atw.c revision 1.86 1 /* $NetBSD: atw.c,v 1.86 2005/06/25 03:41:50 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.86 2005/06/25 03:41:50 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_netbsd.h>
70 #include <net80211/ieee80211_var.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162
163 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
166 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
167 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
171 static void atw_print_regs(struct atw_softc *, const char *);
172
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 # ifdef ATW_BBPDEBUG
175 static void atw_rf3000_print(struct atw_softc *);
176 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177 # endif /* ATW_BBPDEBUG */
178
179 # ifdef ATW_SYNDEBUG
180 static void atw_si4126_print(struct atw_softc *);
181 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
182 # endif /* ATW_SYNDEBUG */
183
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define DPRINTF(sc, x) /* nothing */
189 #define DPRINTF2(sc, x) /* nothing */
190 #define DPRINTF3(sc, x) /* nothing */
191 #endif
192
193 /* ifnet methods */
194 int atw_init(struct ifnet *);
195 int atw_ioctl(struct ifnet *, u_long, caddr_t);
196 void atw_start(struct ifnet *);
197 void atw_stop(struct ifnet *, int);
198 void atw_watchdog(struct ifnet *);
199
200 /* Device attachment */
201 void atw_attach(struct atw_softc *);
202 int atw_detach(struct atw_softc *);
203
204 /* Rx/Tx process */
205 int atw_add_rxbuf(struct atw_softc *, int);
206 void atw_idle(struct atw_softc *, u_int32_t);
207 void atw_rxdrain(struct atw_softc *);
208 void atw_txdrain(struct atw_softc *);
209
210 /* Device (de)activation and power state */
211 void atw_disable(struct atw_softc *);
212 int atw_enable(struct atw_softc *);
213 void atw_power(int, void *);
214 void atw_reset(struct atw_softc *);
215 void atw_shutdown(void *);
216
217 /* Interrupt handlers */
218 void atw_linkintr(struct atw_softc *, u_int32_t);
219 void atw_rxintr(struct atw_softc *);
220 void atw_txintr(struct atw_softc *);
221
222 /* 802.11 state machine */
223 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static void atw_next_scan(void *);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static int atw_tune(struct atw_softc *);
228
229 /* Device initialization */
230 static void atw_bbp_io_init(struct atw_softc *);
231 static void atw_cfp_init(struct atw_softc *);
232 static void atw_cmdr_init(struct atw_softc *);
233 static void atw_ifs_init(struct atw_softc *);
234 static void atw_nar_init(struct atw_softc *);
235 static void atw_response_times_init(struct atw_softc *);
236 static void atw_rf_reset(struct atw_softc *);
237 static void atw_test1_init(struct atw_softc *);
238 static void atw_tofs0_init(struct atw_softc *);
239 static void atw_tofs2_init(struct atw_softc *);
240 static void atw_txlmt_init(struct atw_softc *);
241 static void atw_wcsr_init(struct atw_softc *);
242
243 /* Key management */
244 static int atw_key_alloc(struct ieee80211com *, const struct ieee80211_key *);
245 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
246 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
247 const u_int8_t[IEEE80211_ADDR_LEN]);
248 static void atw_key_update_begin(struct ieee80211com *);
249 static void atw_key_update_end(struct ieee80211com *);
250
251 /* RAM/ROM utilities */
252 static void atw_clear_sram(struct atw_softc *);
253 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
254 static int atw_read_srom(struct atw_softc *);
255
256 /* BSS setup */
257 static void atw_predict_beacon(struct atw_softc *);
258 static void atw_start_beacon(struct atw_softc *, int);
259 static void atw_write_bssid(struct atw_softc *);
260 static void atw_write_ssid(struct atw_softc *);
261 static void atw_write_sup_rates(struct atw_softc *);
262 static void atw_write_wep(struct atw_softc *);
263
264 /* Media */
265 static int atw_media_change(struct ifnet *);
266 static void atw_media_status(struct ifnet *, struct ifmediareq *);
267
268 static void atw_filter_setup(struct atw_softc *);
269
270 /* 802.11 utilities */
271 static void atw_frame_setdurs(struct atw_softc *,
272 struct atw_frame *, int, int);
273 static uint64_t atw_get_tsft(struct atw_softc *);
274 static __inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
275 uint32_t);
276 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
277 static void atw_node_free(struct ieee80211_node *);
278 static void atw_change_ibss(struct atw_softc *);
279
280 /*
281 * Tuner/transceiver/modem
282 */
283 static void atw_bbp_io_enable(struct atw_softc *, int);
284
285 /* RFMD RF3000 Baseband Processor */
286 static int atw_rf3000_init(struct atw_softc *);
287 static int atw_rf3000_tune(struct atw_softc *, u_int);
288 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
289
290 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
291 static void atw_si4126_tune(struct atw_softc *, u_int);
292 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
293
294 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
295 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
296
297 const char *atw_tx_state[] = {
298 "STOPPED",
299 "RUNNING - read descriptor",
300 "RUNNING - transmitting",
301 "RUNNING - filling fifo", /* XXX */
302 "SUSPENDED",
303 "RUNNING -- write descriptor",
304 "RUNNING -- write last descriptor",
305 "RUNNING - fifo full"
306 };
307
308 const char *atw_rx_state[] = {
309 "STOPPED",
310 "RUNNING - read descriptor",
311 "RUNNING - check this packet, pre-fetch next",
312 "RUNNING - wait for reception",
313 "SUSPENDED",
314 "RUNNING - write descriptor",
315 "RUNNING - flush fifo",
316 "RUNNING - fifo drain"
317 };
318
319 int
320 atw_activate(struct device *self, enum devact act)
321 {
322 struct atw_softc *sc = (struct atw_softc *)self;
323 int rv = 0, s;
324
325 s = splnet();
326 switch (act) {
327 case DVACT_ACTIVATE:
328 rv = EOPNOTSUPP;
329 break;
330
331 case DVACT_DEACTIVATE:
332 if_deactivate(&sc->sc_if);
333 break;
334 }
335 splx(s);
336 return rv;
337 }
338
339 /*
340 * atw_enable:
341 *
342 * Enable the ADM8211 chip.
343 */
344 int
345 atw_enable(struct atw_softc *sc)
346 {
347
348 if (ATW_IS_ENABLED(sc) == 0) {
349 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
350 printf("%s: device enable failed\n",
351 sc->sc_dev.dv_xname);
352 return (EIO);
353 }
354 sc->sc_flags |= ATWF_ENABLED;
355 }
356 return (0);
357 }
358
359 /*
360 * atw_disable:
361 *
362 * Disable the ADM8211 chip.
363 */
364 void
365 atw_disable(struct atw_softc *sc)
366 {
367 if (!ATW_IS_ENABLED(sc))
368 return;
369 if (sc->sc_disable != NULL)
370 (*sc->sc_disable)(sc);
371 sc->sc_flags &= ~ATWF_ENABLED;
372 }
373
374 /* Returns -1 on failure. */
375 static int
376 atw_read_srom(struct atw_softc *sc)
377 {
378 struct seeprom_descriptor sd;
379 uint32_t test0, fail_bits;
380
381 (void)memset(&sd, 0, sizeof(sd));
382
383 test0 = ATW_READ(sc, ATW_TEST0);
384
385 switch (sc->sc_rev) {
386 case ATW_REVISION_BA:
387 case ATW_REVISION_CA:
388 fail_bits = ATW_TEST0_EPNE;
389 break;
390 default:
391 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
392 break;
393 }
394 if ((test0 & fail_bits) != 0) {
395 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
396 return -1;
397 }
398
399 switch (test0 & ATW_TEST0_EPTYP_MASK) {
400 case ATW_TEST0_EPTYP_93c66:
401 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
402 sc->sc_sromsz = 512;
403 sd.sd_chip = C56_66;
404 break;
405 case ATW_TEST0_EPTYP_93c46:
406 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
407 sc->sc_sromsz = 128;
408 sd.sd_chip = C46;
409 break;
410 default:
411 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
412 MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
413 return -1;
414 }
415
416 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
417
418 if (sc->sc_srom == NULL) {
419 printf("%s: unable to allocate SROM buffer\n",
420 sc->sc_dev.dv_xname);
421 return -1;
422 }
423
424 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
425
426 /* ADM8211 has a single 32-bit register for controlling the
427 * 93cx6 SROM. Bit SRS enables the serial port. There is no
428 * "ready" bit. The ADM8211 input/output sense is the reverse
429 * of read_seeprom's.
430 */
431 sd.sd_tag = sc->sc_st;
432 sd.sd_bsh = sc->sc_sh;
433 sd.sd_regsize = 4;
434 sd.sd_control_offset = ATW_SPR;
435 sd.sd_status_offset = ATW_SPR;
436 sd.sd_dataout_offset = ATW_SPR;
437 sd.sd_CK = ATW_SPR_SCLK;
438 sd.sd_CS = ATW_SPR_SCS;
439 sd.sd_DI = ATW_SPR_SDO;
440 sd.sd_DO = ATW_SPR_SDI;
441 sd.sd_MS = ATW_SPR_SRS;
442 sd.sd_RDY = 0;
443
444 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
445 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
446 free(sc->sc_srom, M_DEVBUF);
447 return -1;
448 }
449 #ifdef ATW_DEBUG
450 {
451 int i;
452 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
453 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
454 if (((i % 8) == 0) && (i != 0)) {
455 ATW_DPRINTF(("\n\t"));
456 }
457 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
458 }
459 ATW_DPRINTF(("\n"));
460 }
461 #endif /* ATW_DEBUG */
462 return 0;
463 }
464
465 #ifdef ATW_DEBUG
466 static void
467 atw_print_regs(struct atw_softc *sc, const char *where)
468 {
469 #define PRINTREG(sc, reg) \
470 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
471 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
472
473 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
474
475 PRINTREG(sc, ATW_PAR);
476 PRINTREG(sc, ATW_FRCTL);
477 PRINTREG(sc, ATW_TDR);
478 PRINTREG(sc, ATW_WTDP);
479 PRINTREG(sc, ATW_RDR);
480 PRINTREG(sc, ATW_WRDP);
481 PRINTREG(sc, ATW_RDB);
482 PRINTREG(sc, ATW_CSR3A);
483 PRINTREG(sc, ATW_TDBD);
484 PRINTREG(sc, ATW_TDBP);
485 PRINTREG(sc, ATW_STSR);
486 PRINTREG(sc, ATW_CSR5A);
487 PRINTREG(sc, ATW_NAR);
488 PRINTREG(sc, ATW_CSR6A);
489 PRINTREG(sc, ATW_IER);
490 PRINTREG(sc, ATW_CSR7A);
491 PRINTREG(sc, ATW_LPC);
492 PRINTREG(sc, ATW_TEST1);
493 PRINTREG(sc, ATW_SPR);
494 PRINTREG(sc, ATW_TEST0);
495 PRINTREG(sc, ATW_WCSR);
496 PRINTREG(sc, ATW_WPDR);
497 PRINTREG(sc, ATW_GPTMR);
498 PRINTREG(sc, ATW_GPIO);
499 PRINTREG(sc, ATW_BBPCTL);
500 PRINTREG(sc, ATW_SYNCTL);
501 PRINTREG(sc, ATW_PLCPHD);
502 PRINTREG(sc, ATW_MMIWADDR);
503 PRINTREG(sc, ATW_MMIRADDR1);
504 PRINTREG(sc, ATW_MMIRADDR2);
505 PRINTREG(sc, ATW_TXBR);
506 PRINTREG(sc, ATW_CSR15A);
507 PRINTREG(sc, ATW_ALCSTAT);
508 PRINTREG(sc, ATW_TOFS2);
509 PRINTREG(sc, ATW_CMDR);
510 PRINTREG(sc, ATW_PCIC);
511 PRINTREG(sc, ATW_PMCSR);
512 PRINTREG(sc, ATW_PAR0);
513 PRINTREG(sc, ATW_PAR1);
514 PRINTREG(sc, ATW_MAR0);
515 PRINTREG(sc, ATW_MAR1);
516 PRINTREG(sc, ATW_ATIMDA0);
517 PRINTREG(sc, ATW_ABDA1);
518 PRINTREG(sc, ATW_BSSID0);
519 PRINTREG(sc, ATW_TXLMT);
520 PRINTREG(sc, ATW_MIBCNT);
521 PRINTREG(sc, ATW_BCNT);
522 PRINTREG(sc, ATW_TSFTH);
523 PRINTREG(sc, ATW_TSC);
524 PRINTREG(sc, ATW_SYNRF);
525 PRINTREG(sc, ATW_BPLI);
526 PRINTREG(sc, ATW_CAP0);
527 PRINTREG(sc, ATW_CAP1);
528 PRINTREG(sc, ATW_RMD);
529 PRINTREG(sc, ATW_CFPP);
530 PRINTREG(sc, ATW_TOFS0);
531 PRINTREG(sc, ATW_TOFS1);
532 PRINTREG(sc, ATW_IFST);
533 PRINTREG(sc, ATW_RSPT);
534 PRINTREG(sc, ATW_TSFTL);
535 PRINTREG(sc, ATW_WEPCTL);
536 PRINTREG(sc, ATW_WESK);
537 PRINTREG(sc, ATW_WEPCNT);
538 PRINTREG(sc, ATW_MACTEST);
539 PRINTREG(sc, ATW_FER);
540 PRINTREG(sc, ATW_FEMR);
541 PRINTREG(sc, ATW_FPSR);
542 PRINTREG(sc, ATW_FFER);
543 #undef PRINTREG
544 }
545 #endif /* ATW_DEBUG */
546
547 /*
548 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
549 */
550 void
551 atw_attach(struct atw_softc *sc)
552 {
553 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
554 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
555 };
556 struct ieee80211com *ic = &sc->sc_ic;
557 struct ifnet *ifp = &sc->sc_if;
558 int country_code, error, i, nrate, srom_major;
559 u_int32_t reg;
560 static const char *type_strings[] = {"Intersil (not supported)",
561 "RFMD", "Marvel (not supported)"};
562
563 sc->sc_txth = atw_txthresh_tab_lo;
564
565 SIMPLEQ_INIT(&sc->sc_txfreeq);
566 SIMPLEQ_INIT(&sc->sc_txdirtyq);
567
568 #ifdef ATW_DEBUG
569 atw_print_regs(sc, "atw_attach");
570 #endif /* ATW_DEBUG */
571
572 /*
573 * Allocate the control data structures, and create and load the
574 * DMA map for it.
575 */
576 if ((error = bus_dmamem_alloc(sc->sc_dmat,
577 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
578 1, &sc->sc_cdnseg, 0)) != 0) {
579 printf("%s: unable to allocate control data, error = %d\n",
580 sc->sc_dev.dv_xname, error);
581 goto fail_0;
582 }
583
584 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
585 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
586 BUS_DMA_COHERENT)) != 0) {
587 printf("%s: unable to map control data, error = %d\n",
588 sc->sc_dev.dv_xname, error);
589 goto fail_1;
590 }
591
592 if ((error = bus_dmamap_create(sc->sc_dmat,
593 sizeof(struct atw_control_data), 1,
594 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
595 printf("%s: unable to create control data DMA map, "
596 "error = %d\n", sc->sc_dev.dv_xname, error);
597 goto fail_2;
598 }
599
600 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
601 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
602 0)) != 0) {
603 printf("%s: unable to load control data DMA map, error = %d\n",
604 sc->sc_dev.dv_xname, error);
605 goto fail_3;
606 }
607
608 /*
609 * Create the transmit buffer DMA maps.
610 */
611 sc->sc_ntxsegs = ATW_NTXSEGS;
612 for (i = 0; i < ATW_TXQUEUELEN; i++) {
613 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
614 sc->sc_ntxsegs, MCLBYTES, 0, 0,
615 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
616 printf("%s: unable to create tx DMA map %d, "
617 "error = %d\n", sc->sc_dev.dv_xname, i, error);
618 goto fail_4;
619 }
620 }
621
622 /*
623 * Create the receive buffer DMA maps.
624 */
625 for (i = 0; i < ATW_NRXDESC; i++) {
626 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
627 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
628 printf("%s: unable to create rx DMA map %d, "
629 "error = %d\n", sc->sc_dev.dv_xname, i, error);
630 goto fail_5;
631 }
632 }
633 for (i = 0; i < ATW_NRXDESC; i++) {
634 sc->sc_rxsoft[i].rxs_mbuf = NULL;
635 }
636
637 switch (sc->sc_rev) {
638 case ATW_REVISION_AB:
639 case ATW_REVISION_AF:
640 sc->sc_sramlen = ATW_SRAM_A_SIZE;
641 break;
642 case ATW_REVISION_BA:
643 case ATW_REVISION_CA:
644 sc->sc_sramlen = ATW_SRAM_B_SIZE;
645 break;
646 }
647
648 /* Reset the chip to a known state. */
649 atw_reset(sc);
650
651 if (atw_read_srom(sc) == -1)
652 return;
653
654 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
655 ATW_SR_RFTYPE_MASK);
656
657 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
658 ATW_SR_BBPTYPE_MASK);
659
660 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
661 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
662 return;
663 }
664 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
665 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
666 return;
667 }
668
669 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
670 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
671
672 /* XXX There exists a Linux driver which seems to use RFType = 0 for
673 * MARVEL. My bug, or theirs?
674 */
675
676 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
677
678 switch (sc->sc_rftype) {
679 case ATW_RFTYPE_INTERSIL:
680 reg |= ATW_SYNCTL_CS1;
681 break;
682 case ATW_RFTYPE_RFMD:
683 reg |= ATW_SYNCTL_CS0;
684 break;
685 case ATW_RFTYPE_MARVEL:
686 break;
687 }
688
689 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
690 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
691
692 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
693
694 switch (sc->sc_bbptype) {
695 case ATW_BBPTYPE_INTERSIL:
696 reg |= ATW_BBPCTL_TWI;
697 break;
698 case ATW_BBPTYPE_RFMD:
699 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
700 ATW_BBPCTL_CCA_ACTLO;
701 break;
702 case ATW_BBPTYPE_MARVEL:
703 break;
704 case ATW_C_BBPTYPE_RFMD:
705 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
706 sc->sc_dev.dv_xname);
707 break;
708 }
709
710 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
711 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
712
713 /*
714 * From this point forward, the attachment cannot fail. A failure
715 * before this point releases all resources that may have been
716 * allocated.
717 */
718 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
719
720 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
721 htole16(sc->sc_srom[ATW_SR_MAC00]),
722 htole16(sc->sc_srom[ATW_SR_MAC01]),
723 htole16(sc->sc_srom[ATW_SR_MAC10])));
724
725 srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
726 ATW_SR_MAJOR_MASK);
727
728 if (srom_major < 2)
729 sc->sc_rf3000_options1 = 0;
730 else if (sc->sc_rev == ATW_REVISION_BA) {
731 sc->sc_rf3000_options1 =
732 MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
733 ATW_SR_CR28_MASK);
734 } else
735 sc->sc_rf3000_options1 = 0;
736
737 sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
738 ATW_SR_CR29_MASK);
739
740 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
741 ATW_SR_CTRY_MASK);
742
743 #define ADD_CHANNEL(_ic, _chan) do { \
744 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
745 _ic->ic_channels[_chan].ic_freq = \
746 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
747 } while (0)
748
749 /* Find available channels */
750 switch (country_code) {
751 case COUNTRY_MMK2: /* 1-14 */
752 ADD_CHANNEL(ic, 14);
753 /*FALLTHROUGH*/
754 case COUNTRY_ETSI: /* 1-13 */
755 for (i = 1; i <= 13; i++)
756 ADD_CHANNEL(ic, i);
757 break;
758 case COUNTRY_FCC: /* 1-11 */
759 case COUNTRY_IC: /* 1-11 */
760 for (i = 1; i <= 11; i++)
761 ADD_CHANNEL(ic, i);
762 break;
763 case COUNTRY_MMK: /* 14 */
764 ADD_CHANNEL(ic, 14);
765 break;
766 case COUNTRY_FRANCE: /* 10-13 */
767 for (i = 10; i <= 13; i++)
768 ADD_CHANNEL(ic, i);
769 break;
770 default: /* assume channels 10-11 */
771 case COUNTRY_SPAIN: /* 10-11 */
772 for (i = 10; i <= 11; i++)
773 ADD_CHANNEL(ic, i);
774 break;
775 }
776
777 /* Read the MAC address. */
778 reg = ATW_READ(sc, ATW_PAR0);
779 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
780 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
781 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
782 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
783 reg = ATW_READ(sc, ATW_PAR1);
784 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
785 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
786
787 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
788 printf(" could not get mac address, attach failed\n");
789 return;
790 }
791
792 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
793
794 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
795 ifp->if_softc = sc;
796 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
797 IFF_NOTRAILERS;
798 ifp->if_ioctl = atw_ioctl;
799 ifp->if_start = atw_start;
800 ifp->if_watchdog = atw_watchdog;
801 ifp->if_init = atw_init;
802 ifp->if_stop = atw_stop;
803 IFQ_SET_READY(&ifp->if_snd);
804
805 ic->ic_ifp = ifp;
806 ic->ic_phytype = IEEE80211_T_DS;
807 ic->ic_opmode = IEEE80211_M_STA;
808 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
809 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
810
811 nrate = 0;
812 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
813 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
814 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
815 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
816 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
817
818 /*
819 * Call MI attach routines.
820 */
821
822 if_attach(ifp);
823 ieee80211_ifattach(ic);
824
825 sc->sc_newstate = ic->ic_newstate;
826 ic->ic_newstate = atw_newstate;
827
828 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
829 ic->ic_recv_mgmt = atw_recv_mgmt;
830
831 sc->sc_node_free = ic->ic_node_free;
832 ic->ic_node_free = atw_node_free;
833
834 sc->sc_node_alloc = ic->ic_node_alloc;
835 ic->ic_node_alloc = atw_node_alloc;
836
837 ic->ic_crypto.cs_key_alloc = atw_key_alloc;
838 ic->ic_crypto.cs_key_delete = atw_key_delete;
839 ic->ic_crypto.cs_key_set = atw_key_set;
840 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
841 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
842
843 /* possibly we should fill in our own sc_send_prresp, since
844 * the ADM8211 is probably sending probe responses in ad hoc
845 * mode.
846 */
847
848 /* complete initialization */
849 ieee80211_media_init(ic, atw_media_change, atw_media_status);
850 callout_init(&sc->sc_scan_ch);
851
852 #if NBPFILTER > 0
853 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
854 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
855 #endif
856
857 /*
858 * Make sure the interface is shutdown during reboot.
859 */
860 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
861 if (sc->sc_sdhook == NULL)
862 printf("%s: WARNING: unable to establish shutdown hook\n",
863 sc->sc_dev.dv_xname);
864
865 /*
866 * Add a suspend hook to make sure we come back up after a
867 * resume.
868 */
869 sc->sc_powerhook = powerhook_establish(atw_power, sc);
870 if (sc->sc_powerhook == NULL)
871 printf("%s: WARNING: unable to establish power hook\n",
872 sc->sc_dev.dv_xname);
873
874 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
875 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
876 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
877
878 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
879 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
880 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
881
882 return;
883
884 /*
885 * Free any resources we've allocated during the failed attach
886 * attempt. Do this in reverse order and fall through.
887 */
888 fail_5:
889 for (i = 0; i < ATW_NRXDESC; i++) {
890 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
891 continue;
892 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
893 }
894 fail_4:
895 for (i = 0; i < ATW_TXQUEUELEN; i++) {
896 if (sc->sc_txsoft[i].txs_dmamap == NULL)
897 continue;
898 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
899 }
900 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
901 fail_3:
902 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
903 fail_2:
904 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
905 sizeof(struct atw_control_data));
906 fail_1:
907 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
908 fail_0:
909 return;
910 }
911
912 static struct ieee80211_node *
913 atw_node_alloc(struct ieee80211_node_table *nt)
914 {
915 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
916 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
917
918 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
919 return ni;
920 }
921
922 static void
923 atw_node_free(struct ieee80211_node *ni)
924 {
925 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
926
927 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
928 ether_sprintf(ni->ni_bssid)));
929 (*sc->sc_node_free)(ni);
930 }
931
932
933 static void
934 atw_test1_reset(struct atw_softc *sc)
935 {
936 switch (sc->sc_rev) {
937 case ATW_REVISION_BA:
938 if (1 /* XXX condition on transceiver type */) {
939 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
940 }
941 break;
942 case ATW_REVISION_CA:
943 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
944 break;
945 default:
946 break;
947 }
948 }
949
950 /*
951 * atw_reset:
952 *
953 * Perform a soft reset on the ADM8211.
954 */
955 void
956 atw_reset(struct atw_softc *sc)
957 {
958 int i;
959 uint32_t lpc;
960
961 ATW_WRITE(sc, ATW_NAR, 0x0);
962 DELAY(atw_nar_delay);
963
964 /* Reference driver has a cryptic remark indicating that this might
965 * power-on the chip. I know that it turns off power-saving....
966 */
967 ATW_WRITE(sc, ATW_FRCTL, 0x0);
968
969 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
970
971 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
972 if (ATW_READ(sc, ATW_PAR) == 0)
973 break;
974 DELAY(atw_pseudo_milli);
975 }
976
977 /* ... and then pause 100ms longer for good measure. */
978 DELAY(atw_magic_delay1);
979
980 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
981
982 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
983 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
984
985 atw_test1_reset(sc);
986 /*
987 * Initialize the PCI Access Register.
988 */
989 sc->sc_busmode = ATW_PAR_PBL_8DW;
990
991 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
992 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
993 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
994
995 /* Turn off maximum power saving, etc.
996 *
997 * XXX Following example of reference driver, should I set
998 * an AID of 1? It didn't seem to help....
999 */
1000 ATW_WRITE(sc, ATW_FRCTL, 0x0);
1001
1002 DELAY(atw_magic_delay2);
1003
1004 /* Recall EEPROM. */
1005 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1006
1007 DELAY(atw_magic_delay4);
1008
1009 lpc = ATW_READ(sc, ATW_LPC);
1010
1011 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1012
1013 /* A reset seems to affect the SRAM contents, so put them into
1014 * a known state.
1015 */
1016 atw_clear_sram(sc);
1017
1018 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1019 }
1020
1021 static void
1022 atw_clear_sram(struct atw_softc *sc)
1023 {
1024 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1025 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1026 /* XXX not for revision 0x20. */
1027 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1028 }
1029
1030 /* TBD atw_init
1031 *
1032 * set MAC based on ic->ic_bss->myaddr
1033 * write WEP keys
1034 * set TX rate
1035 */
1036
1037 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1038 * without receiving a beacon with the preferred BSSID & SSID.
1039 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1040 */
1041 static void
1042 atw_wcsr_init(struct atw_softc *sc)
1043 {
1044 uint32_t wcsr;
1045
1046 wcsr = ATW_READ(sc, ATW_WCSR);
1047 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1048 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1049 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1050
1051 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1052 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1053 }
1054
1055 /* Turn off power management. Set Rx store-and-forward mode. */
1056 static void
1057 atw_cmdr_init(struct atw_softc *sc)
1058 {
1059 uint32_t cmdr;
1060 cmdr = ATW_READ(sc, ATW_CMDR);
1061 cmdr &= ~ATW_CMDR_APM;
1062 cmdr |= ATW_CMDR_RTE;
1063 cmdr &= ~ATW_CMDR_DRT_MASK;
1064 cmdr |= ATW_CMDR_DRT_SF;
1065
1066 ATW_WRITE(sc, ATW_CMDR, cmdr);
1067 }
1068
1069 static void
1070 atw_tofs2_init(struct atw_softc *sc)
1071 {
1072 uint32_t tofs2;
1073 /* XXX this magic can probably be figured out from the RFMD docs */
1074 #ifndef ATW_REFSLAVE
1075 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1076 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1077 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1078 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1079 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1080 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1081 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1082 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1083 #else
1084 /* XXX new magic from reference driver source */
1085 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1086 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1087 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1088 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1089 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1090 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1091 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1092 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1093 #endif
1094 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1095 }
1096
1097 static void
1098 atw_nar_init(struct atw_softc *sc)
1099 {
1100 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1101 }
1102
1103 static void
1104 atw_txlmt_init(struct atw_softc *sc)
1105 {
1106 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1107 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1108 }
1109
1110 static void
1111 atw_test1_init(struct atw_softc *sc)
1112 {
1113 uint32_t test1;
1114
1115 test1 = ATW_READ(sc, ATW_TEST1);
1116 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1117 /* XXX magic 0x1 */
1118 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1119 ATW_WRITE(sc, ATW_TEST1, test1);
1120 }
1121
1122 static void
1123 atw_rf_reset(struct atw_softc *sc)
1124 {
1125 /* XXX this resets an Intersil RF front-end? */
1126 /* TBD condition on Intersil RFType? */
1127 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1128 DELAY(atw_rf_delay1);
1129 ATW_WRITE(sc, ATW_SYNRF, 0);
1130 DELAY(atw_rf_delay2);
1131 }
1132
1133 /* Set 16 TU max duration for the contention-free period (CFP). */
1134 static void
1135 atw_cfp_init(struct atw_softc *sc)
1136 {
1137 uint32_t cfpp;
1138
1139 cfpp = ATW_READ(sc, ATW_CFPP);
1140 cfpp &= ~ATW_CFPP_CFPMD;
1141 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1142 ATW_WRITE(sc, ATW_CFPP, cfpp);
1143 }
1144
1145 static void
1146 atw_tofs0_init(struct atw_softc *sc)
1147 {
1148 /* XXX I guess that the Cardbus clock is 22MHz?
1149 * I am assuming that the role of ATW_TOFS0_USCNT is
1150 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1151 * very clear on this point. It says in the datasheet that it is
1152 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1153 * and 33MHz; maybe this is the way? I see a binary-only driver write
1154 * these values. These values are also the power-on default.
1155 */
1156 ATW_WRITE(sc, ATW_TOFS0,
1157 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1158 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1159 }
1160
1161 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1162 static void
1163 atw_ifs_init(struct atw_softc *sc)
1164 {
1165 uint32_t ifst;
1166 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1167 * Go figure.
1168 */
1169 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1170 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1171 ATW_IFST_SIFS_MASK) |
1172 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1173 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1174
1175 ATW_WRITE(sc, ATW_IFST, ifst);
1176 }
1177
1178 static void
1179 atw_response_times_init(struct atw_softc *sc)
1180 {
1181 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1182 * indicate that the MAC expects at least SIFS + MIRT microseconds
1183 * to pass after it transmits a frame that requires a response;
1184 * it waits at most SIFS + MART microseconds for the response.
1185 * Surely this is not the ACK timeout?
1186 */
1187 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1188 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1189 }
1190
1191 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1192 * engines read and write baseband registers after Rx and before
1193 * Tx, respectively.
1194 */
1195 static void
1196 atw_bbp_io_init(struct atw_softc *sc)
1197 {
1198 uint32_t mmiraddr2;
1199
1200 /* XXX The reference driver does this, but is it *really*
1201 * necessary?
1202 */
1203 switch (sc->sc_rev) {
1204 case ATW_REVISION_AB:
1205 case ATW_REVISION_AF:
1206 mmiraddr2 = 0x0;
1207 break;
1208 default:
1209 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1210 mmiraddr2 &=
1211 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1212 break;
1213 }
1214
1215 switch (sc->sc_bbptype) {
1216 case ATW_BBPTYPE_INTERSIL:
1217 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1218 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1219 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1220 break;
1221 case ATW_BBPTYPE_MARVEL:
1222 /* TBD find out the Marvel settings. */
1223 break;
1224 case ATW_BBPTYPE_RFMD:
1225 default:
1226 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1227 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1228 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1229 break;
1230 }
1231 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1232 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1233 }
1234
1235 /*
1236 * atw_init: [ ifnet interface function ]
1237 *
1238 * Initialize the interface. Must be called at splnet().
1239 */
1240 int
1241 atw_init(struct ifnet *ifp)
1242 {
1243 struct atw_softc *sc = ifp->if_softc;
1244 struct ieee80211com *ic = &sc->sc_ic;
1245 struct atw_txsoft *txs;
1246 struct atw_rxsoft *rxs;
1247 int i, error = 0;
1248
1249 if ((error = atw_enable(sc)) != 0)
1250 goto out;
1251
1252 /*
1253 * Cancel any pending I/O. This also resets.
1254 */
1255 atw_stop(ifp, 0);
1256
1257 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1258 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1259 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
1260 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
1261
1262 atw_wcsr_init(sc);
1263
1264 atw_cmdr_init(sc);
1265
1266 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1267 *
1268 * XXX Set transmit power for ATIM, RTS, Beacon.
1269 */
1270 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1271 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1272
1273 atw_tofs2_init(sc);
1274
1275 atw_nar_init(sc);
1276
1277 atw_txlmt_init(sc);
1278
1279 atw_test1_init(sc);
1280
1281 atw_rf_reset(sc);
1282
1283 atw_cfp_init(sc);
1284
1285 atw_tofs0_init(sc);
1286
1287 atw_ifs_init(sc);
1288
1289 /* XXX Fall asleep after one second of inactivity.
1290 * XXX A frame may only dribble in for 65536us.
1291 */
1292 ATW_WRITE(sc, ATW_RMD,
1293 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1294
1295 atw_response_times_init(sc);
1296
1297 atw_bbp_io_init(sc);
1298
1299 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1300
1301 if ((error = atw_rf3000_init(sc)) != 0)
1302 goto out;
1303
1304 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1305 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1306 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1307
1308 /*
1309 * Initialize the transmit descriptor ring.
1310 */
1311 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1312 for (i = 0; i < ATW_NTXDESC; i++) {
1313 sc->sc_txdescs[i].at_ctl = 0;
1314 /* no transmit chaining */
1315 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1316 sc->sc_txdescs[i].at_buf2 =
1317 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1318 }
1319 /* use ring mode */
1320 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1321 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1322 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1323 sc->sc_txfree = ATW_NTXDESC;
1324 sc->sc_txnext = 0;
1325
1326 /*
1327 * Initialize the transmit job descriptors.
1328 */
1329 SIMPLEQ_INIT(&sc->sc_txfreeq);
1330 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1331 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1332 txs = &sc->sc_txsoft[i];
1333 txs->txs_mbuf = NULL;
1334 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1335 }
1336
1337 /*
1338 * Initialize the receive descriptor and receive job
1339 * descriptor rings.
1340 */
1341 for (i = 0; i < ATW_NRXDESC; i++) {
1342 rxs = &sc->sc_rxsoft[i];
1343 if (rxs->rxs_mbuf == NULL) {
1344 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1345 printf("%s: unable to allocate or map rx "
1346 "buffer %d, error = %d\n",
1347 sc->sc_dev.dv_xname, i, error);
1348 /*
1349 * XXX Should attempt to run with fewer receive
1350 * XXX buffers instead of just failing.
1351 */
1352 atw_rxdrain(sc);
1353 goto out;
1354 }
1355 } else
1356 ATW_INIT_RXDESC(sc, i);
1357 }
1358 sc->sc_rxptr = 0;
1359
1360 /*
1361 * Initialize the interrupt mask and enable interrupts.
1362 */
1363 /* normal interrupts */
1364 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1365 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1366
1367 /* abnormal interrupts */
1368 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1369 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1370 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1371
1372 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1373 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1374 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1375 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1376 ATW_INTR_TRT;
1377
1378 sc->sc_linkint_mask &= sc->sc_inten;
1379 sc->sc_rxint_mask &= sc->sc_inten;
1380 sc->sc_txint_mask &= sc->sc_inten;
1381
1382 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1383 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1384
1385 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1386 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1387
1388 /*
1389 * Give the transmit and receive rings to the ADM8211.
1390 */
1391 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1392 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1393
1394 sc->sc_txthresh = 0;
1395 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1396 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1397
1398 /* common 802.11 configuration */
1399 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1400 switch (ic->ic_opmode) {
1401 case IEEE80211_M_STA:
1402 break;
1403 case IEEE80211_M_AHDEMO: /* XXX */
1404 case IEEE80211_M_IBSS:
1405 ic->ic_flags |= IEEE80211_F_IBSSON;
1406 /*FALLTHROUGH*/
1407 case IEEE80211_M_HOSTAP: /* XXX */
1408 break;
1409 case IEEE80211_M_MONITOR: /* XXX */
1410 break;
1411 }
1412
1413 switch (ic->ic_opmode) {
1414 case IEEE80211_M_AHDEMO:
1415 case IEEE80211_M_HOSTAP:
1416 ic->ic_bss->ni_intval = ic->ic_lintval;
1417 ic->ic_bss->ni_rssi = 0;
1418 ic->ic_bss->ni_rstamp = 0;
1419 break;
1420 default: /* XXX */
1421 break;
1422 }
1423
1424 sc->sc_wepctl = 0;
1425
1426 atw_write_ssid(sc);
1427 atw_write_sup_rates(sc);
1428 if (ic->ic_caps & IEEE80211_C_WEP)
1429 atw_write_wep(sc);
1430
1431 ic->ic_state = IEEE80211_S_INIT;
1432
1433 /*
1434 * Set the receive filter. This will start the transmit and
1435 * receive processes.
1436 */
1437 atw_filter_setup(sc);
1438
1439 /*
1440 * Start the receive process.
1441 */
1442 ATW_WRITE(sc, ATW_RDR, 0x1);
1443
1444 /*
1445 * Note that the interface is now running.
1446 */
1447 ifp->if_flags |= IFF_RUNNING;
1448 ifp->if_flags &= ~IFF_OACTIVE;
1449
1450 /* send no beacons, yet. */
1451 atw_start_beacon(sc, 0);
1452
1453 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1454 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1455 else
1456 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1457 out:
1458 if (error) {
1459 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1460 ifp->if_timer = 0;
1461 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1462 }
1463 #ifdef ATW_DEBUG
1464 atw_print_regs(sc, "end of init");
1465 #endif /* ATW_DEBUG */
1466
1467 return (error);
1468 }
1469
1470 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1471 * 0: MAC control of RF3000/Si4126.
1472 *
1473 * Applies power, or selects RF front-end? Sets reset condition.
1474 *
1475 * TBD support non-RFMD BBP, non-SiLabs synth.
1476 */
1477 static void
1478 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1479 {
1480 if (enable) {
1481 ATW_WRITE(sc, ATW_SYNRF,
1482 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1483 DELAY(atw_bbp_io_enable_delay);
1484 } else {
1485 ATW_WRITE(sc, ATW_SYNRF, 0);
1486 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1487 }
1488 }
1489
1490 static int
1491 atw_tune(struct atw_softc *sc)
1492 {
1493 int rc;
1494 u_int chan;
1495 struct ieee80211com *ic = &sc->sc_ic;
1496
1497 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1498 if (chan == IEEE80211_CHAN_ANY)
1499 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1500
1501 if (chan == sc->sc_cur_chan)
1502 return 0;
1503
1504 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1505 sc->sc_cur_chan, chan));
1506
1507 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1508
1509 atw_si4126_tune(sc, chan);
1510 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1511 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1512 chan);
1513
1514 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1515 DELAY(atw_nar_delay);
1516 ATW_WRITE(sc, ATW_RDR, 0x1);
1517
1518 if (rc == 0)
1519 sc->sc_cur_chan = chan;
1520
1521 return rc;
1522 }
1523
1524 #ifdef ATW_SYNDEBUG
1525 static void
1526 atw_si4126_print(struct atw_softc *sc)
1527 {
1528 struct ifnet *ifp = &sc->sc_if;
1529 u_int addr, val;
1530
1531 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1532 return;
1533
1534 for (addr = 0; addr <= 8; addr++) {
1535 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1536 if (atw_si4126_read(sc, addr, &val) == 0) {
1537 printf("<unknown> (quitting print-out)\n");
1538 break;
1539 }
1540 printf("%05x\n", val);
1541 }
1542 }
1543 #endif /* ATW_SYNDEBUG */
1544
1545 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1546 *
1547 * The RF/IF synthesizer produces two reference frequencies for
1548 * the RF2948B transceiver. The first frequency the RF2948B requires
1549 * is two times the so-called "intermediate frequency" (IF). Since
1550 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1551 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1552 * frequency required by the transceiver is the radio frequency
1553 * (RF). This is a superheterodyne transceiver; for f(chan) the
1554 * center frequency of the channel we are tuning, RF = f(chan) -
1555 * IF.
1556 *
1557 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1558 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1559 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1560 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1561 */
1562 static void
1563 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1564 {
1565 u_int mhz;
1566 u_int R;
1567 u_int32_t gpio;
1568 u_int16_t gain;
1569
1570 #ifdef ATW_SYNDEBUG
1571 atw_si4126_print(sc);
1572 #endif /* ATW_SYNDEBUG */
1573
1574 if (chan == 14)
1575 mhz = 2484;
1576 else
1577 mhz = 2412 + 5 * (chan - 1);
1578
1579 /* Tune IF to 748MHz to suit the IF LO input of the
1580 * RF2494B, which is 2 x IF. No need to set an IF divider
1581 * because an IF in 526MHz - 952MHz is allowed.
1582 *
1583 * XIN is 44.000MHz, so divide it by two to get allowable
1584 * range of 2-25MHz. SiLabs tells me that this is not
1585 * strictly necessary.
1586 */
1587
1588 if (atw_xindiv2)
1589 R = 44;
1590 else
1591 R = 88;
1592
1593 /* Power-up RF, IF synthesizers. */
1594 atw_si4126_write(sc, SI4126_POWER,
1595 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1596
1597 /* set LPWR, too? */
1598 atw_si4126_write(sc, SI4126_MAIN,
1599 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1600
1601 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1602 * set KP2 to 1.
1603 *
1604 * REFDIF This is different from the reference driver, which
1605 * always sets SI4126_GAIN to 0.
1606 */
1607 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1608
1609 atw_si4126_write(sc, SI4126_GAIN, gain);
1610
1611 /* XIN = 44MHz.
1612 *
1613 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1614 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1615 *
1616 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1617 * so that 1496/88 * 44MHz = 748MHz.
1618 */
1619 atw_si4126_write(sc, SI4126_IFN, 1496);
1620
1621 atw_si4126_write(sc, SI4126_IFR, R);
1622
1623 #ifndef ATW_REFSLAVE
1624 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1625 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1626 * which has no RF1!
1627 */
1628 atw_si4126_write(sc, SI4126_RF1R, R);
1629
1630 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1631 #endif
1632
1633 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1634 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1635 * Now let's multiply it to mhz. So mhz - IF = N.
1636 */
1637 atw_si4126_write(sc, SI4126_RF2R, R);
1638
1639 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1640
1641 /* wait 100us from power-up for RF, IF to settle */
1642 DELAY(100);
1643
1644 gpio = ATW_READ(sc, ATW_GPIO);
1645 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1646 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1647
1648 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1649 /* Set a Prism RF front-end to a special mode for channel 14?
1650 *
1651 * Apparently the SMC2635W needs this, although I don't think
1652 * it has a Prism RF.
1653 */
1654 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1655 }
1656 ATW_WRITE(sc, ATW_GPIO, gpio);
1657
1658 #ifdef ATW_SYNDEBUG
1659 atw_si4126_print(sc);
1660 #endif /* ATW_SYNDEBUG */
1661 }
1662
1663 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1664 * diversity.
1665 *
1666 * !!!
1667 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1668 * !!!
1669 */
1670 static int
1671 atw_rf3000_init(struct atw_softc *sc)
1672 {
1673 int rc = 0;
1674
1675 atw_bbp_io_enable(sc, 1);
1676
1677 /* CCA is acquisition sensitive */
1678 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1679 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1680
1681 if (rc != 0)
1682 goto out;
1683
1684 /* enable diversity */
1685 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1686
1687 if (rc != 0)
1688 goto out;
1689
1690 /* sensible setting from a binary-only driver */
1691 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1692 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1693
1694 if (rc != 0)
1695 goto out;
1696
1697 /* magic from a binary-only driver */
1698 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1699 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1700
1701 if (rc != 0)
1702 goto out;
1703
1704 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1705
1706 if (rc != 0)
1707 goto out;
1708
1709 /* XXX Reference driver remarks that Abocom sets this to 50.
1710 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1711 * in the "reserved" area of register RF3000_OPTIONS1.
1712 */
1713 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1714
1715 if (rc != 0)
1716 goto out;
1717
1718 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1719
1720 if (rc != 0)
1721 goto out;
1722
1723 out:
1724 atw_bbp_io_enable(sc, 0);
1725 return rc;
1726 }
1727
1728 #ifdef ATW_BBPDEBUG
1729 static void
1730 atw_rf3000_print(struct atw_softc *sc)
1731 {
1732 struct ifnet *ifp = &sc->sc_if;
1733 u_int addr, val;
1734
1735 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1736 return;
1737
1738 for (addr = 0x01; addr <= 0x15; addr++) {
1739 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1740 if (atw_rf3000_read(sc, addr, &val) != 0) {
1741 printf("<unknown> (quitting print-out)\n");
1742 break;
1743 }
1744 printf("%08x\n", val);
1745 }
1746 }
1747 #endif /* ATW_BBPDEBUG */
1748
1749 /* Set the power settings on the BBP for channel `chan'. */
1750 static int
1751 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1752 {
1753 int rc = 0;
1754 u_int32_t reg;
1755 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1756
1757 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1758 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1759 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1760
1761 /* odd channels: LSB, even channels: MSB */
1762 if (chan % 2 == 1) {
1763 txpower &= 0xFF;
1764 lpf_cutoff &= 0xFF;
1765 lna_gs_thresh &= 0xFF;
1766 } else {
1767 txpower >>= 8;
1768 lpf_cutoff >>= 8;
1769 lna_gs_thresh >>= 8;
1770 }
1771
1772 #ifdef ATW_BBPDEBUG
1773 atw_rf3000_print(sc);
1774 #endif /* ATW_BBPDEBUG */
1775
1776 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1777 "lna_gs_thresh %02x\n",
1778 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1779
1780 atw_bbp_io_enable(sc, 1);
1781
1782 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1783 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1784 goto out;
1785
1786 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1787 goto out;
1788
1789 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1790 goto out;
1791
1792 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1793
1794 if (rc != 0)
1795 goto out;
1796
1797 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1798
1799 if (rc != 0)
1800 goto out;
1801
1802 #ifdef ATW_BBPDEBUG
1803 atw_rf3000_print(sc);
1804 #endif /* ATW_BBPDEBUG */
1805
1806 out:
1807 atw_bbp_io_enable(sc, 0);
1808
1809 /* set beacon, rts, atim transmit power */
1810 reg = ATW_READ(sc, ATW_PLCPHD);
1811 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1812 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1813 ATW_PLCPHD_SERVICE_MASK);
1814 ATW_WRITE(sc, ATW_PLCPHD, reg);
1815 DELAY(atw_plcphd_delay);
1816
1817 return rc;
1818 }
1819
1820 /* Write a register on the RF3000 baseband processor using the
1821 * registers provided by the ADM8211 for this purpose.
1822 *
1823 * Return 0 on success.
1824 */
1825 static int
1826 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1827 {
1828 u_int32_t reg;
1829 int i;
1830
1831 reg = sc->sc_bbpctl_wr |
1832 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1833 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1834
1835 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1836 ATW_WRITE(sc, ATW_BBPCTL, reg);
1837 DELAY(2 * atw_pseudo_milli);
1838 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1839 break;
1840 }
1841
1842 if (i < 0) {
1843 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1844 return ETIMEDOUT;
1845 }
1846 return 0;
1847 }
1848
1849 /* Read a register on the RF3000 baseband processor using the registers
1850 * the ADM8211 provides for this purpose.
1851 *
1852 * The 7-bit register address is addr. Record the 8-bit data in the register
1853 * in *val.
1854 *
1855 * Return 0 on success.
1856 *
1857 * XXX This does not seem to work. The ADM8211 must require more or
1858 * different magic to read the chip than to write it. Possibly some
1859 * of the magic I have derived from a binary-only driver concerns
1860 * the "chip address" (see the RF3000 manual).
1861 */
1862 #ifdef ATW_BBPDEBUG
1863 static int
1864 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1865 {
1866 u_int32_t reg;
1867 int i;
1868
1869 for (i = 1000; --i >= 0; ) {
1870 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1871 break;
1872 DELAY(100);
1873 }
1874
1875 if (i < 0) {
1876 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1877 sc->sc_dev.dv_xname);
1878 return ETIMEDOUT;
1879 }
1880
1881 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1882
1883 ATW_WRITE(sc, ATW_BBPCTL, reg);
1884
1885 for (i = 1000; --i >= 0; ) {
1886 DELAY(100);
1887 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1888 break;
1889 }
1890
1891 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1892
1893 if (i < 0) {
1894 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1895 sc->sc_dev.dv_xname, reg);
1896 return ETIMEDOUT;
1897 }
1898 if (val != NULL)
1899 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1900 return 0;
1901 }
1902 #endif /* ATW_BBPDEBUG */
1903
1904 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1905 * provided by the ADM8211 for that purpose.
1906 *
1907 * val is 18 bits of data, and val is the 4-bit address of the register.
1908 *
1909 * Return 0 on success.
1910 */
1911 static void
1912 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1913 {
1914 uint32_t bits, mask, reg;
1915 const int nbits = 22;
1916
1917 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1918 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1919
1920 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1921 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1922
1923 reg = ATW_SYNRF_SELSYN;
1924 /* reference driver: reset Si4126 serial bus to initial
1925 * conditions?
1926 */
1927 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1928 ATW_WRITE(sc, ATW_SYNRF, reg);
1929
1930 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1931 if ((bits & mask) != 0)
1932 reg |= ATW_SYNRF_SYNDATA;
1933 else
1934 reg &= ~ATW_SYNRF_SYNDATA;
1935 ATW_WRITE(sc, ATW_SYNRF, reg);
1936 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1937 ATW_WRITE(sc, ATW_SYNRF, reg);
1938 }
1939 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1940 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1941 }
1942
1943 /* Read 18-bit data from the 4-bit address addr in Si4126
1944 * RF synthesizer and write the data to *val. Return 0 on success.
1945 *
1946 * XXX This does not seem to work. The ADM8211 must require more or
1947 * different magic to read the chip than to write it.
1948 */
1949 #ifdef ATW_SYNDEBUG
1950 static int
1951 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1952 {
1953 u_int32_t reg;
1954 int i;
1955
1956 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1957
1958 for (i = 1000; --i >= 0; ) {
1959 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1960 break;
1961 DELAY(100);
1962 }
1963
1964 if (i < 0) {
1965 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1966 sc->sc_dev.dv_xname);
1967 return ETIMEDOUT;
1968 }
1969
1970 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1971
1972 ATW_WRITE(sc, ATW_SYNCTL, reg);
1973
1974 for (i = 1000; --i >= 0; ) {
1975 DELAY(100);
1976 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1977 break;
1978 }
1979
1980 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1981
1982 if (i < 0) {
1983 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1984 sc->sc_dev.dv_xname, reg);
1985 return ETIMEDOUT;
1986 }
1987 if (val != NULL)
1988 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1989 ATW_SYNCTL_DATA_MASK);
1990 return 0;
1991 }
1992 #endif /* ATW_SYNDEBUG */
1993
1994 /* XXX is the endianness correct? test. */
1995 #define atw_calchash(addr) \
1996 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1997
1998 /*
1999 * atw_filter_setup:
2000 *
2001 * Set the ADM8211's receive filter.
2002 */
2003 static void
2004 atw_filter_setup(struct atw_softc *sc)
2005 {
2006 struct ieee80211com *ic = &sc->sc_ic;
2007 struct ethercom *ec = &sc->sc_ec;
2008 struct ifnet *ifp = &sc->sc_if;
2009 int hash;
2010 u_int32_t hashes[2];
2011 struct ether_multi *enm;
2012 struct ether_multistep step;
2013
2014 /* According to comments in tlp_al981_filter_setup
2015 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2016 * multicast filter to be set while it is running. Hopefully
2017 * the ADM8211 is not the same!
2018 */
2019 if ((ifp->if_flags & IFF_RUNNING) != 0)
2020 atw_idle(sc, ATW_NAR_SR);
2021
2022 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2023
2024 /* XXX in scan mode, do not filter packets. Maybe this is
2025 * unnecessary.
2026 */
2027 if (ic->ic_state == IEEE80211_S_SCAN ||
2028 (ifp->if_flags & IFF_PROMISC) != 0) {
2029 sc->sc_opmode |= ATW_NAR_PR;
2030 goto allmulti;
2031 }
2032
2033 hashes[0] = hashes[1] = 0x0;
2034
2035 /*
2036 * Program the 64-bit multicast hash filter.
2037 */
2038 ETHER_FIRST_MULTI(step, ec, enm);
2039 while (enm != NULL) {
2040 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2041 ETHER_ADDR_LEN) != 0)
2042 goto allmulti;
2043
2044 hash = atw_calchash(enm->enm_addrlo);
2045 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2046 ETHER_NEXT_MULTI(step, enm);
2047 sc->sc_opmode |= ATW_NAR_MM;
2048 }
2049 ifp->if_flags &= ~IFF_ALLMULTI;
2050 goto setit;
2051
2052 allmulti:
2053 sc->sc_opmode |= ATW_NAR_MM;
2054 ifp->if_flags |= IFF_ALLMULTI;
2055 hashes[0] = hashes[1] = 0xffffffff;
2056
2057 setit:
2058 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2059 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2060 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2061 DELAY(atw_nar_delay);
2062
2063 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2064 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2065 }
2066
2067 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2068 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2069 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2070 * no beacon with the preferred BSSID and SSID in the number of
2071 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2072 */
2073 static void
2074 atw_write_bssid(struct atw_softc *sc)
2075 {
2076 struct ieee80211com *ic = &sc->sc_ic;
2077 u_int8_t *bssid;
2078
2079 bssid = ic->ic_bss->ni_bssid;
2080
2081 ATW_WRITE(sc, ATW_BSSID0,
2082 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2083 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2084 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2085 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2086
2087 ATW_WRITE(sc, ATW_ABDA1,
2088 (ATW_READ(sc, ATW_ABDA1) &
2089 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2090 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2091 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2092
2093 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2094 ether_sprintf(sc->sc_bssid)));
2095 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2096
2097 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2098 }
2099
2100 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2101 * 16-bit word.
2102 */
2103 static void
2104 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2105 {
2106 u_int i;
2107 u_int8_t *ptr;
2108
2109 memcpy(&sc->sc_sram[ofs], buf, buflen);
2110
2111 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2112
2113 KASSERT(buflen + ofs <= sc->sc_sramlen);
2114
2115 ptr = &sc->sc_sram[ofs];
2116
2117 for (i = 0; i < buflen; i += 2) {
2118 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2119 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2120 DELAY(atw_writewep_delay);
2121
2122 ATW_WRITE(sc, ATW_WESK,
2123 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2124 DELAY(atw_writewep_delay);
2125 }
2126 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2127
2128 if (sc->sc_if.if_flags & IFF_DEBUG) {
2129 int n_octets = 0;
2130 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2131 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2132 for (i = 0; i < buflen; i++) {
2133 printf(" %02x", ptr[i]);
2134 if (++n_octets % 24 == 0)
2135 printf("\n");
2136 }
2137 if (n_octets % 24 != 0)
2138 printf("\n");
2139 }
2140 }
2141
2142 static int
2143 atw_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
2144 {
2145 int keyix;
2146 #ifdef ATW_DEBUG
2147 struct atw_softc *sc = ic->ic_ifp->if_softc;
2148 #endif
2149
2150 if (&ic->ic_nw_keys[0] <= k && k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])
2151 keyix = k - ic->ic_nw_keys;
2152 else
2153 keyix = IEEE80211_KEYIX_NONE;
2154
2155 DPRINTF(sc, ("%s: alloc key %u\n", __func__, keyix));
2156
2157 return keyix;
2158 }
2159
2160 static int
2161 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2162 {
2163 struct atw_softc *sc = ic->ic_ifp->if_softc;
2164 u_int keyix = k->wk_keyix;
2165
2166 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2167
2168 if (keyix >= IEEE80211_WEP_NKID)
2169 return 0;
2170 if (k->wk_keylen != 0)
2171 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2172
2173 return 1;
2174 }
2175
2176 static int
2177 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2178 const u_int8_t mac[IEEE80211_ADDR_LEN])
2179 {
2180 struct atw_softc *sc = ic->ic_ifp->if_softc;
2181
2182 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2183
2184 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2185 return 0;
2186
2187 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2188
2189 return 1;
2190 }
2191
2192 static void
2193 atw_key_update_begin(struct ieee80211com *ic)
2194 {
2195 #ifdef ATW_DEBUG
2196 struct ifnet *ifp = ic->ic_ifp;
2197 struct atw_softc *sc = ifp->if_softc;
2198 #endif
2199
2200 DPRINTF(sc, ("%s:\n", __func__));
2201 }
2202
2203 static void
2204 atw_key_update_end(struct ieee80211com *ic)
2205 {
2206 struct ifnet *ifp = ic->ic_ifp;
2207 struct atw_softc *sc = ifp->if_softc;
2208
2209 DPRINTF(sc, ("%s:\n", __func__));
2210
2211 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2212 return;
2213 atw_write_wep(sc);
2214 }
2215
2216 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2217 static void
2218 atw_write_wep(struct atw_softc *sc)
2219 {
2220 struct ieee80211com *ic = &sc->sc_ic;
2221 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2222 u_int8_t buf[IEEE80211_WEP_NKID]
2223 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2224 u_int32_t reg;
2225 int i;
2226
2227 sc->sc_wepctl = 0;
2228 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2229
2230 memset(&buf[0][0], 0, sizeof(buf));
2231
2232 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2233 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2234 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2235 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2236 buf[i][1] = ATW_WEP_ENABLED;
2237 } else {
2238 buf[i][1] = 0;
2239 continue;
2240 }
2241 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2242 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2243 ic->ic_nw_keys[i].wk_keylen - 1);
2244 }
2245
2246 reg = ATW_READ(sc, ATW_MACTEST);
2247 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2248 reg &= ~ATW_MACTEST_KEYID_MASK;
2249 reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2250 ATW_WRITE(sc, ATW_MACTEST, reg);
2251
2252 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2253 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2254
2255 switch (sc->sc_rev) {
2256 case ATW_REVISION_AB:
2257 case ATW_REVISION_AF:
2258 /* Bypass WEP on Rx. */
2259 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2260 break;
2261 default:
2262 break;
2263 }
2264
2265 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2266 sizeof(buf));
2267
2268 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2269 }
2270
2271 static void
2272 atw_change_ibss(struct atw_softc *sc)
2273 {
2274 atw_predict_beacon(sc);
2275 atw_write_bssid(sc);
2276 atw_start_beacon(sc, 1);
2277 }
2278
2279 static void
2280 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2281 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2282 {
2283 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2284
2285 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2286 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2287 return;
2288
2289 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2290
2291 switch (subtype) {
2292 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2293 case IEEE80211_FC0_SUBTYPE_BEACON:
2294 if (ic->ic_opmode != IEEE80211_M_IBSS ||
2295 ic->ic_state != IEEE80211_S_RUN)
2296 break;
2297 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc) &&
2298 ieee80211_ibss_merge(ic, ni) == ENETRESET)
2299 atw_change_ibss(sc);
2300 break;
2301 default:
2302 break;
2303 }
2304 return;
2305 }
2306
2307 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2308 * In ad hoc mode, the SSID is written to the beacons sent by the
2309 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2310 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2311 * indications.
2312 */
2313 static void
2314 atw_write_ssid(struct atw_softc *sc)
2315 {
2316 struct ieee80211com *ic = &sc->sc_ic;
2317 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2318 * it only expects the element length, not its ID.
2319 */
2320 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2321
2322 memset(buf, 0, sizeof(buf));
2323 buf[0] = ic->ic_bss->ni_esslen;
2324 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2325
2326 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2327 roundup(1 + ic->ic_bss->ni_esslen, 2));
2328 }
2329
2330 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2331 * In ad hoc mode, the supported rates are written to beacons sent by the
2332 * ADM8211.
2333 */
2334 static void
2335 atw_write_sup_rates(struct atw_softc *sc)
2336 {
2337 struct ieee80211com *ic = &sc->sc_ic;
2338 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2339 * supported rates
2340 */
2341 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2342
2343 memset(buf, 0, sizeof(buf));
2344
2345 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2346
2347 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2348 ic->ic_bss->ni_rates.rs_nrates);
2349
2350 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2351 }
2352
2353 /* Start/stop sending beacons. */
2354 void
2355 atw_start_beacon(struct atw_softc *sc, int start)
2356 {
2357 struct ieee80211com *ic = &sc->sc_ic;
2358 uint16_t chan;
2359 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2360 size_t len;
2361
2362 if (ATW_IS_ENABLED(sc) == 0)
2363 return;
2364
2365 /* start beacons */
2366 len = sizeof(struct ieee80211_frame) +
2367 8 /* timestamp */ + 2 /* beacon interval */ +
2368 2 /* capability info */ +
2369 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2370 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2371 3 /* DS parameters */ +
2372 IEEE80211_CRC_LEN;
2373
2374 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2375 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2376 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2377
2378 ATW_WRITE(sc, ATW_BCNT, bcnt);
2379 ATW_WRITE(sc, ATW_CAP1, cap1);
2380
2381 if (!start)
2382 return;
2383
2384 /* TBD use ni_capinfo */
2385
2386 capinfo = 0;
2387 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2388 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2389 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2390 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2391
2392 switch (ic->ic_opmode) {
2393 case IEEE80211_M_IBSS:
2394 len += 4; /* IBSS parameters */
2395 capinfo |= IEEE80211_CAPINFO_IBSS;
2396 break;
2397 case IEEE80211_M_HOSTAP:
2398 /* XXX 6-byte minimum TIM */
2399 len += atw_beacon_len_adjust;
2400 capinfo |= IEEE80211_CAPINFO_ESS;
2401 break;
2402 default:
2403 return;
2404 }
2405
2406 /* set listen interval
2407 * XXX do software units agree w/ hardware?
2408 */
2409 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2410 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2411
2412 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
2413
2414 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2415 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2416 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2417
2418 ATW_WRITE(sc, ATW_BCNT, bcnt);
2419 ATW_WRITE(sc, ATW_BPLI, bpli);
2420 ATW_WRITE(sc, ATW_CAP0, cap0);
2421 ATW_WRITE(sc, ATW_CAP1, cap1);
2422
2423 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2424 sc->sc_dev.dv_xname, bcnt));
2425
2426 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2427 sc->sc_dev.dv_xname, cap1));
2428 }
2429
2430 /* Return the 32 lsb of the last TSFT divisible by ival. */
2431 static __inline uint32_t
2432 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2433 {
2434 /* Following the reference driver's lead, I compute
2435 *
2436 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2437 *
2438 * without using 64-bit arithmetic, using the following
2439 * relationship:
2440 *
2441 * (0x100000000 * H + L) % m
2442 * = ((0x100000000 % m) * H + L) % m
2443 * = (((0xffffffff + 1) % m) * H + L) % m
2444 * = ((0xffffffff % m + 1 % m) * H + L) % m
2445 * = ((0xffffffff % m + 1) * H + L) % m
2446 */
2447 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2448 }
2449
2450 static uint64_t
2451 atw_get_tsft(struct atw_softc *sc)
2452 {
2453 int i;
2454 uint32_t tsfth, tsftl;
2455 for (i = 0; i < 2; i++) {
2456 tsfth = ATW_READ(sc, ATW_TSFTH);
2457 tsftl = ATW_READ(sc, ATW_TSFTL);
2458 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2459 break;
2460 }
2461 return ((uint64_t)tsfth << 32) | tsftl;
2462 }
2463
2464 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2465 * the ieee80211com.
2466 *
2467 * Predict the next target beacon transmission time (TBTT) and
2468 * write it to the ADM8211.
2469 */
2470 static void
2471 atw_predict_beacon(struct atw_softc *sc)
2472 {
2473 #define TBTTOFS 20 /* TU */
2474
2475 struct ieee80211com *ic = &sc->sc_ic;
2476 uint64_t tsft;
2477 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2478 union {
2479 uint64_t word;
2480 uint8_t tstamp[8];
2481 } u;
2482
2483 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2484 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2485 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2486 tsft = atw_get_tsft(sc);
2487 u.word = htole64(tsft);
2488 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2489 sizeof(ic->ic_bss->ni_tstamp));
2490 } else
2491 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2492
2493 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2494
2495 tsftl = tsft & 0xFFFFFFFF;
2496 tsfth = tsft >> 32;
2497
2498 /* We sent/received the last beacon `past' microseconds
2499 * after the interval divided the TSF timer.
2500 */
2501 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2502
2503 /* Skip ten beacons so that the TBTT cannot pass before
2504 * we've programmed it. Ten is an arbitrary number.
2505 */
2506 tbtt = past_even + ival * 10;
2507
2508 ATW_WRITE(sc, ATW_TOFS1,
2509 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2510 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2511 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2512 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2513 #undef TBTTOFS
2514 }
2515
2516 static void
2517 atw_next_scan(void *arg)
2518 {
2519 struct atw_softc *sc = arg;
2520 struct ieee80211com *ic = &sc->sc_ic;
2521 int s;
2522
2523 /* don't call atw_start w/o network interrupts blocked */
2524 s = splnet();
2525 if (ic->ic_state == IEEE80211_S_SCAN)
2526 ieee80211_next_scan(ic);
2527 splx(s);
2528 }
2529
2530 /* Synchronize the hardware state with the software state. */
2531 static int
2532 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2533 {
2534 struct ifnet *ifp = ic->ic_ifp;
2535 struct atw_softc *sc = ifp->if_softc;
2536 enum ieee80211_state ostate;
2537 int error;
2538
2539 ostate = ic->ic_state;
2540
2541 if (nstate == IEEE80211_S_INIT) {
2542 callout_stop(&sc->sc_scan_ch);
2543 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2544 atw_start_beacon(sc, 0);
2545 return (*sc->sc_newstate)(ic, nstate, arg);
2546 }
2547
2548 if ((error = atw_tune(sc)) != 0)
2549 return error;
2550
2551 switch (nstate) {
2552 case IEEE80211_S_ASSOC:
2553 break;
2554 case IEEE80211_S_INIT:
2555 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2556 break;
2557 case IEEE80211_S_SCAN:
2558 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2559 atw_next_scan, sc);
2560
2561 break;
2562 case IEEE80211_S_RUN:
2563 if (ic->ic_opmode == IEEE80211_M_STA)
2564 break;
2565 /*FALLTHROUGH*/
2566 case IEEE80211_S_AUTH:
2567 atw_write_bssid(sc);
2568 atw_write_ssid(sc);
2569 atw_write_sup_rates(sc);
2570
2571 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2572 ic->ic_opmode == IEEE80211_M_MONITOR)
2573 break;
2574
2575 /* set listen interval
2576 * XXX do software units agree w/ hardware?
2577 */
2578 ATW_WRITE(sc, ATW_BPLI,
2579 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2580 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2581 ATW_BPLI_LI_MASK));
2582
2583 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2584 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2585
2586 atw_predict_beacon(sc);
2587 break;
2588 }
2589
2590 if (nstate != IEEE80211_S_SCAN)
2591 callout_stop(&sc->sc_scan_ch);
2592
2593 if (nstate == IEEE80211_S_RUN &&
2594 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2595 ic->ic_opmode == IEEE80211_M_IBSS))
2596 atw_start_beacon(sc, 1);
2597 else
2598 atw_start_beacon(sc, 0);
2599
2600 error = (*sc->sc_newstate)(ic, nstate, arg);
2601
2602 if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2603 atw_write_bssid(sc);
2604
2605 return error;
2606 }
2607
2608 /*
2609 * atw_add_rxbuf:
2610 *
2611 * Add a receive buffer to the indicated descriptor.
2612 */
2613 int
2614 atw_add_rxbuf(struct atw_softc *sc, int idx)
2615 {
2616 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2617 struct mbuf *m;
2618 int error;
2619
2620 MGETHDR(m, M_DONTWAIT, MT_DATA);
2621 if (m == NULL)
2622 return (ENOBUFS);
2623
2624 MCLGET(m, M_DONTWAIT);
2625 if ((m->m_flags & M_EXT) == 0) {
2626 m_freem(m);
2627 return (ENOBUFS);
2628 }
2629
2630 if (rxs->rxs_mbuf != NULL)
2631 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2632
2633 rxs->rxs_mbuf = m;
2634
2635 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2636 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2637 BUS_DMA_READ|BUS_DMA_NOWAIT);
2638 if (error) {
2639 printf("%s: can't load rx DMA map %d, error = %d\n",
2640 sc->sc_dev.dv_xname, idx, error);
2641 panic("atw_add_rxbuf"); /* XXX */
2642 }
2643
2644 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2645 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2646
2647 ATW_INIT_RXDESC(sc, idx);
2648
2649 return (0);
2650 }
2651
2652 /*
2653 * Release any queued transmit buffers.
2654 */
2655 void
2656 atw_txdrain(struct atw_softc *sc)
2657 {
2658 struct atw_txsoft *txs;
2659
2660 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2661 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2662 if (txs->txs_mbuf != NULL) {
2663 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2664 m_freem(txs->txs_mbuf);
2665 txs->txs_mbuf = NULL;
2666 }
2667 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2668 }
2669 sc->sc_tx_timer = 0;
2670 }
2671
2672 /*
2673 * atw_stop: [ ifnet interface function ]
2674 *
2675 * Stop transmission on the interface.
2676 */
2677 void
2678 atw_stop(struct ifnet *ifp, int disable)
2679 {
2680 struct atw_softc *sc = ifp->if_softc;
2681 struct ieee80211com *ic = &sc->sc_ic;
2682
2683 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2684
2685 /* Disable interrupts. */
2686 ATW_WRITE(sc, ATW_IER, 0);
2687
2688 /* Stop the transmit and receive processes. */
2689 sc->sc_opmode = 0;
2690 ATW_WRITE(sc, ATW_NAR, 0);
2691 DELAY(atw_nar_delay);
2692 ATW_WRITE(sc, ATW_TDBD, 0);
2693 ATW_WRITE(sc, ATW_TDBP, 0);
2694 ATW_WRITE(sc, ATW_RDB, 0);
2695
2696 atw_txdrain(sc);
2697
2698 if (disable) {
2699 atw_rxdrain(sc);
2700 atw_disable(sc);
2701 }
2702
2703 /*
2704 * Mark the interface down and cancel the watchdog timer.
2705 */
2706 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2707 ifp->if_timer = 0;
2708
2709 if (!disable)
2710 atw_reset(sc);
2711 }
2712
2713 /*
2714 * atw_rxdrain:
2715 *
2716 * Drain the receive queue.
2717 */
2718 void
2719 atw_rxdrain(struct atw_softc *sc)
2720 {
2721 struct atw_rxsoft *rxs;
2722 int i;
2723
2724 for (i = 0; i < ATW_NRXDESC; i++) {
2725 rxs = &sc->sc_rxsoft[i];
2726 if (rxs->rxs_mbuf == NULL)
2727 continue;
2728 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2729 m_freem(rxs->rxs_mbuf);
2730 rxs->rxs_mbuf = NULL;
2731 }
2732 }
2733
2734 /*
2735 * atw_detach:
2736 *
2737 * Detach an ADM8211 interface.
2738 */
2739 int
2740 atw_detach(struct atw_softc *sc)
2741 {
2742 struct ifnet *ifp = &sc->sc_if;
2743 struct atw_rxsoft *rxs;
2744 struct atw_txsoft *txs;
2745 int i;
2746
2747 /*
2748 * Succeed now if there isn't any work to do.
2749 */
2750 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2751 return (0);
2752
2753 callout_stop(&sc->sc_scan_ch);
2754
2755 ieee80211_ifdetach(&sc->sc_ic);
2756 if_detach(ifp);
2757
2758 for (i = 0; i < ATW_NRXDESC; i++) {
2759 rxs = &sc->sc_rxsoft[i];
2760 if (rxs->rxs_mbuf != NULL) {
2761 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2762 m_freem(rxs->rxs_mbuf);
2763 rxs->rxs_mbuf = NULL;
2764 }
2765 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2766 }
2767 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2768 txs = &sc->sc_txsoft[i];
2769 if (txs->txs_mbuf != NULL) {
2770 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2771 m_freem(txs->txs_mbuf);
2772 txs->txs_mbuf = NULL;
2773 }
2774 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2775 }
2776 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2777 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2778 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2779 sizeof(struct atw_control_data));
2780 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2781
2782 shutdownhook_disestablish(sc->sc_sdhook);
2783 powerhook_disestablish(sc->sc_powerhook);
2784
2785 if (sc->sc_srom)
2786 free(sc->sc_srom, M_DEVBUF);
2787
2788 return (0);
2789 }
2790
2791 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2792 void
2793 atw_shutdown(void *arg)
2794 {
2795 struct atw_softc *sc = arg;
2796
2797 atw_stop(&sc->sc_if, 1);
2798 }
2799
2800 int
2801 atw_intr(void *arg)
2802 {
2803 struct atw_softc *sc = arg;
2804 struct ifnet *ifp = &sc->sc_if;
2805 u_int32_t status, rxstatus, txstatus, linkstatus;
2806 int handled = 0, txthresh;
2807
2808 #ifdef DEBUG
2809 if (ATW_IS_ENABLED(sc) == 0)
2810 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2811 #endif
2812
2813 /*
2814 * If the interface isn't running, the interrupt couldn't
2815 * possibly have come from us.
2816 */
2817 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2818 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2819 return (0);
2820
2821 for (;;) {
2822 status = ATW_READ(sc, ATW_STSR);
2823
2824 if (status)
2825 ATW_WRITE(sc, ATW_STSR, status);
2826
2827 #ifdef ATW_DEBUG
2828 #define PRINTINTR(flag) do { \
2829 if ((status & flag) != 0) { \
2830 printf("%s" #flag, delim); \
2831 delim = ","; \
2832 } \
2833 } while (0)
2834
2835 if (atw_debug > 1 && status) {
2836 const char *delim = "<";
2837
2838 printf("%s: reg[STSR] = %x",
2839 sc->sc_dev.dv_xname, status);
2840
2841 PRINTINTR(ATW_INTR_FBE);
2842 PRINTINTR(ATW_INTR_LINKOFF);
2843 PRINTINTR(ATW_INTR_LINKON);
2844 PRINTINTR(ATW_INTR_RCI);
2845 PRINTINTR(ATW_INTR_RDU);
2846 PRINTINTR(ATW_INTR_REIS);
2847 PRINTINTR(ATW_INTR_RPS);
2848 PRINTINTR(ATW_INTR_TCI);
2849 PRINTINTR(ATW_INTR_TDU);
2850 PRINTINTR(ATW_INTR_TLT);
2851 PRINTINTR(ATW_INTR_TPS);
2852 PRINTINTR(ATW_INTR_TRT);
2853 PRINTINTR(ATW_INTR_TUF);
2854 PRINTINTR(ATW_INTR_BCNTC);
2855 PRINTINTR(ATW_INTR_ATIME);
2856 PRINTINTR(ATW_INTR_TBTT);
2857 PRINTINTR(ATW_INTR_TSCZ);
2858 PRINTINTR(ATW_INTR_TSFTF);
2859 printf(">\n");
2860 }
2861 #undef PRINTINTR
2862 #endif /* ATW_DEBUG */
2863
2864 if ((status & sc->sc_inten) == 0)
2865 break;
2866
2867 handled = 1;
2868
2869 rxstatus = status & sc->sc_rxint_mask;
2870 txstatus = status & sc->sc_txint_mask;
2871 linkstatus = status & sc->sc_linkint_mask;
2872
2873 if (linkstatus) {
2874 atw_linkintr(sc, linkstatus);
2875 }
2876
2877 if (rxstatus) {
2878 /* Grab any new packets. */
2879 atw_rxintr(sc);
2880
2881 if (rxstatus & ATW_INTR_RDU) {
2882 printf("%s: receive ring overrun\n",
2883 sc->sc_dev.dv_xname);
2884 /* Get the receive process going again. */
2885 ATW_WRITE(sc, ATW_RDR, 0x1);
2886 break;
2887 }
2888 }
2889
2890 if (txstatus) {
2891 /* Sweep up transmit descriptors. */
2892 atw_txintr(sc);
2893
2894 if (txstatus & ATW_INTR_TLT)
2895 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2896 sc->sc_dev.dv_xname));
2897
2898 if (txstatus & ATW_INTR_TRT)
2899 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2900 sc->sc_dev.dv_xname));
2901
2902 /* If Tx under-run, increase our transmit threshold
2903 * if another is available.
2904 */
2905 txthresh = sc->sc_txthresh + 1;
2906 if ((txstatus & ATW_INTR_TUF) &&
2907 sc->sc_txth[txthresh].txth_name != NULL) {
2908 /* Idle the transmit process. */
2909 atw_idle(sc, ATW_NAR_ST);
2910
2911 sc->sc_txthresh = txthresh;
2912 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2913 sc->sc_opmode |=
2914 sc->sc_txth[txthresh].txth_opmode;
2915 printf("%s: transmit underrun; new "
2916 "threshold: %s\n", sc->sc_dev.dv_xname,
2917 sc->sc_txth[txthresh].txth_name);
2918
2919 /* Set the new threshold and restart
2920 * the transmit process.
2921 */
2922 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2923 DELAY(atw_nar_delay);
2924 ATW_WRITE(sc, ATW_RDR, 0x1);
2925 /* XXX Log every Nth underrun from
2926 * XXX now on?
2927 */
2928 }
2929 }
2930
2931 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2932 if (status & ATW_INTR_TPS)
2933 printf("%s: transmit process stopped\n",
2934 sc->sc_dev.dv_xname);
2935 if (status & ATW_INTR_RPS)
2936 printf("%s: receive process stopped\n",
2937 sc->sc_dev.dv_xname);
2938 (void)atw_init(ifp);
2939 break;
2940 }
2941
2942 if (status & ATW_INTR_FBE) {
2943 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2944 (void)atw_init(ifp);
2945 break;
2946 }
2947
2948 /*
2949 * Not handled:
2950 *
2951 * Transmit buffer unavailable -- normal
2952 * condition, nothing to do, really.
2953 *
2954 * Early receive interrupt -- not available on
2955 * all chips, we just use RI. We also only
2956 * use single-segment receive DMA, so this
2957 * is mostly useless.
2958 *
2959 * TBD others
2960 */
2961 }
2962
2963 /* Try to get more packets going. */
2964 atw_start(ifp);
2965
2966 return (handled);
2967 }
2968
2969 /*
2970 * atw_idle:
2971 *
2972 * Cause the transmit and/or receive processes to go idle.
2973 *
2974 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2975 * process in STSR if I clear SR or ST after the process has already
2976 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2977 * do not seem to be too reliable. Perhaps I have the sense of the
2978 * Rx bits switched with the Tx bits?
2979 */
2980 void
2981 atw_idle(struct atw_softc *sc, u_int32_t bits)
2982 {
2983 u_int32_t ackmask = 0, opmode, stsr, test0;
2984 int i, s;
2985
2986 s = splnet();
2987
2988 opmode = sc->sc_opmode & ~bits;
2989
2990 if (bits & ATW_NAR_SR)
2991 ackmask |= ATW_INTR_RPS;
2992
2993 if (bits & ATW_NAR_ST) {
2994 ackmask |= ATW_INTR_TPS;
2995 /* set ATW_NAR_HF to flush TX FIFO. */
2996 opmode |= ATW_NAR_HF;
2997 }
2998
2999 ATW_WRITE(sc, ATW_NAR, opmode);
3000 DELAY(atw_nar_delay);
3001
3002 for (i = 0; i < 1000; i++) {
3003 stsr = ATW_READ(sc, ATW_STSR);
3004 if ((stsr & ackmask) == ackmask)
3005 break;
3006 DELAY(10);
3007 }
3008
3009 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3010
3011 if ((stsr & ackmask) == ackmask)
3012 goto out;
3013
3014 test0 = ATW_READ(sc, ATW_TEST0);
3015
3016 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3017 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3018 printf("%s: transmit process not idle [%s]\n",
3019 sc->sc_dev.dv_xname,
3020 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
3021 printf("%s: bits %08x test0 %08x stsr %08x\n",
3022 sc->sc_dev.dv_xname, bits, test0, stsr);
3023 }
3024
3025 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3026 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3027 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3028 sc->sc_dev.dv_xname,
3029 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
3030 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3031 sc->sc_dev.dv_xname, bits, test0, stsr));
3032 }
3033 out:
3034 if ((bits & ATW_NAR_ST) != 0)
3035 atw_txdrain(sc);
3036 splx(s);
3037 return;
3038 }
3039
3040 /*
3041 * atw_linkintr:
3042 *
3043 * Helper; handle link-status interrupts.
3044 */
3045 void
3046 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3047 {
3048 struct ieee80211com *ic = &sc->sc_ic;
3049
3050 if (ic->ic_state != IEEE80211_S_RUN)
3051 return;
3052
3053 if (linkstatus & ATW_INTR_LINKON) {
3054 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3055 sc->sc_rescan_timer = 0;
3056 } else if (linkstatus & ATW_INTR_LINKOFF) {
3057 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3058 if (ic->ic_opmode != IEEE80211_M_STA)
3059 return;
3060 sc->sc_rescan_timer = 3;
3061 sc->sc_if.if_timer = 1;
3062 }
3063 }
3064
3065 static __inline int
3066 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3067 {
3068 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3069 return 0;
3070 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3071 return 0;
3072 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3073 }
3074
3075 /*
3076 * atw_rxintr:
3077 *
3078 * Helper; handle receive interrupts.
3079 */
3080 void
3081 atw_rxintr(struct atw_softc *sc)
3082 {
3083 static int rate_tbl[] = {2, 4, 11, 22, 44};
3084 struct ieee80211com *ic = &sc->sc_ic;
3085 struct ieee80211_node *ni;
3086 struct ieee80211_frame_min *wh;
3087 struct ifnet *ifp = &sc->sc_if;
3088 struct atw_rxsoft *rxs;
3089 struct mbuf *m;
3090 u_int32_t rxstat;
3091 int i, len, rate, rate0;
3092 u_int32_t rssi, rssi0;
3093
3094 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3095 rxs = &sc->sc_rxsoft[i];
3096
3097 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3098
3099 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3100 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3101 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3102
3103 if (rxstat & ATW_RXSTAT_OWN)
3104 break; /* We have processed all receive buffers. */
3105
3106 DPRINTF3(sc,
3107 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3108 sc->sc_dev.dv_xname,
3109 rxstat, rssi0,
3110 le32toh(sc->sc_rxdescs[i].ar_buf1),
3111 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3112
3113 /*
3114 * Make sure the packet fits in one buffer. This should
3115 * always be the case.
3116 */
3117 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3118 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3119 printf("%s: incoming packet spilled, resetting\n",
3120 sc->sc_dev.dv_xname);
3121 (void)atw_init(ifp);
3122 return;
3123 }
3124
3125 /*
3126 * If an error occurred, update stats, clear the status
3127 * word, and leave the packet buffer in place. It will
3128 * simply be reused the next time the ring comes around.
3129 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3130 * error.
3131 */
3132
3133 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3134 ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3135 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3136 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3137 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3138 ATW_RXSTAT_ICVE)) != 0)) {
3139 #define PRINTERR(bit, str) \
3140 if (rxstat & (bit)) \
3141 printf("%s: receive error: %s\n", \
3142 sc->sc_dev.dv_xname, str)
3143 ifp->if_ierrors++;
3144 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3145 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3146 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3147 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3148 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3149 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3150 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3151 #undef PRINTERR
3152 ATW_INIT_RXDESC(sc, i);
3153 continue;
3154 }
3155
3156 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3157 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3158
3159 /*
3160 * No errors; receive the packet. Note the ADM8211
3161 * includes the CRC in promiscuous mode.
3162 */
3163 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3164
3165 /*
3166 * Allocate a new mbuf cluster. If that fails, we are
3167 * out of memory, and must drop the packet and recycle
3168 * the buffer that's already attached to this descriptor.
3169 */
3170 m = rxs->rxs_mbuf;
3171 if (atw_add_rxbuf(sc, i) != 0) {
3172 ifp->if_ierrors++;
3173 ATW_INIT_RXDESC(sc, i);
3174 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3175 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3176 continue;
3177 }
3178
3179 ifp->if_ipackets++;
3180 if (sc->sc_opmode & ATW_NAR_PR)
3181 len -= IEEE80211_CRC_LEN;
3182 m->m_pkthdr.rcvif = ifp;
3183 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3184
3185 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3186 rate = 0;
3187 else
3188 rate = rate_tbl[rate0];
3189
3190 /* The RSSI comes straight from a register in the
3191 * baseband processor. I know that for the RF3000,
3192 * the RSSI register also contains the antenna-selection
3193 * bits. Mask those off.
3194 *
3195 * TBD Treat other basebands.
3196 */
3197 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3198 rssi = rssi0 & RF3000_RSSI_MASK;
3199 else
3200 rssi = rssi0;
3201
3202 #if NBPFILTER > 0
3203 /* Pass this up to any BPF listeners. */
3204 if (sc->sc_radiobpf != NULL) {
3205 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3206
3207 tap->ar_rate = rate;
3208 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3209 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3210
3211 /* TBD verify units are dB */
3212 tap->ar_antsignal = (int)rssi;
3213 /* TBD tap->ar_flags */
3214
3215 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3216 tap->ar_ihdr.it_len, m);
3217 }
3218 #endif /* NPBFILTER > 0 */
3219
3220 wh = mtod(m, struct ieee80211_frame_min *);
3221 ni = ieee80211_find_rxnode(ic, wh);
3222 if (atw_hw_decrypted(sc, wh)) {
3223 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3224 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3225 }
3226 ieee80211_input(ic, m, ni, (int)rssi, 0);
3227 ieee80211_free_node(ni);
3228 }
3229
3230 /* Update the receive pointer. */
3231 sc->sc_rxptr = i;
3232 }
3233
3234 /*
3235 * atw_txintr:
3236 *
3237 * Helper; handle transmit interrupts.
3238 */
3239 void
3240 atw_txintr(struct atw_softc *sc)
3241 {
3242 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3243 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3244 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3245 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3246
3247 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3248 struct ifnet *ifp = &sc->sc_if;
3249 struct atw_txsoft *txs;
3250 u_int32_t txstat;
3251
3252 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3253 sc->sc_dev.dv_xname, sc->sc_flags));
3254
3255 ifp->if_flags &= ~IFF_OACTIVE;
3256
3257 /*
3258 * Go through our Tx list and free mbufs for those
3259 * frames that have been transmitted.
3260 */
3261 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3262 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3263 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3264
3265 #ifdef ATW_DEBUG
3266 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3267 int i;
3268 printf(" txsoft %p transmit chain:\n", txs);
3269 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3270 txs->txs_ndescs - 1,
3271 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3272 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3273 printf(" descriptor %d:\n", i);
3274 printf(" at_status: 0x%08x\n",
3275 le32toh(sc->sc_txdescs[i].at_stat));
3276 printf(" at_flags: 0x%08x\n",
3277 le32toh(sc->sc_txdescs[i].at_flags));
3278 printf(" at_buf1: 0x%08x\n",
3279 le32toh(sc->sc_txdescs[i].at_buf1));
3280 printf(" at_buf2: 0x%08x\n",
3281 le32toh(sc->sc_txdescs[i].at_buf2));
3282 if (i == txs->txs_lastdesc)
3283 break;
3284 }
3285 }
3286 #endif
3287
3288 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3289 if (txstat & ATW_TXSTAT_OWN)
3290 break;
3291
3292 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3293
3294 sc->sc_txfree += txs->txs_ndescs;
3295
3296 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3297 0, txs->txs_dmamap->dm_mapsize,
3298 BUS_DMASYNC_POSTWRITE);
3299 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3300 m_freem(txs->txs_mbuf);
3301 txs->txs_mbuf = NULL;
3302
3303 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3304
3305 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3306 (txstat & TXSTAT_ERRMASK) != 0) {
3307 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3308 txstat_buf, sizeof(txstat_buf));
3309 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3310 txstat_buf,
3311 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3312 }
3313
3314 /*
3315 * Check for errors and collisions.
3316 */
3317 if (txstat & ATW_TXSTAT_TUF)
3318 sc->sc_stats.ts_tx_tuf++;
3319 if (txstat & ATW_TXSTAT_TLT)
3320 sc->sc_stats.ts_tx_tlt++;
3321 if (txstat & ATW_TXSTAT_TRT)
3322 sc->sc_stats.ts_tx_trt++;
3323 if (txstat & ATW_TXSTAT_TRO)
3324 sc->sc_stats.ts_tx_tro++;
3325 if (txstat & ATW_TXSTAT_SOFBR) {
3326 sc->sc_stats.ts_tx_sofbr++;
3327 }
3328
3329 if ((txstat & ATW_TXSTAT_ES) == 0)
3330 ifp->if_collisions +=
3331 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3332 else
3333 ifp->if_oerrors++;
3334
3335 ifp->if_opackets++;
3336 }
3337
3338 /*
3339 * If there are no more pending transmissions, cancel the watchdog
3340 * timer.
3341 */
3342 if (txs == NULL)
3343 sc->sc_tx_timer = 0;
3344 #undef TXSTAT_ERRMASK
3345 #undef TXSTAT_FMT
3346 }
3347
3348 /*
3349 * atw_watchdog: [ifnet interface function]
3350 *
3351 * Watchdog timer handler.
3352 */
3353 void
3354 atw_watchdog(struct ifnet *ifp)
3355 {
3356 struct atw_softc *sc = ifp->if_softc;
3357 struct ieee80211com *ic = &sc->sc_ic;
3358
3359 ifp->if_timer = 0;
3360 if (ATW_IS_ENABLED(sc) == 0)
3361 return;
3362
3363 if (sc->sc_rescan_timer) {
3364 if (--sc->sc_rescan_timer == 0)
3365 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3366 }
3367 if (sc->sc_tx_timer) {
3368 if (--sc->sc_tx_timer == 0 &&
3369 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3370 printf("%s: transmit timeout\n", ifp->if_xname);
3371 ifp->if_oerrors++;
3372 (void)atw_init(ifp);
3373 atw_start(ifp);
3374 }
3375 }
3376 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3377 ifp->if_timer = 1;
3378 ieee80211_watchdog(ic);
3379 }
3380
3381 /* Compute the 802.11 Duration field and the PLCP Length fields for
3382 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3383 * Write the fields to the ADM8211 Tx header, frm.
3384 *
3385 * TBD use the fragmentation threshold to find the right duration for
3386 * the first & last fragments.
3387 *
3388 * TBD make certain of the duration fields applied by the ADM8211 to each
3389 * fragment. I think that the ADM8211 knows how to subtract the CTS
3390 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3391 * I also think that the ADM8211 does *some* arithmetic for us, because
3392 * otherwise I think we would have to set a first duration for CTS/first
3393 * fragment, a second duration for fragments between the first and the
3394 * last, and a third duration for the last fragment.
3395 *
3396 * TBD make certain that duration fields reflect addition of FCS/WEP
3397 * and correct duration arithmetic as necessary.
3398 */
3399 static void
3400 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3401 int len)
3402 {
3403 int remainder;
3404
3405 /* deal also with encrypted fragments */
3406 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3407 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3408 sc->sc_dev.dv_xname));
3409 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3410 IEEE80211_WEP_CRCLEN;
3411 }
3412
3413 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3414 * duration (XXX added by MAC?).
3415 */
3416 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3417 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3418
3419 if (rate <= 4)
3420 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3421 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3422 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3423 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3424 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3425 else
3426 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3427 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3428 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3429 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3430 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3431
3432 /* lengthen duration if long preamble */
3433 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3434 frm->atw_head_dur +=
3435 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3436 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3437 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3438 IEEE80211_DUR_DS_FAST_PLCPHDR);
3439
3440 if (remainder != 0)
3441 frm->atw_head_dur++;
3442
3443 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3444 (rate == 2 || rate == 4)) {
3445 /* derived from Linux: how could this be right? */
3446 frm->atw_head_plcplen = frm->atw_head_dur;
3447 } else {
3448 frm->atw_head_plcplen = (16 * len) / rate;
3449 remainder = (80 * len) % (rate * 5);
3450
3451 if (remainder != 0) {
3452 frm->atw_head_plcplen++;
3453
3454 /* XXX magic */
3455 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3456 rate == 22 && remainder <= 30)
3457 frm->atw_head_plcplen |= 0x8000;
3458 }
3459 }
3460 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3461 htole16(frm->atw_head_plcplen);
3462 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3463 }
3464
3465 #ifdef ATW_DEBUG
3466 static void
3467 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3468 {
3469 struct atw_softc *sc = ifp->if_softc;
3470 struct mbuf *m;
3471 int i, noctets = 0;
3472
3473 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3474 m0->m_pkthdr.len);
3475
3476 for (m = m0; m; m = m->m_next) {
3477 if (m->m_len == 0)
3478 continue;
3479 for (i = 0; i < m->m_len; i++) {
3480 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3481 if (++noctets % 24 == 0)
3482 printf("\n");
3483 }
3484 }
3485 printf("%s%s: %d bytes emitted\n",
3486 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3487 }
3488 #endif /* ATW_DEBUG */
3489
3490 /*
3491 * atw_start: [ifnet interface function]
3492 *
3493 * Start packet transmission on the interface.
3494 */
3495 void
3496 atw_start(struct ifnet *ifp)
3497 {
3498 struct atw_softc *sc = ifp->if_softc;
3499 struct ieee80211com *ic = &sc->sc_ic;
3500 struct ieee80211_node *ni;
3501 struct ieee80211_frame *wh;
3502 struct atw_frame *hh;
3503 struct mbuf *m0, *m;
3504 struct atw_txsoft *txs, *last_txs;
3505 struct atw_txdesc *txd;
3506 int do_encrypt, rate;
3507 bus_dmamap_t dmamap;
3508 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3509
3510 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3511 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3512
3513 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3514 return;
3515
3516 /*
3517 * Remember the previous number of free descriptors and
3518 * the first descriptor we'll use.
3519 */
3520 ofree = sc->sc_txfree;
3521 firsttx = sc->sc_txnext;
3522
3523 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3524 sc->sc_dev.dv_xname, ofree, firsttx));
3525
3526 /*
3527 * Loop through the send queue, setting up transmit descriptors
3528 * until we drain the queue, or use up all available transmit
3529 * descriptors.
3530 */
3531 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3532 sc->sc_txfree != 0) {
3533
3534 /*
3535 * Grab a packet off the management queue, if it
3536 * is not empty. Otherwise, from the data queue.
3537 */
3538 IF_DEQUEUE(&ic->ic_mgtq, m0);
3539 if (m0 != NULL) {
3540 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3541 m0->m_pkthdr.rcvif = NULL;
3542 } else {
3543 /* send no data packets until we are associated */
3544 if (ic->ic_state != IEEE80211_S_RUN)
3545 break;
3546 IFQ_DEQUEUE(&ifp->if_snd, m0);
3547 if (m0 == NULL)
3548 break;
3549 #if NBPFILTER > 0
3550 if (ifp->if_bpf != NULL)
3551 bpf_mtap(ifp->if_bpf, m0);
3552 #endif /* NBPFILTER > 0 */
3553 ni = ieee80211_find_txnode(ic,
3554 mtod(m0, struct ether_header *)->ether_dhost);
3555 if (ni == NULL) {
3556 ifp->if_oerrors++;
3557 break;
3558 }
3559 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3560 ieee80211_free_node(ni);
3561 ifp->if_oerrors++;
3562 break;
3563 }
3564 }
3565
3566 rate = MAX(ieee80211_get_rate(ic), 2);
3567
3568 #if NBPFILTER > 0
3569 /*
3570 * Pass the packet to any BPF listeners.
3571 */
3572 if (ic->ic_rawbpf != NULL)
3573 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3574
3575 if (sc->sc_radiobpf != NULL) {
3576 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3577
3578 tap->at_rate = rate;
3579 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3580 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3581
3582 /* TBD tap->at_flags */
3583
3584 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3585 tap->at_ihdr.it_len, m0);
3586 }
3587 #endif /* NBPFILTER > 0 */
3588
3589 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3590
3591 if (ni != NULL)
3592 ieee80211_free_node(ni);
3593
3594 if (m0 == NULL) {
3595 ifp->if_oerrors++;
3596 break;
3597 }
3598
3599 /* just to make sure. */
3600 m0 = m_pullup(m0, sizeof(struct atw_frame));
3601
3602 if (m0 == NULL) {
3603 ifp->if_oerrors++;
3604 break;
3605 }
3606
3607 hh = mtod(m0, struct atw_frame *);
3608 wh = &hh->atw_ihdr;
3609
3610 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3611
3612 /* Copy everything we need from the 802.11 header:
3613 * Frame Control; address 1, address 3, or addresses
3614 * 3 and 4. NIC fills in BSSID, SA.
3615 */
3616 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3617 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3618 panic("%s: illegal WDS frame",
3619 sc->sc_dev.dv_xname);
3620 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3621 } else
3622 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3623
3624 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3625
3626 /* initialize remaining Tx parameters */
3627 memset(&hh->u, 0, sizeof(hh->u));
3628
3629 hh->atw_rate = rate * 5;
3630 /* XXX this could be incorrect if M_FCS. _encap should
3631 * probably strip FCS just in case it sticks around in
3632 * bridged packets.
3633 */
3634 hh->atw_service = 0x00; /* XXX guess */
3635 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3636 sizeof(struct atw_frame));
3637
3638 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3639 hh->atw_rtylmt = 3;
3640 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3641 if (do_encrypt) {
3642 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3643 hh->atw_keyid = ic->ic_def_txkey;
3644 }
3645
3646 /* TBD 4-addr frames */
3647 atw_frame_setdurs(sc, hh, rate,
3648 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3649 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3650
3651 /* never fragment multicast frames */
3652 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3653 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3654 } else if (sc->sc_flags & ATWF_RTSCTS) {
3655 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3656 }
3657
3658 #ifdef ATW_DEBUG
3659 hh->atw_fragnum = 0;
3660
3661 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3662 printf("%s: dst = %s, rate = 0x%02x, "
3663 "service = 0x%02x, paylen = 0x%04x\n",
3664 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3665 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3666
3667 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3668 "dur1 = 0x%04x, dur2 = 0x%04x, "
3669 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3670 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3671 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3672 hh->atw_tail_dur, hh->atw_head_dur);
3673
3674 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3675 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3676 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3677 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3678
3679 printf("%s: keyid = %d\n",
3680 sc->sc_dev.dv_xname, hh->atw_keyid);
3681
3682 atw_dump_pkt(ifp, m0);
3683 }
3684 #endif /* ATW_DEBUG */
3685
3686 dmamap = txs->txs_dmamap;
3687
3688 /*
3689 * Load the DMA map. Copy and try (once) again if the packet
3690 * didn't fit in the alloted number of segments.
3691 */
3692 for (first = 1;
3693 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3694 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3695 first = 0) {
3696 MGETHDR(m, M_DONTWAIT, MT_DATA);
3697 if (m == NULL) {
3698 printf("%s: unable to allocate Tx mbuf\n",
3699 sc->sc_dev.dv_xname);
3700 break;
3701 }
3702 if (m0->m_pkthdr.len > MHLEN) {
3703 MCLGET(m, M_DONTWAIT);
3704 if ((m->m_flags & M_EXT) == 0) {
3705 printf("%s: unable to allocate Tx "
3706 "cluster\n", sc->sc_dev.dv_xname);
3707 m_freem(m);
3708 break;
3709 }
3710 }
3711 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3712 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3713 m_freem(m0);
3714 m0 = m;
3715 m = NULL;
3716 }
3717 if (error != 0) {
3718 printf("%s: unable to load Tx buffer, "
3719 "error = %d\n", sc->sc_dev.dv_xname, error);
3720 m_freem(m0);
3721 break;
3722 }
3723
3724 /*
3725 * Ensure we have enough descriptors free to describe
3726 * the packet.
3727 */
3728 if (dmamap->dm_nsegs > sc->sc_txfree) {
3729 /*
3730 * Not enough free descriptors to transmit
3731 * this packet. Unload the DMA map and
3732 * drop the packet. Notify the upper layer
3733 * that there are no more slots left.
3734 *
3735 * XXX We could allocate an mbuf and copy, but
3736 * XXX it is worth it?
3737 */
3738 ifp->if_flags |= IFF_OACTIVE;
3739 bus_dmamap_unload(sc->sc_dmat, dmamap);
3740 m_freem(m0);
3741 break;
3742 }
3743
3744 /*
3745 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3746 */
3747
3748 /* Sync the DMA map. */
3749 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3750 BUS_DMASYNC_PREWRITE);
3751
3752 /* XXX arbitrary retry limit; 8 because I have seen it in
3753 * use already and maybe 0 means "no tries" !
3754 */
3755 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3756
3757 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3758 sc->sc_dev.dv_xname, rate * 5));
3759 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3760
3761 /*
3762 * Initialize the transmit descriptors.
3763 */
3764 for (nexttx = sc->sc_txnext, seg = 0;
3765 seg < dmamap->dm_nsegs;
3766 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3767 /*
3768 * If this is the first descriptor we're
3769 * enqueueing, don't set the OWN bit just
3770 * yet. That could cause a race condition.
3771 * We'll do it below.
3772 */
3773 txd = &sc->sc_txdescs[nexttx];
3774 txd->at_ctl = ctl |
3775 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3776
3777 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3778 txd->at_flags =
3779 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3780 ATW_TXFLAG_TBS1_MASK)) |
3781 ((nexttx == (ATW_NTXDESC - 1))
3782 ? htole32(ATW_TXFLAG_TER) : 0);
3783 lasttx = nexttx;
3784 }
3785
3786 IASSERT(lasttx != -1, ("bad lastx"));
3787 /* Set `first segment' and `last segment' appropriately. */
3788 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3789 htole32(ATW_TXFLAG_FS);
3790 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3791
3792 #ifdef ATW_DEBUG
3793 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3794 printf(" txsoft %p transmit chain:\n", txs);
3795 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3796 printf(" descriptor %d:\n", seg);
3797 printf(" at_ctl: 0x%08x\n",
3798 le32toh(sc->sc_txdescs[seg].at_ctl));
3799 printf(" at_flags: 0x%08x\n",
3800 le32toh(sc->sc_txdescs[seg].at_flags));
3801 printf(" at_buf1: 0x%08x\n",
3802 le32toh(sc->sc_txdescs[seg].at_buf1));
3803 printf(" at_buf2: 0x%08x\n",
3804 le32toh(sc->sc_txdescs[seg].at_buf2));
3805 if (seg == lasttx)
3806 break;
3807 }
3808 }
3809 #endif
3810
3811 /* Sync the descriptors we're using. */
3812 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3813 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3814
3815 /*
3816 * Store a pointer to the packet so we can free it later,
3817 * and remember what txdirty will be once the packet is
3818 * done.
3819 */
3820 txs->txs_mbuf = m0;
3821 txs->txs_firstdesc = sc->sc_txnext;
3822 txs->txs_lastdesc = lasttx;
3823 txs->txs_ndescs = dmamap->dm_nsegs;
3824
3825 /* Advance the tx pointer. */
3826 sc->sc_txfree -= dmamap->dm_nsegs;
3827 sc->sc_txnext = nexttx;
3828
3829 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3830 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3831
3832 last_txs = txs;
3833 }
3834
3835 if (txs == NULL || sc->sc_txfree == 0) {
3836 /* No more slots left; notify upper layer. */
3837 ifp->if_flags |= IFF_OACTIVE;
3838 }
3839
3840 if (sc->sc_txfree != ofree) {
3841 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3842 sc->sc_dev.dv_xname, lasttx, firsttx));
3843 /*
3844 * Cause a transmit interrupt to happen on the
3845 * last packet we enqueued.
3846 */
3847 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3848 ATW_CDTXSYNC(sc, lasttx, 1,
3849 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3850
3851 /*
3852 * The entire packet chain is set up. Give the
3853 * first descriptor to the chip now.
3854 */
3855 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3856 ATW_CDTXSYNC(sc, firsttx, 1,
3857 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3858
3859 /* Wake up the transmitter. */
3860 ATW_WRITE(sc, ATW_TDR, 0x1);
3861
3862 /* Set a watchdog timer in case the chip flakes out. */
3863 sc->sc_tx_timer = 5;
3864 ifp->if_timer = 1;
3865 }
3866 }
3867
3868 /*
3869 * atw_power:
3870 *
3871 * Power management (suspend/resume) hook.
3872 */
3873 void
3874 atw_power(int why, void *arg)
3875 {
3876 struct atw_softc *sc = arg;
3877 struct ifnet *ifp = &sc->sc_if;
3878 int s;
3879
3880 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3881
3882 s = splnet();
3883 switch (why) {
3884 case PWR_STANDBY:
3885 /* XXX do nothing. */
3886 break;
3887 case PWR_SUSPEND:
3888 atw_stop(ifp, 0);
3889 if (sc->sc_power != NULL)
3890 (*sc->sc_power)(sc, why);
3891 break;
3892 case PWR_RESUME:
3893 if (ifp->if_flags & IFF_UP) {
3894 if (sc->sc_power != NULL)
3895 (*sc->sc_power)(sc, why);
3896 atw_init(ifp);
3897 }
3898 break;
3899 case PWR_SOFTSUSPEND:
3900 case PWR_SOFTSTANDBY:
3901 case PWR_SOFTRESUME:
3902 break;
3903 }
3904 splx(s);
3905 }
3906
3907 /*
3908 * atw_ioctl: [ifnet interface function]
3909 *
3910 * Handle control requests from the operator.
3911 */
3912 int
3913 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3914 {
3915 struct atw_softc *sc = ifp->if_softc;
3916 struct ifreq *ifr = (struct ifreq *)data;
3917 int s, error = 0;
3918
3919 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3920 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3921 return ENXIO;
3922
3923 s = splnet();
3924
3925 switch (cmd) {
3926 case SIOCSIFFLAGS:
3927 if (ifp->if_flags & IFF_UP) {
3928 if (ATW_IS_ENABLED(sc)) {
3929 /*
3930 * To avoid rescanning another access point,
3931 * do not call atw_init() here. Instead,
3932 * only reflect media settings.
3933 */
3934 atw_filter_setup(sc);
3935 } else
3936 error = atw_init(ifp);
3937 } else if (ATW_IS_ENABLED(sc))
3938 atw_stop(ifp, 1);
3939 break;
3940 case SIOCADDMULTI:
3941 case SIOCDELMULTI:
3942 error = (cmd == SIOCADDMULTI) ?
3943 ether_addmulti(ifr, &sc->sc_ec) :
3944 ether_delmulti(ifr, &sc->sc_ec);
3945 if (error == ENETRESET) {
3946 if (ifp->if_flags & IFF_RUNNING)
3947 atw_filter_setup(sc); /* do not rescan */
3948 error = 0;
3949 }
3950 break;
3951 default:
3952 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3953 if (error == ENETRESET) {
3954 if (ATW_IS_ENABLED(sc))
3955 error = atw_init(ifp);
3956 else
3957 error = 0;
3958 }
3959 break;
3960 }
3961
3962 /* Try to get more packets going. */
3963 if (ATW_IS_ENABLED(sc))
3964 atw_start(ifp);
3965
3966 splx(s);
3967 return (error);
3968 }
3969
3970 static int
3971 atw_media_change(struct ifnet *ifp)
3972 {
3973 int error;
3974
3975 error = ieee80211_media_change(ifp);
3976 if (error == ENETRESET) {
3977 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3978 (IFF_RUNNING|IFF_UP))
3979 atw_init(ifp); /* XXX lose error */
3980 error = 0;
3981 }
3982 return error;
3983 }
3984
3985 static void
3986 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3987 {
3988 struct atw_softc *sc = ifp->if_softc;
3989
3990 if (ATW_IS_ENABLED(sc) == 0) {
3991 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3992 imr->ifm_status = 0;
3993 return;
3994 }
3995 ieee80211_media_status(ifp, imr);
3996 }
3997