Home | History | Annotate | Line # | Download | only in ic
atw.c revision 1.86
      1 /*	$NetBSD: atw.c,v 1.86 2005/06/25 03:41:50 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.86 2005/06/25 03:41:50 dyoung Exp $");
     45 
     46 #include "bpfilter.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/callout.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/malloc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/socket.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/errno.h>
     57 #include <sys/device.h>
     58 #include <sys/time.h>
     59 
     60 #include <machine/endian.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_media.h>
     67 #include <net/if_ether.h>
     68 
     69 #include <net80211/ieee80211_netbsd.h>
     70 #include <net80211/ieee80211_var.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #if NBPFILTER > 0
     74 #include <net/bpf.h>
     75 #endif
     76 
     77 #include <machine/bus.h>
     78 #include <machine/intr.h>
     79 
     80 #include <dev/ic/atwreg.h>
     81 #include <dev/ic/rf3000reg.h>
     82 #include <dev/ic/si4136reg.h>
     83 #include <dev/ic/atwvar.h>
     84 #include <dev/ic/smc93cx6var.h>
     85 
     86 /* XXX TBD open questions
     87  *
     88  *
     89  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
     90  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
     91  * handle this for me?
     92  *
     93  */
     94 /* device attachment
     95  *
     96  *    print TOFS[012]
     97  *
     98  * device initialization
     99  *
    100  *    clear ATW_FRCTL_MAXPSP to disable max power saving
    101  *    set ATW_TXBR_ALCUPDATE to enable ALC
    102  *    set TOFS[012]? (hope not)
    103  *    disable rx/tx
    104  *    set ATW_PAR_SWR (software reset)
    105  *    wait for ATW_PAR_SWR clear
    106  *    disable interrupts
    107  *    ack status register
    108  *    enable interrupts
    109  *
    110  * rx/tx initialization
    111  *
    112  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    113  *    allocate and init descriptor rings
    114  *    write ATW_PAR_DSL (descriptor skip length)
    115  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
    116  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    118  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    119  *
    120  * rx/tx end
    121  *
    122  *    stop DMA
    123  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    124  *    flush tx w/ ATW_NAR_HF
    125  *
    126  * scan
    127  *
    128  *    initialize rx/tx
    129  *
    130  * BSS join: (re)association response
    131  *
    132  *    set ATW_FRCTL_AID
    133  *
    134  * optimizations ???
    135  *
    136  */
    137 
    138 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
    139 
    140 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
    141 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
    142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
    143 
    144 int atw_pseudo_milli = 1;
    145 int atw_magic_delay1 = 100 * 1000;
    146 int atw_magic_delay2 = 100 * 1000;
    147 /* more magic multi-millisecond delays (units: microseconds) */
    148 int atw_nar_delay = 20 * 1000;
    149 int atw_magic_delay4 = 10 * 1000;
    150 int atw_rf_delay1 = 10 * 1000;
    151 int atw_rf_delay2 = 5 * 1000;
    152 int atw_plcphd_delay = 2 * 1000;
    153 int atw_bbp_io_enable_delay = 20 * 1000;
    154 int atw_bbp_io_disable_delay = 2 * 1000;
    155 int atw_writewep_delay = 1000;
    156 int atw_beacon_len_adjust = 4;
    157 int atw_dwelltime = 200;
    158 int atw_xindiv2 = 0;
    159 
    160 #ifdef ATW_DEBUG
    161 int atw_debug = 0;
    162 
    163 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
    164 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
    165 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
    166 #define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
    167 #define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
    168 #define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
    169 
    170 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
    171 static void	atw_print_regs(struct atw_softc *, const char *);
    172 
    173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
    174 #	ifdef ATW_BBPDEBUG
    175 static void	atw_rf3000_print(struct atw_softc *);
    176 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    177 #	endif /* ATW_BBPDEBUG */
    178 
    179 #	ifdef ATW_SYNDEBUG
    180 static void	atw_si4126_print(struct atw_softc *);
    181 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
    182 #	endif /* ATW_SYNDEBUG */
    183 
    184 #else
    185 #define ATW_DPRINTF(x)
    186 #define ATW_DPRINTF2(x)
    187 #define ATW_DPRINTF3(x)
    188 #define	DPRINTF(sc, x)	/* nothing */
    189 #define	DPRINTF2(sc, x)	/* nothing */
    190 #define	DPRINTF3(sc, x)	/* nothing */
    191 #endif
    192 
    193 /* ifnet methods */
    194 int	atw_init(struct ifnet *);
    195 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
    196 void	atw_start(struct ifnet *);
    197 void	atw_stop(struct ifnet *, int);
    198 void	atw_watchdog(struct ifnet *);
    199 
    200 /* Device attachment */
    201 void	atw_attach(struct atw_softc *);
    202 int	atw_detach(struct atw_softc *);
    203 
    204 /* Rx/Tx process */
    205 int	atw_add_rxbuf(struct atw_softc *, int);
    206 void	atw_idle(struct atw_softc *, u_int32_t);
    207 void	atw_rxdrain(struct atw_softc *);
    208 void	atw_txdrain(struct atw_softc *);
    209 
    210 /* Device (de)activation and power state */
    211 void	atw_disable(struct atw_softc *);
    212 int	atw_enable(struct atw_softc *);
    213 void	atw_power(int, void *);
    214 void	atw_reset(struct atw_softc *);
    215 void	atw_shutdown(void *);
    216 
    217 /* Interrupt handlers */
    218 void	atw_linkintr(struct atw_softc *, u_int32_t);
    219 void	atw_rxintr(struct atw_softc *);
    220 void	atw_txintr(struct atw_softc *);
    221 
    222 /* 802.11 state machine */
    223 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
    224 static void	atw_next_scan(void *);
    225 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
    226 		              struct ieee80211_node *, int, int, u_int32_t);
    227 static int	atw_tune(struct atw_softc *);
    228 
    229 /* Device initialization */
    230 static void	atw_bbp_io_init(struct atw_softc *);
    231 static void	atw_cfp_init(struct atw_softc *);
    232 static void	atw_cmdr_init(struct atw_softc *);
    233 static void	atw_ifs_init(struct atw_softc *);
    234 static void	atw_nar_init(struct atw_softc *);
    235 static void	atw_response_times_init(struct atw_softc *);
    236 static void	atw_rf_reset(struct atw_softc *);
    237 static void	atw_test1_init(struct atw_softc *);
    238 static void	atw_tofs0_init(struct atw_softc *);
    239 static void	atw_tofs2_init(struct atw_softc *);
    240 static void	atw_txlmt_init(struct atw_softc *);
    241 static void	atw_wcsr_init(struct atw_softc *);
    242 
    243 /* Key management */
    244 static int atw_key_alloc(struct ieee80211com *, const struct ieee80211_key *);
    245 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
    246 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
    247 	const u_int8_t[IEEE80211_ADDR_LEN]);
    248 static void atw_key_update_begin(struct ieee80211com *);
    249 static void atw_key_update_end(struct ieee80211com *);
    250 
    251 /* RAM/ROM utilities */
    252 static void	atw_clear_sram(struct atw_softc *);
    253 static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
    254 static int	atw_read_srom(struct atw_softc *);
    255 
    256 /* BSS setup */
    257 static void	atw_predict_beacon(struct atw_softc *);
    258 static void	atw_start_beacon(struct atw_softc *, int);
    259 static void	atw_write_bssid(struct atw_softc *);
    260 static void	atw_write_ssid(struct atw_softc *);
    261 static void	atw_write_sup_rates(struct atw_softc *);
    262 static void	atw_write_wep(struct atw_softc *);
    263 
    264 /* Media */
    265 static int	atw_media_change(struct ifnet *);
    266 static void	atw_media_status(struct ifnet *, struct ifmediareq *);
    267 
    268 static void	atw_filter_setup(struct atw_softc *);
    269 
    270 /* 802.11 utilities */
    271 static void			atw_frame_setdurs(struct atw_softc *,
    272 				                  struct atw_frame *, int, int);
    273 static uint64_t			atw_get_tsft(struct atw_softc *);
    274 static __inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
    275 				                   uint32_t);
    276 static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
    277 static void			atw_node_free(struct ieee80211_node *);
    278 static void			atw_change_ibss(struct atw_softc *);
    279 
    280 /*
    281  * Tuner/transceiver/modem
    282  */
    283 static void	atw_bbp_io_enable(struct atw_softc *, int);
    284 
    285 /* RFMD RF3000 Baseband Processor */
    286 static int	atw_rf3000_init(struct atw_softc *);
    287 static int	atw_rf3000_tune(struct atw_softc *, u_int);
    288 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
    289 
    290 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
    291 static void	atw_si4126_tune(struct atw_softc *, u_int);
    292 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
    293 
    294 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
    295 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
    296 
    297 const char *atw_tx_state[] = {
    298 	"STOPPED",
    299 	"RUNNING - read descriptor",
    300 	"RUNNING - transmitting",
    301 	"RUNNING - filling fifo",	/* XXX */
    302 	"SUSPENDED",
    303 	"RUNNING -- write descriptor",
    304 	"RUNNING -- write last descriptor",
    305 	"RUNNING - fifo full"
    306 };
    307 
    308 const char *atw_rx_state[] = {
    309 	"STOPPED",
    310 	"RUNNING - read descriptor",
    311 	"RUNNING - check this packet, pre-fetch next",
    312 	"RUNNING - wait for reception",
    313 	"SUSPENDED",
    314 	"RUNNING - write descriptor",
    315 	"RUNNING - flush fifo",
    316 	"RUNNING - fifo drain"
    317 };
    318 
    319 int
    320 atw_activate(struct device *self, enum devact act)
    321 {
    322 	struct atw_softc *sc = (struct atw_softc *)self;
    323 	int rv = 0, s;
    324 
    325 	s = splnet();
    326 	switch (act) {
    327 	case DVACT_ACTIVATE:
    328 		rv = EOPNOTSUPP;
    329 		break;
    330 
    331 	case DVACT_DEACTIVATE:
    332 		if_deactivate(&sc->sc_if);
    333 		break;
    334 	}
    335 	splx(s);
    336 	return rv;
    337 }
    338 
    339 /*
    340  * atw_enable:
    341  *
    342  *	Enable the ADM8211 chip.
    343  */
    344 int
    345 atw_enable(struct atw_softc *sc)
    346 {
    347 
    348 	if (ATW_IS_ENABLED(sc) == 0) {
    349 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    350 			printf("%s: device enable failed\n",
    351 			    sc->sc_dev.dv_xname);
    352 			return (EIO);
    353 		}
    354 		sc->sc_flags |= ATWF_ENABLED;
    355 	}
    356 	return (0);
    357 }
    358 
    359 /*
    360  * atw_disable:
    361  *
    362  *	Disable the ADM8211 chip.
    363  */
    364 void
    365 atw_disable(struct atw_softc *sc)
    366 {
    367 	if (!ATW_IS_ENABLED(sc))
    368 		return;
    369 	if (sc->sc_disable != NULL)
    370 		(*sc->sc_disable)(sc);
    371 	sc->sc_flags &= ~ATWF_ENABLED;
    372 }
    373 
    374 /* Returns -1 on failure. */
    375 static int
    376 atw_read_srom(struct atw_softc *sc)
    377 {
    378 	struct seeprom_descriptor sd;
    379 	uint32_t test0, fail_bits;
    380 
    381 	(void)memset(&sd, 0, sizeof(sd));
    382 
    383 	test0 = ATW_READ(sc, ATW_TEST0);
    384 
    385 	switch (sc->sc_rev) {
    386 	case ATW_REVISION_BA:
    387 	case ATW_REVISION_CA:
    388 		fail_bits = ATW_TEST0_EPNE;
    389 		break;
    390 	default:
    391 		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
    392 		break;
    393 	}
    394 	if ((test0 & fail_bits) != 0) {
    395 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
    396 		return -1;
    397 	}
    398 
    399 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
    400 	case ATW_TEST0_EPTYP_93c66:
    401 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
    402 		sc->sc_sromsz = 512;
    403 		sd.sd_chip = C56_66;
    404 		break;
    405 	case ATW_TEST0_EPTYP_93c46:
    406 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
    407 		sc->sc_sromsz = 128;
    408 		sd.sd_chip = C46;
    409 		break;
    410 	default:
    411 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
    412 		    MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
    413 		return -1;
    414 	}
    415 
    416 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
    417 
    418 	if (sc->sc_srom == NULL) {
    419 		printf("%s: unable to allocate SROM buffer\n",
    420 		    sc->sc_dev.dv_xname);
    421 		return -1;
    422 	}
    423 
    424 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
    425 
    426 	/* ADM8211 has a single 32-bit register for controlling the
    427 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
    428 	 * "ready" bit. The ADM8211 input/output sense is the reverse
    429 	 * of read_seeprom's.
    430 	 */
    431 	sd.sd_tag = sc->sc_st;
    432 	sd.sd_bsh = sc->sc_sh;
    433 	sd.sd_regsize = 4;
    434 	sd.sd_control_offset = ATW_SPR;
    435 	sd.sd_status_offset = ATW_SPR;
    436 	sd.sd_dataout_offset = ATW_SPR;
    437 	sd.sd_CK = ATW_SPR_SCLK;
    438 	sd.sd_CS = ATW_SPR_SCS;
    439 	sd.sd_DI = ATW_SPR_SDO;
    440 	sd.sd_DO = ATW_SPR_SDI;
    441 	sd.sd_MS = ATW_SPR_SRS;
    442 	sd.sd_RDY = 0;
    443 
    444 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
    445 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
    446 		free(sc->sc_srom, M_DEVBUF);
    447 		return -1;
    448 	}
    449 #ifdef ATW_DEBUG
    450 	{
    451 		int i;
    452 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
    453 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
    454 			if (((i % 8) == 0) && (i != 0)) {
    455 				ATW_DPRINTF(("\n\t"));
    456 			}
    457 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
    458 		}
    459 		ATW_DPRINTF(("\n"));
    460 	}
    461 #endif /* ATW_DEBUG */
    462 	return 0;
    463 }
    464 
    465 #ifdef ATW_DEBUG
    466 static void
    467 atw_print_regs(struct atw_softc *sc, const char *where)
    468 {
    469 #define PRINTREG(sc, reg) \
    470 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
    471 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
    472 
    473 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
    474 
    475 	PRINTREG(sc, ATW_PAR);
    476 	PRINTREG(sc, ATW_FRCTL);
    477 	PRINTREG(sc, ATW_TDR);
    478 	PRINTREG(sc, ATW_WTDP);
    479 	PRINTREG(sc, ATW_RDR);
    480 	PRINTREG(sc, ATW_WRDP);
    481 	PRINTREG(sc, ATW_RDB);
    482 	PRINTREG(sc, ATW_CSR3A);
    483 	PRINTREG(sc, ATW_TDBD);
    484 	PRINTREG(sc, ATW_TDBP);
    485 	PRINTREG(sc, ATW_STSR);
    486 	PRINTREG(sc, ATW_CSR5A);
    487 	PRINTREG(sc, ATW_NAR);
    488 	PRINTREG(sc, ATW_CSR6A);
    489 	PRINTREG(sc, ATW_IER);
    490 	PRINTREG(sc, ATW_CSR7A);
    491 	PRINTREG(sc, ATW_LPC);
    492 	PRINTREG(sc, ATW_TEST1);
    493 	PRINTREG(sc, ATW_SPR);
    494 	PRINTREG(sc, ATW_TEST0);
    495 	PRINTREG(sc, ATW_WCSR);
    496 	PRINTREG(sc, ATW_WPDR);
    497 	PRINTREG(sc, ATW_GPTMR);
    498 	PRINTREG(sc, ATW_GPIO);
    499 	PRINTREG(sc, ATW_BBPCTL);
    500 	PRINTREG(sc, ATW_SYNCTL);
    501 	PRINTREG(sc, ATW_PLCPHD);
    502 	PRINTREG(sc, ATW_MMIWADDR);
    503 	PRINTREG(sc, ATW_MMIRADDR1);
    504 	PRINTREG(sc, ATW_MMIRADDR2);
    505 	PRINTREG(sc, ATW_TXBR);
    506 	PRINTREG(sc, ATW_CSR15A);
    507 	PRINTREG(sc, ATW_ALCSTAT);
    508 	PRINTREG(sc, ATW_TOFS2);
    509 	PRINTREG(sc, ATW_CMDR);
    510 	PRINTREG(sc, ATW_PCIC);
    511 	PRINTREG(sc, ATW_PMCSR);
    512 	PRINTREG(sc, ATW_PAR0);
    513 	PRINTREG(sc, ATW_PAR1);
    514 	PRINTREG(sc, ATW_MAR0);
    515 	PRINTREG(sc, ATW_MAR1);
    516 	PRINTREG(sc, ATW_ATIMDA0);
    517 	PRINTREG(sc, ATW_ABDA1);
    518 	PRINTREG(sc, ATW_BSSID0);
    519 	PRINTREG(sc, ATW_TXLMT);
    520 	PRINTREG(sc, ATW_MIBCNT);
    521 	PRINTREG(sc, ATW_BCNT);
    522 	PRINTREG(sc, ATW_TSFTH);
    523 	PRINTREG(sc, ATW_TSC);
    524 	PRINTREG(sc, ATW_SYNRF);
    525 	PRINTREG(sc, ATW_BPLI);
    526 	PRINTREG(sc, ATW_CAP0);
    527 	PRINTREG(sc, ATW_CAP1);
    528 	PRINTREG(sc, ATW_RMD);
    529 	PRINTREG(sc, ATW_CFPP);
    530 	PRINTREG(sc, ATW_TOFS0);
    531 	PRINTREG(sc, ATW_TOFS1);
    532 	PRINTREG(sc, ATW_IFST);
    533 	PRINTREG(sc, ATW_RSPT);
    534 	PRINTREG(sc, ATW_TSFTL);
    535 	PRINTREG(sc, ATW_WEPCTL);
    536 	PRINTREG(sc, ATW_WESK);
    537 	PRINTREG(sc, ATW_WEPCNT);
    538 	PRINTREG(sc, ATW_MACTEST);
    539 	PRINTREG(sc, ATW_FER);
    540 	PRINTREG(sc, ATW_FEMR);
    541 	PRINTREG(sc, ATW_FPSR);
    542 	PRINTREG(sc, ATW_FFER);
    543 #undef PRINTREG
    544 }
    545 #endif /* ATW_DEBUG */
    546 
    547 /*
    548  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
    549  */
    550 void
    551 atw_attach(struct atw_softc *sc)
    552 {
    553 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
    554 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    555 	};
    556 	struct ieee80211com *ic = &sc->sc_ic;
    557 	struct ifnet *ifp = &sc->sc_if;
    558 	int country_code, error, i, nrate, srom_major;
    559 	u_int32_t reg;
    560 	static const char *type_strings[] = {"Intersil (not supported)",
    561 	    "RFMD", "Marvel (not supported)"};
    562 
    563 	sc->sc_txth = atw_txthresh_tab_lo;
    564 
    565 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    566 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    567 
    568 #ifdef ATW_DEBUG
    569 	atw_print_regs(sc, "atw_attach");
    570 #endif /* ATW_DEBUG */
    571 
    572 	/*
    573 	 * Allocate the control data structures, and create and load the
    574 	 * DMA map for it.
    575 	 */
    576 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    577 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    578 	    1, &sc->sc_cdnseg, 0)) != 0) {
    579 		printf("%s: unable to allocate control data, error = %d\n",
    580 		    sc->sc_dev.dv_xname, error);
    581 		goto fail_0;
    582 	}
    583 
    584 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
    585 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
    586 	    BUS_DMA_COHERENT)) != 0) {
    587 		printf("%s: unable to map control data, error = %d\n",
    588 		    sc->sc_dev.dv_xname, error);
    589 		goto fail_1;
    590 	}
    591 
    592 	if ((error = bus_dmamap_create(sc->sc_dmat,
    593 	    sizeof(struct atw_control_data), 1,
    594 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    595 		printf("%s: unable to create control data DMA map, "
    596 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    597 		goto fail_2;
    598 	}
    599 
    600 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    601 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
    602 	    0)) != 0) {
    603 		printf("%s: unable to load control data DMA map, error = %d\n",
    604 		    sc->sc_dev.dv_xname, error);
    605 		goto fail_3;
    606 	}
    607 
    608 	/*
    609 	 * Create the transmit buffer DMA maps.
    610 	 */
    611 	sc->sc_ntxsegs = ATW_NTXSEGS;
    612 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    613 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    614 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
    615 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    616 			printf("%s: unable to create tx DMA map %d, "
    617 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    618 			goto fail_4;
    619 		}
    620 	}
    621 
    622 	/*
    623 	 * Create the receive buffer DMA maps.
    624 	 */
    625 	for (i = 0; i < ATW_NRXDESC; i++) {
    626 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    627 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    628 			printf("%s: unable to create rx DMA map %d, "
    629 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    630 			goto fail_5;
    631 		}
    632 	}
    633 	for (i = 0; i < ATW_NRXDESC; i++) {
    634 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    635 	}
    636 
    637 	switch (sc->sc_rev) {
    638 	case ATW_REVISION_AB:
    639 	case ATW_REVISION_AF:
    640 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
    641 		break;
    642 	case ATW_REVISION_BA:
    643 	case ATW_REVISION_CA:
    644 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
    645 		break;
    646 	}
    647 
    648 	/* Reset the chip to a known state. */
    649 	atw_reset(sc);
    650 
    651 	if (atw_read_srom(sc) == -1)
    652 		return;
    653 
    654 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    655 	    ATW_SR_RFTYPE_MASK);
    656 
    657 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    658 	    ATW_SR_BBPTYPE_MASK);
    659 
    660 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
    661 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
    662 		return;
    663 	}
    664 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
    665 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
    666 		return;
    667 	}
    668 
    669 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
    670 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
    671 
    672 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
    673 	 * MARVEL. My bug, or theirs?
    674 	 */
    675 
    676 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
    677 
    678 	switch (sc->sc_rftype) {
    679 	case ATW_RFTYPE_INTERSIL:
    680 		reg |= ATW_SYNCTL_CS1;
    681 		break;
    682 	case ATW_RFTYPE_RFMD:
    683 		reg |= ATW_SYNCTL_CS0;
    684 		break;
    685 	case ATW_RFTYPE_MARVEL:
    686 		break;
    687 	}
    688 
    689 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
    690 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
    691 
    692 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
    693 
    694 	switch (sc->sc_bbptype) {
    695 	case ATW_BBPTYPE_INTERSIL:
    696 		reg |= ATW_BBPCTL_TWI;
    697 		break;
    698 	case ATW_BBPTYPE_RFMD:
    699 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
    700 		    ATW_BBPCTL_CCA_ACTLO;
    701 		break;
    702 	case ATW_BBPTYPE_MARVEL:
    703 		break;
    704 	case ATW_C_BBPTYPE_RFMD:
    705 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
    706 		    sc->sc_dev.dv_xname);
    707 		break;
    708 	}
    709 
    710 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
    711 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
    712 
    713 	/*
    714 	 * From this point forward, the attachment cannot fail.  A failure
    715 	 * before this point releases all resources that may have been
    716 	 * allocated.
    717 	 */
    718 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
    719 
    720 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
    721 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
    722 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
    723 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
    724 
    725 	srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
    726 	    ATW_SR_MAJOR_MASK);
    727 
    728 	if (srom_major < 2)
    729 		sc->sc_rf3000_options1 = 0;
    730 	else if (sc->sc_rev == ATW_REVISION_BA) {
    731 		sc->sc_rf3000_options1 =
    732 		    MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
    733 		    ATW_SR_CR28_MASK);
    734 	} else
    735 		sc->sc_rf3000_options1 = 0;
    736 
    737 	sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    738 	    ATW_SR_CR29_MASK);
    739 
    740 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    741 	    ATW_SR_CTRY_MASK);
    742 
    743 #define ADD_CHANNEL(_ic, _chan) do {					\
    744 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
    745 	_ic->ic_channels[_chan].ic_freq =				\
    746 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
    747 } while (0)
    748 
    749 	/* Find available channels */
    750 	switch (country_code) {
    751 	case COUNTRY_MMK2:	/* 1-14 */
    752 		ADD_CHANNEL(ic, 14);
    753 		/*FALLTHROUGH*/
    754 	case COUNTRY_ETSI:	/* 1-13 */
    755 		for (i = 1; i <= 13; i++)
    756 			ADD_CHANNEL(ic, i);
    757 		break;
    758 	case COUNTRY_FCC:	/* 1-11 */
    759 	case COUNTRY_IC:	/* 1-11 */
    760 		for (i = 1; i <= 11; i++)
    761 			ADD_CHANNEL(ic, i);
    762 		break;
    763 	case COUNTRY_MMK:	/* 14 */
    764 		ADD_CHANNEL(ic, 14);
    765 		break;
    766 	case COUNTRY_FRANCE:	/* 10-13 */
    767 		for (i = 10; i <= 13; i++)
    768 			ADD_CHANNEL(ic, i);
    769 		break;
    770 	default:	/* assume channels 10-11 */
    771 	case COUNTRY_SPAIN:	/* 10-11 */
    772 		for (i = 10; i <= 11; i++)
    773 			ADD_CHANNEL(ic, i);
    774 		break;
    775 	}
    776 
    777 	/* Read the MAC address. */
    778 	reg = ATW_READ(sc, ATW_PAR0);
    779 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
    780 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
    781 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
    782 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
    783 	reg = ATW_READ(sc, ATW_PAR1);
    784 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
    785 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
    786 
    787 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
    788 		printf(" could not get mac address, attach failed\n");
    789 		return;
    790 	}
    791 
    792 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
    793 
    794 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    795 	ifp->if_softc = sc;
    796 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
    797 	    IFF_NOTRAILERS;
    798 	ifp->if_ioctl = atw_ioctl;
    799 	ifp->if_start = atw_start;
    800 	ifp->if_watchdog = atw_watchdog;
    801 	ifp->if_init = atw_init;
    802 	ifp->if_stop = atw_stop;
    803 	IFQ_SET_READY(&ifp->if_snd);
    804 
    805 	ic->ic_ifp = ifp;
    806 	ic->ic_phytype = IEEE80211_T_DS;
    807 	ic->ic_opmode = IEEE80211_M_STA;
    808 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
    809 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
    810 
    811 	nrate = 0;
    812 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
    813 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
    814 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
    815 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
    816 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
    817 
    818 	/*
    819 	 * Call MI attach routines.
    820 	 */
    821 
    822 	if_attach(ifp);
    823 	ieee80211_ifattach(ic);
    824 
    825 	sc->sc_newstate = ic->ic_newstate;
    826 	ic->ic_newstate = atw_newstate;
    827 
    828 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    829 	ic->ic_recv_mgmt = atw_recv_mgmt;
    830 
    831 	sc->sc_node_free = ic->ic_node_free;
    832 	ic->ic_node_free = atw_node_free;
    833 
    834 	sc->sc_node_alloc = ic->ic_node_alloc;
    835 	ic->ic_node_alloc = atw_node_alloc;
    836 
    837 	ic->ic_crypto.cs_key_alloc = atw_key_alloc;
    838 	ic->ic_crypto.cs_key_delete = atw_key_delete;
    839 	ic->ic_crypto.cs_key_set = atw_key_set;
    840 	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
    841 	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
    842 
    843 	/* possibly we should fill in our own sc_send_prresp, since
    844 	 * the ADM8211 is probably sending probe responses in ad hoc
    845 	 * mode.
    846 	 */
    847 
    848 	/* complete initialization */
    849 	ieee80211_media_init(ic, atw_media_change, atw_media_status);
    850 	callout_init(&sc->sc_scan_ch);
    851 
    852 #if NBPFILTER > 0
    853 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    854 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
    855 #endif
    856 
    857 	/*
    858 	 * Make sure the interface is shutdown during reboot.
    859 	 */
    860 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
    861 	if (sc->sc_sdhook == NULL)
    862 		printf("%s: WARNING: unable to establish shutdown hook\n",
    863 		    sc->sc_dev.dv_xname);
    864 
    865 	/*
    866 	 * Add a suspend hook to make sure we come back up after a
    867 	 * resume.
    868 	 */
    869 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
    870 	if (sc->sc_powerhook == NULL)
    871 		printf("%s: WARNING: unable to establish power hook\n",
    872 		    sc->sc_dev.dv_xname);
    873 
    874 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
    875 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
    876 	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
    877 
    878 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
    879 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
    880 	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
    881 
    882 	return;
    883 
    884 	/*
    885 	 * Free any resources we've allocated during the failed attach
    886 	 * attempt.  Do this in reverse order and fall through.
    887 	 */
    888  fail_5:
    889 	for (i = 0; i < ATW_NRXDESC; i++) {
    890 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
    891 			continue;
    892 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
    893 	}
    894  fail_4:
    895 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    896 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
    897 			continue;
    898 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
    899 	}
    900 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    901  fail_3:
    902 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    903  fail_2:
    904 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    905 	    sizeof(struct atw_control_data));
    906  fail_1:
    907 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
    908  fail_0:
    909 	return;
    910 }
    911 
    912 static struct ieee80211_node *
    913 atw_node_alloc(struct ieee80211_node_table *nt)
    914 {
    915 	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
    916 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
    917 
    918 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
    919 	return ni;
    920 }
    921 
    922 static void
    923 atw_node_free(struct ieee80211_node *ni)
    924 {
    925 	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
    926 
    927 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
    928 	    ether_sprintf(ni->ni_bssid)));
    929 	(*sc->sc_node_free)(ni);
    930 }
    931 
    932 
    933 static void
    934 atw_test1_reset(struct atw_softc *sc)
    935 {
    936 	switch (sc->sc_rev) {
    937 	case ATW_REVISION_BA:
    938 		if (1 /* XXX condition on transceiver type */) {
    939 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
    940 		}
    941 		break;
    942 	case ATW_REVISION_CA:
    943 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
    944 		break;
    945 	default:
    946 		break;
    947 	}
    948 }
    949 
    950 /*
    951  * atw_reset:
    952  *
    953  *	Perform a soft reset on the ADM8211.
    954  */
    955 void
    956 atw_reset(struct atw_softc *sc)
    957 {
    958 	int i;
    959 	uint32_t lpc;
    960 
    961 	ATW_WRITE(sc, ATW_NAR, 0x0);
    962 	DELAY(atw_nar_delay);
    963 
    964 	/* Reference driver has a cryptic remark indicating that this might
    965 	 * power-on the chip.  I know that it turns off power-saving....
    966 	 */
    967 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
    968 
    969 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
    970 
    971 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
    972 		if (ATW_READ(sc, ATW_PAR) == 0)
    973 			break;
    974 		DELAY(atw_pseudo_milli);
    975 	}
    976 
    977 	/* ... and then pause 100ms longer for good measure. */
    978 	DELAY(atw_magic_delay1);
    979 
    980 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
    981 
    982 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
    983 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
    984 
    985 	atw_test1_reset(sc);
    986 	/*
    987 	 * Initialize the PCI Access Register.
    988 	 */
    989 	sc->sc_busmode = ATW_PAR_PBL_8DW;
    990 
    991 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
    992 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
    993 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
    994 
    995 	/* Turn off maximum power saving, etc.
    996 	 *
    997 	 * XXX Following example of reference driver, should I set
    998 	 * an AID of 1?  It didn't seem to help....
    999 	 */
   1000 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
   1001 
   1002 	DELAY(atw_magic_delay2);
   1003 
   1004 	/* Recall EEPROM. */
   1005 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
   1006 
   1007 	DELAY(atw_magic_delay4);
   1008 
   1009 	lpc = ATW_READ(sc, ATW_LPC);
   1010 
   1011 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
   1012 
   1013 	/* A reset seems to affect the SRAM contents, so put them into
   1014 	 * a known state.
   1015 	 */
   1016 	atw_clear_sram(sc);
   1017 
   1018 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
   1019 }
   1020 
   1021 static void
   1022 atw_clear_sram(struct atw_softc *sc)
   1023 {
   1024 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
   1025 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
   1026 	/* XXX not for revision 0x20. */
   1027 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
   1028 }
   1029 
   1030 /* TBD atw_init
   1031  *
   1032  * set MAC based on ic->ic_bss->myaddr
   1033  * write WEP keys
   1034  * set TX rate
   1035  */
   1036 
   1037 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
   1038  * without receiving a beacon with the preferred BSSID & SSID.
   1039  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
   1040  */
   1041 static void
   1042 atw_wcsr_init(struct atw_softc *sc)
   1043 {
   1044 	uint32_t wcsr;
   1045 
   1046 	wcsr = ATW_READ(sc, ATW_WCSR);
   1047 	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
   1048 	wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
   1049 	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
   1050 
   1051 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
   1052 	    sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
   1053 }
   1054 
   1055 /* Turn off power management.  Set Rx store-and-forward mode. */
   1056 static void
   1057 atw_cmdr_init(struct atw_softc *sc)
   1058 {
   1059 	uint32_t cmdr;
   1060 	cmdr = ATW_READ(sc, ATW_CMDR);
   1061 	cmdr &= ~ATW_CMDR_APM;
   1062 	cmdr |= ATW_CMDR_RTE;
   1063 	cmdr &= ~ATW_CMDR_DRT_MASK;
   1064 	cmdr |= ATW_CMDR_DRT_SF;
   1065 
   1066 	ATW_WRITE(sc, ATW_CMDR, cmdr);
   1067 }
   1068 
   1069 static void
   1070 atw_tofs2_init(struct atw_softc *sc)
   1071 {
   1072 	uint32_t tofs2;
   1073 	/* XXX this magic can probably be figured out from the RFMD docs */
   1074 #ifndef ATW_REFSLAVE
   1075 	tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
   1076 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
   1077 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
   1078 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
   1079 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
   1080 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
   1081 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
   1082 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
   1083 #else
   1084 	/* XXX new magic from reference driver source */
   1085 	tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
   1086 	      LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
   1087 	      LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
   1088 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
   1089 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
   1090 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
   1091 	      LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
   1092 	      LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
   1093 #endif
   1094 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
   1095 }
   1096 
   1097 static void
   1098 atw_nar_init(struct atw_softc *sc)
   1099 {
   1100 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
   1101 }
   1102 
   1103 static void
   1104 atw_txlmt_init(struct atw_softc *sc)
   1105 {
   1106 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
   1107 	                         LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
   1108 }
   1109 
   1110 static void
   1111 atw_test1_init(struct atw_softc *sc)
   1112 {
   1113 	uint32_t test1;
   1114 
   1115 	test1 = ATW_READ(sc, ATW_TEST1);
   1116 	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
   1117 	/* XXX magic 0x1 */
   1118 	test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
   1119 	ATW_WRITE(sc, ATW_TEST1, test1);
   1120 }
   1121 
   1122 static void
   1123 atw_rf_reset(struct atw_softc *sc)
   1124 {
   1125 	/* XXX this resets an Intersil RF front-end? */
   1126 	/* TBD condition on Intersil RFType? */
   1127 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
   1128 	DELAY(atw_rf_delay1);
   1129 	ATW_WRITE(sc, ATW_SYNRF, 0);
   1130 	DELAY(atw_rf_delay2);
   1131 }
   1132 
   1133 /* Set 16 TU max duration for the contention-free period (CFP). */
   1134 static void
   1135 atw_cfp_init(struct atw_softc *sc)
   1136 {
   1137 	uint32_t cfpp;
   1138 
   1139 	cfpp = ATW_READ(sc, ATW_CFPP);
   1140 	cfpp &= ~ATW_CFPP_CFPMD;
   1141 	cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
   1142 	ATW_WRITE(sc, ATW_CFPP, cfpp);
   1143 }
   1144 
   1145 static void
   1146 atw_tofs0_init(struct atw_softc *sc)
   1147 {
   1148 	/* XXX I guess that the Cardbus clock is 22MHz?
   1149 	 * I am assuming that the role of ATW_TOFS0_USCNT is
   1150 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
   1151 	 * very clear on this point. It says in the datasheet that it is
   1152 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
   1153 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
   1154 	 * these values. These values are also the power-on default.
   1155 	 */
   1156 	ATW_WRITE(sc, ATW_TOFS0,
   1157 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
   1158 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
   1159 }
   1160 
   1161 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
   1162 static void
   1163 atw_ifs_init(struct atw_softc *sc)
   1164 {
   1165 	uint32_t ifst;
   1166 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
   1167 	 * Go figure.
   1168 	 */
   1169 	ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
   1170 	      LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
   1171 	             ATW_IFST_SIFS_MASK) |
   1172 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
   1173 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
   1174 
   1175 	ATW_WRITE(sc, ATW_IFST, ifst);
   1176 }
   1177 
   1178 static void
   1179 atw_response_times_init(struct atw_softc *sc)
   1180 {
   1181 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
   1182 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
   1183 	 * to pass after it transmits a frame that requires a response;
   1184 	 * it waits at most SIFS + MART microseconds for the response.
   1185 	 * Surely this is not the ACK timeout?
   1186 	 */
   1187 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
   1188 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
   1189 }
   1190 
   1191 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
   1192  * engines read and write baseband registers after Rx and before
   1193  * Tx, respectively.
   1194  */
   1195 static void
   1196 atw_bbp_io_init(struct atw_softc *sc)
   1197 {
   1198 	uint32_t mmiraddr2;
   1199 
   1200 	/* XXX The reference driver does this, but is it *really*
   1201 	 * necessary?
   1202 	 */
   1203 	switch (sc->sc_rev) {
   1204 	case ATW_REVISION_AB:
   1205 	case ATW_REVISION_AF:
   1206 		mmiraddr2 = 0x0;
   1207 		break;
   1208 	default:
   1209 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
   1210 		mmiraddr2 &=
   1211 		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
   1212 		break;
   1213 	}
   1214 
   1215 	switch (sc->sc_bbptype) {
   1216 	case ATW_BBPTYPE_INTERSIL:
   1217 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
   1218 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
   1219 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
   1220 		break;
   1221 	case ATW_BBPTYPE_MARVEL:
   1222 		/* TBD find out the Marvel settings. */
   1223 		break;
   1224 	case ATW_BBPTYPE_RFMD:
   1225 	default:
   1226 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
   1227 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
   1228 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
   1229 		break;
   1230 	}
   1231 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
   1232 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
   1233 }
   1234 
   1235 /*
   1236  * atw_init:		[ ifnet interface function ]
   1237  *
   1238  *	Initialize the interface.  Must be called at splnet().
   1239  */
   1240 int
   1241 atw_init(struct ifnet *ifp)
   1242 {
   1243 	struct atw_softc *sc = ifp->if_softc;
   1244 	struct ieee80211com *ic = &sc->sc_ic;
   1245 	struct atw_txsoft *txs;
   1246 	struct atw_rxsoft *rxs;
   1247 	int i, error = 0;
   1248 
   1249 	if ((error = atw_enable(sc)) != 0)
   1250 		goto out;
   1251 
   1252 	/*
   1253 	 * Cancel any pending I/O. This also resets.
   1254 	 */
   1255 	atw_stop(ifp, 0);
   1256 
   1257 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
   1258 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
   1259 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
   1260 	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
   1261 
   1262 	atw_wcsr_init(sc);
   1263 
   1264 	atw_cmdr_init(sc);
   1265 
   1266 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
   1267 	 *
   1268 	 * XXX Set transmit power for ATIM, RTS, Beacon.
   1269 	 */
   1270 	ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
   1271 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
   1272 
   1273 	atw_tofs2_init(sc);
   1274 
   1275 	atw_nar_init(sc);
   1276 
   1277 	atw_txlmt_init(sc);
   1278 
   1279 	atw_test1_init(sc);
   1280 
   1281 	atw_rf_reset(sc);
   1282 
   1283 	atw_cfp_init(sc);
   1284 
   1285 	atw_tofs0_init(sc);
   1286 
   1287 	atw_ifs_init(sc);
   1288 
   1289 	/* XXX Fall asleep after one second of inactivity.
   1290 	 * XXX A frame may only dribble in for 65536us.
   1291 	 */
   1292 	ATW_WRITE(sc, ATW_RMD,
   1293 	    LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
   1294 
   1295 	atw_response_times_init(sc);
   1296 
   1297 	atw_bbp_io_init(sc);
   1298 
   1299 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1300 
   1301 	if ((error = atw_rf3000_init(sc)) != 0)
   1302 		goto out;
   1303 
   1304 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
   1305 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
   1306 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
   1307 
   1308 	/*
   1309 	 * Initialize the transmit descriptor ring.
   1310 	 */
   1311 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1312 	for (i = 0; i < ATW_NTXDESC; i++) {
   1313 		sc->sc_txdescs[i].at_ctl = 0;
   1314 		/* no transmit chaining */
   1315 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
   1316 		sc->sc_txdescs[i].at_buf2 =
   1317 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
   1318 	}
   1319 	/* use ring mode */
   1320 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
   1321 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
   1322 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1323 	sc->sc_txfree = ATW_NTXDESC;
   1324 	sc->sc_txnext = 0;
   1325 
   1326 	/*
   1327 	 * Initialize the transmit job descriptors.
   1328 	 */
   1329 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1330 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1331 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   1332 		txs = &sc->sc_txsoft[i];
   1333 		txs->txs_mbuf = NULL;
   1334 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1335 	}
   1336 
   1337 	/*
   1338 	 * Initialize the receive descriptor and receive job
   1339 	 * descriptor rings.
   1340 	 */
   1341 	for (i = 0; i < ATW_NRXDESC; i++) {
   1342 		rxs = &sc->sc_rxsoft[i];
   1343 		if (rxs->rxs_mbuf == NULL) {
   1344 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
   1345 				printf("%s: unable to allocate or map rx "
   1346 				    "buffer %d, error = %d\n",
   1347 				    sc->sc_dev.dv_xname, i, error);
   1348 				/*
   1349 				 * XXX Should attempt to run with fewer receive
   1350 				 * XXX buffers instead of just failing.
   1351 				 */
   1352 				atw_rxdrain(sc);
   1353 				goto out;
   1354 			}
   1355 		} else
   1356 			ATW_INIT_RXDESC(sc, i);
   1357 	}
   1358 	sc->sc_rxptr = 0;
   1359 
   1360 	/*
   1361 	 * Initialize the interrupt mask and enable interrupts.
   1362 	 */
   1363 	/* normal interrupts */
   1364 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
   1365 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
   1366 
   1367 	/* abnormal interrupts */
   1368 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
   1369 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
   1370 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1371 
   1372 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
   1373 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1374 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
   1375 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
   1376 	    ATW_INTR_TRT;
   1377 
   1378 	sc->sc_linkint_mask &= sc->sc_inten;
   1379 	sc->sc_rxint_mask &= sc->sc_inten;
   1380 	sc->sc_txint_mask &= sc->sc_inten;
   1381 
   1382 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
   1383 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1384 
   1385 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
   1386 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
   1387 
   1388 	/*
   1389 	 * Give the transmit and receive rings to the ADM8211.
   1390 	 */
   1391 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
   1392 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
   1393 
   1394 	sc->sc_txthresh = 0;
   1395 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
   1396 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
   1397 
   1398 	/* common 802.11 configuration */
   1399 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
   1400 	switch (ic->ic_opmode) {
   1401 	case IEEE80211_M_STA:
   1402 		break;
   1403 	case IEEE80211_M_AHDEMO: /* XXX */
   1404 	case IEEE80211_M_IBSS:
   1405 		ic->ic_flags |= IEEE80211_F_IBSSON;
   1406 		/*FALLTHROUGH*/
   1407 	case IEEE80211_M_HOSTAP: /* XXX */
   1408 		break;
   1409 	case IEEE80211_M_MONITOR: /* XXX */
   1410 		break;
   1411 	}
   1412 
   1413 	switch (ic->ic_opmode) {
   1414 	case IEEE80211_M_AHDEMO:
   1415 	case IEEE80211_M_HOSTAP:
   1416 		ic->ic_bss->ni_intval = ic->ic_lintval;
   1417 		ic->ic_bss->ni_rssi = 0;
   1418 		ic->ic_bss->ni_rstamp = 0;
   1419 		break;
   1420 	default:					/* XXX */
   1421 		break;
   1422 	}
   1423 
   1424 	sc->sc_wepctl = 0;
   1425 
   1426 	atw_write_ssid(sc);
   1427 	atw_write_sup_rates(sc);
   1428 	if (ic->ic_caps & IEEE80211_C_WEP)
   1429 		atw_write_wep(sc);
   1430 
   1431 	ic->ic_state = IEEE80211_S_INIT;
   1432 
   1433 	/*
   1434 	 * Set the receive filter.  This will start the transmit and
   1435 	 * receive processes.
   1436 	 */
   1437 	atw_filter_setup(sc);
   1438 
   1439 	/*
   1440 	 * Start the receive process.
   1441 	 */
   1442 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1443 
   1444 	/*
   1445 	 * Note that the interface is now running.
   1446 	 */
   1447 	ifp->if_flags |= IFF_RUNNING;
   1448 	ifp->if_flags &= ~IFF_OACTIVE;
   1449 
   1450 	/* send no beacons, yet. */
   1451 	atw_start_beacon(sc, 0);
   1452 
   1453 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   1454 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1455 	else
   1456 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1457  out:
   1458 	if (error) {
   1459 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1460 		ifp->if_timer = 0;
   1461 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1462 	}
   1463 #ifdef ATW_DEBUG
   1464 	atw_print_regs(sc, "end of init");
   1465 #endif /* ATW_DEBUG */
   1466 
   1467 	return (error);
   1468 }
   1469 
   1470 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
   1471  *           0: MAC control of RF3000/Si4126.
   1472  *
   1473  * Applies power, or selects RF front-end? Sets reset condition.
   1474  *
   1475  * TBD support non-RFMD BBP, non-SiLabs synth.
   1476  */
   1477 static void
   1478 atw_bbp_io_enable(struct atw_softc *sc, int enable)
   1479 {
   1480 	if (enable) {
   1481 		ATW_WRITE(sc, ATW_SYNRF,
   1482 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
   1483 		DELAY(atw_bbp_io_enable_delay);
   1484 	} else {
   1485 		ATW_WRITE(sc, ATW_SYNRF, 0);
   1486 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
   1487 	}
   1488 }
   1489 
   1490 static int
   1491 atw_tune(struct atw_softc *sc)
   1492 {
   1493 	int rc;
   1494 	u_int chan;
   1495 	struct ieee80211com *ic = &sc->sc_ic;
   1496 
   1497 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
   1498 	if (chan == IEEE80211_CHAN_ANY)
   1499 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
   1500 
   1501 	if (chan == sc->sc_cur_chan)
   1502 		return 0;
   1503 
   1504 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
   1505 	    sc->sc_cur_chan, chan));
   1506 
   1507 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1508 
   1509 	atw_si4126_tune(sc, chan);
   1510 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
   1511 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
   1512 		    chan);
   1513 
   1514 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1515 	DELAY(atw_nar_delay);
   1516 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1517 
   1518 	if (rc == 0)
   1519 		sc->sc_cur_chan = chan;
   1520 
   1521 	return rc;
   1522 }
   1523 
   1524 #ifdef ATW_SYNDEBUG
   1525 static void
   1526 atw_si4126_print(struct atw_softc *sc)
   1527 {
   1528 	struct ifnet *ifp = &sc->sc_if;
   1529 	u_int addr, val;
   1530 
   1531 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1532 		return;
   1533 
   1534 	for (addr = 0; addr <= 8; addr++) {
   1535 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
   1536 		if (atw_si4126_read(sc, addr, &val) == 0) {
   1537 			printf("<unknown> (quitting print-out)\n");
   1538 			break;
   1539 		}
   1540 		printf("%05x\n", val);
   1541 	}
   1542 }
   1543 #endif /* ATW_SYNDEBUG */
   1544 
   1545 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
   1546  *
   1547  * The RF/IF synthesizer produces two reference frequencies for
   1548  * the RF2948B transceiver.  The first frequency the RF2948B requires
   1549  * is two times the so-called "intermediate frequency" (IF). Since
   1550  * a SAW filter on the radio fixes the IF at 374MHz, I program the
   1551  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
   1552  * frequency required by the transceiver is the radio frequency
   1553  * (RF). This is a superheterodyne transceiver; for f(chan) the
   1554  * center frequency of the channel we are tuning, RF = f(chan) -
   1555  * IF.
   1556  *
   1557  * XXX I am told by SiLabs that the Si4126 will accept a broader range
   1558  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
   1559  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
   1560  * works, but I have still programmed for XINDIV2 = 1 to be safe.
   1561  */
   1562 static void
   1563 atw_si4126_tune(struct atw_softc *sc, u_int chan)
   1564 {
   1565 	u_int mhz;
   1566 	u_int R;
   1567 	u_int32_t gpio;
   1568 	u_int16_t gain;
   1569 
   1570 #ifdef ATW_SYNDEBUG
   1571 	atw_si4126_print(sc);
   1572 #endif /* ATW_SYNDEBUG */
   1573 
   1574 	if (chan == 14)
   1575 		mhz = 2484;
   1576 	else
   1577 		mhz = 2412 + 5 * (chan - 1);
   1578 
   1579 	/* Tune IF to 748MHz to suit the IF LO input of the
   1580 	 * RF2494B, which is 2 x IF. No need to set an IF divider
   1581          * because an IF in 526MHz - 952MHz is allowed.
   1582 	 *
   1583 	 * XIN is 44.000MHz, so divide it by two to get allowable
   1584 	 * range of 2-25MHz. SiLabs tells me that this is not
   1585 	 * strictly necessary.
   1586 	 */
   1587 
   1588 	if (atw_xindiv2)
   1589 		R = 44;
   1590 	else
   1591 		R = 88;
   1592 
   1593 	/* Power-up RF, IF synthesizers. */
   1594 	atw_si4126_write(sc, SI4126_POWER,
   1595 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
   1596 
   1597 	/* set LPWR, too? */
   1598 	atw_si4126_write(sc, SI4126_MAIN,
   1599 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
   1600 
   1601 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
   1602 	 * set KP2 to 1.
   1603 	 *
   1604 	 * REFDIF This is different from the reference driver, which
   1605 	 * always sets SI4126_GAIN to 0.
   1606 	 */
   1607 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
   1608 
   1609 	atw_si4126_write(sc, SI4126_GAIN, gain);
   1610 
   1611 	/* XIN = 44MHz.
   1612 	 *
   1613 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
   1614 	 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
   1615 	 *
   1616 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
   1617 	 * so that 1496/88 * 44MHz = 748MHz.
   1618 	 */
   1619 	atw_si4126_write(sc, SI4126_IFN, 1496);
   1620 
   1621 	atw_si4126_write(sc, SI4126_IFR, R);
   1622 
   1623 #ifndef ATW_REFSLAVE
   1624 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
   1625 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
   1626 	 * which has no RF1!
   1627 	 */
   1628 	atw_si4126_write(sc, SI4126_RF1R, R);
   1629 
   1630 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
   1631 #endif
   1632 
   1633 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
   1634 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
   1635 	 * Now let's multiply it to mhz. So mhz - IF = N.
   1636 	 */
   1637 	atw_si4126_write(sc, SI4126_RF2R, R);
   1638 
   1639 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
   1640 
   1641 	/* wait 100us from power-up for RF, IF to settle */
   1642 	DELAY(100);
   1643 
   1644 	gpio = ATW_READ(sc, ATW_GPIO);
   1645 	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
   1646 	gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
   1647 
   1648 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
   1649 		/* Set a Prism RF front-end to a special mode for channel 14?
   1650 		 *
   1651 		 * Apparently the SMC2635W needs this, although I don't think
   1652 		 * it has a Prism RF.
   1653 		 */
   1654 		gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
   1655 	}
   1656 	ATW_WRITE(sc, ATW_GPIO, gpio);
   1657 
   1658 #ifdef ATW_SYNDEBUG
   1659 	atw_si4126_print(sc);
   1660 #endif /* ATW_SYNDEBUG */
   1661 }
   1662 
   1663 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
   1664  * diversity.
   1665  *
   1666  * !!!
   1667  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
   1668  * !!!
   1669  */
   1670 static int
   1671 atw_rf3000_init(struct atw_softc *sc)
   1672 {
   1673 	int rc = 0;
   1674 
   1675 	atw_bbp_io_enable(sc, 1);
   1676 
   1677 	/* CCA is acquisition sensitive */
   1678 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
   1679 	    LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
   1680 
   1681 	if (rc != 0)
   1682 		goto out;
   1683 
   1684 	/* enable diversity */
   1685 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
   1686 
   1687 	if (rc != 0)
   1688 		goto out;
   1689 
   1690 	/* sensible setting from a binary-only driver */
   1691 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1692 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
   1693 
   1694 	if (rc != 0)
   1695 		goto out;
   1696 
   1697 	/* magic from a binary-only driver */
   1698 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
   1699 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
   1700 
   1701 	if (rc != 0)
   1702 		goto out;
   1703 
   1704 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
   1705 
   1706 	if (rc != 0)
   1707 		goto out;
   1708 
   1709 	/* XXX Reference driver remarks that Abocom sets this to 50.
   1710 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
   1711 	 * in the "reserved" area of register RF3000_OPTIONS1.
   1712 	 */
   1713 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
   1714 
   1715 	if (rc != 0)
   1716 		goto out;
   1717 
   1718 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
   1719 
   1720 	if (rc != 0)
   1721 		goto out;
   1722 
   1723 out:
   1724 	atw_bbp_io_enable(sc, 0);
   1725 	return rc;
   1726 }
   1727 
   1728 #ifdef ATW_BBPDEBUG
   1729 static void
   1730 atw_rf3000_print(struct atw_softc *sc)
   1731 {
   1732 	struct ifnet *ifp = &sc->sc_if;
   1733 	u_int addr, val;
   1734 
   1735 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1736 		return;
   1737 
   1738 	for (addr = 0x01; addr <= 0x15; addr++) {
   1739 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
   1740 		if (atw_rf3000_read(sc, addr, &val) != 0) {
   1741 			printf("<unknown> (quitting print-out)\n");
   1742 			break;
   1743 		}
   1744 		printf("%08x\n", val);
   1745 	}
   1746 }
   1747 #endif /* ATW_BBPDEBUG */
   1748 
   1749 /* Set the power settings on the BBP for channel `chan'. */
   1750 static int
   1751 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
   1752 {
   1753 	int rc = 0;
   1754 	u_int32_t reg;
   1755 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
   1756 
   1757 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
   1758 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
   1759 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
   1760 
   1761 	/* odd channels: LSB, even channels: MSB */
   1762 	if (chan % 2 == 1) {
   1763 		txpower &= 0xFF;
   1764 		lpf_cutoff &= 0xFF;
   1765 		lna_gs_thresh &= 0xFF;
   1766 	} else {
   1767 		txpower >>= 8;
   1768 		lpf_cutoff >>= 8;
   1769 		lna_gs_thresh >>= 8;
   1770 	}
   1771 
   1772 #ifdef ATW_BBPDEBUG
   1773 	atw_rf3000_print(sc);
   1774 #endif /* ATW_BBPDEBUG */
   1775 
   1776 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
   1777 	    "lna_gs_thresh %02x\n",
   1778 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
   1779 
   1780 	atw_bbp_io_enable(sc, 1);
   1781 
   1782 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1783 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
   1784 		goto out;
   1785 
   1786 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
   1787 		goto out;
   1788 
   1789 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
   1790 		goto out;
   1791 
   1792 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
   1793 
   1794 	if (rc != 0)
   1795 		goto out;
   1796 
   1797 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
   1798 
   1799 	if (rc != 0)
   1800 		goto out;
   1801 
   1802 #ifdef ATW_BBPDEBUG
   1803 	atw_rf3000_print(sc);
   1804 #endif /* ATW_BBPDEBUG */
   1805 
   1806 out:
   1807 	atw_bbp_io_enable(sc, 0);
   1808 
   1809 	/* set beacon, rts, atim transmit power */
   1810 	reg = ATW_READ(sc, ATW_PLCPHD);
   1811 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
   1812 	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
   1813 	    ATW_PLCPHD_SERVICE_MASK);
   1814 	ATW_WRITE(sc, ATW_PLCPHD, reg);
   1815 	DELAY(atw_plcphd_delay);
   1816 
   1817 	return rc;
   1818 }
   1819 
   1820 /* Write a register on the RF3000 baseband processor using the
   1821  * registers provided by the ADM8211 for this purpose.
   1822  *
   1823  * Return 0 on success.
   1824  */
   1825 static int
   1826 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
   1827 {
   1828 	u_int32_t reg;
   1829 	int i;
   1830 
   1831 	reg = sc->sc_bbpctl_wr |
   1832 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
   1833 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1834 
   1835 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
   1836 		ATW_WRITE(sc, ATW_BBPCTL, reg);
   1837 		DELAY(2 * atw_pseudo_milli);
   1838 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
   1839 			break;
   1840 	}
   1841 
   1842 	if (i < 0) {
   1843 		printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
   1844 		return ETIMEDOUT;
   1845 	}
   1846 	return 0;
   1847 }
   1848 
   1849 /* Read a register on the RF3000 baseband processor using the registers
   1850  * the ADM8211 provides for this purpose.
   1851  *
   1852  * The 7-bit register address is addr.  Record the 8-bit data in the register
   1853  * in *val.
   1854  *
   1855  * Return 0 on success.
   1856  *
   1857  * XXX This does not seem to work. The ADM8211 must require more or
   1858  * different magic to read the chip than to write it. Possibly some
   1859  * of the magic I have derived from a binary-only driver concerns
   1860  * the "chip address" (see the RF3000 manual).
   1861  */
   1862 #ifdef ATW_BBPDEBUG
   1863 static int
   1864 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
   1865 {
   1866 	u_int32_t reg;
   1867 	int i;
   1868 
   1869 	for (i = 1000; --i >= 0; ) {
   1870 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1871 			break;
   1872 		DELAY(100);
   1873 	}
   1874 
   1875 	if (i < 0) {
   1876 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
   1877 		    sc->sc_dev.dv_xname);
   1878 		return ETIMEDOUT;
   1879 	}
   1880 
   1881 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1882 
   1883 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1884 
   1885 	for (i = 1000; --i >= 0; ) {
   1886 		DELAY(100);
   1887 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
   1888 			break;
   1889 	}
   1890 
   1891 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
   1892 
   1893 	if (i < 0) {
   1894 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
   1895 		    sc->sc_dev.dv_xname, reg);
   1896 		return ETIMEDOUT;
   1897 	}
   1898 	if (val != NULL)
   1899 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
   1900 	return 0;
   1901 }
   1902 #endif /* ATW_BBPDEBUG */
   1903 
   1904 /* Write a register on the Si4126 RF/IF synthesizer using the registers
   1905  * provided by the ADM8211 for that purpose.
   1906  *
   1907  * val is 18 bits of data, and val is the 4-bit address of the register.
   1908  *
   1909  * Return 0 on success.
   1910  */
   1911 static void
   1912 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
   1913 {
   1914 	uint32_t bits, mask, reg;
   1915 	const int nbits = 22;
   1916 
   1917 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1918 	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
   1919 
   1920 	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
   1921 	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
   1922 
   1923 	reg = ATW_SYNRF_SELSYN;
   1924 	/* reference driver: reset Si4126 serial bus to initial
   1925 	 * conditions?
   1926 	 */
   1927 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
   1928 	ATW_WRITE(sc, ATW_SYNRF, reg);
   1929 
   1930 	for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
   1931 		if ((bits & mask) != 0)
   1932 			reg |= ATW_SYNRF_SYNDATA;
   1933 		else
   1934 			reg &= ~ATW_SYNRF_SYNDATA;
   1935 		ATW_WRITE(sc, ATW_SYNRF, reg);
   1936 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
   1937 		ATW_WRITE(sc, ATW_SYNRF, reg);
   1938 	}
   1939 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
   1940 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
   1941 }
   1942 
   1943 /* Read 18-bit data from the 4-bit address addr in Si4126
   1944  * RF synthesizer and write the data to *val. Return 0 on success.
   1945  *
   1946  * XXX This does not seem to work. The ADM8211 must require more or
   1947  * different magic to read the chip than to write it.
   1948  */
   1949 #ifdef ATW_SYNDEBUG
   1950 static int
   1951 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
   1952 {
   1953 	u_int32_t reg;
   1954 	int i;
   1955 
   1956 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1957 
   1958 	for (i = 1000; --i >= 0; ) {
   1959 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1960 			break;
   1961 		DELAY(100);
   1962 	}
   1963 
   1964 	if (i < 0) {
   1965 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
   1966 		    sc->sc_dev.dv_xname);
   1967 		return ETIMEDOUT;
   1968 	}
   1969 
   1970 	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
   1971 
   1972 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1973 
   1974 	for (i = 1000; --i >= 0; ) {
   1975 		DELAY(100);
   1976 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
   1977 			break;
   1978 	}
   1979 
   1980 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
   1981 
   1982 	if (i < 0) {
   1983 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
   1984 		    sc->sc_dev.dv_xname, reg);
   1985 		return ETIMEDOUT;
   1986 	}
   1987 	if (val != NULL)
   1988 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
   1989 		                       ATW_SYNCTL_DATA_MASK);
   1990 	return 0;
   1991 }
   1992 #endif /* ATW_SYNDEBUG */
   1993 
   1994 /* XXX is the endianness correct? test. */
   1995 #define	atw_calchash(addr) \
   1996 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
   1997 
   1998 /*
   1999  * atw_filter_setup:
   2000  *
   2001  *	Set the ADM8211's receive filter.
   2002  */
   2003 static void
   2004 atw_filter_setup(struct atw_softc *sc)
   2005 {
   2006 	struct ieee80211com *ic = &sc->sc_ic;
   2007 	struct ethercom *ec = &sc->sc_ec;
   2008 	struct ifnet *ifp = &sc->sc_if;
   2009 	int hash;
   2010 	u_int32_t hashes[2];
   2011 	struct ether_multi *enm;
   2012 	struct ether_multistep step;
   2013 
   2014 	/* According to comments in tlp_al981_filter_setup
   2015 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
   2016 	 * multicast filter to be set while it is running.  Hopefully
   2017 	 * the ADM8211 is not the same!
   2018 	 */
   2019 	if ((ifp->if_flags & IFF_RUNNING) != 0)
   2020 		atw_idle(sc, ATW_NAR_SR);
   2021 
   2022 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
   2023 
   2024 	/* XXX in scan mode, do not filter packets.  Maybe this is
   2025 	 * unnecessary.
   2026 	 */
   2027 	if (ic->ic_state == IEEE80211_S_SCAN ||
   2028 	    (ifp->if_flags & IFF_PROMISC) != 0) {
   2029 		sc->sc_opmode |= ATW_NAR_PR;
   2030 		goto allmulti;
   2031 	}
   2032 
   2033 	hashes[0] = hashes[1] = 0x0;
   2034 
   2035 	/*
   2036 	 * Program the 64-bit multicast hash filter.
   2037 	 */
   2038 	ETHER_FIRST_MULTI(step, ec, enm);
   2039 	while (enm != NULL) {
   2040 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   2041 		    ETHER_ADDR_LEN) != 0)
   2042 			goto allmulti;
   2043 
   2044 		hash = atw_calchash(enm->enm_addrlo);
   2045 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   2046 		ETHER_NEXT_MULTI(step, enm);
   2047 		sc->sc_opmode |= ATW_NAR_MM;
   2048 	}
   2049 	ifp->if_flags &= ~IFF_ALLMULTI;
   2050 	goto setit;
   2051 
   2052 allmulti:
   2053 	sc->sc_opmode |= ATW_NAR_MM;
   2054 	ifp->if_flags |= IFF_ALLMULTI;
   2055 	hashes[0] = hashes[1] = 0xffffffff;
   2056 
   2057 setit:
   2058 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
   2059 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
   2060 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2061 	DELAY(atw_nar_delay);
   2062 
   2063 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
   2064 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
   2065 }
   2066 
   2067 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
   2068  * a beacon's BSSID and SSID against the preferred BSSID and SSID
   2069  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
   2070  * no beacon with the preferred BSSID and SSID in the number of
   2071  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
   2072  */
   2073 static void
   2074 atw_write_bssid(struct atw_softc *sc)
   2075 {
   2076 	struct ieee80211com *ic = &sc->sc_ic;
   2077 	u_int8_t *bssid;
   2078 
   2079 	bssid = ic->ic_bss->ni_bssid;
   2080 
   2081 	ATW_WRITE(sc, ATW_BSSID0,
   2082 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
   2083 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
   2084 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
   2085 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
   2086 
   2087 	ATW_WRITE(sc, ATW_ABDA1,
   2088 	    (ATW_READ(sc, ATW_ABDA1) &
   2089 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
   2090 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
   2091 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
   2092 
   2093 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
   2094 	    ether_sprintf(sc->sc_bssid)));
   2095 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
   2096 
   2097 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
   2098 }
   2099 
   2100 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
   2101  * 16-bit word.
   2102  */
   2103 static void
   2104 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
   2105 {
   2106 	u_int i;
   2107 	u_int8_t *ptr;
   2108 
   2109 	memcpy(&sc->sc_sram[ofs], buf, buflen);
   2110 
   2111 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
   2112 
   2113 	KASSERT(buflen + ofs <= sc->sc_sramlen);
   2114 
   2115 	ptr = &sc->sc_sram[ofs];
   2116 
   2117 	for (i = 0; i < buflen; i += 2) {
   2118 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
   2119 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
   2120 		DELAY(atw_writewep_delay);
   2121 
   2122 		ATW_WRITE(sc, ATW_WESK,
   2123 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
   2124 		DELAY(atw_writewep_delay);
   2125 	}
   2126 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
   2127 
   2128 	if (sc->sc_if.if_flags & IFF_DEBUG) {
   2129 		int n_octets = 0;
   2130 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
   2131 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
   2132 		for (i = 0; i < buflen; i++) {
   2133 			printf(" %02x", ptr[i]);
   2134 			if (++n_octets % 24 == 0)
   2135 				printf("\n");
   2136 		}
   2137 		if (n_octets % 24 != 0)
   2138 			printf("\n");
   2139 	}
   2140 }
   2141 
   2142 static int
   2143 atw_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
   2144 {
   2145 	int keyix;
   2146 #ifdef ATW_DEBUG
   2147 	struct atw_softc *sc = ic->ic_ifp->if_softc;
   2148 #endif
   2149 
   2150 	if (&ic->ic_nw_keys[0] <= k && k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])
   2151 		keyix = k - ic->ic_nw_keys;
   2152 	else
   2153 		keyix = IEEE80211_KEYIX_NONE;
   2154 
   2155 	DPRINTF(sc, ("%s: alloc key %u\n", __func__, keyix));
   2156 
   2157 	return keyix;
   2158 }
   2159 
   2160 static int
   2161 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   2162 {
   2163 	struct atw_softc *sc = ic->ic_ifp->if_softc;
   2164 	u_int keyix = k->wk_keyix;
   2165 
   2166 	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
   2167 
   2168 	if (keyix >= IEEE80211_WEP_NKID)
   2169 		return 0;
   2170 	if (k->wk_keylen != 0)
   2171 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
   2172 
   2173 	return 1;
   2174 }
   2175 
   2176 static int
   2177 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   2178 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   2179 {
   2180 	struct atw_softc *sc = ic->ic_ifp->if_softc;
   2181 
   2182 	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
   2183 
   2184 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
   2185 		return 0;
   2186 
   2187 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
   2188 
   2189 	return 1;
   2190 }
   2191 
   2192 static void
   2193 atw_key_update_begin(struct ieee80211com *ic)
   2194 {
   2195 #ifdef ATW_DEBUG
   2196 	struct ifnet *ifp = ic->ic_ifp;
   2197 	struct atw_softc *sc = ifp->if_softc;
   2198 #endif
   2199 
   2200 	DPRINTF(sc, ("%s:\n", __func__));
   2201 }
   2202 
   2203 static void
   2204 atw_key_update_end(struct ieee80211com *ic)
   2205 {
   2206 	struct ifnet *ifp = ic->ic_ifp;
   2207 	struct atw_softc *sc = ifp->if_softc;
   2208 
   2209 	DPRINTF(sc, ("%s:\n", __func__));
   2210 
   2211 	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
   2212 		return;
   2213 	atw_write_wep(sc);
   2214 }
   2215 
   2216 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
   2217 static void
   2218 atw_write_wep(struct atw_softc *sc)
   2219 {
   2220 	struct ieee80211com *ic = &sc->sc_ic;
   2221 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
   2222 	u_int8_t buf[IEEE80211_WEP_NKID]
   2223 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
   2224 	u_int32_t reg;
   2225 	int i;
   2226 
   2227 	sc->sc_wepctl = 0;
   2228 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
   2229 
   2230 	memset(&buf[0][0], 0, sizeof(buf));
   2231 
   2232 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   2233 		if (ic->ic_nw_keys[i].wk_keylen > 5) {
   2234 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
   2235 		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
   2236 			buf[i][1] = ATW_WEP_ENABLED;
   2237 		} else {
   2238 			buf[i][1] = 0;
   2239 			continue;
   2240 		}
   2241 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
   2242 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
   2243 		    ic->ic_nw_keys[i].wk_keylen - 1);
   2244 	}
   2245 
   2246 	reg = ATW_READ(sc, ATW_MACTEST);
   2247 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
   2248 	reg &= ~ATW_MACTEST_KEYID_MASK;
   2249 	reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
   2250 	ATW_WRITE(sc, ATW_MACTEST, reg);
   2251 
   2252 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
   2253 		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
   2254 
   2255 	switch (sc->sc_rev) {
   2256 	case ATW_REVISION_AB:
   2257 	case ATW_REVISION_AF:
   2258 		/* Bypass WEP on Rx. */
   2259 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
   2260 		break;
   2261 	default:
   2262 		break;
   2263 	}
   2264 
   2265 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
   2266 	    sizeof(buf));
   2267 
   2268 	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
   2269 }
   2270 
   2271 static void
   2272 atw_change_ibss(struct atw_softc *sc)
   2273 {
   2274 	atw_predict_beacon(sc);
   2275 	atw_write_bssid(sc);
   2276 	atw_start_beacon(sc, 1);
   2277 }
   2278 
   2279 static void
   2280 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2281     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2282 {
   2283 	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
   2284 
   2285 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
   2286 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
   2287 		return;
   2288 
   2289 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
   2290 
   2291 	switch (subtype) {
   2292 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2293 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2294 		if (ic->ic_opmode != IEEE80211_M_IBSS ||
   2295 		    ic->ic_state != IEEE80211_S_RUN)
   2296 			break;
   2297 		if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc) &&
   2298 		    ieee80211_ibss_merge(ic, ni) == ENETRESET)
   2299 			atw_change_ibss(sc);
   2300 		break;
   2301 	default:
   2302 		break;
   2303 	}
   2304 	return;
   2305 }
   2306 
   2307 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
   2308  * In ad hoc mode, the SSID is written to the beacons sent by the
   2309  * ADM8211. In both ad hoc and infrastructure mode, beacons received
   2310  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
   2311  * indications.
   2312  */
   2313 static void
   2314 atw_write_ssid(struct atw_softc *sc)
   2315 {
   2316 	struct ieee80211com *ic = &sc->sc_ic;
   2317 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
   2318 	 * it only expects the element length, not its ID.
   2319 	 */
   2320 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
   2321 
   2322 	memset(buf, 0, sizeof(buf));
   2323 	buf[0] = ic->ic_bss->ni_esslen;
   2324 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
   2325 
   2326 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
   2327 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
   2328 }
   2329 
   2330 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
   2331  * In ad hoc mode, the supported rates are written to beacons sent by the
   2332  * ADM8211.
   2333  */
   2334 static void
   2335 atw_write_sup_rates(struct atw_softc *sc)
   2336 {
   2337 	struct ieee80211com *ic = &sc->sc_ic;
   2338 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
   2339 	 * supported rates
   2340 	 */
   2341 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
   2342 
   2343 	memset(buf, 0, sizeof(buf));
   2344 
   2345 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
   2346 
   2347 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
   2348 	    ic->ic_bss->ni_rates.rs_nrates);
   2349 
   2350 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
   2351 }
   2352 
   2353 /* Start/stop sending beacons. */
   2354 void
   2355 atw_start_beacon(struct atw_softc *sc, int start)
   2356 {
   2357 	struct ieee80211com *ic = &sc->sc_ic;
   2358 	uint16_t chan;
   2359 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
   2360 	size_t len;
   2361 
   2362 	if (ATW_IS_ENABLED(sc) == 0)
   2363 		return;
   2364 
   2365 	/* start beacons */
   2366 	len = sizeof(struct ieee80211_frame) +
   2367 	    8 /* timestamp */ + 2 /* beacon interval */ +
   2368 	    2 /* capability info */ +
   2369 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
   2370 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
   2371 	    3 /* DS parameters */ +
   2372 	    IEEE80211_CRC_LEN;
   2373 
   2374 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
   2375 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
   2376 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
   2377 
   2378 	ATW_WRITE(sc, ATW_BCNT, bcnt);
   2379 	ATW_WRITE(sc, ATW_CAP1, cap1);
   2380 
   2381 	if (!start)
   2382 		return;
   2383 
   2384 	/* TBD use ni_capinfo */
   2385 
   2386 	capinfo = 0;
   2387 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
   2388 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   2389 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
   2390 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   2391 
   2392 	switch (ic->ic_opmode) {
   2393 	case IEEE80211_M_IBSS:
   2394 		len += 4; /* IBSS parameters */
   2395 		capinfo |= IEEE80211_CAPINFO_IBSS;
   2396 		break;
   2397 	case IEEE80211_M_HOSTAP:
   2398 		/* XXX 6-byte minimum TIM */
   2399 		len += atw_beacon_len_adjust;
   2400 		capinfo |= IEEE80211_CAPINFO_ESS;
   2401 		break;
   2402 	default:
   2403 		return;
   2404 	}
   2405 
   2406 	/* set listen interval
   2407 	 * XXX do software units agree w/ hardware?
   2408 	 */
   2409 	bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2410 	    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
   2411 
   2412 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
   2413 
   2414 	bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
   2415 	cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
   2416 	cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
   2417 
   2418 	ATW_WRITE(sc, ATW_BCNT, bcnt);
   2419 	ATW_WRITE(sc, ATW_BPLI, bpli);
   2420 	ATW_WRITE(sc, ATW_CAP0, cap0);
   2421 	ATW_WRITE(sc, ATW_CAP1, cap1);
   2422 
   2423 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
   2424 	    sc->sc_dev.dv_xname, bcnt));
   2425 
   2426 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
   2427 	    sc->sc_dev.dv_xname, cap1));
   2428 }
   2429 
   2430 /* Return the 32 lsb of the last TSFT divisible by ival. */
   2431 static __inline uint32_t
   2432 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
   2433 {
   2434 	/* Following the reference driver's lead, I compute
   2435 	 *
   2436 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
   2437 	 *
   2438 	 * without using 64-bit arithmetic, using the following
   2439 	 * relationship:
   2440 	 *
   2441 	 *     (0x100000000 * H + L) % m
   2442 	 *   = ((0x100000000 % m) * H + L) % m
   2443 	 *   = (((0xffffffff + 1) % m) * H + L) % m
   2444 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
   2445 	 *   = ((0xffffffff % m + 1) * H + L) % m
   2446 	 */
   2447 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
   2448 }
   2449 
   2450 static uint64_t
   2451 atw_get_tsft(struct atw_softc *sc)
   2452 {
   2453 	int i;
   2454 	uint32_t tsfth, tsftl;
   2455 	for (i = 0; i < 2; i++) {
   2456 		tsfth = ATW_READ(sc, ATW_TSFTH);
   2457 		tsftl = ATW_READ(sc, ATW_TSFTL);
   2458 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
   2459 			break;
   2460 	}
   2461 	return ((uint64_t)tsfth << 32) | tsftl;
   2462 }
   2463 
   2464 /* If we've created an IBSS, write the TSF time in the ADM8211 to
   2465  * the ieee80211com.
   2466  *
   2467  * Predict the next target beacon transmission time (TBTT) and
   2468  * write it to the ADM8211.
   2469  */
   2470 static void
   2471 atw_predict_beacon(struct atw_softc *sc)
   2472 {
   2473 #define TBTTOFS 20 /* TU */
   2474 
   2475 	struct ieee80211com *ic = &sc->sc_ic;
   2476 	uint64_t tsft;
   2477 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
   2478 	union {
   2479 		uint64_t	word;
   2480 		uint8_t		tstamp[8];
   2481 	} u;
   2482 
   2483 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
   2484 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
   2485 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
   2486 		tsft = atw_get_tsft(sc);
   2487 		u.word = htole64(tsft);
   2488 		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
   2489 		    sizeof(ic->ic_bss->ni_tstamp));
   2490 	} else
   2491 		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
   2492 
   2493 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
   2494 
   2495 	tsftl = tsft & 0xFFFFFFFF;
   2496 	tsfth = tsft >> 32;
   2497 
   2498 	/* We sent/received the last beacon `past' microseconds
   2499 	 * after the interval divided the TSF timer.
   2500 	 */
   2501 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
   2502 
   2503 	/* Skip ten beacons so that the TBTT cannot pass before
   2504 	 * we've programmed it.  Ten is an arbitrary number.
   2505 	 */
   2506 	tbtt = past_even + ival * 10;
   2507 
   2508 	ATW_WRITE(sc, ATW_TOFS1,
   2509 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
   2510 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
   2511 	    LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
   2512 	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
   2513 #undef TBTTOFS
   2514 }
   2515 
   2516 static void
   2517 atw_next_scan(void *arg)
   2518 {
   2519 	struct atw_softc *sc = arg;
   2520 	struct ieee80211com *ic = &sc->sc_ic;
   2521 	int s;
   2522 
   2523 	/* don't call atw_start w/o network interrupts blocked */
   2524 	s = splnet();
   2525 	if (ic->ic_state == IEEE80211_S_SCAN)
   2526 		ieee80211_next_scan(ic);
   2527 	splx(s);
   2528 }
   2529 
   2530 /* Synchronize the hardware state with the software state. */
   2531 static int
   2532 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   2533 {
   2534 	struct ifnet *ifp = ic->ic_ifp;
   2535 	struct atw_softc *sc = ifp->if_softc;
   2536 	enum ieee80211_state ostate;
   2537 	int error;
   2538 
   2539 	ostate = ic->ic_state;
   2540 
   2541 	if (nstate == IEEE80211_S_INIT) {
   2542 		callout_stop(&sc->sc_scan_ch);
   2543 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
   2544 		atw_start_beacon(sc, 0);
   2545 		return (*sc->sc_newstate)(ic, nstate, arg);
   2546 	}
   2547 
   2548 	if ((error = atw_tune(sc)) != 0)
   2549 		return error;
   2550 
   2551 	switch (nstate) {
   2552 	case IEEE80211_S_ASSOC:
   2553 		break;
   2554 	case IEEE80211_S_INIT:
   2555 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
   2556 		break;
   2557 	case IEEE80211_S_SCAN:
   2558 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
   2559 		    atw_next_scan, sc);
   2560 
   2561 		break;
   2562 	case IEEE80211_S_RUN:
   2563 		if (ic->ic_opmode == IEEE80211_M_STA)
   2564 			break;
   2565 		/*FALLTHROUGH*/
   2566 	case IEEE80211_S_AUTH:
   2567 		atw_write_bssid(sc);
   2568 		atw_write_ssid(sc);
   2569 		atw_write_sup_rates(sc);
   2570 
   2571 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
   2572 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   2573 			break;
   2574 
   2575 		/* set listen interval
   2576 		 * XXX do software units agree w/ hardware?
   2577 		 */
   2578 		ATW_WRITE(sc, ATW_BPLI,
   2579 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2580 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
   2581 			   ATW_BPLI_LI_MASK));
   2582 
   2583 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
   2584 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
   2585 
   2586 		atw_predict_beacon(sc);
   2587 		break;
   2588 	}
   2589 
   2590 	if (nstate != IEEE80211_S_SCAN)
   2591 		callout_stop(&sc->sc_scan_ch);
   2592 
   2593 	if (nstate == IEEE80211_S_RUN &&
   2594 	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   2595 	     ic->ic_opmode == IEEE80211_M_IBSS))
   2596 		atw_start_beacon(sc, 1);
   2597 	else
   2598 		atw_start_beacon(sc, 0);
   2599 
   2600 	error = (*sc->sc_newstate)(ic, nstate, arg);
   2601 
   2602 	if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
   2603 		atw_write_bssid(sc);
   2604 
   2605 	return error;
   2606 }
   2607 
   2608 /*
   2609  * atw_add_rxbuf:
   2610  *
   2611  *	Add a receive buffer to the indicated descriptor.
   2612  */
   2613 int
   2614 atw_add_rxbuf(struct atw_softc *sc, int idx)
   2615 {
   2616 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2617 	struct mbuf *m;
   2618 	int error;
   2619 
   2620 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2621 	if (m == NULL)
   2622 		return (ENOBUFS);
   2623 
   2624 	MCLGET(m, M_DONTWAIT);
   2625 	if ((m->m_flags & M_EXT) == 0) {
   2626 		m_freem(m);
   2627 		return (ENOBUFS);
   2628 	}
   2629 
   2630 	if (rxs->rxs_mbuf != NULL)
   2631 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2632 
   2633 	rxs->rxs_mbuf = m;
   2634 
   2635 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2636 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2637 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2638 	if (error) {
   2639 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2640 		    sc->sc_dev.dv_xname, idx, error);
   2641 		panic("atw_add_rxbuf");	/* XXX */
   2642 	}
   2643 
   2644 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2645 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2646 
   2647 	ATW_INIT_RXDESC(sc, idx);
   2648 
   2649 	return (0);
   2650 }
   2651 
   2652 /*
   2653  * Release any queued transmit buffers.
   2654  */
   2655 void
   2656 atw_txdrain(struct atw_softc *sc)
   2657 {
   2658 	struct atw_txsoft *txs;
   2659 
   2660 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2661 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2662 		if (txs->txs_mbuf != NULL) {
   2663 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2664 			m_freem(txs->txs_mbuf);
   2665 			txs->txs_mbuf = NULL;
   2666 		}
   2667 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2668 	}
   2669 	sc->sc_tx_timer = 0;
   2670 }
   2671 
   2672 /*
   2673  * atw_stop:		[ ifnet interface function ]
   2674  *
   2675  *	Stop transmission on the interface.
   2676  */
   2677 void
   2678 atw_stop(struct ifnet *ifp, int disable)
   2679 {
   2680 	struct atw_softc *sc = ifp->if_softc;
   2681 	struct ieee80211com *ic = &sc->sc_ic;
   2682 
   2683 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   2684 
   2685 	/* Disable interrupts. */
   2686 	ATW_WRITE(sc, ATW_IER, 0);
   2687 
   2688 	/* Stop the transmit and receive processes. */
   2689 	sc->sc_opmode = 0;
   2690 	ATW_WRITE(sc, ATW_NAR, 0);
   2691 	DELAY(atw_nar_delay);
   2692 	ATW_WRITE(sc, ATW_TDBD, 0);
   2693 	ATW_WRITE(sc, ATW_TDBP, 0);
   2694 	ATW_WRITE(sc, ATW_RDB, 0);
   2695 
   2696 	atw_txdrain(sc);
   2697 
   2698 	if (disable) {
   2699 		atw_rxdrain(sc);
   2700 		atw_disable(sc);
   2701 	}
   2702 
   2703 	/*
   2704 	 * Mark the interface down and cancel the watchdog timer.
   2705 	 */
   2706 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2707 	ifp->if_timer = 0;
   2708 
   2709 	if (!disable)
   2710 		atw_reset(sc);
   2711 }
   2712 
   2713 /*
   2714  * atw_rxdrain:
   2715  *
   2716  *	Drain the receive queue.
   2717  */
   2718 void
   2719 atw_rxdrain(struct atw_softc *sc)
   2720 {
   2721 	struct atw_rxsoft *rxs;
   2722 	int i;
   2723 
   2724 	for (i = 0; i < ATW_NRXDESC; i++) {
   2725 		rxs = &sc->sc_rxsoft[i];
   2726 		if (rxs->rxs_mbuf == NULL)
   2727 			continue;
   2728 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2729 		m_freem(rxs->rxs_mbuf);
   2730 		rxs->rxs_mbuf = NULL;
   2731 	}
   2732 }
   2733 
   2734 /*
   2735  * atw_detach:
   2736  *
   2737  *	Detach an ADM8211 interface.
   2738  */
   2739 int
   2740 atw_detach(struct atw_softc *sc)
   2741 {
   2742 	struct ifnet *ifp = &sc->sc_if;
   2743 	struct atw_rxsoft *rxs;
   2744 	struct atw_txsoft *txs;
   2745 	int i;
   2746 
   2747 	/*
   2748 	 * Succeed now if there isn't any work to do.
   2749 	 */
   2750 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
   2751 		return (0);
   2752 
   2753 	callout_stop(&sc->sc_scan_ch);
   2754 
   2755 	ieee80211_ifdetach(&sc->sc_ic);
   2756 	if_detach(ifp);
   2757 
   2758 	for (i = 0; i < ATW_NRXDESC; i++) {
   2759 		rxs = &sc->sc_rxsoft[i];
   2760 		if (rxs->rxs_mbuf != NULL) {
   2761 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2762 			m_freem(rxs->rxs_mbuf);
   2763 			rxs->rxs_mbuf = NULL;
   2764 		}
   2765 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
   2766 	}
   2767 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   2768 		txs = &sc->sc_txsoft[i];
   2769 		if (txs->txs_mbuf != NULL) {
   2770 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2771 			m_freem(txs->txs_mbuf);
   2772 			txs->txs_mbuf = NULL;
   2773 		}
   2774 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
   2775 	}
   2776 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2777 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2778 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2779 	    sizeof(struct atw_control_data));
   2780 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2781 
   2782 	shutdownhook_disestablish(sc->sc_sdhook);
   2783 	powerhook_disestablish(sc->sc_powerhook);
   2784 
   2785 	if (sc->sc_srom)
   2786 		free(sc->sc_srom, M_DEVBUF);
   2787 
   2788 	return (0);
   2789 }
   2790 
   2791 /* atw_shutdown: make sure the interface is stopped at reboot time. */
   2792 void
   2793 atw_shutdown(void *arg)
   2794 {
   2795 	struct atw_softc *sc = arg;
   2796 
   2797 	atw_stop(&sc->sc_if, 1);
   2798 }
   2799 
   2800 int
   2801 atw_intr(void *arg)
   2802 {
   2803 	struct atw_softc *sc = arg;
   2804 	struct ifnet *ifp = &sc->sc_if;
   2805 	u_int32_t status, rxstatus, txstatus, linkstatus;
   2806 	int handled = 0, txthresh;
   2807 
   2808 #ifdef DEBUG
   2809 	if (ATW_IS_ENABLED(sc) == 0)
   2810 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
   2811 #endif
   2812 
   2813 	/*
   2814 	 * If the interface isn't running, the interrupt couldn't
   2815 	 * possibly have come from us.
   2816 	 */
   2817 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   2818 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   2819 		return (0);
   2820 
   2821 	for (;;) {
   2822 		status = ATW_READ(sc, ATW_STSR);
   2823 
   2824 		if (status)
   2825 			ATW_WRITE(sc, ATW_STSR, status);
   2826 
   2827 #ifdef ATW_DEBUG
   2828 #define PRINTINTR(flag) do { \
   2829 	if ((status & flag) != 0) { \
   2830 		printf("%s" #flag, delim); \
   2831 		delim = ","; \
   2832 	} \
   2833 } while (0)
   2834 
   2835 		if (atw_debug > 1 && status) {
   2836 			const char *delim = "<";
   2837 
   2838 			printf("%s: reg[STSR] = %x",
   2839 			    sc->sc_dev.dv_xname, status);
   2840 
   2841 			PRINTINTR(ATW_INTR_FBE);
   2842 			PRINTINTR(ATW_INTR_LINKOFF);
   2843 			PRINTINTR(ATW_INTR_LINKON);
   2844 			PRINTINTR(ATW_INTR_RCI);
   2845 			PRINTINTR(ATW_INTR_RDU);
   2846 			PRINTINTR(ATW_INTR_REIS);
   2847 			PRINTINTR(ATW_INTR_RPS);
   2848 			PRINTINTR(ATW_INTR_TCI);
   2849 			PRINTINTR(ATW_INTR_TDU);
   2850 			PRINTINTR(ATW_INTR_TLT);
   2851 			PRINTINTR(ATW_INTR_TPS);
   2852 			PRINTINTR(ATW_INTR_TRT);
   2853 			PRINTINTR(ATW_INTR_TUF);
   2854 			PRINTINTR(ATW_INTR_BCNTC);
   2855 			PRINTINTR(ATW_INTR_ATIME);
   2856 			PRINTINTR(ATW_INTR_TBTT);
   2857 			PRINTINTR(ATW_INTR_TSCZ);
   2858 			PRINTINTR(ATW_INTR_TSFTF);
   2859 			printf(">\n");
   2860 		}
   2861 #undef PRINTINTR
   2862 #endif /* ATW_DEBUG */
   2863 
   2864 		if ((status & sc->sc_inten) == 0)
   2865 			break;
   2866 
   2867 		handled = 1;
   2868 
   2869 		rxstatus = status & sc->sc_rxint_mask;
   2870 		txstatus = status & sc->sc_txint_mask;
   2871 		linkstatus = status & sc->sc_linkint_mask;
   2872 
   2873 		if (linkstatus) {
   2874 			atw_linkintr(sc, linkstatus);
   2875 		}
   2876 
   2877 		if (rxstatus) {
   2878 			/* Grab any new packets. */
   2879 			atw_rxintr(sc);
   2880 
   2881 			if (rxstatus & ATW_INTR_RDU) {
   2882 				printf("%s: receive ring overrun\n",
   2883 				    sc->sc_dev.dv_xname);
   2884 				/* Get the receive process going again. */
   2885 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2886 				break;
   2887 			}
   2888 		}
   2889 
   2890 		if (txstatus) {
   2891 			/* Sweep up transmit descriptors. */
   2892 			atw_txintr(sc);
   2893 
   2894 			if (txstatus & ATW_INTR_TLT)
   2895 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
   2896 				    sc->sc_dev.dv_xname));
   2897 
   2898 			if (txstatus & ATW_INTR_TRT)
   2899 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
   2900 				    sc->sc_dev.dv_xname));
   2901 
   2902 			/* If Tx under-run, increase our transmit threshold
   2903 			 * if another is available.
   2904 			 */
   2905 			txthresh = sc->sc_txthresh + 1;
   2906 			if ((txstatus & ATW_INTR_TUF) &&
   2907 			    sc->sc_txth[txthresh].txth_name != NULL) {
   2908 				/* Idle the transmit process. */
   2909 				atw_idle(sc, ATW_NAR_ST);
   2910 
   2911 				sc->sc_txthresh = txthresh;
   2912 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
   2913 				sc->sc_opmode |=
   2914 				    sc->sc_txth[txthresh].txth_opmode;
   2915 				printf("%s: transmit underrun; new "
   2916 				    "threshold: %s\n", sc->sc_dev.dv_xname,
   2917 				    sc->sc_txth[txthresh].txth_name);
   2918 
   2919 				/* Set the new threshold and restart
   2920 				 * the transmit process.
   2921 				 */
   2922 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2923 				DELAY(atw_nar_delay);
   2924 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2925 				/* XXX Log every Nth underrun from
   2926 				 * XXX now on?
   2927 				 */
   2928 			}
   2929 		}
   2930 
   2931 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
   2932 			if (status & ATW_INTR_TPS)
   2933 				printf("%s: transmit process stopped\n",
   2934 				    sc->sc_dev.dv_xname);
   2935 			if (status & ATW_INTR_RPS)
   2936 				printf("%s: receive process stopped\n",
   2937 				    sc->sc_dev.dv_xname);
   2938 			(void)atw_init(ifp);
   2939 			break;
   2940 		}
   2941 
   2942 		if (status & ATW_INTR_FBE) {
   2943 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
   2944 			(void)atw_init(ifp);
   2945 			break;
   2946 		}
   2947 
   2948 		/*
   2949 		 * Not handled:
   2950 		 *
   2951 		 *	Transmit buffer unavailable -- normal
   2952 		 *	condition, nothing to do, really.
   2953 		 *
   2954 		 *	Early receive interrupt -- not available on
   2955 		 *	all chips, we just use RI.  We also only
   2956 		 *	use single-segment receive DMA, so this
   2957 		 *	is mostly useless.
   2958 		 *
   2959 		 *      TBD others
   2960 		 */
   2961 	}
   2962 
   2963 	/* Try to get more packets going. */
   2964 	atw_start(ifp);
   2965 
   2966 	return (handled);
   2967 }
   2968 
   2969 /*
   2970  * atw_idle:
   2971  *
   2972  *	Cause the transmit and/or receive processes to go idle.
   2973  *
   2974  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
   2975  *	process in STSR if I clear SR or ST after the process has already
   2976  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
   2977  *      do not seem to be too reliable. Perhaps I have the sense of the
   2978  *	Rx bits switched with the Tx bits?
   2979  */
   2980 void
   2981 atw_idle(struct atw_softc *sc, u_int32_t bits)
   2982 {
   2983 	u_int32_t ackmask = 0, opmode, stsr, test0;
   2984 	int i, s;
   2985 
   2986 	s = splnet();
   2987 
   2988 	opmode = sc->sc_opmode & ~bits;
   2989 
   2990 	if (bits & ATW_NAR_SR)
   2991 		ackmask |= ATW_INTR_RPS;
   2992 
   2993 	if (bits & ATW_NAR_ST) {
   2994 		ackmask |= ATW_INTR_TPS;
   2995 		/* set ATW_NAR_HF to flush TX FIFO. */
   2996 		opmode |= ATW_NAR_HF;
   2997 	}
   2998 
   2999 	ATW_WRITE(sc, ATW_NAR, opmode);
   3000 	DELAY(atw_nar_delay);
   3001 
   3002 	for (i = 0; i < 1000; i++) {
   3003 		stsr = ATW_READ(sc, ATW_STSR);
   3004 		if ((stsr & ackmask) == ackmask)
   3005 			break;
   3006 		DELAY(10);
   3007 	}
   3008 
   3009 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
   3010 
   3011 	if ((stsr & ackmask) == ackmask)
   3012 		goto out;
   3013 
   3014 	test0 = ATW_READ(sc, ATW_TEST0);
   3015 
   3016 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
   3017 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
   3018 		printf("%s: transmit process not idle [%s]\n",
   3019 		    sc->sc_dev.dv_xname,
   3020 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
   3021 		printf("%s: bits %08x test0 %08x stsr %08x\n",
   3022 		    sc->sc_dev.dv_xname, bits, test0, stsr);
   3023 	}
   3024 
   3025 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
   3026 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
   3027 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
   3028 		    sc->sc_dev.dv_xname,
   3029 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
   3030 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
   3031 		    sc->sc_dev.dv_xname, bits, test0, stsr));
   3032 	}
   3033 out:
   3034 	if ((bits & ATW_NAR_ST) != 0)
   3035 		atw_txdrain(sc);
   3036 	splx(s);
   3037 	return;
   3038 }
   3039 
   3040 /*
   3041  * atw_linkintr:
   3042  *
   3043  *	Helper; handle link-status interrupts.
   3044  */
   3045 void
   3046 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
   3047 {
   3048 	struct ieee80211com *ic = &sc->sc_ic;
   3049 
   3050 	if (ic->ic_state != IEEE80211_S_RUN)
   3051 		return;
   3052 
   3053 	if (linkstatus & ATW_INTR_LINKON) {
   3054 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
   3055 		sc->sc_rescan_timer = 0;
   3056 	} else if (linkstatus & ATW_INTR_LINKOFF) {
   3057 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
   3058 		if (ic->ic_opmode != IEEE80211_M_STA)
   3059 			return;
   3060 		sc->sc_rescan_timer = 3;
   3061 		sc->sc_if.if_timer = 1;
   3062 	}
   3063 }
   3064 
   3065 static __inline int
   3066 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
   3067 {
   3068 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
   3069 		return 0;
   3070 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
   3071 		return 0;
   3072 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
   3073 }
   3074 
   3075 /*
   3076  * atw_rxintr:
   3077  *
   3078  *	Helper; handle receive interrupts.
   3079  */
   3080 void
   3081 atw_rxintr(struct atw_softc *sc)
   3082 {
   3083 	static int rate_tbl[] = {2, 4, 11, 22, 44};
   3084 	struct ieee80211com *ic = &sc->sc_ic;
   3085 	struct ieee80211_node *ni;
   3086 	struct ieee80211_frame_min *wh;
   3087 	struct ifnet *ifp = &sc->sc_if;
   3088 	struct atw_rxsoft *rxs;
   3089 	struct mbuf *m;
   3090 	u_int32_t rxstat;
   3091 	int i, len, rate, rate0;
   3092 	u_int32_t rssi, rssi0;
   3093 
   3094 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
   3095 		rxs = &sc->sc_rxsoft[i];
   3096 
   3097 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3098 
   3099 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
   3100 		rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
   3101 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
   3102 
   3103 		if (rxstat & ATW_RXSTAT_OWN)
   3104 			break; /* We have processed all receive buffers. */
   3105 
   3106 		DPRINTF3(sc,
   3107 		    ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
   3108 		    sc->sc_dev.dv_xname,
   3109 		    rxstat, rssi0,
   3110 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
   3111 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
   3112 
   3113 		/*
   3114 		 * Make sure the packet fits in one buffer.  This should
   3115 		 * always be the case.
   3116 		 */
   3117 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
   3118 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
   3119 			printf("%s: incoming packet spilled, resetting\n",
   3120 			    sc->sc_dev.dv_xname);
   3121 			(void)atw_init(ifp);
   3122 			return;
   3123 		}
   3124 
   3125 		/*
   3126 		 * If an error occurred, update stats, clear the status
   3127 		 * word, and leave the packet buffer in place.  It will
   3128 		 * simply be reused the next time the ring comes around.
   3129 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
   3130 		 * error.
   3131 		 */
   3132 
   3133 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
   3134 		    ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
   3135 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
   3136 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
   3137 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
   3138 				ATW_RXSTAT_ICVE)) != 0)) {
   3139 #define	PRINTERR(bit, str)						\
   3140 			if (rxstat & (bit))				\
   3141 				printf("%s: receive error: %s\n",	\
   3142 				    sc->sc_dev.dv_xname, str)
   3143 			ifp->if_ierrors++;
   3144 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
   3145 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
   3146 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
   3147 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
   3148 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
   3149 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
   3150 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
   3151 #undef PRINTERR
   3152 			ATW_INIT_RXDESC(sc, i);
   3153 			continue;
   3154 		}
   3155 
   3156 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3157 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3158 
   3159 		/*
   3160 		 * No errors; receive the packet.  Note the ADM8211
   3161 		 * includes the CRC in promiscuous mode.
   3162 		 */
   3163 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
   3164 
   3165 		/*
   3166 		 * Allocate a new mbuf cluster.  If that fails, we are
   3167 		 * out of memory, and must drop the packet and recycle
   3168 		 * the buffer that's already attached to this descriptor.
   3169 		 */
   3170 		m = rxs->rxs_mbuf;
   3171 		if (atw_add_rxbuf(sc, i) != 0) {
   3172 			ifp->if_ierrors++;
   3173 			ATW_INIT_RXDESC(sc, i);
   3174 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3175 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3176 			continue;
   3177 		}
   3178 
   3179 		ifp->if_ipackets++;
   3180 		if (sc->sc_opmode & ATW_NAR_PR)
   3181 			len -= IEEE80211_CRC_LEN;
   3182 		m->m_pkthdr.rcvif = ifp;
   3183 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
   3184 
   3185 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
   3186 			rate = 0;
   3187 		else
   3188 			rate = rate_tbl[rate0];
   3189 
   3190 		/* The RSSI comes straight from a register in the
   3191 		 * baseband processor.  I know that for the RF3000,
   3192 		 * the RSSI register also contains the antenna-selection
   3193 		 * bits.  Mask those off.
   3194 		 *
   3195 		 * TBD Treat other basebands.
   3196 		 */
   3197 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
   3198 			rssi = rssi0 & RF3000_RSSI_MASK;
   3199 		else
   3200 			rssi = rssi0;
   3201 
   3202  #if NBPFILTER > 0
   3203 		/* Pass this up to any BPF listeners. */
   3204 		if (sc->sc_radiobpf != NULL) {
   3205 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
   3206 
   3207 			tap->ar_rate = rate;
   3208 			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3209 			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3210 
   3211 			/* TBD verify units are dB */
   3212 			tap->ar_antsignal = (int)rssi;
   3213 			/* TBD tap->ar_flags */
   3214 
   3215 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3216 			    tap->ar_ihdr.it_len, m);
   3217  		}
   3218  #endif /* NPBFILTER > 0 */
   3219 
   3220 		wh = mtod(m, struct ieee80211_frame_min *);
   3221 		ni = ieee80211_find_rxnode(ic, wh);
   3222 		if (atw_hw_decrypted(sc, wh)) {
   3223 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
   3224 			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
   3225 		}
   3226 		ieee80211_input(ic, m, ni, (int)rssi, 0);
   3227 		ieee80211_free_node(ni);
   3228 	}
   3229 
   3230 	/* Update the receive pointer. */
   3231 	sc->sc_rxptr = i;
   3232 }
   3233 
   3234 /*
   3235  * atw_txintr:
   3236  *
   3237  *	Helper; handle transmit interrupts.
   3238  */
   3239 void
   3240 atw_txintr(struct atw_softc *sc)
   3241 {
   3242 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
   3243     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
   3244 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
   3245     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
   3246 
   3247 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
   3248 	struct ifnet *ifp = &sc->sc_if;
   3249 	struct atw_txsoft *txs;
   3250 	u_int32_t txstat;
   3251 
   3252 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
   3253 	    sc->sc_dev.dv_xname, sc->sc_flags));
   3254 
   3255 	ifp->if_flags &= ~IFF_OACTIVE;
   3256 
   3257 	/*
   3258 	 * Go through our Tx list and free mbufs for those
   3259 	 * frames that have been transmitted.
   3260 	 */
   3261 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   3262 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   3263 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3264 
   3265 #ifdef ATW_DEBUG
   3266 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3267 			int i;
   3268 			printf("    txsoft %p transmit chain:\n", txs);
   3269 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
   3270 			    txs->txs_ndescs - 1,
   3271 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3272 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
   3273 				printf("     descriptor %d:\n", i);
   3274 				printf("       at_status:   0x%08x\n",
   3275 				    le32toh(sc->sc_txdescs[i].at_stat));
   3276 				printf("       at_flags:      0x%08x\n",
   3277 				    le32toh(sc->sc_txdescs[i].at_flags));
   3278 				printf("       at_buf1: 0x%08x\n",
   3279 				    le32toh(sc->sc_txdescs[i].at_buf1));
   3280 				printf("       at_buf2: 0x%08x\n",
   3281 				    le32toh(sc->sc_txdescs[i].at_buf2));
   3282 				if (i == txs->txs_lastdesc)
   3283 					break;
   3284 			}
   3285 		}
   3286 #endif
   3287 
   3288 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
   3289 		if (txstat & ATW_TXSTAT_OWN)
   3290 			break;
   3291 
   3292 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   3293 
   3294 		sc->sc_txfree += txs->txs_ndescs;
   3295 
   3296 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   3297 		    0, txs->txs_dmamap->dm_mapsize,
   3298 		    BUS_DMASYNC_POSTWRITE);
   3299 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3300 		m_freem(txs->txs_mbuf);
   3301 		txs->txs_mbuf = NULL;
   3302 
   3303 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   3304 
   3305 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   3306 		    (txstat & TXSTAT_ERRMASK) != 0) {
   3307 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
   3308 			    txstat_buf, sizeof(txstat_buf));
   3309 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
   3310 			    txstat_buf,
   3311 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
   3312 		}
   3313 
   3314 		/*
   3315 		 * Check for errors and collisions.
   3316 		 */
   3317 		if (txstat & ATW_TXSTAT_TUF)
   3318 			sc->sc_stats.ts_tx_tuf++;
   3319 		if (txstat & ATW_TXSTAT_TLT)
   3320 			sc->sc_stats.ts_tx_tlt++;
   3321 		if (txstat & ATW_TXSTAT_TRT)
   3322 			sc->sc_stats.ts_tx_trt++;
   3323 		if (txstat & ATW_TXSTAT_TRO)
   3324 			sc->sc_stats.ts_tx_tro++;
   3325 		if (txstat & ATW_TXSTAT_SOFBR) {
   3326 			sc->sc_stats.ts_tx_sofbr++;
   3327 		}
   3328 
   3329 		if ((txstat & ATW_TXSTAT_ES) == 0)
   3330 			ifp->if_collisions +=
   3331 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
   3332 		else
   3333 			ifp->if_oerrors++;
   3334 
   3335 		ifp->if_opackets++;
   3336 	}
   3337 
   3338 	/*
   3339 	 * If there are no more pending transmissions, cancel the watchdog
   3340 	 * timer.
   3341 	 */
   3342 	if (txs == NULL)
   3343 		sc->sc_tx_timer = 0;
   3344 #undef TXSTAT_ERRMASK
   3345 #undef TXSTAT_FMT
   3346 }
   3347 
   3348 /*
   3349  * atw_watchdog:	[ifnet interface function]
   3350  *
   3351  *	Watchdog timer handler.
   3352  */
   3353 void
   3354 atw_watchdog(struct ifnet *ifp)
   3355 {
   3356 	struct atw_softc *sc = ifp->if_softc;
   3357 	struct ieee80211com *ic = &sc->sc_ic;
   3358 
   3359 	ifp->if_timer = 0;
   3360 	if (ATW_IS_ENABLED(sc) == 0)
   3361 		return;
   3362 
   3363 	if (sc->sc_rescan_timer) {
   3364 		if (--sc->sc_rescan_timer == 0)
   3365 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3366 	}
   3367 	if (sc->sc_tx_timer) {
   3368 		if (--sc->sc_tx_timer == 0 &&
   3369 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
   3370 			printf("%s: transmit timeout\n", ifp->if_xname);
   3371 			ifp->if_oerrors++;
   3372 			(void)atw_init(ifp);
   3373 			atw_start(ifp);
   3374 		}
   3375 	}
   3376 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
   3377 		ifp->if_timer = 1;
   3378 	ieee80211_watchdog(ic);
   3379 }
   3380 
   3381 /* Compute the 802.11 Duration field and the PLCP Length fields for
   3382  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
   3383  * Write the fields to the ADM8211 Tx header, frm.
   3384  *
   3385  * TBD use the fragmentation threshold to find the right duration for
   3386  * the first & last fragments.
   3387  *
   3388  * TBD make certain of the duration fields applied by the ADM8211 to each
   3389  * fragment. I think that the ADM8211 knows how to subtract the CTS
   3390  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
   3391  * I also think that the ADM8211 does *some* arithmetic for us, because
   3392  * otherwise I think we would have to set a first duration for CTS/first
   3393  * fragment, a second duration for fragments between the first and the
   3394  * last, and a third duration for the last fragment.
   3395  *
   3396  * TBD make certain that duration fields reflect addition of FCS/WEP
   3397  * and correct duration arithmetic as necessary.
   3398  */
   3399 static void
   3400 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
   3401     int len)
   3402 {
   3403 	int remainder;
   3404 
   3405 	/* deal also with encrypted fragments */
   3406 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
   3407 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
   3408 		    sc->sc_dev.dv_xname));
   3409 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
   3410 		       IEEE80211_WEP_CRCLEN;
   3411 	}
   3412 
   3413 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
   3414 	 * duration (XXX added by MAC?).
   3415 	 */
   3416 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
   3417 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
   3418 
   3419 	if (rate <= 4)
   3420 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
   3421 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3422 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3423 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3424 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
   3425 	else
   3426 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
   3427 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3428 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3429 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3430 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
   3431 
   3432 	/* lengthen duration if long preamble */
   3433 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
   3434 		frm->atw_head_dur +=
   3435 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
   3436 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
   3437 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
   3438 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
   3439 
   3440 	if (remainder != 0)
   3441 		frm->atw_head_dur++;
   3442 
   3443 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
   3444 	    (rate == 2 || rate == 4)) {
   3445 		/* derived from Linux: how could this be right? */
   3446 		frm->atw_head_plcplen = frm->atw_head_dur;
   3447 	} else {
   3448 		frm->atw_head_plcplen = (16 * len) / rate;
   3449 		remainder = (80 * len) % (rate * 5);
   3450 
   3451 		if (remainder != 0) {
   3452 			frm->atw_head_plcplen++;
   3453 
   3454 			/* XXX magic */
   3455 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
   3456 			    rate == 22 && remainder <= 30)
   3457 				frm->atw_head_plcplen |= 0x8000;
   3458 		}
   3459 	}
   3460 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
   3461 	    htole16(frm->atw_head_plcplen);
   3462 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
   3463 }
   3464 
   3465 #ifdef ATW_DEBUG
   3466 static void
   3467 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
   3468 {
   3469 	struct atw_softc *sc = ifp->if_softc;
   3470 	struct mbuf *m;
   3471 	int i, noctets = 0;
   3472 
   3473 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
   3474 	    m0->m_pkthdr.len);
   3475 
   3476 	for (m = m0; m; m = m->m_next) {
   3477 		if (m->m_len == 0)
   3478 			continue;
   3479 		for (i = 0; i < m->m_len; i++) {
   3480 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
   3481 			if (++noctets % 24 == 0)
   3482 				printf("\n");
   3483 		}
   3484 	}
   3485 	printf("%s%s: %d bytes emitted\n",
   3486 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
   3487 }
   3488 #endif /* ATW_DEBUG */
   3489 
   3490 /*
   3491  * atw_start:		[ifnet interface function]
   3492  *
   3493  *	Start packet transmission on the interface.
   3494  */
   3495 void
   3496 atw_start(struct ifnet *ifp)
   3497 {
   3498 	struct atw_softc *sc = ifp->if_softc;
   3499 	struct ieee80211com *ic = &sc->sc_ic;
   3500 	struct ieee80211_node *ni;
   3501 	struct ieee80211_frame *wh;
   3502 	struct atw_frame *hh;
   3503 	struct mbuf *m0, *m;
   3504 	struct atw_txsoft *txs, *last_txs;
   3505 	struct atw_txdesc *txd;
   3506 	int do_encrypt, rate;
   3507 	bus_dmamap_t dmamap;
   3508 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
   3509 
   3510 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
   3511 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
   3512 
   3513 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3514 		return;
   3515 
   3516 	/*
   3517 	 * Remember the previous number of free descriptors and
   3518 	 * the first descriptor we'll use.
   3519 	 */
   3520 	ofree = sc->sc_txfree;
   3521 	firsttx = sc->sc_txnext;
   3522 
   3523 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
   3524 	    sc->sc_dev.dv_xname, ofree, firsttx));
   3525 
   3526 	/*
   3527 	 * Loop through the send queue, setting up transmit descriptors
   3528 	 * until we drain the queue, or use up all available transmit
   3529 	 * descriptors.
   3530 	 */
   3531 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   3532 	       sc->sc_txfree != 0) {
   3533 
   3534 		/*
   3535 		 * Grab a packet off the management queue, if it
   3536 		 * is not empty. Otherwise, from the data queue.
   3537 		 */
   3538 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   3539 		if (m0 != NULL) {
   3540 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   3541 			m0->m_pkthdr.rcvif = NULL;
   3542 		} else {
   3543 			/* send no data packets until we are associated */
   3544 			if (ic->ic_state != IEEE80211_S_RUN)
   3545 				break;
   3546 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   3547 			if (m0 == NULL)
   3548 				break;
   3549 #if NBPFILTER > 0
   3550 			if (ifp->if_bpf != NULL)
   3551 				bpf_mtap(ifp->if_bpf, m0);
   3552 #endif /* NBPFILTER > 0 */
   3553 			ni = ieee80211_find_txnode(ic,
   3554 			    mtod(m0, struct ether_header *)->ether_dhost);
   3555 			if (ni == NULL) {
   3556 				ifp->if_oerrors++;
   3557 				break;
   3558 			}
   3559 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
   3560 				ieee80211_free_node(ni);
   3561 				ifp->if_oerrors++;
   3562 				break;
   3563 			}
   3564 		}
   3565 
   3566 		rate = MAX(ieee80211_get_rate(ic), 2);
   3567 
   3568 #if NBPFILTER > 0
   3569 		/*
   3570 		 * Pass the packet to any BPF listeners.
   3571 		 */
   3572 		if (ic->ic_rawbpf != NULL)
   3573 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
   3574 
   3575 		if (sc->sc_radiobpf != NULL) {
   3576 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
   3577 
   3578 			tap->at_rate = rate;
   3579 			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
   3580 			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
   3581 
   3582 			/* TBD tap->at_flags */
   3583 
   3584 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3585 			    tap->at_ihdr.it_len, m0);
   3586 		}
   3587 #endif /* NBPFILTER > 0 */
   3588 
   3589 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
   3590 
   3591 		if (ni != NULL)
   3592 			ieee80211_free_node(ni);
   3593 
   3594 		if (m0 == NULL) {
   3595 			ifp->if_oerrors++;
   3596 			break;
   3597 		}
   3598 
   3599 		/* just to make sure. */
   3600 		m0 = m_pullup(m0, sizeof(struct atw_frame));
   3601 
   3602 		if (m0 == NULL) {
   3603 			ifp->if_oerrors++;
   3604 			break;
   3605 		}
   3606 
   3607 		hh = mtod(m0, struct atw_frame *);
   3608 		wh = &hh->atw_ihdr;
   3609 
   3610 		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
   3611 
   3612 		/* Copy everything we need from the 802.11 header:
   3613 		 * Frame Control; address 1, address 3, or addresses
   3614 		 * 3 and 4. NIC fills in BSSID, SA.
   3615 		 */
   3616 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
   3617 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
   3618 				panic("%s: illegal WDS frame",
   3619 				    sc->sc_dev.dv_xname);
   3620 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
   3621 		} else
   3622 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
   3623 
   3624 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
   3625 
   3626 		/* initialize remaining Tx parameters */
   3627 		memset(&hh->u, 0, sizeof(hh->u));
   3628 
   3629 		hh->atw_rate = rate * 5;
   3630 		/* XXX this could be incorrect if M_FCS. _encap should
   3631 		 * probably strip FCS just in case it sticks around in
   3632 		 * bridged packets.
   3633 		 */
   3634 		hh->atw_service = 0x00; /* XXX guess */
   3635 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
   3636 		    sizeof(struct atw_frame));
   3637 
   3638 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3639 		hh->atw_rtylmt = 3;
   3640 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
   3641 		if (do_encrypt) {
   3642 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
   3643 			hh->atw_keyid = ic->ic_def_txkey;
   3644 		}
   3645 
   3646 		/* TBD 4-addr frames */
   3647 		atw_frame_setdurs(sc, hh, rate,
   3648 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
   3649 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
   3650 
   3651 		/* never fragment multicast frames */
   3652 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
   3653 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3654 		} else if (sc->sc_flags & ATWF_RTSCTS) {
   3655 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
   3656 		}
   3657 
   3658 #ifdef ATW_DEBUG
   3659 		hh->atw_fragnum = 0;
   3660 
   3661 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3662 			printf("%s: dst = %s, rate = 0x%02x, "
   3663 			    "service = 0x%02x, paylen = 0x%04x\n",
   3664 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
   3665 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
   3666 
   3667 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
   3668 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
   3669 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
   3670 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
   3671 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
   3672 			    hh->atw_tail_dur, hh->atw_head_dur);
   3673 
   3674 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
   3675 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
   3676 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
   3677 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
   3678 
   3679 			printf("%s: keyid = %d\n",
   3680 			    sc->sc_dev.dv_xname, hh->atw_keyid);
   3681 
   3682 			atw_dump_pkt(ifp, m0);
   3683 		}
   3684 #endif /* ATW_DEBUG */
   3685 
   3686 		dmamap = txs->txs_dmamap;
   3687 
   3688 		/*
   3689 		 * Load the DMA map.  Copy and try (once) again if the packet
   3690 		 * didn't fit in the alloted number of segments.
   3691 		 */
   3692 		for (first = 1;
   3693 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   3694 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
   3695 		     first = 0) {
   3696 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   3697 			if (m == NULL) {
   3698 				printf("%s: unable to allocate Tx mbuf\n",
   3699 				    sc->sc_dev.dv_xname);
   3700 				break;
   3701 			}
   3702 			if (m0->m_pkthdr.len > MHLEN) {
   3703 				MCLGET(m, M_DONTWAIT);
   3704 				if ((m->m_flags & M_EXT) == 0) {
   3705 					printf("%s: unable to allocate Tx "
   3706 					    "cluster\n", sc->sc_dev.dv_xname);
   3707 					m_freem(m);
   3708 					break;
   3709 				}
   3710 			}
   3711 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   3712 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   3713 			m_freem(m0);
   3714 			m0 = m;
   3715 			m = NULL;
   3716 		}
   3717 		if (error != 0) {
   3718 			printf("%s: unable to load Tx buffer, "
   3719 			    "error = %d\n", sc->sc_dev.dv_xname, error);
   3720 			m_freem(m0);
   3721 			break;
   3722 		}
   3723 
   3724 		/*
   3725 		 * Ensure we have enough descriptors free to describe
   3726 		 * the packet.
   3727 		 */
   3728 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   3729 			/*
   3730 			 * Not enough free descriptors to transmit
   3731 			 * this packet.  Unload the DMA map and
   3732 			 * drop the packet.  Notify the upper layer
   3733 			 * that there are no more slots left.
   3734 			 *
   3735 			 * XXX We could allocate an mbuf and copy, but
   3736 			 * XXX it is worth it?
   3737 			 */
   3738 			ifp->if_flags |= IFF_OACTIVE;
   3739 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   3740 			m_freem(m0);
   3741 			break;
   3742 		}
   3743 
   3744 		/*
   3745 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   3746 		 */
   3747 
   3748 		/* Sync the DMA map. */
   3749 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   3750 		    BUS_DMASYNC_PREWRITE);
   3751 
   3752 		/* XXX arbitrary retry limit; 8 because I have seen it in
   3753 		 * use already and maybe 0 means "no tries" !
   3754 		 */
   3755 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
   3756 
   3757 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
   3758 		    sc->sc_dev.dv_xname, rate * 5));
   3759 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
   3760 
   3761 		/*
   3762 		 * Initialize the transmit descriptors.
   3763 		 */
   3764 		for (nexttx = sc->sc_txnext, seg = 0;
   3765 		     seg < dmamap->dm_nsegs;
   3766 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
   3767 			/*
   3768 			 * If this is the first descriptor we're
   3769 			 * enqueueing, don't set the OWN bit just
   3770 			 * yet.  That could cause a race condition.
   3771 			 * We'll do it below.
   3772 			 */
   3773 			txd = &sc->sc_txdescs[nexttx];
   3774 			txd->at_ctl = ctl |
   3775 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
   3776 
   3777 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
   3778 			txd->at_flags =
   3779 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
   3780 			                   ATW_TXFLAG_TBS1_MASK)) |
   3781 			    ((nexttx == (ATW_NTXDESC - 1))
   3782 			        ? htole32(ATW_TXFLAG_TER) : 0);
   3783 			lasttx = nexttx;
   3784 		}
   3785 
   3786 		IASSERT(lasttx != -1, ("bad lastx"));
   3787 		/* Set `first segment' and `last segment' appropriately. */
   3788 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
   3789 		    htole32(ATW_TXFLAG_FS);
   3790 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
   3791 
   3792 #ifdef ATW_DEBUG
   3793 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3794 			printf("     txsoft %p transmit chain:\n", txs);
   3795 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
   3796 				printf("     descriptor %d:\n", seg);
   3797 				printf("       at_ctl:   0x%08x\n",
   3798 				    le32toh(sc->sc_txdescs[seg].at_ctl));
   3799 				printf("       at_flags:      0x%08x\n",
   3800 				    le32toh(sc->sc_txdescs[seg].at_flags));
   3801 				printf("       at_buf1: 0x%08x\n",
   3802 				    le32toh(sc->sc_txdescs[seg].at_buf1));
   3803 				printf("       at_buf2: 0x%08x\n",
   3804 				    le32toh(sc->sc_txdescs[seg].at_buf2));
   3805 				if (seg == lasttx)
   3806 					break;
   3807 			}
   3808 		}
   3809 #endif
   3810 
   3811 		/* Sync the descriptors we're using. */
   3812 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   3813 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3814 
   3815 		/*
   3816 		 * Store a pointer to the packet so we can free it later,
   3817 		 * and remember what txdirty will be once the packet is
   3818 		 * done.
   3819 		 */
   3820 		txs->txs_mbuf = m0;
   3821 		txs->txs_firstdesc = sc->sc_txnext;
   3822 		txs->txs_lastdesc = lasttx;
   3823 		txs->txs_ndescs = dmamap->dm_nsegs;
   3824 
   3825 		/* Advance the tx pointer. */
   3826 		sc->sc_txfree -= dmamap->dm_nsegs;
   3827 		sc->sc_txnext = nexttx;
   3828 
   3829 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   3830 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   3831 
   3832 		last_txs = txs;
   3833 	}
   3834 
   3835 	if (txs == NULL || sc->sc_txfree == 0) {
   3836 		/* No more slots left; notify upper layer. */
   3837 		ifp->if_flags |= IFF_OACTIVE;
   3838 	}
   3839 
   3840 	if (sc->sc_txfree != ofree) {
   3841 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   3842 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   3843 		/*
   3844 		 * Cause a transmit interrupt to happen on the
   3845 		 * last packet we enqueued.
   3846 		 */
   3847 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
   3848 		ATW_CDTXSYNC(sc, lasttx, 1,
   3849 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3850 
   3851 		/*
   3852 		 * The entire packet chain is set up.  Give the
   3853 		 * first descriptor to the chip now.
   3854 		 */
   3855 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
   3856 		ATW_CDTXSYNC(sc, firsttx, 1,
   3857 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3858 
   3859 		/* Wake up the transmitter. */
   3860 		ATW_WRITE(sc, ATW_TDR, 0x1);
   3861 
   3862 		/* Set a watchdog timer in case the chip flakes out. */
   3863 		sc->sc_tx_timer = 5;
   3864 		ifp->if_timer = 1;
   3865 	}
   3866 }
   3867 
   3868 /*
   3869  * atw_power:
   3870  *
   3871  *	Power management (suspend/resume) hook.
   3872  */
   3873 void
   3874 atw_power(int why, void *arg)
   3875 {
   3876 	struct atw_softc *sc = arg;
   3877 	struct ifnet *ifp = &sc->sc_if;
   3878 	int s;
   3879 
   3880 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
   3881 
   3882 	s = splnet();
   3883 	switch (why) {
   3884 	case PWR_STANDBY:
   3885 		/* XXX do nothing. */
   3886 		break;
   3887 	case PWR_SUSPEND:
   3888 		atw_stop(ifp, 0);
   3889 		if (sc->sc_power != NULL)
   3890 			(*sc->sc_power)(sc, why);
   3891 		break;
   3892 	case PWR_RESUME:
   3893 		if (ifp->if_flags & IFF_UP) {
   3894 			if (sc->sc_power != NULL)
   3895 				(*sc->sc_power)(sc, why);
   3896 			atw_init(ifp);
   3897 		}
   3898 		break;
   3899 	case PWR_SOFTSUSPEND:
   3900 	case PWR_SOFTSTANDBY:
   3901 	case PWR_SOFTRESUME:
   3902 		break;
   3903 	}
   3904 	splx(s);
   3905 }
   3906 
   3907 /*
   3908  * atw_ioctl:		[ifnet interface function]
   3909  *
   3910  *	Handle control requests from the operator.
   3911  */
   3912 int
   3913 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   3914 {
   3915 	struct atw_softc *sc = ifp->if_softc;
   3916 	struct ifreq *ifr = (struct ifreq *)data;
   3917 	int s, error = 0;
   3918 
   3919 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
   3920 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   3921 		return ENXIO;
   3922 
   3923 	s = splnet();
   3924 
   3925 	switch (cmd) {
   3926 	case SIOCSIFFLAGS:
   3927 		if (ifp->if_flags & IFF_UP) {
   3928 			if (ATW_IS_ENABLED(sc)) {
   3929 				/*
   3930 				 * To avoid rescanning another access point,
   3931 				 * do not call atw_init() here.  Instead,
   3932 				 * only reflect media settings.
   3933 				 */
   3934 				atw_filter_setup(sc);
   3935 			} else
   3936 				error = atw_init(ifp);
   3937 		} else if (ATW_IS_ENABLED(sc))
   3938 			atw_stop(ifp, 1);
   3939 		break;
   3940 	case SIOCADDMULTI:
   3941 	case SIOCDELMULTI:
   3942 		error = (cmd == SIOCADDMULTI) ?
   3943 		    ether_addmulti(ifr, &sc->sc_ec) :
   3944 		    ether_delmulti(ifr, &sc->sc_ec);
   3945 		if (error == ENETRESET) {
   3946 			if (ifp->if_flags & IFF_RUNNING)
   3947 				atw_filter_setup(sc); /* do not rescan */
   3948 			error = 0;
   3949 		}
   3950 		break;
   3951 	default:
   3952 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
   3953 		if (error == ENETRESET) {
   3954 			if (ATW_IS_ENABLED(sc))
   3955 				error = atw_init(ifp);
   3956 			else
   3957 				error = 0;
   3958 		}
   3959 		break;
   3960 	}
   3961 
   3962 	/* Try to get more packets going. */
   3963 	if (ATW_IS_ENABLED(sc))
   3964 		atw_start(ifp);
   3965 
   3966 	splx(s);
   3967 	return (error);
   3968 }
   3969 
   3970 static int
   3971 atw_media_change(struct ifnet *ifp)
   3972 {
   3973 	int error;
   3974 
   3975 	error = ieee80211_media_change(ifp);
   3976 	if (error == ENETRESET) {
   3977 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   3978 		    (IFF_RUNNING|IFF_UP))
   3979 			atw_init(ifp);		/* XXX lose error */
   3980 		error = 0;
   3981 	}
   3982 	return error;
   3983 }
   3984 
   3985 static void
   3986 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
   3987 {
   3988 	struct atw_softc *sc = ifp->if_softc;
   3989 
   3990 	if (ATW_IS_ENABLED(sc) == 0) {
   3991 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
   3992 		imr->ifm_status = 0;
   3993 		return;
   3994 	}
   3995 	ieee80211_media_status(ifp, imr);
   3996 }
   3997