ENETRESET)
2306 atw_change_ibss(sc);
2307 break;
2308 default:
2309 break;
2310 }
2311 return;
2312 }
2313
2314 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2315 * In ad hoc mode, the SSID is written to the beacons sent by the
2316 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2317 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2318 * indications.
2319 */
2320 static void
2321 atw_write_ssid(struct atw_softc *sc)
2322 {
2323 struct ieee80211com *ic = &sc->sc_ic;
2324 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2325 * it only expects the element length, not its ID.
2326 */
2327 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2328
2329 memset(buf, 0, sizeof(buf));
2330 buf[0] = ic->ic_bss->ni_esslen;
2331 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2332
2333 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2334 roundup(1 + ic->ic_bss->ni_esslen, 2));
2335 }
2336
2337 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2338 * In ad hoc mode, the supported rates are written to beacons sent by the
2339 * ADM8211.
2340 */
2341 static void
2342 atw_write_sup_rates(struct atw_softc *sc)
2343 {
2344 struct ieee80211com *ic = &sc->sc_ic;
2345 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2346 * supported rates
2347 */
2348 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2349
2350 memset(buf, 0, sizeof(buf));
2351
2352 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2353
2354 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2355 ic->ic_bss->ni_rates.rs_nrates);
2356
2357 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2358 }
2359
2360 /* Start/stop sending beacons. */
2361 void
2362 atw_start_beacon(struct atw_softc *sc, int start)
2363 {
2364 struct ieee80211com *ic = &sc->sc_ic;
2365 uint16_t chan;
2366 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2367 size_t len;
2368
2369 if (ATW_IS_ENABLED(sc) == 0)
2370 return;
2371
2372 /* start beacons */
2373 len = sizeof(struct ieee80211_frame) +
2374 8 /* timestamp */ + 2 /* beacon interval */ +
2375 2 /* capability info */ +
2376 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2377 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2378 3 /* DS parameters */ +
2379 IEEE80211_CRC_LEN;
2380
2381 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2382 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2383 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2384
2385 ATW_WRITE(sc, ATW_BCNT, bcnt);
2386 ATW_WRITE(sc, ATW_CAP1, cap1);
2387
2388 if (!start)
2389 return;
2390
2391 /* TBD use ni_capinfo */
2392
2393 capinfo = 0;
2394 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2395 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2396 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2397 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2398
2399 switch (ic->ic_opmode) {
2400 case IEEE80211_M_IBSS:
2401 len += 4; /* IBSS parameters */
2402 capinfo |= IEEE80211_CAPINFO_IBSS;
2403 break;
2404 case IEEE80211_M_HOSTAP:
2405 /* XXX 6-byte minimum TIM */
2406 len += atw_beacon_len_adjust;
2407 capinfo |= IEEE80211_CAPINFO_ESS;
2408 break;
2409 default:
2410 return;
2411 }
2412
2413 /* set listen interval
2414 * XXX do software units agree w/ hardware?
2415 */
2416 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2417 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2418
2419 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
2420
2421 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2422 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2423 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2424
2425 ATW_WRITE(sc, ATW_BCNT, bcnt);
2426 ATW_WRITE(sc, ATW_BPLI, bpli);
2427 ATW_WRITE(sc, ATW_CAP0, cap0);
2428 ATW_WRITE(sc, ATW_CAP1, cap1);
2429
2430 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2431 sc->sc_dev.dv_xname, bcnt));
2432
2433 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2434 sc->sc_dev.dv_xname, cap1));
2435 }
2436
2437 /* Return the 32 lsb of the last TSFT divisible by ival. */
2438 static __inline uint32_t
2439 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2440 {
2441 /* Following the reference driver's lead, I compute
2442 *
2443 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2444 *
2445 * without using 64-bit arithmetic, using the following
2446 * relationship:
2447 *
2448 * (0x100000000 * H + L) % m
2449 * = ((0x100000000 % m) * H + L) % m
2450 * = (((0xffffffff + 1) % m) * H + L) % m
2451 * = ((0xffffffff % m + 1 % m) * H + L) % m
2452 * = ((0xffffffff % m + 1) * H + L) % m
2453 */
2454 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2455 }
2456
2457 static uint64_t
2458 atw_get_tsft(struct atw_softc *sc)
2459 {
2460 int i;
2461 uint32_t tsfth, tsftl;
2462 for (i = 0; i < 2; i++) {
2463 tsfth = ATW_READ(sc, ATW_TSFTH);
2464 tsftl = ATW_READ(sc, ATW_TSFTL);
2465 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2466 break;
2467 }
2468 return ((uint64_t)tsfth << 32) | tsftl;
2469 }
2470
2471 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2472 * the ieee80211com.
2473 *
2474 * Predict the next target beacon transmission time (TBTT) and
2475 * write it to the ADM8211.
2476 */
2477 static void
2478 atw_predict_beacon(struct atw_softc *sc)
2479 {
2480 #define TBTTOFS 20 /* TU */
2481
2482 struct ieee80211com *ic = &sc->sc_ic;
2483 uint64_t tsft;
2484 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2485 union {
2486 uint64_t word;
2487 uint8_t tstamp[8];
2488 } u;
2489
2490 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2491 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2492 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2493 tsft = atw_get_tsft(sc);
2494 u.word = htole64(tsft);
2495 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2496 sizeof(ic->ic_bss->ni_tstamp));
2497 } else
2498 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2499
2500 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2501
2502 tsftl = tsft & 0xFFFFFFFF;
2503 tsfth = tsft >> 32;
2504
2505 /* We sent/received the last beacon `past' microseconds
2506 * after the interval divided the TSF timer.
2507 */
2508 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2509
2510 /* Skip ten beacons so that the TBTT cannot pass before
2511 * we've programmed it. Ten is an arbitrary number.
2512 */
2513 tbtt = past_even + ival * 10;
2514
2515 ATW_WRITE(sc, ATW_TOFS1,
2516 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2517 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2518 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2519 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2520 #undef TBTTOFS
2521 }
2522
2523 static void
2524 atw_next_scan(void *arg)
2525 {
2526 struct atw_softc *sc = arg;
2527 struct ieee80211com *ic = &sc->sc_ic;
2528 int s;
2529
2530 /* don't call atw_start w/o network interrupts blocked */
2531 s = splnet();
2532 if (ic->ic_state == IEEE80211_S_SCAN)
2533 ieee80211_next_scan(ic);
2534 splx(s);
2535 }
2536
2537 /* Synchronize the hardware state with the software state. */
2538 static int
2539 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2540 {
2541 struct ifnet *ifp = ic->ic_ifp;
2542 struct atw_softc *sc = ifp->if_softc;
2543 enum ieee80211_state ostate;
2544 int error;
2545
2546 ostate = ic->ic_state;
2547
2548 if (nstate == IEEE80211_S_INIT) {
2549 callout_stop(&sc->sc_scan_ch);
2550 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2551 atw_start_beacon(sc, 0);
2552 return (*sc->sc_newstate)(ic, nstate, arg);
2553 }
2554
2555 if ((error = atw_tune(sc)) != 0)
2556 return error;
2557
2558 switch (nstate) {
2559 case IEEE80211_S_ASSOC:
2560 break;
2561 case IEEE80211_S_INIT:
2562 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2563 break;
2564 case IEEE80211_S_SCAN:
2565 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2566 atw_next_scan, sc);
2567
2568 break;
2569 case IEEE80211_S_RUN:
2570 if (ic->ic_opmode == IEEE80211_M_STA)
2571 break;
2572 /*FALLTHROUGH*/
2573 case IEEE80211_S_AUTH:
2574 atw_write_bssid(sc);
2575 atw_write_ssid(sc);
2576 atw_write_sup_rates(sc);
2577
2578 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2579 ic->ic_opmode == IEEE80211_M_MONITOR)
2580 break;
2581
2582 /* set listen interval
2583 * XXX do software units agree w/ hardware?
2584 */
2585 ATW_WRITE(sc, ATW_BPLI,
2586 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2587 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2588 ATW_BPLI_LI_MASK));
2589
2590 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2591 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2592
2593 atw_predict_beacon(sc);
2594 break;
2595 }
2596
2597 if (nstate != IEEE80211_S_SCAN)
2598 callout_stop(&sc->sc_scan_ch);
2599
2600 if (nstate == IEEE80211_S_RUN &&
2601 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2602 ic->ic_opmode == IEEE80211_M_IBSS))
2603 atw_start_beacon(sc, 1);
2604 else
2605 atw_start_beacon(sc, 0);
2606
2607 error = (*sc->sc_newstate)(ic, nstate, arg);
2608
2609 if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2610 atw_write_bssid(sc);
2611
2612 return error;
2613 }
2614
2615 /*
2616 * atw_add_rxbuf:
2617 *
2618 * Add a receive buffer to the indicated descriptor.
2619 */
2620 int
2621 atw_add_rxbuf(struct atw_softc *sc, int idx)
2622 {
2623 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2624 struct mbuf *m;
2625 int error;
2626
2627 MGETHDR(m, M_DONTWAIT, MT_DATA);
2628 if (m == NULL)
2629 return (ENOBUFS);
2630
2631 MCLGET(m, M_DONTWAIT);
2632 if ((m->m_flags & M_EXT) == 0) {
2633 m_freem(m);
2634 return (ENOBUFS);
2635 }
2636
2637 if (rxs->rxs_mbuf != NULL)
2638 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2639
2640 rxs->rxs_mbuf = m;
2641
2642 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2643 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2644 BUS_DMA_READ|BUS_DMA_NOWAIT);
2645 if (error) {
2646 printf("%s: can't load rx DMA map %d, error = %d\n",
2647 sc->sc_dev.dv_xname, idx, error);
2648 panic("atw_add_rxbuf"); /* XXX */
2649 }
2650
2651 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2652 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2653
2654 ATW_INIT_RXDESC(sc, idx);
2655
2656 return (0);
2657 }
2658
2659 /*
2660 * Release any queued transmit buffers.
2661 */
2662 void
2663 atw_txdrain(struct atw_softc *sc)
2664 {
2665 struct atw_txsoft *txs;
2666
2667 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2668 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2669 if (txs->txs_mbuf != NULL) {
2670 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2671 m_freem(txs->txs_mbuf);
2672 txs->txs_mbuf = NULL;
2673 }
2674 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2675 }
2676 sc->sc_tx_timer = 0;
2677 }
2678
2679 /*
2680 * atw_stop: [ ifnet interface function ]
2681 *
2682 * Stop transmission on the interface.
2683 */
2684 void
2685 atw_stop(struct ifnet *ifp, int disable)
2686 {
2687 struct atw_softc *sc = ifp->if_softc;
2688 struct ieee80211com *ic = &sc->sc_ic;
2689
2690 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2691
2692 /* Disable interrupts. */
2693 ATW_WRITE(sc, ATW_IER, 0);
2694
2695 /* Stop the transmit and receive processes. */
2696 sc->sc_opmode = 0;
2697 ATW_WRITE(sc, ATW_NAR, 0);
2698 DELAY(atw_nar_delay);
2699 ATW_WRITE(sc, ATW_TDBD, 0);
2700 ATW_WRITE(sc, ATW_TDBP, 0);
2701 ATW_WRITE(sc, ATW_RDB, 0);
2702
2703 atw_txdrain(sc);
2704
2705 if (disable) {
2706 atw_rxdrain(sc);
2707 atw_disable(sc);
2708 }
2709
2710 /*
2711 * Mark the interface down and cancel the watchdog timer.
2712 */
2713 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2714 ifp->if_timer = 0;
2715
2716 if (!disable)
2717 atw_reset(sc);
2718 }
2719
2720 /*
2721 * atw_rxdrain:
2722 *
2723 * Drain the receive queue.
2724 */
2725 void
2726 atw_rxdrain(struct atw_softc *sc)
2727 {
2728 struct atw_rxsoft *rxs;
2729 int i;
2730
2731 for (i = 0; i < ATW_NRXDESC; i++) {
2732 rxs = &sc->sc_rxsoft[i];
2733 if (rxs->rxs_mbuf == NULL)
2734 continue;
2735 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2736 m_freem(rxs->rxs_mbuf);
2737 rxs->rxs_mbuf = NULL;
2738 }
2739 }
2740
2741 /*
2742 * atw_detach:
2743 *
2744 * Detach an ADM8211 interface.
2745 */
2746 int
2747 atw_detach(struct atw_softc *sc)
2748 {
2749 struct ifnet *ifp = &sc->sc_if;
2750 struct atw_rxsoft *rxs;
2751 struct atw_txsoft *txs;
2752 int i;
2753
2754 /*
2755 * Succeed now if there isn't any work to do.
2756 */
2757 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2758 return (0);
2759
2760 callout_stop(&sc->sc_scan_ch);
2761
2762 ieee80211_ifdetach(&sc->sc_ic);
2763 if_detach(ifp);
2764
2765 for (i = 0; i < ATW_NRXDESC; i++) {
2766 rxs = &sc->sc_rxsoft[i];
2767 if (rxs->rxs_mbuf != NULL) {
2768 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2769 m_freem(rxs->rxs_mbuf);
2770 rxs->rxs_mbuf = NULL;
2771 }
2772 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2773 }
2774 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2775 txs = &sc->sc_txsoft[i];
2776 if (txs->txs_mbuf != NULL) {
2777 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2778 m_freem(txs->txs_mbuf);
2779 txs->txs_mbuf = NULL;
2780 }
2781 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2782 }
2783 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2784 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2785 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2786 sizeof(struct atw_control_data));
2787 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2788
2789 shutdownhook_disestablish(sc->sc_sdhook);
2790 powerhook_disestablish(sc->sc_powerhook);
2791
2792 if (sc->sc_srom)
2793 free(sc->sc_srom, M_DEVBUF);
2794
2795 return (0);
2796 }
2797
2798 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2799 void
2800 atw_shutdown(void *arg)
2801 {
2802 struct atw_softc *sc = arg;
2803
2804 atw_stop(&sc->sc_if, 1);
2805 }
2806
2807 int
2808 atw_intr(void *arg)
2809 {
2810 struct atw_softc *sc = arg;
2811 struct ifnet *ifp = &sc->sc_if;
2812 u_int32_t status, rxstatus, txstatus, linkstatus;
2813 int handled = 0, txthresh;
2814
2815 #ifdef DEBUG
2816 if (ATW_IS_ENABLED(sc) == 0)
2817 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2818 #endif
2819
2820 /*
2821 * If the interface isn't running, the interrupt couldn't
2822 * possibly have come from us.
2823 */
2824 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2825 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2826 return (0);
2827
2828 for (;;) {
2829 status = ATW_READ(sc, ATW_STSR);
2830
2831 if (status)
2832 ATW_WRITE(sc, ATW_STSR, status);
2833
2834 #ifdef ATW_DEBUG
2835 #define PRINTINTR(flag) do { \
2836 if ((status & flag) != 0) { \
2837 printf("%s" #flag, delim); \
2838 delim = ","; \
2839 } \
2840 } while (0)
2841
2842 if (atw_debug > 1 && status) {
2843 const char *delim = "<";
2844
2845 printf("%s: reg[STSR] = %x",
2846 sc->sc_dev.dv_xname, status);
2847
2848 PRINTINTR(ATW_INTR_FBE);
2849 PRINTINTR(ATW_INTR_LINKOFF);
2850 PRINTINTR(ATW_INTR_LINKON);
2851 PRINTINTR(ATW_INTR_RCI);
2852 PRINTINTR(ATW_INTR_RDU);
2853 PRINTINTR(ATW_INTR_REIS);
2854 PRINTINTR(ATW_INTR_RPS);
2855 PRINTINTR(ATW_INTR_TCI);
2856 PRINTINTR(ATW_INTR_TDU);
2857 PRINTINTR(ATW_INTR_TLT);
2858 PRINTINTR(ATW_INTR_TPS);
2859 PRINTINTR(ATW_INTR_TRT);
2860 PRINTINTR(ATW_INTR_TUF);
2861 PRINTINTR(ATW_INTR_BCNTC);
2862 PRINTINTR(ATW_INTR_ATIME);
2863 PRINTINTR(ATW_INTR_TBTT);
2864 PRINTINTR(ATW_INTR_TSCZ);
2865 PRINTINTR(ATW_INTR_TSFTF);
2866 printf(">\n");
2867 }
2868 #undef PRINTINTR
2869 #endif /* ATW_DEBUG */
2870
2871 if ((status & sc->sc_inten) == 0)
2872 break;
2873
2874 handled = 1;
2875
2876 rxstatus = status & sc->sc_rxint_mask;
2877 txstatus = status & sc->sc_txint_mask;
2878 linkstatus = status & sc->sc_linkint_mask;
2879
2880 if (linkstatus) {
2881 atw_linkintr(sc, linkstatus);
2882 }
2883
2884 if (rxstatus) {
2885 /* Grab any new packets. */
2886 atw_rxintr(sc);
2887
2888 if (rxstatus & ATW_INTR_RDU) {
2889 printf("%s: receive ring overrun\n",
2890 sc->sc_dev.dv_xname);
2891 /* Get the receive process going again. */
2892 ATW_WRITE(sc, ATW_RDR, 0x1);
2893 break;
2894 }
2895 }
2896
2897 if (txstatus) {
2898 /* Sweep up transmit descriptors. */
2899 atw_txintr(sc);
2900
2901 if (txstatus & ATW_INTR_TLT)
2902 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2903 sc->sc_dev.dv_xname));
2904
2905 if (txstatus & ATW_INTR_TRT)
2906 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2907 sc->sc_dev.dv_xname));
2908
2909 /* If Tx under-run, increase our transmit threshold
2910 * if another is available.
2911 */
2912 txthresh = sc->sc_txthresh + 1;
2913 if ((txstatus & ATW_INTR_TUF) &&
2914 sc->sc_txth[txthresh].txth_name != NULL) {
2915 /* Idle the transmit process. */
2916 atw_idle(sc, ATW_NAR_ST);
2917
2918 sc->sc_txthresh = txthresh;
2919 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2920 sc->sc_opmode |=
2921 sc->sc_txth[txthresh].txth_opmode;
2922 printf("%s: transmit underrun; new "
2923 "threshold: %s\n", sc->sc_dev.dv_xname,
2924 sc->sc_txth[txthresh].txth_name);
2925
2926 /* Set the new threshold and restart
2927 * the transmit process.
2928 */
2929 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2930 DELAY(atw_nar_delay);
2931 ATW_WRITE(sc, ATW_RDR, 0x1);
2932 /* XXX Log every Nth underrun from
2933 * XXX now on?
2934 */
2935 }
2936 }
2937
2938 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2939 if (status & ATW_INTR_TPS)
2940 printf("%s: transmit process stopped\n",
2941 sc->sc_dev.dv_xname);
2942 if (status & ATW_INTR_RPS)
2943 printf("%s: receive process stopped\n",
2944 sc->sc_dev.dv_xname);
2945 (void)atw_init(ifp);
2946 break;
2947 }
2948
2949 if (status & ATW_INTR_FBE) {
2950 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2951 (void)atw_init(ifp);
2952 break;
2953 }
2954
2955 /*
2956 * Not handled:
2957 *
2958 * Transmit buffer unavailable -- normal
2959 * condition, nothing to do, really.
2960 *
2961 * Early receive interrupt -- not available on
2962 * all chips, we just use RI. We also only
2963 * use single-segment receive DMA, so this
2964 * is mostly useless.
2965 *
2966 * TBD others
2967 */
2968 }
2969
2970 /* Try to get more packets going. */
2971 atw_start(ifp);
2972
2973 return (handled);
2974 }
2975
2976 /*
2977 * atw_idle:
2978 *
2979 * Cause the transmit and/or receive processes to go idle.
2980 *
2981 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2982 * process in STSR if I clear SR or ST after the process has already
2983 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2984 * do not seem to be too reliable. Perhaps I have the sense of the
2985 * Rx bits switched with the Tx bits?
2986 */
2987 void
2988 atw_idle(struct atw_softc *sc, u_int32_t bits)
2989 {
2990 u_int32_t ackmask = 0, opmode, stsr, test0;
2991 int i, s;
2992
2993 s = splnet();
2994
2995 opmode = sc->sc_opmode & ~bits;
2996
2997 if (bits & ATW_NAR_SR)
2998 ackmask |= ATW_INTR_RPS;
2999
3000 if (bits & ATW_NAR_ST) {
3001 ackmask |= ATW_INTR_TPS;
3002 /* set ATW_NAR_HF to flush TX FIFO. */
3003 opmode |= ATW_NAR_HF;
3004 }
3005
3006 ATW_WRITE(sc, ATW_NAR, opmode);
3007 DELAY(atw_nar_delay);
3008
3009 for (i = 0; i < 1000; i++) {
3010 stsr = ATW_READ(sc, ATW_STSR);
3011 if ((stsr & ackmask) == ackmask)
3012 break;
3013 DELAY(10);
3014 }
3015
3016 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3017
3018 if ((stsr & ackmask) == ackmask)
3019 goto out;
3020
3021 test0 = ATW_READ(sc, ATW_TEST0);
3022
3023 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3024 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3025 printf("%s: transmit process not idle [%s]\n",
3026 sc->sc_dev.dv_xname,
3027 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
3028 printf("%s: bits %08x test0 %08x stsr %08x\n",
3029 sc->sc_dev.dv_xname, bits, test0, stsr);
3030 }
3031
3032 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3033 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3034 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3035 sc->sc_dev.dv_xname,
3036 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
3037 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3038 sc->sc_dev.dv_xname, bits, test0, stsr));
3039 }
3040 out:
3041 if ((bits & ATW_NAR_ST) != 0)
3042 atw_txdrain(sc);
3043 splx(s);
3044 return;
3045 }
3046
3047 /*
3048 * atw_linkintr:
3049 *
3050 * Helper; handle link-status interrupts.
3051 */
3052 void
3053 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3054 {
3055 struct ieee80211com *ic = &sc->sc_ic;
3056
3057 if (ic->ic_state != IEEE80211_S_RUN)
3058 return;
3059
3060 if (linkstatus & ATW_INTR_LINKON) {
3061 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3062 sc->sc_rescan_timer = 0;
3063 } else if (linkstatus & ATW_INTR_LINKOFF) {
3064 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3065 if (ic->ic_opmode != IEEE80211_M_STA)
3066 return;
3067 sc->sc_rescan_timer = 3;
3068 sc->sc_if.if_timer = 1;
3069 }
3070 }
3071
3072 static __inline int
3073 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3074 {
3075 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3076 return 0;
3077 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3078 return 0;
3079 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3080 }
3081
3082 /*
3083 * atw_rxintr:
3084 *
3085 * Helper; handle receive interrupts.
3086 */
3087 void
3088 atw_rxintr(struct atw_softc *sc)
3089 {
3090 static int rate_tbl[] = {2, 4, 11, 22, 44};
3091 struct ieee80211com *ic = &sc->sc_ic;
3092 struct ieee80211_node *ni;
3093 struct ieee80211_frame_min *wh;
3094 struct ifnet *ifp = &sc->sc_if;
3095 struct atw_rxsoft *rxs;
3096 struct mbuf *m;
3097 u_int32_t rxstat;
3098 int i, len, rate, rate0;
3099 u_int32_t rssi, rssi0;
3100
3101 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3102 rxs = &sc->sc_rxsoft[i];
3103
3104 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3105
3106 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3107 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3108 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3109
3110 if (rxstat & ATW_RXSTAT_OWN)
3111 break; /* We have processed all receive buffers. */
3112
3113 DPRINTF3(sc,
3114 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3115 sc->sc_dev.dv_xname,
3116 rxstat, rssi0,
3117 le32toh(sc->sc_rxdescs[i].ar_buf1),
3118 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3119
3120 /*
3121 * Make sure the packet fits in one buffer. This should
3122 * always be the case.
3123 */
3124 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3125 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3126 printf("%s: incoming packet spilled, resetting\n",
3127 sc->sc_dev.dv_xname);
3128 (void)atw_init(ifp);
3129 return;
3130 }
3131
3132 /*
3133 * If an error occurred, update stats, clear the status
3134 * word, and leave the packet buffer in place. It will
3135 * simply be reused the next time the ring comes around.
3136 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3137 * error.
3138 */
3139
3140 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3141 ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3142 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3143 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3144 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3145 ATW_RXSTAT_ICVE)) != 0)) {
3146 #define PRINTERR(bit, str) \
3147 if (rxstat & (bit)) \
3148 printf("%s: receive error: %s\n", \
3149 sc->sc_dev.dv_xname, str)
3150 ifp->if_ierrors++;
3151 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3152 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3153 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3154 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3155 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3156 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3157 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3158 #undef PRINTERR
3159 ATW_INIT_RXDESC(sc, i);
3160 continue;
3161 }
3162
3163 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3164 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3165
3166 /*
3167 * No errors; receive the packet. Note the ADM8211
3168 * includes the CRC in promiscuous mode.
3169 */
3170 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3171
3172 /*
3173 * Allocate a new mbuf cluster. If that fails, we are
3174 * out of memory, and must drop the packet and recycle
3175 * the buffer that's already attached to this descriptor.
3176 */
3177 m = rxs->rxs_mbuf;
3178 if (atw_add_rxbuf(sc, i) != 0) {
3179 ifp->if_ierrors++;
3180 ATW_INIT_RXDESC(sc, i);
3181 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3182 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3183 continue;
3184 }
3185
3186 ifp->if_ipackets++;
3187 if (sc->sc_opmode & ATW_NAR_PR)
3188 len -= IEEE80211_CRC_LEN;
3189 m->m_pkthdr.rcvif = ifp;
3190 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3191
3192 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3193 rate = 0;
3194 else
3195 rate = rate_tbl[rate0];
3196
3197 /* The RSSI comes straight from a register in the
3198 * baseband processor. I know that for the RF3000,
3199 * the RSSI register also contains the antenna-selection
3200 * bits. Mask those off.
3201 *
3202 * TBD Treat other basebands.
3203 */
3204 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3205 rssi = rssi0 & RF3000_RSSI_MASK;
3206 else
3207 rssi = rssi0;
3208
3209 #if NBPFILTER > 0
3210 /* Pass this up to any BPF listeners. */
3211 if (sc->sc_radiobpf != NULL) {
3212 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3213
3214 tap->ar_rate = rate;
3215 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3216 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3217
3218 /* TBD verify units are dB */
3219 tap->ar_antsignal = (int)rssi;
3220 /* TBD tap->ar_flags */
3221
3222 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3223 tap->ar_ihdr.it_len, m);
3224 }
3225 #endif /* NPBFILTER > 0 */
3226
3227 wh = mtod(m, struct ieee80211_frame_min *);
3228 ni = ieee80211_find_rxnode(ic, wh);
3229 if (atw_hw_decrypted(sc, wh)) {
3230 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3231 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3232 }
3233 ieee80211_input(ic, m, ni, (int)rssi, 0);
3234 ieee80211_free_node(ni);
3235 }
3236
3237 /* Update the receive pointer. */
3238 sc->sc_rxptr = i;
3239 }
3240
3241 /*
3242 * atw_txintr:
3243 *
3244 * Helper; handle transmit interrupts.
3245 */
3246 void
3247 atw_txintr(struct atw_softc *sc)
3248 {
3249 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3250 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3251 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3252 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3253
3254 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3255 struct ifnet *ifp = &sc->sc_if;
3256 struct atw_txsoft *txs;
3257 u_int32_t txstat;
3258
3259 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3260 sc->sc_dev.dv_xname, sc->sc_flags));
3261
3262 ifp->if_flags &= ~IFF_OACTIVE;
3263
3264 /*
3265 * Go through our Tx list and free mbufs for those
3266 * frames that have been transmitted.
3267 */
3268 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3269 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3270 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3271
3272 #ifdef ATW_DEBUG
3273 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3274 int i;
3275 printf(" txsoft %p transmit chain:\n", txs);
3276 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3277 txs->txs_ndescs - 1,
3278 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3279 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3280 printf(" descriptor %d:\n", i);
3281 printf(" at_status: 0x%08x\n",
3282 le32toh(sc->sc_txdescs[i].at_stat));
3283 printf(" at_flags: 0x%08x\n",
3284 le32toh(sc->sc_txdescs[i].at_flags));
3285 printf(" at_buf1: 0x%08x\n",
3286 le32toh(sc->sc_txdescs[i].at_buf1));
3287 printf(" at_buf2: 0x%08x\n",
3288 le32toh(sc->sc_txdescs[i].at_buf2));
3289 if (i == txs->txs_lastdesc)
3290 break;
3291 }
3292 }
3293 #endif
3294
3295 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3296 if (txstat & ATW_TXSTAT_OWN)
3297 break;
3298
3299 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3300
3301 sc->sc_txfree += txs->txs_ndescs;
3302
3303 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3304 0, txs->txs_dmamap->dm_mapsize,
3305 BUS_DMASYNC_POSTWRITE);
3306 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3307 m_freem(txs->txs_mbuf);
3308 txs->txs_mbuf = NULL;
3309
3310 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3311
3312 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3313 (txstat & TXSTAT_ERRMASK) != 0) {
3314 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3315 txstat_buf, sizeof(txstat_buf));
3316 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3317 txstat_buf,
3318 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3319 }
3320
3321 /*
3322 * Check for errors and collisions.
3323 */
3324 if (txstat & ATW_TXSTAT_TUF)
3325 sc->sc_stats.ts_tx_tuf++;
3326 if (txstat & ATW_TXSTAT_TLT)
3327 sc->sc_stats.ts_tx_tlt++;
3328 if (txstat & ATW_TXSTAT_TRT)
3329 sc->sc_stats.ts_tx_trt++;
3330 if (txstat & ATW_TXSTAT_TRO)
3331 sc->sc_stats.ts_tx_tro++;
3332 if (txstat & ATW_TXSTAT_SOFBR) {
3333 sc->sc_stats.ts_tx_sofbr++;
3334 }
3335
3336 if ((txstat & ATW_TXSTAT_ES) == 0)
3337 ifp->if_collisions +=
3338 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3339 else
3340 ifp->if_oerrors++;
3341
3342 ifp->if_opackets++;
3343 }
3344
3345 /*
3346 * If there are no more pending transmissions, cancel the watchdog
3347 * timer.
3348 */
3349 if (txs == NULL)
3350 sc->sc_tx_timer = 0;
3351 #undef TXSTAT_ERRMASK
3352 #undef TXSTAT_FMT
3353 }
3354
3355 /*
3356 * atw_watchdog: [ifnet interface function]
3357 *
3358 * Watchdog timer handler.
3359 */
3360 void
3361 atw_watchdog(struct ifnet *ifp)
3362 {
3363 struct atw_softc *sc = ifp->if_softc;
3364 struct ieee80211com *ic = &sc->sc_ic;
3365
3366 ifp->if_timer = 0;
3367 if (ATW_IS_ENABLED(sc) == 0)
3368 return;
3369
3370 if (sc->sc_rescan_timer) {
3371 if (--sc->sc_rescan_timer == 0)
3372 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3373 }
3374 if (sc->sc_tx_timer) {
3375 if (--sc->sc_tx_timer == 0 &&
3376 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3377 printf("%s: transmit timeout\n", ifp->if_xname);
3378 ifp->if_oerrors++;
3379 (void)atw_init(ifp);
3380 atw_start(ifp);
3381 }
3382 }
3383 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3384 ifp->if_timer = 1;
3385 ieee80211_watchdog(ic);
3386 }
3387
3388 /* Compute the 802.11 Duration field and the PLCP Length fields for
3389 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3390 * Write the fields to the ADM8211 Tx header, frm.
3391 *
3392 * TBD use the fragmentation threshold to find the right duration for
3393 * the first & last fragments.
3394 *
3395 * TBD make certain of the duration fields applied by the ADM8211 to each
3396 * fragment. I think that the ADM8211 knows how to subtract the CTS
3397 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3398 * I also think that the ADM8211 does *some* arithmetic for us, because
3399 * otherwise I think we would have to set a first duration for CTS/first
3400 * fragment, a second duration for fragments between the first and the
3401 * last, and a third duration for the last fragment.
3402 *
3403 * TBD make certain that duration fields reflect addition of FCS/WEP
3404 * and correct duration arithmetic as necessary.
3405 */
3406 static void
3407 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3408 int len)
3409 {
3410 int remainder;
3411
3412 /* deal also with encrypted fragments */
3413 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3414 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3415 sc->sc_dev.dv_xname));
3416 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3417 IEEE80211_WEP_CRCLEN;
3418 }
3419
3420 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3421 * duration (XXX added by MAC?).
3422 */
3423 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3424 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3425
3426 if (rate <= 4)
3427 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3428 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3429 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3430 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3431 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3432 else
3433 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3434 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3435 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3436 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3437 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3438
3439 /* lengthen duration if long preamble */
3440 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3441 frm->atw_head_dur +=
3442 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3443 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3444 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3445 IEEE80211_DUR_DS_FAST_PLCPHDR);
3446
3447 if (remainder != 0)
3448 frm->atw_head_dur++;
3449
3450 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3451 (rate == 2 || rate == 4)) {
3452 /* derived from Linux: how could this be right? */
3453 frm->atw_head_plcplen = frm->atw_head_dur;
3454 } else {
3455 frm->atw_head_plcplen = (16 * len) / rate;
3456 remainder = (80 * len) % (rate * 5);
3457
3458 if (remainder != 0) {
3459 frm->atw_head_plcplen++;
3460
3461 /* XXX magic */
3462 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3463 rate == 22 && remainder <= 30)
3464 frm->atw_head_plcplen |= 0x8000;
3465 }
3466 }
3467 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3468 htole16(frm->atw_head_plcplen);
3469 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3470 }
3471
3472 #ifdef ATW_DEBUG
3473 static void
3474 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3475 {
3476 struct atw_softc *sc = ifp->if_softc;
3477 struct mbuf *m;
3478 int i, noctets = 0;
3479
3480 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3481 m0->m_pkthdr.len);
3482
3483 for (m = m0; m; m = m->m_next) {
3484 if (m->m_len == 0)
3485 continue;
3486 for (i = 0; i < m->m_len; i++) {
3487 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3488 if (++noctets % 24 == 0)
3489 printf("\n");
3490 }
3491 }
3492 printf("%s%s: %d bytes emitted\n",
3493 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3494 }
3495 #endif /* ATW_DEBUG */
3496
3497 /*
3498 * atw_start: [ifnet interface function]
3499 *
3500 * Start packet transmission on the interface.
3501 */
3502 void
3503 atw_start(struct ifnet *ifp)
3504 {
3505 struct atw_softc *sc = ifp->if_softc;
3506 struct ieee80211com *ic = &sc->sc_ic;
3507 struct ieee80211_node *ni;
3508 struct ieee80211_frame *wh;
3509 struct atw_frame *hh;
3510 struct mbuf *m0, *m;
3511 struct atw_txsoft *txs, *last_txs;
3512 struct atw_txdesc *txd;
3513 int do_encrypt, rate;
3514 bus_dmamap_t dmamap;
3515 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3516
3517 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3518 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3519
3520 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3521 return;
3522
3523 /*
3524 * Remember the previous number of free descriptors and
3525 * the first descriptor we'll use.
3526 */
3527 ofree = sc->sc_txfree;
3528 firsttx = sc->sc_txnext;
3529
3530 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3531 sc->sc_dev.dv_xname, ofree, firsttx));
3532
3533 /*
3534 * Loop through the send queue, setting up transmit descriptors
3535 * until we drain the queue, or use up all available transmit
3536 * descriptors.
3537 */
3538 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3539 sc->sc_txfree != 0) {
3540
3541 /*
3542 * Grab a packet off the management queue, if it
3543 * is not empty. Otherwise, from the data queue.
3544 */
3545 IF_DEQUEUE(&ic->ic_mgtq, m0);
3546 if (m0 != NULL) {
3547 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3548 m0->m_pkthdr.rcvif = NULL;
3549 } else {
3550 /* send no data packets until we are associated */
3551 if (ic->ic_state != IEEE80211_S_RUN)
3552 break;
3553 IFQ_DEQUEUE(&ifp->if_snd, m0);
3554 if (m0 == NULL)
3555 break;
3556 #if NBPFILTER > 0
3557 if (ifp->if_bpf != NULL)
3558 bpf_mtap(ifp->if_bpf, m0);
3559 #endif /* NBPFILTER > 0 */
3560 ni = ieee80211_find_txnode(ic,
3561 mtod(m0, struct ether_header *)->ether_dhost);
3562 if (ni == NULL) {
3563 ifp->if_oerrors++;
3564 break;
3565 }
3566 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3567 ieee80211_free_node(ni);
3568 ifp->if_oerrors++;
3569 break;
3570 }
3571 }
3572
3573 rate = MAX(ieee80211_get_rate(ic), 2);
3574
3575 #if NBPFILTER > 0
3576 /*
3577 * Pass the packet to any BPF listeners.
3578 */
3579 if (ic->ic_rawbpf != NULL)
3580 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3581
3582 if (sc->sc_radiobpf != NULL) {
3583 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3584
3585 tap->at_rate = rate;
3586 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3587 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3588
3589 /* TBD tap->at_flags */
3590
3591 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3592 tap->at_ihdr.it_len, m0);
3593 }
3594 #endif /* NBPFILTER > 0 */
3595
3596 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3597
3598 if (ni != NULL)
3599 ieee80211_free_node(ni);
3600
3601 if (m0 == NULL) {
3602 ifp->if_oerrors++;
3603 break;
3604 }
3605
3606 /* just to make sure. */
3607 m0 = m_pullup(m0, sizeof(struct atw_frame));
3608
3609 if (m0 == NULL) {
3610 ifp->if_oerrors++;
3611 break;
3612 }
3613
3614 hh = mtod(m0, struct atw_frame *);
3615 wh = &hh->atw_ihdr;
3616
3617 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3618
3619 /* Copy everything we need from the 802.11 header:
3620 * Frame Control; address 1, address 3, or addresses
3621 * 3 and 4. NIC fills in BSSID, SA.
3622 */
3623 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3624 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3625 panic("%s: illegal WDS frame",
3626 sc->sc_dev.dv_xname);
3627 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3628 } else
3629 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3630
3631 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3632
3633 /* initialize remaining Tx parameters */
3634 memset(&hh->u, 0, sizeof(hh->u));
3635
3636 hh->atw_rate = rate * 5;
3637 /* XXX this could be incorrect if M_FCS. _encap should
3638 * probably strip FCS just in case it sticks around in
3639 * bridged packets.
3640 */
3641 hh->atw_service = 0x00; /* XXX guess */
3642 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3643 sizeof(struct atw_frame));
3644
3645 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3646 hh->atw_rtylmt = 3;
3647 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3648 if (do_encrypt) {
3649 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3650 hh->atw_keyid = ic->ic_def_txkey;
3651 }
3652
3653 /* TBD 4-addr frames */
3654 atw_frame_setdurs(sc, hh, rate,
3655 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3656 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3657
3658 /* never fragment multicast frames */
3659 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3660 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3661 } else if (sc->sc_flags & ATWF_RTSCTS) {
3662 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3663 }
3664
3665 #ifdef ATW_DEBUG
3666 hh->atw_fragnum = 0;
3667
3668 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3669 printf("%s: dst = %s, rate = 0x%02x, "
3670 "service = 0x%02x, paylen = 0x%04x\n",
3671 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3672 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3673
3674 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3675 "dur1 = 0x%04x, dur2 = 0x%04x, "
3676 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3677 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3678 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3679 hh->atw_tail_dur, hh->atw_head_dur);
3680
3681 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3682 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3683 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3684 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3685
3686 printf("%s: keyid = %d\n",
3687 sc->sc_dev.dv_xname, hh->atw_keyid);
3688
3689 atw_dump_pkt(ifp, m0);
3690 }
3691 #endif /* ATW_DEBUG */
3692
3693 dmamap = txs->txs_dmamap;
3694
3695 /*
3696 * Load the DMA map. Copy and try (once) again if the packet
3697 * didn't fit in the alloted number of segments.
3698 */
3699 for (first = 1;
3700 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3701 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3702 first = 0) {
3703 MGETHDR(m, M_DONTWAIT, MT_DATA);
3704 if (m == NULL) {
3705 printf("%s: unable to allocate Tx mbuf\n",
3706 sc->sc_dev.dv_xname);
3707 break;
3708 }
3709 if (m0->m_pkthdr.len > MHLEN) {
3710 MCLGET(m, M_DONTWAIT);
3711 if ((m->m_flags & M_EXT) == 0) {
3712 printf("%s: unable to allocate Tx "
3713 "cluster\n", sc->sc_dev.dv_xname);
3714 m_freem(m);
3715 break;
3716 }
3717 }
3718 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3719 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3720 m_freem(m0);
3721 m0 = m;
3722 m = NULL;
3723 }
3724 if (error != 0) {
3725 printf("%s: unable to load Tx buffer, "
3726 "error = %d\n", sc->sc_dev.dv_xname, error);
3727 m_freem(m0);
3728 break;
3729 }
3730
3731 /*
3732 * Ensure we have enough descriptors free to describe
3733 * the packet.
3734 */
3735 if (dmamap->dm_nsegs > sc->sc_txfree) {
3736 /*
3737 * Not enough free descriptors to transmit
3738 * this packet. Unload the DMA map and
3739 * drop the packet. Notify the upper layer
3740 * that there are no more slots left.
3741 *
3742 * XXX We could allocate an mbuf and copy, but
3743 * XXX it is worth it?
3744 */
3745 ifp->if_flags |= IFF_OACTIVE;
3746 bus_dmamap_unload(sc->sc_dmat, dmamap);
3747 m_freem(m0);
3748 break;
3749 }
3750
3751 /*
3752 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3753 */
3754
3755 /* Sync the DMA map. */
3756 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3757 BUS_DMASYNC_PREWRITE);
3758
3759 /* XXX arbitrary retry limit; 8 because I have seen it in
3760 * use already and maybe 0 means "no tries" !
3761 */
3762 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3763
3764 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3765 sc->sc_dev.dv_xname, rate * 5));
3766 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3767
3768 /*
3769 * Initialize the transmit descriptors.
3770 */
3771 for (nexttx = sc->sc_txnext, seg = 0;
3772 seg < dmamap->dm_nsegs;
3773 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3774 /*
3775 * If this is the first descriptor we're
3776 * enqueueing, don't set the OWN bit just
3777 * yet. That could cause a race condition.
3778 * We'll do it below.
3779 */
3780 txd = &sc->sc_txdescs[nexttx];
3781 txd->at_ctl = ctl |
3782 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3783
3784 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3785 txd->at_flags =
3786 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3787 ATW_TXFLAG_TBS1_MASK)) |
3788 ((nexttx == (ATW_NTXDESC - 1))
3789 ? htole32(ATW_TXFLAG_TER) : 0);
3790 lasttx = nexttx;
3791 }
3792
3793 IASSERT(lasttx != -1, ("bad lastx"));
3794 /* Set `first segment' and `last segment' appropriately. */
3795 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3796 htole32(ATW_TXFLAG_FS);
3797 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3798
3799 #ifdef ATW_DEBUG
3800 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3801 printf(" txsoft %p transmit chain:\n", txs);
3802 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3803 printf(" descriptor %d:\n", seg);
3804 printf(" at_ctl: 0x%08x\n",
3805 le32toh(sc->sc_txdescs[seg].at_ctl));
3806 printf(" at_flags: 0x%08x\n",
3807 le32toh(sc->sc_txdescs[seg].at_flags));
3808 printf(" at_buf1: 0x%08x\n",
3809 le32toh(sc->sc_txdescs[seg].at_buf1));
3810 printf(" at_buf2: 0x%08x\n",
3811 le32toh(sc->sc_txdescs[seg].at_buf2));
3812 if (seg == lasttx)
3813 break;
3814 }
3815 }
3816 #endif
3817
3818 /* Sync the descriptors we're using. */
3819 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3820 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3821
3822 /*
3823 * Store a pointer to the packet so we can free it later,
3824 * and remember what txdirty will be once the packet is
3825 * done.
3826 */
3827 txs->txs_mbuf = m0;
3828 txs->txs_firstdesc = sc->sc_txnext;
3829 txs->txs_lastdesc = lasttx;
3830 txs->txs_ndescs = dmamap->dm_nsegs;
3831
3832 /* Advance the tx pointer. */
3833 sc->sc_txfree -= dmamap->dm_nsegs;
3834 sc->sc_txnext = nexttx;
3835
3836 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3837 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3838
3839 last_txs = txs;
3840 }
3841
3842 if (txs == NULL || sc->sc_txfree == 0) {
3843 /* No more slots left; notify upper layer. */
3844 ifp->if_flags |= IFF_OACTIVE;
3845 }
3846
3847 if (sc->sc_txfree != ofree) {
3848 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3849 sc->sc_dev.dv_xname, lasttx, firsttx));
3850 /*
3851 * Cause a transmit interrupt to happen on the
3852 * last packet we enqueued.
3853 */
3854 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3855 ATW_CDTXSYNC(sc, lasttx, 1,
3856 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3857
3858 /*
3859 * The entire packet chain is set up. Give the
3860 * first descriptor to the chip now.
3861 */
3862 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3863 ATW_CDTXSYNC(sc, firsttx, 1,
3864 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3865
3866 /* Wake up the transmitter. */
3867 ATW_WRITE(sc, ATW_TDR, 0x1);
3868
3869 /* Set a watchdog timer in case the chip flakes out. */
3870 sc->sc_tx_timer = 5;
3871 ifp->if_timer = 1;
3872 }
3873 }
3874
3875 /*
3876 * atw_power:
3877 *
3878 * Power management (suspend/resume) hook.
3879 */
3880 void
3881 atw_power(int why, void *arg)
3882 {
3883 struct atw_softc *sc = arg;
3884 struct ifnet *ifp = &sc->sc_if;
3885 int s;
3886
3887 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3888
3889 s = splnet();
3890 switch (why) {
3891 case PWR_STANDBY:
3892 /* XXX do nothing. */
3893 break;
3894 case PWR_SUSPEND:
3895 atw_stop(ifp, 0);
3896 if (sc->sc_power != NULL)
3897 (*sc->sc_power)(sc, why);
3898 break;
3899 case PWR_RESUME:
3900 if (ifp->if_flags & IFF_UP) {
3901 if (sc->sc_power != NULL)
3902 (*sc->sc_power)(sc, why);
3903 atw_init(ifp);
3904 }
3905 break;
3906 case PWR_SOFTSUSPEND:
3907 case PWR_SOFTSTANDBY:
3908 case PWR_SOFTRESUME:
3909 break;
3910 }
3911 splx(s);
3912 }
3913
3914 /*
3915 * atw_ioctl: [ifnet interface function]
3916 *
3917 * Handle control requests from the operator.
3918 */
3919 int
3920 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3921 {
3922 struct atw_softc *sc = ifp->if_softc;
3923 struct ifreq *ifr = (struct ifreq *)data;
3924 int s, error = 0;
3925
3926 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3927 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3928 return ENXIO;
3929
3930 s = splnet();
3931
3932 switch (cmd) {
3933 case SIOCSIFFLAGS:
3934 if (ifp->if_flags & IFF_UP) {
3935 if (ATW_IS_ENABLED(sc)) {
3936 /*
3937 * To avoid rescanning another access point,
3938 * do not call atw_init() here. Instead,
3939 * only reflect media settings.
3940 */
3941 atw_filter_setup(sc);
3942 } else
3943 error = atw_init(ifp);
3944 } else if (ATW_IS_ENABLED(sc))
3945 atw_stop(ifp, 1);
3946 break;
3947 case SIOCADDMULTI:
3948 case SIOCDELMULTI:
3949 error = (cmd == SIOCADDMULTI) ?
3950 ether_addmulti(ifr, &sc->sc_ec) :
3951 ether_delmulti(ifr, &sc->sc_ec);
3952 if (error == ENETRESET) {
3953 if (ifp->if_flags & IFF_RUNNING)
3954 atw_filter_setup(sc); /* do not rescan */
3955 error = 0;
3956 }
3957 break;
3958 default:
3959 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3960 if (error == ENETRESET) {
3961 if (ATW_IS_ENABLED(sc))
3962 error = atw_init(ifp);
3963 else
3964 error = 0;
3965 }
3966 break;
3967 }
3968
3969 /* Try to get more packets going. */
3970 if (ATW_IS_ENABLED(sc))
3971 atw_start(ifp);
3972
3973 splx(s);
3974 return (error);
3975 }
3976
3977 static int
3978 atw_media_change(struct ifnet *ifp)
3979 {
3980 int error;
3981
3982 error = ieee80211_media_change(ifp);
3983 if (error == ENETRESET) {
3984 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3985 (IFF_RUNNING|IFF_UP))
3986 atw_init(ifp); /* XXX lose error */
3987 error = 0;
3988 }
3989 return error;
3990 }
3991
3992 static void
3993 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3994 {
3995 struct atw_softc *sc = ifp->if_softc;
3996
3997 if (ATW_IS_ENABLED(sc) == 0) {
3998 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3999 imr->ifm_status = 0;
4000 return;
4001 }
4002 ieee80211_media_status(ifp, imr);
4003 }
4004