Home | History | Annotate | Line # | Download | only in ic
atw.c revision 1.80
      1 /*	$NetBSD: atw.c,v 1.80 2004/10/30 18:08:36 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.80 2004/10/30 18:08:36 thorpej Exp $");
     45 
     46 #include "bpfilter.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/callout.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/malloc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/socket.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/errno.h>
     57 #include <sys/device.h>
     58 #include <sys/time.h>
     59 
     60 #include <machine/endian.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_media.h>
     67 #include <net/if_ether.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_compat.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #if NBPFILTER > 0
     74 #include <net/bpf.h>
     75 #endif
     76 
     77 #include <machine/bus.h>
     78 #include <machine/intr.h>
     79 
     80 #include <dev/ic/atwreg.h>
     81 #include <dev/ic/rf3000reg.h>
     82 #include <dev/ic/si4136reg.h>
     83 #include <dev/ic/atwvar.h>
     84 #include <dev/ic/smc93cx6var.h>
     85 
     86 /* XXX TBD open questions
     87  *
     88  *
     89  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
     90  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
     91  * handle this for me?
     92  *
     93  */
     94 /* device attachment
     95  *
     96  *    print TOFS[012]
     97  *
     98  * device initialization
     99  *
    100  *    clear ATW_FRCTL_MAXPSP to disable max power saving
    101  *    set ATW_TXBR_ALCUPDATE to enable ALC
    102  *    set TOFS[012]? (hope not)
    103  *    disable rx/tx
    104  *    set ATW_PAR_SWR (software reset)
    105  *    wait for ATW_PAR_SWR clear
    106  *    disable interrupts
    107  *    ack status register
    108  *    enable interrupts
    109  *
    110  * rx/tx initialization
    111  *
    112  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    113  *    allocate and init descriptor rings
    114  *    write ATW_PAR_DSL (descriptor skip length)
    115  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
    116  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    118  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    119  *
    120  * rx/tx end
    121  *
    122  *    stop DMA
    123  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    124  *    flush tx w/ ATW_NAR_HF
    125  *
    126  * scan
    127  *
    128  *    initialize rx/tx
    129  *
    130  * BSS join: (re)association response
    131  *
    132  *    set ATW_FRCTL_AID
    133  *
    134  * optimizations ???
    135  *
    136  */
    137 
    138 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
    139 
    140 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
    141 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
    142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
    143 
    144 int atw_pseudo_milli = 1;
    145 int atw_magic_delay1 = 100 * 1000;
    146 int atw_magic_delay2 = 100 * 1000;
    147 /* more magic multi-millisecond delays (units: microseconds) */
    148 int atw_nar_delay = 20 * 1000;
    149 int atw_magic_delay4 = 10 * 1000;
    150 int atw_rf_delay1 = 10 * 1000;
    151 int atw_rf_delay2 = 5 * 1000;
    152 int atw_plcphd_delay = 2 * 1000;
    153 int atw_bbp_io_enable_delay = 20 * 1000;
    154 int atw_bbp_io_disable_delay = 2 * 1000;
    155 int atw_writewep_delay = 1000;
    156 int atw_beacon_len_adjust = 4;
    157 int atw_dwelltime = 200;
    158 int atw_xindiv2 = 0;
    159 
    160 #ifdef ATW_DEBUG
    161 int atw_debug = 0;
    162 
    163 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
    164 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
    165 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
    166 #define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
    167 #define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
    168 #define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
    169 
    170 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
    171 static void	atw_print_regs(struct atw_softc *, const char *);
    172 
    173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
    174 #	ifdef ATW_BBPDEBUG
    175 static void	atw_rf3000_print(struct atw_softc *);
    176 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    177 #	endif /* ATW_BBPDEBUG */
    178 
    179 #	ifdef ATW_SYNDEBUG
    180 static void	atw_si4126_print(struct atw_softc *);
    181 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
    182 #	endif /* ATW_SYNDEBUG */
    183 
    184 #else
    185 #define ATW_DPRINTF(x)
    186 #define ATW_DPRINTF2(x)
    187 #define ATW_DPRINTF3(x)
    188 #define	DPRINTF(sc, x)	/* nothing */
    189 #define	DPRINTF2(sc, x)	/* nothing */
    190 #define	DPRINTF3(sc, x)	/* nothing */
    191 #endif
    192 
    193 /* ifnet methods */
    194 int	atw_init(struct ifnet *);
    195 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
    196 void	atw_start(struct ifnet *);
    197 void	atw_stop(struct ifnet *, int);
    198 void	atw_watchdog(struct ifnet *);
    199 
    200 /* Device attachment */
    201 void	atw_attach(struct atw_softc *);
    202 int	atw_detach(struct atw_softc *);
    203 
    204 /* Rx/Tx process */
    205 int	atw_add_rxbuf(struct atw_softc *, int);
    206 void	atw_idle(struct atw_softc *, u_int32_t);
    207 void	atw_rxdrain(struct atw_softc *);
    208 void	atw_txdrain(struct atw_softc *);
    209 
    210 /* Device (de)activation and power state */
    211 void	atw_disable(struct atw_softc *);
    212 int	atw_enable(struct atw_softc *);
    213 void	atw_power(int, void *);
    214 void	atw_reset(struct atw_softc *);
    215 void	atw_shutdown(void *);
    216 
    217 /* Interrupt handlers */
    218 void	atw_linkintr(struct atw_softc *, u_int32_t);
    219 void	atw_rxintr(struct atw_softc *);
    220 void	atw_txintr(struct atw_softc *);
    221 
    222 /* 802.11 state machine */
    223 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
    224 static void	atw_next_scan(void *);
    225 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
    226 		              struct ieee80211_node *, int, int, u_int32_t);
    227 static int	atw_tune(struct atw_softc *);
    228 
    229 /* Device initialization */
    230 static void	atw_bbp_io_init(struct atw_softc *);
    231 static void	atw_cfp_init(struct atw_softc *);
    232 static void	atw_cmdr_init(struct atw_softc *);
    233 static void	atw_ifs_init(struct atw_softc *);
    234 static void	atw_nar_init(struct atw_softc *);
    235 static void	atw_response_times_init(struct atw_softc *);
    236 static void	atw_rf_reset(struct atw_softc *);
    237 static void	atw_test1_init(struct atw_softc *);
    238 static void	atw_tofs0_init(struct atw_softc *);
    239 static void	atw_tofs2_init(struct atw_softc *);
    240 static void	atw_txlmt_init(struct atw_softc *);
    241 static void	atw_wcsr_init(struct atw_softc *);
    242 
    243 /* RAM/ROM utilities */
    244 static void	atw_clear_sram(struct atw_softc *);
    245 static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
    246 static int	atw_read_srom(struct atw_softc *);
    247 
    248 /* BSS setup */
    249 static void	atw_predict_beacon(struct atw_softc *);
    250 static void	atw_start_beacon(struct atw_softc *, int);
    251 static void	atw_write_bssid(struct atw_softc *);
    252 static void	atw_write_ssid(struct atw_softc *);
    253 static void	atw_write_sup_rates(struct atw_softc *);
    254 static void	atw_write_wep(struct atw_softc *);
    255 
    256 /* Media */
    257 static int	atw_media_change(struct ifnet *);
    258 static void	atw_media_status(struct ifnet *, struct ifmediareq *);
    259 
    260 static void	atw_filter_setup(struct atw_softc *);
    261 
    262 /* 802.11 utilities */
    263 static void			atw_frame_setdurs(struct atw_softc *,
    264 				                  struct atw_frame *, int, int);
    265 static uint64_t			atw_get_tsft(struct atw_softc *);
    266 static __inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
    267 				                   uint32_t);
    268 static struct ieee80211_node	*atw_node_alloc(struct ieee80211com *);
    269 static void			atw_node_free(struct ieee80211com *,
    270 				              struct ieee80211_node *);
    271 static void			atw_change_ibss(struct atw_softc *);
    272 
    273 /*
    274  * Tuner/transceiver/modem
    275  */
    276 static void	atw_bbp_io_enable(struct atw_softc *, int);
    277 
    278 /* RFMD RF3000 Baseband Processor */
    279 static int	atw_rf3000_init(struct atw_softc *);
    280 static int	atw_rf3000_tune(struct atw_softc *, u_int);
    281 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
    282 
    283 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
    284 static void	atw_si4126_tune(struct atw_softc *, u_int);
    285 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
    286 
    287 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
    288 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
    289 
    290 const char *atw_tx_state[] = {
    291 	"STOPPED",
    292 	"RUNNING - read descriptor",
    293 	"RUNNING - transmitting",
    294 	"RUNNING - filling fifo",	/* XXX */
    295 	"SUSPENDED",
    296 	"RUNNING -- write descriptor",
    297 	"RUNNING -- write last descriptor",
    298 	"RUNNING - fifo full"
    299 };
    300 
    301 const char *atw_rx_state[] = {
    302 	"STOPPED",
    303 	"RUNNING - read descriptor",
    304 	"RUNNING - check this packet, pre-fetch next",
    305 	"RUNNING - wait for reception",
    306 	"SUSPENDED",
    307 	"RUNNING - write descriptor",
    308 	"RUNNING - flush fifo",
    309 	"RUNNING - fifo drain"
    310 };
    311 
    312 int
    313 atw_activate(struct device *self, enum devact act)
    314 {
    315 	struct atw_softc *sc = (struct atw_softc *)self;
    316 	int rv = 0, s;
    317 
    318 	s = splnet();
    319 	switch (act) {
    320 	case DVACT_ACTIVATE:
    321 		rv = EOPNOTSUPP;
    322 		break;
    323 
    324 	case DVACT_DEACTIVATE:
    325 		if_deactivate(&sc->sc_ic.ic_if);
    326 		break;
    327 	}
    328 	splx(s);
    329 	return rv;
    330 }
    331 
    332 /*
    333  * atw_enable:
    334  *
    335  *	Enable the ADM8211 chip.
    336  */
    337 int
    338 atw_enable(struct atw_softc *sc)
    339 {
    340 
    341 	if (ATW_IS_ENABLED(sc) == 0) {
    342 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    343 			printf("%s: device enable failed\n",
    344 			    sc->sc_dev.dv_xname);
    345 			return (EIO);
    346 		}
    347 		sc->sc_flags |= ATWF_ENABLED;
    348 	}
    349 	return (0);
    350 }
    351 
    352 /*
    353  * atw_disable:
    354  *
    355  *	Disable the ADM8211 chip.
    356  */
    357 void
    358 atw_disable(struct atw_softc *sc)
    359 {
    360 	if (!ATW_IS_ENABLED(sc))
    361 		return;
    362 	if (sc->sc_disable != NULL)
    363 		(*sc->sc_disable)(sc);
    364 	sc->sc_flags &= ~ATWF_ENABLED;
    365 }
    366 
    367 /* Returns -1 on failure. */
    368 static int
    369 atw_read_srom(struct atw_softc *sc)
    370 {
    371 	struct seeprom_descriptor sd;
    372 	uint32_t test0, fail_bits;
    373 
    374 	(void)memset(&sd, 0, sizeof(sd));
    375 
    376 	test0 = ATW_READ(sc, ATW_TEST0);
    377 
    378 	switch (sc->sc_rev) {
    379 	case ATW_REVISION_BA:
    380 	case ATW_REVISION_CA:
    381 		fail_bits = ATW_TEST0_EPNE;
    382 		break;
    383 	default:
    384 		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
    385 		break;
    386 	}
    387 	if ((test0 & fail_bits) != 0) {
    388 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
    389 		return -1;
    390 	}
    391 
    392 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
    393 	case ATW_TEST0_EPTYP_93c66:
    394 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
    395 		sc->sc_sromsz = 512;
    396 		sd.sd_chip = C56_66;
    397 		break;
    398 	case ATW_TEST0_EPTYP_93c46:
    399 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
    400 		sc->sc_sromsz = 128;
    401 		sd.sd_chip = C46;
    402 		break;
    403 	default:
    404 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
    405 		    MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
    406 		return -1;
    407 	}
    408 
    409 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
    410 
    411 	if (sc->sc_srom == NULL) {
    412 		printf("%s: unable to allocate SROM buffer\n",
    413 		    sc->sc_dev.dv_xname);
    414 		return -1;
    415 	}
    416 
    417 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
    418 
    419 	/* ADM8211 has a single 32-bit register for controlling the
    420 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
    421 	 * "ready" bit. The ADM8211 input/output sense is the reverse
    422 	 * of read_seeprom's.
    423 	 */
    424 	sd.sd_tag = sc->sc_st;
    425 	sd.sd_bsh = sc->sc_sh;
    426 	sd.sd_regsize = 4;
    427 	sd.sd_control_offset = ATW_SPR;
    428 	sd.sd_status_offset = ATW_SPR;
    429 	sd.sd_dataout_offset = ATW_SPR;
    430 	sd.sd_CK = ATW_SPR_SCLK;
    431 	sd.sd_CS = ATW_SPR_SCS;
    432 	sd.sd_DI = ATW_SPR_SDO;
    433 	sd.sd_DO = ATW_SPR_SDI;
    434 	sd.sd_MS = ATW_SPR_SRS;
    435 	sd.sd_RDY = 0;
    436 
    437 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
    438 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
    439 		free(sc->sc_srom, M_DEVBUF);
    440 		return -1;
    441 	}
    442 #ifdef ATW_DEBUG
    443 	{
    444 		int i;
    445 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
    446 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
    447 			if (((i % 8) == 0) && (i != 0)) {
    448 				ATW_DPRINTF(("\n\t"));
    449 			}
    450 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
    451 		}
    452 		ATW_DPRINTF(("\n"));
    453 	}
    454 #endif /* ATW_DEBUG */
    455 	return 0;
    456 }
    457 
    458 #ifdef ATW_DEBUG
    459 static void
    460 atw_print_regs(struct atw_softc *sc, const char *where)
    461 {
    462 #define PRINTREG(sc, reg) \
    463 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
    464 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
    465 
    466 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
    467 
    468 	PRINTREG(sc, ATW_PAR);
    469 	PRINTREG(sc, ATW_FRCTL);
    470 	PRINTREG(sc, ATW_TDR);
    471 	PRINTREG(sc, ATW_WTDP);
    472 	PRINTREG(sc, ATW_RDR);
    473 	PRINTREG(sc, ATW_WRDP);
    474 	PRINTREG(sc, ATW_RDB);
    475 	PRINTREG(sc, ATW_CSR3A);
    476 	PRINTREG(sc, ATW_TDBD);
    477 	PRINTREG(sc, ATW_TDBP);
    478 	PRINTREG(sc, ATW_STSR);
    479 	PRINTREG(sc, ATW_CSR5A);
    480 	PRINTREG(sc, ATW_NAR);
    481 	PRINTREG(sc, ATW_CSR6A);
    482 	PRINTREG(sc, ATW_IER);
    483 	PRINTREG(sc, ATW_CSR7A);
    484 	PRINTREG(sc, ATW_LPC);
    485 	PRINTREG(sc, ATW_TEST1);
    486 	PRINTREG(sc, ATW_SPR);
    487 	PRINTREG(sc, ATW_TEST0);
    488 	PRINTREG(sc, ATW_WCSR);
    489 	PRINTREG(sc, ATW_WPDR);
    490 	PRINTREG(sc, ATW_GPTMR);
    491 	PRINTREG(sc, ATW_GPIO);
    492 	PRINTREG(sc, ATW_BBPCTL);
    493 	PRINTREG(sc, ATW_SYNCTL);
    494 	PRINTREG(sc, ATW_PLCPHD);
    495 	PRINTREG(sc, ATW_MMIWADDR);
    496 	PRINTREG(sc, ATW_MMIRADDR1);
    497 	PRINTREG(sc, ATW_MMIRADDR2);
    498 	PRINTREG(sc, ATW_TXBR);
    499 	PRINTREG(sc, ATW_CSR15A);
    500 	PRINTREG(sc, ATW_ALCSTAT);
    501 	PRINTREG(sc, ATW_TOFS2);
    502 	PRINTREG(sc, ATW_CMDR);
    503 	PRINTREG(sc, ATW_PCIC);
    504 	PRINTREG(sc, ATW_PMCSR);
    505 	PRINTREG(sc, ATW_PAR0);
    506 	PRINTREG(sc, ATW_PAR1);
    507 	PRINTREG(sc, ATW_MAR0);
    508 	PRINTREG(sc, ATW_MAR1);
    509 	PRINTREG(sc, ATW_ATIMDA0);
    510 	PRINTREG(sc, ATW_ABDA1);
    511 	PRINTREG(sc, ATW_BSSID0);
    512 	PRINTREG(sc, ATW_TXLMT);
    513 	PRINTREG(sc, ATW_MIBCNT);
    514 	PRINTREG(sc, ATW_BCNT);
    515 	PRINTREG(sc, ATW_TSFTH);
    516 	PRINTREG(sc, ATW_TSC);
    517 	PRINTREG(sc, ATW_SYNRF);
    518 	PRINTREG(sc, ATW_BPLI);
    519 	PRINTREG(sc, ATW_CAP0);
    520 	PRINTREG(sc, ATW_CAP1);
    521 	PRINTREG(sc, ATW_RMD);
    522 	PRINTREG(sc, ATW_CFPP);
    523 	PRINTREG(sc, ATW_TOFS0);
    524 	PRINTREG(sc, ATW_TOFS1);
    525 	PRINTREG(sc, ATW_IFST);
    526 	PRINTREG(sc, ATW_RSPT);
    527 	PRINTREG(sc, ATW_TSFTL);
    528 	PRINTREG(sc, ATW_WEPCTL);
    529 	PRINTREG(sc, ATW_WESK);
    530 	PRINTREG(sc, ATW_WEPCNT);
    531 	PRINTREG(sc, ATW_MACTEST);
    532 	PRINTREG(sc, ATW_FER);
    533 	PRINTREG(sc, ATW_FEMR);
    534 	PRINTREG(sc, ATW_FPSR);
    535 	PRINTREG(sc, ATW_FFER);
    536 #undef PRINTREG
    537 }
    538 #endif /* ATW_DEBUG */
    539 
    540 /*
    541  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
    542  */
    543 void
    544 atw_attach(struct atw_softc *sc)
    545 {
    546 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
    547 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    548 	};
    549 	struct ieee80211com *ic = &sc->sc_ic;
    550 	struct ifnet *ifp = &ic->ic_if;
    551 	int country_code, error, i, nrate, srom_major;
    552 	u_int32_t reg;
    553 	static const char *type_strings[] = {"Intersil (not supported)",
    554 	    "RFMD", "Marvel (not supported)"};
    555 
    556 	sc->sc_txth = atw_txthresh_tab_lo;
    557 
    558 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    559 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    560 
    561 #ifdef ATW_DEBUG
    562 	atw_print_regs(sc, "atw_attach");
    563 #endif /* ATW_DEBUG */
    564 
    565 	/*
    566 	 * Allocate the control data structures, and create and load the
    567 	 * DMA map for it.
    568 	 */
    569 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    570 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    571 	    1, &sc->sc_cdnseg, 0)) != 0) {
    572 		printf("%s: unable to allocate control data, error = %d\n",
    573 		    sc->sc_dev.dv_xname, error);
    574 		goto fail_0;
    575 	}
    576 
    577 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
    578 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
    579 	    BUS_DMA_COHERENT)) != 0) {
    580 		printf("%s: unable to map control data, error = %d\n",
    581 		    sc->sc_dev.dv_xname, error);
    582 		goto fail_1;
    583 	}
    584 
    585 	if ((error = bus_dmamap_create(sc->sc_dmat,
    586 	    sizeof(struct atw_control_data), 1,
    587 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    588 		printf("%s: unable to create control data DMA map, "
    589 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    590 		goto fail_2;
    591 	}
    592 
    593 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    594 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
    595 	    0)) != 0) {
    596 		printf("%s: unable to load control data DMA map, error = %d\n",
    597 		    sc->sc_dev.dv_xname, error);
    598 		goto fail_3;
    599 	}
    600 
    601 	/*
    602 	 * Create the transmit buffer DMA maps.
    603 	 */
    604 	sc->sc_ntxsegs = ATW_NTXSEGS;
    605 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    606 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    607 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
    608 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    609 			printf("%s: unable to create tx DMA map %d, "
    610 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    611 			goto fail_4;
    612 		}
    613 	}
    614 
    615 	/*
    616 	 * Create the receive buffer DMA maps.
    617 	 */
    618 	for (i = 0; i < ATW_NRXDESC; i++) {
    619 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    620 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    621 			printf("%s: unable to create rx DMA map %d, "
    622 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    623 			goto fail_5;
    624 		}
    625 	}
    626 	for (i = 0; i < ATW_NRXDESC; i++) {
    627 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    628 	}
    629 
    630 	switch (sc->sc_rev) {
    631 	case ATW_REVISION_AB:
    632 	case ATW_REVISION_AF:
    633 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
    634 		break;
    635 	case ATW_REVISION_BA:
    636 	case ATW_REVISION_CA:
    637 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
    638 		break;
    639 	}
    640 
    641 	/* Reset the chip to a known state. */
    642 	atw_reset(sc);
    643 
    644 	if (atw_read_srom(sc) == -1)
    645 		return;
    646 
    647 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    648 	    ATW_SR_RFTYPE_MASK);
    649 
    650 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    651 	    ATW_SR_BBPTYPE_MASK);
    652 
    653 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
    654 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
    655 		return;
    656 	}
    657 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
    658 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
    659 		return;
    660 	}
    661 
    662 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
    663 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
    664 
    665 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
    666 	 * MARVEL. My bug, or theirs?
    667 	 */
    668 
    669 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
    670 
    671 	switch (sc->sc_rftype) {
    672 	case ATW_RFTYPE_INTERSIL:
    673 		reg |= ATW_SYNCTL_CS1;
    674 		break;
    675 	case ATW_RFTYPE_RFMD:
    676 		reg |= ATW_SYNCTL_CS0;
    677 		break;
    678 	case ATW_RFTYPE_MARVEL:
    679 		break;
    680 	}
    681 
    682 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
    683 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
    684 
    685 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
    686 
    687 	switch (sc->sc_bbptype) {
    688 	case ATW_BBPTYPE_INTERSIL:
    689 		reg |= ATW_BBPCTL_TWI;
    690 		break;
    691 	case ATW_BBPTYPE_RFMD:
    692 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
    693 		    ATW_BBPCTL_CCA_ACTLO;
    694 		break;
    695 	case ATW_BBPTYPE_MARVEL:
    696 		break;
    697 	case ATW_C_BBPTYPE_RFMD:
    698 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
    699 		    sc->sc_dev.dv_xname);
    700 		break;
    701 	}
    702 
    703 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
    704 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
    705 
    706 	/*
    707 	 * From this point forward, the attachment cannot fail.  A failure
    708 	 * before this point releases all resources that may have been
    709 	 * allocated.
    710 	 */
    711 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
    712 
    713 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
    714 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
    715 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
    716 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
    717 
    718 	srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
    719 	    ATW_SR_MAJOR_MASK);
    720 
    721 	if (srom_major < 2)
    722 		sc->sc_rf3000_options1 = 0;
    723 	else if (sc->sc_rev == ATW_REVISION_BA) {
    724 		sc->sc_rf3000_options1 =
    725 		    MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
    726 		    ATW_SR_CR28_MASK);
    727 	} else
    728 		sc->sc_rf3000_options1 = 0;
    729 
    730 	sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    731 	    ATW_SR_CR29_MASK);
    732 
    733 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    734 	    ATW_SR_CTRY_MASK);
    735 
    736 #define ADD_CHANNEL(_ic, _chan) do {					\
    737 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
    738 	_ic->ic_channels[_chan].ic_freq =				\
    739 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
    740 } while (0)
    741 
    742 	/* Find available channels */
    743 	switch (country_code) {
    744 	case COUNTRY_MMK2:	/* 1-14 */
    745 		ADD_CHANNEL(ic, 14);
    746 		/*FALLTHROUGH*/
    747 	case COUNTRY_ETSI:	/* 1-13 */
    748 		for (i = 1; i <= 13; i++)
    749 			ADD_CHANNEL(ic, i);
    750 		break;
    751 	case COUNTRY_FCC:	/* 1-11 */
    752 	case COUNTRY_IC:	/* 1-11 */
    753 		for (i = 1; i <= 11; i++)
    754 			ADD_CHANNEL(ic, i);
    755 		break;
    756 	case COUNTRY_MMK:	/* 14 */
    757 		ADD_CHANNEL(ic, 14);
    758 		break;
    759 	case COUNTRY_FRANCE:	/* 10-13 */
    760 		for (i = 10; i <= 13; i++)
    761 			ADD_CHANNEL(ic, i);
    762 		break;
    763 	default:	/* assume channels 10-11 */
    764 	case COUNTRY_SPAIN:	/* 10-11 */
    765 		for (i = 10; i <= 11; i++)
    766 			ADD_CHANNEL(ic, i);
    767 		break;
    768 	}
    769 
    770 	/* Read the MAC address. */
    771 	reg = ATW_READ(sc, ATW_PAR0);
    772 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
    773 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
    774 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
    775 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
    776 	reg = ATW_READ(sc, ATW_PAR1);
    777 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
    778 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
    779 
    780 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
    781 		printf(" could not get mac address, attach failed\n");
    782 		return;
    783 	}
    784 
    785 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
    786 
    787 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    788 	ifp->if_softc = sc;
    789 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
    790 	    IFF_NOTRAILERS;
    791 	ifp->if_ioctl = atw_ioctl;
    792 	ifp->if_start = atw_start;
    793 	ifp->if_watchdog = atw_watchdog;
    794 	ifp->if_init = atw_init;
    795 	ifp->if_stop = atw_stop;
    796 	IFQ_SET_READY(&ifp->if_snd);
    797 
    798 	ic->ic_phytype = IEEE80211_T_DS;
    799 	ic->ic_opmode = IEEE80211_M_STA;
    800 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
    801 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
    802 
    803 	nrate = 0;
    804 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
    805 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
    806 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
    807 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
    808 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
    809 
    810 	/*
    811 	 * Call MI attach routines.
    812 	 */
    813 
    814 	if_attach(ifp);
    815 	ieee80211_ifattach(ifp);
    816 
    817 	sc->sc_newstate = ic->ic_newstate;
    818 	ic->ic_newstate = atw_newstate;
    819 
    820 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    821 	ic->ic_recv_mgmt = atw_recv_mgmt;
    822 
    823 	sc->sc_node_free = ic->ic_node_free;
    824 	ic->ic_node_free = atw_node_free;
    825 
    826 	sc->sc_node_alloc = ic->ic_node_alloc;
    827 	ic->ic_node_alloc = atw_node_alloc;
    828 
    829 	/* possibly we should fill in our own sc_send_prresp, since
    830 	 * the ADM8211 is probably sending probe responses in ad hoc
    831 	 * mode.
    832 	 */
    833 
    834 	/* complete initialization */
    835 	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
    836 	callout_init(&sc->sc_scan_ch);
    837 
    838 #if NBPFILTER > 0
    839 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    840 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
    841 #endif
    842 
    843 	/*
    844 	 * Make sure the interface is shutdown during reboot.
    845 	 */
    846 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
    847 	if (sc->sc_sdhook == NULL)
    848 		printf("%s: WARNING: unable to establish shutdown hook\n",
    849 		    sc->sc_dev.dv_xname);
    850 
    851 	/*
    852 	 * Add a suspend hook to make sure we come back up after a
    853 	 * resume.
    854 	 */
    855 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
    856 	if (sc->sc_powerhook == NULL)
    857 		printf("%s: WARNING: unable to establish power hook\n",
    858 		    sc->sc_dev.dv_xname);
    859 
    860 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
    861 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
    862 	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
    863 
    864 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
    865 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
    866 	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
    867 
    868 	return;
    869 
    870 	/*
    871 	 * Free any resources we've allocated during the failed attach
    872 	 * attempt.  Do this in reverse order and fall through.
    873 	 */
    874  fail_5:
    875 	for (i = 0; i < ATW_NRXDESC; i++) {
    876 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
    877 			continue;
    878 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
    879 	}
    880  fail_4:
    881 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    882 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
    883 			continue;
    884 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
    885 	}
    886 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    887  fail_3:
    888 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    889  fail_2:
    890 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    891 	    sizeof(struct atw_control_data));
    892  fail_1:
    893 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
    894  fail_0:
    895 	return;
    896 }
    897 
    898 static struct ieee80211_node *
    899 atw_node_alloc(struct ieee80211com *ic)
    900 {
    901 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    902 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
    903 
    904 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
    905 	return ni;
    906 }
    907 
    908 static void
    909 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
    910 {
    911 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    912 
    913 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
    914 	    ether_sprintf(ni->ni_bssid)));
    915 	(*sc->sc_node_free)(ic, ni);
    916 }
    917 
    918 
    919 static void
    920 atw_test1_reset(struct atw_softc *sc)
    921 {
    922 	switch (sc->sc_rev) {
    923 	case ATW_REVISION_BA:
    924 		if (1 /* XXX condition on transceiver type */) {
    925 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
    926 		}
    927 		break;
    928 	case ATW_REVISION_CA:
    929 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
    930 		break;
    931 	default:
    932 		break;
    933 	}
    934 }
    935 
    936 /*
    937  * atw_reset:
    938  *
    939  *	Perform a soft reset on the ADM8211.
    940  */
    941 void
    942 atw_reset(struct atw_softc *sc)
    943 {
    944 	int i;
    945 	uint32_t lpc;
    946 
    947 	ATW_WRITE(sc, ATW_NAR, 0x0);
    948 	DELAY(atw_nar_delay);
    949 
    950 	/* Reference driver has a cryptic remark indicating that this might
    951 	 * power-on the chip.  I know that it turns off power-saving....
    952 	 */
    953 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
    954 
    955 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
    956 
    957 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
    958 		if (ATW_READ(sc, ATW_PAR) == 0)
    959 			break;
    960 		DELAY(atw_pseudo_milli);
    961 	}
    962 
    963 	/* ... and then pause 100ms longer for good measure. */
    964 	DELAY(atw_magic_delay1);
    965 
    966 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
    967 
    968 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
    969 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
    970 
    971 	atw_test1_reset(sc);
    972 	/*
    973 	 * Initialize the PCI Access Register.
    974 	 */
    975 	sc->sc_busmode = ATW_PAR_PBL_8DW;
    976 
    977 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
    978 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
    979 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
    980 
    981 	/* Turn off maximum power saving, etc.
    982 	 *
    983 	 * XXX Following example of reference driver, should I set
    984 	 * an AID of 1?  It didn't seem to help....
    985 	 */
    986 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
    987 
    988 	DELAY(atw_magic_delay2);
    989 
    990 	/* Recall EEPROM. */
    991 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
    992 
    993 	DELAY(atw_magic_delay4);
    994 
    995 	lpc = ATW_READ(sc, ATW_LPC);
    996 
    997 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
    998 
    999 	/* A reset seems to affect the SRAM contents, so put them into
   1000 	 * a known state.
   1001 	 */
   1002 	atw_clear_sram(sc);
   1003 
   1004 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
   1005 }
   1006 
   1007 static void
   1008 atw_clear_sram(struct atw_softc *sc)
   1009 {
   1010 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
   1011 	/* XXX not for revision 0x20. */
   1012 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
   1013 }
   1014 
   1015 /* TBD atw_init
   1016  *
   1017  * set MAC based on ic->ic_bss->myaddr
   1018  * write WEP keys
   1019  * set TX rate
   1020  */
   1021 
   1022 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
   1023  * without receiving a beacon with the preferred BSSID & SSID.
   1024  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
   1025  */
   1026 static void
   1027 atw_wcsr_init(struct atw_softc *sc)
   1028 {
   1029 	uint32_t wcsr;
   1030 
   1031 	wcsr = ATW_READ(sc, ATW_WCSR);
   1032 	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
   1033 	wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
   1034 	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
   1035 
   1036 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
   1037 	    sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
   1038 }
   1039 
   1040 /* Turn off power management.  Set Rx store-and-forward mode. */
   1041 static void
   1042 atw_cmdr_init(struct atw_softc *sc)
   1043 {
   1044 	uint32_t cmdr;
   1045 	cmdr = ATW_READ(sc, ATW_CMDR);
   1046 	cmdr &= ~ATW_CMDR_APM;
   1047 	cmdr |= ATW_CMDR_RTE;
   1048 	cmdr &= ~ATW_CMDR_DRT_MASK;
   1049 	cmdr |= ATW_CMDR_DRT_SF;
   1050 
   1051 	ATW_WRITE(sc, ATW_CMDR, cmdr);
   1052 }
   1053 
   1054 static void
   1055 atw_tofs2_init(struct atw_softc *sc)
   1056 {
   1057 	uint32_t tofs2;
   1058 	/* XXX this magic can probably be figured out from the RFMD docs */
   1059 #ifndef ATW_REFSLAVE
   1060 	tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
   1061 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
   1062 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
   1063 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
   1064 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
   1065 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
   1066 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
   1067 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
   1068 #else
   1069 	/* XXX new magic from reference driver source */
   1070 	tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
   1071 	      LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
   1072 	      LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
   1073 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
   1074 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
   1075 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
   1076 	      LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
   1077 	      LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
   1078 #endif
   1079 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
   1080 }
   1081 
   1082 static void
   1083 atw_nar_init(struct atw_softc *sc)
   1084 {
   1085 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
   1086 }
   1087 
   1088 static void
   1089 atw_txlmt_init(struct atw_softc *sc)
   1090 {
   1091 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
   1092 	                         LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
   1093 }
   1094 
   1095 static void
   1096 atw_test1_init(struct atw_softc *sc)
   1097 {
   1098 	uint32_t test1;
   1099 
   1100 	test1 = ATW_READ(sc, ATW_TEST1);
   1101 	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
   1102 	/* XXX magic 0x1 */
   1103 	test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
   1104 	ATW_WRITE(sc, ATW_TEST1, test1);
   1105 }
   1106 
   1107 static void
   1108 atw_rf_reset(struct atw_softc *sc)
   1109 {
   1110 	/* XXX this resets an Intersil RF front-end? */
   1111 	/* TBD condition on Intersil RFType? */
   1112 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
   1113 	DELAY(atw_rf_delay1);
   1114 	ATW_WRITE(sc, ATW_SYNRF, 0);
   1115 	DELAY(atw_rf_delay2);
   1116 }
   1117 
   1118 /* Set 16 TU max duration for the contention-free period (CFP). */
   1119 static void
   1120 atw_cfp_init(struct atw_softc *sc)
   1121 {
   1122 	uint32_t cfpp;
   1123 
   1124 	cfpp = ATW_READ(sc, ATW_CFPP);
   1125 	cfpp &= ~ATW_CFPP_CFPMD;
   1126 	cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
   1127 	ATW_WRITE(sc, ATW_CFPP, cfpp);
   1128 }
   1129 
   1130 static void
   1131 atw_tofs0_init(struct atw_softc *sc)
   1132 {
   1133 	/* XXX I guess that the Cardbus clock is 22MHz?
   1134 	 * I am assuming that the role of ATW_TOFS0_USCNT is
   1135 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
   1136 	 * very clear on this point. It says in the datasheet that it is
   1137 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
   1138 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
   1139 	 * these values. These values are also the power-on default.
   1140 	 */
   1141 	ATW_WRITE(sc, ATW_TOFS0,
   1142 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
   1143 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
   1144 }
   1145 
   1146 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
   1147 static void
   1148 atw_ifs_init(struct atw_softc *sc)
   1149 {
   1150 	uint32_t ifst;
   1151 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
   1152 	 * Go figure.
   1153 	 */
   1154 	ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
   1155 	      LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
   1156 	             ATW_IFST_SIFS_MASK) |
   1157 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
   1158 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
   1159 
   1160 	ATW_WRITE(sc, ATW_IFST, ifst);
   1161 }
   1162 
   1163 static void
   1164 atw_response_times_init(struct atw_softc *sc)
   1165 {
   1166 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
   1167 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
   1168 	 * to pass after it transmits a frame that requires a response;
   1169 	 * it waits at most SIFS + MART microseconds for the response.
   1170 	 * Surely this is not the ACK timeout?
   1171 	 */
   1172 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
   1173 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
   1174 }
   1175 
   1176 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
   1177  * engines read and write baseband registers after Rx and before
   1178  * Tx, respectively.
   1179  */
   1180 static void
   1181 atw_bbp_io_init(struct atw_softc *sc)
   1182 {
   1183 	uint32_t mmiraddr2;
   1184 
   1185 	/* XXX The reference driver does this, but is it *really*
   1186 	 * necessary?
   1187 	 */
   1188 	switch (sc->sc_rev) {
   1189 	case ATW_REVISION_AB:
   1190 	case ATW_REVISION_AF:
   1191 		mmiraddr2 = 0x0;
   1192 		break;
   1193 	default:
   1194 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
   1195 		mmiraddr2 &=
   1196 		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
   1197 		break;
   1198 	}
   1199 
   1200 	switch (sc->sc_bbptype) {
   1201 	case ATW_BBPTYPE_INTERSIL:
   1202 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
   1203 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
   1204 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
   1205 		break;
   1206 	case ATW_BBPTYPE_MARVEL:
   1207 		/* TBD find out the Marvel settings. */
   1208 		break;
   1209 	case ATW_BBPTYPE_RFMD:
   1210 	default:
   1211 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
   1212 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
   1213 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
   1214 		break;
   1215 	}
   1216 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
   1217 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
   1218 }
   1219 
   1220 /*
   1221  * atw_init:		[ ifnet interface function ]
   1222  *
   1223  *	Initialize the interface.  Must be called at splnet().
   1224  */
   1225 int
   1226 atw_init(struct ifnet *ifp)
   1227 {
   1228 	struct atw_softc *sc = ifp->if_softc;
   1229 	struct ieee80211com *ic = &sc->sc_ic;
   1230 	struct atw_txsoft *txs;
   1231 	struct atw_rxsoft *rxs;
   1232 	int i, error = 0;
   1233 
   1234 	if ((error = atw_enable(sc)) != 0)
   1235 		goto out;
   1236 
   1237 	/*
   1238 	 * Cancel any pending I/O. This also resets.
   1239 	 */
   1240 	atw_stop(ifp, 0);
   1241 
   1242 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
   1243 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
   1244 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
   1245 	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
   1246 
   1247 	atw_wcsr_init(sc);
   1248 
   1249 	atw_cmdr_init(sc);
   1250 
   1251 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
   1252 	 *
   1253 	 * XXX Set transmit power for ATIM, RTS, Beacon.
   1254 	 */
   1255 	ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
   1256 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
   1257 
   1258 	atw_tofs2_init(sc);
   1259 
   1260 	atw_nar_init(sc);
   1261 
   1262 	atw_txlmt_init(sc);
   1263 
   1264 	atw_test1_init(sc);
   1265 
   1266 	atw_rf_reset(sc);
   1267 
   1268 	atw_cfp_init(sc);
   1269 
   1270 	atw_tofs0_init(sc);
   1271 
   1272 	atw_ifs_init(sc);
   1273 
   1274 	/* XXX Fall asleep after one second of inactivity.
   1275 	 * XXX A frame may only dribble in for 65536us.
   1276 	 */
   1277 	ATW_WRITE(sc, ATW_RMD,
   1278 	    LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
   1279 
   1280 	atw_response_times_init(sc);
   1281 
   1282 	atw_bbp_io_init(sc);
   1283 
   1284 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1285 
   1286 	if ((error = atw_rf3000_init(sc)) != 0)
   1287 		goto out;
   1288 
   1289 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
   1290 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
   1291 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
   1292 
   1293 	/*
   1294 	 * Initialize the transmit descriptor ring.
   1295 	 */
   1296 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1297 	for (i = 0; i < ATW_NTXDESC; i++) {
   1298 		sc->sc_txdescs[i].at_ctl = 0;
   1299 		/* no transmit chaining */
   1300 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
   1301 		sc->sc_txdescs[i].at_buf2 =
   1302 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
   1303 	}
   1304 	/* use ring mode */
   1305 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
   1306 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
   1307 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1308 	sc->sc_txfree = ATW_NTXDESC;
   1309 	sc->sc_txnext = 0;
   1310 
   1311 	/*
   1312 	 * Initialize the transmit job descriptors.
   1313 	 */
   1314 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1315 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1316 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   1317 		txs = &sc->sc_txsoft[i];
   1318 		txs->txs_mbuf = NULL;
   1319 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1320 	}
   1321 
   1322 	/*
   1323 	 * Initialize the receive descriptor and receive job
   1324 	 * descriptor rings.
   1325 	 */
   1326 	for (i = 0; i < ATW_NRXDESC; i++) {
   1327 		rxs = &sc->sc_rxsoft[i];
   1328 		if (rxs->rxs_mbuf == NULL) {
   1329 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
   1330 				printf("%s: unable to allocate or map rx "
   1331 				    "buffer %d, error = %d\n",
   1332 				    sc->sc_dev.dv_xname, i, error);
   1333 				/*
   1334 				 * XXX Should attempt to run with fewer receive
   1335 				 * XXX buffers instead of just failing.
   1336 				 */
   1337 				atw_rxdrain(sc);
   1338 				goto out;
   1339 			}
   1340 		} else
   1341 			ATW_INIT_RXDESC(sc, i);
   1342 	}
   1343 	sc->sc_rxptr = 0;
   1344 
   1345 	/*
   1346 	 * Initialize the interrupt mask and enable interrupts.
   1347 	 */
   1348 	/* normal interrupts */
   1349 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
   1350 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
   1351 
   1352 	/* abnormal interrupts */
   1353 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
   1354 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
   1355 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1356 
   1357 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
   1358 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1359 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
   1360 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
   1361 	    ATW_INTR_TRT;
   1362 
   1363 	sc->sc_linkint_mask &= sc->sc_inten;
   1364 	sc->sc_rxint_mask &= sc->sc_inten;
   1365 	sc->sc_txint_mask &= sc->sc_inten;
   1366 
   1367 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
   1368 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1369 
   1370 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
   1371 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
   1372 
   1373 	/*
   1374 	 * Give the transmit and receive rings to the ADM8211.
   1375 	 */
   1376 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
   1377 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
   1378 
   1379 	sc->sc_txthresh = 0;
   1380 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
   1381 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
   1382 
   1383 	/* common 802.11 configuration */
   1384 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
   1385 	switch (ic->ic_opmode) {
   1386 	case IEEE80211_M_STA:
   1387 		break;
   1388 	case IEEE80211_M_AHDEMO: /* XXX */
   1389 	case IEEE80211_M_IBSS:
   1390 		ic->ic_flags |= IEEE80211_F_IBSSON;
   1391 		/*FALLTHROUGH*/
   1392 	case IEEE80211_M_HOSTAP: /* XXX */
   1393 		break;
   1394 	case IEEE80211_M_MONITOR: /* XXX */
   1395 		break;
   1396 	}
   1397 
   1398 	switch (ic->ic_opmode) {
   1399 	case IEEE80211_M_AHDEMO:
   1400 	case IEEE80211_M_HOSTAP:
   1401 		ic->ic_bss->ni_intval = ic->ic_lintval;
   1402 		ic->ic_bss->ni_rssi = 0;
   1403 		ic->ic_bss->ni_rstamp = 0;
   1404 		break;
   1405 	default:					/* XXX */
   1406 		break;
   1407 	}
   1408 
   1409 	sc->sc_wepctl = 0;
   1410 
   1411 	atw_write_ssid(sc);
   1412 	atw_write_sup_rates(sc);
   1413 	if (ic->ic_caps & IEEE80211_C_WEP)
   1414 		atw_write_wep(sc);
   1415 
   1416 	ic->ic_state = IEEE80211_S_INIT;
   1417 
   1418 	/*
   1419 	 * Set the receive filter.  This will start the transmit and
   1420 	 * receive processes.
   1421 	 */
   1422 	atw_filter_setup(sc);
   1423 
   1424 	/*
   1425 	 * Start the receive process.
   1426 	 */
   1427 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1428 
   1429 	/*
   1430 	 * Note that the interface is now running.
   1431 	 */
   1432 	ifp->if_flags |= IFF_RUNNING;
   1433 	ifp->if_flags &= ~IFF_OACTIVE;
   1434 
   1435 	/* send no beacons, yet. */
   1436 	atw_start_beacon(sc, 0);
   1437 
   1438 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   1439 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1440 	else
   1441 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1442  out:
   1443 	if (error) {
   1444 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1445 		ifp->if_timer = 0;
   1446 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1447 	}
   1448 #ifdef ATW_DEBUG
   1449 	atw_print_regs(sc, "end of init");
   1450 #endif /* ATW_DEBUG */
   1451 
   1452 	return (error);
   1453 }
   1454 
   1455 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
   1456  *           0: MAC control of RF3000/Si4126.
   1457  *
   1458  * Applies power, or selects RF front-end? Sets reset condition.
   1459  *
   1460  * TBD support non-RFMD BBP, non-SiLabs synth.
   1461  */
   1462 static void
   1463 atw_bbp_io_enable(struct atw_softc *sc, int enable)
   1464 {
   1465 	if (enable) {
   1466 		ATW_WRITE(sc, ATW_SYNRF,
   1467 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
   1468 		DELAY(atw_bbp_io_enable_delay);
   1469 	} else {
   1470 		ATW_WRITE(sc, ATW_SYNRF, 0);
   1471 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
   1472 	}
   1473 }
   1474 
   1475 static int
   1476 atw_tune(struct atw_softc *sc)
   1477 {
   1478 	int rc;
   1479 	u_int chan;
   1480 	struct ieee80211com *ic = &sc->sc_ic;
   1481 
   1482 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
   1483 	if (chan == IEEE80211_CHAN_ANY)
   1484 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
   1485 
   1486 	if (chan == sc->sc_cur_chan)
   1487 		return 0;
   1488 
   1489 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
   1490 	    sc->sc_cur_chan, chan));
   1491 
   1492 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1493 
   1494 	atw_si4126_tune(sc, chan);
   1495 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
   1496 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
   1497 		    chan);
   1498 
   1499 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1500 	DELAY(atw_nar_delay);
   1501 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1502 
   1503 	if (rc == 0)
   1504 		sc->sc_cur_chan = chan;
   1505 
   1506 	return rc;
   1507 }
   1508 
   1509 #ifdef ATW_SYNDEBUG
   1510 static void
   1511 atw_si4126_print(struct atw_softc *sc)
   1512 {
   1513 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1514 	u_int addr, val;
   1515 
   1516 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1517 		return;
   1518 
   1519 	for (addr = 0; addr <= 8; addr++) {
   1520 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
   1521 		if (atw_si4126_read(sc, addr, &val) == 0) {
   1522 			printf("<unknown> (quitting print-out)\n");
   1523 			break;
   1524 		}
   1525 		printf("%05x\n", val);
   1526 	}
   1527 }
   1528 #endif /* ATW_SYNDEBUG */
   1529 
   1530 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
   1531  *
   1532  * The RF/IF synthesizer produces two reference frequencies for
   1533  * the RF2948B transceiver.  The first frequency the RF2948B requires
   1534  * is two times the so-called "intermediate frequency" (IF). Since
   1535  * a SAW filter on the radio fixes the IF at 374MHz, I program the
   1536  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
   1537  * frequency required by the transceiver is the radio frequency
   1538  * (RF). This is a superheterodyne transceiver; for f(chan) the
   1539  * center frequency of the channel we are tuning, RF = f(chan) -
   1540  * IF.
   1541  *
   1542  * XXX I am told by SiLabs that the Si4126 will accept a broader range
   1543  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
   1544  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
   1545  * works, but I have still programmed for XINDIV2 = 1 to be safe.
   1546  */
   1547 static void
   1548 atw_si4126_tune(struct atw_softc *sc, u_int chan)
   1549 {
   1550 	u_int mhz;
   1551 	u_int R;
   1552 	u_int32_t gpio;
   1553 	u_int16_t gain;
   1554 
   1555 #ifdef ATW_SYNDEBUG
   1556 	atw_si4126_print(sc);
   1557 #endif /* ATW_SYNDEBUG */
   1558 
   1559 	if (chan == 14)
   1560 		mhz = 2484;
   1561 	else
   1562 		mhz = 2412 + 5 * (chan - 1);
   1563 
   1564 	/* Tune IF to 748MHz to suit the IF LO input of the
   1565 	 * RF2494B, which is 2 x IF. No need to set an IF divider
   1566          * because an IF in 526MHz - 952MHz is allowed.
   1567 	 *
   1568 	 * XIN is 44.000MHz, so divide it by two to get allowable
   1569 	 * range of 2-25MHz. SiLabs tells me that this is not
   1570 	 * strictly necessary.
   1571 	 */
   1572 
   1573 	if (atw_xindiv2)
   1574 		R = 44;
   1575 	else
   1576 		R = 88;
   1577 
   1578 	/* Power-up RF, IF synthesizers. */
   1579 	atw_si4126_write(sc, SI4126_POWER,
   1580 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
   1581 
   1582 	/* set LPWR, too? */
   1583 	atw_si4126_write(sc, SI4126_MAIN,
   1584 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
   1585 
   1586 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
   1587 	 * set KP2 to 1.
   1588 	 *
   1589 	 * REFDIF This is different from the reference driver, which
   1590 	 * always sets SI4126_GAIN to 0.
   1591 	 */
   1592 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
   1593 
   1594 	atw_si4126_write(sc, SI4126_GAIN, gain);
   1595 
   1596 	/* XIN = 44MHz.
   1597 	 *
   1598 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
   1599 	 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
   1600 	 *
   1601 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
   1602 	 * so that 1496/88 * 44MHz = 748MHz.
   1603 	 */
   1604 	atw_si4126_write(sc, SI4126_IFN, 1496);
   1605 
   1606 	atw_si4126_write(sc, SI4126_IFR, R);
   1607 
   1608 #ifndef ATW_REFSLAVE
   1609 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
   1610 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
   1611 	 * which has no RF1!
   1612 	 */
   1613 	atw_si4126_write(sc, SI4126_RF1R, R);
   1614 
   1615 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
   1616 #endif
   1617 
   1618 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
   1619 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
   1620 	 * Now let's multiply it to mhz. So mhz - IF = N.
   1621 	 */
   1622 	atw_si4126_write(sc, SI4126_RF2R, R);
   1623 
   1624 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
   1625 
   1626 	/* wait 100us from power-up for RF, IF to settle */
   1627 	DELAY(100);
   1628 
   1629 	gpio = ATW_READ(sc, ATW_GPIO);
   1630 	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
   1631 	gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
   1632 
   1633 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
   1634 		/* Set a Prism RF front-end to a special mode for channel 14?
   1635 		 *
   1636 		 * Apparently the SMC2635W needs this, although I don't think
   1637 		 * it has a Prism RF.
   1638 		 */
   1639 		gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
   1640 	}
   1641 	ATW_WRITE(sc, ATW_GPIO, gpio);
   1642 
   1643 #ifdef ATW_SYNDEBUG
   1644 	atw_si4126_print(sc);
   1645 #endif /* ATW_SYNDEBUG */
   1646 }
   1647 
   1648 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
   1649  * diversity.
   1650  *
   1651  * !!!
   1652  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
   1653  * !!!
   1654  */
   1655 static int
   1656 atw_rf3000_init(struct atw_softc *sc)
   1657 {
   1658 	int rc = 0;
   1659 
   1660 	atw_bbp_io_enable(sc, 1);
   1661 
   1662 	/* CCA is acquisition sensitive */
   1663 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
   1664 	    LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
   1665 
   1666 	if (rc != 0)
   1667 		goto out;
   1668 
   1669 	/* enable diversity */
   1670 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
   1671 
   1672 	if (rc != 0)
   1673 		goto out;
   1674 
   1675 	/* sensible setting from a binary-only driver */
   1676 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1677 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
   1678 
   1679 	if (rc != 0)
   1680 		goto out;
   1681 
   1682 	/* magic from a binary-only driver */
   1683 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
   1684 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
   1685 
   1686 	if (rc != 0)
   1687 		goto out;
   1688 
   1689 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
   1690 
   1691 	if (rc != 0)
   1692 		goto out;
   1693 
   1694 	/* XXX Reference driver remarks that Abocom sets this to 50.
   1695 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
   1696 	 * in the "reserved" area of register RF3000_OPTIONS1.
   1697 	 */
   1698 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
   1699 
   1700 	if (rc != 0)
   1701 		goto out;
   1702 
   1703 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
   1704 
   1705 	if (rc != 0)
   1706 		goto out;
   1707 
   1708 out:
   1709 	atw_bbp_io_enable(sc, 0);
   1710 	return rc;
   1711 }
   1712 
   1713 #ifdef ATW_BBPDEBUG
   1714 static void
   1715 atw_rf3000_print(struct atw_softc *sc)
   1716 {
   1717 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1718 	u_int addr, val;
   1719 
   1720 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1721 		return;
   1722 
   1723 	for (addr = 0x01; addr <= 0x15; addr++) {
   1724 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
   1725 		if (atw_rf3000_read(sc, addr, &val) != 0) {
   1726 			printf("<unknown> (quitting print-out)\n");
   1727 			break;
   1728 		}
   1729 		printf("%08x\n", val);
   1730 	}
   1731 }
   1732 #endif /* ATW_BBPDEBUG */
   1733 
   1734 /* Set the power settings on the BBP for channel `chan'. */
   1735 static int
   1736 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
   1737 {
   1738 	int rc = 0;
   1739 	u_int32_t reg;
   1740 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
   1741 
   1742 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
   1743 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
   1744 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
   1745 
   1746 	/* odd channels: LSB, even channels: MSB */
   1747 	if (chan % 2 == 1) {
   1748 		txpower &= 0xFF;
   1749 		lpf_cutoff &= 0xFF;
   1750 		lna_gs_thresh &= 0xFF;
   1751 	} else {
   1752 		txpower >>= 8;
   1753 		lpf_cutoff >>= 8;
   1754 		lna_gs_thresh >>= 8;
   1755 	}
   1756 
   1757 #ifdef ATW_BBPDEBUG
   1758 	atw_rf3000_print(sc);
   1759 #endif /* ATW_BBPDEBUG */
   1760 
   1761 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
   1762 	    "lna_gs_thresh %02x\n",
   1763 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
   1764 
   1765 	atw_bbp_io_enable(sc, 1);
   1766 
   1767 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1768 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
   1769 		goto out;
   1770 
   1771 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
   1772 		goto out;
   1773 
   1774 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
   1775 		goto out;
   1776 
   1777 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
   1778 
   1779 	if (rc != 0)
   1780 		goto out;
   1781 
   1782 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
   1783 
   1784 	if (rc != 0)
   1785 		goto out;
   1786 
   1787 #ifdef ATW_BBPDEBUG
   1788 	atw_rf3000_print(sc);
   1789 #endif /* ATW_BBPDEBUG */
   1790 
   1791 out:
   1792 	atw_bbp_io_enable(sc, 0);
   1793 
   1794 	/* set beacon, rts, atim transmit power */
   1795 	reg = ATW_READ(sc, ATW_PLCPHD);
   1796 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
   1797 	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
   1798 	    ATW_PLCPHD_SERVICE_MASK);
   1799 	ATW_WRITE(sc, ATW_PLCPHD, reg);
   1800 	DELAY(atw_plcphd_delay);
   1801 
   1802 	return rc;
   1803 }
   1804 
   1805 /* Write a register on the RF3000 baseband processor using the
   1806  * registers provided by the ADM8211 for this purpose.
   1807  *
   1808  * Return 0 on success.
   1809  */
   1810 static int
   1811 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
   1812 {
   1813 	u_int32_t reg;
   1814 	int i;
   1815 
   1816 	reg = sc->sc_bbpctl_wr |
   1817 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
   1818 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1819 
   1820 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
   1821 		ATW_WRITE(sc, ATW_BBPCTL, reg);
   1822 		DELAY(2 * atw_pseudo_milli);
   1823 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
   1824 			break;
   1825 	}
   1826 
   1827 	if (i < 0) {
   1828 		printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
   1829 		return ETIMEDOUT;
   1830 	}
   1831 	return 0;
   1832 }
   1833 
   1834 /* Read a register on the RF3000 baseband processor using the registers
   1835  * the ADM8211 provides for this purpose.
   1836  *
   1837  * The 7-bit register address is addr.  Record the 8-bit data in the register
   1838  * in *val.
   1839  *
   1840  * Return 0 on success.
   1841  *
   1842  * XXX This does not seem to work. The ADM8211 must require more or
   1843  * different magic to read the chip than to write it. Possibly some
   1844  * of the magic I have derived from a binary-only driver concerns
   1845  * the "chip address" (see the RF3000 manual).
   1846  */
   1847 #ifdef ATW_BBPDEBUG
   1848 static int
   1849 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
   1850 {
   1851 	u_int32_t reg;
   1852 	int i;
   1853 
   1854 	for (i = 1000; --i >= 0; ) {
   1855 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1856 			break;
   1857 		DELAY(100);
   1858 	}
   1859 
   1860 	if (i < 0) {
   1861 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
   1862 		    sc->sc_dev.dv_xname);
   1863 		return ETIMEDOUT;
   1864 	}
   1865 
   1866 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1867 
   1868 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1869 
   1870 	for (i = 1000; --i >= 0; ) {
   1871 		DELAY(100);
   1872 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
   1873 			break;
   1874 	}
   1875 
   1876 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
   1877 
   1878 	if (i < 0) {
   1879 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
   1880 		    sc->sc_dev.dv_xname, reg);
   1881 		return ETIMEDOUT;
   1882 	}
   1883 	if (val != NULL)
   1884 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
   1885 	return 0;
   1886 }
   1887 #endif /* ATW_BBPDEBUG */
   1888 
   1889 /* Write a register on the Si4126 RF/IF synthesizer using the registers
   1890  * provided by the ADM8211 for that purpose.
   1891  *
   1892  * val is 18 bits of data, and val is the 4-bit address of the register.
   1893  *
   1894  * Return 0 on success.
   1895  */
   1896 static void
   1897 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
   1898 {
   1899 	uint32_t bits, mask, reg;
   1900 	const int nbits = 22;
   1901 
   1902 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1903 	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
   1904 
   1905 	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
   1906 	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
   1907 
   1908 	reg = ATW_SYNRF_SELSYN;
   1909 	/* reference driver: reset Si4126 serial bus to initial
   1910 	 * conditions?
   1911 	 */
   1912 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
   1913 	ATW_WRITE(sc, ATW_SYNRF, reg);
   1914 
   1915 	for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
   1916 		if ((bits & mask) != 0)
   1917 			reg |= ATW_SYNRF_SYNDATA;
   1918 		else
   1919 			reg &= ~ATW_SYNRF_SYNDATA;
   1920 		ATW_WRITE(sc, ATW_SYNRF, reg);
   1921 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
   1922 		ATW_WRITE(sc, ATW_SYNRF, reg);
   1923 	}
   1924 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
   1925 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
   1926 }
   1927 
   1928 /* Read 18-bit data from the 4-bit address addr in Si4126
   1929  * RF synthesizer and write the data to *val. Return 0 on success.
   1930  *
   1931  * XXX This does not seem to work. The ADM8211 must require more or
   1932  * different magic to read the chip than to write it.
   1933  */
   1934 #ifdef ATW_SYNDEBUG
   1935 static int
   1936 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
   1937 {
   1938 	u_int32_t reg;
   1939 	int i;
   1940 
   1941 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1942 
   1943 	for (i = 1000; --i >= 0; ) {
   1944 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1945 			break;
   1946 		DELAY(100);
   1947 	}
   1948 
   1949 	if (i < 0) {
   1950 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
   1951 		    sc->sc_dev.dv_xname);
   1952 		return ETIMEDOUT;
   1953 	}
   1954 
   1955 	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
   1956 
   1957 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1958 
   1959 	for (i = 1000; --i >= 0; ) {
   1960 		DELAY(100);
   1961 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
   1962 			break;
   1963 	}
   1964 
   1965 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
   1966 
   1967 	if (i < 0) {
   1968 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
   1969 		    sc->sc_dev.dv_xname, reg);
   1970 		return ETIMEDOUT;
   1971 	}
   1972 	if (val != NULL)
   1973 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
   1974 		                       ATW_SYNCTL_DATA_MASK);
   1975 	return 0;
   1976 }
   1977 #endif /* ATW_SYNDEBUG */
   1978 
   1979 /* XXX is the endianness correct? test. */
   1980 #define	atw_calchash(addr) \
   1981 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
   1982 
   1983 /*
   1984  * atw_filter_setup:
   1985  *
   1986  *	Set the ADM8211's receive filter.
   1987  */
   1988 static void
   1989 atw_filter_setup(struct atw_softc *sc)
   1990 {
   1991 	struct ieee80211com *ic = &sc->sc_ic;
   1992 	struct ethercom *ec = &ic->ic_ec;
   1993 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1994 	int hash;
   1995 	u_int32_t hashes[2];
   1996 	struct ether_multi *enm;
   1997 	struct ether_multistep step;
   1998 
   1999 	/* According to comments in tlp_al981_filter_setup
   2000 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
   2001 	 * multicast filter to be set while it is running.  Hopefully
   2002 	 * the ADM8211 is not the same!
   2003 	 */
   2004 	if ((ifp->if_flags & IFF_RUNNING) != 0)
   2005 		atw_idle(sc, ATW_NAR_SR);
   2006 
   2007 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
   2008 
   2009 	/* XXX in scan mode, do not filter packets.  Maybe this is
   2010 	 * unnecessary.
   2011 	 */
   2012 	if (ic->ic_state == IEEE80211_S_SCAN ||
   2013 	    (ifp->if_flags & IFF_PROMISC) != 0) {
   2014 		sc->sc_opmode |= ATW_NAR_PR;
   2015 		goto allmulti;
   2016 	}
   2017 
   2018 	hashes[0] = hashes[1] = 0x0;
   2019 
   2020 	/*
   2021 	 * Program the 64-bit multicast hash filter.
   2022 	 */
   2023 	ETHER_FIRST_MULTI(step, ec, enm);
   2024 	while (enm != NULL) {
   2025 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   2026 		    ETHER_ADDR_LEN) != 0)
   2027 			goto allmulti;
   2028 
   2029 		hash = atw_calchash(enm->enm_addrlo);
   2030 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   2031 		ETHER_NEXT_MULTI(step, enm);
   2032 		sc->sc_opmode |= ATW_NAR_MM;
   2033 	}
   2034 	ifp->if_flags &= ~IFF_ALLMULTI;
   2035 	goto setit;
   2036 
   2037 allmulti:
   2038 	sc->sc_opmode |= ATW_NAR_MM;
   2039 	ifp->if_flags |= IFF_ALLMULTI;
   2040 	hashes[0] = hashes[1] = 0xffffffff;
   2041 
   2042 setit:
   2043 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
   2044 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
   2045 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2046 	DELAY(atw_nar_delay);
   2047 
   2048 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
   2049 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
   2050 }
   2051 
   2052 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
   2053  * a beacon's BSSID and SSID against the preferred BSSID and SSID
   2054  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
   2055  * no beacon with the preferred BSSID and SSID in the number of
   2056  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
   2057  */
   2058 static void
   2059 atw_write_bssid(struct atw_softc *sc)
   2060 {
   2061 	struct ieee80211com *ic = &sc->sc_ic;
   2062 	u_int8_t *bssid;
   2063 
   2064 	bssid = ic->ic_bss->ni_bssid;
   2065 
   2066 	ATW_WRITE(sc, ATW_BSSID0,
   2067 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
   2068 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
   2069 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
   2070 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
   2071 
   2072 	ATW_WRITE(sc, ATW_ABDA1,
   2073 	    (ATW_READ(sc, ATW_ABDA1) &
   2074 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
   2075 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
   2076 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
   2077 
   2078 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
   2079 	    ether_sprintf(sc->sc_bssid)));
   2080 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
   2081 
   2082 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
   2083 }
   2084 
   2085 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
   2086  * 16-bit word.
   2087  */
   2088 static void
   2089 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
   2090 {
   2091 	u_int i;
   2092 	u_int8_t *ptr;
   2093 
   2094 	memcpy(&sc->sc_sram[ofs], buf, buflen);
   2095 
   2096 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
   2097 
   2098 	KASSERT(buflen + ofs <= sc->sc_sramlen);
   2099 
   2100 	ptr = &sc->sc_sram[ofs];
   2101 
   2102 	for (i = 0; i < buflen; i += 2) {
   2103 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
   2104 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
   2105 		DELAY(atw_writewep_delay);
   2106 
   2107 		ATW_WRITE(sc, ATW_WESK,
   2108 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
   2109 		DELAY(atw_writewep_delay);
   2110 	}
   2111 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
   2112 
   2113 	if (sc->sc_if.if_flags & IFF_DEBUG) {
   2114 		int n_octets = 0;
   2115 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
   2116 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
   2117 		for (i = 0; i < buflen; i++) {
   2118 			printf(" %02x", ptr[i]);
   2119 			if (++n_octets % 24 == 0)
   2120 				printf("\n");
   2121 		}
   2122 		if (n_octets % 24 != 0)
   2123 			printf("\n");
   2124 	}
   2125 }
   2126 
   2127 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
   2128 static void
   2129 atw_write_wep(struct atw_softc *sc)
   2130 {
   2131 	struct ieee80211com *ic = &sc->sc_ic;
   2132 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
   2133 	u_int8_t buf[IEEE80211_WEP_NKID]
   2134 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
   2135 	u_int32_t reg;
   2136 	int i;
   2137 
   2138 	sc->sc_wepctl = 0;
   2139 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
   2140 
   2141 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0)
   2142 		return;
   2143 
   2144 	memset(&buf[0][0], 0, sizeof(buf));
   2145 
   2146 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   2147 		if (ic->ic_nw_keys[i].wk_len > 5) {
   2148 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
   2149 		} else if (ic->ic_nw_keys[i].wk_len != 0) {
   2150 			buf[i][1] = ATW_WEP_ENABLED;
   2151 		} else {
   2152 			buf[i][1] = 0;
   2153 			continue;
   2154 		}
   2155 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
   2156 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
   2157 		    ic->ic_nw_keys[i].wk_len - 1);
   2158 	}
   2159 
   2160 	reg = ATW_READ(sc, ATW_MACTEST);
   2161 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
   2162 	reg &= ~ATW_MACTEST_KEYID_MASK;
   2163 	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
   2164 	ATW_WRITE(sc, ATW_MACTEST, reg);
   2165 
   2166 	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE;
   2167 
   2168 	switch (sc->sc_rev) {
   2169 	case ATW_REVISION_AB:
   2170 	case ATW_REVISION_AF:
   2171 		/* Bypass WEP on Rx. */
   2172 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
   2173 		break;
   2174 	default:
   2175 		break;
   2176 	}
   2177 
   2178 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
   2179 	    sizeof(buf));
   2180 }
   2181 
   2182 static void
   2183 atw_change_ibss(struct atw_softc *sc)
   2184 {
   2185 	atw_predict_beacon(sc);
   2186 	atw_write_bssid(sc);
   2187 	atw_start_beacon(sc, 1);
   2188 }
   2189 
   2190 static void
   2191 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2192     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2193 {
   2194 	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
   2195 
   2196 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
   2197 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
   2198 		return;
   2199 
   2200 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
   2201 
   2202 	switch (subtype) {
   2203 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2204 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2205 		if (ic->ic_opmode != IEEE80211_M_IBSS ||
   2206 		    ic->ic_state != IEEE80211_S_RUN)
   2207 			break;
   2208 		if (ieee80211_ibss_merge(ic, ni, atw_get_tsft(sc)) == ENETRESET)
   2209 			atw_change_ibss(sc);
   2210 		break;
   2211 	default:
   2212 		break;
   2213 	}
   2214 	return;
   2215 }
   2216 
   2217 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
   2218  * In ad hoc mode, the SSID is written to the beacons sent by the
   2219  * ADM8211. In both ad hoc and infrastructure mode, beacons received
   2220  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
   2221  * indications.
   2222  */
   2223 static void
   2224 atw_write_ssid(struct atw_softc *sc)
   2225 {
   2226 	struct ieee80211com *ic = &sc->sc_ic;
   2227 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
   2228 	 * it only expects the element length, not its ID.
   2229 	 */
   2230 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
   2231 
   2232 	memset(buf, 0, sizeof(buf));
   2233 	buf[0] = ic->ic_bss->ni_esslen;
   2234 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
   2235 
   2236 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
   2237 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
   2238 }
   2239 
   2240 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
   2241  * In ad hoc mode, the supported rates are written to beacons sent by the
   2242  * ADM8211.
   2243  */
   2244 static void
   2245 atw_write_sup_rates(struct atw_softc *sc)
   2246 {
   2247 	struct ieee80211com *ic = &sc->sc_ic;
   2248 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
   2249 	 * supported rates
   2250 	 */
   2251 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
   2252 
   2253 	memset(buf, 0, sizeof(buf));
   2254 
   2255 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
   2256 
   2257 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
   2258 	    ic->ic_bss->ni_rates.rs_nrates);
   2259 
   2260 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
   2261 }
   2262 
   2263 /* Start/stop sending beacons. */
   2264 void
   2265 atw_start_beacon(struct atw_softc *sc, int start)
   2266 {
   2267 	struct ieee80211com *ic = &sc->sc_ic;
   2268 	uint16_t chan;
   2269 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
   2270 	size_t len;
   2271 
   2272 	if (ATW_IS_ENABLED(sc) == 0)
   2273 		return;
   2274 
   2275 	/* start beacons */
   2276 	len = sizeof(struct ieee80211_frame) +
   2277 	    8 /* timestamp */ + 2 /* beacon interval */ +
   2278 	    2 /* capability info */ +
   2279 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
   2280 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
   2281 	    3 /* DS parameters */ +
   2282 	    IEEE80211_CRC_LEN;
   2283 
   2284 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
   2285 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
   2286 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
   2287 
   2288 	ATW_WRITE(sc, ATW_BCNT, bcnt);
   2289 	ATW_WRITE(sc, ATW_CAP1, cap1);
   2290 
   2291 	if (!start)
   2292 		return;
   2293 
   2294 	/* TBD use ni_capinfo */
   2295 
   2296 	capinfo = 0;
   2297 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
   2298 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   2299 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
   2300 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   2301 
   2302 	switch (ic->ic_opmode) {
   2303 	case IEEE80211_M_IBSS:
   2304 		len += 4; /* IBSS parameters */
   2305 		capinfo |= IEEE80211_CAPINFO_IBSS;
   2306 		break;
   2307 	case IEEE80211_M_HOSTAP:
   2308 		/* XXX 6-byte minimum TIM */
   2309 		len += atw_beacon_len_adjust;
   2310 		capinfo |= IEEE80211_CAPINFO_ESS;
   2311 		break;
   2312 	default:
   2313 		return;
   2314 	}
   2315 
   2316 	/* set listen interval
   2317 	 * XXX do software units agree w/ hardware?
   2318 	 */
   2319 	bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2320 	    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
   2321 
   2322 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
   2323 
   2324 	bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
   2325 	cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
   2326 	cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
   2327 
   2328 	ATW_WRITE(sc, ATW_BCNT, bcnt);
   2329 	ATW_WRITE(sc, ATW_BPLI, bpli);
   2330 	ATW_WRITE(sc, ATW_CAP0, cap0);
   2331 	ATW_WRITE(sc, ATW_CAP1, cap1);
   2332 
   2333 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
   2334 	    sc->sc_dev.dv_xname, bcnt));
   2335 
   2336 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
   2337 	    sc->sc_dev.dv_xname, cap1));
   2338 }
   2339 
   2340 /* Return the 32 lsb of the last TSFT divisible by ival. */
   2341 static __inline uint32_t
   2342 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
   2343 {
   2344 	/* Following the reference driver's lead, I compute
   2345 	 *
   2346 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
   2347 	 *
   2348 	 * without using 64-bit arithmetic, using the following
   2349 	 * relationship:
   2350 	 *
   2351 	 *     (0x100000000 * H + L) % m
   2352 	 *   = ((0x100000000 % m) * H + L) % m
   2353 	 *   = (((0xffffffff + 1) % m) * H + L) % m
   2354 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
   2355 	 *   = ((0xffffffff % m + 1) * H + L) % m
   2356 	 */
   2357 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
   2358 }
   2359 
   2360 static uint64_t
   2361 atw_get_tsft(struct atw_softc *sc)
   2362 {
   2363 	int i;
   2364 	uint32_t tsfth, tsftl;
   2365 	for (i = 0; i < 2; i++) {
   2366 		tsfth = ATW_READ(sc, ATW_TSFTH);
   2367 		tsftl = ATW_READ(sc, ATW_TSFTL);
   2368 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
   2369 			break;
   2370 	}
   2371 	return ((uint64_t)tsfth << 32) | tsftl;
   2372 }
   2373 
   2374 /* If we've created an IBSS, write the TSF time in the ADM8211 to
   2375  * the ieee80211com.
   2376  *
   2377  * Predict the next target beacon transmission time (TBTT) and
   2378  * write it to the ADM8211.
   2379  */
   2380 static void
   2381 atw_predict_beacon(struct atw_softc *sc)
   2382 {
   2383 #define TBTTOFS 20 /* TU */
   2384 
   2385 	struct ieee80211com *ic = &sc->sc_ic;
   2386 	uint64_t tsft;
   2387 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
   2388 	union {
   2389 		uint64_t	word;
   2390 		uint8_t		tstamp[8];
   2391 	} u;
   2392 
   2393 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
   2394 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
   2395 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
   2396 		tsft = atw_get_tsft(sc);
   2397 		u.word = htole64(tsft);
   2398 		(void)memcpy(&ic->ic_bss->ni_tstamp[0], &u.tstamp[0],
   2399 		    sizeof(ic->ic_bss->ni_tstamp));
   2400 	} else {
   2401 		(void)memcpy(&u, &ic->ic_bss->ni_tstamp[0], sizeof(u));
   2402 		tsft = le64toh(u.word);
   2403 	}
   2404 
   2405 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
   2406 
   2407 	tsftl = tsft & 0xFFFFFFFF;
   2408 	tsfth = tsft >> 32;
   2409 
   2410 	/* We sent/received the last beacon `past' microseconds
   2411 	 * after the interval divided the TSF timer.
   2412 	 */
   2413 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
   2414 
   2415 	/* Skip ten beacons so that the TBTT cannot pass before
   2416 	 * we've programmed it.  Ten is an arbitrary number.
   2417 	 */
   2418 	tbtt = past_even + ival * 10;
   2419 
   2420 	ATW_WRITE(sc, ATW_TOFS1,
   2421 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
   2422 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
   2423 	    LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
   2424 	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
   2425 #undef TBTTOFS
   2426 }
   2427 
   2428 static void
   2429 atw_next_scan(void *arg)
   2430 {
   2431 	struct atw_softc *sc = arg;
   2432 	struct ieee80211com *ic = &sc->sc_ic;
   2433 	int s;
   2434 
   2435 	/* don't call atw_start w/o network interrupts blocked */
   2436 	s = splnet();
   2437 	if (ic->ic_state == IEEE80211_S_SCAN)
   2438 		ieee80211_next_scan(ic);
   2439 	splx(s);
   2440 }
   2441 
   2442 /* Synchronize the hardware state with the software state. */
   2443 static int
   2444 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   2445 {
   2446 	struct ifnet *ifp = &ic->ic_if;
   2447 	struct atw_softc *sc = ifp->if_softc;
   2448 	enum ieee80211_state ostate;
   2449 	int error;
   2450 
   2451 	ostate = ic->ic_state;
   2452 
   2453 	if (nstate == IEEE80211_S_INIT) {
   2454 		callout_stop(&sc->sc_scan_ch);
   2455 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
   2456 		atw_start_beacon(sc, 0);
   2457 		return (*sc->sc_newstate)(ic, nstate, arg);
   2458 	}
   2459 
   2460 	if ((error = atw_tune(sc)) != 0)
   2461 		return error;
   2462 
   2463 	switch (nstate) {
   2464 	case IEEE80211_S_ASSOC:
   2465 		break;
   2466 	case IEEE80211_S_INIT:
   2467 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
   2468 		break;
   2469 	case IEEE80211_S_SCAN:
   2470 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
   2471 		    atw_next_scan, sc);
   2472 
   2473 		break;
   2474 	case IEEE80211_S_RUN:
   2475 		if (ic->ic_opmode == IEEE80211_M_STA)
   2476 			break;
   2477 		/*FALLTHROUGH*/
   2478 	case IEEE80211_S_AUTH:
   2479 		atw_write_bssid(sc);
   2480 		atw_write_ssid(sc);
   2481 		atw_write_sup_rates(sc);
   2482 
   2483 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
   2484 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   2485 			break;
   2486 
   2487 		/* set listen interval
   2488 		 * XXX do software units agree w/ hardware?
   2489 		 */
   2490 		ATW_WRITE(sc, ATW_BPLI,
   2491 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2492 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
   2493 			   ATW_BPLI_LI_MASK));
   2494 
   2495 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
   2496 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
   2497 
   2498 		atw_predict_beacon(sc);
   2499 		break;
   2500 	}
   2501 
   2502 	if (nstate != IEEE80211_S_SCAN)
   2503 		callout_stop(&sc->sc_scan_ch);
   2504 
   2505 	if (nstate == IEEE80211_S_RUN &&
   2506 	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   2507 	     ic->ic_opmode == IEEE80211_M_IBSS))
   2508 		atw_start_beacon(sc, 1);
   2509 	else
   2510 		atw_start_beacon(sc, 0);
   2511 
   2512 	error = (*sc->sc_newstate)(ic, nstate, arg);
   2513 
   2514 	if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
   2515 		atw_write_bssid(sc);
   2516 
   2517 	return error;
   2518 }
   2519 
   2520 /*
   2521  * atw_add_rxbuf:
   2522  *
   2523  *	Add a receive buffer to the indicated descriptor.
   2524  */
   2525 int
   2526 atw_add_rxbuf(struct atw_softc *sc, int idx)
   2527 {
   2528 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2529 	struct mbuf *m;
   2530 	int error;
   2531 
   2532 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2533 	if (m == NULL)
   2534 		return (ENOBUFS);
   2535 
   2536 	MCLGET(m, M_DONTWAIT);
   2537 	if ((m->m_flags & M_EXT) == 0) {
   2538 		m_freem(m);
   2539 		return (ENOBUFS);
   2540 	}
   2541 
   2542 	if (rxs->rxs_mbuf != NULL)
   2543 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2544 
   2545 	rxs->rxs_mbuf = m;
   2546 
   2547 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2548 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2549 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2550 	if (error) {
   2551 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2552 		    sc->sc_dev.dv_xname, idx, error);
   2553 		panic("atw_add_rxbuf");	/* XXX */
   2554 	}
   2555 
   2556 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2557 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2558 
   2559 	ATW_INIT_RXDESC(sc, idx);
   2560 
   2561 	return (0);
   2562 }
   2563 
   2564 /*
   2565  * Release any queued transmit buffers.
   2566  */
   2567 void
   2568 atw_txdrain(struct atw_softc *sc)
   2569 {
   2570 	struct atw_txsoft *txs;
   2571 
   2572 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2573 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2574 		if (txs->txs_mbuf != NULL) {
   2575 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2576 			m_freem(txs->txs_mbuf);
   2577 			txs->txs_mbuf = NULL;
   2578 		}
   2579 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2580 	}
   2581 	sc->sc_tx_timer = 0;
   2582 }
   2583 
   2584 /*
   2585  * atw_stop:		[ ifnet interface function ]
   2586  *
   2587  *	Stop transmission on the interface.
   2588  */
   2589 void
   2590 atw_stop(struct ifnet *ifp, int disable)
   2591 {
   2592 	struct atw_softc *sc = ifp->if_softc;
   2593 	struct ieee80211com *ic = &sc->sc_ic;
   2594 
   2595 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   2596 
   2597 	/* Disable interrupts. */
   2598 	ATW_WRITE(sc, ATW_IER, 0);
   2599 
   2600 	/* Stop the transmit and receive processes. */
   2601 	sc->sc_opmode = 0;
   2602 	ATW_WRITE(sc, ATW_NAR, 0);
   2603 	DELAY(atw_nar_delay);
   2604 	ATW_WRITE(sc, ATW_TDBD, 0);
   2605 	ATW_WRITE(sc, ATW_TDBP, 0);
   2606 	ATW_WRITE(sc, ATW_RDB, 0);
   2607 
   2608 	atw_txdrain(sc);
   2609 
   2610 	if (disable) {
   2611 		atw_rxdrain(sc);
   2612 		atw_disable(sc);
   2613 	}
   2614 
   2615 	/*
   2616 	 * Mark the interface down and cancel the watchdog timer.
   2617 	 */
   2618 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2619 	ifp->if_timer = 0;
   2620 
   2621 	if (!disable)
   2622 		atw_reset(sc);
   2623 }
   2624 
   2625 /*
   2626  * atw_rxdrain:
   2627  *
   2628  *	Drain the receive queue.
   2629  */
   2630 void
   2631 atw_rxdrain(struct atw_softc *sc)
   2632 {
   2633 	struct atw_rxsoft *rxs;
   2634 	int i;
   2635 
   2636 	for (i = 0; i < ATW_NRXDESC; i++) {
   2637 		rxs = &sc->sc_rxsoft[i];
   2638 		if (rxs->rxs_mbuf == NULL)
   2639 			continue;
   2640 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2641 		m_freem(rxs->rxs_mbuf);
   2642 		rxs->rxs_mbuf = NULL;
   2643 	}
   2644 }
   2645 
   2646 /*
   2647  * atw_detach:
   2648  *
   2649  *	Detach an ADM8211 interface.
   2650  */
   2651 int
   2652 atw_detach(struct atw_softc *sc)
   2653 {
   2654 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2655 	struct atw_rxsoft *rxs;
   2656 	struct atw_txsoft *txs;
   2657 	int i;
   2658 
   2659 	/*
   2660 	 * Succeed now if there isn't any work to do.
   2661 	 */
   2662 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
   2663 		return (0);
   2664 
   2665 	callout_stop(&sc->sc_scan_ch);
   2666 
   2667 	ieee80211_ifdetach(ifp);
   2668 	if_detach(ifp);
   2669 
   2670 	for (i = 0; i < ATW_NRXDESC; i++) {
   2671 		rxs = &sc->sc_rxsoft[i];
   2672 		if (rxs->rxs_mbuf != NULL) {
   2673 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2674 			m_freem(rxs->rxs_mbuf);
   2675 			rxs->rxs_mbuf = NULL;
   2676 		}
   2677 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
   2678 	}
   2679 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   2680 		txs = &sc->sc_txsoft[i];
   2681 		if (txs->txs_mbuf != NULL) {
   2682 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2683 			m_freem(txs->txs_mbuf);
   2684 			txs->txs_mbuf = NULL;
   2685 		}
   2686 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
   2687 	}
   2688 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2689 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2690 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2691 	    sizeof(struct atw_control_data));
   2692 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2693 
   2694 	shutdownhook_disestablish(sc->sc_sdhook);
   2695 	powerhook_disestablish(sc->sc_powerhook);
   2696 
   2697 	if (sc->sc_srom)
   2698 		free(sc->sc_srom, M_DEVBUF);
   2699 
   2700 	return (0);
   2701 }
   2702 
   2703 /* atw_shutdown: make sure the interface is stopped at reboot time. */
   2704 void
   2705 atw_shutdown(void *arg)
   2706 {
   2707 	struct atw_softc *sc = arg;
   2708 
   2709 	atw_stop(&sc->sc_ic.ic_if, 1);
   2710 }
   2711 
   2712 int
   2713 atw_intr(void *arg)
   2714 {
   2715 	struct atw_softc *sc = arg;
   2716 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2717 	u_int32_t status, rxstatus, txstatus, linkstatus;
   2718 	int handled = 0, txthresh;
   2719 
   2720 #ifdef DEBUG
   2721 	if (ATW_IS_ENABLED(sc) == 0)
   2722 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
   2723 #endif
   2724 
   2725 	/*
   2726 	 * If the interface isn't running, the interrupt couldn't
   2727 	 * possibly have come from us.
   2728 	 */
   2729 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   2730 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   2731 		return (0);
   2732 
   2733 	for (;;) {
   2734 		status = ATW_READ(sc, ATW_STSR);
   2735 
   2736 		if (status)
   2737 			ATW_WRITE(sc, ATW_STSR, status);
   2738 
   2739 #ifdef ATW_DEBUG
   2740 #define PRINTINTR(flag) do { \
   2741 	if ((status & flag) != 0) { \
   2742 		printf("%s" #flag, delim); \
   2743 		delim = ","; \
   2744 	} \
   2745 } while (0)
   2746 
   2747 		if (atw_debug > 1 && status) {
   2748 			const char *delim = "<";
   2749 
   2750 			printf("%s: reg[STSR] = %x",
   2751 			    sc->sc_dev.dv_xname, status);
   2752 
   2753 			PRINTINTR(ATW_INTR_FBE);
   2754 			PRINTINTR(ATW_INTR_LINKOFF);
   2755 			PRINTINTR(ATW_INTR_LINKON);
   2756 			PRINTINTR(ATW_INTR_RCI);
   2757 			PRINTINTR(ATW_INTR_RDU);
   2758 			PRINTINTR(ATW_INTR_REIS);
   2759 			PRINTINTR(ATW_INTR_RPS);
   2760 			PRINTINTR(ATW_INTR_TCI);
   2761 			PRINTINTR(ATW_INTR_TDU);
   2762 			PRINTINTR(ATW_INTR_TLT);
   2763 			PRINTINTR(ATW_INTR_TPS);
   2764 			PRINTINTR(ATW_INTR_TRT);
   2765 			PRINTINTR(ATW_INTR_TUF);
   2766 			PRINTINTR(ATW_INTR_BCNTC);
   2767 			PRINTINTR(ATW_INTR_ATIME);
   2768 			PRINTINTR(ATW_INTR_TBTT);
   2769 			PRINTINTR(ATW_INTR_TSCZ);
   2770 			PRINTINTR(ATW_INTR_TSFTF);
   2771 			printf(">\n");
   2772 		}
   2773 #undef PRINTINTR
   2774 #endif /* ATW_DEBUG */
   2775 
   2776 		if ((status & sc->sc_inten) == 0)
   2777 			break;
   2778 
   2779 		handled = 1;
   2780 
   2781 		rxstatus = status & sc->sc_rxint_mask;
   2782 		txstatus = status & sc->sc_txint_mask;
   2783 		linkstatus = status & sc->sc_linkint_mask;
   2784 
   2785 		if (linkstatus) {
   2786 			atw_linkintr(sc, linkstatus);
   2787 		}
   2788 
   2789 		if (rxstatus) {
   2790 			/* Grab any new packets. */
   2791 			atw_rxintr(sc);
   2792 
   2793 			if (rxstatus & ATW_INTR_RDU) {
   2794 				printf("%s: receive ring overrun\n",
   2795 				    sc->sc_dev.dv_xname);
   2796 				/* Get the receive process going again. */
   2797 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2798 				break;
   2799 			}
   2800 		}
   2801 
   2802 		if (txstatus) {
   2803 			/* Sweep up transmit descriptors. */
   2804 			atw_txintr(sc);
   2805 
   2806 			if (txstatus & ATW_INTR_TLT)
   2807 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
   2808 				    sc->sc_dev.dv_xname));
   2809 
   2810 			if (txstatus & ATW_INTR_TRT)
   2811 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
   2812 				    sc->sc_dev.dv_xname));
   2813 
   2814 			/* If Tx under-run, increase our transmit threshold
   2815 			 * if another is available.
   2816 			 */
   2817 			txthresh = sc->sc_txthresh + 1;
   2818 			if ((txstatus & ATW_INTR_TUF) &&
   2819 			    sc->sc_txth[txthresh].txth_name != NULL) {
   2820 				/* Idle the transmit process. */
   2821 				atw_idle(sc, ATW_NAR_ST);
   2822 
   2823 				sc->sc_txthresh = txthresh;
   2824 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
   2825 				sc->sc_opmode |=
   2826 				    sc->sc_txth[txthresh].txth_opmode;
   2827 				printf("%s: transmit underrun; new "
   2828 				    "threshold: %s\n", sc->sc_dev.dv_xname,
   2829 				    sc->sc_txth[txthresh].txth_name);
   2830 
   2831 				/* Set the new threshold and restart
   2832 				 * the transmit process.
   2833 				 */
   2834 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2835 				DELAY(atw_nar_delay);
   2836 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2837 				/* XXX Log every Nth underrun from
   2838 				 * XXX now on?
   2839 				 */
   2840 			}
   2841 		}
   2842 
   2843 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
   2844 			if (status & ATW_INTR_TPS)
   2845 				printf("%s: transmit process stopped\n",
   2846 				    sc->sc_dev.dv_xname);
   2847 			if (status & ATW_INTR_RPS)
   2848 				printf("%s: receive process stopped\n",
   2849 				    sc->sc_dev.dv_xname);
   2850 			(void)atw_init(ifp);
   2851 			break;
   2852 		}
   2853 
   2854 		if (status & ATW_INTR_FBE) {
   2855 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
   2856 			(void)atw_init(ifp);
   2857 			break;
   2858 		}
   2859 
   2860 		/*
   2861 		 * Not handled:
   2862 		 *
   2863 		 *	Transmit buffer unavailable -- normal
   2864 		 *	condition, nothing to do, really.
   2865 		 *
   2866 		 *	Early receive interrupt -- not available on
   2867 		 *	all chips, we just use RI.  We also only
   2868 		 *	use single-segment receive DMA, so this
   2869 		 *	is mostly useless.
   2870 		 *
   2871 		 *      TBD others
   2872 		 */
   2873 	}
   2874 
   2875 	/* Try to get more packets going. */
   2876 	atw_start(ifp);
   2877 
   2878 	return (handled);
   2879 }
   2880 
   2881 /*
   2882  * atw_idle:
   2883  *
   2884  *	Cause the transmit and/or receive processes to go idle.
   2885  *
   2886  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
   2887  *	process in STSR if I clear SR or ST after the process has already
   2888  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
   2889  *      do not seem to be too reliable. Perhaps I have the sense of the
   2890  *	Rx bits switched with the Tx bits?
   2891  */
   2892 void
   2893 atw_idle(struct atw_softc *sc, u_int32_t bits)
   2894 {
   2895 	u_int32_t ackmask = 0, opmode, stsr, test0;
   2896 	int i, s;
   2897 
   2898 	s = splnet();
   2899 
   2900 	opmode = sc->sc_opmode & ~bits;
   2901 
   2902 	if (bits & ATW_NAR_SR)
   2903 		ackmask |= ATW_INTR_RPS;
   2904 
   2905 	if (bits & ATW_NAR_ST) {
   2906 		ackmask |= ATW_INTR_TPS;
   2907 		/* set ATW_NAR_HF to flush TX FIFO. */
   2908 		opmode |= ATW_NAR_HF;
   2909 	}
   2910 
   2911 	ATW_WRITE(sc, ATW_NAR, opmode);
   2912 	DELAY(atw_nar_delay);
   2913 
   2914 	for (i = 0; i < 1000; i++) {
   2915 		stsr = ATW_READ(sc, ATW_STSR);
   2916 		if ((stsr & ackmask) == ackmask)
   2917 			break;
   2918 		DELAY(10);
   2919 	}
   2920 
   2921 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
   2922 
   2923 	if ((stsr & ackmask) == ackmask)
   2924 		goto out;
   2925 
   2926 	test0 = ATW_READ(sc, ATW_TEST0);
   2927 
   2928 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
   2929 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
   2930 		printf("%s: transmit process not idle [%s]\n",
   2931 		    sc->sc_dev.dv_xname,
   2932 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
   2933 		printf("%s: bits %08x test0 %08x stsr %08x\n",
   2934 		    sc->sc_dev.dv_xname, bits, test0, stsr);
   2935 	}
   2936 
   2937 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
   2938 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
   2939 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
   2940 		    sc->sc_dev.dv_xname,
   2941 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
   2942 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
   2943 		    sc->sc_dev.dv_xname, bits, test0, stsr));
   2944 	}
   2945 out:
   2946 	if ((bits & ATW_NAR_ST) != 0)
   2947 		atw_txdrain(sc);
   2948 	splx(s);
   2949 	return;
   2950 }
   2951 
   2952 /*
   2953  * atw_linkintr:
   2954  *
   2955  *	Helper; handle link-status interrupts.
   2956  */
   2957 void
   2958 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
   2959 {
   2960 	struct ieee80211com *ic = &sc->sc_ic;
   2961 
   2962 	if (ic->ic_state != IEEE80211_S_RUN)
   2963 		return;
   2964 
   2965 	if (linkstatus & ATW_INTR_LINKON) {
   2966 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
   2967 		sc->sc_rescan_timer = 0;
   2968 	} else if (linkstatus & ATW_INTR_LINKOFF) {
   2969 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
   2970 		if (ic->ic_opmode != IEEE80211_M_STA)
   2971 			return;
   2972 		sc->sc_rescan_timer = 3;
   2973 		ic->ic_if.if_timer = 1;
   2974 	}
   2975 }
   2976 
   2977 static __inline int
   2978 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame *wh)
   2979 {
   2980 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
   2981 		return 0;
   2982 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
   2983 		return 0;
   2984 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
   2985 }
   2986 
   2987 /*
   2988  * atw_rxintr:
   2989  *
   2990  *	Helper; handle receive interrupts.
   2991  */
   2992 void
   2993 atw_rxintr(struct atw_softc *sc)
   2994 {
   2995 	static int rate_tbl[] = {2, 4, 11, 22, 44};
   2996 	struct ieee80211com *ic = &sc->sc_ic;
   2997 	struct ieee80211_node *ni;
   2998 	struct ieee80211_frame *wh;
   2999 	struct ifnet *ifp = &ic->ic_if;
   3000 	struct atw_rxsoft *rxs;
   3001 	struct mbuf *m;
   3002 	u_int32_t rxstat;
   3003 	int i, len, rate, rate0;
   3004 	u_int32_t rssi, rssi0;
   3005 
   3006 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
   3007 		rxs = &sc->sc_rxsoft[i];
   3008 
   3009 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3010 
   3011 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
   3012 		rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
   3013 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
   3014 
   3015 		if (rxstat & ATW_RXSTAT_OWN)
   3016 			break; /* We have processed all receive buffers. */
   3017 
   3018 		DPRINTF3(sc,
   3019 		    ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
   3020 		    sc->sc_dev.dv_xname,
   3021 		    rxstat, rssi0,
   3022 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
   3023 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
   3024 
   3025 		/*
   3026 		 * Make sure the packet fits in one buffer.  This should
   3027 		 * always be the case.
   3028 		 */
   3029 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
   3030 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
   3031 			printf("%s: incoming packet spilled, resetting\n",
   3032 			    sc->sc_dev.dv_xname);
   3033 			(void)atw_init(ifp);
   3034 			return;
   3035 		}
   3036 
   3037 		/*
   3038 		 * If an error occurred, update stats, clear the status
   3039 		 * word, and leave the packet buffer in place.  It will
   3040 		 * simply be reused the next time the ring comes around.
   3041 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
   3042 		 * error.
   3043 		 */
   3044 
   3045 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
   3046 		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
   3047 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
   3048 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
   3049 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
   3050 				ATW_RXSTAT_ICVE)) != 0)) {
   3051 #define	PRINTERR(bit, str)						\
   3052 			if (rxstat & (bit))				\
   3053 				printf("%s: receive error: %s\n",	\
   3054 				    sc->sc_dev.dv_xname, str)
   3055 			ifp->if_ierrors++;
   3056 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
   3057 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
   3058 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
   3059 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
   3060 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
   3061 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
   3062 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
   3063 #undef PRINTERR
   3064 			ATW_INIT_RXDESC(sc, i);
   3065 			continue;
   3066 		}
   3067 
   3068 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3069 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3070 
   3071 		/*
   3072 		 * No errors; receive the packet.  Note the ADM8211
   3073 		 * includes the CRC in promiscuous mode.
   3074 		 */
   3075 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
   3076 
   3077 		/*
   3078 		 * Allocate a new mbuf cluster.  If that fails, we are
   3079 		 * out of memory, and must drop the packet and recycle
   3080 		 * the buffer that's already attached to this descriptor.
   3081 		 */
   3082 		m = rxs->rxs_mbuf;
   3083 		if (atw_add_rxbuf(sc, i) != 0) {
   3084 			ifp->if_ierrors++;
   3085 			ATW_INIT_RXDESC(sc, i);
   3086 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3087 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3088 			continue;
   3089 		}
   3090 
   3091 		ifp->if_ipackets++;
   3092 		if (sc->sc_opmode & ATW_NAR_PR)
   3093 			m->m_flags |= M_HASFCS;
   3094 		m->m_pkthdr.rcvif = ifp;
   3095 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
   3096 
   3097 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
   3098 			rate = 0;
   3099 		else
   3100 			rate = rate_tbl[rate0];
   3101 
   3102 		/* The RSSI comes straight from a register in the
   3103 		 * baseband processor.  I know that for the RF3000,
   3104 		 * the RSSI register also contains the antenna-selection
   3105 		 * bits.  Mask those off.
   3106 		 *
   3107 		 * TBD Treat other basebands.
   3108 		 */
   3109 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
   3110 			rssi = rssi0 & RF3000_RSSI_MASK;
   3111 		else
   3112 			rssi = rssi0;
   3113 
   3114  #if NBPFILTER > 0
   3115 		/* Pass this up to any BPF listeners. */
   3116 		if (sc->sc_radiobpf != NULL) {
   3117 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
   3118 
   3119 			tap->ar_rate = rate;
   3120 			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3121 			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3122 
   3123 			/* TBD verify units are dB */
   3124 			tap->ar_antsignal = (int)rssi;
   3125 			/* TBD tap->ar_flags */
   3126 
   3127 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3128 			    tap->ar_ihdr.it_len, m);
   3129  		}
   3130  #endif /* NPBFILTER > 0 */
   3131 
   3132 		wh = mtod(m, struct ieee80211_frame *);
   3133 		ni = ieee80211_find_rxnode(ic, wh);
   3134 		if (atw_hw_decrypted(sc, wh))
   3135 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
   3136 		ieee80211_input(ifp, m, ni, (int)rssi, 0);
   3137 		/*
   3138 		 * The frame may have caused the node to be marked for
   3139 		 * reclamation (e.g. in response to a DEAUTH message)
   3140 		 * so use release_node here instead of unref_node.
   3141 		 */
   3142 		ieee80211_release_node(ic, ni);
   3143 	}
   3144 
   3145 	/* Update the receive pointer. */
   3146 	sc->sc_rxptr = i;
   3147 }
   3148 
   3149 /*
   3150  * atw_txintr:
   3151  *
   3152  *	Helper; handle transmit interrupts.
   3153  */
   3154 void
   3155 atw_txintr(struct atw_softc *sc)
   3156 {
   3157 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
   3158     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
   3159 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
   3160     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
   3161 
   3162 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
   3163 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3164 	struct atw_txsoft *txs;
   3165 	u_int32_t txstat;
   3166 
   3167 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
   3168 	    sc->sc_dev.dv_xname, sc->sc_flags));
   3169 
   3170 	ifp->if_flags &= ~IFF_OACTIVE;
   3171 
   3172 	/*
   3173 	 * Go through our Tx list and free mbufs for those
   3174 	 * frames that have been transmitted.
   3175 	 */
   3176 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   3177 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   3178 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3179 
   3180 #ifdef ATW_DEBUG
   3181 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3182 			int i;
   3183 			printf("    txsoft %p transmit chain:\n", txs);
   3184 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
   3185 			    txs->txs_ndescs - 1,
   3186 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3187 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
   3188 				printf("     descriptor %d:\n", i);
   3189 				printf("       at_status:   0x%08x\n",
   3190 				    le32toh(sc->sc_txdescs[i].at_stat));
   3191 				printf("       at_flags:      0x%08x\n",
   3192 				    le32toh(sc->sc_txdescs[i].at_flags));
   3193 				printf("       at_buf1: 0x%08x\n",
   3194 				    le32toh(sc->sc_txdescs[i].at_buf1));
   3195 				printf("       at_buf2: 0x%08x\n",
   3196 				    le32toh(sc->sc_txdescs[i].at_buf2));
   3197 				if (i == txs->txs_lastdesc)
   3198 					break;
   3199 			}
   3200 		}
   3201 #endif
   3202 
   3203 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
   3204 		if (txstat & ATW_TXSTAT_OWN)
   3205 			break;
   3206 
   3207 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   3208 
   3209 		sc->sc_txfree += txs->txs_ndescs;
   3210 
   3211 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   3212 		    0, txs->txs_dmamap->dm_mapsize,
   3213 		    BUS_DMASYNC_POSTWRITE);
   3214 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3215 		m_freem(txs->txs_mbuf);
   3216 		txs->txs_mbuf = NULL;
   3217 
   3218 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   3219 
   3220 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   3221 		    (txstat & TXSTAT_ERRMASK) != 0) {
   3222 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
   3223 			    txstat_buf, sizeof(txstat_buf));
   3224 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
   3225 			    txstat_buf,
   3226 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
   3227 		}
   3228 
   3229 		/*
   3230 		 * Check for errors and collisions.
   3231 		 */
   3232 		if (txstat & ATW_TXSTAT_TUF)
   3233 			sc->sc_stats.ts_tx_tuf++;
   3234 		if (txstat & ATW_TXSTAT_TLT)
   3235 			sc->sc_stats.ts_tx_tlt++;
   3236 		if (txstat & ATW_TXSTAT_TRT)
   3237 			sc->sc_stats.ts_tx_trt++;
   3238 		if (txstat & ATW_TXSTAT_TRO)
   3239 			sc->sc_stats.ts_tx_tro++;
   3240 		if (txstat & ATW_TXSTAT_SOFBR) {
   3241 			sc->sc_stats.ts_tx_sofbr++;
   3242 		}
   3243 
   3244 		if ((txstat & ATW_TXSTAT_ES) == 0)
   3245 			ifp->if_collisions +=
   3246 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
   3247 		else
   3248 			ifp->if_oerrors++;
   3249 
   3250 		ifp->if_opackets++;
   3251 	}
   3252 
   3253 	/*
   3254 	 * If there are no more pending transmissions, cancel the watchdog
   3255 	 * timer.
   3256 	 */
   3257 	if (txs == NULL)
   3258 		sc->sc_tx_timer = 0;
   3259 #undef TXSTAT_ERRMASK
   3260 #undef TXSTAT_FMT
   3261 }
   3262 
   3263 /*
   3264  * atw_watchdog:	[ifnet interface function]
   3265  *
   3266  *	Watchdog timer handler.
   3267  */
   3268 void
   3269 atw_watchdog(struct ifnet *ifp)
   3270 {
   3271 	struct atw_softc *sc = ifp->if_softc;
   3272 	struct ieee80211com *ic = &sc->sc_ic;
   3273 
   3274 	ifp->if_timer = 0;
   3275 	if (ATW_IS_ENABLED(sc) == 0)
   3276 		return;
   3277 
   3278 	if (sc->sc_rescan_timer) {
   3279 		if (--sc->sc_rescan_timer == 0)
   3280 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3281 	}
   3282 	if (sc->sc_tx_timer) {
   3283 		if (--sc->sc_tx_timer == 0 &&
   3284 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
   3285 			printf("%s: transmit timeout\n", ifp->if_xname);
   3286 			ifp->if_oerrors++;
   3287 			(void)atw_init(ifp);
   3288 			atw_start(ifp);
   3289 		}
   3290 	}
   3291 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
   3292 		ifp->if_timer = 1;
   3293 	ieee80211_watchdog(ifp);
   3294 }
   3295 
   3296 /* Compute the 802.11 Duration field and the PLCP Length fields for
   3297  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
   3298  * Write the fields to the ADM8211 Tx header, frm.
   3299  *
   3300  * TBD use the fragmentation threshold to find the right duration for
   3301  * the first & last fragments.
   3302  *
   3303  * TBD make certain of the duration fields applied by the ADM8211 to each
   3304  * fragment. I think that the ADM8211 knows how to subtract the CTS
   3305  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
   3306  * I also think that the ADM8211 does *some* arithmetic for us, because
   3307  * otherwise I think we would have to set a first duration for CTS/first
   3308  * fragment, a second duration for fragments between the first and the
   3309  * last, and a third duration for the last fragment.
   3310  *
   3311  * TBD make certain that duration fields reflect addition of FCS/WEP
   3312  * and correct duration arithmetic as necessary.
   3313  */
   3314 static void
   3315 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
   3316     int len)
   3317 {
   3318 	int remainder;
   3319 
   3320 	/* deal also with encrypted fragments */
   3321 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
   3322 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
   3323 		    sc->sc_dev.dv_xname));
   3324 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
   3325 		       IEEE80211_WEP_CRCLEN;
   3326 	}
   3327 
   3328 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
   3329 	 * duration (XXX added by MAC?).
   3330 	 */
   3331 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
   3332 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
   3333 
   3334 	if (rate <= 4)
   3335 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
   3336 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3337 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3338 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3339 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
   3340 	else
   3341 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
   3342 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3343 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3344 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3345 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
   3346 
   3347 	/* lengthen duration if long preamble */
   3348 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
   3349 		frm->atw_head_dur +=
   3350 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
   3351 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
   3352 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
   3353 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
   3354 
   3355 	if (remainder != 0)
   3356 		frm->atw_head_dur++;
   3357 
   3358 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
   3359 	    (rate == 2 || rate == 4)) {
   3360 		/* derived from Linux: how could this be right? */
   3361 		frm->atw_head_plcplen = frm->atw_head_dur;
   3362 	} else {
   3363 		frm->atw_head_plcplen = (16 * len) / rate;
   3364 		remainder = (80 * len) % (rate * 5);
   3365 
   3366 		if (remainder != 0) {
   3367 			frm->atw_head_plcplen++;
   3368 
   3369 			/* XXX magic */
   3370 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
   3371 			    rate == 22 && remainder <= 30)
   3372 				frm->atw_head_plcplen |= 0x8000;
   3373 		}
   3374 	}
   3375 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
   3376 	    htole16(frm->atw_head_plcplen);
   3377 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
   3378 }
   3379 
   3380 #ifdef ATW_DEBUG
   3381 static void
   3382 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
   3383 {
   3384 	struct atw_softc *sc = ifp->if_softc;
   3385 	struct mbuf *m;
   3386 	int i, noctets = 0;
   3387 
   3388 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
   3389 	    m0->m_pkthdr.len);
   3390 
   3391 	for (m = m0; m; m = m->m_next) {
   3392 		if (m->m_len == 0)
   3393 			continue;
   3394 		for (i = 0; i < m->m_len; i++) {
   3395 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
   3396 			if (++noctets % 24 == 0)
   3397 				printf("\n");
   3398 		}
   3399 	}
   3400 	printf("%s%s: %d bytes emitted\n",
   3401 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
   3402 }
   3403 #endif /* ATW_DEBUG */
   3404 
   3405 /*
   3406  * atw_start:		[ifnet interface function]
   3407  *
   3408  *	Start packet transmission on the interface.
   3409  */
   3410 void
   3411 atw_start(struct ifnet *ifp)
   3412 {
   3413 	struct atw_softc *sc = ifp->if_softc;
   3414 	struct ieee80211com *ic = &sc->sc_ic;
   3415 	struct ieee80211_node *ni;
   3416 	struct ieee80211_frame *wh;
   3417 	struct atw_frame *hh;
   3418 	struct mbuf *m0, *m;
   3419 	struct atw_txsoft *txs, *last_txs;
   3420 	struct atw_txdesc *txd;
   3421 	int do_encrypt, rate;
   3422 	bus_dmamap_t dmamap;
   3423 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
   3424 
   3425 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
   3426 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
   3427 
   3428 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3429 		return;
   3430 
   3431 	/*
   3432 	 * Remember the previous number of free descriptors and
   3433 	 * the first descriptor we'll use.
   3434 	 */
   3435 	ofree = sc->sc_txfree;
   3436 	firsttx = sc->sc_txnext;
   3437 
   3438 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
   3439 	    sc->sc_dev.dv_xname, ofree, firsttx));
   3440 
   3441 	/*
   3442 	 * Loop through the send queue, setting up transmit descriptors
   3443 	 * until we drain the queue, or use up all available transmit
   3444 	 * descriptors.
   3445 	 */
   3446 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   3447 	       sc->sc_txfree != 0) {
   3448 
   3449 		/*
   3450 		 * Grab a packet off the management queue, if it
   3451 		 * is not empty. Otherwise, from the data queue.
   3452 		 */
   3453 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   3454 		if (m0 != NULL) {
   3455 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   3456 			m0->m_pkthdr.rcvif = NULL;
   3457 		} else {
   3458 			/* send no data packets until we are associated */
   3459 			if (ic->ic_state != IEEE80211_S_RUN)
   3460 				break;
   3461 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   3462 			if (m0 == NULL)
   3463 				break;
   3464 #if NBPFILTER > 0
   3465 			if (ifp->if_bpf != NULL)
   3466 				bpf_mtap(ifp->if_bpf, m0);
   3467 #endif /* NBPFILTER > 0 */
   3468 			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
   3469 				ifp->if_oerrors++;
   3470 				break;
   3471 			}
   3472 		}
   3473 
   3474 		rate = MAX(ieee80211_get_rate(ic), 2);
   3475 
   3476 #if NBPFILTER > 0
   3477 		/*
   3478 		 * Pass the packet to any BPF listeners.
   3479 		 */
   3480 		if (ic->ic_rawbpf != NULL)
   3481 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
   3482 
   3483 		if (sc->sc_radiobpf != NULL) {
   3484 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
   3485 
   3486 			tap->at_rate = rate;
   3487 			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3488 			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3489 
   3490 			/* TBD tap->at_flags */
   3491 
   3492 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3493 			    tap->at_ihdr.it_len, m0);
   3494 		}
   3495 #endif /* NBPFILTER > 0 */
   3496 
   3497 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
   3498 
   3499 		if (ni != NULL)
   3500 			ieee80211_release_node(ic, ni);
   3501 
   3502 		if (m0 == NULL) {
   3503 			ifp->if_oerrors++;
   3504 			break;
   3505 		}
   3506 
   3507 		/* just to make sure. */
   3508 		m0 = m_pullup(m0, sizeof(struct atw_frame));
   3509 
   3510 		if (m0 == NULL) {
   3511 			ifp->if_oerrors++;
   3512 			break;
   3513 		}
   3514 
   3515 		hh = mtod(m0, struct atw_frame *);
   3516 		wh = &hh->atw_ihdr;
   3517 
   3518 		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
   3519 
   3520 		/* Copy everything we need from the 802.11 header:
   3521 		 * Frame Control; address 1, address 3, or addresses
   3522 		 * 3 and 4. NIC fills in BSSID, SA.
   3523 		 */
   3524 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
   3525 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
   3526 				panic("%s: illegal WDS frame",
   3527 				    sc->sc_dev.dv_xname);
   3528 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
   3529 		} else
   3530 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
   3531 
   3532 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
   3533 
   3534 		/* initialize remaining Tx parameters */
   3535 		memset(&hh->u, 0, sizeof(hh->u));
   3536 
   3537 		hh->atw_rate = rate * 5;
   3538 		/* XXX this could be incorrect if M_FCS. _encap should
   3539 		 * probably strip FCS just in case it sticks around in
   3540 		 * bridged packets.
   3541 		 */
   3542 		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
   3543 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
   3544 		    sizeof(struct atw_frame));
   3545 
   3546 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3547 		hh->atw_rtylmt = 3;
   3548 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
   3549 		if (do_encrypt) {
   3550 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
   3551 			hh->atw_keyid = ic->ic_wep_txkey;
   3552 		}
   3553 
   3554 		/* TBD 4-addr frames */
   3555 		atw_frame_setdurs(sc, hh, rate,
   3556 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
   3557 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
   3558 
   3559 		/* never fragment multicast frames */
   3560 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
   3561 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3562 		} else if (sc->sc_flags & ATWF_RTSCTS) {
   3563 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
   3564 		}
   3565 
   3566 #ifdef ATW_DEBUG
   3567 		hh->atw_fragnum = 0;
   3568 
   3569 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3570 			printf("%s: dst = %s, rate = 0x%02x, "
   3571 			    "service = 0x%02x, paylen = 0x%04x\n",
   3572 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
   3573 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
   3574 
   3575 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
   3576 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
   3577 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
   3578 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
   3579 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
   3580 			    hh->atw_tail_dur, hh->atw_head_dur);
   3581 
   3582 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
   3583 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
   3584 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
   3585 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
   3586 
   3587 			printf("%s: keyid = %d\n",
   3588 			    sc->sc_dev.dv_xname, hh->atw_keyid);
   3589 
   3590 			atw_dump_pkt(ifp, m0);
   3591 		}
   3592 #endif /* ATW_DEBUG */
   3593 
   3594 		dmamap = txs->txs_dmamap;
   3595 
   3596 		/*
   3597 		 * Load the DMA map.  Copy and try (once) again if the packet
   3598 		 * didn't fit in the alloted number of segments.
   3599 		 */
   3600 		for (first = 1;
   3601 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   3602 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
   3603 		     first = 0) {
   3604 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   3605 			if (m == NULL) {
   3606 				printf("%s: unable to allocate Tx mbuf\n",
   3607 				    sc->sc_dev.dv_xname);
   3608 				break;
   3609 			}
   3610 			if (m0->m_pkthdr.len > MHLEN) {
   3611 				MCLGET(m, M_DONTWAIT);
   3612 				if ((m->m_flags & M_EXT) == 0) {
   3613 					printf("%s: unable to allocate Tx "
   3614 					    "cluster\n", sc->sc_dev.dv_xname);
   3615 					m_freem(m);
   3616 					break;
   3617 				}
   3618 			}
   3619 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   3620 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   3621 			m_freem(m0);
   3622 			m0 = m;
   3623 			m = NULL;
   3624 		}
   3625 		if (error != 0) {
   3626 			printf("%s: unable to load Tx buffer, "
   3627 			    "error = %d\n", sc->sc_dev.dv_xname, error);
   3628 			m_freem(m0);
   3629 			break;
   3630 		}
   3631 
   3632 		/*
   3633 		 * Ensure we have enough descriptors free to describe
   3634 		 * the packet.
   3635 		 */
   3636 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   3637 			/*
   3638 			 * Not enough free descriptors to transmit
   3639 			 * this packet.  Unload the DMA map and
   3640 			 * drop the packet.  Notify the upper layer
   3641 			 * that there are no more slots left.
   3642 			 *
   3643 			 * XXX We could allocate an mbuf and copy, but
   3644 			 * XXX it is worth it?
   3645 			 */
   3646 			ifp->if_flags |= IFF_OACTIVE;
   3647 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   3648 			m_freem(m0);
   3649 			break;
   3650 		}
   3651 
   3652 		/*
   3653 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   3654 		 */
   3655 
   3656 		/* Sync the DMA map. */
   3657 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   3658 		    BUS_DMASYNC_PREWRITE);
   3659 
   3660 		/* XXX arbitrary retry limit; 8 because I have seen it in
   3661 		 * use already and maybe 0 means "no tries" !
   3662 		 */
   3663 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
   3664 
   3665 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
   3666 		    sc->sc_dev.dv_xname, rate * 5));
   3667 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
   3668 
   3669 		/*
   3670 		 * Initialize the transmit descriptors.
   3671 		 */
   3672 		for (nexttx = sc->sc_txnext, seg = 0;
   3673 		     seg < dmamap->dm_nsegs;
   3674 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
   3675 			/*
   3676 			 * If this is the first descriptor we're
   3677 			 * enqueueing, don't set the OWN bit just
   3678 			 * yet.  That could cause a race condition.
   3679 			 * We'll do it below.
   3680 			 */
   3681 			txd = &sc->sc_txdescs[nexttx];
   3682 			txd->at_ctl = ctl |
   3683 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
   3684 
   3685 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
   3686 			txd->at_flags =
   3687 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
   3688 			                   ATW_TXFLAG_TBS1_MASK)) |
   3689 			    ((nexttx == (ATW_NTXDESC - 1))
   3690 			        ? htole32(ATW_TXFLAG_TER) : 0);
   3691 			lasttx = nexttx;
   3692 		}
   3693 
   3694 		IASSERT(lasttx != -1, ("bad lastx"));
   3695 		/* Set `first segment' and `last segment' appropriately. */
   3696 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
   3697 		    htole32(ATW_TXFLAG_FS);
   3698 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
   3699 
   3700 #ifdef ATW_DEBUG
   3701 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3702 			printf("     txsoft %p transmit chain:\n", txs);
   3703 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
   3704 				printf("     descriptor %d:\n", seg);
   3705 				printf("       at_ctl:   0x%08x\n",
   3706 				    le32toh(sc->sc_txdescs[seg].at_ctl));
   3707 				printf("       at_flags:      0x%08x\n",
   3708 				    le32toh(sc->sc_txdescs[seg].at_flags));
   3709 				printf("       at_buf1: 0x%08x\n",
   3710 				    le32toh(sc->sc_txdescs[seg].at_buf1));
   3711 				printf("       at_buf2: 0x%08x\n",
   3712 				    le32toh(sc->sc_txdescs[seg].at_buf2));
   3713 				if (seg == lasttx)
   3714 					break;
   3715 			}
   3716 		}
   3717 #endif
   3718 
   3719 		/* Sync the descriptors we're using. */
   3720 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   3721 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3722 
   3723 		/*
   3724 		 * Store a pointer to the packet so we can free it later,
   3725 		 * and remember what txdirty will be once the packet is
   3726 		 * done.
   3727 		 */
   3728 		txs->txs_mbuf = m0;
   3729 		txs->txs_firstdesc = sc->sc_txnext;
   3730 		txs->txs_lastdesc = lasttx;
   3731 		txs->txs_ndescs = dmamap->dm_nsegs;
   3732 
   3733 		/* Advance the tx pointer. */
   3734 		sc->sc_txfree -= dmamap->dm_nsegs;
   3735 		sc->sc_txnext = nexttx;
   3736 
   3737 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   3738 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   3739 
   3740 		last_txs = txs;
   3741 	}
   3742 
   3743 	if (txs == NULL || sc->sc_txfree == 0) {
   3744 		/* No more slots left; notify upper layer. */
   3745 		ifp->if_flags |= IFF_OACTIVE;
   3746 	}
   3747 
   3748 	if (sc->sc_txfree != ofree) {
   3749 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   3750 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   3751 		/*
   3752 		 * Cause a transmit interrupt to happen on the
   3753 		 * last packet we enqueued.
   3754 		 */
   3755 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
   3756 		ATW_CDTXSYNC(sc, lasttx, 1,
   3757 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3758 
   3759 		/*
   3760 		 * The entire packet chain is set up.  Give the
   3761 		 * first descriptor to the chip now.
   3762 		 */
   3763 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
   3764 		ATW_CDTXSYNC(sc, firsttx, 1,
   3765 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3766 
   3767 		/* Wake up the transmitter. */
   3768 		ATW_WRITE(sc, ATW_TDR, 0x1);
   3769 
   3770 		/* Set a watchdog timer in case the chip flakes out. */
   3771 		sc->sc_tx_timer = 5;
   3772 		ifp->if_timer = 1;
   3773 	}
   3774 }
   3775 
   3776 /*
   3777  * atw_power:
   3778  *
   3779  *	Power management (suspend/resume) hook.
   3780  */
   3781 void
   3782 atw_power(int why, void *arg)
   3783 {
   3784 	struct atw_softc *sc = arg;
   3785 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3786 	int s;
   3787 
   3788 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
   3789 
   3790 	s = splnet();
   3791 	switch (why) {
   3792 	case PWR_STANDBY:
   3793 		/* XXX do nothing. */
   3794 		break;
   3795 	case PWR_SUSPEND:
   3796 		atw_stop(ifp, 0);
   3797 		if (sc->sc_power != NULL)
   3798 			(*sc->sc_power)(sc, why);
   3799 		break;
   3800 	case PWR_RESUME:
   3801 		if (ifp->if_flags & IFF_UP) {
   3802 			if (sc->sc_power != NULL)
   3803 				(*sc->sc_power)(sc, why);
   3804 			atw_init(ifp);
   3805 		}
   3806 		break;
   3807 	case PWR_SOFTSUSPEND:
   3808 	case PWR_SOFTSTANDBY:
   3809 	case PWR_SOFTRESUME:
   3810 		break;
   3811 	}
   3812 	splx(s);
   3813 }
   3814 
   3815 /*
   3816  * atw_ioctl:		[ifnet interface function]
   3817  *
   3818  *	Handle control requests from the operator.
   3819  */
   3820 int
   3821 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   3822 {
   3823 	struct atw_softc *sc = ifp->if_softc;
   3824 	struct ifreq *ifr = (struct ifreq *)data;
   3825 	int s, error = 0;
   3826 
   3827 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
   3828 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   3829 		return ENXIO;
   3830 
   3831 	s = splnet();
   3832 
   3833 	switch (cmd) {
   3834 	case SIOCSIFFLAGS:
   3835 		if (ifp->if_flags & IFF_UP) {
   3836 			if (ATW_IS_ENABLED(sc)) {
   3837 				/*
   3838 				 * To avoid rescanning another access point,
   3839 				 * do not call atw_init() here.  Instead,
   3840 				 * only reflect media settings.
   3841 				 */
   3842 				atw_filter_setup(sc);
   3843 			} else
   3844 				error = atw_init(ifp);
   3845 		} else if (ATW_IS_ENABLED(sc))
   3846 			atw_stop(ifp, 1);
   3847 		break;
   3848 	case SIOCADDMULTI:
   3849 	case SIOCDELMULTI:
   3850 		error = (cmd == SIOCADDMULTI) ?
   3851 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
   3852 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
   3853 		if (error == ENETRESET) {
   3854 			if (ifp->if_flags & IFF_RUNNING)
   3855 				atw_filter_setup(sc); /* do not rescan */
   3856 			error = 0;
   3857 		}
   3858 		break;
   3859 	default:
   3860 		error = ieee80211_ioctl(ifp, cmd, data);
   3861 		if (error == ENETRESET) {
   3862 			if (ATW_IS_ENABLED(sc))
   3863 				error = atw_init(ifp);
   3864 			else
   3865 				error = 0;
   3866 		}
   3867 		break;
   3868 	}
   3869 
   3870 	/* Try to get more packets going. */
   3871 	if (ATW_IS_ENABLED(sc))
   3872 		atw_start(ifp);
   3873 
   3874 	splx(s);
   3875 	return (error);
   3876 }
   3877 
   3878 static int
   3879 atw_media_change(struct ifnet *ifp)
   3880 {
   3881 	int error;
   3882 
   3883 	error = ieee80211_media_change(ifp);
   3884 	if (error == ENETRESET) {
   3885 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   3886 		    (IFF_RUNNING|IFF_UP))
   3887 			atw_init(ifp);		/* XXX lose error */
   3888 		error = 0;
   3889 	}
   3890 	return error;
   3891 }
   3892 
   3893 static void
   3894 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
   3895 {
   3896 	struct atw_softc *sc = ifp->if_softc;
   3897 
   3898 	if (ATW_IS_ENABLED(sc) == 0) {
   3899 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
   3900 		imr->ifm_status = 0;
   3901 		return;
   3902 	}
   3903 	ieee80211_media_status(ifp, imr);
   3904 }
   3905