atw.c revision 1.85 1 /* $NetBSD: atw.c,v 1.85 2005/06/22 06:15:51 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.85 2005/06/22 06:15:51 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_netbsd.h>
70 #include <net80211/ieee80211_var.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162
163 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
166 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
167 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
171 static void atw_print_regs(struct atw_softc *, const char *);
172
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 # ifdef ATW_BBPDEBUG
175 static void atw_rf3000_print(struct atw_softc *);
176 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177 # endif /* ATW_BBPDEBUG */
178
179 # ifdef ATW_SYNDEBUG
180 static void atw_si4126_print(struct atw_softc *);
181 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
182 # endif /* ATW_SYNDEBUG */
183
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define DPRINTF(sc, x) /* nothing */
189 #define DPRINTF2(sc, x) /* nothing */
190 #define DPRINTF3(sc, x) /* nothing */
191 #endif
192
193 /* ifnet methods */
194 int atw_init(struct ifnet *);
195 int atw_ioctl(struct ifnet *, u_long, caddr_t);
196 void atw_start(struct ifnet *);
197 void atw_stop(struct ifnet *, int);
198 void atw_watchdog(struct ifnet *);
199
200 /* Device attachment */
201 void atw_attach(struct atw_softc *);
202 int atw_detach(struct atw_softc *);
203
204 /* Rx/Tx process */
205 int atw_add_rxbuf(struct atw_softc *, int);
206 void atw_idle(struct atw_softc *, u_int32_t);
207 void atw_rxdrain(struct atw_softc *);
208 void atw_txdrain(struct atw_softc *);
209
210 /* Device (de)activation and power state */
211 void atw_disable(struct atw_softc *);
212 int atw_enable(struct atw_softc *);
213 void atw_power(int, void *);
214 void atw_reset(struct atw_softc *);
215 void atw_shutdown(void *);
216
217 /* Interrupt handlers */
218 void atw_linkintr(struct atw_softc *, u_int32_t);
219 void atw_rxintr(struct atw_softc *);
220 void atw_txintr(struct atw_softc *);
221
222 /* 802.11 state machine */
223 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static void atw_next_scan(void *);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static int atw_tune(struct atw_softc *);
228
229 /* Device initialization */
230 static void atw_bbp_io_init(struct atw_softc *);
231 static void atw_cfp_init(struct atw_softc *);
232 static void atw_cmdr_init(struct atw_softc *);
233 static void atw_ifs_init(struct atw_softc *);
234 static void atw_nar_init(struct atw_softc *);
235 static void atw_response_times_init(struct atw_softc *);
236 static void atw_rf_reset(struct atw_softc *);
237 static void atw_test1_init(struct atw_softc *);
238 static void atw_tofs0_init(struct atw_softc *);
239 static void atw_tofs2_init(struct atw_softc *);
240 static void atw_txlmt_init(struct atw_softc *);
241 static void atw_wcsr_init(struct atw_softc *);
242
243 /* Key management */
244 static int atw_key_alloc(struct ieee80211com *, const struct ieee80211_key *);
245 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
246 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
247 const u_int8_t[IEEE80211_ADDR_LEN]);
248 static void atw_key_update_begin(struct ieee80211com *);
249 static void atw_key_update_end(struct ieee80211com *);
250
251 /* RAM/ROM utilities */
252 static void atw_clear_sram(struct atw_softc *);
253 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
254 static int atw_read_srom(struct atw_softc *);
255
256 /* BSS setup */
257 static void atw_predict_beacon(struct atw_softc *);
258 static void atw_start_beacon(struct atw_softc *, int);
259 static void atw_write_bssid(struct atw_softc *);
260 static void atw_write_ssid(struct atw_softc *);
261 static void atw_write_sup_rates(struct atw_softc *);
262 static void atw_write_wep(struct atw_softc *);
263
264 /* Media */
265 static int atw_media_change(struct ifnet *);
266 static void atw_media_status(struct ifnet *, struct ifmediareq *);
267
268 static void atw_filter_setup(struct atw_softc *);
269
270 /* 802.11 utilities */
271 static void atw_frame_setdurs(struct atw_softc *,
272 struct atw_frame *, int, int);
273 static uint64_t atw_get_tsft(struct atw_softc *);
274 static __inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
275 uint32_t);
276 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
277 static void atw_node_free(struct ieee80211_node *);
278 static void atw_change_ibss(struct atw_softc *);
279
280 /*
281 * Tuner/transceiver/modem
282 */
283 static void atw_bbp_io_enable(struct atw_softc *, int);
284
285 /* RFMD RF3000 Baseband Processor */
286 static int atw_rf3000_init(struct atw_softc *);
287 static int atw_rf3000_tune(struct atw_softc *, u_int);
288 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
289
290 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
291 static void atw_si4126_tune(struct atw_softc *, u_int);
292 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
293
294 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
295 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
296
297 const char *atw_tx_state[] = {
298 "STOPPED",
299 "RUNNING - read descriptor",
300 "RUNNING - transmitting",
301 "RUNNING - filling fifo", /* XXX */
302 "SUSPENDED",
303 "RUNNING -- write descriptor",
304 "RUNNING -- write last descriptor",
305 "RUNNING - fifo full"
306 };
307
308 const char *atw_rx_state[] = {
309 "STOPPED",
310 "RUNNING - read descriptor",
311 "RUNNING - check this packet, pre-fetch next",
312 "RUNNING - wait for reception",
313 "SUSPENDED",
314 "RUNNING - write descriptor",
315 "RUNNING - flush fifo",
316 "RUNNING - fifo drain"
317 };
318
319 int
320 atw_activate(struct device *self, enum devact act)
321 {
322 struct atw_softc *sc = (struct atw_softc *)self;
323 int rv = 0, s;
324
325 s = splnet();
326 switch (act) {
327 case DVACT_ACTIVATE:
328 rv = EOPNOTSUPP;
329 break;
330
331 case DVACT_DEACTIVATE:
332 if_deactivate(&sc->sc_if);
333 break;
334 }
335 splx(s);
336 return rv;
337 }
338
339 /*
340 * atw_enable:
341 *
342 * Enable the ADM8211 chip.
343 */
344 int
345 atw_enable(struct atw_softc *sc)
346 {
347
348 if (ATW_IS_ENABLED(sc) == 0) {
349 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
350 printf("%s: device enable failed\n",
351 sc->sc_dev.dv_xname);
352 return (EIO);
353 }
354 sc->sc_flags |= ATWF_ENABLED;
355 }
356 return (0);
357 }
358
359 /*
360 * atw_disable:
361 *
362 * Disable the ADM8211 chip.
363 */
364 void
365 atw_disable(struct atw_softc *sc)
366 {
367 if (!ATW_IS_ENABLED(sc))
368 return;
369 if (sc->sc_disable != NULL)
370 (*sc->sc_disable)(sc);
371 sc->sc_flags &= ~ATWF_ENABLED;
372 }
373
374 /* Returns -1 on failure. */
375 static int
376 atw_read_srom(struct atw_softc *sc)
377 {
378 struct seeprom_descriptor sd;
379 uint32_t test0, fail_bits;
380
381 (void)memset(&sd, 0, sizeof(sd));
382
383 test0 = ATW_READ(sc, ATW_TEST0);
384
385 switch (sc->sc_rev) {
386 case ATW_REVISION_BA:
387 case ATW_REVISION_CA:
388 fail_bits = ATW_TEST0_EPNE;
389 break;
390 default:
391 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
392 break;
393 }
394 if ((test0 & fail_bits) != 0) {
395 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
396 return -1;
397 }
398
399 switch (test0 & ATW_TEST0_EPTYP_MASK) {
400 case ATW_TEST0_EPTYP_93c66:
401 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
402 sc->sc_sromsz = 512;
403 sd.sd_chip = C56_66;
404 break;
405 case ATW_TEST0_EPTYP_93c46:
406 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
407 sc->sc_sromsz = 128;
408 sd.sd_chip = C46;
409 break;
410 default:
411 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
412 MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
413 return -1;
414 }
415
416 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
417
418 if (sc->sc_srom == NULL) {
419 printf("%s: unable to allocate SROM buffer\n",
420 sc->sc_dev.dv_xname);
421 return -1;
422 }
423
424 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
425
426 /* ADM8211 has a single 32-bit register for controlling the
427 * 93cx6 SROM. Bit SRS enables the serial port. There is no
428 * "ready" bit. The ADM8211 input/output sense is the reverse
429 * of read_seeprom's.
430 */
431 sd.sd_tag = sc->sc_st;
432 sd.sd_bsh = sc->sc_sh;
433 sd.sd_regsize = 4;
434 sd.sd_control_offset = ATW_SPR;
435 sd.sd_status_offset = ATW_SPR;
436 sd.sd_dataout_offset = ATW_SPR;
437 sd.sd_CK = ATW_SPR_SCLK;
438 sd.sd_CS = ATW_SPR_SCS;
439 sd.sd_DI = ATW_SPR_SDO;
440 sd.sd_DO = ATW_SPR_SDI;
441 sd.sd_MS = ATW_SPR_SRS;
442 sd.sd_RDY = 0;
443
444 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
445 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
446 free(sc->sc_srom, M_DEVBUF);
447 return -1;
448 }
449 #ifdef ATW_DEBUG
450 {
451 int i;
452 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
453 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
454 if (((i % 8) == 0) && (i != 0)) {
455 ATW_DPRINTF(("\n\t"));
456 }
457 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
458 }
459 ATW_DPRINTF(("\n"));
460 }
461 #endif /* ATW_DEBUG */
462 return 0;
463 }
464
465 #ifdef ATW_DEBUG
466 static void
467 atw_print_regs(struct atw_softc *sc, const char *where)
468 {
469 #define PRINTREG(sc, reg) \
470 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
471 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
472
473 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
474
475 PRINTREG(sc, ATW_PAR);
476 PRINTREG(sc, ATW_FRCTL);
477 PRINTREG(sc, ATW_TDR);
478 PRINTREG(sc, ATW_WTDP);
479 PRINTREG(sc, ATW_RDR);
480 PRINTREG(sc, ATW_WRDP);
481 PRINTREG(sc, ATW_RDB);
482 PRINTREG(sc, ATW_CSR3A);
483 PRINTREG(sc, ATW_TDBD);
484 PRINTREG(sc, ATW_TDBP);
485 PRINTREG(sc, ATW_STSR);
486 PRINTREG(sc, ATW_CSR5A);
487 PRINTREG(sc, ATW_NAR);
488 PRINTREG(sc, ATW_CSR6A);
489 PRINTREG(sc, ATW_IER);
490 PRINTREG(sc, ATW_CSR7A);
491 PRINTREG(sc, ATW_LPC);
492 PRINTREG(sc, ATW_TEST1);
493 PRINTREG(sc, ATW_SPR);
494 PRINTREG(sc, ATW_TEST0);
495 PRINTREG(sc, ATW_WCSR);
496 PRINTREG(sc, ATW_WPDR);
497 PRINTREG(sc, ATW_GPTMR);
498 PRINTREG(sc, ATW_GPIO);
499 PRINTREG(sc, ATW_BBPCTL);
500 PRINTREG(sc, ATW_SYNCTL);
501 PRINTREG(sc, ATW_PLCPHD);
502 PRINTREG(sc, ATW_MMIWADDR);
503 PRINTREG(sc, ATW_MMIRADDR1);
504 PRINTREG(sc, ATW_MMIRADDR2);
505 PRINTREG(sc, ATW_TXBR);
506 PRINTREG(sc, ATW_CSR15A);
507 PRINTREG(sc, ATW_ALCSTAT);
508 PRINTREG(sc, ATW_TOFS2);
509 PRINTREG(sc, ATW_CMDR);
510 PRINTREG(sc, ATW_PCIC);
511 PRINTREG(sc, ATW_PMCSR);
512 PRINTREG(sc, ATW_PAR0);
513 PRINTREG(sc, ATW_PAR1);
514 PRINTREG(sc, ATW_MAR0);
515 PRINTREG(sc, ATW_MAR1);
516 PRINTREG(sc, ATW_ATIMDA0);
517 PRINTREG(sc, ATW_ABDA1);
518 PRINTREG(sc, ATW_BSSID0);
519 PRINTREG(sc, ATW_TXLMT);
520 PRINTREG(sc, ATW_MIBCNT);
521 PRINTREG(sc, ATW_BCNT);
522 PRINTREG(sc, ATW_TSFTH);
523 PRINTREG(sc, ATW_TSC);
524 PRINTREG(sc, ATW_SYNRF);
525 PRINTREG(sc, ATW_BPLI);
526 PRINTREG(sc, ATW_CAP0);
527 PRINTREG(sc, ATW_CAP1);
528 PRINTREG(sc, ATW_RMD);
529 PRINTREG(sc, ATW_CFPP);
530 PRINTREG(sc, ATW_TOFS0);
531 PRINTREG(sc, ATW_TOFS1);
532 PRINTREG(sc, ATW_IFST);
533 PRINTREG(sc, ATW_RSPT);
534 PRINTREG(sc, ATW_TSFTL);
535 PRINTREG(sc, ATW_WEPCTL);
536 PRINTREG(sc, ATW_WESK);
537 PRINTREG(sc, ATW_WEPCNT);
538 PRINTREG(sc, ATW_MACTEST);
539 PRINTREG(sc, ATW_FER);
540 PRINTREG(sc, ATW_FEMR);
541 PRINTREG(sc, ATW_FPSR);
542 PRINTREG(sc, ATW_FFER);
543 #undef PRINTREG
544 }
545 #endif /* ATW_DEBUG */
546
547 /*
548 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
549 */
550 void
551 atw_attach(struct atw_softc *sc)
552 {
553 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
554 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
555 };
556 struct ieee80211com *ic = &sc->sc_ic;
557 struct ifnet *ifp = &sc->sc_if;
558 int country_code, error, i, nrate, srom_major;
559 u_int32_t reg;
560 static const char *type_strings[] = {"Intersil (not supported)",
561 "RFMD", "Marvel (not supported)"};
562
563 sc->sc_txth = atw_txthresh_tab_lo;
564
565 SIMPLEQ_INIT(&sc->sc_txfreeq);
566 SIMPLEQ_INIT(&sc->sc_txdirtyq);
567
568 #ifdef ATW_DEBUG
569 atw_print_regs(sc, "atw_attach");
570 #endif /* ATW_DEBUG */
571
572 /*
573 * Allocate the control data structures, and create and load the
574 * DMA map for it.
575 */
576 if ((error = bus_dmamem_alloc(sc->sc_dmat,
577 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
578 1, &sc->sc_cdnseg, 0)) != 0) {
579 printf("%s: unable to allocate control data, error = %d\n",
580 sc->sc_dev.dv_xname, error);
581 goto fail_0;
582 }
583
584 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
585 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
586 BUS_DMA_COHERENT)) != 0) {
587 printf("%s: unable to map control data, error = %d\n",
588 sc->sc_dev.dv_xname, error);
589 goto fail_1;
590 }
591
592 if ((error = bus_dmamap_create(sc->sc_dmat,
593 sizeof(struct atw_control_data), 1,
594 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
595 printf("%s: unable to create control data DMA map, "
596 "error = %d\n", sc->sc_dev.dv_xname, error);
597 goto fail_2;
598 }
599
600 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
601 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
602 0)) != 0) {
603 printf("%s: unable to load control data DMA map, error = %d\n",
604 sc->sc_dev.dv_xname, error);
605 goto fail_3;
606 }
607
608 /*
609 * Create the transmit buffer DMA maps.
610 */
611 sc->sc_ntxsegs = ATW_NTXSEGS;
612 for (i = 0; i < ATW_TXQUEUELEN; i++) {
613 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
614 sc->sc_ntxsegs, MCLBYTES, 0, 0,
615 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
616 printf("%s: unable to create tx DMA map %d, "
617 "error = %d\n", sc->sc_dev.dv_xname, i, error);
618 goto fail_4;
619 }
620 }
621
622 /*
623 * Create the receive buffer DMA maps.
624 */
625 for (i = 0; i < ATW_NRXDESC; i++) {
626 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
627 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
628 printf("%s: unable to create rx DMA map %d, "
629 "error = %d\n", sc->sc_dev.dv_xname, i, error);
630 goto fail_5;
631 }
632 }
633 for (i = 0; i < ATW_NRXDESC; i++) {
634 sc->sc_rxsoft[i].rxs_mbuf = NULL;
635 }
636
637 switch (sc->sc_rev) {
638 case ATW_REVISION_AB:
639 case ATW_REVISION_AF:
640 sc->sc_sramlen = ATW_SRAM_A_SIZE;
641 break;
642 case ATW_REVISION_BA:
643 case ATW_REVISION_CA:
644 sc->sc_sramlen = ATW_SRAM_B_SIZE;
645 break;
646 }
647
648 /* Reset the chip to a known state. */
649 atw_reset(sc);
650
651 if (atw_read_srom(sc) == -1)
652 return;
653
654 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
655 ATW_SR_RFTYPE_MASK);
656
657 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
658 ATW_SR_BBPTYPE_MASK);
659
660 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
661 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
662 return;
663 }
664 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
665 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
666 return;
667 }
668
669 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
670 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
671
672 /* XXX There exists a Linux driver which seems to use RFType = 0 for
673 * MARVEL. My bug, or theirs?
674 */
675
676 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
677
678 switch (sc->sc_rftype) {
679 case ATW_RFTYPE_INTERSIL:
680 reg |= ATW_SYNCTL_CS1;
681 break;
682 case ATW_RFTYPE_RFMD:
683 reg |= ATW_SYNCTL_CS0;
684 break;
685 case ATW_RFTYPE_MARVEL:
686 break;
687 }
688
689 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
690 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
691
692 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
693
694 switch (sc->sc_bbptype) {
695 case ATW_BBPTYPE_INTERSIL:
696 reg |= ATW_BBPCTL_TWI;
697 break;
698 case ATW_BBPTYPE_RFMD:
699 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
700 ATW_BBPCTL_CCA_ACTLO;
701 break;
702 case ATW_BBPTYPE_MARVEL:
703 break;
704 case ATW_C_BBPTYPE_RFMD:
705 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
706 sc->sc_dev.dv_xname);
707 break;
708 }
709
710 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
711 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
712
713 /*
714 * From this point forward, the attachment cannot fail. A failure
715 * before this point releases all resources that may have been
716 * allocated.
717 */
718 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
719
720 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
721 htole16(sc->sc_srom[ATW_SR_MAC00]),
722 htole16(sc->sc_srom[ATW_SR_MAC01]),
723 htole16(sc->sc_srom[ATW_SR_MAC10])));
724
725 srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
726 ATW_SR_MAJOR_MASK);
727
728 if (srom_major < 2)
729 sc->sc_rf3000_options1 = 0;
730 else if (sc->sc_rev == ATW_REVISION_BA) {
731 sc->sc_rf3000_options1 =
732 MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
733 ATW_SR_CR28_MASK);
734 } else
735 sc->sc_rf3000_options1 = 0;
736
737 sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
738 ATW_SR_CR29_MASK);
739
740 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
741 ATW_SR_CTRY_MASK);
742
743 #define ADD_CHANNEL(_ic, _chan) do { \
744 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
745 _ic->ic_channels[_chan].ic_freq = \
746 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
747 } while (0)
748
749 /* Find available channels */
750 switch (country_code) {
751 case COUNTRY_MMK2: /* 1-14 */
752 ADD_CHANNEL(ic, 14);
753 /*FALLTHROUGH*/
754 case COUNTRY_ETSI: /* 1-13 */
755 for (i = 1; i <= 13; i++)
756 ADD_CHANNEL(ic, i);
757 break;
758 case COUNTRY_FCC: /* 1-11 */
759 case COUNTRY_IC: /* 1-11 */
760 for (i = 1; i <= 11; i++)
761 ADD_CHANNEL(ic, i);
762 break;
763 case COUNTRY_MMK: /* 14 */
764 ADD_CHANNEL(ic, 14);
765 break;
766 case COUNTRY_FRANCE: /* 10-13 */
767 for (i = 10; i <= 13; i++)
768 ADD_CHANNEL(ic, i);
769 break;
770 default: /* assume channels 10-11 */
771 case COUNTRY_SPAIN: /* 10-11 */
772 for (i = 10; i <= 11; i++)
773 ADD_CHANNEL(ic, i);
774 break;
775 }
776
777 /* Read the MAC address. */
778 reg = ATW_READ(sc, ATW_PAR0);
779 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
780 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
781 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
782 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
783 reg = ATW_READ(sc, ATW_PAR1);
784 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
785 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
786
787 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
788 printf(" could not get mac address, attach failed\n");
789 return;
790 }
791
792 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
793
794 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
795 ifp->if_softc = sc;
796 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
797 IFF_NOTRAILERS;
798 ifp->if_ioctl = atw_ioctl;
799 ifp->if_start = atw_start;
800 ifp->if_watchdog = atw_watchdog;
801 ifp->if_init = atw_init;
802 ifp->if_stop = atw_stop;
803 IFQ_SET_READY(&ifp->if_snd);
804
805 ic->ic_ifp = ifp;
806 ic->ic_phytype = IEEE80211_T_DS;
807 ic->ic_opmode = IEEE80211_M_STA;
808 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
809 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
810
811 nrate = 0;
812 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
813 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
814 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
815 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
816 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
817
818 /*
819 * Call MI attach routines.
820 */
821
822 if_attach(ifp);
823 ieee80211_ifattach(ic);
824
825 sc->sc_newstate = ic->ic_newstate;
826 ic->ic_newstate = atw_newstate;
827
828 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
829 ic->ic_recv_mgmt = atw_recv_mgmt;
830
831 sc->sc_node_free = ic->ic_node_free;
832 ic->ic_node_free = atw_node_free;
833
834 sc->sc_node_alloc = ic->ic_node_alloc;
835 ic->ic_node_alloc = atw_node_alloc;
836
837 ic->ic_crypto.cs_key_alloc = atw_key_alloc;
838 ic->ic_crypto.cs_key_delete = atw_key_delete;
839 ic->ic_crypto.cs_key_set = atw_key_set;
840 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
841 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
842
843 /* possibly we should fill in our own sc_send_prresp, since
844 * the ADM8211 is probably sending probe responses in ad hoc
845 * mode.
846 */
847
848 /* complete initialization */
849 ieee80211_media_init(ic, atw_media_change, atw_media_status);
850 callout_init(&sc->sc_scan_ch);
851
852 #if NBPFILTER > 0
853 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
854 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
855 #endif
856
857 /*
858 * Make sure the interface is shutdown during reboot.
859 */
860 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
861 if (sc->sc_sdhook == NULL)
862 printf("%s: WARNING: unable to establish shutdown hook\n",
863 sc->sc_dev.dv_xname);
864
865 /*
866 * Add a suspend hook to make sure we come back up after a
867 * resume.
868 */
869 sc->sc_powerhook = powerhook_establish(atw_power, sc);
870 if (sc->sc_powerhook == NULL)
871 printf("%s: WARNING: unable to establish power hook\n",
872 sc->sc_dev.dv_xname);
873
874 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
875 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
876 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
877
878 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
879 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
880 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
881
882 return;
883
884 /*
885 * Free any resources we've allocated during the failed attach
886 * attempt. Do this in reverse order and fall through.
887 */
888 fail_5:
889 for (i = 0; i < ATW_NRXDESC; i++) {
890 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
891 continue;
892 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
893 }
894 fail_4:
895 for (i = 0; i < ATW_TXQUEUELEN; i++) {
896 if (sc->sc_txsoft[i].txs_dmamap == NULL)
897 continue;
898 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
899 }
900 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
901 fail_3:
902 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
903 fail_2:
904 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
905 sizeof(struct atw_control_data));
906 fail_1:
907 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
908 fail_0:
909 return;
910 }
911
912 static struct ieee80211_node *
913 atw_node_alloc(struct ieee80211_node_table *nt)
914 {
915 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
916 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
917
918 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
919 return ni;
920 }
921
922 static void
923 atw_node_free(struct ieee80211_node *ni)
924 {
925 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
926
927 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
928 ether_sprintf(ni->ni_bssid)));
929 (*sc->sc_node_free)(ni);
930 }
931
932
933 static void
934 atw_test1_reset(struct atw_softc *sc)
935 {
936 switch (sc->sc_rev) {
937 case ATW_REVISION_BA:
938 if (1 /* XXX condition on transceiver type */) {
939 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
940 }
941 break;
942 case ATW_REVISION_CA:
943 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
944 break;
945 default:
946 break;
947 }
948 }
949
950 /*
951 * atw_reset:
952 *
953 * Perform a soft reset on the ADM8211.
954 */
955 void
956 atw_reset(struct atw_softc *sc)
957 {
958 int i;
959 uint32_t lpc;
960
961 ATW_WRITE(sc, ATW_NAR, 0x0);
962 DELAY(atw_nar_delay);
963
964 /* Reference driver has a cryptic remark indicating that this might
965 * power-on the chip. I know that it turns off power-saving....
966 */
967 ATW_WRITE(sc, ATW_FRCTL, 0x0);
968
969 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
970
971 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
972 if (ATW_READ(sc, ATW_PAR) == 0)
973 break;
974 DELAY(atw_pseudo_milli);
975 }
976
977 /* ... and then pause 100ms longer for good measure. */
978 DELAY(atw_magic_delay1);
979
980 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
981
982 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
983 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
984
985 atw_test1_reset(sc);
986 /*
987 * Initialize the PCI Access Register.
988 */
989 sc->sc_busmode = ATW_PAR_PBL_8DW;
990
991 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
992 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
993 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
994
995 /* Turn off maximum power saving, etc.
996 *
997 * XXX Following example of reference driver, should I set
998 * an AID of 1? It didn't seem to help....
999 */
1000 ATW_WRITE(sc, ATW_FRCTL, 0x0);
1001
1002 DELAY(atw_magic_delay2);
1003
1004 /* Recall EEPROM. */
1005 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1006
1007 DELAY(atw_magic_delay4);
1008
1009 lpc = ATW_READ(sc, ATW_LPC);
1010
1011 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1012
1013 /* A reset seems to affect the SRAM contents, so put them into
1014 * a known state.
1015 */
1016 atw_clear_sram(sc);
1017
1018 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1019 }
1020
1021 static void
1022 atw_clear_sram(struct atw_softc *sc)
1023 {
1024 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1025 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1026 /* XXX not for revision 0x20. */
1027 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1028 }
1029
1030 /* TBD atw_init
1031 *
1032 * set MAC based on ic->ic_bss->myaddr
1033 * write WEP keys
1034 * set TX rate
1035 */
1036
1037 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1038 * without receiving a beacon with the preferred BSSID & SSID.
1039 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1040 */
1041 static void
1042 atw_wcsr_init(struct atw_softc *sc)
1043 {
1044 uint32_t wcsr;
1045
1046 wcsr = ATW_READ(sc, ATW_WCSR);
1047 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1048 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1049 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1050
1051 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1052 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1053 }
1054
1055 /* Turn off power management. Set Rx store-and-forward mode. */
1056 static void
1057 atw_cmdr_init(struct atw_softc *sc)
1058 {
1059 uint32_t cmdr;
1060 cmdr = ATW_READ(sc, ATW_CMDR);
1061 cmdr &= ~ATW_CMDR_APM;
1062 cmdr |= ATW_CMDR_RTE;
1063 cmdr &= ~ATW_CMDR_DRT_MASK;
1064 cmdr |= ATW_CMDR_DRT_SF;
1065
1066 ATW_WRITE(sc, ATW_CMDR, cmdr);
1067 }
1068
1069 static void
1070 atw_tofs2_init(struct atw_softc *sc)
1071 {
1072 uint32_t tofs2;
1073 /* XXX this magic can probably be figured out from the RFMD docs */
1074 #ifndef ATW_REFSLAVE
1075 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1076 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1077 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1078 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1079 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1080 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1081 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1082 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1083 #else
1084 /* XXX new magic from reference driver source */
1085 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1086 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1087 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1088 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1089 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1090 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1091 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1092 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1093 #endif
1094 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1095 }
1096
1097 static void
1098 atw_nar_init(struct atw_softc *sc)
1099 {
1100 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1101 }
1102
1103 static void
1104 atw_txlmt_init(struct atw_softc *sc)
1105 {
1106 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1107 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1108 }
1109
1110 static void
1111 atw_test1_init(struct atw_softc *sc)
1112 {
1113 uint32_t test1;
1114
1115 test1 = ATW_READ(sc, ATW_TEST1);
1116 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1117 /* XXX magic 0x1 */
1118 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1119 ATW_WRITE(sc, ATW_TEST1, test1);
1120 }
1121
1122 static void
1123 atw_rf_reset(struct atw_softc *sc)
1124 {
1125 /* XXX this resets an Intersil RF front-end? */
1126 /* TBD condition on Intersil RFType? */
1127 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1128 DELAY(atw_rf_delay1);
1129 ATW_WRITE(sc, ATW_SYNRF, 0);
1130 DELAY(atw_rf_delay2);
1131 }
1132
1133 /* Set 16 TU max duration for the contention-free period (CFP). */
1134 static void
1135 atw_cfp_init(struct atw_softc *sc)
1136 {
1137 uint32_t cfpp;
1138
1139 cfpp = ATW_READ(sc, ATW_CFPP);
1140 cfpp &= ~ATW_CFPP_CFPMD;
1141 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1142 ATW_WRITE(sc, ATW_CFPP, cfpp);
1143 }
1144
1145 static void
1146 atw_tofs0_init(struct atw_softc *sc)
1147 {
1148 /* XXX I guess that the Cardbus clock is 22MHz?
1149 * I am assuming that the role of ATW_TOFS0_USCNT is
1150 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1151 * very clear on this point. It says in the datasheet that it is
1152 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1153 * and 33MHz; maybe this is the way? I see a binary-only driver write
1154 * these values. These values are also the power-on default.
1155 */
1156 ATW_WRITE(sc, ATW_TOFS0,
1157 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1158 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1159 }
1160
1161 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1162 static void
1163 atw_ifs_init(struct atw_softc *sc)
1164 {
1165 uint32_t ifst;
1166 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1167 * Go figure.
1168 */
1169 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1170 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1171 ATW_IFST_SIFS_MASK) |
1172 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1173 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1174
1175 ATW_WRITE(sc, ATW_IFST, ifst);
1176 }
1177
1178 static void
1179 atw_response_times_init(struct atw_softc *sc)
1180 {
1181 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1182 * indicate that the MAC expects at least SIFS + MIRT microseconds
1183 * to pass after it transmits a frame that requires a response;
1184 * it waits at most SIFS + MART microseconds for the response.
1185 * Surely this is not the ACK timeout?
1186 */
1187 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1188 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1189 }
1190
1191 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1192 * engines read and write baseband registers after Rx and before
1193 * Tx, respectively.
1194 */
1195 static void
1196 atw_bbp_io_init(struct atw_softc *sc)
1197 {
1198 uint32_t mmiraddr2;
1199
1200 /* XXX The reference driver does this, but is it *really*
1201 * necessary?
1202 */
1203 switch (sc->sc_rev) {
1204 case ATW_REVISION_AB:
1205 case ATW_REVISION_AF:
1206 mmiraddr2 = 0x0;
1207 break;
1208 default:
1209 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1210 mmiraddr2 &=
1211 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1212 break;
1213 }
1214
1215 switch (sc->sc_bbptype) {
1216 case ATW_BBPTYPE_INTERSIL:
1217 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1218 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1219 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1220 break;
1221 case ATW_BBPTYPE_MARVEL:
1222 /* TBD find out the Marvel settings. */
1223 break;
1224 case ATW_BBPTYPE_RFMD:
1225 default:
1226 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1227 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1228 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1229 break;
1230 }
1231 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1232 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1233 }
1234
1235 /*
1236 * atw_init: [ ifnet interface function ]
1237 *
1238 * Initialize the interface. Must be called at splnet().
1239 */
1240 int
1241 atw_init(struct ifnet *ifp)
1242 {
1243 struct atw_softc *sc = ifp->if_softc;
1244 struct ieee80211com *ic = &sc->sc_ic;
1245 struct atw_txsoft *txs;
1246 struct atw_rxsoft *rxs;
1247 int i, error = 0;
1248
1249 if ((error = atw_enable(sc)) != 0)
1250 goto out;
1251
1252 /*
1253 * Cancel any pending I/O. This also resets.
1254 */
1255 atw_stop(ifp, 0);
1256
1257 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1258 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1259 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
1260 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
1261
1262 atw_wcsr_init(sc);
1263
1264 atw_cmdr_init(sc);
1265
1266 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1267 *
1268 * XXX Set transmit power for ATIM, RTS, Beacon.
1269 */
1270 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1271 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1272
1273 atw_tofs2_init(sc);
1274
1275 atw_nar_init(sc);
1276
1277 atw_txlmt_init(sc);
1278
1279 atw_test1_init(sc);
1280
1281 atw_rf_reset(sc);
1282
1283 atw_cfp_init(sc);
1284
1285 atw_tofs0_init(sc);
1286
1287 atw_ifs_init(sc);
1288
1289 /* XXX Fall asleep after one second of inactivity.
1290 * XXX A frame may only dribble in for 65536us.
1291 */
1292 ATW_WRITE(sc, ATW_RMD,
1293 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1294
1295 atw_response_times_init(sc);
1296
1297 atw_bbp_io_init(sc);
1298
1299 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1300
1301 if ((error = atw_rf3000_init(sc)) != 0)
1302 goto out;
1303
1304 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1305 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1306 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1307
1308 /*
1309 * Initialize the transmit descriptor ring.
1310 */
1311 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1312 for (i = 0; i < ATW_NTXDESC; i++) {
1313 sc->sc_txdescs[i].at_ctl = 0;
1314 /* no transmit chaining */
1315 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1316 sc->sc_txdescs[i].at_buf2 =
1317 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1318 }
1319 /* use ring mode */
1320 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1321 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1322 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1323 sc->sc_txfree = ATW_NTXDESC;
1324 sc->sc_txnext = 0;
1325
1326 /*
1327 * Initialize the transmit job descriptors.
1328 */
1329 SIMPLEQ_INIT(&sc->sc_txfreeq);
1330 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1331 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1332 txs = &sc->sc_txsoft[i];
1333 txs->txs_mbuf = NULL;
1334 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1335 }
1336
1337 /*
1338 * Initialize the receive descriptor and receive job
1339 * descriptor rings.
1340 */
1341 for (i = 0; i < ATW_NRXDESC; i++) {
1342 rxs = &sc->sc_rxsoft[i];
1343 if (rxs->rxs_mbuf == NULL) {
1344 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1345 printf("%s: unable to allocate or map rx "
1346 "buffer %d, error = %d\n",
1347 sc->sc_dev.dv_xname, i, error);
1348 /*
1349 * XXX Should attempt to run with fewer receive
1350 * XXX buffers instead of just failing.
1351 */
1352 atw_rxdrain(sc);
1353 goto out;
1354 }
1355 } else
1356 ATW_INIT_RXDESC(sc, i);
1357 }
1358 sc->sc_rxptr = 0;
1359
1360 /*
1361 * Initialize the interrupt mask and enable interrupts.
1362 */
1363 /* normal interrupts */
1364 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1365 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1366
1367 /* abnormal interrupts */
1368 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1369 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1370 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1371
1372 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1373 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1374 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1375 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1376 ATW_INTR_TRT;
1377
1378 sc->sc_linkint_mask &= sc->sc_inten;
1379 sc->sc_rxint_mask &= sc->sc_inten;
1380 sc->sc_txint_mask &= sc->sc_inten;
1381
1382 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1383 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1384
1385 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1386 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1387
1388 /*
1389 * Give the transmit and receive rings to the ADM8211.
1390 */
1391 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1392 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1393
1394 sc->sc_txthresh = 0;
1395 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1396 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1397
1398 /* common 802.11 configuration */
1399 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1400 switch (ic->ic_opmode) {
1401 case IEEE80211_M_STA:
1402 break;
1403 case IEEE80211_M_AHDEMO: /* XXX */
1404 case IEEE80211_M_IBSS:
1405 ic->ic_flags |= IEEE80211_F_IBSSON;
1406 /*FALLTHROUGH*/
1407 case IEEE80211_M_HOSTAP: /* XXX */
1408 break;
1409 case IEEE80211_M_MONITOR: /* XXX */
1410 break;
1411 }
1412
1413 switch (ic->ic_opmode) {
1414 case IEEE80211_M_AHDEMO:
1415 case IEEE80211_M_HOSTAP:
1416 ic->ic_bss->ni_intval = ic->ic_lintval;
1417 ic->ic_bss->ni_rssi = 0;
1418 ic->ic_bss->ni_rstamp = 0;
1419 break;
1420 default: /* XXX */
1421 break;
1422 }
1423
1424 sc->sc_wepctl = 0;
1425
1426 atw_write_ssid(sc);
1427 atw_write_sup_rates(sc);
1428 if (ic->ic_caps & IEEE80211_C_WEP)
1429 atw_write_wep(sc);
1430
1431 ic->ic_state = IEEE80211_S_INIT;
1432
1433 /*
1434 * Set the receive filter. This will start the transmit and
1435 * receive processes.
1436 */
1437 atw_filter_setup(sc);
1438
1439 /*
1440 * Start the receive process.
1441 */
1442 ATW_WRITE(sc, ATW_RDR, 0x1);
1443
1444 /*
1445 * Note that the interface is now running.
1446 */
1447 ifp->if_flags |= IFF_RUNNING;
1448 ifp->if_flags &= ~IFF_OACTIVE;
1449
1450 /* send no beacons, yet. */
1451 atw_start_beacon(sc, 0);
1452
1453 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1454 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1455 else
1456 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1457 out:
1458 if (error) {
1459 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1460 ifp->if_timer = 0;
1461 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1462 }
1463 #ifdef ATW_DEBUG
1464 atw_print_regs(sc, "end of init");
1465 #endif /* ATW_DEBUG */
1466
1467 return (error);
1468 }
1469
1470 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1471 * 0: MAC control of RF3000/Si4126.
1472 *
1473 * Applies power, or selects RF front-end? Sets reset condition.
1474 *
1475 * TBD support non-RFMD BBP, non-SiLabs synth.
1476 */
1477 static void
1478 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1479 {
1480 if (enable) {
1481 ATW_WRITE(sc, ATW_SYNRF,
1482 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1483 DELAY(atw_bbp_io_enable_delay);
1484 } else {
1485 ATW_WRITE(sc, ATW_SYNRF, 0);
1486 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1487 }
1488 }
1489
1490 static int
1491 atw_tune(struct atw_softc *sc)
1492 {
1493 int rc;
1494 u_int chan;
1495 struct ieee80211com *ic = &sc->sc_ic;
1496
1497 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1498 if (chan == IEEE80211_CHAN_ANY)
1499 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1500
1501 if (chan == sc->sc_cur_chan)
1502 return 0;
1503
1504 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1505 sc->sc_cur_chan, chan));
1506
1507 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1508
1509 atw_si4126_tune(sc, chan);
1510 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1511 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1512 chan);
1513
1514 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1515 DELAY(atw_nar_delay);
1516 ATW_WRITE(sc, ATW_RDR, 0x1);
1517
1518 if (rc == 0)
1519 sc->sc_cur_chan = chan;
1520
1521 return rc;
1522 }
1523
1524 #ifdef ATW_SYNDEBUG
1525 static void
1526 atw_si4126_print(struct atw_softc *sc)
1527 {
1528 struct ifnet *ifp = &sc->sc_if;
1529 u_int addr, val;
1530
1531 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1532 return;
1533
1534 for (addr = 0; addr <= 8; addr++) {
1535 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1536 if (atw_si4126_read(sc, addr, &val) == 0) {
1537 printf("<unknown> (quitting print-out)\n");
1538 break;
1539 }
1540 printf("%05x\n", val);
1541 }
1542 }
1543 #endif /* ATW_SYNDEBUG */
1544
1545 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1546 *
1547 * The RF/IF synthesizer produces two reference frequencies for
1548 * the RF2948B transceiver. The first frequency the RF2948B requires
1549 * is two times the so-called "intermediate frequency" (IF). Since
1550 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1551 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1552 * frequency required by the transceiver is the radio frequency
1553 * (RF). This is a superheterodyne transceiver; for f(chan) the
1554 * center frequency of the channel we are tuning, RF = f(chan) -
1555 * IF.
1556 *
1557 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1558 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1559 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1560 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1561 */
1562 static void
1563 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1564 {
1565 u_int mhz;
1566 u_int R;
1567 u_int32_t gpio;
1568 u_int16_t gain;
1569
1570 #ifdef ATW_SYNDEBUG
1571 atw_si4126_print(sc);
1572 #endif /* ATW_SYNDEBUG */
1573
1574 if (chan == 14)
1575 mhz = 2484;
1576 else
1577 mhz = 2412 + 5 * (chan - 1);
1578
1579 /* Tune IF to 748MHz to suit the IF LO input of the
1580 * RF2494B, which is 2 x IF. No need to set an IF divider
1581 * because an IF in 526MHz - 952MHz is allowed.
1582 *
1583 * XIN is 44.000MHz, so divide it by two to get allowable
1584 * range of 2-25MHz. SiLabs tells me that this is not
1585 * strictly necessary.
1586 */
1587
1588 if (atw_xindiv2)
1589 R = 44;
1590 else
1591 R = 88;
1592
1593 /* Power-up RF, IF synthesizers. */
1594 atw_si4126_write(sc, SI4126_POWER,
1595 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1596
1597 /* set LPWR, too? */
1598 atw_si4126_write(sc, SI4126_MAIN,
1599 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1600
1601 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1602 * set KP2 to 1.
1603 *
1604 * REFDIF This is different from the reference driver, which
1605 * always sets SI4126_GAIN to 0.
1606 */
1607 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1608
1609 atw_si4126_write(sc, SI4126_GAIN, gain);
1610
1611 /* XIN = 44MHz.
1612 *
1613 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1614 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1615 *
1616 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1617 * so that 1496/88 * 44MHz = 748MHz.
1618 */
1619 atw_si4126_write(sc, SI4126_IFN, 1496);
1620
1621 atw_si4126_write(sc, SI4126_IFR, R);
1622
1623 #ifndef ATW_REFSLAVE
1624 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1625 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1626 * which has no RF1!
1627 */
1628 atw_si4126_write(sc, SI4126_RF1R, R);
1629
1630 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1631 #endif
1632
1633 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1634 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1635 * Now let's multiply it to mhz. So mhz - IF = N.
1636 */
1637 atw_si4126_write(sc, SI4126_RF2R, R);
1638
1639 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1640
1641 /* wait 100us from power-up for RF, IF to settle */
1642 DELAY(100);
1643
1644 gpio = ATW_READ(sc, ATW_GPIO);
1645 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1646 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1647
1648 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1649 /* Set a Prism RF front-end to a special mode for channel 14?
1650 *
1651 * Apparently the SMC2635W needs this, although I don't think
1652 * it has a Prism RF.
1653 */
1654 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1655 }
1656 ATW_WRITE(sc, ATW_GPIO, gpio);
1657
1658 #ifdef ATW_SYNDEBUG
1659 atw_si4126_print(sc);
1660 #endif /* ATW_SYNDEBUG */
1661 }
1662
1663 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1664 * diversity.
1665 *
1666 * !!!
1667 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1668 * !!!
1669 */
1670 static int
1671 atw_rf3000_init(struct atw_softc *sc)
1672 {
1673 int rc = 0;
1674
1675 atw_bbp_io_enable(sc, 1);
1676
1677 /* CCA is acquisition sensitive */
1678 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1679 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1680
1681 if (rc != 0)
1682 goto out;
1683
1684 /* enable diversity */
1685 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1686
1687 if (rc != 0)
1688 goto out;
1689
1690 /* sensible setting from a binary-only driver */
1691 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1692 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1693
1694 if (rc != 0)
1695 goto out;
1696
1697 /* magic from a binary-only driver */
1698 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1699 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1700
1701 if (rc != 0)
1702 goto out;
1703
1704 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1705
1706 if (rc != 0)
1707 goto out;
1708
1709 /* XXX Reference driver remarks that Abocom sets this to 50.
1710 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1711 * in the "reserved" area of register RF3000_OPTIONS1.
1712 */
1713 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1714
1715 if (rc != 0)
1716 goto out;
1717
1718 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1719
1720 if (rc != 0)
1721 goto out;
1722
1723 out:
1724 atw_bbp_io_enable(sc, 0);
1725 return rc;
1726 }
1727
1728 #ifdef ATW_BBPDEBUG
1729 static void
1730 atw_rf3000_print(struct atw_softc *sc)
1731 {
1732 struct ifnet *ifp = &sc->sc_if;
1733 u_int addr, val;
1734
1735 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1736 return;
1737
1738 for (addr = 0x01; addr <= 0x15; addr++) {
1739 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1740 if (atw_rf3000_read(sc, addr, &val) != 0) {
1741 printf("<unknown> (quitting print-out)\n");
1742 break;
1743 }
1744 printf("%08x\n", val);
1745 }
1746 }
1747 #endif /* ATW_BBPDEBUG */
1748
1749 /* Set the power settings on the BBP for channel `chan'. */
1750 static int
1751 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1752 {
1753 int rc = 0;
1754 u_int32_t reg;
1755 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1756
1757 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1758 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1759 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1760
1761 /* odd channels: LSB, even channels: MSB */
1762 if (chan % 2 == 1) {
1763 txpower &= 0xFF;
1764 lpf_cutoff &= 0xFF;
1765 lna_gs_thresh &= 0xFF;
1766 } else {
1767 txpower >>= 8;
1768 lpf_cutoff >>= 8;
1769 lna_gs_thresh >>= 8;
1770 }
1771
1772 #ifdef ATW_BBPDEBUG
1773 atw_rf3000_print(sc);
1774 #endif /* ATW_BBPDEBUG */
1775
1776 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1777 "lna_gs_thresh %02x\n",
1778 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1779
1780 atw_bbp_io_enable(sc, 1);
1781
1782 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1783 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1784 goto out;
1785
1786 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1787 goto out;
1788
1789 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1790 goto out;
1791
1792 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1793
1794 if (rc != 0)
1795 goto out;
1796
1797 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1798
1799 if (rc != 0)
1800 goto out;
1801
1802 #ifdef ATW_BBPDEBUG
1803 atw_rf3000_print(sc);
1804 #endif /* ATW_BBPDEBUG */
1805
1806 out:
1807 atw_bbp_io_enable(sc, 0);
1808
1809 /* set beacon, rts, atim transmit power */
1810 reg = ATW_READ(sc, ATW_PLCPHD);
1811 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1812 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1813 ATW_PLCPHD_SERVICE_MASK);
1814 ATW_WRITE(sc, ATW_PLCPHD, reg);
1815 DELAY(atw_plcphd_delay);
1816
1817 return rc;
1818 }
1819
1820 /* Write a register on the RF3000 baseband processor using the
1821 * registers provided by the ADM8211 for this purpose.
1822 *
1823 * Return 0 on success.
1824 */
1825 static int
1826 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1827 {
1828 u_int32_t reg;
1829 int i;
1830
1831 reg = sc->sc_bbpctl_wr |
1832 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1833 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1834
1835 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1836 ATW_WRITE(sc, ATW_BBPCTL, reg);
1837 DELAY(2 * atw_pseudo_milli);
1838 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1839 break;
1840 }
1841
1842 if (i < 0) {
1843 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1844 return ETIMEDOUT;
1845 }
1846 return 0;
1847 }
1848
1849 /* Read a register on the RF3000 baseband processor using the registers
1850 * the ADM8211 provides for this purpose.
1851 *
1852 * The 7-bit register address is addr. Record the 8-bit data in the register
1853 * in *val.
1854 *
1855 * Return 0 on success.
1856 *
1857 * XXX This does not seem to work. The ADM8211 must require more or
1858 * different magic to read the chip than to write it. Possibly some
1859 * of the magic I have derived from a binary-only driver concerns
1860 * the "chip address" (see the RF3000 manual).
1861 */
1862 #ifdef ATW_BBPDEBUG
1863 static int
1864 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1865 {
1866 u_int32_t reg;
1867 int i;
1868
1869 for (i = 1000; --i >= 0; ) {
1870 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1871 break;
1872 DELAY(100);
1873 }
1874
1875 if (i < 0) {
1876 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1877 sc->sc_dev.dv_xname);
1878 return ETIMEDOUT;
1879 }
1880
1881 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1882
1883 ATW_WRITE(sc, ATW_BBPCTL, reg);
1884
1885 for (i = 1000; --i >= 0; ) {
1886 DELAY(100);
1887 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1888 break;
1889 }
1890
1891 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1892
1893 if (i < 0) {
1894 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1895 sc->sc_dev.dv_xname, reg);
1896 return ETIMEDOUT;
1897 }
1898 if (val != NULL)
1899 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1900 return 0;
1901 }
1902 #endif /* ATW_BBPDEBUG */
1903
1904 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1905 * provided by the ADM8211 for that purpose.
1906 *
1907 * val is 18 bits of data, and val is the 4-bit address of the register.
1908 *
1909 * Return 0 on success.
1910 */
1911 static void
1912 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1913 {
1914 uint32_t bits, mask, reg;
1915 const int nbits = 22;
1916
1917 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1918 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1919
1920 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1921 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1922
1923 reg = ATW_SYNRF_SELSYN;
1924 /* reference driver: reset Si4126 serial bus to initial
1925 * conditions?
1926 */
1927 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1928 ATW_WRITE(sc, ATW_SYNRF, reg);
1929
1930 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1931 if ((bits & mask) != 0)
1932 reg |= ATW_SYNRF_SYNDATA;
1933 else
1934 reg &= ~ATW_SYNRF_SYNDATA;
1935 ATW_WRITE(sc, ATW_SYNRF, reg);
1936 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1937 ATW_WRITE(sc, ATW_SYNRF, reg);
1938 }
1939 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1940 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1941 }
1942
1943 /* Read 18-bit data from the 4-bit address addr in Si4126
1944 * RF synthesizer and write the data to *val. Return 0 on success.
1945 *
1946 * XXX This does not seem to work. The ADM8211 must require more or
1947 * different magic to read the chip than to write it.
1948 */
1949 #ifdef ATW_SYNDEBUG
1950 static int
1951 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1952 {
1953 u_int32_t reg;
1954 int i;
1955
1956 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1957
1958 for (i = 1000; --i >= 0; ) {
1959 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1960 break;
1961 DELAY(100);
1962 }
1963
1964 if (i < 0) {
1965 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1966 sc->sc_dev.dv_xname);
1967 return ETIMEDOUT;
1968 }
1969
1970 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1971
1972 ATW_WRITE(sc, ATW_SYNCTL, reg);
1973
1974 for (i = 1000; --i >= 0; ) {
1975 DELAY(100);
1976 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1977 break;
1978 }
1979
1980 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1981
1982 if (i < 0) {
1983 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1984 sc->sc_dev.dv_xname, reg);
1985 return ETIMEDOUT;
1986 }
1987 if (val != NULL)
1988 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1989 ATW_SYNCTL_DATA_MASK);
1990 return 0;
1991 }
1992 #endif /* ATW_SYNDEBUG */
1993
1994 /* XXX is the endianness correct? test. */
1995 #define atw_calchash(addr) \
1996 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1997
1998 /*
1999 * atw_filter_setup:
2000 *
2001 * Set the ADM8211's receive filter.
2002 */
2003 static void
2004 atw_filter_setup(struct atw_softc *sc)
2005 {
2006 struct ieee80211com *ic = &sc->sc_ic;
2007 struct ethercom *ec = &sc->sc_ec;
2008 struct ifnet *ifp = &sc->sc_if;
2009 int hash;
2010 u_int32_t hashes[2];
2011 struct ether_multi *enm;
2012 struct ether_multistep step;
2013
2014 /* According to comments in tlp_al981_filter_setup
2015 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2016 * multicast filter to be set while it is running. Hopefully
2017 * the ADM8211 is not the same!
2018 */
2019 if ((ifp->if_flags & IFF_RUNNING) != 0)
2020 atw_idle(sc, ATW_NAR_SR);
2021
2022 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2023
2024 /* XXX in scan mode, do not filter packets. Maybe this is
2025 * unnecessary.
2026 */
2027 if (ic->ic_state == IEEE80211_S_SCAN ||
2028 (ifp->if_flags & IFF_PROMISC) != 0) {
2029 sc->sc_opmode |= ATW_NAR_PR;
2030 goto allmulti;
2031 }
2032
2033 hashes[0] = hashes[1] = 0x0;
2034
2035 /*
2036 * Program the 64-bit multicast hash filter.
2037 */
2038 ETHER_FIRST_MULTI(step, ec, enm);
2039 while (enm != NULL) {
2040 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2041 ETHER_ADDR_LEN) != 0)
2042 goto allmulti;
2043
2044 hash = atw_calchash(enm->enm_addrlo);
2045 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2046 ETHER_NEXT_MULTI(step, enm);
2047 sc->sc_opmode |= ATW_NAR_MM;
2048 }
2049 ifp->if_flags &= ~IFF_ALLMULTI;
2050 goto setit;
2051
2052 allmulti:
2053 sc->sc_opmode |= ATW_NAR_MM;
2054 ifp->if_flags |= IFF_ALLMULTI;
2055 hashes[0] = hashes[1] = 0xffffffff;
2056
2057 setit:
2058 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2059 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2060 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2061 DELAY(atw_nar_delay);
2062
2063 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2064 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2065 }
2066
2067 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2068 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2069 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2070 * no beacon with the preferred BSSID and SSID in the number of
2071 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2072 */
2073 static void
2074 atw_write_bssid(struct atw_softc *sc)
2075 {
2076 struct ieee80211com *ic = &sc->sc_ic;
2077 u_int8_t *bssid;
2078
2079 bssid = ic->ic_bss->ni_bssid;
2080
2081 ATW_WRITE(sc, ATW_BSSID0,
2082 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2083 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2084 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2085 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2086
2087 ATW_WRITE(sc, ATW_ABDA1,
2088 (ATW_READ(sc, ATW_ABDA1) &
2089 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2090 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2091 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2092
2093 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2094 ether_sprintf(sc->sc_bssid)));
2095 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2096
2097 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2098 }
2099
2100 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2101 * 16-bit word.
2102 */
2103 static void
2104 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2105 {
2106 u_int i;
2107 u_int8_t *ptr;
2108
2109 memcpy(&sc->sc_sram[ofs], buf, buflen);
2110
2111 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2112
2113 KASSERT(buflen + ofs <= sc->sc_sramlen);
2114
2115 ptr = &sc->sc_sram[ofs];
2116
2117 for (i = 0; i < buflen; i += 2) {
2118 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2119 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2120 DELAY(atw_writewep_delay);
2121
2122 ATW_WRITE(sc, ATW_WESK,
2123 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2124 DELAY(atw_writewep_delay);
2125 }
2126 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2127
2128 if (sc->sc_if.if_flags & IFF_DEBUG) {
2129 int n_octets = 0;
2130 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2131 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2132 for (i = 0; i < buflen; i++) {
2133 printf(" %02x", ptr[i]);
2134 if (++n_octets % 24 == 0)
2135 printf("\n");
2136 }
2137 if (n_octets % 24 != 0)
2138 printf("\n");
2139 }
2140 }
2141
2142 static int
2143 atw_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
2144 {
2145 int keyix;
2146 #ifdef ATW_DEBUG
2147 struct atw_softc *sc = ic->ic_ifp->if_softc;
2148 #endif
2149
2150 if (&ic->ic_nw_keys[0] <= k &&
2151 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])
2152 keyix = k - ic->ic_nw_keys;
2153 else
2154 keyix = IEEE80211_KEYIX_NONE;
2155
2156 DPRINTF(sc, ("%s: alloc key %u\n", __func__, keyix));
2157
2158 return keyix;
2159 }
2160
2161 static int
2162 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2163 {
2164 struct atw_softc *sc = ic->ic_ifp->if_softc;
2165 u_int keyix = k->wk_keyix;
2166
2167 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2168
2169 if (keyix >= IEEE80211_WEP_NKID)
2170 return 0;
2171 if (k->wk_keylen != 0)
2172 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2173
2174 return 1;
2175 }
2176
2177 static int
2178 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2179 const u_int8_t mac[IEEE80211_ADDR_LEN])
2180 {
2181 struct atw_softc *sc = ic->ic_ifp->if_softc;
2182
2183 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2184
2185 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2186 return 0;
2187
2188 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2189
2190 return 1;
2191 }
2192
2193 static void
2194 atw_key_update_begin(struct ieee80211com *ic)
2195 {
2196 #ifdef ATW_DEBUG
2197 struct ifnet *ifp = ic->ic_ifp;
2198 struct atw_softc *sc = ifp->if_softc;
2199 #endif
2200
2201 DPRINTF(sc, ("%s:\n", __func__));
2202 }
2203
2204 static void
2205 atw_key_update_end(struct ieee80211com *ic)
2206 {
2207 struct ifnet *ifp = ic->ic_ifp;
2208 struct atw_softc *sc = ifp->if_softc;
2209
2210 DPRINTF(sc, ("%s:\n", __func__));
2211
2212 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2213 return;
2214 atw_write_wep(sc);
2215 }
2216
2217 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2218 static void
2219 atw_write_wep(struct atw_softc *sc)
2220 {
2221 struct ieee80211com *ic = &sc->sc_ic;
2222 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2223 u_int8_t buf[IEEE80211_WEP_NKID]
2224 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2225 u_int32_t reg;
2226 int i;
2227
2228 sc->sc_wepctl = 0;
2229 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2230
2231 memset(&buf[0][0], 0, sizeof(buf));
2232
2233 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2234 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2235 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2236 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2237 buf[i][1] = ATW_WEP_ENABLED;
2238 } else {
2239 buf[i][1] = 0;
2240 continue;
2241 }
2242 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2243 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2244 ic->ic_nw_keys[i].wk_keylen - 1);
2245 }
2246
2247 reg = ATW_READ(sc, ATW_MACTEST);
2248 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2249 reg &= ~ATW_MACTEST_KEYID_MASK;
2250 reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2251 ATW_WRITE(sc, ATW_MACTEST, reg);
2252
2253 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2254 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2255
2256 switch (sc->sc_rev) {
2257 case ATW_REVISION_AB:
2258 case ATW_REVISION_AF:
2259 /* Bypass WEP on Rx. */
2260 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2261 break;
2262 default:
2263 break;
2264 }
2265
2266 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2267 sizeof(buf));
2268
2269 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2270 }
2271
2272 static void
2273 atw_change_ibss(struct atw_softc *sc)
2274 {
2275 atw_predict_beacon(sc);
2276 atw_write_bssid(sc);
2277 atw_start_beacon(sc, 1);
2278 }
2279
2280 static void
2281 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2282 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2283 {
2284 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2285
2286 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2287 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2288 return;
2289
2290 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2291
2292 switch (subtype) {
2293 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2294 case IEEE80211_FC0_SUBTYPE_BEACON:
2295 if (ic->ic_opmode != IEEE80211_M_IBSS ||
2296 ic->ic_state != IEEE80211_S_RUN)
2297 break;
2298 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc) &&
2299 ieee80211_ibss_merge(ic, ni) == ENETRESET)
2300 atw_change_ibss(sc);
2301 break;
2302 default:
2303 break;
2304 }
2305 return;
2306 }
2307
2308 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2309 * In ad hoc mode, the SSID is written to the beacons sent by the
2310 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2311 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2312 * indications.
2313 */
2314 static void
2315 atw_write_ssid(struct atw_softc *sc)
2316 {
2317 struct ieee80211com *ic = &sc->sc_ic;
2318 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2319 * it only expects the element length, not its ID.
2320 */
2321 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2322
2323 memset(buf, 0, sizeof(buf));
2324 buf[0] = ic->ic_bss->ni_esslen;
2325 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2326
2327 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2328 roundup(1 + ic->ic_bss->ni_esslen, 2));
2329 }
2330
2331 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2332 * In ad hoc mode, the supported rates are written to beacons sent by the
2333 * ADM8211.
2334 */
2335 static void
2336 atw_write_sup_rates(struct atw_softc *sc)
2337 {
2338 struct ieee80211com *ic = &sc->sc_ic;
2339 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2340 * supported rates
2341 */
2342 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2343
2344 memset(buf, 0, sizeof(buf));
2345
2346 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2347
2348 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2349 ic->ic_bss->ni_rates.rs_nrates);
2350
2351 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2352 }
2353
2354 /* Start/stop sending beacons. */
2355 void
2356 atw_start_beacon(struct atw_softc *sc, int start)
2357 {
2358 struct ieee80211com *ic = &sc->sc_ic;
2359 uint16_t chan;
2360 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2361 size_t len;
2362
2363 if (ATW_IS_ENABLED(sc) == 0)
2364 return;
2365
2366 /* start beacons */
2367 len = sizeof(struct ieee80211_frame) +
2368 8 /* timestamp */ + 2 /* beacon interval */ +
2369 2 /* capability info */ +
2370 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2371 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2372 3 /* DS parameters */ +
2373 IEEE80211_CRC_LEN;
2374
2375 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2376 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2377 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2378
2379 ATW_WRITE(sc, ATW_BCNT, bcnt);
2380 ATW_WRITE(sc, ATW_CAP1, cap1);
2381
2382 if (!start)
2383 return;
2384
2385 /* TBD use ni_capinfo */
2386
2387 capinfo = 0;
2388 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2389 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2390 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2391 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2392
2393 switch (ic->ic_opmode) {
2394 case IEEE80211_M_IBSS:
2395 len += 4; /* IBSS parameters */
2396 capinfo |= IEEE80211_CAPINFO_IBSS;
2397 break;
2398 case IEEE80211_M_HOSTAP:
2399 /* XXX 6-byte minimum TIM */
2400 len += atw_beacon_len_adjust;
2401 capinfo |= IEEE80211_CAPINFO_ESS;
2402 break;
2403 default:
2404 return;
2405 }
2406
2407 /* set listen interval
2408 * XXX do software units agree w/ hardware?
2409 */
2410 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2411 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2412
2413 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
2414
2415 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2416 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2417 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2418
2419 ATW_WRITE(sc, ATW_BCNT, bcnt);
2420 ATW_WRITE(sc, ATW_BPLI, bpli);
2421 ATW_WRITE(sc, ATW_CAP0, cap0);
2422 ATW_WRITE(sc, ATW_CAP1, cap1);
2423
2424 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2425 sc->sc_dev.dv_xname, bcnt));
2426
2427 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2428 sc->sc_dev.dv_xname, cap1));
2429 }
2430
2431 /* Return the 32 lsb of the last TSFT divisible by ival. */
2432 static __inline uint32_t
2433 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2434 {
2435 /* Following the reference driver's lead, I compute
2436 *
2437 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2438 *
2439 * without using 64-bit arithmetic, using the following
2440 * relationship:
2441 *
2442 * (0x100000000 * H + L) % m
2443 * = ((0x100000000 % m) * H + L) % m
2444 * = (((0xffffffff + 1) % m) * H + L) % m
2445 * = ((0xffffffff % m + 1 % m) * H + L) % m
2446 * = ((0xffffffff % m + 1) * H + L) % m
2447 */
2448 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2449 }
2450
2451 static uint64_t
2452 atw_get_tsft(struct atw_softc *sc)
2453 {
2454 int i;
2455 uint32_t tsfth, tsftl;
2456 for (i = 0; i < 2; i++) {
2457 tsfth = ATW_READ(sc, ATW_TSFTH);
2458 tsftl = ATW_READ(sc, ATW_TSFTL);
2459 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2460 break;
2461 }
2462 return ((uint64_t)tsfth << 32) | tsftl;
2463 }
2464
2465 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2466 * the ieee80211com.
2467 *
2468 * Predict the next target beacon transmission time (TBTT) and
2469 * write it to the ADM8211.
2470 */
2471 static void
2472 atw_predict_beacon(struct atw_softc *sc)
2473 {
2474 #define TBTTOFS 20 /* TU */
2475
2476 struct ieee80211com *ic = &sc->sc_ic;
2477 uint64_t tsft;
2478 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2479 union {
2480 uint64_t word;
2481 uint8_t tstamp[8];
2482 } u;
2483
2484 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2485 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2486 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2487 tsft = atw_get_tsft(sc);
2488 u.word = htole64(tsft);
2489 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2490 sizeof(ic->ic_bss->ni_tstamp));
2491 } else
2492 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2493
2494 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2495
2496 tsftl = tsft & 0xFFFFFFFF;
2497 tsfth = tsft >> 32;
2498
2499 /* We sent/received the last beacon `past' microseconds
2500 * after the interval divided the TSF timer.
2501 */
2502 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2503
2504 /* Skip ten beacons so that the TBTT cannot pass before
2505 * we've programmed it. Ten is an arbitrary number.
2506 */
2507 tbtt = past_even + ival * 10;
2508
2509 ATW_WRITE(sc, ATW_TOFS1,
2510 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2511 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2512 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2513 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2514 #undef TBTTOFS
2515 }
2516
2517 static void
2518 atw_next_scan(void *arg)
2519 {
2520 struct atw_softc *sc = arg;
2521 struct ieee80211com *ic = &sc->sc_ic;
2522 int s;
2523
2524 /* don't call atw_start w/o network interrupts blocked */
2525 s = splnet();
2526 if (ic->ic_state == IEEE80211_S_SCAN)
2527 ieee80211_next_scan(ic);
2528 splx(s);
2529 }
2530
2531 /* Synchronize the hardware state with the software state. */
2532 static int
2533 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2534 {
2535 struct ifnet *ifp = ic->ic_ifp;
2536 struct atw_softc *sc = ifp->if_softc;
2537 enum ieee80211_state ostate;
2538 int error;
2539
2540 ostate = ic->ic_state;
2541
2542 if (nstate == IEEE80211_S_INIT) {
2543 callout_stop(&sc->sc_scan_ch);
2544 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2545 atw_start_beacon(sc, 0);
2546 return (*sc->sc_newstate)(ic, nstate, arg);
2547 }
2548
2549 if ((error = atw_tune(sc)) != 0)
2550 return error;
2551
2552 switch (nstate) {
2553 case IEEE80211_S_ASSOC:
2554 break;
2555 case IEEE80211_S_INIT:
2556 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2557 break;
2558 case IEEE80211_S_SCAN:
2559 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2560 atw_next_scan, sc);
2561
2562 break;
2563 case IEEE80211_S_RUN:
2564 if (ic->ic_opmode == IEEE80211_M_STA)
2565 break;
2566 /*FALLTHROUGH*/
2567 case IEEE80211_S_AUTH:
2568 atw_write_bssid(sc);
2569 atw_write_ssid(sc);
2570 atw_write_sup_rates(sc);
2571
2572 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2573 ic->ic_opmode == IEEE80211_M_MONITOR)
2574 break;
2575
2576 /* set listen interval
2577 * XXX do software units agree w/ hardware?
2578 */
2579 ATW_WRITE(sc, ATW_BPLI,
2580 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2581 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2582 ATW_BPLI_LI_MASK));
2583
2584 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2585 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2586
2587 atw_predict_beacon(sc);
2588 break;
2589 }
2590
2591 if (nstate != IEEE80211_S_SCAN)
2592 callout_stop(&sc->sc_scan_ch);
2593
2594 if (nstate == IEEE80211_S_RUN &&
2595 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2596 ic->ic_opmode == IEEE80211_M_IBSS))
2597 atw_start_beacon(sc, 1);
2598 else
2599 atw_start_beacon(sc, 0);
2600
2601 error = (*sc->sc_newstate)(ic, nstate, arg);
2602
2603 if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2604 atw_write_bssid(sc);
2605
2606 return error;
2607 }
2608
2609 /*
2610 * atw_add_rxbuf:
2611 *
2612 * Add a receive buffer to the indicated descriptor.
2613 */
2614 int
2615 atw_add_rxbuf(struct atw_softc *sc, int idx)
2616 {
2617 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2618 struct mbuf *m;
2619 int error;
2620
2621 MGETHDR(m, M_DONTWAIT, MT_DATA);
2622 if (m == NULL)
2623 return (ENOBUFS);
2624
2625 MCLGET(m, M_DONTWAIT);
2626 if ((m->m_flags & M_EXT) == 0) {
2627 m_freem(m);
2628 return (ENOBUFS);
2629 }
2630
2631 if (rxs->rxs_mbuf != NULL)
2632 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2633
2634 rxs->rxs_mbuf = m;
2635
2636 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2637 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2638 BUS_DMA_READ|BUS_DMA_NOWAIT);
2639 if (error) {
2640 printf("%s: can't load rx DMA map %d, error = %d\n",
2641 sc->sc_dev.dv_xname, idx, error);
2642 panic("atw_add_rxbuf"); /* XXX */
2643 }
2644
2645 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2646 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2647
2648 ATW_INIT_RXDESC(sc, idx);
2649
2650 return (0);
2651 }
2652
2653 /*
2654 * Release any queued transmit buffers.
2655 */
2656 void
2657 atw_txdrain(struct atw_softc *sc)
2658 {
2659 struct atw_txsoft *txs;
2660
2661 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2662 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2663 if (txs->txs_mbuf != NULL) {
2664 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2665 m_freem(txs->txs_mbuf);
2666 txs->txs_mbuf = NULL;
2667 }
2668 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2669 }
2670 sc->sc_tx_timer = 0;
2671 }
2672
2673 /*
2674 * atw_stop: [ ifnet interface function ]
2675 *
2676 * Stop transmission on the interface.
2677 */
2678 void
2679 atw_stop(struct ifnet *ifp, int disable)
2680 {
2681 struct atw_softc *sc = ifp->if_softc;
2682 struct ieee80211com *ic = &sc->sc_ic;
2683
2684 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2685
2686 /* Disable interrupts. */
2687 ATW_WRITE(sc, ATW_IER, 0);
2688
2689 /* Stop the transmit and receive processes. */
2690 sc->sc_opmode = 0;
2691 ATW_WRITE(sc, ATW_NAR, 0);
2692 DELAY(atw_nar_delay);
2693 ATW_WRITE(sc, ATW_TDBD, 0);
2694 ATW_WRITE(sc, ATW_TDBP, 0);
2695 ATW_WRITE(sc, ATW_RDB, 0);
2696
2697 atw_txdrain(sc);
2698
2699 if (disable) {
2700 atw_rxdrain(sc);
2701 atw_disable(sc);
2702 }
2703
2704 /*
2705 * Mark the interface down and cancel the watchdog timer.
2706 */
2707 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2708 ifp->if_timer = 0;
2709
2710 if (!disable)
2711 atw_reset(sc);
2712 }
2713
2714 /*
2715 * atw_rxdrain:
2716 *
2717 * Drain the receive queue.
2718 */
2719 void
2720 atw_rxdrain(struct atw_softc *sc)
2721 {
2722 struct atw_rxsoft *rxs;
2723 int i;
2724
2725 for (i = 0; i < ATW_NRXDESC; i++) {
2726 rxs = &sc->sc_rxsoft[i];
2727 if (rxs->rxs_mbuf == NULL)
2728 continue;
2729 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2730 m_freem(rxs->rxs_mbuf);
2731 rxs->rxs_mbuf = NULL;
2732 }
2733 }
2734
2735 /*
2736 * atw_detach:
2737 *
2738 * Detach an ADM8211 interface.
2739 */
2740 int
2741 atw_detach(struct atw_softc *sc)
2742 {
2743 struct ifnet *ifp = &sc->sc_if;
2744 struct atw_rxsoft *rxs;
2745 struct atw_txsoft *txs;
2746 int i;
2747
2748 /*
2749 * Succeed now if there isn't any work to do.
2750 */
2751 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2752 return (0);
2753
2754 callout_stop(&sc->sc_scan_ch);
2755
2756 ieee80211_ifdetach(&sc->sc_ic);
2757 if_detach(ifp);
2758
2759 for (i = 0; i < ATW_NRXDESC; i++) {
2760 rxs = &sc->sc_rxsoft[i];
2761 if (rxs->rxs_mbuf != NULL) {
2762 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2763 m_freem(rxs->rxs_mbuf);
2764 rxs->rxs_mbuf = NULL;
2765 }
2766 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2767 }
2768 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2769 txs = &sc->sc_txsoft[i];
2770 if (txs->txs_mbuf != NULL) {
2771 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2772 m_freem(txs->txs_mbuf);
2773 txs->txs_mbuf = NULL;
2774 }
2775 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2776 }
2777 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2778 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2779 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2780 sizeof(struct atw_control_data));
2781 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2782
2783 shutdownhook_disestablish(sc->sc_sdhook);
2784 powerhook_disestablish(sc->sc_powerhook);
2785
2786 if (sc->sc_srom)
2787 free(sc->sc_srom, M_DEVBUF);
2788
2789 return (0);
2790 }
2791
2792 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2793 void
2794 atw_shutdown(void *arg)
2795 {
2796 struct atw_softc *sc = arg;
2797
2798 atw_stop(&sc->sc_if, 1);
2799 }
2800
2801 int
2802 atw_intr(void *arg)
2803 {
2804 struct atw_softc *sc = arg;
2805 struct ifnet *ifp = &sc->sc_if;
2806 u_int32_t status, rxstatus, txstatus, linkstatus;
2807 int handled = 0, txthresh;
2808
2809 #ifdef DEBUG
2810 if (ATW_IS_ENABLED(sc) == 0)
2811 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2812 #endif
2813
2814 /*
2815 * If the interface isn't running, the interrupt couldn't
2816 * possibly have come from us.
2817 */
2818 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2819 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2820 return (0);
2821
2822 for (;;) {
2823 status = ATW_READ(sc, ATW_STSR);
2824
2825 if (status)
2826 ATW_WRITE(sc, ATW_STSR, status);
2827
2828 #ifdef ATW_DEBUG
2829 #define PRINTINTR(flag) do { \
2830 if ((status & flag) != 0) { \
2831 printf("%s" #flag, delim); \
2832 delim = ","; \
2833 } \
2834 } while (0)
2835
2836 if (atw_debug > 1 && status) {
2837 const char *delim = "<";
2838
2839 printf("%s: reg[STSR] = %x",
2840 sc->sc_dev.dv_xname, status);
2841
2842 PRINTINTR(ATW_INTR_FBE);
2843 PRINTINTR(ATW_INTR_LINKOFF);
2844 PRINTINTR(ATW_INTR_LINKON);
2845 PRINTINTR(ATW_INTR_RCI);
2846 PRINTINTR(ATW_INTR_RDU);
2847 PRINTINTR(ATW_INTR_REIS);
2848 PRINTINTR(ATW_INTR_RPS);
2849 PRINTINTR(ATW_INTR_TCI);
2850 PRINTINTR(ATW_INTR_TDU);
2851 PRINTINTR(ATW_INTR_TLT);
2852 PRINTINTR(ATW_INTR_TPS);
2853 PRINTINTR(ATW_INTR_TRT);
2854 PRINTINTR(ATW_INTR_TUF);
2855 PRINTINTR(ATW_INTR_BCNTC);
2856 PRINTINTR(ATW_INTR_ATIME);
2857 PRINTINTR(ATW_INTR_TBTT);
2858 PRINTINTR(ATW_INTR_TSCZ);
2859 PRINTINTR(ATW_INTR_TSFTF);
2860 printf(">\n");
2861 }
2862 #undef PRINTINTR
2863 #endif /* ATW_DEBUG */
2864
2865 if ((status & sc->sc_inten) == 0)
2866 break;
2867
2868 handled = 1;
2869
2870 rxstatus = status & sc->sc_rxint_mask;
2871 txstatus = status & sc->sc_txint_mask;
2872 linkstatus = status & sc->sc_linkint_mask;
2873
2874 if (linkstatus) {
2875 atw_linkintr(sc, linkstatus);
2876 }
2877
2878 if (rxstatus) {
2879 /* Grab any new packets. */
2880 atw_rxintr(sc);
2881
2882 if (rxstatus & ATW_INTR_RDU) {
2883 printf("%s: receive ring overrun\n",
2884 sc->sc_dev.dv_xname);
2885 /* Get the receive process going again. */
2886 ATW_WRITE(sc, ATW_RDR, 0x1);
2887 break;
2888 }
2889 }
2890
2891 if (txstatus) {
2892 /* Sweep up transmit descriptors. */
2893 atw_txintr(sc);
2894
2895 if (txstatus & ATW_INTR_TLT)
2896 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2897 sc->sc_dev.dv_xname));
2898
2899 if (txstatus & ATW_INTR_TRT)
2900 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2901 sc->sc_dev.dv_xname));
2902
2903 /* If Tx under-run, increase our transmit threshold
2904 * if another is available.
2905 */
2906 txthresh = sc->sc_txthresh + 1;
2907 if ((txstatus & ATW_INTR_TUF) &&
2908 sc->sc_txth[txthresh].txth_name != NULL) {
2909 /* Idle the transmit process. */
2910 atw_idle(sc, ATW_NAR_ST);
2911
2912 sc->sc_txthresh = txthresh;
2913 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2914 sc->sc_opmode |=
2915 sc->sc_txth[txthresh].txth_opmode;
2916 printf("%s: transmit underrun; new "
2917 "threshold: %s\n", sc->sc_dev.dv_xname,
2918 sc->sc_txth[txthresh].txth_name);
2919
2920 /* Set the new threshold and restart
2921 * the transmit process.
2922 */
2923 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2924 DELAY(atw_nar_delay);
2925 ATW_WRITE(sc, ATW_RDR, 0x1);
2926 /* XXX Log every Nth underrun from
2927 * XXX now on?
2928 */
2929 }
2930 }
2931
2932 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2933 if (status & ATW_INTR_TPS)
2934 printf("%s: transmit process stopped\n",
2935 sc->sc_dev.dv_xname);
2936 if (status & ATW_INTR_RPS)
2937 printf("%s: receive process stopped\n",
2938 sc->sc_dev.dv_xname);
2939 (void)atw_init(ifp);
2940 break;
2941 }
2942
2943 if (status & ATW_INTR_FBE) {
2944 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2945 (void)atw_init(ifp);
2946 break;
2947 }
2948
2949 /*
2950 * Not handled:
2951 *
2952 * Transmit buffer unavailable -- normal
2953 * condition, nothing to do, really.
2954 *
2955 * Early receive interrupt -- not available on
2956 * all chips, we just use RI. We also only
2957 * use single-segment receive DMA, so this
2958 * is mostly useless.
2959 *
2960 * TBD others
2961 */
2962 }
2963
2964 /* Try to get more packets going. */
2965 atw_start(ifp);
2966
2967 return (handled);
2968 }
2969
2970 /*
2971 * atw_idle:
2972 *
2973 * Cause the transmit and/or receive processes to go idle.
2974 *
2975 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2976 * process in STSR if I clear SR or ST after the process has already
2977 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2978 * do not seem to be too reliable. Perhaps I have the sense of the
2979 * Rx bits switched with the Tx bits?
2980 */
2981 void
2982 atw_idle(struct atw_softc *sc, u_int32_t bits)
2983 {
2984 u_int32_t ackmask = 0, opmode, stsr, test0;
2985 int i, s;
2986
2987 s = splnet();
2988
2989 opmode = sc->sc_opmode & ~bits;
2990
2991 if (bits & ATW_NAR_SR)
2992 ackmask |= ATW_INTR_RPS;
2993
2994 if (bits & ATW_NAR_ST) {
2995 ackmask |= ATW_INTR_TPS;
2996 /* set ATW_NAR_HF to flush TX FIFO. */
2997 opmode |= ATW_NAR_HF;
2998 }
2999
3000 ATW_WRITE(sc, ATW_NAR, opmode);
3001 DELAY(atw_nar_delay);
3002
3003 for (i = 0; i < 1000; i++) {
3004 stsr = ATW_READ(sc, ATW_STSR);
3005 if ((stsr & ackmask) == ackmask)
3006 break;
3007 DELAY(10);
3008 }
3009
3010 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3011
3012 if ((stsr & ackmask) == ackmask)
3013 goto out;
3014
3015 test0 = ATW_READ(sc, ATW_TEST0);
3016
3017 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3018 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3019 printf("%s: transmit process not idle [%s]\n",
3020 sc->sc_dev.dv_xname,
3021 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
3022 printf("%s: bits %08x test0 %08x stsr %08x\n",
3023 sc->sc_dev.dv_xname, bits, test0, stsr);
3024 }
3025
3026 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3027 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3028 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3029 sc->sc_dev.dv_xname,
3030 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
3031 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3032 sc->sc_dev.dv_xname, bits, test0, stsr));
3033 }
3034 out:
3035 if ((bits & ATW_NAR_ST) != 0)
3036 atw_txdrain(sc);
3037 splx(s);
3038 return;
3039 }
3040
3041 /*
3042 * atw_linkintr:
3043 *
3044 * Helper; handle link-status interrupts.
3045 */
3046 void
3047 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3048 {
3049 struct ieee80211com *ic = &sc->sc_ic;
3050
3051 if (ic->ic_state != IEEE80211_S_RUN)
3052 return;
3053
3054 if (linkstatus & ATW_INTR_LINKON) {
3055 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3056 sc->sc_rescan_timer = 0;
3057 } else if (linkstatus & ATW_INTR_LINKOFF) {
3058 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3059 if (ic->ic_opmode != IEEE80211_M_STA)
3060 return;
3061 sc->sc_rescan_timer = 3;
3062 sc->sc_if.if_timer = 1;
3063 }
3064 }
3065
3066 static __inline int
3067 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3068 {
3069 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3070 return 0;
3071 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3072 return 0;
3073 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3074 }
3075
3076 /*
3077 * atw_rxintr:
3078 *
3079 * Helper; handle receive interrupts.
3080 */
3081 void
3082 atw_rxintr(struct atw_softc *sc)
3083 {
3084 static int rate_tbl[] = {2, 4, 11, 22, 44};
3085 struct ieee80211com *ic = &sc->sc_ic;
3086 struct ieee80211_node *ni;
3087 struct ieee80211_frame_min *wh;
3088 struct ifnet *ifp = &sc->sc_if;
3089 struct atw_rxsoft *rxs;
3090 struct mbuf *m;
3091 u_int32_t rxstat;
3092 int i, len, rate, rate0;
3093 u_int32_t rssi, rssi0;
3094
3095 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3096 rxs = &sc->sc_rxsoft[i];
3097
3098 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3099
3100 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3101 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3102 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3103
3104 if (rxstat & ATW_RXSTAT_OWN)
3105 break; /* We have processed all receive buffers. */
3106
3107 DPRINTF3(sc,
3108 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3109 sc->sc_dev.dv_xname,
3110 rxstat, rssi0,
3111 le32toh(sc->sc_rxdescs[i].ar_buf1),
3112 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3113
3114 /*
3115 * Make sure the packet fits in one buffer. This should
3116 * always be the case.
3117 */
3118 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3119 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3120 printf("%s: incoming packet spilled, resetting\n",
3121 sc->sc_dev.dv_xname);
3122 (void)atw_init(ifp);
3123 return;
3124 }
3125
3126 /*
3127 * If an error occurred, update stats, clear the status
3128 * word, and leave the packet buffer in place. It will
3129 * simply be reused the next time the ring comes around.
3130 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3131 * error.
3132 */
3133
3134 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3135 ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3136 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3137 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3138 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3139 ATW_RXSTAT_ICVE)) != 0)) {
3140 #define PRINTERR(bit, str) \
3141 if (rxstat & (bit)) \
3142 printf("%s: receive error: %s\n", \
3143 sc->sc_dev.dv_xname, str)
3144 ifp->if_ierrors++;
3145 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3146 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3147 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3148 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3149 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3150 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3151 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3152 #undef PRINTERR
3153 ATW_INIT_RXDESC(sc, i);
3154 continue;
3155 }
3156
3157 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3158 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3159
3160 /*
3161 * No errors; receive the packet. Note the ADM8211
3162 * includes the CRC in promiscuous mode.
3163 */
3164 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3165
3166 /*
3167 * Allocate a new mbuf cluster. If that fails, we are
3168 * out of memory, and must drop the packet and recycle
3169 * the buffer that's already attached to this descriptor.
3170 */
3171 m = rxs->rxs_mbuf;
3172 if (atw_add_rxbuf(sc, i) != 0) {
3173 ifp->if_ierrors++;
3174 ATW_INIT_RXDESC(sc, i);
3175 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3176 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3177 continue;
3178 }
3179
3180 ifp->if_ipackets++;
3181 if (sc->sc_opmode & ATW_NAR_PR)
3182 len -= IEEE80211_CRC_LEN;
3183 m->m_pkthdr.rcvif = ifp;
3184 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3185
3186 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3187 rate = 0;
3188 else
3189 rate = rate_tbl[rate0];
3190
3191 /* The RSSI comes straight from a register in the
3192 * baseband processor. I know that for the RF3000,
3193 * the RSSI register also contains the antenna-selection
3194 * bits. Mask those off.
3195 *
3196 * TBD Treat other basebands.
3197 */
3198 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3199 rssi = rssi0 & RF3000_RSSI_MASK;
3200 else
3201 rssi = rssi0;
3202
3203 #if NBPFILTER > 0
3204 /* Pass this up to any BPF listeners. */
3205 if (sc->sc_radiobpf != NULL) {
3206 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3207
3208 tap->ar_rate = rate;
3209 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3210 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3211
3212 /* TBD verify units are dB */
3213 tap->ar_antsignal = (int)rssi;
3214 /* TBD tap->ar_flags */
3215
3216 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3217 tap->ar_ihdr.it_len, m);
3218 }
3219 #endif /* NPBFILTER > 0 */
3220
3221 wh = mtod(m, struct ieee80211_frame_min *);
3222 ni = ieee80211_find_rxnode(ic, wh);
3223 if (atw_hw_decrypted(sc, wh)) {
3224 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3225 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3226 }
3227 ieee80211_input(ic, m, ni, (int)rssi, 0);
3228 ieee80211_free_node(ni);
3229 }
3230
3231 /* Update the receive pointer. */
3232 sc->sc_rxptr = i;
3233 }
3234
3235 /*
3236 * atw_txintr:
3237 *
3238 * Helper; handle transmit interrupts.
3239 */
3240 void
3241 atw_txintr(struct atw_softc *sc)
3242 {
3243 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3244 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3245 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3246 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3247
3248 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3249 struct ifnet *ifp = &sc->sc_if;
3250 struct atw_txsoft *txs;
3251 u_int32_t txstat;
3252
3253 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3254 sc->sc_dev.dv_xname, sc->sc_flags));
3255
3256 ifp->if_flags &= ~IFF_OACTIVE;
3257
3258 /*
3259 * Go through our Tx list and free mbufs for those
3260 * frames that have been transmitted.
3261 */
3262 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3263 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3264 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3265
3266 #ifdef ATW_DEBUG
3267 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3268 int i;
3269 printf(" txsoft %p transmit chain:\n", txs);
3270 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3271 txs->txs_ndescs - 1,
3272 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3273 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3274 printf(" descriptor %d:\n", i);
3275 printf(" at_status: 0x%08x\n",
3276 le32toh(sc->sc_txdescs[i].at_stat));
3277 printf(" at_flags: 0x%08x\n",
3278 le32toh(sc->sc_txdescs[i].at_flags));
3279 printf(" at_buf1: 0x%08x\n",
3280 le32toh(sc->sc_txdescs[i].at_buf1));
3281 printf(" at_buf2: 0x%08x\n",
3282 le32toh(sc->sc_txdescs[i].at_buf2));
3283 if (i == txs->txs_lastdesc)
3284 break;
3285 }
3286 }
3287 #endif
3288
3289 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3290 if (txstat & ATW_TXSTAT_OWN)
3291 break;
3292
3293 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3294
3295 sc->sc_txfree += txs->txs_ndescs;
3296
3297 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3298 0, txs->txs_dmamap->dm_mapsize,
3299 BUS_DMASYNC_POSTWRITE);
3300 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3301 m_freem(txs->txs_mbuf);
3302 txs->txs_mbuf = NULL;
3303
3304 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3305
3306 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3307 (txstat & TXSTAT_ERRMASK) != 0) {
3308 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3309 txstat_buf, sizeof(txstat_buf));
3310 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3311 txstat_buf,
3312 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3313 }
3314
3315 /*
3316 * Check for errors and collisions.
3317 */
3318 if (txstat & ATW_TXSTAT_TUF)
3319 sc->sc_stats.ts_tx_tuf++;
3320 if (txstat & ATW_TXSTAT_TLT)
3321 sc->sc_stats.ts_tx_tlt++;
3322 if (txstat & ATW_TXSTAT_TRT)
3323 sc->sc_stats.ts_tx_trt++;
3324 if (txstat & ATW_TXSTAT_TRO)
3325 sc->sc_stats.ts_tx_tro++;
3326 if (txstat & ATW_TXSTAT_SOFBR) {
3327 sc->sc_stats.ts_tx_sofbr++;
3328 }
3329
3330 if ((txstat & ATW_TXSTAT_ES) == 0)
3331 ifp->if_collisions +=
3332 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3333 else
3334 ifp->if_oerrors++;
3335
3336 ifp->if_opackets++;
3337 }
3338
3339 /*
3340 * If there are no more pending transmissions, cancel the watchdog
3341 * timer.
3342 */
3343 if (txs == NULL)
3344 sc->sc_tx_timer = 0;
3345 #undef TXSTAT_ERRMASK
3346 #undef TXSTAT_FMT
3347 }
3348
3349 /*
3350 * atw_watchdog: [ifnet interface function]
3351 *
3352 * Watchdog timer handler.
3353 */
3354 void
3355 atw_watchdog(struct ifnet *ifp)
3356 {
3357 struct atw_softc *sc = ifp->if_softc;
3358 struct ieee80211com *ic = &sc->sc_ic;
3359
3360 ifp->if_timer = 0;
3361 if (ATW_IS_ENABLED(sc) == 0)
3362 return;
3363
3364 if (sc->sc_rescan_timer) {
3365 if (--sc->sc_rescan_timer == 0)
3366 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3367 }
3368 if (sc->sc_tx_timer) {
3369 if (--sc->sc_tx_timer == 0 &&
3370 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3371 printf("%s: transmit timeout\n", ifp->if_xname);
3372 ifp->if_oerrors++;
3373 (void)atw_init(ifp);
3374 atw_start(ifp);
3375 }
3376 }
3377 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3378 ifp->if_timer = 1;
3379 ieee80211_watchdog(ic);
3380 }
3381
3382 /* Compute the 802.11 Duration field and the PLCP Length fields for
3383 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3384 * Write the fields to the ADM8211 Tx header, frm.
3385 *
3386 * TBD use the fragmentation threshold to find the right duration for
3387 * the first & last fragments.
3388 *
3389 * TBD make certain of the duration fields applied by the ADM8211 to each
3390 * fragment. I think that the ADM8211 knows how to subtract the CTS
3391 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3392 * I also think that the ADM8211 does *some* arithmetic for us, because
3393 * otherwise I think we would have to set a first duration for CTS/first
3394 * fragment, a second duration for fragments between the first and the
3395 * last, and a third duration for the last fragment.
3396 *
3397 * TBD make certain that duration fields reflect addition of FCS/WEP
3398 * and correct duration arithmetic as necessary.
3399 */
3400 static void
3401 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3402 int len)
3403 {
3404 int remainder;
3405
3406 /* deal also with encrypted fragments */
3407 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3408 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3409 sc->sc_dev.dv_xname));
3410 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3411 IEEE80211_WEP_CRCLEN;
3412 }
3413
3414 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3415 * duration (XXX added by MAC?).
3416 */
3417 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3418 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3419
3420 if (rate <= 4)
3421 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3422 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3423 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3424 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3425 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3426 else
3427 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3428 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3429 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3430 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3431 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3432
3433 /* lengthen duration if long preamble */
3434 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3435 frm->atw_head_dur +=
3436 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3437 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3438 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3439 IEEE80211_DUR_DS_FAST_PLCPHDR);
3440
3441 if (remainder != 0)
3442 frm->atw_head_dur++;
3443
3444 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3445 (rate == 2 || rate == 4)) {
3446 /* derived from Linux: how could this be right? */
3447 frm->atw_head_plcplen = frm->atw_head_dur;
3448 } else {
3449 frm->atw_head_plcplen = (16 * len) / rate;
3450 remainder = (80 * len) % (rate * 5);
3451
3452 if (remainder != 0) {
3453 frm->atw_head_plcplen++;
3454
3455 /* XXX magic */
3456 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3457 rate == 22 && remainder <= 30)
3458 frm->atw_head_plcplen |= 0x8000;
3459 }
3460 }
3461 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3462 htole16(frm->atw_head_plcplen);
3463 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3464 }
3465
3466 #ifdef ATW_DEBUG
3467 static void
3468 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3469 {
3470 struct atw_softc *sc = ifp->if_softc;
3471 struct mbuf *m;
3472 int i, noctets = 0;
3473
3474 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3475 m0->m_pkthdr.len);
3476
3477 for (m = m0; m; m = m->m_next) {
3478 if (m->m_len == 0)
3479 continue;
3480 for (i = 0; i < m->m_len; i++) {
3481 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3482 if (++noctets % 24 == 0)
3483 printf("\n");
3484 }
3485 }
3486 printf("%s%s: %d bytes emitted\n",
3487 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3488 }
3489 #endif /* ATW_DEBUG */
3490
3491 /*
3492 * atw_start: [ifnet interface function]
3493 *
3494 * Start packet transmission on the interface.
3495 */
3496 void
3497 atw_start(struct ifnet *ifp)
3498 {
3499 struct atw_softc *sc = ifp->if_softc;
3500 struct ieee80211com *ic = &sc->sc_ic;
3501 struct ieee80211_node *ni;
3502 struct ieee80211_frame *wh;
3503 struct atw_frame *hh;
3504 struct mbuf *m0, *m;
3505 struct atw_txsoft *txs, *last_txs;
3506 struct atw_txdesc *txd;
3507 int do_encrypt, rate;
3508 bus_dmamap_t dmamap;
3509 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3510
3511 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3512 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3513
3514 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3515 return;
3516
3517 /*
3518 * Remember the previous number of free descriptors and
3519 * the first descriptor we'll use.
3520 */
3521 ofree = sc->sc_txfree;
3522 firsttx = sc->sc_txnext;
3523
3524 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3525 sc->sc_dev.dv_xname, ofree, firsttx));
3526
3527 /*
3528 * Loop through the send queue, setting up transmit descriptors
3529 * until we drain the queue, or use up all available transmit
3530 * descriptors.
3531 */
3532 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3533 sc->sc_txfree != 0) {
3534
3535 /*
3536 * Grab a packet off the management queue, if it
3537 * is not empty. Otherwise, from the data queue.
3538 */
3539 IF_DEQUEUE(&ic->ic_mgtq, m0);
3540 if (m0 != NULL) {
3541 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3542 m0->m_pkthdr.rcvif = NULL;
3543 } else {
3544 /* send no data packets until we are associated */
3545 if (ic->ic_state != IEEE80211_S_RUN)
3546 break;
3547 IFQ_DEQUEUE(&ifp->if_snd, m0);
3548 if (m0 == NULL)
3549 break;
3550 #if NBPFILTER > 0
3551 if (ifp->if_bpf != NULL)
3552 bpf_mtap(ifp->if_bpf, m0);
3553 #endif /* NBPFILTER > 0 */
3554 ni = ieee80211_find_txnode(ic,
3555 mtod(m0, struct ether_header *)->ether_dhost);
3556 if (ni == NULL) {
3557 ifp->if_oerrors++;
3558 break;
3559 }
3560 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3561 ieee80211_free_node(ni);
3562 ifp->if_oerrors++;
3563 break;
3564 }
3565 }
3566
3567 rate = MAX(ieee80211_get_rate(ic), 2);
3568
3569 #if NBPFILTER > 0
3570 /*
3571 * Pass the packet to any BPF listeners.
3572 */
3573 if (ic->ic_rawbpf != NULL)
3574 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3575
3576 if (sc->sc_radiobpf != NULL) {
3577 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3578
3579 tap->at_rate = rate;
3580 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3581 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3582
3583 /* TBD tap->at_flags */
3584
3585 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3586 tap->at_ihdr.it_len, m0);
3587 }
3588 #endif /* NBPFILTER > 0 */
3589
3590 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3591
3592 if (ni != NULL)
3593 ieee80211_free_node(ni);
3594
3595 if (m0 == NULL) {
3596 ifp->if_oerrors++;
3597 break;
3598 }
3599
3600 /* just to make sure. */
3601 m0 = m_pullup(m0, sizeof(struct atw_frame));
3602
3603 if (m0 == NULL) {
3604 ifp->if_oerrors++;
3605 break;
3606 }
3607
3608 hh = mtod(m0, struct atw_frame *);
3609 wh = &hh->atw_ihdr;
3610
3611 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3612
3613 /* Copy everything we need from the 802.11 header:
3614 * Frame Control; address 1, address 3, or addresses
3615 * 3 and 4. NIC fills in BSSID, SA.
3616 */
3617 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3618 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3619 panic("%s: illegal WDS frame",
3620 sc->sc_dev.dv_xname);
3621 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3622 } else
3623 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3624
3625 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3626
3627 /* initialize remaining Tx parameters */
3628 memset(&hh->u, 0, sizeof(hh->u));
3629
3630 hh->atw_rate = rate * 5;
3631 /* XXX this could be incorrect if M_FCS. _encap should
3632 * probably strip FCS just in case it sticks around in
3633 * bridged packets.
3634 */
3635 hh->atw_service = 0x00; /* XXX guess */
3636 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3637 sizeof(struct atw_frame));
3638
3639 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3640 hh->atw_rtylmt = 3;
3641 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3642 if (do_encrypt) {
3643 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3644 hh->atw_keyid = ic->ic_def_txkey;
3645 }
3646
3647 /* TBD 4-addr frames */
3648 atw_frame_setdurs(sc, hh, rate,
3649 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3650 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3651
3652 /* never fragment multicast frames */
3653 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3654 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3655 } else if (sc->sc_flags & ATWF_RTSCTS) {
3656 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3657 }
3658
3659 #ifdef ATW_DEBUG
3660 hh->atw_fragnum = 0;
3661
3662 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3663 printf("%s: dst = %s, rate = 0x%02x, "
3664 "service = 0x%02x, paylen = 0x%04x\n",
3665 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3666 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3667
3668 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3669 "dur1 = 0x%04x, dur2 = 0x%04x, "
3670 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3671 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3672 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3673 hh->atw_tail_dur, hh->atw_head_dur);
3674
3675 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3676 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3677 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3678 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3679
3680 printf("%s: keyid = %d\n",
3681 sc->sc_dev.dv_xname, hh->atw_keyid);
3682
3683 atw_dump_pkt(ifp, m0);
3684 }
3685 #endif /* ATW_DEBUG */
3686
3687 dmamap = txs->txs_dmamap;
3688
3689 /*
3690 * Load the DMA map. Copy and try (once) again if the packet
3691 * didn't fit in the alloted number of segments.
3692 */
3693 for (first = 1;
3694 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3695 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3696 first = 0) {
3697 MGETHDR(m, M_DONTWAIT, MT_DATA);
3698 if (m == NULL) {
3699 printf("%s: unable to allocate Tx mbuf\n",
3700 sc->sc_dev.dv_xname);
3701 break;
3702 }
3703 if (m0->m_pkthdr.len > MHLEN) {
3704 MCLGET(m, M_DONTWAIT);
3705 if ((m->m_flags & M_EXT) == 0) {
3706 printf("%s: unable to allocate Tx "
3707 "cluster\n", sc->sc_dev.dv_xname);
3708 m_freem(m);
3709 break;
3710 }
3711 }
3712 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3713 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3714 m_freem(m0);
3715 m0 = m;
3716 m = NULL;
3717 }
3718 if (error != 0) {
3719 printf("%s: unable to load Tx buffer, "
3720 "error = %d\n", sc->sc_dev.dv_xname, error);
3721 m_freem(m0);
3722 break;
3723 }
3724
3725 /*
3726 * Ensure we have enough descriptors free to describe
3727 * the packet.
3728 */
3729 if (dmamap->dm_nsegs > sc->sc_txfree) {
3730 /*
3731 * Not enough free descriptors to transmit
3732 * this packet. Unload the DMA map and
3733 * drop the packet. Notify the upper layer
3734 * that there are no more slots left.
3735 *
3736 * XXX We could allocate an mbuf and copy, but
3737 * XXX it is worth it?
3738 */
3739 ifp->if_flags |= IFF_OACTIVE;
3740 bus_dmamap_unload(sc->sc_dmat, dmamap);
3741 m_freem(m0);
3742 break;
3743 }
3744
3745 /*
3746 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3747 */
3748
3749 /* Sync the DMA map. */
3750 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3751 BUS_DMASYNC_PREWRITE);
3752
3753 /* XXX arbitrary retry limit; 8 because I have seen it in
3754 * use already and maybe 0 means "no tries" !
3755 */
3756 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3757
3758 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3759 sc->sc_dev.dv_xname, rate * 5));
3760 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3761
3762 /*
3763 * Initialize the transmit descriptors.
3764 */
3765 for (nexttx = sc->sc_txnext, seg = 0;
3766 seg < dmamap->dm_nsegs;
3767 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3768 /*
3769 * If this is the first descriptor we're
3770 * enqueueing, don't set the OWN bit just
3771 * yet. That could cause a race condition.
3772 * We'll do it below.
3773 */
3774 txd = &sc->sc_txdescs[nexttx];
3775 txd->at_ctl = ctl |
3776 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3777
3778 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3779 txd->at_flags =
3780 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3781 ATW_TXFLAG_TBS1_MASK)) |
3782 ((nexttx == (ATW_NTXDESC - 1))
3783 ? htole32(ATW_TXFLAG_TER) : 0);
3784 lasttx = nexttx;
3785 }
3786
3787 IASSERT(lasttx != -1, ("bad lastx"));
3788 /* Set `first segment' and `last segment' appropriately. */
3789 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3790 htole32(ATW_TXFLAG_FS);
3791 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3792
3793 #ifdef ATW_DEBUG
3794 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3795 printf(" txsoft %p transmit chain:\n", txs);
3796 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3797 printf(" descriptor %d:\n", seg);
3798 printf(" at_ctl: 0x%08x\n",
3799 le32toh(sc->sc_txdescs[seg].at_ctl));
3800 printf(" at_flags: 0x%08x\n",
3801 le32toh(sc->sc_txdescs[seg].at_flags));
3802 printf(" at_buf1: 0x%08x\n",
3803 le32toh(sc->sc_txdescs[seg].at_buf1));
3804 printf(" at_buf2: 0x%08x\n",
3805 le32toh(sc->sc_txdescs[seg].at_buf2));
3806 if (seg == lasttx)
3807 break;
3808 }
3809 }
3810 #endif
3811
3812 /* Sync the descriptors we're using. */
3813 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3814 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3815
3816 /*
3817 * Store a pointer to the packet so we can free it later,
3818 * and remember what txdirty will be once the packet is
3819 * done.
3820 */
3821 txs->txs_mbuf = m0;
3822 txs->txs_firstdesc = sc->sc_txnext;
3823 txs->txs_lastdesc = lasttx;
3824 txs->txs_ndescs = dmamap->dm_nsegs;
3825
3826 /* Advance the tx pointer. */
3827 sc->sc_txfree -= dmamap->dm_nsegs;
3828 sc->sc_txnext = nexttx;
3829
3830 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3831 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3832
3833 last_txs = txs;
3834 }
3835
3836 if (txs == NULL || sc->sc_txfree == 0) {
3837 /* No more slots left; notify upper layer. */
3838 ifp->if_flags |= IFF_OACTIVE;
3839 }
3840
3841 if (sc->sc_txfree != ofree) {
3842 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3843 sc->sc_dev.dv_xname, lasttx, firsttx));
3844 /*
3845 * Cause a transmit interrupt to happen on the
3846 * last packet we enqueued.
3847 */
3848 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3849 ATW_CDTXSYNC(sc, lasttx, 1,
3850 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3851
3852 /*
3853 * The entire packet chain is set up. Give the
3854 * first descriptor to the chip now.
3855 */
3856 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3857 ATW_CDTXSYNC(sc, firsttx, 1,
3858 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3859
3860 /* Wake up the transmitter. */
3861 ATW_WRITE(sc, ATW_TDR, 0x1);
3862
3863 /* Set a watchdog timer in case the chip flakes out. */
3864 sc->sc_tx_timer = 5;
3865 ifp->if_timer = 1;
3866 }
3867 }
3868
3869 /*
3870 * atw_power:
3871 *
3872 * Power management (suspend/resume) hook.
3873 */
3874 void
3875 atw_power(int why, void *arg)
3876 {
3877 struct atw_softc *sc = arg;
3878 struct ifnet *ifp = &sc->sc_if;
3879 int s;
3880
3881 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3882
3883 s = splnet();
3884 switch (why) {
3885 case PWR_STANDBY:
3886 /* XXX do nothing. */
3887 break;
3888 case PWR_SUSPEND:
3889 atw_stop(ifp, 0);
3890 if (sc->sc_power != NULL)
3891 (*sc->sc_power)(sc, why);
3892 break;
3893 case PWR_RESUME:
3894 if (ifp->if_flags & IFF_UP) {
3895 if (sc->sc_power != NULL)
3896 (*sc->sc_power)(sc, why);
3897 atw_init(ifp);
3898 }
3899 break;
3900 case PWR_SOFTSUSPEND:
3901 case PWR_SOFTSTANDBY:
3902 case PWR_SOFTRESUME:
3903 break;
3904 }
3905 splx(s);
3906 }
3907
3908 /*
3909 * atw_ioctl: [ifnet interface function]
3910 *
3911 * Handle control requests from the operator.
3912 */
3913 int
3914 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3915 {
3916 struct atw_softc *sc = ifp->if_softc;
3917 struct ifreq *ifr = (struct ifreq *)data;
3918 int s, error = 0;
3919
3920 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3921 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3922 return ENXIO;
3923
3924 s = splnet();
3925
3926 switch (cmd) {
3927 case SIOCSIFFLAGS:
3928 if (ifp->if_flags & IFF_UP) {
3929 if (ATW_IS_ENABLED(sc)) {
3930 /*
3931 * To avoid rescanning another access point,
3932 * do not call atw_init() here. Instead,
3933 * only reflect media settings.
3934 */
3935 atw_filter_setup(sc);
3936 } else
3937 error = atw_init(ifp);
3938 } else if (ATW_IS_ENABLED(sc))
3939 atw_stop(ifp, 1);
3940 break;
3941 case SIOCADDMULTI:
3942 case SIOCDELMULTI:
3943 error = (cmd == SIOCADDMULTI) ?
3944 ether_addmulti(ifr, &sc->sc_ec) :
3945 ether_delmulti(ifr, &sc->sc_ec);
3946 if (error == ENETRESET) {
3947 if (ifp->if_flags & IFF_RUNNING)
3948 atw_filter_setup(sc); /* do not rescan */
3949 error = 0;
3950 }
3951 break;
3952 default:
3953 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3954 if (error == ENETRESET) {
3955 if (ATW_IS_ENABLED(sc))
3956 error = atw_init(ifp);
3957 else
3958 error = 0;
3959 }
3960 break;
3961 }
3962
3963 /* Try to get more packets going. */
3964 if (ATW_IS_ENABLED(sc))
3965 atw_start(ifp);
3966
3967 splx(s);
3968 return (error);
3969 }
3970
3971 static int
3972 atw_media_change(struct ifnet *ifp)
3973 {
3974 int error;
3975
3976 error = ieee80211_media_change(ifp);
3977 if (error == ENETRESET) {
3978 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3979 (IFF_RUNNING|IFF_UP))
3980 atw_init(ifp); /* XXX lose error */
3981 error = 0;
3982 }
3983 return error;
3984 }
3985
3986 static void
3987 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3988 {
3989 struct atw_softc *sc = ifp->if_softc;
3990
3991 if (ATW_IS_ENABLED(sc) == 0) {
3992 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3993 imr->ifm_status = 0;
3994 return;
3995 }
3996 ieee80211_media_status(ifp, imr);
3997 }
3998