atw.c revision 1.80 1 /* $NetBSD: atw.c,v 1.80 2004/10/30 18:08:36 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.80 2004/10/30 18:08:36 thorpej Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162
163 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
166 #define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
167 #define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
171 static void atw_print_regs(struct atw_softc *, const char *);
172
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 # ifdef ATW_BBPDEBUG
175 static void atw_rf3000_print(struct atw_softc *);
176 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177 # endif /* ATW_BBPDEBUG */
178
179 # ifdef ATW_SYNDEBUG
180 static void atw_si4126_print(struct atw_softc *);
181 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
182 # endif /* ATW_SYNDEBUG */
183
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define DPRINTF(sc, x) /* nothing */
189 #define DPRINTF2(sc, x) /* nothing */
190 #define DPRINTF3(sc, x) /* nothing */
191 #endif
192
193 /* ifnet methods */
194 int atw_init(struct ifnet *);
195 int atw_ioctl(struct ifnet *, u_long, caddr_t);
196 void atw_start(struct ifnet *);
197 void atw_stop(struct ifnet *, int);
198 void atw_watchdog(struct ifnet *);
199
200 /* Device attachment */
201 void atw_attach(struct atw_softc *);
202 int atw_detach(struct atw_softc *);
203
204 /* Rx/Tx process */
205 int atw_add_rxbuf(struct atw_softc *, int);
206 void atw_idle(struct atw_softc *, u_int32_t);
207 void atw_rxdrain(struct atw_softc *);
208 void atw_txdrain(struct atw_softc *);
209
210 /* Device (de)activation and power state */
211 void atw_disable(struct atw_softc *);
212 int atw_enable(struct atw_softc *);
213 void atw_power(int, void *);
214 void atw_reset(struct atw_softc *);
215 void atw_shutdown(void *);
216
217 /* Interrupt handlers */
218 void atw_linkintr(struct atw_softc *, u_int32_t);
219 void atw_rxintr(struct atw_softc *);
220 void atw_txintr(struct atw_softc *);
221
222 /* 802.11 state machine */
223 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static void atw_next_scan(void *);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static int atw_tune(struct atw_softc *);
228
229 /* Device initialization */
230 static void atw_bbp_io_init(struct atw_softc *);
231 static void atw_cfp_init(struct atw_softc *);
232 static void atw_cmdr_init(struct atw_softc *);
233 static void atw_ifs_init(struct atw_softc *);
234 static void atw_nar_init(struct atw_softc *);
235 static void atw_response_times_init(struct atw_softc *);
236 static void atw_rf_reset(struct atw_softc *);
237 static void atw_test1_init(struct atw_softc *);
238 static void atw_tofs0_init(struct atw_softc *);
239 static void atw_tofs2_init(struct atw_softc *);
240 static void atw_txlmt_init(struct atw_softc *);
241 static void atw_wcsr_init(struct atw_softc *);
242
243 /* RAM/ROM utilities */
244 static void atw_clear_sram(struct atw_softc *);
245 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
246 static int atw_read_srom(struct atw_softc *);
247
248 /* BSS setup */
249 static void atw_predict_beacon(struct atw_softc *);
250 static void atw_start_beacon(struct atw_softc *, int);
251 static void atw_write_bssid(struct atw_softc *);
252 static void atw_write_ssid(struct atw_softc *);
253 static void atw_write_sup_rates(struct atw_softc *);
254 static void atw_write_wep(struct atw_softc *);
255
256 /* Media */
257 static int atw_media_change(struct ifnet *);
258 static void atw_media_status(struct ifnet *, struct ifmediareq *);
259
260 static void atw_filter_setup(struct atw_softc *);
261
262 /* 802.11 utilities */
263 static void atw_frame_setdurs(struct atw_softc *,
264 struct atw_frame *, int, int);
265 static uint64_t atw_get_tsft(struct atw_softc *);
266 static __inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
267 uint32_t);
268 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
269 static void atw_node_free(struct ieee80211com *,
270 struct ieee80211_node *);
271 static void atw_change_ibss(struct atw_softc *);
272
273 /*
274 * Tuner/transceiver/modem
275 */
276 static void atw_bbp_io_enable(struct atw_softc *, int);
277
278 /* RFMD RF3000 Baseband Processor */
279 static int atw_rf3000_init(struct atw_softc *);
280 static int atw_rf3000_tune(struct atw_softc *, u_int);
281 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
282
283 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
284 static void atw_si4126_tune(struct atw_softc *, u_int);
285 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
286
287 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
288 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
289
290 const char *atw_tx_state[] = {
291 "STOPPED",
292 "RUNNING - read descriptor",
293 "RUNNING - transmitting",
294 "RUNNING - filling fifo", /* XXX */
295 "SUSPENDED",
296 "RUNNING -- write descriptor",
297 "RUNNING -- write last descriptor",
298 "RUNNING - fifo full"
299 };
300
301 const char *atw_rx_state[] = {
302 "STOPPED",
303 "RUNNING - read descriptor",
304 "RUNNING - check this packet, pre-fetch next",
305 "RUNNING - wait for reception",
306 "SUSPENDED",
307 "RUNNING - write descriptor",
308 "RUNNING - flush fifo",
309 "RUNNING - fifo drain"
310 };
311
312 int
313 atw_activate(struct device *self, enum devact act)
314 {
315 struct atw_softc *sc = (struct atw_softc *)self;
316 int rv = 0, s;
317
318 s = splnet();
319 switch (act) {
320 case DVACT_ACTIVATE:
321 rv = EOPNOTSUPP;
322 break;
323
324 case DVACT_DEACTIVATE:
325 if_deactivate(&sc->sc_ic.ic_if);
326 break;
327 }
328 splx(s);
329 return rv;
330 }
331
332 /*
333 * atw_enable:
334 *
335 * Enable the ADM8211 chip.
336 */
337 int
338 atw_enable(struct atw_softc *sc)
339 {
340
341 if (ATW_IS_ENABLED(sc) == 0) {
342 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
343 printf("%s: device enable failed\n",
344 sc->sc_dev.dv_xname);
345 return (EIO);
346 }
347 sc->sc_flags |= ATWF_ENABLED;
348 }
349 return (0);
350 }
351
352 /*
353 * atw_disable:
354 *
355 * Disable the ADM8211 chip.
356 */
357 void
358 atw_disable(struct atw_softc *sc)
359 {
360 if (!ATW_IS_ENABLED(sc))
361 return;
362 if (sc->sc_disable != NULL)
363 (*sc->sc_disable)(sc);
364 sc->sc_flags &= ~ATWF_ENABLED;
365 }
366
367 /* Returns -1 on failure. */
368 static int
369 atw_read_srom(struct atw_softc *sc)
370 {
371 struct seeprom_descriptor sd;
372 uint32_t test0, fail_bits;
373
374 (void)memset(&sd, 0, sizeof(sd));
375
376 test0 = ATW_READ(sc, ATW_TEST0);
377
378 switch (sc->sc_rev) {
379 case ATW_REVISION_BA:
380 case ATW_REVISION_CA:
381 fail_bits = ATW_TEST0_EPNE;
382 break;
383 default:
384 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
385 break;
386 }
387 if ((test0 & fail_bits) != 0) {
388 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
389 return -1;
390 }
391
392 switch (test0 & ATW_TEST0_EPTYP_MASK) {
393 case ATW_TEST0_EPTYP_93c66:
394 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
395 sc->sc_sromsz = 512;
396 sd.sd_chip = C56_66;
397 break;
398 case ATW_TEST0_EPTYP_93c46:
399 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
400 sc->sc_sromsz = 128;
401 sd.sd_chip = C46;
402 break;
403 default:
404 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
405 MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
406 return -1;
407 }
408
409 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
410
411 if (sc->sc_srom == NULL) {
412 printf("%s: unable to allocate SROM buffer\n",
413 sc->sc_dev.dv_xname);
414 return -1;
415 }
416
417 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
418
419 /* ADM8211 has a single 32-bit register for controlling the
420 * 93cx6 SROM. Bit SRS enables the serial port. There is no
421 * "ready" bit. The ADM8211 input/output sense is the reverse
422 * of read_seeprom's.
423 */
424 sd.sd_tag = sc->sc_st;
425 sd.sd_bsh = sc->sc_sh;
426 sd.sd_regsize = 4;
427 sd.sd_control_offset = ATW_SPR;
428 sd.sd_status_offset = ATW_SPR;
429 sd.sd_dataout_offset = ATW_SPR;
430 sd.sd_CK = ATW_SPR_SCLK;
431 sd.sd_CS = ATW_SPR_SCS;
432 sd.sd_DI = ATW_SPR_SDO;
433 sd.sd_DO = ATW_SPR_SDI;
434 sd.sd_MS = ATW_SPR_SRS;
435 sd.sd_RDY = 0;
436
437 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
438 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
439 free(sc->sc_srom, M_DEVBUF);
440 return -1;
441 }
442 #ifdef ATW_DEBUG
443 {
444 int i;
445 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
446 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
447 if (((i % 8) == 0) && (i != 0)) {
448 ATW_DPRINTF(("\n\t"));
449 }
450 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
451 }
452 ATW_DPRINTF(("\n"));
453 }
454 #endif /* ATW_DEBUG */
455 return 0;
456 }
457
458 #ifdef ATW_DEBUG
459 static void
460 atw_print_regs(struct atw_softc *sc, const char *where)
461 {
462 #define PRINTREG(sc, reg) \
463 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
464 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
465
466 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
467
468 PRINTREG(sc, ATW_PAR);
469 PRINTREG(sc, ATW_FRCTL);
470 PRINTREG(sc, ATW_TDR);
471 PRINTREG(sc, ATW_WTDP);
472 PRINTREG(sc, ATW_RDR);
473 PRINTREG(sc, ATW_WRDP);
474 PRINTREG(sc, ATW_RDB);
475 PRINTREG(sc, ATW_CSR3A);
476 PRINTREG(sc, ATW_TDBD);
477 PRINTREG(sc, ATW_TDBP);
478 PRINTREG(sc, ATW_STSR);
479 PRINTREG(sc, ATW_CSR5A);
480 PRINTREG(sc, ATW_NAR);
481 PRINTREG(sc, ATW_CSR6A);
482 PRINTREG(sc, ATW_IER);
483 PRINTREG(sc, ATW_CSR7A);
484 PRINTREG(sc, ATW_LPC);
485 PRINTREG(sc, ATW_TEST1);
486 PRINTREG(sc, ATW_SPR);
487 PRINTREG(sc, ATW_TEST0);
488 PRINTREG(sc, ATW_WCSR);
489 PRINTREG(sc, ATW_WPDR);
490 PRINTREG(sc, ATW_GPTMR);
491 PRINTREG(sc, ATW_GPIO);
492 PRINTREG(sc, ATW_BBPCTL);
493 PRINTREG(sc, ATW_SYNCTL);
494 PRINTREG(sc, ATW_PLCPHD);
495 PRINTREG(sc, ATW_MMIWADDR);
496 PRINTREG(sc, ATW_MMIRADDR1);
497 PRINTREG(sc, ATW_MMIRADDR2);
498 PRINTREG(sc, ATW_TXBR);
499 PRINTREG(sc, ATW_CSR15A);
500 PRINTREG(sc, ATW_ALCSTAT);
501 PRINTREG(sc, ATW_TOFS2);
502 PRINTREG(sc, ATW_CMDR);
503 PRINTREG(sc, ATW_PCIC);
504 PRINTREG(sc, ATW_PMCSR);
505 PRINTREG(sc, ATW_PAR0);
506 PRINTREG(sc, ATW_PAR1);
507 PRINTREG(sc, ATW_MAR0);
508 PRINTREG(sc, ATW_MAR1);
509 PRINTREG(sc, ATW_ATIMDA0);
510 PRINTREG(sc, ATW_ABDA1);
511 PRINTREG(sc, ATW_BSSID0);
512 PRINTREG(sc, ATW_TXLMT);
513 PRINTREG(sc, ATW_MIBCNT);
514 PRINTREG(sc, ATW_BCNT);
515 PRINTREG(sc, ATW_TSFTH);
516 PRINTREG(sc, ATW_TSC);
517 PRINTREG(sc, ATW_SYNRF);
518 PRINTREG(sc, ATW_BPLI);
519 PRINTREG(sc, ATW_CAP0);
520 PRINTREG(sc, ATW_CAP1);
521 PRINTREG(sc, ATW_RMD);
522 PRINTREG(sc, ATW_CFPP);
523 PRINTREG(sc, ATW_TOFS0);
524 PRINTREG(sc, ATW_TOFS1);
525 PRINTREG(sc, ATW_IFST);
526 PRINTREG(sc, ATW_RSPT);
527 PRINTREG(sc, ATW_TSFTL);
528 PRINTREG(sc, ATW_WEPCTL);
529 PRINTREG(sc, ATW_WESK);
530 PRINTREG(sc, ATW_WEPCNT);
531 PRINTREG(sc, ATW_MACTEST);
532 PRINTREG(sc, ATW_FER);
533 PRINTREG(sc, ATW_FEMR);
534 PRINTREG(sc, ATW_FPSR);
535 PRINTREG(sc, ATW_FFER);
536 #undef PRINTREG
537 }
538 #endif /* ATW_DEBUG */
539
540 /*
541 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
542 */
543 void
544 atw_attach(struct atw_softc *sc)
545 {
546 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
547 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
548 };
549 struct ieee80211com *ic = &sc->sc_ic;
550 struct ifnet *ifp = &ic->ic_if;
551 int country_code, error, i, nrate, srom_major;
552 u_int32_t reg;
553 static const char *type_strings[] = {"Intersil (not supported)",
554 "RFMD", "Marvel (not supported)"};
555
556 sc->sc_txth = atw_txthresh_tab_lo;
557
558 SIMPLEQ_INIT(&sc->sc_txfreeq);
559 SIMPLEQ_INIT(&sc->sc_txdirtyq);
560
561 #ifdef ATW_DEBUG
562 atw_print_regs(sc, "atw_attach");
563 #endif /* ATW_DEBUG */
564
565 /*
566 * Allocate the control data structures, and create and load the
567 * DMA map for it.
568 */
569 if ((error = bus_dmamem_alloc(sc->sc_dmat,
570 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
571 1, &sc->sc_cdnseg, 0)) != 0) {
572 printf("%s: unable to allocate control data, error = %d\n",
573 sc->sc_dev.dv_xname, error);
574 goto fail_0;
575 }
576
577 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
578 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
579 BUS_DMA_COHERENT)) != 0) {
580 printf("%s: unable to map control data, error = %d\n",
581 sc->sc_dev.dv_xname, error);
582 goto fail_1;
583 }
584
585 if ((error = bus_dmamap_create(sc->sc_dmat,
586 sizeof(struct atw_control_data), 1,
587 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
588 printf("%s: unable to create control data DMA map, "
589 "error = %d\n", sc->sc_dev.dv_xname, error);
590 goto fail_2;
591 }
592
593 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
594 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
595 0)) != 0) {
596 printf("%s: unable to load control data DMA map, error = %d\n",
597 sc->sc_dev.dv_xname, error);
598 goto fail_3;
599 }
600
601 /*
602 * Create the transmit buffer DMA maps.
603 */
604 sc->sc_ntxsegs = ATW_NTXSEGS;
605 for (i = 0; i < ATW_TXQUEUELEN; i++) {
606 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
607 sc->sc_ntxsegs, MCLBYTES, 0, 0,
608 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
609 printf("%s: unable to create tx DMA map %d, "
610 "error = %d\n", sc->sc_dev.dv_xname, i, error);
611 goto fail_4;
612 }
613 }
614
615 /*
616 * Create the receive buffer DMA maps.
617 */
618 for (i = 0; i < ATW_NRXDESC; i++) {
619 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
620 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
621 printf("%s: unable to create rx DMA map %d, "
622 "error = %d\n", sc->sc_dev.dv_xname, i, error);
623 goto fail_5;
624 }
625 }
626 for (i = 0; i < ATW_NRXDESC; i++) {
627 sc->sc_rxsoft[i].rxs_mbuf = NULL;
628 }
629
630 switch (sc->sc_rev) {
631 case ATW_REVISION_AB:
632 case ATW_REVISION_AF:
633 sc->sc_sramlen = ATW_SRAM_A_SIZE;
634 break;
635 case ATW_REVISION_BA:
636 case ATW_REVISION_CA:
637 sc->sc_sramlen = ATW_SRAM_B_SIZE;
638 break;
639 }
640
641 /* Reset the chip to a known state. */
642 atw_reset(sc);
643
644 if (atw_read_srom(sc) == -1)
645 return;
646
647 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
648 ATW_SR_RFTYPE_MASK);
649
650 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
651 ATW_SR_BBPTYPE_MASK);
652
653 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
654 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
655 return;
656 }
657 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
658 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
659 return;
660 }
661
662 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
663 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
664
665 /* XXX There exists a Linux driver which seems to use RFType = 0 for
666 * MARVEL. My bug, or theirs?
667 */
668
669 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
670
671 switch (sc->sc_rftype) {
672 case ATW_RFTYPE_INTERSIL:
673 reg |= ATW_SYNCTL_CS1;
674 break;
675 case ATW_RFTYPE_RFMD:
676 reg |= ATW_SYNCTL_CS0;
677 break;
678 case ATW_RFTYPE_MARVEL:
679 break;
680 }
681
682 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
683 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
684
685 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
686
687 switch (sc->sc_bbptype) {
688 case ATW_BBPTYPE_INTERSIL:
689 reg |= ATW_BBPCTL_TWI;
690 break;
691 case ATW_BBPTYPE_RFMD:
692 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
693 ATW_BBPCTL_CCA_ACTLO;
694 break;
695 case ATW_BBPTYPE_MARVEL:
696 break;
697 case ATW_C_BBPTYPE_RFMD:
698 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
699 sc->sc_dev.dv_xname);
700 break;
701 }
702
703 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
704 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
705
706 /*
707 * From this point forward, the attachment cannot fail. A failure
708 * before this point releases all resources that may have been
709 * allocated.
710 */
711 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
712
713 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
714 htole16(sc->sc_srom[ATW_SR_MAC00]),
715 htole16(sc->sc_srom[ATW_SR_MAC01]),
716 htole16(sc->sc_srom[ATW_SR_MAC10])));
717
718 srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
719 ATW_SR_MAJOR_MASK);
720
721 if (srom_major < 2)
722 sc->sc_rf3000_options1 = 0;
723 else if (sc->sc_rev == ATW_REVISION_BA) {
724 sc->sc_rf3000_options1 =
725 MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
726 ATW_SR_CR28_MASK);
727 } else
728 sc->sc_rf3000_options1 = 0;
729
730 sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
731 ATW_SR_CR29_MASK);
732
733 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
734 ATW_SR_CTRY_MASK);
735
736 #define ADD_CHANNEL(_ic, _chan) do { \
737 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
738 _ic->ic_channels[_chan].ic_freq = \
739 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
740 } while (0)
741
742 /* Find available channels */
743 switch (country_code) {
744 case COUNTRY_MMK2: /* 1-14 */
745 ADD_CHANNEL(ic, 14);
746 /*FALLTHROUGH*/
747 case COUNTRY_ETSI: /* 1-13 */
748 for (i = 1; i <= 13; i++)
749 ADD_CHANNEL(ic, i);
750 break;
751 case COUNTRY_FCC: /* 1-11 */
752 case COUNTRY_IC: /* 1-11 */
753 for (i = 1; i <= 11; i++)
754 ADD_CHANNEL(ic, i);
755 break;
756 case COUNTRY_MMK: /* 14 */
757 ADD_CHANNEL(ic, 14);
758 break;
759 case COUNTRY_FRANCE: /* 10-13 */
760 for (i = 10; i <= 13; i++)
761 ADD_CHANNEL(ic, i);
762 break;
763 default: /* assume channels 10-11 */
764 case COUNTRY_SPAIN: /* 10-11 */
765 for (i = 10; i <= 11; i++)
766 ADD_CHANNEL(ic, i);
767 break;
768 }
769
770 /* Read the MAC address. */
771 reg = ATW_READ(sc, ATW_PAR0);
772 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
773 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
774 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
775 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
776 reg = ATW_READ(sc, ATW_PAR1);
777 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
778 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
779
780 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
781 printf(" could not get mac address, attach failed\n");
782 return;
783 }
784
785 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
786
787 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
788 ifp->if_softc = sc;
789 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
790 IFF_NOTRAILERS;
791 ifp->if_ioctl = atw_ioctl;
792 ifp->if_start = atw_start;
793 ifp->if_watchdog = atw_watchdog;
794 ifp->if_init = atw_init;
795 ifp->if_stop = atw_stop;
796 IFQ_SET_READY(&ifp->if_snd);
797
798 ic->ic_phytype = IEEE80211_T_DS;
799 ic->ic_opmode = IEEE80211_M_STA;
800 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
801 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
802
803 nrate = 0;
804 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
805 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
806 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
807 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
808 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
809
810 /*
811 * Call MI attach routines.
812 */
813
814 if_attach(ifp);
815 ieee80211_ifattach(ifp);
816
817 sc->sc_newstate = ic->ic_newstate;
818 ic->ic_newstate = atw_newstate;
819
820 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
821 ic->ic_recv_mgmt = atw_recv_mgmt;
822
823 sc->sc_node_free = ic->ic_node_free;
824 ic->ic_node_free = atw_node_free;
825
826 sc->sc_node_alloc = ic->ic_node_alloc;
827 ic->ic_node_alloc = atw_node_alloc;
828
829 /* possibly we should fill in our own sc_send_prresp, since
830 * the ADM8211 is probably sending probe responses in ad hoc
831 * mode.
832 */
833
834 /* complete initialization */
835 ieee80211_media_init(ifp, atw_media_change, atw_media_status);
836 callout_init(&sc->sc_scan_ch);
837
838 #if NBPFILTER > 0
839 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
840 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
841 #endif
842
843 /*
844 * Make sure the interface is shutdown during reboot.
845 */
846 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
847 if (sc->sc_sdhook == NULL)
848 printf("%s: WARNING: unable to establish shutdown hook\n",
849 sc->sc_dev.dv_xname);
850
851 /*
852 * Add a suspend hook to make sure we come back up after a
853 * resume.
854 */
855 sc->sc_powerhook = powerhook_establish(atw_power, sc);
856 if (sc->sc_powerhook == NULL)
857 printf("%s: WARNING: unable to establish power hook\n",
858 sc->sc_dev.dv_xname);
859
860 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
861 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
862 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
863
864 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
865 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
866 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
867
868 return;
869
870 /*
871 * Free any resources we've allocated during the failed attach
872 * attempt. Do this in reverse order and fall through.
873 */
874 fail_5:
875 for (i = 0; i < ATW_NRXDESC; i++) {
876 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
877 continue;
878 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
879 }
880 fail_4:
881 for (i = 0; i < ATW_TXQUEUELEN; i++) {
882 if (sc->sc_txsoft[i].txs_dmamap == NULL)
883 continue;
884 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
885 }
886 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
887 fail_3:
888 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
889 fail_2:
890 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
891 sizeof(struct atw_control_data));
892 fail_1:
893 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
894 fail_0:
895 return;
896 }
897
898 static struct ieee80211_node *
899 atw_node_alloc(struct ieee80211com *ic)
900 {
901 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
902 struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
903
904 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
905 return ni;
906 }
907
908 static void
909 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
910 {
911 struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
912
913 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
914 ether_sprintf(ni->ni_bssid)));
915 (*sc->sc_node_free)(ic, ni);
916 }
917
918
919 static void
920 atw_test1_reset(struct atw_softc *sc)
921 {
922 switch (sc->sc_rev) {
923 case ATW_REVISION_BA:
924 if (1 /* XXX condition on transceiver type */) {
925 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
926 }
927 break;
928 case ATW_REVISION_CA:
929 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
930 break;
931 default:
932 break;
933 }
934 }
935
936 /*
937 * atw_reset:
938 *
939 * Perform a soft reset on the ADM8211.
940 */
941 void
942 atw_reset(struct atw_softc *sc)
943 {
944 int i;
945 uint32_t lpc;
946
947 ATW_WRITE(sc, ATW_NAR, 0x0);
948 DELAY(atw_nar_delay);
949
950 /* Reference driver has a cryptic remark indicating that this might
951 * power-on the chip. I know that it turns off power-saving....
952 */
953 ATW_WRITE(sc, ATW_FRCTL, 0x0);
954
955 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
956
957 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
958 if (ATW_READ(sc, ATW_PAR) == 0)
959 break;
960 DELAY(atw_pseudo_milli);
961 }
962
963 /* ... and then pause 100ms longer for good measure. */
964 DELAY(atw_magic_delay1);
965
966 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
967
968 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
969 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
970
971 atw_test1_reset(sc);
972 /*
973 * Initialize the PCI Access Register.
974 */
975 sc->sc_busmode = ATW_PAR_PBL_8DW;
976
977 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
978 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
979 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
980
981 /* Turn off maximum power saving, etc.
982 *
983 * XXX Following example of reference driver, should I set
984 * an AID of 1? It didn't seem to help....
985 */
986 ATW_WRITE(sc, ATW_FRCTL, 0x0);
987
988 DELAY(atw_magic_delay2);
989
990 /* Recall EEPROM. */
991 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
992
993 DELAY(atw_magic_delay4);
994
995 lpc = ATW_READ(sc, ATW_LPC);
996
997 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
998
999 /* A reset seems to affect the SRAM contents, so put them into
1000 * a known state.
1001 */
1002 atw_clear_sram(sc);
1003
1004 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1005 }
1006
1007 static void
1008 atw_clear_sram(struct atw_softc *sc)
1009 {
1010 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1011 /* XXX not for revision 0x20. */
1012 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1013 }
1014
1015 /* TBD atw_init
1016 *
1017 * set MAC based on ic->ic_bss->myaddr
1018 * write WEP keys
1019 * set TX rate
1020 */
1021
1022 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1023 * without receiving a beacon with the preferred BSSID & SSID.
1024 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1025 */
1026 static void
1027 atw_wcsr_init(struct atw_softc *sc)
1028 {
1029 uint32_t wcsr;
1030
1031 wcsr = ATW_READ(sc, ATW_WCSR);
1032 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1033 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1034 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1035
1036 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1037 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1038 }
1039
1040 /* Turn off power management. Set Rx store-and-forward mode. */
1041 static void
1042 atw_cmdr_init(struct atw_softc *sc)
1043 {
1044 uint32_t cmdr;
1045 cmdr = ATW_READ(sc, ATW_CMDR);
1046 cmdr &= ~ATW_CMDR_APM;
1047 cmdr |= ATW_CMDR_RTE;
1048 cmdr &= ~ATW_CMDR_DRT_MASK;
1049 cmdr |= ATW_CMDR_DRT_SF;
1050
1051 ATW_WRITE(sc, ATW_CMDR, cmdr);
1052 }
1053
1054 static void
1055 atw_tofs2_init(struct atw_softc *sc)
1056 {
1057 uint32_t tofs2;
1058 /* XXX this magic can probably be figured out from the RFMD docs */
1059 #ifndef ATW_REFSLAVE
1060 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1061 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1062 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1063 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1064 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1065 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1066 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1067 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1068 #else
1069 /* XXX new magic from reference driver source */
1070 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1071 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1072 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1073 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1074 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1075 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1076 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1077 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1078 #endif
1079 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1080 }
1081
1082 static void
1083 atw_nar_init(struct atw_softc *sc)
1084 {
1085 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1086 }
1087
1088 static void
1089 atw_txlmt_init(struct atw_softc *sc)
1090 {
1091 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1092 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1093 }
1094
1095 static void
1096 atw_test1_init(struct atw_softc *sc)
1097 {
1098 uint32_t test1;
1099
1100 test1 = ATW_READ(sc, ATW_TEST1);
1101 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1102 /* XXX magic 0x1 */
1103 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1104 ATW_WRITE(sc, ATW_TEST1, test1);
1105 }
1106
1107 static void
1108 atw_rf_reset(struct atw_softc *sc)
1109 {
1110 /* XXX this resets an Intersil RF front-end? */
1111 /* TBD condition on Intersil RFType? */
1112 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1113 DELAY(atw_rf_delay1);
1114 ATW_WRITE(sc, ATW_SYNRF, 0);
1115 DELAY(atw_rf_delay2);
1116 }
1117
1118 /* Set 16 TU max duration for the contention-free period (CFP). */
1119 static void
1120 atw_cfp_init(struct atw_softc *sc)
1121 {
1122 uint32_t cfpp;
1123
1124 cfpp = ATW_READ(sc, ATW_CFPP);
1125 cfpp &= ~ATW_CFPP_CFPMD;
1126 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1127 ATW_WRITE(sc, ATW_CFPP, cfpp);
1128 }
1129
1130 static void
1131 atw_tofs0_init(struct atw_softc *sc)
1132 {
1133 /* XXX I guess that the Cardbus clock is 22MHz?
1134 * I am assuming that the role of ATW_TOFS0_USCNT is
1135 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1136 * very clear on this point. It says in the datasheet that it is
1137 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1138 * and 33MHz; maybe this is the way? I see a binary-only driver write
1139 * these values. These values are also the power-on default.
1140 */
1141 ATW_WRITE(sc, ATW_TOFS0,
1142 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1143 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1144 }
1145
1146 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1147 static void
1148 atw_ifs_init(struct atw_softc *sc)
1149 {
1150 uint32_t ifst;
1151 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1152 * Go figure.
1153 */
1154 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1155 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1156 ATW_IFST_SIFS_MASK) |
1157 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1158 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1159
1160 ATW_WRITE(sc, ATW_IFST, ifst);
1161 }
1162
1163 static void
1164 atw_response_times_init(struct atw_softc *sc)
1165 {
1166 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1167 * indicate that the MAC expects at least SIFS + MIRT microseconds
1168 * to pass after it transmits a frame that requires a response;
1169 * it waits at most SIFS + MART microseconds for the response.
1170 * Surely this is not the ACK timeout?
1171 */
1172 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1173 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1174 }
1175
1176 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1177 * engines read and write baseband registers after Rx and before
1178 * Tx, respectively.
1179 */
1180 static void
1181 atw_bbp_io_init(struct atw_softc *sc)
1182 {
1183 uint32_t mmiraddr2;
1184
1185 /* XXX The reference driver does this, but is it *really*
1186 * necessary?
1187 */
1188 switch (sc->sc_rev) {
1189 case ATW_REVISION_AB:
1190 case ATW_REVISION_AF:
1191 mmiraddr2 = 0x0;
1192 break;
1193 default:
1194 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1195 mmiraddr2 &=
1196 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1197 break;
1198 }
1199
1200 switch (sc->sc_bbptype) {
1201 case ATW_BBPTYPE_INTERSIL:
1202 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1203 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1204 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1205 break;
1206 case ATW_BBPTYPE_MARVEL:
1207 /* TBD find out the Marvel settings. */
1208 break;
1209 case ATW_BBPTYPE_RFMD:
1210 default:
1211 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1212 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1213 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1214 break;
1215 }
1216 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1217 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1218 }
1219
1220 /*
1221 * atw_init: [ ifnet interface function ]
1222 *
1223 * Initialize the interface. Must be called at splnet().
1224 */
1225 int
1226 atw_init(struct ifnet *ifp)
1227 {
1228 struct atw_softc *sc = ifp->if_softc;
1229 struct ieee80211com *ic = &sc->sc_ic;
1230 struct atw_txsoft *txs;
1231 struct atw_rxsoft *rxs;
1232 int i, error = 0;
1233
1234 if ((error = atw_enable(sc)) != 0)
1235 goto out;
1236
1237 /*
1238 * Cancel any pending I/O. This also resets.
1239 */
1240 atw_stop(ifp, 0);
1241
1242 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1243 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1244 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
1245 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
1246
1247 atw_wcsr_init(sc);
1248
1249 atw_cmdr_init(sc);
1250
1251 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1252 *
1253 * XXX Set transmit power for ATIM, RTS, Beacon.
1254 */
1255 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1256 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1257
1258 atw_tofs2_init(sc);
1259
1260 atw_nar_init(sc);
1261
1262 atw_txlmt_init(sc);
1263
1264 atw_test1_init(sc);
1265
1266 atw_rf_reset(sc);
1267
1268 atw_cfp_init(sc);
1269
1270 atw_tofs0_init(sc);
1271
1272 atw_ifs_init(sc);
1273
1274 /* XXX Fall asleep after one second of inactivity.
1275 * XXX A frame may only dribble in for 65536us.
1276 */
1277 ATW_WRITE(sc, ATW_RMD,
1278 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1279
1280 atw_response_times_init(sc);
1281
1282 atw_bbp_io_init(sc);
1283
1284 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1285
1286 if ((error = atw_rf3000_init(sc)) != 0)
1287 goto out;
1288
1289 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1290 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1291 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1292
1293 /*
1294 * Initialize the transmit descriptor ring.
1295 */
1296 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1297 for (i = 0; i < ATW_NTXDESC; i++) {
1298 sc->sc_txdescs[i].at_ctl = 0;
1299 /* no transmit chaining */
1300 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1301 sc->sc_txdescs[i].at_buf2 =
1302 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1303 }
1304 /* use ring mode */
1305 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1306 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1307 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1308 sc->sc_txfree = ATW_NTXDESC;
1309 sc->sc_txnext = 0;
1310
1311 /*
1312 * Initialize the transmit job descriptors.
1313 */
1314 SIMPLEQ_INIT(&sc->sc_txfreeq);
1315 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1316 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1317 txs = &sc->sc_txsoft[i];
1318 txs->txs_mbuf = NULL;
1319 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1320 }
1321
1322 /*
1323 * Initialize the receive descriptor and receive job
1324 * descriptor rings.
1325 */
1326 for (i = 0; i < ATW_NRXDESC; i++) {
1327 rxs = &sc->sc_rxsoft[i];
1328 if (rxs->rxs_mbuf == NULL) {
1329 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1330 printf("%s: unable to allocate or map rx "
1331 "buffer %d, error = %d\n",
1332 sc->sc_dev.dv_xname, i, error);
1333 /*
1334 * XXX Should attempt to run with fewer receive
1335 * XXX buffers instead of just failing.
1336 */
1337 atw_rxdrain(sc);
1338 goto out;
1339 }
1340 } else
1341 ATW_INIT_RXDESC(sc, i);
1342 }
1343 sc->sc_rxptr = 0;
1344
1345 /*
1346 * Initialize the interrupt mask and enable interrupts.
1347 */
1348 /* normal interrupts */
1349 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1350 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1351
1352 /* abnormal interrupts */
1353 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1354 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1355 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1356
1357 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1358 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1359 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1360 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1361 ATW_INTR_TRT;
1362
1363 sc->sc_linkint_mask &= sc->sc_inten;
1364 sc->sc_rxint_mask &= sc->sc_inten;
1365 sc->sc_txint_mask &= sc->sc_inten;
1366
1367 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1368 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1369
1370 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1371 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1372
1373 /*
1374 * Give the transmit and receive rings to the ADM8211.
1375 */
1376 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1377 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1378
1379 sc->sc_txthresh = 0;
1380 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1381 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1382
1383 /* common 802.11 configuration */
1384 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1385 switch (ic->ic_opmode) {
1386 case IEEE80211_M_STA:
1387 break;
1388 case IEEE80211_M_AHDEMO: /* XXX */
1389 case IEEE80211_M_IBSS:
1390 ic->ic_flags |= IEEE80211_F_IBSSON;
1391 /*FALLTHROUGH*/
1392 case IEEE80211_M_HOSTAP: /* XXX */
1393 break;
1394 case IEEE80211_M_MONITOR: /* XXX */
1395 break;
1396 }
1397
1398 switch (ic->ic_opmode) {
1399 case IEEE80211_M_AHDEMO:
1400 case IEEE80211_M_HOSTAP:
1401 ic->ic_bss->ni_intval = ic->ic_lintval;
1402 ic->ic_bss->ni_rssi = 0;
1403 ic->ic_bss->ni_rstamp = 0;
1404 break;
1405 default: /* XXX */
1406 break;
1407 }
1408
1409 sc->sc_wepctl = 0;
1410
1411 atw_write_ssid(sc);
1412 atw_write_sup_rates(sc);
1413 if (ic->ic_caps & IEEE80211_C_WEP)
1414 atw_write_wep(sc);
1415
1416 ic->ic_state = IEEE80211_S_INIT;
1417
1418 /*
1419 * Set the receive filter. This will start the transmit and
1420 * receive processes.
1421 */
1422 atw_filter_setup(sc);
1423
1424 /*
1425 * Start the receive process.
1426 */
1427 ATW_WRITE(sc, ATW_RDR, 0x1);
1428
1429 /*
1430 * Note that the interface is now running.
1431 */
1432 ifp->if_flags |= IFF_RUNNING;
1433 ifp->if_flags &= ~IFF_OACTIVE;
1434
1435 /* send no beacons, yet. */
1436 atw_start_beacon(sc, 0);
1437
1438 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1439 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1440 else
1441 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1442 out:
1443 if (error) {
1444 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1445 ifp->if_timer = 0;
1446 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1447 }
1448 #ifdef ATW_DEBUG
1449 atw_print_regs(sc, "end of init");
1450 #endif /* ATW_DEBUG */
1451
1452 return (error);
1453 }
1454
1455 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1456 * 0: MAC control of RF3000/Si4126.
1457 *
1458 * Applies power, or selects RF front-end? Sets reset condition.
1459 *
1460 * TBD support non-RFMD BBP, non-SiLabs synth.
1461 */
1462 static void
1463 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1464 {
1465 if (enable) {
1466 ATW_WRITE(sc, ATW_SYNRF,
1467 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1468 DELAY(atw_bbp_io_enable_delay);
1469 } else {
1470 ATW_WRITE(sc, ATW_SYNRF, 0);
1471 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1472 }
1473 }
1474
1475 static int
1476 atw_tune(struct atw_softc *sc)
1477 {
1478 int rc;
1479 u_int chan;
1480 struct ieee80211com *ic = &sc->sc_ic;
1481
1482 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1483 if (chan == IEEE80211_CHAN_ANY)
1484 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1485
1486 if (chan == sc->sc_cur_chan)
1487 return 0;
1488
1489 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1490 sc->sc_cur_chan, chan));
1491
1492 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1493
1494 atw_si4126_tune(sc, chan);
1495 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1496 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1497 chan);
1498
1499 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1500 DELAY(atw_nar_delay);
1501 ATW_WRITE(sc, ATW_RDR, 0x1);
1502
1503 if (rc == 0)
1504 sc->sc_cur_chan = chan;
1505
1506 return rc;
1507 }
1508
1509 #ifdef ATW_SYNDEBUG
1510 static void
1511 atw_si4126_print(struct atw_softc *sc)
1512 {
1513 struct ifnet *ifp = &sc->sc_ic.ic_if;
1514 u_int addr, val;
1515
1516 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1517 return;
1518
1519 for (addr = 0; addr <= 8; addr++) {
1520 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1521 if (atw_si4126_read(sc, addr, &val) == 0) {
1522 printf("<unknown> (quitting print-out)\n");
1523 break;
1524 }
1525 printf("%05x\n", val);
1526 }
1527 }
1528 #endif /* ATW_SYNDEBUG */
1529
1530 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1531 *
1532 * The RF/IF synthesizer produces two reference frequencies for
1533 * the RF2948B transceiver. The first frequency the RF2948B requires
1534 * is two times the so-called "intermediate frequency" (IF). Since
1535 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1536 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1537 * frequency required by the transceiver is the radio frequency
1538 * (RF). This is a superheterodyne transceiver; for f(chan) the
1539 * center frequency of the channel we are tuning, RF = f(chan) -
1540 * IF.
1541 *
1542 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1543 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1544 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1545 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1546 */
1547 static void
1548 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1549 {
1550 u_int mhz;
1551 u_int R;
1552 u_int32_t gpio;
1553 u_int16_t gain;
1554
1555 #ifdef ATW_SYNDEBUG
1556 atw_si4126_print(sc);
1557 #endif /* ATW_SYNDEBUG */
1558
1559 if (chan == 14)
1560 mhz = 2484;
1561 else
1562 mhz = 2412 + 5 * (chan - 1);
1563
1564 /* Tune IF to 748MHz to suit the IF LO input of the
1565 * RF2494B, which is 2 x IF. No need to set an IF divider
1566 * because an IF in 526MHz - 952MHz is allowed.
1567 *
1568 * XIN is 44.000MHz, so divide it by two to get allowable
1569 * range of 2-25MHz. SiLabs tells me that this is not
1570 * strictly necessary.
1571 */
1572
1573 if (atw_xindiv2)
1574 R = 44;
1575 else
1576 R = 88;
1577
1578 /* Power-up RF, IF synthesizers. */
1579 atw_si4126_write(sc, SI4126_POWER,
1580 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1581
1582 /* set LPWR, too? */
1583 atw_si4126_write(sc, SI4126_MAIN,
1584 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1585
1586 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1587 * set KP2 to 1.
1588 *
1589 * REFDIF This is different from the reference driver, which
1590 * always sets SI4126_GAIN to 0.
1591 */
1592 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1593
1594 atw_si4126_write(sc, SI4126_GAIN, gain);
1595
1596 /* XIN = 44MHz.
1597 *
1598 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1599 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1600 *
1601 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1602 * so that 1496/88 * 44MHz = 748MHz.
1603 */
1604 atw_si4126_write(sc, SI4126_IFN, 1496);
1605
1606 atw_si4126_write(sc, SI4126_IFR, R);
1607
1608 #ifndef ATW_REFSLAVE
1609 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1610 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1611 * which has no RF1!
1612 */
1613 atw_si4126_write(sc, SI4126_RF1R, R);
1614
1615 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1616 #endif
1617
1618 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1619 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1620 * Now let's multiply it to mhz. So mhz - IF = N.
1621 */
1622 atw_si4126_write(sc, SI4126_RF2R, R);
1623
1624 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1625
1626 /* wait 100us from power-up for RF, IF to settle */
1627 DELAY(100);
1628
1629 gpio = ATW_READ(sc, ATW_GPIO);
1630 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1631 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1632
1633 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1634 /* Set a Prism RF front-end to a special mode for channel 14?
1635 *
1636 * Apparently the SMC2635W needs this, although I don't think
1637 * it has a Prism RF.
1638 */
1639 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1640 }
1641 ATW_WRITE(sc, ATW_GPIO, gpio);
1642
1643 #ifdef ATW_SYNDEBUG
1644 atw_si4126_print(sc);
1645 #endif /* ATW_SYNDEBUG */
1646 }
1647
1648 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1649 * diversity.
1650 *
1651 * !!!
1652 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1653 * !!!
1654 */
1655 static int
1656 atw_rf3000_init(struct atw_softc *sc)
1657 {
1658 int rc = 0;
1659
1660 atw_bbp_io_enable(sc, 1);
1661
1662 /* CCA is acquisition sensitive */
1663 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1664 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1665
1666 if (rc != 0)
1667 goto out;
1668
1669 /* enable diversity */
1670 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1671
1672 if (rc != 0)
1673 goto out;
1674
1675 /* sensible setting from a binary-only driver */
1676 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1677 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1678
1679 if (rc != 0)
1680 goto out;
1681
1682 /* magic from a binary-only driver */
1683 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1684 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1685
1686 if (rc != 0)
1687 goto out;
1688
1689 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1690
1691 if (rc != 0)
1692 goto out;
1693
1694 /* XXX Reference driver remarks that Abocom sets this to 50.
1695 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1696 * in the "reserved" area of register RF3000_OPTIONS1.
1697 */
1698 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1699
1700 if (rc != 0)
1701 goto out;
1702
1703 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1704
1705 if (rc != 0)
1706 goto out;
1707
1708 out:
1709 atw_bbp_io_enable(sc, 0);
1710 return rc;
1711 }
1712
1713 #ifdef ATW_BBPDEBUG
1714 static void
1715 atw_rf3000_print(struct atw_softc *sc)
1716 {
1717 struct ifnet *ifp = &sc->sc_ic.ic_if;
1718 u_int addr, val;
1719
1720 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1721 return;
1722
1723 for (addr = 0x01; addr <= 0x15; addr++) {
1724 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1725 if (atw_rf3000_read(sc, addr, &val) != 0) {
1726 printf("<unknown> (quitting print-out)\n");
1727 break;
1728 }
1729 printf("%08x\n", val);
1730 }
1731 }
1732 #endif /* ATW_BBPDEBUG */
1733
1734 /* Set the power settings on the BBP for channel `chan'. */
1735 static int
1736 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1737 {
1738 int rc = 0;
1739 u_int32_t reg;
1740 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1741
1742 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1743 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1744 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1745
1746 /* odd channels: LSB, even channels: MSB */
1747 if (chan % 2 == 1) {
1748 txpower &= 0xFF;
1749 lpf_cutoff &= 0xFF;
1750 lna_gs_thresh &= 0xFF;
1751 } else {
1752 txpower >>= 8;
1753 lpf_cutoff >>= 8;
1754 lna_gs_thresh >>= 8;
1755 }
1756
1757 #ifdef ATW_BBPDEBUG
1758 atw_rf3000_print(sc);
1759 #endif /* ATW_BBPDEBUG */
1760
1761 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1762 "lna_gs_thresh %02x\n",
1763 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1764
1765 atw_bbp_io_enable(sc, 1);
1766
1767 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1768 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1769 goto out;
1770
1771 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1772 goto out;
1773
1774 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1775 goto out;
1776
1777 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1778
1779 if (rc != 0)
1780 goto out;
1781
1782 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1783
1784 if (rc != 0)
1785 goto out;
1786
1787 #ifdef ATW_BBPDEBUG
1788 atw_rf3000_print(sc);
1789 #endif /* ATW_BBPDEBUG */
1790
1791 out:
1792 atw_bbp_io_enable(sc, 0);
1793
1794 /* set beacon, rts, atim transmit power */
1795 reg = ATW_READ(sc, ATW_PLCPHD);
1796 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1797 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1798 ATW_PLCPHD_SERVICE_MASK);
1799 ATW_WRITE(sc, ATW_PLCPHD, reg);
1800 DELAY(atw_plcphd_delay);
1801
1802 return rc;
1803 }
1804
1805 /* Write a register on the RF3000 baseband processor using the
1806 * registers provided by the ADM8211 for this purpose.
1807 *
1808 * Return 0 on success.
1809 */
1810 static int
1811 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1812 {
1813 u_int32_t reg;
1814 int i;
1815
1816 reg = sc->sc_bbpctl_wr |
1817 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1818 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1819
1820 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1821 ATW_WRITE(sc, ATW_BBPCTL, reg);
1822 DELAY(2 * atw_pseudo_milli);
1823 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1824 break;
1825 }
1826
1827 if (i < 0) {
1828 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1829 return ETIMEDOUT;
1830 }
1831 return 0;
1832 }
1833
1834 /* Read a register on the RF3000 baseband processor using the registers
1835 * the ADM8211 provides for this purpose.
1836 *
1837 * The 7-bit register address is addr. Record the 8-bit data in the register
1838 * in *val.
1839 *
1840 * Return 0 on success.
1841 *
1842 * XXX This does not seem to work. The ADM8211 must require more or
1843 * different magic to read the chip than to write it. Possibly some
1844 * of the magic I have derived from a binary-only driver concerns
1845 * the "chip address" (see the RF3000 manual).
1846 */
1847 #ifdef ATW_BBPDEBUG
1848 static int
1849 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1850 {
1851 u_int32_t reg;
1852 int i;
1853
1854 for (i = 1000; --i >= 0; ) {
1855 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1856 break;
1857 DELAY(100);
1858 }
1859
1860 if (i < 0) {
1861 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1862 sc->sc_dev.dv_xname);
1863 return ETIMEDOUT;
1864 }
1865
1866 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1867
1868 ATW_WRITE(sc, ATW_BBPCTL, reg);
1869
1870 for (i = 1000; --i >= 0; ) {
1871 DELAY(100);
1872 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1873 break;
1874 }
1875
1876 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1877
1878 if (i < 0) {
1879 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1880 sc->sc_dev.dv_xname, reg);
1881 return ETIMEDOUT;
1882 }
1883 if (val != NULL)
1884 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1885 return 0;
1886 }
1887 #endif /* ATW_BBPDEBUG */
1888
1889 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1890 * provided by the ADM8211 for that purpose.
1891 *
1892 * val is 18 bits of data, and val is the 4-bit address of the register.
1893 *
1894 * Return 0 on success.
1895 */
1896 static void
1897 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1898 {
1899 uint32_t bits, mask, reg;
1900 const int nbits = 22;
1901
1902 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1903 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1904
1905 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1906 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1907
1908 reg = ATW_SYNRF_SELSYN;
1909 /* reference driver: reset Si4126 serial bus to initial
1910 * conditions?
1911 */
1912 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1913 ATW_WRITE(sc, ATW_SYNRF, reg);
1914
1915 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1916 if ((bits & mask) != 0)
1917 reg |= ATW_SYNRF_SYNDATA;
1918 else
1919 reg &= ~ATW_SYNRF_SYNDATA;
1920 ATW_WRITE(sc, ATW_SYNRF, reg);
1921 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1922 ATW_WRITE(sc, ATW_SYNRF, reg);
1923 }
1924 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1925 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1926 }
1927
1928 /* Read 18-bit data from the 4-bit address addr in Si4126
1929 * RF synthesizer and write the data to *val. Return 0 on success.
1930 *
1931 * XXX This does not seem to work. The ADM8211 must require more or
1932 * different magic to read the chip than to write it.
1933 */
1934 #ifdef ATW_SYNDEBUG
1935 static int
1936 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1937 {
1938 u_int32_t reg;
1939 int i;
1940
1941 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1942
1943 for (i = 1000; --i >= 0; ) {
1944 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1945 break;
1946 DELAY(100);
1947 }
1948
1949 if (i < 0) {
1950 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1951 sc->sc_dev.dv_xname);
1952 return ETIMEDOUT;
1953 }
1954
1955 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1956
1957 ATW_WRITE(sc, ATW_SYNCTL, reg);
1958
1959 for (i = 1000; --i >= 0; ) {
1960 DELAY(100);
1961 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1962 break;
1963 }
1964
1965 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1966
1967 if (i < 0) {
1968 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1969 sc->sc_dev.dv_xname, reg);
1970 return ETIMEDOUT;
1971 }
1972 if (val != NULL)
1973 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1974 ATW_SYNCTL_DATA_MASK);
1975 return 0;
1976 }
1977 #endif /* ATW_SYNDEBUG */
1978
1979 /* XXX is the endianness correct? test. */
1980 #define atw_calchash(addr) \
1981 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1982
1983 /*
1984 * atw_filter_setup:
1985 *
1986 * Set the ADM8211's receive filter.
1987 */
1988 static void
1989 atw_filter_setup(struct atw_softc *sc)
1990 {
1991 struct ieee80211com *ic = &sc->sc_ic;
1992 struct ethercom *ec = &ic->ic_ec;
1993 struct ifnet *ifp = &sc->sc_ic.ic_if;
1994 int hash;
1995 u_int32_t hashes[2];
1996 struct ether_multi *enm;
1997 struct ether_multistep step;
1998
1999 /* According to comments in tlp_al981_filter_setup
2000 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2001 * multicast filter to be set while it is running. Hopefully
2002 * the ADM8211 is not the same!
2003 */
2004 if ((ifp->if_flags & IFF_RUNNING) != 0)
2005 atw_idle(sc, ATW_NAR_SR);
2006
2007 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2008
2009 /* XXX in scan mode, do not filter packets. Maybe this is
2010 * unnecessary.
2011 */
2012 if (ic->ic_state == IEEE80211_S_SCAN ||
2013 (ifp->if_flags & IFF_PROMISC) != 0) {
2014 sc->sc_opmode |= ATW_NAR_PR;
2015 goto allmulti;
2016 }
2017
2018 hashes[0] = hashes[1] = 0x0;
2019
2020 /*
2021 * Program the 64-bit multicast hash filter.
2022 */
2023 ETHER_FIRST_MULTI(step, ec, enm);
2024 while (enm != NULL) {
2025 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2026 ETHER_ADDR_LEN) != 0)
2027 goto allmulti;
2028
2029 hash = atw_calchash(enm->enm_addrlo);
2030 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2031 ETHER_NEXT_MULTI(step, enm);
2032 sc->sc_opmode |= ATW_NAR_MM;
2033 }
2034 ifp->if_flags &= ~IFF_ALLMULTI;
2035 goto setit;
2036
2037 allmulti:
2038 sc->sc_opmode |= ATW_NAR_MM;
2039 ifp->if_flags |= IFF_ALLMULTI;
2040 hashes[0] = hashes[1] = 0xffffffff;
2041
2042 setit:
2043 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2044 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2045 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2046 DELAY(atw_nar_delay);
2047
2048 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2049 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2050 }
2051
2052 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2053 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2054 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2055 * no beacon with the preferred BSSID and SSID in the number of
2056 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2057 */
2058 static void
2059 atw_write_bssid(struct atw_softc *sc)
2060 {
2061 struct ieee80211com *ic = &sc->sc_ic;
2062 u_int8_t *bssid;
2063
2064 bssid = ic->ic_bss->ni_bssid;
2065
2066 ATW_WRITE(sc, ATW_BSSID0,
2067 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2068 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2069 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2070 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2071
2072 ATW_WRITE(sc, ATW_ABDA1,
2073 (ATW_READ(sc, ATW_ABDA1) &
2074 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2075 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2076 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2077
2078 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2079 ether_sprintf(sc->sc_bssid)));
2080 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2081
2082 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2083 }
2084
2085 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2086 * 16-bit word.
2087 */
2088 static void
2089 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2090 {
2091 u_int i;
2092 u_int8_t *ptr;
2093
2094 memcpy(&sc->sc_sram[ofs], buf, buflen);
2095
2096 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2097
2098 KASSERT(buflen + ofs <= sc->sc_sramlen);
2099
2100 ptr = &sc->sc_sram[ofs];
2101
2102 for (i = 0; i < buflen; i += 2) {
2103 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2104 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2105 DELAY(atw_writewep_delay);
2106
2107 ATW_WRITE(sc, ATW_WESK,
2108 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2109 DELAY(atw_writewep_delay);
2110 }
2111 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2112
2113 if (sc->sc_if.if_flags & IFF_DEBUG) {
2114 int n_octets = 0;
2115 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2116 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2117 for (i = 0; i < buflen; i++) {
2118 printf(" %02x", ptr[i]);
2119 if (++n_octets % 24 == 0)
2120 printf("\n");
2121 }
2122 if (n_octets % 24 != 0)
2123 printf("\n");
2124 }
2125 }
2126
2127 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2128 static void
2129 atw_write_wep(struct atw_softc *sc)
2130 {
2131 struct ieee80211com *ic = &sc->sc_ic;
2132 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2133 u_int8_t buf[IEEE80211_WEP_NKID]
2134 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2135 u_int32_t reg;
2136 int i;
2137
2138 sc->sc_wepctl = 0;
2139 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2140
2141 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0)
2142 return;
2143
2144 memset(&buf[0][0], 0, sizeof(buf));
2145
2146 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2147 if (ic->ic_nw_keys[i].wk_len > 5) {
2148 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2149 } else if (ic->ic_nw_keys[i].wk_len != 0) {
2150 buf[i][1] = ATW_WEP_ENABLED;
2151 } else {
2152 buf[i][1] = 0;
2153 continue;
2154 }
2155 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2156 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2157 ic->ic_nw_keys[i].wk_len - 1);
2158 }
2159
2160 reg = ATW_READ(sc, ATW_MACTEST);
2161 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2162 reg &= ~ATW_MACTEST_KEYID_MASK;
2163 reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2164 ATW_WRITE(sc, ATW_MACTEST, reg);
2165
2166 sc->sc_wepctl = ATW_WEPCTL_WEPENABLE;
2167
2168 switch (sc->sc_rev) {
2169 case ATW_REVISION_AB:
2170 case ATW_REVISION_AF:
2171 /* Bypass WEP on Rx. */
2172 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2173 break;
2174 default:
2175 break;
2176 }
2177
2178 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2179 sizeof(buf));
2180 }
2181
2182 static void
2183 atw_change_ibss(struct atw_softc *sc)
2184 {
2185 atw_predict_beacon(sc);
2186 atw_write_bssid(sc);
2187 atw_start_beacon(sc, 1);
2188 }
2189
2190 static void
2191 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2192 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2193 {
2194 struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2195
2196 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2197 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2198 return;
2199
2200 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2201
2202 switch (subtype) {
2203 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2204 case IEEE80211_FC0_SUBTYPE_BEACON:
2205 if (ic->ic_opmode != IEEE80211_M_IBSS ||
2206 ic->ic_state != IEEE80211_S_RUN)
2207 break;
2208 if (ieee80211_ibss_merge(ic, ni, atw_get_tsft(sc)) == ENETRESET)
2209 atw_change_ibss(sc);
2210 break;
2211 default:
2212 break;
2213 }
2214 return;
2215 }
2216
2217 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2218 * In ad hoc mode, the SSID is written to the beacons sent by the
2219 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2220 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2221 * indications.
2222 */
2223 static void
2224 atw_write_ssid(struct atw_softc *sc)
2225 {
2226 struct ieee80211com *ic = &sc->sc_ic;
2227 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2228 * it only expects the element length, not its ID.
2229 */
2230 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2231
2232 memset(buf, 0, sizeof(buf));
2233 buf[0] = ic->ic_bss->ni_esslen;
2234 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2235
2236 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2237 roundup(1 + ic->ic_bss->ni_esslen, 2));
2238 }
2239
2240 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2241 * In ad hoc mode, the supported rates are written to beacons sent by the
2242 * ADM8211.
2243 */
2244 static void
2245 atw_write_sup_rates(struct atw_softc *sc)
2246 {
2247 struct ieee80211com *ic = &sc->sc_ic;
2248 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2249 * supported rates
2250 */
2251 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2252
2253 memset(buf, 0, sizeof(buf));
2254
2255 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2256
2257 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2258 ic->ic_bss->ni_rates.rs_nrates);
2259
2260 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2261 }
2262
2263 /* Start/stop sending beacons. */
2264 void
2265 atw_start_beacon(struct atw_softc *sc, int start)
2266 {
2267 struct ieee80211com *ic = &sc->sc_ic;
2268 uint16_t chan;
2269 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2270 size_t len;
2271
2272 if (ATW_IS_ENABLED(sc) == 0)
2273 return;
2274
2275 /* start beacons */
2276 len = sizeof(struct ieee80211_frame) +
2277 8 /* timestamp */ + 2 /* beacon interval */ +
2278 2 /* capability info */ +
2279 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2280 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2281 3 /* DS parameters */ +
2282 IEEE80211_CRC_LEN;
2283
2284 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2285 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2286 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2287
2288 ATW_WRITE(sc, ATW_BCNT, bcnt);
2289 ATW_WRITE(sc, ATW_CAP1, cap1);
2290
2291 if (!start)
2292 return;
2293
2294 /* TBD use ni_capinfo */
2295
2296 capinfo = 0;
2297 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2298 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2299 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2300 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2301
2302 switch (ic->ic_opmode) {
2303 case IEEE80211_M_IBSS:
2304 len += 4; /* IBSS parameters */
2305 capinfo |= IEEE80211_CAPINFO_IBSS;
2306 break;
2307 case IEEE80211_M_HOSTAP:
2308 /* XXX 6-byte minimum TIM */
2309 len += atw_beacon_len_adjust;
2310 capinfo |= IEEE80211_CAPINFO_ESS;
2311 break;
2312 default:
2313 return;
2314 }
2315
2316 /* set listen interval
2317 * XXX do software units agree w/ hardware?
2318 */
2319 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2320 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2321
2322 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
2323
2324 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2325 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2326 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2327
2328 ATW_WRITE(sc, ATW_BCNT, bcnt);
2329 ATW_WRITE(sc, ATW_BPLI, bpli);
2330 ATW_WRITE(sc, ATW_CAP0, cap0);
2331 ATW_WRITE(sc, ATW_CAP1, cap1);
2332
2333 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2334 sc->sc_dev.dv_xname, bcnt));
2335
2336 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2337 sc->sc_dev.dv_xname, cap1));
2338 }
2339
2340 /* Return the 32 lsb of the last TSFT divisible by ival. */
2341 static __inline uint32_t
2342 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2343 {
2344 /* Following the reference driver's lead, I compute
2345 *
2346 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2347 *
2348 * without using 64-bit arithmetic, using the following
2349 * relationship:
2350 *
2351 * (0x100000000 * H + L) % m
2352 * = ((0x100000000 % m) * H + L) % m
2353 * = (((0xffffffff + 1) % m) * H + L) % m
2354 * = ((0xffffffff % m + 1 % m) * H + L) % m
2355 * = ((0xffffffff % m + 1) * H + L) % m
2356 */
2357 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2358 }
2359
2360 static uint64_t
2361 atw_get_tsft(struct atw_softc *sc)
2362 {
2363 int i;
2364 uint32_t tsfth, tsftl;
2365 for (i = 0; i < 2; i++) {
2366 tsfth = ATW_READ(sc, ATW_TSFTH);
2367 tsftl = ATW_READ(sc, ATW_TSFTL);
2368 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2369 break;
2370 }
2371 return ((uint64_t)tsfth << 32) | tsftl;
2372 }
2373
2374 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2375 * the ieee80211com.
2376 *
2377 * Predict the next target beacon transmission time (TBTT) and
2378 * write it to the ADM8211.
2379 */
2380 static void
2381 atw_predict_beacon(struct atw_softc *sc)
2382 {
2383 #define TBTTOFS 20 /* TU */
2384
2385 struct ieee80211com *ic = &sc->sc_ic;
2386 uint64_t tsft;
2387 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2388 union {
2389 uint64_t word;
2390 uint8_t tstamp[8];
2391 } u;
2392
2393 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2394 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2395 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2396 tsft = atw_get_tsft(sc);
2397 u.word = htole64(tsft);
2398 (void)memcpy(&ic->ic_bss->ni_tstamp[0], &u.tstamp[0],
2399 sizeof(ic->ic_bss->ni_tstamp));
2400 } else {
2401 (void)memcpy(&u, &ic->ic_bss->ni_tstamp[0], sizeof(u));
2402 tsft = le64toh(u.word);
2403 }
2404
2405 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2406
2407 tsftl = tsft & 0xFFFFFFFF;
2408 tsfth = tsft >> 32;
2409
2410 /* We sent/received the last beacon `past' microseconds
2411 * after the interval divided the TSF timer.
2412 */
2413 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2414
2415 /* Skip ten beacons so that the TBTT cannot pass before
2416 * we've programmed it. Ten is an arbitrary number.
2417 */
2418 tbtt = past_even + ival * 10;
2419
2420 ATW_WRITE(sc, ATW_TOFS1,
2421 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2422 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2423 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2424 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2425 #undef TBTTOFS
2426 }
2427
2428 static void
2429 atw_next_scan(void *arg)
2430 {
2431 struct atw_softc *sc = arg;
2432 struct ieee80211com *ic = &sc->sc_ic;
2433 int s;
2434
2435 /* don't call atw_start w/o network interrupts blocked */
2436 s = splnet();
2437 if (ic->ic_state == IEEE80211_S_SCAN)
2438 ieee80211_next_scan(ic);
2439 splx(s);
2440 }
2441
2442 /* Synchronize the hardware state with the software state. */
2443 static int
2444 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2445 {
2446 struct ifnet *ifp = &ic->ic_if;
2447 struct atw_softc *sc = ifp->if_softc;
2448 enum ieee80211_state ostate;
2449 int error;
2450
2451 ostate = ic->ic_state;
2452
2453 if (nstate == IEEE80211_S_INIT) {
2454 callout_stop(&sc->sc_scan_ch);
2455 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2456 atw_start_beacon(sc, 0);
2457 return (*sc->sc_newstate)(ic, nstate, arg);
2458 }
2459
2460 if ((error = atw_tune(sc)) != 0)
2461 return error;
2462
2463 switch (nstate) {
2464 case IEEE80211_S_ASSOC:
2465 break;
2466 case IEEE80211_S_INIT:
2467 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2468 break;
2469 case IEEE80211_S_SCAN:
2470 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2471 atw_next_scan, sc);
2472
2473 break;
2474 case IEEE80211_S_RUN:
2475 if (ic->ic_opmode == IEEE80211_M_STA)
2476 break;
2477 /*FALLTHROUGH*/
2478 case IEEE80211_S_AUTH:
2479 atw_write_bssid(sc);
2480 atw_write_ssid(sc);
2481 atw_write_sup_rates(sc);
2482
2483 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2484 ic->ic_opmode == IEEE80211_M_MONITOR)
2485 break;
2486
2487 /* set listen interval
2488 * XXX do software units agree w/ hardware?
2489 */
2490 ATW_WRITE(sc, ATW_BPLI,
2491 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2492 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2493 ATW_BPLI_LI_MASK));
2494
2495 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2496 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2497
2498 atw_predict_beacon(sc);
2499 break;
2500 }
2501
2502 if (nstate != IEEE80211_S_SCAN)
2503 callout_stop(&sc->sc_scan_ch);
2504
2505 if (nstate == IEEE80211_S_RUN &&
2506 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2507 ic->ic_opmode == IEEE80211_M_IBSS))
2508 atw_start_beacon(sc, 1);
2509 else
2510 atw_start_beacon(sc, 0);
2511
2512 error = (*sc->sc_newstate)(ic, nstate, arg);
2513
2514 if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2515 atw_write_bssid(sc);
2516
2517 return error;
2518 }
2519
2520 /*
2521 * atw_add_rxbuf:
2522 *
2523 * Add a receive buffer to the indicated descriptor.
2524 */
2525 int
2526 atw_add_rxbuf(struct atw_softc *sc, int idx)
2527 {
2528 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2529 struct mbuf *m;
2530 int error;
2531
2532 MGETHDR(m, M_DONTWAIT, MT_DATA);
2533 if (m == NULL)
2534 return (ENOBUFS);
2535
2536 MCLGET(m, M_DONTWAIT);
2537 if ((m->m_flags & M_EXT) == 0) {
2538 m_freem(m);
2539 return (ENOBUFS);
2540 }
2541
2542 if (rxs->rxs_mbuf != NULL)
2543 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2544
2545 rxs->rxs_mbuf = m;
2546
2547 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2548 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2549 BUS_DMA_READ|BUS_DMA_NOWAIT);
2550 if (error) {
2551 printf("%s: can't load rx DMA map %d, error = %d\n",
2552 sc->sc_dev.dv_xname, idx, error);
2553 panic("atw_add_rxbuf"); /* XXX */
2554 }
2555
2556 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2557 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2558
2559 ATW_INIT_RXDESC(sc, idx);
2560
2561 return (0);
2562 }
2563
2564 /*
2565 * Release any queued transmit buffers.
2566 */
2567 void
2568 atw_txdrain(struct atw_softc *sc)
2569 {
2570 struct atw_txsoft *txs;
2571
2572 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2573 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2574 if (txs->txs_mbuf != NULL) {
2575 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2576 m_freem(txs->txs_mbuf);
2577 txs->txs_mbuf = NULL;
2578 }
2579 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2580 }
2581 sc->sc_tx_timer = 0;
2582 }
2583
2584 /*
2585 * atw_stop: [ ifnet interface function ]
2586 *
2587 * Stop transmission on the interface.
2588 */
2589 void
2590 atw_stop(struct ifnet *ifp, int disable)
2591 {
2592 struct atw_softc *sc = ifp->if_softc;
2593 struct ieee80211com *ic = &sc->sc_ic;
2594
2595 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2596
2597 /* Disable interrupts. */
2598 ATW_WRITE(sc, ATW_IER, 0);
2599
2600 /* Stop the transmit and receive processes. */
2601 sc->sc_opmode = 0;
2602 ATW_WRITE(sc, ATW_NAR, 0);
2603 DELAY(atw_nar_delay);
2604 ATW_WRITE(sc, ATW_TDBD, 0);
2605 ATW_WRITE(sc, ATW_TDBP, 0);
2606 ATW_WRITE(sc, ATW_RDB, 0);
2607
2608 atw_txdrain(sc);
2609
2610 if (disable) {
2611 atw_rxdrain(sc);
2612 atw_disable(sc);
2613 }
2614
2615 /*
2616 * Mark the interface down and cancel the watchdog timer.
2617 */
2618 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2619 ifp->if_timer = 0;
2620
2621 if (!disable)
2622 atw_reset(sc);
2623 }
2624
2625 /*
2626 * atw_rxdrain:
2627 *
2628 * Drain the receive queue.
2629 */
2630 void
2631 atw_rxdrain(struct atw_softc *sc)
2632 {
2633 struct atw_rxsoft *rxs;
2634 int i;
2635
2636 for (i = 0; i < ATW_NRXDESC; i++) {
2637 rxs = &sc->sc_rxsoft[i];
2638 if (rxs->rxs_mbuf == NULL)
2639 continue;
2640 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2641 m_freem(rxs->rxs_mbuf);
2642 rxs->rxs_mbuf = NULL;
2643 }
2644 }
2645
2646 /*
2647 * atw_detach:
2648 *
2649 * Detach an ADM8211 interface.
2650 */
2651 int
2652 atw_detach(struct atw_softc *sc)
2653 {
2654 struct ifnet *ifp = &sc->sc_ic.ic_if;
2655 struct atw_rxsoft *rxs;
2656 struct atw_txsoft *txs;
2657 int i;
2658
2659 /*
2660 * Succeed now if there isn't any work to do.
2661 */
2662 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2663 return (0);
2664
2665 callout_stop(&sc->sc_scan_ch);
2666
2667 ieee80211_ifdetach(ifp);
2668 if_detach(ifp);
2669
2670 for (i = 0; i < ATW_NRXDESC; i++) {
2671 rxs = &sc->sc_rxsoft[i];
2672 if (rxs->rxs_mbuf != NULL) {
2673 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2674 m_freem(rxs->rxs_mbuf);
2675 rxs->rxs_mbuf = NULL;
2676 }
2677 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2678 }
2679 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2680 txs = &sc->sc_txsoft[i];
2681 if (txs->txs_mbuf != NULL) {
2682 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2683 m_freem(txs->txs_mbuf);
2684 txs->txs_mbuf = NULL;
2685 }
2686 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2687 }
2688 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2689 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2690 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2691 sizeof(struct atw_control_data));
2692 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2693
2694 shutdownhook_disestablish(sc->sc_sdhook);
2695 powerhook_disestablish(sc->sc_powerhook);
2696
2697 if (sc->sc_srom)
2698 free(sc->sc_srom, M_DEVBUF);
2699
2700 return (0);
2701 }
2702
2703 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2704 void
2705 atw_shutdown(void *arg)
2706 {
2707 struct atw_softc *sc = arg;
2708
2709 atw_stop(&sc->sc_ic.ic_if, 1);
2710 }
2711
2712 int
2713 atw_intr(void *arg)
2714 {
2715 struct atw_softc *sc = arg;
2716 struct ifnet *ifp = &sc->sc_ic.ic_if;
2717 u_int32_t status, rxstatus, txstatus, linkstatus;
2718 int handled = 0, txthresh;
2719
2720 #ifdef DEBUG
2721 if (ATW_IS_ENABLED(sc) == 0)
2722 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2723 #endif
2724
2725 /*
2726 * If the interface isn't running, the interrupt couldn't
2727 * possibly have come from us.
2728 */
2729 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2730 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2731 return (0);
2732
2733 for (;;) {
2734 status = ATW_READ(sc, ATW_STSR);
2735
2736 if (status)
2737 ATW_WRITE(sc, ATW_STSR, status);
2738
2739 #ifdef ATW_DEBUG
2740 #define PRINTINTR(flag) do { \
2741 if ((status & flag) != 0) { \
2742 printf("%s" #flag, delim); \
2743 delim = ","; \
2744 } \
2745 } while (0)
2746
2747 if (atw_debug > 1 && status) {
2748 const char *delim = "<";
2749
2750 printf("%s: reg[STSR] = %x",
2751 sc->sc_dev.dv_xname, status);
2752
2753 PRINTINTR(ATW_INTR_FBE);
2754 PRINTINTR(ATW_INTR_LINKOFF);
2755 PRINTINTR(ATW_INTR_LINKON);
2756 PRINTINTR(ATW_INTR_RCI);
2757 PRINTINTR(ATW_INTR_RDU);
2758 PRINTINTR(ATW_INTR_REIS);
2759 PRINTINTR(ATW_INTR_RPS);
2760 PRINTINTR(ATW_INTR_TCI);
2761 PRINTINTR(ATW_INTR_TDU);
2762 PRINTINTR(ATW_INTR_TLT);
2763 PRINTINTR(ATW_INTR_TPS);
2764 PRINTINTR(ATW_INTR_TRT);
2765 PRINTINTR(ATW_INTR_TUF);
2766 PRINTINTR(ATW_INTR_BCNTC);
2767 PRINTINTR(ATW_INTR_ATIME);
2768 PRINTINTR(ATW_INTR_TBTT);
2769 PRINTINTR(ATW_INTR_TSCZ);
2770 PRINTINTR(ATW_INTR_TSFTF);
2771 printf(">\n");
2772 }
2773 #undef PRINTINTR
2774 #endif /* ATW_DEBUG */
2775
2776 if ((status & sc->sc_inten) == 0)
2777 break;
2778
2779 handled = 1;
2780
2781 rxstatus = status & sc->sc_rxint_mask;
2782 txstatus = status & sc->sc_txint_mask;
2783 linkstatus = status & sc->sc_linkint_mask;
2784
2785 if (linkstatus) {
2786 atw_linkintr(sc, linkstatus);
2787 }
2788
2789 if (rxstatus) {
2790 /* Grab any new packets. */
2791 atw_rxintr(sc);
2792
2793 if (rxstatus & ATW_INTR_RDU) {
2794 printf("%s: receive ring overrun\n",
2795 sc->sc_dev.dv_xname);
2796 /* Get the receive process going again. */
2797 ATW_WRITE(sc, ATW_RDR, 0x1);
2798 break;
2799 }
2800 }
2801
2802 if (txstatus) {
2803 /* Sweep up transmit descriptors. */
2804 atw_txintr(sc);
2805
2806 if (txstatus & ATW_INTR_TLT)
2807 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2808 sc->sc_dev.dv_xname));
2809
2810 if (txstatus & ATW_INTR_TRT)
2811 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2812 sc->sc_dev.dv_xname));
2813
2814 /* If Tx under-run, increase our transmit threshold
2815 * if another is available.
2816 */
2817 txthresh = sc->sc_txthresh + 1;
2818 if ((txstatus & ATW_INTR_TUF) &&
2819 sc->sc_txth[txthresh].txth_name != NULL) {
2820 /* Idle the transmit process. */
2821 atw_idle(sc, ATW_NAR_ST);
2822
2823 sc->sc_txthresh = txthresh;
2824 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2825 sc->sc_opmode |=
2826 sc->sc_txth[txthresh].txth_opmode;
2827 printf("%s: transmit underrun; new "
2828 "threshold: %s\n", sc->sc_dev.dv_xname,
2829 sc->sc_txth[txthresh].txth_name);
2830
2831 /* Set the new threshold and restart
2832 * the transmit process.
2833 */
2834 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2835 DELAY(atw_nar_delay);
2836 ATW_WRITE(sc, ATW_RDR, 0x1);
2837 /* XXX Log every Nth underrun from
2838 * XXX now on?
2839 */
2840 }
2841 }
2842
2843 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2844 if (status & ATW_INTR_TPS)
2845 printf("%s: transmit process stopped\n",
2846 sc->sc_dev.dv_xname);
2847 if (status & ATW_INTR_RPS)
2848 printf("%s: receive process stopped\n",
2849 sc->sc_dev.dv_xname);
2850 (void)atw_init(ifp);
2851 break;
2852 }
2853
2854 if (status & ATW_INTR_FBE) {
2855 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2856 (void)atw_init(ifp);
2857 break;
2858 }
2859
2860 /*
2861 * Not handled:
2862 *
2863 * Transmit buffer unavailable -- normal
2864 * condition, nothing to do, really.
2865 *
2866 * Early receive interrupt -- not available on
2867 * all chips, we just use RI. We also only
2868 * use single-segment receive DMA, so this
2869 * is mostly useless.
2870 *
2871 * TBD others
2872 */
2873 }
2874
2875 /* Try to get more packets going. */
2876 atw_start(ifp);
2877
2878 return (handled);
2879 }
2880
2881 /*
2882 * atw_idle:
2883 *
2884 * Cause the transmit and/or receive processes to go idle.
2885 *
2886 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2887 * process in STSR if I clear SR or ST after the process has already
2888 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2889 * do not seem to be too reliable. Perhaps I have the sense of the
2890 * Rx bits switched with the Tx bits?
2891 */
2892 void
2893 atw_idle(struct atw_softc *sc, u_int32_t bits)
2894 {
2895 u_int32_t ackmask = 0, opmode, stsr, test0;
2896 int i, s;
2897
2898 s = splnet();
2899
2900 opmode = sc->sc_opmode & ~bits;
2901
2902 if (bits & ATW_NAR_SR)
2903 ackmask |= ATW_INTR_RPS;
2904
2905 if (bits & ATW_NAR_ST) {
2906 ackmask |= ATW_INTR_TPS;
2907 /* set ATW_NAR_HF to flush TX FIFO. */
2908 opmode |= ATW_NAR_HF;
2909 }
2910
2911 ATW_WRITE(sc, ATW_NAR, opmode);
2912 DELAY(atw_nar_delay);
2913
2914 for (i = 0; i < 1000; i++) {
2915 stsr = ATW_READ(sc, ATW_STSR);
2916 if ((stsr & ackmask) == ackmask)
2917 break;
2918 DELAY(10);
2919 }
2920
2921 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2922
2923 if ((stsr & ackmask) == ackmask)
2924 goto out;
2925
2926 test0 = ATW_READ(sc, ATW_TEST0);
2927
2928 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2929 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2930 printf("%s: transmit process not idle [%s]\n",
2931 sc->sc_dev.dv_xname,
2932 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2933 printf("%s: bits %08x test0 %08x stsr %08x\n",
2934 sc->sc_dev.dv_xname, bits, test0, stsr);
2935 }
2936
2937 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2938 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2939 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2940 sc->sc_dev.dv_xname,
2941 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2942 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2943 sc->sc_dev.dv_xname, bits, test0, stsr));
2944 }
2945 out:
2946 if ((bits & ATW_NAR_ST) != 0)
2947 atw_txdrain(sc);
2948 splx(s);
2949 return;
2950 }
2951
2952 /*
2953 * atw_linkintr:
2954 *
2955 * Helper; handle link-status interrupts.
2956 */
2957 void
2958 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2959 {
2960 struct ieee80211com *ic = &sc->sc_ic;
2961
2962 if (ic->ic_state != IEEE80211_S_RUN)
2963 return;
2964
2965 if (linkstatus & ATW_INTR_LINKON) {
2966 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2967 sc->sc_rescan_timer = 0;
2968 } else if (linkstatus & ATW_INTR_LINKOFF) {
2969 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2970 if (ic->ic_opmode != IEEE80211_M_STA)
2971 return;
2972 sc->sc_rescan_timer = 3;
2973 ic->ic_if.if_timer = 1;
2974 }
2975 }
2976
2977 static __inline int
2978 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame *wh)
2979 {
2980 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
2981 return 0;
2982 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
2983 return 0;
2984 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
2985 }
2986
2987 /*
2988 * atw_rxintr:
2989 *
2990 * Helper; handle receive interrupts.
2991 */
2992 void
2993 atw_rxintr(struct atw_softc *sc)
2994 {
2995 static int rate_tbl[] = {2, 4, 11, 22, 44};
2996 struct ieee80211com *ic = &sc->sc_ic;
2997 struct ieee80211_node *ni;
2998 struct ieee80211_frame *wh;
2999 struct ifnet *ifp = &ic->ic_if;
3000 struct atw_rxsoft *rxs;
3001 struct mbuf *m;
3002 u_int32_t rxstat;
3003 int i, len, rate, rate0;
3004 u_int32_t rssi, rssi0;
3005
3006 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3007 rxs = &sc->sc_rxsoft[i];
3008
3009 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3010
3011 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3012 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3013 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3014
3015 if (rxstat & ATW_RXSTAT_OWN)
3016 break; /* We have processed all receive buffers. */
3017
3018 DPRINTF3(sc,
3019 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3020 sc->sc_dev.dv_xname,
3021 rxstat, rssi0,
3022 le32toh(sc->sc_rxdescs[i].ar_buf1),
3023 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3024
3025 /*
3026 * Make sure the packet fits in one buffer. This should
3027 * always be the case.
3028 */
3029 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3030 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3031 printf("%s: incoming packet spilled, resetting\n",
3032 sc->sc_dev.dv_xname);
3033 (void)atw_init(ifp);
3034 return;
3035 }
3036
3037 /*
3038 * If an error occurred, update stats, clear the status
3039 * word, and leave the packet buffer in place. It will
3040 * simply be reused the next time the ring comes around.
3041 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3042 * error.
3043 */
3044
3045 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3046 ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3047 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3048 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3049 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3050 ATW_RXSTAT_ICVE)) != 0)) {
3051 #define PRINTERR(bit, str) \
3052 if (rxstat & (bit)) \
3053 printf("%s: receive error: %s\n", \
3054 sc->sc_dev.dv_xname, str)
3055 ifp->if_ierrors++;
3056 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3057 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3058 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3059 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3060 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3061 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3062 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3063 #undef PRINTERR
3064 ATW_INIT_RXDESC(sc, i);
3065 continue;
3066 }
3067
3068 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3069 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3070
3071 /*
3072 * No errors; receive the packet. Note the ADM8211
3073 * includes the CRC in promiscuous mode.
3074 */
3075 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3076
3077 /*
3078 * Allocate a new mbuf cluster. If that fails, we are
3079 * out of memory, and must drop the packet and recycle
3080 * the buffer that's already attached to this descriptor.
3081 */
3082 m = rxs->rxs_mbuf;
3083 if (atw_add_rxbuf(sc, i) != 0) {
3084 ifp->if_ierrors++;
3085 ATW_INIT_RXDESC(sc, i);
3086 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3087 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3088 continue;
3089 }
3090
3091 ifp->if_ipackets++;
3092 if (sc->sc_opmode & ATW_NAR_PR)
3093 m->m_flags |= M_HASFCS;
3094 m->m_pkthdr.rcvif = ifp;
3095 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3096
3097 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3098 rate = 0;
3099 else
3100 rate = rate_tbl[rate0];
3101
3102 /* The RSSI comes straight from a register in the
3103 * baseband processor. I know that for the RF3000,
3104 * the RSSI register also contains the antenna-selection
3105 * bits. Mask those off.
3106 *
3107 * TBD Treat other basebands.
3108 */
3109 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3110 rssi = rssi0 & RF3000_RSSI_MASK;
3111 else
3112 rssi = rssi0;
3113
3114 #if NBPFILTER > 0
3115 /* Pass this up to any BPF listeners. */
3116 if (sc->sc_radiobpf != NULL) {
3117 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3118
3119 tap->ar_rate = rate;
3120 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3121 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3122
3123 /* TBD verify units are dB */
3124 tap->ar_antsignal = (int)rssi;
3125 /* TBD tap->ar_flags */
3126
3127 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3128 tap->ar_ihdr.it_len, m);
3129 }
3130 #endif /* NPBFILTER > 0 */
3131
3132 wh = mtod(m, struct ieee80211_frame *);
3133 ni = ieee80211_find_rxnode(ic, wh);
3134 if (atw_hw_decrypted(sc, wh))
3135 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3136 ieee80211_input(ifp, m, ni, (int)rssi, 0);
3137 /*
3138 * The frame may have caused the node to be marked for
3139 * reclamation (e.g. in response to a DEAUTH message)
3140 * so use release_node here instead of unref_node.
3141 */
3142 ieee80211_release_node(ic, ni);
3143 }
3144
3145 /* Update the receive pointer. */
3146 sc->sc_rxptr = i;
3147 }
3148
3149 /*
3150 * atw_txintr:
3151 *
3152 * Helper; handle transmit interrupts.
3153 */
3154 void
3155 atw_txintr(struct atw_softc *sc)
3156 {
3157 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3158 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3159 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3160 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3161
3162 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3163 struct ifnet *ifp = &sc->sc_ic.ic_if;
3164 struct atw_txsoft *txs;
3165 u_int32_t txstat;
3166
3167 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3168 sc->sc_dev.dv_xname, sc->sc_flags));
3169
3170 ifp->if_flags &= ~IFF_OACTIVE;
3171
3172 /*
3173 * Go through our Tx list and free mbufs for those
3174 * frames that have been transmitted.
3175 */
3176 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3177 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3178 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3179
3180 #ifdef ATW_DEBUG
3181 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3182 int i;
3183 printf(" txsoft %p transmit chain:\n", txs);
3184 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3185 txs->txs_ndescs - 1,
3186 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3187 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3188 printf(" descriptor %d:\n", i);
3189 printf(" at_status: 0x%08x\n",
3190 le32toh(sc->sc_txdescs[i].at_stat));
3191 printf(" at_flags: 0x%08x\n",
3192 le32toh(sc->sc_txdescs[i].at_flags));
3193 printf(" at_buf1: 0x%08x\n",
3194 le32toh(sc->sc_txdescs[i].at_buf1));
3195 printf(" at_buf2: 0x%08x\n",
3196 le32toh(sc->sc_txdescs[i].at_buf2));
3197 if (i == txs->txs_lastdesc)
3198 break;
3199 }
3200 }
3201 #endif
3202
3203 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3204 if (txstat & ATW_TXSTAT_OWN)
3205 break;
3206
3207 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3208
3209 sc->sc_txfree += txs->txs_ndescs;
3210
3211 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3212 0, txs->txs_dmamap->dm_mapsize,
3213 BUS_DMASYNC_POSTWRITE);
3214 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3215 m_freem(txs->txs_mbuf);
3216 txs->txs_mbuf = NULL;
3217
3218 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3219
3220 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3221 (txstat & TXSTAT_ERRMASK) != 0) {
3222 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3223 txstat_buf, sizeof(txstat_buf));
3224 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3225 txstat_buf,
3226 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3227 }
3228
3229 /*
3230 * Check for errors and collisions.
3231 */
3232 if (txstat & ATW_TXSTAT_TUF)
3233 sc->sc_stats.ts_tx_tuf++;
3234 if (txstat & ATW_TXSTAT_TLT)
3235 sc->sc_stats.ts_tx_tlt++;
3236 if (txstat & ATW_TXSTAT_TRT)
3237 sc->sc_stats.ts_tx_trt++;
3238 if (txstat & ATW_TXSTAT_TRO)
3239 sc->sc_stats.ts_tx_tro++;
3240 if (txstat & ATW_TXSTAT_SOFBR) {
3241 sc->sc_stats.ts_tx_sofbr++;
3242 }
3243
3244 if ((txstat & ATW_TXSTAT_ES) == 0)
3245 ifp->if_collisions +=
3246 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3247 else
3248 ifp->if_oerrors++;
3249
3250 ifp->if_opackets++;
3251 }
3252
3253 /*
3254 * If there are no more pending transmissions, cancel the watchdog
3255 * timer.
3256 */
3257 if (txs == NULL)
3258 sc->sc_tx_timer = 0;
3259 #undef TXSTAT_ERRMASK
3260 #undef TXSTAT_FMT
3261 }
3262
3263 /*
3264 * atw_watchdog: [ifnet interface function]
3265 *
3266 * Watchdog timer handler.
3267 */
3268 void
3269 atw_watchdog(struct ifnet *ifp)
3270 {
3271 struct atw_softc *sc = ifp->if_softc;
3272 struct ieee80211com *ic = &sc->sc_ic;
3273
3274 ifp->if_timer = 0;
3275 if (ATW_IS_ENABLED(sc) == 0)
3276 return;
3277
3278 if (sc->sc_rescan_timer) {
3279 if (--sc->sc_rescan_timer == 0)
3280 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3281 }
3282 if (sc->sc_tx_timer) {
3283 if (--sc->sc_tx_timer == 0 &&
3284 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3285 printf("%s: transmit timeout\n", ifp->if_xname);
3286 ifp->if_oerrors++;
3287 (void)atw_init(ifp);
3288 atw_start(ifp);
3289 }
3290 }
3291 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3292 ifp->if_timer = 1;
3293 ieee80211_watchdog(ifp);
3294 }
3295
3296 /* Compute the 802.11 Duration field and the PLCP Length fields for
3297 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3298 * Write the fields to the ADM8211 Tx header, frm.
3299 *
3300 * TBD use the fragmentation threshold to find the right duration for
3301 * the first & last fragments.
3302 *
3303 * TBD make certain of the duration fields applied by the ADM8211 to each
3304 * fragment. I think that the ADM8211 knows how to subtract the CTS
3305 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3306 * I also think that the ADM8211 does *some* arithmetic for us, because
3307 * otherwise I think we would have to set a first duration for CTS/first
3308 * fragment, a second duration for fragments between the first and the
3309 * last, and a third duration for the last fragment.
3310 *
3311 * TBD make certain that duration fields reflect addition of FCS/WEP
3312 * and correct duration arithmetic as necessary.
3313 */
3314 static void
3315 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3316 int len)
3317 {
3318 int remainder;
3319
3320 /* deal also with encrypted fragments */
3321 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3322 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3323 sc->sc_dev.dv_xname));
3324 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3325 IEEE80211_WEP_CRCLEN;
3326 }
3327
3328 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3329 * duration (XXX added by MAC?).
3330 */
3331 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3332 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3333
3334 if (rate <= 4)
3335 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3336 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3337 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3338 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3339 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3340 else
3341 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3342 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3343 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3344 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3345 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3346
3347 /* lengthen duration if long preamble */
3348 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3349 frm->atw_head_dur +=
3350 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3351 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3352 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3353 IEEE80211_DUR_DS_FAST_PLCPHDR);
3354
3355 if (remainder != 0)
3356 frm->atw_head_dur++;
3357
3358 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3359 (rate == 2 || rate == 4)) {
3360 /* derived from Linux: how could this be right? */
3361 frm->atw_head_plcplen = frm->atw_head_dur;
3362 } else {
3363 frm->atw_head_plcplen = (16 * len) / rate;
3364 remainder = (80 * len) % (rate * 5);
3365
3366 if (remainder != 0) {
3367 frm->atw_head_plcplen++;
3368
3369 /* XXX magic */
3370 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3371 rate == 22 && remainder <= 30)
3372 frm->atw_head_plcplen |= 0x8000;
3373 }
3374 }
3375 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3376 htole16(frm->atw_head_plcplen);
3377 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3378 }
3379
3380 #ifdef ATW_DEBUG
3381 static void
3382 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3383 {
3384 struct atw_softc *sc = ifp->if_softc;
3385 struct mbuf *m;
3386 int i, noctets = 0;
3387
3388 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3389 m0->m_pkthdr.len);
3390
3391 for (m = m0; m; m = m->m_next) {
3392 if (m->m_len == 0)
3393 continue;
3394 for (i = 0; i < m->m_len; i++) {
3395 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3396 if (++noctets % 24 == 0)
3397 printf("\n");
3398 }
3399 }
3400 printf("%s%s: %d bytes emitted\n",
3401 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3402 }
3403 #endif /* ATW_DEBUG */
3404
3405 /*
3406 * atw_start: [ifnet interface function]
3407 *
3408 * Start packet transmission on the interface.
3409 */
3410 void
3411 atw_start(struct ifnet *ifp)
3412 {
3413 struct atw_softc *sc = ifp->if_softc;
3414 struct ieee80211com *ic = &sc->sc_ic;
3415 struct ieee80211_node *ni;
3416 struct ieee80211_frame *wh;
3417 struct atw_frame *hh;
3418 struct mbuf *m0, *m;
3419 struct atw_txsoft *txs, *last_txs;
3420 struct atw_txdesc *txd;
3421 int do_encrypt, rate;
3422 bus_dmamap_t dmamap;
3423 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3424
3425 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3426 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3427
3428 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3429 return;
3430
3431 /*
3432 * Remember the previous number of free descriptors and
3433 * the first descriptor we'll use.
3434 */
3435 ofree = sc->sc_txfree;
3436 firsttx = sc->sc_txnext;
3437
3438 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3439 sc->sc_dev.dv_xname, ofree, firsttx));
3440
3441 /*
3442 * Loop through the send queue, setting up transmit descriptors
3443 * until we drain the queue, or use up all available transmit
3444 * descriptors.
3445 */
3446 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3447 sc->sc_txfree != 0) {
3448
3449 /*
3450 * Grab a packet off the management queue, if it
3451 * is not empty. Otherwise, from the data queue.
3452 */
3453 IF_DEQUEUE(&ic->ic_mgtq, m0);
3454 if (m0 != NULL) {
3455 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3456 m0->m_pkthdr.rcvif = NULL;
3457 } else {
3458 /* send no data packets until we are associated */
3459 if (ic->ic_state != IEEE80211_S_RUN)
3460 break;
3461 IFQ_DEQUEUE(&ifp->if_snd, m0);
3462 if (m0 == NULL)
3463 break;
3464 #if NBPFILTER > 0
3465 if (ifp->if_bpf != NULL)
3466 bpf_mtap(ifp->if_bpf, m0);
3467 #endif /* NBPFILTER > 0 */
3468 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3469 ifp->if_oerrors++;
3470 break;
3471 }
3472 }
3473
3474 rate = MAX(ieee80211_get_rate(ic), 2);
3475
3476 #if NBPFILTER > 0
3477 /*
3478 * Pass the packet to any BPF listeners.
3479 */
3480 if (ic->ic_rawbpf != NULL)
3481 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3482
3483 if (sc->sc_radiobpf != NULL) {
3484 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3485
3486 tap->at_rate = rate;
3487 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3488 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3489
3490 /* TBD tap->at_flags */
3491
3492 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3493 tap->at_ihdr.it_len, m0);
3494 }
3495 #endif /* NBPFILTER > 0 */
3496
3497 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3498
3499 if (ni != NULL)
3500 ieee80211_release_node(ic, ni);
3501
3502 if (m0 == NULL) {
3503 ifp->if_oerrors++;
3504 break;
3505 }
3506
3507 /* just to make sure. */
3508 m0 = m_pullup(m0, sizeof(struct atw_frame));
3509
3510 if (m0 == NULL) {
3511 ifp->if_oerrors++;
3512 break;
3513 }
3514
3515 hh = mtod(m0, struct atw_frame *);
3516 wh = &hh->atw_ihdr;
3517
3518 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3519
3520 /* Copy everything we need from the 802.11 header:
3521 * Frame Control; address 1, address 3, or addresses
3522 * 3 and 4. NIC fills in BSSID, SA.
3523 */
3524 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3525 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3526 panic("%s: illegal WDS frame",
3527 sc->sc_dev.dv_xname);
3528 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3529 } else
3530 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3531
3532 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3533
3534 /* initialize remaining Tx parameters */
3535 memset(&hh->u, 0, sizeof(hh->u));
3536
3537 hh->atw_rate = rate * 5;
3538 /* XXX this could be incorrect if M_FCS. _encap should
3539 * probably strip FCS just in case it sticks around in
3540 * bridged packets.
3541 */
3542 hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3543 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3544 sizeof(struct atw_frame));
3545
3546 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3547 hh->atw_rtylmt = 3;
3548 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3549 if (do_encrypt) {
3550 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3551 hh->atw_keyid = ic->ic_wep_txkey;
3552 }
3553
3554 /* TBD 4-addr frames */
3555 atw_frame_setdurs(sc, hh, rate,
3556 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3557 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3558
3559 /* never fragment multicast frames */
3560 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3561 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3562 } else if (sc->sc_flags & ATWF_RTSCTS) {
3563 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3564 }
3565
3566 #ifdef ATW_DEBUG
3567 hh->atw_fragnum = 0;
3568
3569 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3570 printf("%s: dst = %s, rate = 0x%02x, "
3571 "service = 0x%02x, paylen = 0x%04x\n",
3572 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3573 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3574
3575 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3576 "dur1 = 0x%04x, dur2 = 0x%04x, "
3577 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3578 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3579 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3580 hh->atw_tail_dur, hh->atw_head_dur);
3581
3582 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3583 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3584 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3585 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3586
3587 printf("%s: keyid = %d\n",
3588 sc->sc_dev.dv_xname, hh->atw_keyid);
3589
3590 atw_dump_pkt(ifp, m0);
3591 }
3592 #endif /* ATW_DEBUG */
3593
3594 dmamap = txs->txs_dmamap;
3595
3596 /*
3597 * Load the DMA map. Copy and try (once) again if the packet
3598 * didn't fit in the alloted number of segments.
3599 */
3600 for (first = 1;
3601 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3602 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3603 first = 0) {
3604 MGETHDR(m, M_DONTWAIT, MT_DATA);
3605 if (m == NULL) {
3606 printf("%s: unable to allocate Tx mbuf\n",
3607 sc->sc_dev.dv_xname);
3608 break;
3609 }
3610 if (m0->m_pkthdr.len > MHLEN) {
3611 MCLGET(m, M_DONTWAIT);
3612 if ((m->m_flags & M_EXT) == 0) {
3613 printf("%s: unable to allocate Tx "
3614 "cluster\n", sc->sc_dev.dv_xname);
3615 m_freem(m);
3616 break;
3617 }
3618 }
3619 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3620 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3621 m_freem(m0);
3622 m0 = m;
3623 m = NULL;
3624 }
3625 if (error != 0) {
3626 printf("%s: unable to load Tx buffer, "
3627 "error = %d\n", sc->sc_dev.dv_xname, error);
3628 m_freem(m0);
3629 break;
3630 }
3631
3632 /*
3633 * Ensure we have enough descriptors free to describe
3634 * the packet.
3635 */
3636 if (dmamap->dm_nsegs > sc->sc_txfree) {
3637 /*
3638 * Not enough free descriptors to transmit
3639 * this packet. Unload the DMA map and
3640 * drop the packet. Notify the upper layer
3641 * that there are no more slots left.
3642 *
3643 * XXX We could allocate an mbuf and copy, but
3644 * XXX it is worth it?
3645 */
3646 ifp->if_flags |= IFF_OACTIVE;
3647 bus_dmamap_unload(sc->sc_dmat, dmamap);
3648 m_freem(m0);
3649 break;
3650 }
3651
3652 /*
3653 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3654 */
3655
3656 /* Sync the DMA map. */
3657 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3658 BUS_DMASYNC_PREWRITE);
3659
3660 /* XXX arbitrary retry limit; 8 because I have seen it in
3661 * use already and maybe 0 means "no tries" !
3662 */
3663 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3664
3665 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3666 sc->sc_dev.dv_xname, rate * 5));
3667 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3668
3669 /*
3670 * Initialize the transmit descriptors.
3671 */
3672 for (nexttx = sc->sc_txnext, seg = 0;
3673 seg < dmamap->dm_nsegs;
3674 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3675 /*
3676 * If this is the first descriptor we're
3677 * enqueueing, don't set the OWN bit just
3678 * yet. That could cause a race condition.
3679 * We'll do it below.
3680 */
3681 txd = &sc->sc_txdescs[nexttx];
3682 txd->at_ctl = ctl |
3683 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3684
3685 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3686 txd->at_flags =
3687 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3688 ATW_TXFLAG_TBS1_MASK)) |
3689 ((nexttx == (ATW_NTXDESC - 1))
3690 ? htole32(ATW_TXFLAG_TER) : 0);
3691 lasttx = nexttx;
3692 }
3693
3694 IASSERT(lasttx != -1, ("bad lastx"));
3695 /* Set `first segment' and `last segment' appropriately. */
3696 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3697 htole32(ATW_TXFLAG_FS);
3698 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3699
3700 #ifdef ATW_DEBUG
3701 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3702 printf(" txsoft %p transmit chain:\n", txs);
3703 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3704 printf(" descriptor %d:\n", seg);
3705 printf(" at_ctl: 0x%08x\n",
3706 le32toh(sc->sc_txdescs[seg].at_ctl));
3707 printf(" at_flags: 0x%08x\n",
3708 le32toh(sc->sc_txdescs[seg].at_flags));
3709 printf(" at_buf1: 0x%08x\n",
3710 le32toh(sc->sc_txdescs[seg].at_buf1));
3711 printf(" at_buf2: 0x%08x\n",
3712 le32toh(sc->sc_txdescs[seg].at_buf2));
3713 if (seg == lasttx)
3714 break;
3715 }
3716 }
3717 #endif
3718
3719 /* Sync the descriptors we're using. */
3720 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3721 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3722
3723 /*
3724 * Store a pointer to the packet so we can free it later,
3725 * and remember what txdirty will be once the packet is
3726 * done.
3727 */
3728 txs->txs_mbuf = m0;
3729 txs->txs_firstdesc = sc->sc_txnext;
3730 txs->txs_lastdesc = lasttx;
3731 txs->txs_ndescs = dmamap->dm_nsegs;
3732
3733 /* Advance the tx pointer. */
3734 sc->sc_txfree -= dmamap->dm_nsegs;
3735 sc->sc_txnext = nexttx;
3736
3737 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3738 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3739
3740 last_txs = txs;
3741 }
3742
3743 if (txs == NULL || sc->sc_txfree == 0) {
3744 /* No more slots left; notify upper layer. */
3745 ifp->if_flags |= IFF_OACTIVE;
3746 }
3747
3748 if (sc->sc_txfree != ofree) {
3749 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3750 sc->sc_dev.dv_xname, lasttx, firsttx));
3751 /*
3752 * Cause a transmit interrupt to happen on the
3753 * last packet we enqueued.
3754 */
3755 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3756 ATW_CDTXSYNC(sc, lasttx, 1,
3757 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3758
3759 /*
3760 * The entire packet chain is set up. Give the
3761 * first descriptor to the chip now.
3762 */
3763 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3764 ATW_CDTXSYNC(sc, firsttx, 1,
3765 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3766
3767 /* Wake up the transmitter. */
3768 ATW_WRITE(sc, ATW_TDR, 0x1);
3769
3770 /* Set a watchdog timer in case the chip flakes out. */
3771 sc->sc_tx_timer = 5;
3772 ifp->if_timer = 1;
3773 }
3774 }
3775
3776 /*
3777 * atw_power:
3778 *
3779 * Power management (suspend/resume) hook.
3780 */
3781 void
3782 atw_power(int why, void *arg)
3783 {
3784 struct atw_softc *sc = arg;
3785 struct ifnet *ifp = &sc->sc_ic.ic_if;
3786 int s;
3787
3788 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3789
3790 s = splnet();
3791 switch (why) {
3792 case PWR_STANDBY:
3793 /* XXX do nothing. */
3794 break;
3795 case PWR_SUSPEND:
3796 atw_stop(ifp, 0);
3797 if (sc->sc_power != NULL)
3798 (*sc->sc_power)(sc, why);
3799 break;
3800 case PWR_RESUME:
3801 if (ifp->if_flags & IFF_UP) {
3802 if (sc->sc_power != NULL)
3803 (*sc->sc_power)(sc, why);
3804 atw_init(ifp);
3805 }
3806 break;
3807 case PWR_SOFTSUSPEND:
3808 case PWR_SOFTSTANDBY:
3809 case PWR_SOFTRESUME:
3810 break;
3811 }
3812 splx(s);
3813 }
3814
3815 /*
3816 * atw_ioctl: [ifnet interface function]
3817 *
3818 * Handle control requests from the operator.
3819 */
3820 int
3821 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3822 {
3823 struct atw_softc *sc = ifp->if_softc;
3824 struct ifreq *ifr = (struct ifreq *)data;
3825 int s, error = 0;
3826
3827 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3828 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3829 return ENXIO;
3830
3831 s = splnet();
3832
3833 switch (cmd) {
3834 case SIOCSIFFLAGS:
3835 if (ifp->if_flags & IFF_UP) {
3836 if (ATW_IS_ENABLED(sc)) {
3837 /*
3838 * To avoid rescanning another access point,
3839 * do not call atw_init() here. Instead,
3840 * only reflect media settings.
3841 */
3842 atw_filter_setup(sc);
3843 } else
3844 error = atw_init(ifp);
3845 } else if (ATW_IS_ENABLED(sc))
3846 atw_stop(ifp, 1);
3847 break;
3848 case SIOCADDMULTI:
3849 case SIOCDELMULTI:
3850 error = (cmd == SIOCADDMULTI) ?
3851 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3852 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3853 if (error == ENETRESET) {
3854 if (ifp->if_flags & IFF_RUNNING)
3855 atw_filter_setup(sc); /* do not rescan */
3856 error = 0;
3857 }
3858 break;
3859 default:
3860 error = ieee80211_ioctl(ifp, cmd, data);
3861 if (error == ENETRESET) {
3862 if (ATW_IS_ENABLED(sc))
3863 error = atw_init(ifp);
3864 else
3865 error = 0;
3866 }
3867 break;
3868 }
3869
3870 /* Try to get more packets going. */
3871 if (ATW_IS_ENABLED(sc))
3872 atw_start(ifp);
3873
3874 splx(s);
3875 return (error);
3876 }
3877
3878 static int
3879 atw_media_change(struct ifnet *ifp)
3880 {
3881 int error;
3882
3883 error = ieee80211_media_change(ifp);
3884 if (error == ENETRESET) {
3885 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3886 (IFF_RUNNING|IFF_UP))
3887 atw_init(ifp); /* XXX lose error */
3888 error = 0;
3889 }
3890 return error;
3891 }
3892
3893 static void
3894 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3895 {
3896 struct atw_softc *sc = ifp->if_softc;
3897
3898 if (ATW_IS_ENABLED(sc) == 0) {
3899 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3900 imr->ifm_status = 0;
3901 return;
3902 }
3903 ieee80211_media_status(ifp, imr);
3904 }
3905