atw.c revision 1.87 1 /* $NetBSD: atw.c,v 1.87 2005/06/26 04:37:25 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.87 2005/06/26 04:37:25 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_netbsd.h>
70 #include <net80211/ieee80211_var.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162
163 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
166 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
167 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
171 static void atw_print_regs(struct atw_softc *, const char *);
172
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 # ifdef ATW_BBPDEBUG
175 static void atw_rf3000_print(struct atw_softc *);
176 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177 # endif /* ATW_BBPDEBUG */
178
179 # ifdef ATW_SYNDEBUG
180 static void atw_si4126_print(struct atw_softc *);
181 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
182 # endif /* ATW_SYNDEBUG */
183
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define DPRINTF(sc, x) /* nothing */
189 #define DPRINTF2(sc, x) /* nothing */
190 #define DPRINTF3(sc, x) /* nothing */
191 #endif
192
193 /* ifnet methods */
194 int atw_init(struct ifnet *);
195 int atw_ioctl(struct ifnet *, u_long, caddr_t);
196 void atw_start(struct ifnet *);
197 void atw_stop(struct ifnet *, int);
198 void atw_watchdog(struct ifnet *);
199
200 /* Device attachment */
201 void atw_attach(struct atw_softc *);
202 int atw_detach(struct atw_softc *);
203
204 /* Rx/Tx process */
205 int atw_add_rxbuf(struct atw_softc *, int);
206 void atw_idle(struct atw_softc *, u_int32_t);
207 void atw_rxdrain(struct atw_softc *);
208 void atw_txdrain(struct atw_softc *);
209
210 /* Device (de)activation and power state */
211 void atw_disable(struct atw_softc *);
212 int atw_enable(struct atw_softc *);
213 void atw_power(int, void *);
214 void atw_reset(struct atw_softc *);
215 void atw_shutdown(void *);
216
217 /* Interrupt handlers */
218 void atw_linkintr(struct atw_softc *, u_int32_t);
219 void atw_rxintr(struct atw_softc *);
220 void atw_txintr(struct atw_softc *);
221
222 /* 802.11 state machine */
223 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static void atw_next_scan(void *);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static int atw_tune(struct atw_softc *);
228
229 /* Device initialization */
230 static void atw_bbp_io_init(struct atw_softc *);
231 static void atw_cfp_init(struct atw_softc *);
232 static void atw_cmdr_init(struct atw_softc *);
233 static void atw_ifs_init(struct atw_softc *);
234 static void atw_nar_init(struct atw_softc *);
235 static void atw_response_times_init(struct atw_softc *);
236 static void atw_rf_reset(struct atw_softc *);
237 static void atw_test1_init(struct atw_softc *);
238 static void atw_tofs0_init(struct atw_softc *);
239 static void atw_tofs2_init(struct atw_softc *);
240 static void atw_txlmt_init(struct atw_softc *);
241 static void atw_wcsr_init(struct atw_softc *);
242
243 /* Key management */
244 static int atw_key_alloc(struct ieee80211com *, const struct ieee80211_key *);
245 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
246 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
247 const u_int8_t[IEEE80211_ADDR_LEN]);
248 static void atw_key_update_begin(struct ieee80211com *);
249 static void atw_key_update_end(struct ieee80211com *);
250
251 /* RAM/ROM utilities */
252 static void atw_clear_sram(struct atw_softc *);
253 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
254 static int atw_read_srom(struct atw_softc *);
255
256 /* BSS setup */
257 static void atw_predict_beacon(struct atw_softc *);
258 static void atw_start_beacon(struct atw_softc *, int);
259 static void atw_write_bssid(struct atw_softc *);
260 static void atw_write_ssid(struct atw_softc *);
261 static void atw_write_sup_rates(struct atw_softc *);
262 static void atw_write_wep(struct atw_softc *);
263
264 /* Media */
265 static int atw_media_change(struct ifnet *);
266 static void atw_media_status(struct ifnet *, struct ifmediareq *);
267
268 static void atw_filter_setup(struct atw_softc *);
269
270 /* 802.11 utilities */
271 static void atw_frame_setdurs(struct atw_softc *,
272 struct atw_frame *, int, int);
273 static uint64_t atw_get_tsft(struct atw_softc *);
274 static __inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
275 uint32_t);
276 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
277 static void atw_node_free(struct ieee80211_node *);
278 static void atw_change_ibss(struct atw_softc *);
279
280 /*
281 * Tuner/transceiver/modem
282 */
283 static void atw_bbp_io_enable(struct atw_softc *, int);
284
285 /* RFMD RF3000 Baseband Processor */
286 static int atw_rf3000_init(struct atw_softc *);
287 static int atw_rf3000_tune(struct atw_softc *, u_int);
288 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
289
290 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
291 static void atw_si4126_tune(struct atw_softc *, u_int);
292 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
293
294 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
295 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
296
297 const char *atw_tx_state[] = {
298 "STOPPED",
299 "RUNNING - read descriptor",
300 "RUNNING - transmitting",
301 "RUNNING - filling fifo", /* XXX */
302 "SUSPENDED",
303 "RUNNING -- write descriptor",
304 "RUNNING -- write last descriptor",
305 "RUNNING - fifo full"
306 };
307
308 const char *atw_rx_state[] = {
309 "STOPPED",
310 "RUNNING - read descriptor",
311 "RUNNING - check this packet, pre-fetch next",
312 "RUNNING - wait for reception",
313 "SUSPENDED",
314 "RUNNING - write descriptor",
315 "RUNNING - flush fifo",
316 "RUNNING - fifo drain"
317 };
318
319 int
320 atw_activate(struct device *self, enum devact act)
321 {
322 struct atw_softc *sc = (struct atw_softc *)self;
323 int rv = 0, s;
324
325 s = splnet();
326 switch (act) {
327 case DVACT_ACTIVATE:
328 rv = EOPNOTSUPP;
329 break;
330
331 case DVACT_DEACTIVATE:
332 if_deactivate(&sc->sc_if);
333 break;
334 }
335 splx(s);
336 return rv;
337 }
338
339 /*
340 * atw_enable:
341 *
342 * Enable the ADM8211 chip.
343 */
344 int
345 atw_enable(struct atw_softc *sc)
346 {
347
348 if (ATW_IS_ENABLED(sc) == 0) {
349 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
350 printf("%s: device enable failed\n",
351 sc->sc_dev.dv_xname);
352 return (EIO);
353 }
354 sc->sc_flags |= ATWF_ENABLED;
355 }
356 return (0);
357 }
358
359 /*
360 * atw_disable:
361 *
362 * Disable the ADM8211 chip.
363 */
364 void
365 atw_disable(struct atw_softc *sc)
366 {
367 if (!ATW_IS_ENABLED(sc))
368 return;
369 if (sc->sc_disable != NULL)
370 (*sc->sc_disable)(sc);
371 sc->sc_flags &= ~ATWF_ENABLED;
372 }
373
374 /* Returns -1 on failure. */
375 static int
376 atw_read_srom(struct atw_softc *sc)
377 {
378 struct seeprom_descriptor sd;
379 uint32_t test0, fail_bits;
380
381 (void)memset(&sd, 0, sizeof(sd));
382
383 test0 = ATW_READ(sc, ATW_TEST0);
384
385 switch (sc->sc_rev) {
386 case ATW_REVISION_BA:
387 case ATW_REVISION_CA:
388 fail_bits = ATW_TEST0_EPNE;
389 break;
390 default:
391 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
392 break;
393 }
394 if ((test0 & fail_bits) != 0) {
395 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
396 return -1;
397 }
398
399 switch (test0 & ATW_TEST0_EPTYP_MASK) {
400 case ATW_TEST0_EPTYP_93c66:
401 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
402 sc->sc_sromsz = 512;
403 sd.sd_chip = C56_66;
404 break;
405 case ATW_TEST0_EPTYP_93c46:
406 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
407 sc->sc_sromsz = 128;
408 sd.sd_chip = C46;
409 break;
410 default:
411 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
412 MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
413 return -1;
414 }
415
416 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
417
418 if (sc->sc_srom == NULL) {
419 printf("%s: unable to allocate SROM buffer\n",
420 sc->sc_dev.dv_xname);
421 return -1;
422 }
423
424 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
425
426 /* ADM8211 has a single 32-bit register for controlling the
427 * 93cx6 SROM. Bit SRS enables the serial port. There is no
428 * "ready" bit. The ADM8211 input/output sense is the reverse
429 * of read_seeprom's.
430 */
431 sd.sd_tag = sc->sc_st;
432 sd.sd_bsh = sc->sc_sh;
433 sd.sd_regsize = 4;
434 sd.sd_control_offset = ATW_SPR;
435 sd.sd_status_offset = ATW_SPR;
436 sd.sd_dataout_offset = ATW_SPR;
437 sd.sd_CK = ATW_SPR_SCLK;
438 sd.sd_CS = ATW_SPR_SCS;
439 sd.sd_DI = ATW_SPR_SDO;
440 sd.sd_DO = ATW_SPR_SDI;
441 sd.sd_MS = ATW_SPR_SRS;
442 sd.sd_RDY = 0;
443
444 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
445 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
446 free(sc->sc_srom, M_DEVBUF);
447 return -1;
448 }
449 #ifdef ATW_DEBUG
450 {
451 int i;
452 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
453 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
454 if (((i % 8) == 0) && (i != 0)) {
455 ATW_DPRINTF(("\n\t"));
456 }
457 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
458 }
459 ATW_DPRINTF(("\n"));
460 }
461 #endif /* ATW_DEBUG */
462 return 0;
463 }
464
465 #ifdef ATW_DEBUG
466 static void
467 atw_print_regs(struct atw_softc *sc, const char *where)
468 {
469 #define PRINTREG(sc, reg) \
470 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
471 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
472
473 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
474
475 PRINTREG(sc, ATW_PAR);
476 PRINTREG(sc, ATW_FRCTL);
477 PRINTREG(sc, ATW_TDR);
478 PRINTREG(sc, ATW_WTDP);
479 PRINTREG(sc, ATW_RDR);
480 PRINTREG(sc, ATW_WRDP);
481 PRINTREG(sc, ATW_RDB);
482 PRINTREG(sc, ATW_CSR3A);
483 PRINTREG(sc, ATW_TDBD);
484 PRINTREG(sc, ATW_TDBP);
485 PRINTREG(sc, ATW_STSR);
486 PRINTREG(sc, ATW_CSR5A);
487 PRINTREG(sc, ATW_NAR);
488 PRINTREG(sc, ATW_CSR6A);
489 PRINTREG(sc, ATW_IER);
490 PRINTREG(sc, ATW_CSR7A);
491 PRINTREG(sc, ATW_LPC);
492 PRINTREG(sc, ATW_TEST1);
493 PRINTREG(sc, ATW_SPR);
494 PRINTREG(sc, ATW_TEST0);
495 PRINTREG(sc, ATW_WCSR);
496 PRINTREG(sc, ATW_WPDR);
497 PRINTREG(sc, ATW_GPTMR);
498 PRINTREG(sc, ATW_GPIO);
499 PRINTREG(sc, ATW_BBPCTL);
500 PRINTREG(sc, ATW_SYNCTL);
501 PRINTREG(sc, ATW_PLCPHD);
502 PRINTREG(sc, ATW_MMIWADDR);
503 PRINTREG(sc, ATW_MMIRADDR1);
504 PRINTREG(sc, ATW_MMIRADDR2);
505 PRINTREG(sc, ATW_TXBR);
506 PRINTREG(sc, ATW_CSR15A);
507 PRINTREG(sc, ATW_ALCSTAT);
508 PRINTREG(sc, ATW_TOFS2);
509 PRINTREG(sc, ATW_CMDR);
510 PRINTREG(sc, ATW_PCIC);
511 PRINTREG(sc, ATW_PMCSR);
512 PRINTREG(sc, ATW_PAR0);
513 PRINTREG(sc, ATW_PAR1);
514 PRINTREG(sc, ATW_MAR0);
515 PRINTREG(sc, ATW_MAR1);
516 PRINTREG(sc, ATW_ATIMDA0);
517 PRINTREG(sc, ATW_ABDA1);
518 PRINTREG(sc, ATW_BSSID0);
519 PRINTREG(sc, ATW_TXLMT);
520 PRINTREG(sc, ATW_MIBCNT);
521 PRINTREG(sc, ATW_BCNT);
522 PRINTREG(sc, ATW_TSFTH);
523 PRINTREG(sc, ATW_TSC);
524 PRINTREG(sc, ATW_SYNRF);
525 PRINTREG(sc, ATW_BPLI);
526 PRINTREG(sc, ATW_CAP0);
527 PRINTREG(sc, ATW_CAP1);
528 PRINTREG(sc, ATW_RMD);
529 PRINTREG(sc, ATW_CFPP);
530 PRINTREG(sc, ATW_TOFS0);
531 PRINTREG(sc, ATW_TOFS1);
532 PRINTREG(sc, ATW_IFST);
533 PRINTREG(sc, ATW_RSPT);
534 PRINTREG(sc, ATW_TSFTL);
535 PRINTREG(sc, ATW_WEPCTL);
536 PRINTREG(sc, ATW_WESK);
537 PRINTREG(sc, ATW_WEPCNT);
538 PRINTREG(sc, ATW_MACTEST);
539 PRINTREG(sc, ATW_FER);
540 PRINTREG(sc, ATW_FEMR);
541 PRINTREG(sc, ATW_FPSR);
542 PRINTREG(sc, ATW_FFER);
543 #undef PRINTREG
544 }
545 #endif /* ATW_DEBUG */
546
547 /*
548 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
549 */
550 void
551 atw_attach(struct atw_softc *sc)
552 {
553 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
554 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
555 };
556 struct ieee80211com *ic = &sc->sc_ic;
557 struct ifnet *ifp = &sc->sc_if;
558 int country_code, error, i, nrate, srom_major;
559 u_int32_t reg;
560 static const char *type_strings[] = {"Intersil (not supported)",
561 "RFMD", "Marvel (not supported)"};
562
563 sc->sc_txth = atw_txthresh_tab_lo;
564
565 SIMPLEQ_INIT(&sc->sc_txfreeq);
566 SIMPLEQ_INIT(&sc->sc_txdirtyq);
567
568 #ifdef ATW_DEBUG
569 atw_print_regs(sc, "atw_attach");
570 #endif /* ATW_DEBUG */
571
572 /*
573 * Allocate the control data structures, and create and load the
574 * DMA map for it.
575 */
576 if ((error = bus_dmamem_alloc(sc->sc_dmat,
577 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
578 1, &sc->sc_cdnseg, 0)) != 0) {
579 printf("%s: unable to allocate control data, error = %d\n",
580 sc->sc_dev.dv_xname, error);
581 goto fail_0;
582 }
583
584 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
585 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
586 BUS_DMA_COHERENT)) != 0) {
587 printf("%s: unable to map control data, error = %d\n",
588 sc->sc_dev.dv_xname, error);
589 goto fail_1;
590 }
591
592 if ((error = bus_dmamap_create(sc->sc_dmat,
593 sizeof(struct atw_control_data), 1,
594 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
595 printf("%s: unable to create control data DMA map, "
596 "error = %d\n", sc->sc_dev.dv_xname, error);
597 goto fail_2;
598 }
599
600 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
601 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
602 0)) != 0) {
603 printf("%s: unable to load control data DMA map, error = %d\n",
604 sc->sc_dev.dv_xname, error);
605 goto fail_3;
606 }
607
608 /*
609 * Create the transmit buffer DMA maps.
610 */
611 sc->sc_ntxsegs = ATW_NTXSEGS;
612 for (i = 0; i < ATW_TXQUEUELEN; i++) {
613 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
614 sc->sc_ntxsegs, MCLBYTES, 0, 0,
615 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
616 printf("%s: unable to create tx DMA map %d, "
617 "error = %d\n", sc->sc_dev.dv_xname, i, error);
618 goto fail_4;
619 }
620 }
621
622 /*
623 * Create the receive buffer DMA maps.
624 */
625 for (i = 0; i < ATW_NRXDESC; i++) {
626 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
627 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
628 printf("%s: unable to create rx DMA map %d, "
629 "error = %d\n", sc->sc_dev.dv_xname, i, error);
630 goto fail_5;
631 }
632 }
633 for (i = 0; i < ATW_NRXDESC; i++) {
634 sc->sc_rxsoft[i].rxs_mbuf = NULL;
635 }
636
637 switch (sc->sc_rev) {
638 case ATW_REVISION_AB:
639 case ATW_REVISION_AF:
640 sc->sc_sramlen = ATW_SRAM_A_SIZE;
641 break;
642 case ATW_REVISION_BA:
643 case ATW_REVISION_CA:
644 sc->sc_sramlen = ATW_SRAM_B_SIZE;
645 break;
646 }
647
648 /* Reset the chip to a known state. */
649 atw_reset(sc);
650
651 if (atw_read_srom(sc) == -1)
652 return;
653
654 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
655 ATW_SR_RFTYPE_MASK);
656
657 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
658 ATW_SR_BBPTYPE_MASK);
659
660 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
661 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
662 return;
663 }
664 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
665 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
666 return;
667 }
668
669 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
670 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
671
672 /* XXX There exists a Linux driver which seems to use RFType = 0 for
673 * MARVEL. My bug, or theirs?
674 */
675
676 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
677
678 switch (sc->sc_rftype) {
679 case ATW_RFTYPE_INTERSIL:
680 reg |= ATW_SYNCTL_CS1;
681 break;
682 case ATW_RFTYPE_RFMD:
683 reg |= ATW_SYNCTL_CS0;
684 break;
685 case ATW_RFTYPE_MARVEL:
686 break;
687 }
688
689 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
690 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
691
692 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
693
694 switch (sc->sc_bbptype) {
695 case ATW_BBPTYPE_INTERSIL:
696 reg |= ATW_BBPCTL_TWI;
697 break;
698 case ATW_BBPTYPE_RFMD:
699 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
700 ATW_BBPCTL_CCA_ACTLO;
701 break;
702 case ATW_BBPTYPE_MARVEL:
703 break;
704 case ATW_C_BBPTYPE_RFMD:
705 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
706 sc->sc_dev.dv_xname);
707 break;
708 }
709
710 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
711 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
712
713 /*
714 * From this point forward, the attachment cannot fail. A failure
715 * before this point releases all resources that may have been
716 * allocated.
717 */
718 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
719
720 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
721 htole16(sc->sc_srom[ATW_SR_MAC00]),
722 htole16(sc->sc_srom[ATW_SR_MAC01]),
723 htole16(sc->sc_srom[ATW_SR_MAC10])));
724
725 srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
726 ATW_SR_MAJOR_MASK);
727
728 if (srom_major < 2)
729 sc->sc_rf3000_options1 = 0;
730 else if (sc->sc_rev == ATW_REVISION_BA) {
731 sc->sc_rf3000_options1 =
732 MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
733 ATW_SR_CR28_MASK);
734 } else
735 sc->sc_rf3000_options1 = 0;
736
737 sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
738 ATW_SR_CR29_MASK);
739
740 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
741 ATW_SR_CTRY_MASK);
742
743 #define ADD_CHANNEL(_ic, _chan) do { \
744 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
745 _ic->ic_channels[_chan].ic_freq = \
746 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
747 } while (0)
748
749 /* Find available channels */
750 switch (country_code) {
751 case COUNTRY_MMK2: /* 1-14 */
752 ADD_CHANNEL(ic, 14);
753 /*FALLTHROUGH*/
754 case COUNTRY_ETSI: /* 1-13 */
755 for (i = 1; i <= 13; i++)
756 ADD_CHANNEL(ic, i);
757 break;
758 case COUNTRY_FCC: /* 1-11 */
759 case COUNTRY_IC: /* 1-11 */
760 for (i = 1; i <= 11; i++)
761 ADD_CHANNEL(ic, i);
762 break;
763 case COUNTRY_MMK: /* 14 */
764 ADD_CHANNEL(ic, 14);
765 break;
766 case COUNTRY_FRANCE: /* 10-13 */
767 for (i = 10; i <= 13; i++)
768 ADD_CHANNEL(ic, i);
769 break;
770 default: /* assume channels 10-11 */
771 case COUNTRY_SPAIN: /* 10-11 */
772 for (i = 10; i <= 11; i++)
773 ADD_CHANNEL(ic, i);
774 break;
775 }
776
777 /* Read the MAC address. */
778 reg = ATW_READ(sc, ATW_PAR0);
779 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
780 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
781 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
782 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
783 reg = ATW_READ(sc, ATW_PAR1);
784 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
785 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
786
787 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
788 printf(" could not get mac address, attach failed\n");
789 return;
790 }
791
792 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
793
794 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
795 ifp->if_softc = sc;
796 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
797 IFF_NOTRAILERS;
798 ifp->if_ioctl = atw_ioctl;
799 ifp->if_start = atw_start;
800 ifp->if_watchdog = atw_watchdog;
801 ifp->if_init = atw_init;
802 ifp->if_stop = atw_stop;
803 IFQ_SET_READY(&ifp->if_snd);
804
805 ic->ic_ifp = ifp;
806 ic->ic_phytype = IEEE80211_T_DS;
807 ic->ic_opmode = IEEE80211_M_STA;
808 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
809 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
810
811 nrate = 0;
812 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
813 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
814 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
815 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
816 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
817
818 /*
819 * Call MI attach routines.
820 */
821
822 if_attach(ifp);
823 ieee80211_ifattach(ic);
824
825 sc->sc_newstate = ic->ic_newstate;
826 ic->ic_newstate = atw_newstate;
827
828 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
829 ic->ic_recv_mgmt = atw_recv_mgmt;
830
831 sc->sc_node_free = ic->ic_node_free;
832 ic->ic_node_free = atw_node_free;
833
834 sc->sc_node_alloc = ic->ic_node_alloc;
835 ic->ic_node_alloc = atw_node_alloc;
836
837 ic->ic_crypto.cs_key_alloc = atw_key_alloc;
838 ic->ic_crypto.cs_key_delete = atw_key_delete;
839 ic->ic_crypto.cs_key_set = atw_key_set;
840 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
841 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
842
843 /* possibly we should fill in our own sc_send_prresp, since
844 * the ADM8211 is probably sending probe responses in ad hoc
845 * mode.
846 */
847
848 /* complete initialization */
849 ieee80211_media_init(ic, atw_media_change, atw_media_status);
850 callout_init(&sc->sc_scan_ch);
851
852 #if NBPFILTER > 0
853 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
854 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
855 #endif
856
857 /*
858 * Make sure the interface is shutdown during reboot.
859 */
860 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
861 if (sc->sc_sdhook == NULL)
862 printf("%s: WARNING: unable to establish shutdown hook\n",
863 sc->sc_dev.dv_xname);
864
865 /*
866 * Add a suspend hook to make sure we come back up after a
867 * resume.
868 */
869 sc->sc_powerhook = powerhook_establish(atw_power, sc);
870 if (sc->sc_powerhook == NULL)
871 printf("%s: WARNING: unable to establish power hook\n",
872 sc->sc_dev.dv_xname);
873
874 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
875 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
876 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
877
878 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
879 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
880 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
881
882 return;
883
884 /*
885 * Free any resources we've allocated during the failed attach
886 * attempt. Do this in reverse order and fall through.
887 */
888 fail_5:
889 for (i = 0; i < ATW_NRXDESC; i++) {
890 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
891 continue;
892 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
893 }
894 fail_4:
895 for (i = 0; i < ATW_TXQUEUELEN; i++) {
896 if (sc->sc_txsoft[i].txs_dmamap == NULL)
897 continue;
898 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
899 }
900 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
901 fail_3:
902 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
903 fail_2:
904 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
905 sizeof(struct atw_control_data));
906 fail_1:
907 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
908 fail_0:
909 return;
910 }
911
912 static struct ieee80211_node *
913 atw_node_alloc(struct ieee80211_node_table *nt)
914 {
915 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
916 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
917
918 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
919 return ni;
920 }
921
922 static void
923 atw_node_free(struct ieee80211_node *ni)
924 {
925 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
926
927 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
928 ether_sprintf(ni->ni_bssid)));
929 (*sc->sc_node_free)(ni);
930 }
931
932
933 static void
934 atw_test1_reset(struct atw_softc *sc)
935 {
936 switch (sc->sc_rev) {
937 case ATW_REVISION_BA:
938 if (1 /* XXX condition on transceiver type */) {
939 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
940 }
941 break;
942 case ATW_REVISION_CA:
943 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
944 break;
945 default:
946 break;
947 }
948 }
949
950 /*
951 * atw_reset:
952 *
953 * Perform a soft reset on the ADM8211.
954 */
955 void
956 atw_reset(struct atw_softc *sc)
957 {
958 int i;
959 uint32_t lpc;
960
961 ATW_WRITE(sc, ATW_NAR, 0x0);
962 DELAY(atw_nar_delay);
963
964 /* Reference driver has a cryptic remark indicating that this might
965 * power-on the chip. I know that it turns off power-saving....
966 */
967 ATW_WRITE(sc, ATW_FRCTL, 0x0);
968
969 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
970
971 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
972 if (ATW_READ(sc, ATW_PAR) == 0)
973 break;
974 DELAY(atw_pseudo_milli);
975 }
976
977 /* ... and then pause 100ms longer for good measure. */
978 DELAY(atw_magic_delay1);
979
980 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
981
982 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
983 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
984
985 atw_test1_reset(sc);
986 /*
987 * Initialize the PCI Access Register.
988 */
989 sc->sc_busmode = ATW_PAR_PBL_8DW;
990
991 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
992 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
993 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
994
995 /* Turn off maximum power saving, etc.
996 *
997 * XXX Following example of reference driver, should I set
998 * an AID of 1? It didn't seem to help....
999 */
1000 ATW_WRITE(sc, ATW_FRCTL, 0x0);
1001
1002 DELAY(atw_magic_delay2);
1003
1004 /* Recall EEPROM. */
1005 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1006
1007 DELAY(atw_magic_delay4);
1008
1009 lpc = ATW_READ(sc, ATW_LPC);
1010
1011 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1012
1013 /* A reset seems to affect the SRAM contents, so put them into
1014 * a known state.
1015 */
1016 atw_clear_sram(sc);
1017
1018 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1019 }
1020
1021 static void
1022 atw_clear_sram(struct atw_softc *sc)
1023 {
1024 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1025 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1026 /* XXX not for revision 0x20. */
1027 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1028 }
1029
1030 /* TBD atw_init
1031 *
1032 * set MAC based on ic->ic_bss->myaddr
1033 * write WEP keys
1034 * set TX rate
1035 */
1036
1037 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1038 * without receiving a beacon with the preferred BSSID & SSID.
1039 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1040 */
1041 static void
1042 atw_wcsr_init(struct atw_softc *sc)
1043 {
1044 uint32_t wcsr;
1045
1046 wcsr = ATW_READ(sc, ATW_WCSR);
1047 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1048 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1049 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1050
1051 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1052 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1053 }
1054
1055 /* Turn off power management. Set Rx store-and-forward mode. */
1056 static void
1057 atw_cmdr_init(struct atw_softc *sc)
1058 {
1059 uint32_t cmdr;
1060 cmdr = ATW_READ(sc, ATW_CMDR);
1061 cmdr &= ~ATW_CMDR_APM;
1062 cmdr |= ATW_CMDR_RTE;
1063 cmdr &= ~ATW_CMDR_DRT_MASK;
1064 cmdr |= ATW_CMDR_DRT_SF;
1065
1066 ATW_WRITE(sc, ATW_CMDR, cmdr);
1067 }
1068
1069 static void
1070 atw_tofs2_init(struct atw_softc *sc)
1071 {
1072 uint32_t tofs2;
1073 /* XXX this magic can probably be figured out from the RFMD docs */
1074 #ifndef ATW_REFSLAVE
1075 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1076 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1077 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1078 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1079 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1080 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1081 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1082 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1083 #else
1084 /* XXX new magic from reference driver source */
1085 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1086 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1087 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1088 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1089 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1090 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1091 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1092 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1093 #endif
1094 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1095 }
1096
1097 static void
1098 atw_nar_init(struct atw_softc *sc)
1099 {
1100 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1101 }
1102
1103 static void
1104 atw_txlmt_init(struct atw_softc *sc)
1105 {
1106 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1107 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1108 }
1109
1110 static void
1111 atw_test1_init(struct atw_softc *sc)
1112 {
1113 uint32_t test1;
1114
1115 test1 = ATW_READ(sc, ATW_TEST1);
1116 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1117 /* XXX magic 0x1 */
1118 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1119 ATW_WRITE(sc, ATW_TEST1, test1);
1120 }
1121
1122 static void
1123 atw_rf_reset(struct atw_softc *sc)
1124 {
1125 /* XXX this resets an Intersil RF front-end? */
1126 /* TBD condition on Intersil RFType? */
1127 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1128 DELAY(atw_rf_delay1);
1129 ATW_WRITE(sc, ATW_SYNRF, 0);
1130 DELAY(atw_rf_delay2);
1131 }
1132
1133 /* Set 16 TU max duration for the contention-free period (CFP). */
1134 static void
1135 atw_cfp_init(struct atw_softc *sc)
1136 {
1137 uint32_t cfpp;
1138
1139 cfpp = ATW_READ(sc, ATW_CFPP);
1140 cfpp &= ~ATW_CFPP_CFPMD;
1141 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1142 ATW_WRITE(sc, ATW_CFPP, cfpp);
1143 }
1144
1145 static void
1146 atw_tofs0_init(struct atw_softc *sc)
1147 {
1148 /* XXX I guess that the Cardbus clock is 22MHz?
1149 * I am assuming that the role of ATW_TOFS0_USCNT is
1150 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1151 * very clear on this point. It says in the datasheet that it is
1152 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1153 * and 33MHz; maybe this is the way? I see a binary-only driver write
1154 * these values. These values are also the power-on default.
1155 */
1156 ATW_WRITE(sc, ATW_TOFS0,
1157 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1158 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1159 }
1160
1161 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1162 static void
1163 atw_ifs_init(struct atw_softc *sc)
1164 {
1165 uint32_t ifst;
1166 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1167 * Go figure.
1168 */
1169 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1170 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1171 ATW_IFST_SIFS_MASK) |
1172 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1173 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1174
1175 ATW_WRITE(sc, ATW_IFST, ifst);
1176 }
1177
1178 static void
1179 atw_response_times_init(struct atw_softc *sc)
1180 {
1181 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1182 * indicate that the MAC expects at least SIFS + MIRT microseconds
1183 * to pass after it transmits a frame that requires a response;
1184 * it waits at most SIFS + MART microseconds for the response.
1185 * Surely this is not the ACK timeout?
1186 */
1187 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1188 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1189 }
1190
1191 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1192 * engines read and write baseband registers after Rx and before
1193 * Tx, respectively.
1194 */
1195 static void
1196 atw_bbp_io_init(struct atw_softc *sc)
1197 {
1198 uint32_t mmiraddr2;
1199
1200 /* XXX The reference driver does this, but is it *really*
1201 * necessary?
1202 */
1203 switch (sc->sc_rev) {
1204 case ATW_REVISION_AB:
1205 case ATW_REVISION_AF:
1206 mmiraddr2 = 0x0;
1207 break;
1208 default:
1209 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1210 mmiraddr2 &=
1211 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1212 break;
1213 }
1214
1215 switch (sc->sc_bbptype) {
1216 case ATW_BBPTYPE_INTERSIL:
1217 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1218 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1219 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1220 break;
1221 case ATW_BBPTYPE_MARVEL:
1222 /* TBD find out the Marvel settings. */
1223 break;
1224 case ATW_BBPTYPE_RFMD:
1225 default:
1226 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1227 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1228 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1229 break;
1230 }
1231 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1232 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1233 }
1234
1235 /*
1236 * atw_init: [ ifnet interface function ]
1237 *
1238 * Initialize the interface. Must be called at splnet().
1239 */
1240 int
1241 atw_init(struct ifnet *ifp)
1242 {
1243 struct atw_softc *sc = ifp->if_softc;
1244 struct ieee80211com *ic = &sc->sc_ic;
1245 struct atw_txsoft *txs;
1246 struct atw_rxsoft *rxs;
1247 int i, error = 0;
1248
1249 if ((error = atw_enable(sc)) != 0)
1250 goto out;
1251
1252 /*
1253 * Cancel any pending I/O. This also resets.
1254 */
1255 atw_stop(ifp, 0);
1256
1257 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1258 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1259 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
1260 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
1261
1262 atw_wcsr_init(sc);
1263
1264 atw_cmdr_init(sc);
1265
1266 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1267 *
1268 * XXX Set transmit power for ATIM, RTS, Beacon.
1269 */
1270 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1271 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1272
1273 atw_tofs2_init(sc);
1274
1275 atw_nar_init(sc);
1276
1277 atw_txlmt_init(sc);
1278
1279 atw_test1_init(sc);
1280
1281 atw_rf_reset(sc);
1282
1283 atw_cfp_init(sc);
1284
1285 atw_tofs0_init(sc);
1286
1287 atw_ifs_init(sc);
1288
1289 /* XXX Fall asleep after one second of inactivity.
1290 * XXX A frame may only dribble in for 65536us.
1291 */
1292 ATW_WRITE(sc, ATW_RMD,
1293 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1294
1295 atw_response_times_init(sc);
1296
1297 atw_bbp_io_init(sc);
1298
1299 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1300
1301 if ((error = atw_rf3000_init(sc)) != 0)
1302 goto out;
1303
1304 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1305 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1306 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1307
1308 /*
1309 * Initialize the transmit descriptor ring.
1310 */
1311 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1312 for (i = 0; i < ATW_NTXDESC; i++) {
1313 sc->sc_txdescs[i].at_ctl = 0;
1314 /* no transmit chaining */
1315 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1316 sc->sc_txdescs[i].at_buf2 =
1317 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1318 }
1319 /* use ring mode */
1320 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1321 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1322 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1323 sc->sc_txfree = ATW_NTXDESC;
1324 sc->sc_txnext = 0;
1325
1326 /*
1327 * Initialize the transmit job descriptors.
1328 */
1329 SIMPLEQ_INIT(&sc->sc_txfreeq);
1330 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1331 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1332 txs = &sc->sc_txsoft[i];
1333 txs->txs_mbuf = NULL;
1334 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1335 }
1336
1337 /*
1338 * Initialize the receive descriptor and receive job
1339 * descriptor rings.
1340 */
1341 for (i = 0; i < ATW_NRXDESC; i++) {
1342 rxs = &sc->sc_rxsoft[i];
1343 if (rxs->rxs_mbuf == NULL) {
1344 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1345 printf("%s: unable to allocate or map rx "
1346 "buffer %d, error = %d\n",
1347 sc->sc_dev.dv_xname, i, error);
1348 /*
1349 * XXX Should attempt to run with fewer receive
1350 * XXX buffers instead of just failing.
1351 */
1352 atw_rxdrain(sc);
1353 goto out;
1354 }
1355 } else
1356 ATW_INIT_RXDESC(sc, i);
1357 }
1358 sc->sc_rxptr = 0;
1359
1360 /*
1361 * Initialize the interrupt mask and enable interrupts.
1362 */
1363 /* normal interrupts */
1364 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1365 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1366
1367 /* abnormal interrupts */
1368 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1369 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1370 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1371
1372 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1373 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1374 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1375 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1376 ATW_INTR_TRT;
1377
1378 sc->sc_linkint_mask &= sc->sc_inten;
1379 sc->sc_rxint_mask &= sc->sc_inten;
1380 sc->sc_txint_mask &= sc->sc_inten;
1381
1382 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1383 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1384
1385 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1386 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1387
1388 /*
1389 * Give the transmit and receive rings to the ADM8211.
1390 */
1391 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1392 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1393
1394 sc->sc_txthresh = 0;
1395 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1396 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1397
1398 /* common 802.11 configuration */
1399 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1400 switch (ic->ic_opmode) {
1401 case IEEE80211_M_STA:
1402 break;
1403 case IEEE80211_M_AHDEMO: /* XXX */
1404 case IEEE80211_M_IBSS:
1405 ic->ic_flags |= IEEE80211_F_IBSSON;
1406 /*FALLTHROUGH*/
1407 case IEEE80211_M_HOSTAP: /* XXX */
1408 break;
1409 case IEEE80211_M_MONITOR: /* XXX */
1410 break;
1411 }
1412
1413 switch (ic->ic_opmode) {
1414 case IEEE80211_M_AHDEMO:
1415 case IEEE80211_M_HOSTAP:
1416 #ifndef IEEE80211_NO_HOSTAP
1417 ic->ic_bss->ni_intval = ic->ic_lintval;
1418 ic->ic_bss->ni_rssi = 0;
1419 ic->ic_bss->ni_rstamp = 0;
1420 #endif /* !IEEE80211_NO_HOSTAP */
1421 break;
1422 default: /* XXX */
1423 break;
1424 }
1425
1426 sc->sc_wepctl = 0;
1427
1428 atw_write_ssid(sc);
1429 atw_write_sup_rates(sc);
1430 if (ic->ic_caps & IEEE80211_C_WEP)
1431 atw_write_wep(sc);
1432
1433 ic->ic_state = IEEE80211_S_INIT;
1434
1435 /*
1436 * Set the receive filter. This will start the transmit and
1437 * receive processes.
1438 */
1439 atw_filter_setup(sc);
1440
1441 /*
1442 * Start the receive process.
1443 */
1444 ATW_WRITE(sc, ATW_RDR, 0x1);
1445
1446 /*
1447 * Note that the interface is now running.
1448 */
1449 ifp->if_flags |= IFF_RUNNING;
1450 ifp->if_flags &= ~IFF_OACTIVE;
1451
1452 /* send no beacons, yet. */
1453 atw_start_beacon(sc, 0);
1454
1455 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1456 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1457 else
1458 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1459 out:
1460 if (error) {
1461 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1462 ifp->if_timer = 0;
1463 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1464 }
1465 #ifdef ATW_DEBUG
1466 atw_print_regs(sc, "end of init");
1467 #endif /* ATW_DEBUG */
1468
1469 return (error);
1470 }
1471
1472 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1473 * 0: MAC control of RF3000/Si4126.
1474 *
1475 * Applies power, or selects RF front-end? Sets reset condition.
1476 *
1477 * TBD support non-RFMD BBP, non-SiLabs synth.
1478 */
1479 static void
1480 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1481 {
1482 if (enable) {
1483 ATW_WRITE(sc, ATW_SYNRF,
1484 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1485 DELAY(atw_bbp_io_enable_delay);
1486 } else {
1487 ATW_WRITE(sc, ATW_SYNRF, 0);
1488 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1489 }
1490 }
1491
1492 static int
1493 atw_tune(struct atw_softc *sc)
1494 {
1495 int rc;
1496 u_int chan;
1497 struct ieee80211com *ic = &sc->sc_ic;
1498
1499 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1500 if (chan == IEEE80211_CHAN_ANY)
1501 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1502
1503 if (chan == sc->sc_cur_chan)
1504 return 0;
1505
1506 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1507 sc->sc_cur_chan, chan));
1508
1509 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1510
1511 atw_si4126_tune(sc, chan);
1512 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1513 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1514 chan);
1515
1516 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1517 DELAY(atw_nar_delay);
1518 ATW_WRITE(sc, ATW_RDR, 0x1);
1519
1520 if (rc == 0)
1521 sc->sc_cur_chan = chan;
1522
1523 return rc;
1524 }
1525
1526 #ifdef ATW_SYNDEBUG
1527 static void
1528 atw_si4126_print(struct atw_softc *sc)
1529 {
1530 struct ifnet *ifp = &sc->sc_if;
1531 u_int addr, val;
1532
1533 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1534 return;
1535
1536 for (addr = 0; addr <= 8; addr++) {
1537 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1538 if (atw_si4126_read(sc, addr, &val) == 0) {
1539 printf("<unknown> (quitting print-out)\n");
1540 break;
1541 }
1542 printf("%05x\n", val);
1543 }
1544 }
1545 #endif /* ATW_SYNDEBUG */
1546
1547 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1548 *
1549 * The RF/IF synthesizer produces two reference frequencies for
1550 * the RF2948B transceiver. The first frequency the RF2948B requires
1551 * is two times the so-called "intermediate frequency" (IF). Since
1552 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1553 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1554 * frequency required by the transceiver is the radio frequency
1555 * (RF). This is a superheterodyne transceiver; for f(chan) the
1556 * center frequency of the channel we are tuning, RF = f(chan) -
1557 * IF.
1558 *
1559 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1560 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1561 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1562 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1563 */
1564 static void
1565 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1566 {
1567 u_int mhz;
1568 u_int R;
1569 u_int32_t gpio;
1570 u_int16_t gain;
1571
1572 #ifdef ATW_SYNDEBUG
1573 atw_si4126_print(sc);
1574 #endif /* ATW_SYNDEBUG */
1575
1576 if (chan == 14)
1577 mhz = 2484;
1578 else
1579 mhz = 2412 + 5 * (chan - 1);
1580
1581 /* Tune IF to 748MHz to suit the IF LO input of the
1582 * RF2494B, which is 2 x IF. No need to set an IF divider
1583 * because an IF in 526MHz - 952MHz is allowed.
1584 *
1585 * XIN is 44.000MHz, so divide it by two to get allowable
1586 * range of 2-25MHz. SiLabs tells me that this is not
1587 * strictly necessary.
1588 */
1589
1590 if (atw_xindiv2)
1591 R = 44;
1592 else
1593 R = 88;
1594
1595 /* Power-up RF, IF synthesizers. */
1596 atw_si4126_write(sc, SI4126_POWER,
1597 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1598
1599 /* set LPWR, too? */
1600 atw_si4126_write(sc, SI4126_MAIN,
1601 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1602
1603 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1604 * set KP2 to 1.
1605 *
1606 * REFDIF This is different from the reference driver, which
1607 * always sets SI4126_GAIN to 0.
1608 */
1609 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1610
1611 atw_si4126_write(sc, SI4126_GAIN, gain);
1612
1613 /* XIN = 44MHz.
1614 *
1615 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1616 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1617 *
1618 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1619 * so that 1496/88 * 44MHz = 748MHz.
1620 */
1621 atw_si4126_write(sc, SI4126_IFN, 1496);
1622
1623 atw_si4126_write(sc, SI4126_IFR, R);
1624
1625 #ifndef ATW_REFSLAVE
1626 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1627 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1628 * which has no RF1!
1629 */
1630 atw_si4126_write(sc, SI4126_RF1R, R);
1631
1632 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1633 #endif
1634
1635 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1636 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1637 * Now let's multiply it to mhz. So mhz - IF = N.
1638 */
1639 atw_si4126_write(sc, SI4126_RF2R, R);
1640
1641 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1642
1643 /* wait 100us from power-up for RF, IF to settle */
1644 DELAY(100);
1645
1646 gpio = ATW_READ(sc, ATW_GPIO);
1647 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1648 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1649
1650 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1651 /* Set a Prism RF front-end to a special mode for channel 14?
1652 *
1653 * Apparently the SMC2635W needs this, although I don't think
1654 * it has a Prism RF.
1655 */
1656 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1657 }
1658 ATW_WRITE(sc, ATW_GPIO, gpio);
1659
1660 #ifdef ATW_SYNDEBUG
1661 atw_si4126_print(sc);
1662 #endif /* ATW_SYNDEBUG */
1663 }
1664
1665 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1666 * diversity.
1667 *
1668 * !!!
1669 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1670 * !!!
1671 */
1672 static int
1673 atw_rf3000_init(struct atw_softc *sc)
1674 {
1675 int rc = 0;
1676
1677 atw_bbp_io_enable(sc, 1);
1678
1679 /* CCA is acquisition sensitive */
1680 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1681 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1682
1683 if (rc != 0)
1684 goto out;
1685
1686 /* enable diversity */
1687 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1688
1689 if (rc != 0)
1690 goto out;
1691
1692 /* sensible setting from a binary-only driver */
1693 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1694 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1695
1696 if (rc != 0)
1697 goto out;
1698
1699 /* magic from a binary-only driver */
1700 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1701 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1702
1703 if (rc != 0)
1704 goto out;
1705
1706 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1707
1708 if (rc != 0)
1709 goto out;
1710
1711 /* XXX Reference driver remarks that Abocom sets this to 50.
1712 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1713 * in the "reserved" area of register RF3000_OPTIONS1.
1714 */
1715 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1716
1717 if (rc != 0)
1718 goto out;
1719
1720 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1721
1722 if (rc != 0)
1723 goto out;
1724
1725 out:
1726 atw_bbp_io_enable(sc, 0);
1727 return rc;
1728 }
1729
1730 #ifdef ATW_BBPDEBUG
1731 static void
1732 atw_rf3000_print(struct atw_softc *sc)
1733 {
1734 struct ifnet *ifp = &sc->sc_if;
1735 u_int addr, val;
1736
1737 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1738 return;
1739
1740 for (addr = 0x01; addr <= 0x15; addr++) {
1741 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1742 if (atw_rf3000_read(sc, addr, &val) != 0) {
1743 printf("<unknown> (quitting print-out)\n");
1744 break;
1745 }
1746 printf("%08x\n", val);
1747 }
1748 }
1749 #endif /* ATW_BBPDEBUG */
1750
1751 /* Set the power settings on the BBP for channel `chan'. */
1752 static int
1753 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1754 {
1755 int rc = 0;
1756 u_int32_t reg;
1757 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1758
1759 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1760 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1761 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1762
1763 /* odd channels: LSB, even channels: MSB */
1764 if (chan % 2 == 1) {
1765 txpower &= 0xFF;
1766 lpf_cutoff &= 0xFF;
1767 lna_gs_thresh &= 0xFF;
1768 } else {
1769 txpower >>= 8;
1770 lpf_cutoff >>= 8;
1771 lna_gs_thresh >>= 8;
1772 }
1773
1774 #ifdef ATW_BBPDEBUG
1775 atw_rf3000_print(sc);
1776 #endif /* ATW_BBPDEBUG */
1777
1778 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1779 "lna_gs_thresh %02x\n",
1780 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1781
1782 atw_bbp_io_enable(sc, 1);
1783
1784 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1785 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1786 goto out;
1787
1788 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1789 goto out;
1790
1791 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1792 goto out;
1793
1794 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1795
1796 if (rc != 0)
1797 goto out;
1798
1799 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1800
1801 if (rc != 0)
1802 goto out;
1803
1804 #ifdef ATW_BBPDEBUG
1805 atw_rf3000_print(sc);
1806 #endif /* ATW_BBPDEBUG */
1807
1808 out:
1809 atw_bbp_io_enable(sc, 0);
1810
1811 /* set beacon, rts, atim transmit power */
1812 reg = ATW_READ(sc, ATW_PLCPHD);
1813 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1814 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1815 ATW_PLCPHD_SERVICE_MASK);
1816 ATW_WRITE(sc, ATW_PLCPHD, reg);
1817 DELAY(atw_plcphd_delay);
1818
1819 return rc;
1820 }
1821
1822 /* Write a register on the RF3000 baseband processor using the
1823 * registers provided by the ADM8211 for this purpose.
1824 *
1825 * Return 0 on success.
1826 */
1827 static int
1828 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1829 {
1830 u_int32_t reg;
1831 int i;
1832
1833 reg = sc->sc_bbpctl_wr |
1834 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1835 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1836
1837 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1838 ATW_WRITE(sc, ATW_BBPCTL, reg);
1839 DELAY(2 * atw_pseudo_milli);
1840 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1841 break;
1842 }
1843
1844 if (i < 0) {
1845 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1846 return ETIMEDOUT;
1847 }
1848 return 0;
1849 }
1850
1851 /* Read a register on the RF3000 baseband processor using the registers
1852 * the ADM8211 provides for this purpose.
1853 *
1854 * The 7-bit register address is addr. Record the 8-bit data in the register
1855 * in *val.
1856 *
1857 * Return 0 on success.
1858 *
1859 * XXX This does not seem to work. The ADM8211 must require more or
1860 * different magic to read the chip than to write it. Possibly some
1861 * of the magic I have derived from a binary-only driver concerns
1862 * the "chip address" (see the RF3000 manual).
1863 */
1864 #ifdef ATW_BBPDEBUG
1865 static int
1866 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1867 {
1868 u_int32_t reg;
1869 int i;
1870
1871 for (i = 1000; --i >= 0; ) {
1872 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1873 break;
1874 DELAY(100);
1875 }
1876
1877 if (i < 0) {
1878 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1879 sc->sc_dev.dv_xname);
1880 return ETIMEDOUT;
1881 }
1882
1883 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1884
1885 ATW_WRITE(sc, ATW_BBPCTL, reg);
1886
1887 for (i = 1000; --i >= 0; ) {
1888 DELAY(100);
1889 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1890 break;
1891 }
1892
1893 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1894
1895 if (i < 0) {
1896 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1897 sc->sc_dev.dv_xname, reg);
1898 return ETIMEDOUT;
1899 }
1900 if (val != NULL)
1901 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1902 return 0;
1903 }
1904 #endif /* ATW_BBPDEBUG */
1905
1906 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1907 * provided by the ADM8211 for that purpose.
1908 *
1909 * val is 18 bits of data, and val is the 4-bit address of the register.
1910 *
1911 * Return 0 on success.
1912 */
1913 static void
1914 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1915 {
1916 uint32_t bits, mask, reg;
1917 const int nbits = 22;
1918
1919 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1920 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1921
1922 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1923 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1924
1925 reg = ATW_SYNRF_SELSYN;
1926 /* reference driver: reset Si4126 serial bus to initial
1927 * conditions?
1928 */
1929 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1930 ATW_WRITE(sc, ATW_SYNRF, reg);
1931
1932 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1933 if ((bits & mask) != 0)
1934 reg |= ATW_SYNRF_SYNDATA;
1935 else
1936 reg &= ~ATW_SYNRF_SYNDATA;
1937 ATW_WRITE(sc, ATW_SYNRF, reg);
1938 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1939 ATW_WRITE(sc, ATW_SYNRF, reg);
1940 }
1941 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1942 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1943 }
1944
1945 /* Read 18-bit data from the 4-bit address addr in Si4126
1946 * RF synthesizer and write the data to *val. Return 0 on success.
1947 *
1948 * XXX This does not seem to work. The ADM8211 must require more or
1949 * different magic to read the chip than to write it.
1950 */
1951 #ifdef ATW_SYNDEBUG
1952 static int
1953 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1954 {
1955 u_int32_t reg;
1956 int i;
1957
1958 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1959
1960 for (i = 1000; --i >= 0; ) {
1961 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1962 break;
1963 DELAY(100);
1964 }
1965
1966 if (i < 0) {
1967 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1968 sc->sc_dev.dv_xname);
1969 return ETIMEDOUT;
1970 }
1971
1972 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1973
1974 ATW_WRITE(sc, ATW_SYNCTL, reg);
1975
1976 for (i = 1000; --i >= 0; ) {
1977 DELAY(100);
1978 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1979 break;
1980 }
1981
1982 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1983
1984 if (i < 0) {
1985 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1986 sc->sc_dev.dv_xname, reg);
1987 return ETIMEDOUT;
1988 }
1989 if (val != NULL)
1990 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1991 ATW_SYNCTL_DATA_MASK);
1992 return 0;
1993 }
1994 #endif /* ATW_SYNDEBUG */
1995
1996 /* XXX is the endianness correct? test. */
1997 #define atw_calchash(addr) \
1998 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1999
2000 /*
2001 * atw_filter_setup:
2002 *
2003 * Set the ADM8211's receive filter.
2004 */
2005 static void
2006 atw_filter_setup(struct atw_softc *sc)
2007 {
2008 struct ieee80211com *ic = &sc->sc_ic;
2009 struct ethercom *ec = &sc->sc_ec;
2010 struct ifnet *ifp = &sc->sc_if;
2011 int hash;
2012 u_int32_t hashes[2];
2013 struct ether_multi *enm;
2014 struct ether_multistep step;
2015
2016 /* According to comments in tlp_al981_filter_setup
2017 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2018 * multicast filter to be set while it is running. Hopefully
2019 * the ADM8211 is not the same!
2020 */
2021 if ((ifp->if_flags & IFF_RUNNING) != 0)
2022 atw_idle(sc, ATW_NAR_SR);
2023
2024 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2025
2026 /* XXX in scan mode, do not filter packets. Maybe this is
2027 * unnecessary.
2028 */
2029 if (ic->ic_state == IEEE80211_S_SCAN ||
2030 (ifp->if_flags & IFF_PROMISC) != 0) {
2031 sc->sc_opmode |= ATW_NAR_PR;
2032 goto allmulti;
2033 }
2034
2035 hashes[0] = hashes[1] = 0x0;
2036
2037 /*
2038 * Program the 64-bit multicast hash filter.
2039 */
2040 ETHER_FIRST_MULTI(step, ec, enm);
2041 while (enm != NULL) {
2042 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2043 ETHER_ADDR_LEN) != 0)
2044 goto allmulti;
2045
2046 hash = atw_calchash(enm->enm_addrlo);
2047 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2048 ETHER_NEXT_MULTI(step, enm);
2049 sc->sc_opmode |= ATW_NAR_MM;
2050 }
2051 ifp->if_flags &= ~IFF_ALLMULTI;
2052 goto setit;
2053
2054 allmulti:
2055 sc->sc_opmode |= ATW_NAR_MM;
2056 ifp->if_flags |= IFF_ALLMULTI;
2057 hashes[0] = hashes[1] = 0xffffffff;
2058
2059 setit:
2060 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2061 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2062 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2063 DELAY(atw_nar_delay);
2064
2065 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2066 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2067 }
2068
2069 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2070 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2071 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2072 * no beacon with the preferred BSSID and SSID in the number of
2073 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2074 */
2075 static void
2076 atw_write_bssid(struct atw_softc *sc)
2077 {
2078 struct ieee80211com *ic = &sc->sc_ic;
2079 u_int8_t *bssid;
2080
2081 bssid = ic->ic_bss->ni_bssid;
2082
2083 ATW_WRITE(sc, ATW_BSSID0,
2084 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2085 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2086 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2087 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2088
2089 ATW_WRITE(sc, ATW_ABDA1,
2090 (ATW_READ(sc, ATW_ABDA1) &
2091 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2092 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2093 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2094
2095 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2096 ether_sprintf(sc->sc_bssid)));
2097 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2098
2099 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2100 }
2101
2102 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2103 * 16-bit word.
2104 */
2105 static void
2106 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2107 {
2108 u_int i;
2109 u_int8_t *ptr;
2110
2111 memcpy(&sc->sc_sram[ofs], buf, buflen);
2112
2113 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2114
2115 KASSERT(buflen + ofs <= sc->sc_sramlen);
2116
2117 ptr = &sc->sc_sram[ofs];
2118
2119 for (i = 0; i < buflen; i += 2) {
2120 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2121 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2122 DELAY(atw_writewep_delay);
2123
2124 ATW_WRITE(sc, ATW_WESK,
2125 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2126 DELAY(atw_writewep_delay);
2127 }
2128 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2129
2130 if (sc->sc_if.if_flags & IFF_DEBUG) {
2131 int n_octets = 0;
2132 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2133 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2134 for (i = 0; i < buflen; i++) {
2135 printf(" %02x", ptr[i]);
2136 if (++n_octets % 24 == 0)
2137 printf("\n");
2138 }
2139 if (n_octets % 24 != 0)
2140 printf("\n");
2141 }
2142 }
2143
2144 static int
2145 atw_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
2146 {
2147 int keyix;
2148 #ifdef ATW_DEBUG
2149 struct atw_softc *sc = ic->ic_ifp->if_softc;
2150 #endif
2151
2152 if (&ic->ic_nw_keys[0] <= k && k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])
2153 keyix = k - ic->ic_nw_keys;
2154 else
2155 keyix = IEEE80211_KEYIX_NONE;
2156
2157 DPRINTF(sc, ("%s: alloc key %u\n", __func__, keyix));
2158
2159 return keyix;
2160 }
2161
2162 static int
2163 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2164 {
2165 struct atw_softc *sc = ic->ic_ifp->if_softc;
2166 u_int keyix = k->wk_keyix;
2167
2168 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2169
2170 if (keyix >= IEEE80211_WEP_NKID)
2171 return 0;
2172 if (k->wk_keylen != 0)
2173 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2174
2175 return 1;
2176 }
2177
2178 static int
2179 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2180 const u_int8_t mac[IEEE80211_ADDR_LEN])
2181 {
2182 struct atw_softc *sc = ic->ic_ifp->if_softc;
2183
2184 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2185
2186 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2187 return 0;
2188
2189 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2190
2191 return 1;
2192 }
2193
2194 static void
2195 atw_key_update_begin(struct ieee80211com *ic)
2196 {
2197 #ifdef ATW_DEBUG
2198 struct ifnet *ifp = ic->ic_ifp;
2199 struct atw_softc *sc = ifp->if_softc;
2200 #endif
2201
2202 DPRINTF(sc, ("%s:\n", __func__));
2203 }
2204
2205 static void
2206 atw_key_update_end(struct ieee80211com *ic)
2207 {
2208 struct ifnet *ifp = ic->ic_ifp;
2209 struct atw_softc *sc = ifp->if_softc;
2210
2211 DPRINTF(sc, ("%s:\n", __func__));
2212
2213 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2214 return;
2215 atw_write_wep(sc);
2216 }
2217
2218 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2219 static void
2220 atw_write_wep(struct atw_softc *sc)
2221 {
2222 struct ieee80211com *ic = &sc->sc_ic;
2223 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2224 u_int8_t buf[IEEE80211_WEP_NKID]
2225 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2226 u_int32_t reg;
2227 int i;
2228
2229 sc->sc_wepctl = 0;
2230 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2231
2232 memset(&buf[0][0], 0, sizeof(buf));
2233
2234 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2235 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2236 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2237 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2238 buf[i][1] = ATW_WEP_ENABLED;
2239 } else {
2240 buf[i][1] = 0;
2241 continue;
2242 }
2243 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2244 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2245 ic->ic_nw_keys[i].wk_keylen - 1);
2246 }
2247
2248 reg = ATW_READ(sc, ATW_MACTEST);
2249 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2250 reg &= ~ATW_MACTEST_KEYID_MASK;
2251 reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2252 ATW_WRITE(sc, ATW_MACTEST, reg);
2253
2254 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2255 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2256
2257 switch (sc->sc_rev) {
2258 case ATW_REVISION_AB:
2259 case ATW_REVISION_AF:
2260 /* Bypass WEP on Rx. */
2261 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2262 break;
2263 default:
2264 break;
2265 }
2266
2267 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2268 sizeof(buf));
2269
2270 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2271 }
2272
2273 static void
2274 atw_change_ibss(struct atw_softc *sc)
2275 {
2276 atw_predict_beacon(sc);
2277 atw_write_bssid(sc);
2278 atw_start_beacon(sc, 1);
2279 }
2280
2281 static void
2282 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2283 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2284 {
2285 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2286
2287 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2288 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2289 return;
2290
2291 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2292
2293 switch (subtype) {
2294 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2295 case IEEE80211_FC0_SUBTYPE_BEACON:
2296 if (ic->ic_opmode != IEEE80211_M_IBSS ||
2297 ic->ic_state != IEEE80211_S_RUN)
2298 break;
2299 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc) &&
2300 ieee80211_ibss_merge(ic, ni) == ENETRESET)
2301 atw_change_ibss(sc);
2302 break;
2303 default:
2304 break;
2305 }
2306 return;
2307 }
2308
2309 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2310 * In ad hoc mode, the SSID is written to the beacons sent by the
2311 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2312 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2313 * indications.
2314 */
2315 static void
2316 atw_write_ssid(struct atw_softc *sc)
2317 {
2318 struct ieee80211com *ic = &sc->sc_ic;
2319 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2320 * it only expects the element length, not its ID.
2321 */
2322 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2323
2324 memset(buf, 0, sizeof(buf));
2325 buf[0] = ic->ic_bss->ni_esslen;
2326 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2327
2328 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2329 roundup(1 + ic->ic_bss->ni_esslen, 2));
2330 }
2331
2332 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2333 * In ad hoc mode, the supported rates are written to beacons sent by the
2334 * ADM8211.
2335 */
2336 static void
2337 atw_write_sup_rates(struct atw_softc *sc)
2338 {
2339 struct ieee80211com *ic = &sc->sc_ic;
2340 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2341 * supported rates
2342 */
2343 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2344
2345 memset(buf, 0, sizeof(buf));
2346
2347 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2348
2349 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2350 ic->ic_bss->ni_rates.rs_nrates);
2351
2352 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2353 }
2354
2355 /* Start/stop sending beacons. */
2356 void
2357 atw_start_beacon(struct atw_softc *sc, int start)
2358 {
2359 struct ieee80211com *ic = &sc->sc_ic;
2360 uint16_t chan;
2361 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2362 size_t len;
2363
2364 if (ATW_IS_ENABLED(sc) == 0)
2365 return;
2366
2367 /* start beacons */
2368 len = sizeof(struct ieee80211_frame) +
2369 8 /* timestamp */ + 2 /* beacon interval */ +
2370 2 /* capability info */ +
2371 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2372 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2373 3 /* DS parameters */ +
2374 IEEE80211_CRC_LEN;
2375
2376 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2377 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2378 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2379
2380 ATW_WRITE(sc, ATW_BCNT, bcnt);
2381 ATW_WRITE(sc, ATW_CAP1, cap1);
2382
2383 if (!start)
2384 return;
2385
2386 /* TBD use ni_capinfo */
2387
2388 capinfo = 0;
2389 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2390 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2391 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2392 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2393
2394 switch (ic->ic_opmode) {
2395 case IEEE80211_M_IBSS:
2396 len += 4; /* IBSS parameters */
2397 capinfo |= IEEE80211_CAPINFO_IBSS;
2398 break;
2399 case IEEE80211_M_HOSTAP:
2400 /* XXX 6-byte minimum TIM */
2401 len += atw_beacon_len_adjust;
2402 capinfo |= IEEE80211_CAPINFO_ESS;
2403 break;
2404 default:
2405 return;
2406 }
2407
2408 /* set listen interval
2409 * XXX do software units agree w/ hardware?
2410 */
2411 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2412 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2413
2414 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
2415
2416 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2417 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2418 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2419
2420 ATW_WRITE(sc, ATW_BCNT, bcnt);
2421 ATW_WRITE(sc, ATW_BPLI, bpli);
2422 ATW_WRITE(sc, ATW_CAP0, cap0);
2423 ATW_WRITE(sc, ATW_CAP1, cap1);
2424
2425 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2426 sc->sc_dev.dv_xname, bcnt));
2427
2428 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2429 sc->sc_dev.dv_xname, cap1));
2430 }
2431
2432 /* Return the 32 lsb of the last TSFT divisible by ival. */
2433 static __inline uint32_t
2434 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2435 {
2436 /* Following the reference driver's lead, I compute
2437 *
2438 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2439 *
2440 * without using 64-bit arithmetic, using the following
2441 * relationship:
2442 *
2443 * (0x100000000 * H + L) % m
2444 * = ((0x100000000 % m) * H + L) % m
2445 * = (((0xffffffff + 1) % m) * H + L) % m
2446 * = ((0xffffffff % m + 1 % m) * H + L) % m
2447 * = ((0xffffffff % m + 1) * H + L) % m
2448 */
2449 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2450 }
2451
2452 static uint64_t
2453 atw_get_tsft(struct atw_softc *sc)
2454 {
2455 int i;
2456 uint32_t tsfth, tsftl;
2457 for (i = 0; i < 2; i++) {
2458 tsfth = ATW_READ(sc, ATW_TSFTH);
2459 tsftl = ATW_READ(sc, ATW_TSFTL);
2460 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2461 break;
2462 }
2463 return ((uint64_t)tsfth << 32) | tsftl;
2464 }
2465
2466 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2467 * the ieee80211com.
2468 *
2469 * Predict the next target beacon transmission time (TBTT) and
2470 * write it to the ADM8211.
2471 */
2472 static void
2473 atw_predict_beacon(struct atw_softc *sc)
2474 {
2475 #define TBTTOFS 20 /* TU */
2476
2477 struct ieee80211com *ic = &sc->sc_ic;
2478 uint64_t tsft;
2479 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2480 union {
2481 uint64_t word;
2482 uint8_t tstamp[8];
2483 } u;
2484
2485 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2486 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2487 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2488 tsft = atw_get_tsft(sc);
2489 u.word = htole64(tsft);
2490 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2491 sizeof(ic->ic_bss->ni_tstamp));
2492 } else
2493 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2494
2495 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2496
2497 tsftl = tsft & 0xFFFFFFFF;
2498 tsfth = tsft >> 32;
2499
2500 /* We sent/received the last beacon `past' microseconds
2501 * after the interval divided the TSF timer.
2502 */
2503 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2504
2505 /* Skip ten beacons so that the TBTT cannot pass before
2506 * we've programmed it. Ten is an arbitrary number.
2507 */
2508 tbtt = past_even + ival * 10;
2509
2510 ATW_WRITE(sc, ATW_TOFS1,
2511 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2512 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2513 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2514 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2515 #undef TBTTOFS
2516 }
2517
2518 static void
2519 atw_next_scan(void *arg)
2520 {
2521 struct atw_softc *sc = arg;
2522 struct ieee80211com *ic = &sc->sc_ic;
2523 int s;
2524
2525 /* don't call atw_start w/o network interrupts blocked */
2526 s = splnet();
2527 if (ic->ic_state == IEEE80211_S_SCAN)
2528 ieee80211_next_scan(ic);
2529 splx(s);
2530 }
2531
2532 /* Synchronize the hardware state with the software state. */
2533 static int
2534 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2535 {
2536 struct ifnet *ifp = ic->ic_ifp;
2537 struct atw_softc *sc = ifp->if_softc;
2538 enum ieee80211_state ostate;
2539 int error;
2540
2541 ostate = ic->ic_state;
2542
2543 if (nstate == IEEE80211_S_INIT) {
2544 callout_stop(&sc->sc_scan_ch);
2545 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2546 atw_start_beacon(sc, 0);
2547 return (*sc->sc_newstate)(ic, nstate, arg);
2548 }
2549
2550 if ((error = atw_tune(sc)) != 0)
2551 return error;
2552
2553 switch (nstate) {
2554 case IEEE80211_S_ASSOC:
2555 break;
2556 case IEEE80211_S_INIT:
2557 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2558 break;
2559 case IEEE80211_S_SCAN:
2560 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2561 atw_next_scan, sc);
2562
2563 break;
2564 case IEEE80211_S_RUN:
2565 if (ic->ic_opmode == IEEE80211_M_STA)
2566 break;
2567 /*FALLTHROUGH*/
2568 case IEEE80211_S_AUTH:
2569 atw_write_bssid(sc);
2570 atw_write_ssid(sc);
2571 atw_write_sup_rates(sc);
2572
2573 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2574 ic->ic_opmode == IEEE80211_M_MONITOR)
2575 break;
2576
2577 /* set listen interval
2578 * XXX do software units agree w/ hardware?
2579 */
2580 ATW_WRITE(sc, ATW_BPLI,
2581 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2582 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2583 ATW_BPLI_LI_MASK));
2584
2585 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2586 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2587
2588 atw_predict_beacon(sc);
2589 break;
2590 }
2591
2592 if (nstate != IEEE80211_S_SCAN)
2593 callout_stop(&sc->sc_scan_ch);
2594
2595 if (nstate == IEEE80211_S_RUN &&
2596 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2597 ic->ic_opmode == IEEE80211_M_IBSS))
2598 atw_start_beacon(sc, 1);
2599 else
2600 atw_start_beacon(sc, 0);
2601
2602 error = (*sc->sc_newstate)(ic, nstate, arg);
2603
2604 if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2605 atw_write_bssid(sc);
2606
2607 return error;
2608 }
2609
2610 /*
2611 * atw_add_rxbuf:
2612 *
2613 * Add a receive buffer to the indicated descriptor.
2614 */
2615 int
2616 atw_add_rxbuf(struct atw_softc *sc, int idx)
2617 {
2618 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2619 struct mbuf *m;
2620 int error;
2621
2622 MGETHDR(m, M_DONTWAIT, MT_DATA);
2623 if (m == NULL)
2624 return (ENOBUFS);
2625
2626 MCLGET(m, M_DONTWAIT);
2627 if ((m->m_flags & M_EXT) == 0) {
2628 m_freem(m);
2629 return (ENOBUFS);
2630 }
2631
2632 if (rxs->rxs_mbuf != NULL)
2633 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2634
2635 rxs->rxs_mbuf = m;
2636
2637 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2638 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2639 BUS_DMA_READ|BUS_DMA_NOWAIT);
2640 if (error) {
2641 printf("%s: can't load rx DMA map %d, error = %d\n",
2642 sc->sc_dev.dv_xname, idx, error);
2643 panic("atw_add_rxbuf"); /* XXX */
2644 }
2645
2646 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2647 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2648
2649 ATW_INIT_RXDESC(sc, idx);
2650
2651 return (0);
2652 }
2653
2654 /*
2655 * Release any queued transmit buffers.
2656 */
2657 void
2658 atw_txdrain(struct atw_softc *sc)
2659 {
2660 struct atw_txsoft *txs;
2661
2662 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2663 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2664 if (txs->txs_mbuf != NULL) {
2665 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2666 m_freem(txs->txs_mbuf);
2667 txs->txs_mbuf = NULL;
2668 }
2669 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2670 }
2671 sc->sc_tx_timer = 0;
2672 }
2673
2674 /*
2675 * atw_stop: [ ifnet interface function ]
2676 *
2677 * Stop transmission on the interface.
2678 */
2679 void
2680 atw_stop(struct ifnet *ifp, int disable)
2681 {
2682 struct atw_softc *sc = ifp->if_softc;
2683 struct ieee80211com *ic = &sc->sc_ic;
2684
2685 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2686
2687 /* Disable interrupts. */
2688 ATW_WRITE(sc, ATW_IER, 0);
2689
2690 /* Stop the transmit and receive processes. */
2691 sc->sc_opmode = 0;
2692 ATW_WRITE(sc, ATW_NAR, 0);
2693 DELAY(atw_nar_delay);
2694 ATW_WRITE(sc, ATW_TDBD, 0);
2695 ATW_WRITE(sc, ATW_TDBP, 0);
2696 ATW_WRITE(sc, ATW_RDB, 0);
2697
2698 atw_txdrain(sc);
2699
2700 if (disable) {
2701 atw_rxdrain(sc);
2702 atw_disable(sc);
2703 }
2704
2705 /*
2706 * Mark the interface down and cancel the watchdog timer.
2707 */
2708 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2709 ifp->if_timer = 0;
2710
2711 if (!disable)
2712 atw_reset(sc);
2713 }
2714
2715 /*
2716 * atw_rxdrain:
2717 *
2718 * Drain the receive queue.
2719 */
2720 void
2721 atw_rxdrain(struct atw_softc *sc)
2722 {
2723 struct atw_rxsoft *rxs;
2724 int i;
2725
2726 for (i = 0; i < ATW_NRXDESC; i++) {
2727 rxs = &sc->sc_rxsoft[i];
2728 if (rxs->rxs_mbuf == NULL)
2729 continue;
2730 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2731 m_freem(rxs->rxs_mbuf);
2732 rxs->rxs_mbuf = NULL;
2733 }
2734 }
2735
2736 /*
2737 * atw_detach:
2738 *
2739 * Detach an ADM8211 interface.
2740 */
2741 int
2742 atw_detach(struct atw_softc *sc)
2743 {
2744 struct ifnet *ifp = &sc->sc_if;
2745 struct atw_rxsoft *rxs;
2746 struct atw_txsoft *txs;
2747 int i;
2748
2749 /*
2750 * Succeed now if there isn't any work to do.
2751 */
2752 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2753 return (0);
2754
2755 callout_stop(&sc->sc_scan_ch);
2756
2757 ieee80211_ifdetach(&sc->sc_ic);
2758 if_detach(ifp);
2759
2760 for (i = 0; i < ATW_NRXDESC; i++) {
2761 rxs = &sc->sc_rxsoft[i];
2762 if (rxs->rxs_mbuf != NULL) {
2763 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2764 m_freem(rxs->rxs_mbuf);
2765 rxs->rxs_mbuf = NULL;
2766 }
2767 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2768 }
2769 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2770 txs = &sc->sc_txsoft[i];
2771 if (txs->txs_mbuf != NULL) {
2772 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2773 m_freem(txs->txs_mbuf);
2774 txs->txs_mbuf = NULL;
2775 }
2776 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2777 }
2778 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2779 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2780 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2781 sizeof(struct atw_control_data));
2782 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2783
2784 shutdownhook_disestablish(sc->sc_sdhook);
2785 powerhook_disestablish(sc->sc_powerhook);
2786
2787 if (sc->sc_srom)
2788 free(sc->sc_srom, M_DEVBUF);
2789
2790 return (0);
2791 }
2792
2793 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2794 void
2795 atw_shutdown(void *arg)
2796 {
2797 struct atw_softc *sc = arg;
2798
2799 atw_stop(&sc->sc_if, 1);
2800 }
2801
2802 int
2803 atw_intr(void *arg)
2804 {
2805 struct atw_softc *sc = arg;
2806 struct ifnet *ifp = &sc->sc_if;
2807 u_int32_t status, rxstatus, txstatus, linkstatus;
2808 int handled = 0, txthresh;
2809
2810 #ifdef DEBUG
2811 if (ATW_IS_ENABLED(sc) == 0)
2812 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2813 #endif
2814
2815 /*
2816 * If the interface isn't running, the interrupt couldn't
2817 * possibly have come from us.
2818 */
2819 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2820 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2821 return (0);
2822
2823 for (;;) {
2824 status = ATW_READ(sc, ATW_STSR);
2825
2826 if (status)
2827 ATW_WRITE(sc, ATW_STSR, status);
2828
2829 #ifdef ATW_DEBUG
2830 #define PRINTINTR(flag) do { \
2831 if ((status & flag) != 0) { \
2832 printf("%s" #flag, delim); \
2833 delim = ","; \
2834 } \
2835 } while (0)
2836
2837 if (atw_debug > 1 && status) {
2838 const char *delim = "<";
2839
2840 printf("%s: reg[STSR] = %x",
2841 sc->sc_dev.dv_xname, status);
2842
2843 PRINTINTR(ATW_INTR_FBE);
2844 PRINTINTR(ATW_INTR_LINKOFF);
2845 PRINTINTR(ATW_INTR_LINKON);
2846 PRINTINTR(ATW_INTR_RCI);
2847 PRINTINTR(ATW_INTR_RDU);
2848 PRINTINTR(ATW_INTR_REIS);
2849 PRINTINTR(ATW_INTR_RPS);
2850 PRINTINTR(ATW_INTR_TCI);
2851 PRINTINTR(ATW_INTR_TDU);
2852 PRINTINTR(ATW_INTR_TLT);
2853 PRINTINTR(ATW_INTR_TPS);
2854 PRINTINTR(ATW_INTR_TRT);
2855 PRINTINTR(ATW_INTR_TUF);
2856 PRINTINTR(ATW_INTR_BCNTC);
2857 PRINTINTR(ATW_INTR_ATIME);
2858 PRINTINTR(ATW_INTR_TBTT);
2859 PRINTINTR(ATW_INTR_TSCZ);
2860 PRINTINTR(ATW_INTR_TSFTF);
2861 printf(">\n");
2862 }
2863 #undef PRINTINTR
2864 #endif /* ATW_DEBUG */
2865
2866 if ((status & sc->sc_inten) == 0)
2867 break;
2868
2869 handled = 1;
2870
2871 rxstatus = status & sc->sc_rxint_mask;
2872 txstatus = status & sc->sc_txint_mask;
2873 linkstatus = status & sc->sc_linkint_mask;
2874
2875 if (linkstatus) {
2876 atw_linkintr(sc, linkstatus);
2877 }
2878
2879 if (rxstatus) {
2880 /* Grab any new packets. */
2881 atw_rxintr(sc);
2882
2883 if (rxstatus & ATW_INTR_RDU) {
2884 printf("%s: receive ring overrun\n",
2885 sc->sc_dev.dv_xname);
2886 /* Get the receive process going again. */
2887 ATW_WRITE(sc, ATW_RDR, 0x1);
2888 break;
2889 }
2890 }
2891
2892 if (txstatus) {
2893 /* Sweep up transmit descriptors. */
2894 atw_txintr(sc);
2895
2896 if (txstatus & ATW_INTR_TLT)
2897 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2898 sc->sc_dev.dv_xname));
2899
2900 if (txstatus & ATW_INTR_TRT)
2901 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2902 sc->sc_dev.dv_xname));
2903
2904 /* If Tx under-run, increase our transmit threshold
2905 * if another is available.
2906 */
2907 txthresh = sc->sc_txthresh + 1;
2908 if ((txstatus & ATW_INTR_TUF) &&
2909 sc->sc_txth[txthresh].txth_name != NULL) {
2910 /* Idle the transmit process. */
2911 atw_idle(sc, ATW_NAR_ST);
2912
2913 sc->sc_txthresh = txthresh;
2914 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2915 sc->sc_opmode |=
2916 sc->sc_txth[txthresh].txth_opmode;
2917 printf("%s: transmit underrun; new "
2918 "threshold: %s\n", sc->sc_dev.dv_xname,
2919 sc->sc_txth[txthresh].txth_name);
2920
2921 /* Set the new threshold and restart
2922 * the transmit process.
2923 */
2924 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2925 DELAY(atw_nar_delay);
2926 ATW_WRITE(sc, ATW_RDR, 0x1);
2927 /* XXX Log every Nth underrun from
2928 * XXX now on?
2929 */
2930 }
2931 }
2932
2933 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2934 if (status & ATW_INTR_TPS)
2935 printf("%s: transmit process stopped\n",
2936 sc->sc_dev.dv_xname);
2937 if (status & ATW_INTR_RPS)
2938 printf("%s: receive process stopped\n",
2939 sc->sc_dev.dv_xname);
2940 (void)atw_init(ifp);
2941 break;
2942 }
2943
2944 if (status & ATW_INTR_FBE) {
2945 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2946 (void)atw_init(ifp);
2947 break;
2948 }
2949
2950 /*
2951 * Not handled:
2952 *
2953 * Transmit buffer unavailable -- normal
2954 * condition, nothing to do, really.
2955 *
2956 * Early receive interrupt -- not available on
2957 * all chips, we just use RI. We also only
2958 * use single-segment receive DMA, so this
2959 * is mostly useless.
2960 *
2961 * TBD others
2962 */
2963 }
2964
2965 /* Try to get more packets going. */
2966 atw_start(ifp);
2967
2968 return (handled);
2969 }
2970
2971 /*
2972 * atw_idle:
2973 *
2974 * Cause the transmit and/or receive processes to go idle.
2975 *
2976 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2977 * process in STSR if I clear SR or ST after the process has already
2978 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2979 * do not seem to be too reliable. Perhaps I have the sense of the
2980 * Rx bits switched with the Tx bits?
2981 */
2982 void
2983 atw_idle(struct atw_softc *sc, u_int32_t bits)
2984 {
2985 u_int32_t ackmask = 0, opmode, stsr, test0;
2986 int i, s;
2987
2988 s = splnet();
2989
2990 opmode = sc->sc_opmode & ~bits;
2991
2992 if (bits & ATW_NAR_SR)
2993 ackmask |= ATW_INTR_RPS;
2994
2995 if (bits & ATW_NAR_ST) {
2996 ackmask |= ATW_INTR_TPS;
2997 /* set ATW_NAR_HF to flush TX FIFO. */
2998 opmode |= ATW_NAR_HF;
2999 }
3000
3001 ATW_WRITE(sc, ATW_NAR, opmode);
3002 DELAY(atw_nar_delay);
3003
3004 for (i = 0; i < 1000; i++) {
3005 stsr = ATW_READ(sc, ATW_STSR);
3006 if ((stsr & ackmask) == ackmask)
3007 break;
3008 DELAY(10);
3009 }
3010
3011 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3012
3013 if ((stsr & ackmask) == ackmask)
3014 goto out;
3015
3016 test0 = ATW_READ(sc, ATW_TEST0);
3017
3018 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3019 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3020 printf("%s: transmit process not idle [%s]\n",
3021 sc->sc_dev.dv_xname,
3022 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
3023 printf("%s: bits %08x test0 %08x stsr %08x\n",
3024 sc->sc_dev.dv_xname, bits, test0, stsr);
3025 }
3026
3027 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3028 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3029 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3030 sc->sc_dev.dv_xname,
3031 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
3032 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3033 sc->sc_dev.dv_xname, bits, test0, stsr));
3034 }
3035 out:
3036 if ((bits & ATW_NAR_ST) != 0)
3037 atw_txdrain(sc);
3038 splx(s);
3039 return;
3040 }
3041
3042 /*
3043 * atw_linkintr:
3044 *
3045 * Helper; handle link-status interrupts.
3046 */
3047 void
3048 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3049 {
3050 struct ieee80211com *ic = &sc->sc_ic;
3051
3052 if (ic->ic_state != IEEE80211_S_RUN)
3053 return;
3054
3055 if (linkstatus & ATW_INTR_LINKON) {
3056 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3057 sc->sc_rescan_timer = 0;
3058 } else if (linkstatus & ATW_INTR_LINKOFF) {
3059 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3060 if (ic->ic_opmode != IEEE80211_M_STA)
3061 return;
3062 sc->sc_rescan_timer = 3;
3063 sc->sc_if.if_timer = 1;
3064 }
3065 }
3066
3067 static __inline int
3068 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3069 {
3070 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3071 return 0;
3072 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3073 return 0;
3074 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3075 }
3076
3077 /*
3078 * atw_rxintr:
3079 *
3080 * Helper; handle receive interrupts.
3081 */
3082 void
3083 atw_rxintr(struct atw_softc *sc)
3084 {
3085 static int rate_tbl[] = {2, 4, 11, 22, 44};
3086 struct ieee80211com *ic = &sc->sc_ic;
3087 struct ieee80211_node *ni;
3088 struct ieee80211_frame_min *wh;
3089 struct ifnet *ifp = &sc->sc_if;
3090 struct atw_rxsoft *rxs;
3091 struct mbuf *m;
3092 u_int32_t rxstat;
3093 int i, len, rate, rate0;
3094 u_int32_t rssi, rssi0;
3095
3096 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3097 rxs = &sc->sc_rxsoft[i];
3098
3099 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3100
3101 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3102 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3103 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3104
3105 if (rxstat & ATW_RXSTAT_OWN)
3106 break; /* We have processed all receive buffers. */
3107
3108 DPRINTF3(sc,
3109 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3110 sc->sc_dev.dv_xname,
3111 rxstat, rssi0,
3112 le32toh(sc->sc_rxdescs[i].ar_buf1),
3113 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3114
3115 /*
3116 * Make sure the packet fits in one buffer. This should
3117 * always be the case.
3118 */
3119 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3120 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3121 printf("%s: incoming packet spilled, resetting\n",
3122 sc->sc_dev.dv_xname);
3123 (void)atw_init(ifp);
3124 return;
3125 }
3126
3127 /*
3128 * If an error occurred, update stats, clear the status
3129 * word, and leave the packet buffer in place. It will
3130 * simply be reused the next time the ring comes around.
3131 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3132 * error.
3133 */
3134
3135 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3136 ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3137 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3138 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3139 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3140 ATW_RXSTAT_ICVE)) != 0)) {
3141 #define PRINTERR(bit, str) \
3142 if (rxstat & (bit)) \
3143 printf("%s: receive error: %s\n", \
3144 sc->sc_dev.dv_xname, str)
3145 ifp->if_ierrors++;
3146 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3147 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3148 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3149 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3150 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3151 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3152 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3153 #undef PRINTERR
3154 ATW_INIT_RXDESC(sc, i);
3155 continue;
3156 }
3157
3158 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3159 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3160
3161 /*
3162 * No errors; receive the packet. Note the ADM8211
3163 * includes the CRC in promiscuous mode.
3164 */
3165 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3166
3167 /*
3168 * Allocate a new mbuf cluster. If that fails, we are
3169 * out of memory, and must drop the packet and recycle
3170 * the buffer that's already attached to this descriptor.
3171 */
3172 m = rxs->rxs_mbuf;
3173 if (atw_add_rxbuf(sc, i) != 0) {
3174 ifp->if_ierrors++;
3175 ATW_INIT_RXDESC(sc, i);
3176 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3177 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3178 continue;
3179 }
3180
3181 ifp->if_ipackets++;
3182 if (sc->sc_opmode & ATW_NAR_PR)
3183 len -= IEEE80211_CRC_LEN;
3184 m->m_pkthdr.rcvif = ifp;
3185 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3186
3187 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3188 rate = 0;
3189 else
3190 rate = rate_tbl[rate0];
3191
3192 /* The RSSI comes straight from a register in the
3193 * baseband processor. I know that for the RF3000,
3194 * the RSSI register also contains the antenna-selection
3195 * bits. Mask those off.
3196 *
3197 * TBD Treat other basebands.
3198 */
3199 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3200 rssi = rssi0 & RF3000_RSSI_MASK;
3201 else
3202 rssi = rssi0;
3203
3204 #if NBPFILTER > 0
3205 /* Pass this up to any BPF listeners. */
3206 if (sc->sc_radiobpf != NULL) {
3207 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3208
3209 tap->ar_rate = rate;
3210 tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3211 tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3212
3213 /* TBD verify units are dB */
3214 tap->ar_antsignal = (int)rssi;
3215 /* TBD tap->ar_flags */
3216
3217 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3218 tap->ar_ihdr.it_len, m);
3219 }
3220 #endif /* NPBFILTER > 0 */
3221
3222 wh = mtod(m, struct ieee80211_frame_min *);
3223 ni = ieee80211_find_rxnode(ic, wh);
3224 if (atw_hw_decrypted(sc, wh)) {
3225 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3226 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3227 }
3228 ieee80211_input(ic, m, ni, (int)rssi, 0);
3229 ieee80211_free_node(ni);
3230 }
3231
3232 /* Update the receive pointer. */
3233 sc->sc_rxptr = i;
3234 }
3235
3236 /*
3237 * atw_txintr:
3238 *
3239 * Helper; handle transmit interrupts.
3240 */
3241 void
3242 atw_txintr(struct atw_softc *sc)
3243 {
3244 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3245 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3246 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3247 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3248
3249 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3250 struct ifnet *ifp = &sc->sc_if;
3251 struct atw_txsoft *txs;
3252 u_int32_t txstat;
3253
3254 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3255 sc->sc_dev.dv_xname, sc->sc_flags));
3256
3257 ifp->if_flags &= ~IFF_OACTIVE;
3258
3259 /*
3260 * Go through our Tx list and free mbufs for those
3261 * frames that have been transmitted.
3262 */
3263 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3264 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3265 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3266
3267 #ifdef ATW_DEBUG
3268 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3269 int i;
3270 printf(" txsoft %p transmit chain:\n", txs);
3271 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3272 txs->txs_ndescs - 1,
3273 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3274 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3275 printf(" descriptor %d:\n", i);
3276 printf(" at_status: 0x%08x\n",
3277 le32toh(sc->sc_txdescs[i].at_stat));
3278 printf(" at_flags: 0x%08x\n",
3279 le32toh(sc->sc_txdescs[i].at_flags));
3280 printf(" at_buf1: 0x%08x\n",
3281 le32toh(sc->sc_txdescs[i].at_buf1));
3282 printf(" at_buf2: 0x%08x\n",
3283 le32toh(sc->sc_txdescs[i].at_buf2));
3284 if (i == txs->txs_lastdesc)
3285 break;
3286 }
3287 }
3288 #endif
3289
3290 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3291 if (txstat & ATW_TXSTAT_OWN)
3292 break;
3293
3294 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3295
3296 sc->sc_txfree += txs->txs_ndescs;
3297
3298 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3299 0, txs->txs_dmamap->dm_mapsize,
3300 BUS_DMASYNC_POSTWRITE);
3301 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3302 m_freem(txs->txs_mbuf);
3303 txs->txs_mbuf = NULL;
3304
3305 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3306
3307 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3308 (txstat & TXSTAT_ERRMASK) != 0) {
3309 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3310 txstat_buf, sizeof(txstat_buf));
3311 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3312 txstat_buf,
3313 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3314 }
3315
3316 /*
3317 * Check for errors and collisions.
3318 */
3319 if (txstat & ATW_TXSTAT_TUF)
3320 sc->sc_stats.ts_tx_tuf++;
3321 if (txstat & ATW_TXSTAT_TLT)
3322 sc->sc_stats.ts_tx_tlt++;
3323 if (txstat & ATW_TXSTAT_TRT)
3324 sc->sc_stats.ts_tx_trt++;
3325 if (txstat & ATW_TXSTAT_TRO)
3326 sc->sc_stats.ts_tx_tro++;
3327 if (txstat & ATW_TXSTAT_SOFBR) {
3328 sc->sc_stats.ts_tx_sofbr++;
3329 }
3330
3331 if ((txstat & ATW_TXSTAT_ES) == 0)
3332 ifp->if_collisions +=
3333 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3334 else
3335 ifp->if_oerrors++;
3336
3337 ifp->if_opackets++;
3338 }
3339
3340 /*
3341 * If there are no more pending transmissions, cancel the watchdog
3342 * timer.
3343 */
3344 if (txs == NULL)
3345 sc->sc_tx_timer = 0;
3346 #undef TXSTAT_ERRMASK
3347 #undef TXSTAT_FMT
3348 }
3349
3350 /*
3351 * atw_watchdog: [ifnet interface function]
3352 *
3353 * Watchdog timer handler.
3354 */
3355 void
3356 atw_watchdog(struct ifnet *ifp)
3357 {
3358 struct atw_softc *sc = ifp->if_softc;
3359 struct ieee80211com *ic = &sc->sc_ic;
3360
3361 ifp->if_timer = 0;
3362 if (ATW_IS_ENABLED(sc) == 0)
3363 return;
3364
3365 if (sc->sc_rescan_timer) {
3366 if (--sc->sc_rescan_timer == 0)
3367 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3368 }
3369 if (sc->sc_tx_timer) {
3370 if (--sc->sc_tx_timer == 0 &&
3371 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3372 printf("%s: transmit timeout\n", ifp->if_xname);
3373 ifp->if_oerrors++;
3374 (void)atw_init(ifp);
3375 atw_start(ifp);
3376 }
3377 }
3378 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3379 ifp->if_timer = 1;
3380 ieee80211_watchdog(ic);
3381 }
3382
3383 /* Compute the 802.11 Duration field and the PLCP Length fields for
3384 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3385 * Write the fields to the ADM8211 Tx header, frm.
3386 *
3387 * TBD use the fragmentation threshold to find the right duration for
3388 * the first & last fragments.
3389 *
3390 * TBD make certain of the duration fields applied by the ADM8211 to each
3391 * fragment. I think that the ADM8211 knows how to subtract the CTS
3392 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3393 * I also think that the ADM8211 does *some* arithmetic for us, because
3394 * otherwise I think we would have to set a first duration for CTS/first
3395 * fragment, a second duration for fragments between the first and the
3396 * last, and a third duration for the last fragment.
3397 *
3398 * TBD make certain that duration fields reflect addition of FCS/WEP
3399 * and correct duration arithmetic as necessary.
3400 */
3401 static void
3402 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3403 int len)
3404 {
3405 int remainder;
3406
3407 /* deal also with encrypted fragments */
3408 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3409 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3410 sc->sc_dev.dv_xname));
3411 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3412 IEEE80211_WEP_CRCLEN;
3413 }
3414
3415 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3416 * duration (XXX added by MAC?).
3417 */
3418 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3419 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3420
3421 if (rate <= 4)
3422 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3423 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3424 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3425 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3426 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3427 else
3428 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3429 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3430 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3431 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3432 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3433
3434 /* lengthen duration if long preamble */
3435 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3436 frm->atw_head_dur +=
3437 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3438 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3439 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3440 IEEE80211_DUR_DS_FAST_PLCPHDR);
3441
3442 if (remainder != 0)
3443 frm->atw_head_dur++;
3444
3445 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3446 (rate == 2 || rate == 4)) {
3447 /* derived from Linux: how could this be right? */
3448 frm->atw_head_plcplen = frm->atw_head_dur;
3449 } else {
3450 frm->atw_head_plcplen = (16 * len) / rate;
3451 remainder = (80 * len) % (rate * 5);
3452
3453 if (remainder != 0) {
3454 frm->atw_head_plcplen++;
3455
3456 /* XXX magic */
3457 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3458 rate == 22 && remainder <= 30)
3459 frm->atw_head_plcplen |= 0x8000;
3460 }
3461 }
3462 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3463 htole16(frm->atw_head_plcplen);
3464 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3465 }
3466
3467 #ifdef ATW_DEBUG
3468 static void
3469 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3470 {
3471 struct atw_softc *sc = ifp->if_softc;
3472 struct mbuf *m;
3473 int i, noctets = 0;
3474
3475 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3476 m0->m_pkthdr.len);
3477
3478 for (m = m0; m; m = m->m_next) {
3479 if (m->m_len == 0)
3480 continue;
3481 for (i = 0; i < m->m_len; i++) {
3482 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3483 if (++noctets % 24 == 0)
3484 printf("\n");
3485 }
3486 }
3487 printf("%s%s: %d bytes emitted\n",
3488 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3489 }
3490 #endif /* ATW_DEBUG */
3491
3492 /*
3493 * atw_start: [ifnet interface function]
3494 *
3495 * Start packet transmission on the interface.
3496 */
3497 void
3498 atw_start(struct ifnet *ifp)
3499 {
3500 struct atw_softc *sc = ifp->if_softc;
3501 struct ieee80211com *ic = &sc->sc_ic;
3502 struct ieee80211_node *ni;
3503 struct ieee80211_frame *wh;
3504 struct atw_frame *hh;
3505 struct mbuf *m0, *m;
3506 struct atw_txsoft *txs, *last_txs;
3507 struct atw_txdesc *txd;
3508 int do_encrypt, rate;
3509 bus_dmamap_t dmamap;
3510 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3511
3512 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3513 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3514
3515 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3516 return;
3517
3518 /*
3519 * Remember the previous number of free descriptors and
3520 * the first descriptor we'll use.
3521 */
3522 ofree = sc->sc_txfree;
3523 firsttx = sc->sc_txnext;
3524
3525 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3526 sc->sc_dev.dv_xname, ofree, firsttx));
3527
3528 /*
3529 * Loop through the send queue, setting up transmit descriptors
3530 * until we drain the queue, or use up all available transmit
3531 * descriptors.
3532 */
3533 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3534 sc->sc_txfree != 0) {
3535
3536 /*
3537 * Grab a packet off the management queue, if it
3538 * is not empty. Otherwise, from the data queue.
3539 */
3540 IF_DEQUEUE(&ic->ic_mgtq, m0);
3541 if (m0 != NULL) {
3542 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3543 m0->m_pkthdr.rcvif = NULL;
3544 } else {
3545 /* send no data packets until we are associated */
3546 if (ic->ic_state != IEEE80211_S_RUN)
3547 break;
3548 IFQ_DEQUEUE(&ifp->if_snd, m0);
3549 if (m0 == NULL)
3550 break;
3551 #if NBPFILTER > 0
3552 if (ifp->if_bpf != NULL)
3553 bpf_mtap(ifp->if_bpf, m0);
3554 #endif /* NBPFILTER > 0 */
3555 ni = ieee80211_find_txnode(ic,
3556 mtod(m0, struct ether_header *)->ether_dhost);
3557 if (ni == NULL) {
3558 ifp->if_oerrors++;
3559 break;
3560 }
3561 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3562 ieee80211_free_node(ni);
3563 ifp->if_oerrors++;
3564 break;
3565 }
3566 }
3567
3568 rate = MAX(ieee80211_get_rate(ic), 2);
3569
3570 #if NBPFILTER > 0
3571 /*
3572 * Pass the packet to any BPF listeners.
3573 */
3574 if (ic->ic_rawbpf != NULL)
3575 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3576
3577 if (sc->sc_radiobpf != NULL) {
3578 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3579
3580 tap->at_rate = rate;
3581 tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3582 tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3583
3584 /* TBD tap->at_flags */
3585
3586 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3587 tap->at_ihdr.it_len, m0);
3588 }
3589 #endif /* NBPFILTER > 0 */
3590
3591 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3592
3593 if (ni != NULL)
3594 ieee80211_free_node(ni);
3595
3596 if (m0 == NULL) {
3597 ifp->if_oerrors++;
3598 break;
3599 }
3600
3601 /* just to make sure. */
3602 m0 = m_pullup(m0, sizeof(struct atw_frame));
3603
3604 if (m0 == NULL) {
3605 ifp->if_oerrors++;
3606 break;
3607 }
3608
3609 hh = mtod(m0, struct atw_frame *);
3610 wh = &hh->atw_ihdr;
3611
3612 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3613
3614 /* Copy everything we need from the 802.11 header:
3615 * Frame Control; address 1, address 3, or addresses
3616 * 3 and 4. NIC fills in BSSID, SA.
3617 */
3618 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3619 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3620 panic("%s: illegal WDS frame",
3621 sc->sc_dev.dv_xname);
3622 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3623 } else
3624 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3625
3626 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3627
3628 /* initialize remaining Tx parameters */
3629 memset(&hh->u, 0, sizeof(hh->u));
3630
3631 hh->atw_rate = rate * 5;
3632 /* XXX this could be incorrect if M_FCS. _encap should
3633 * probably strip FCS just in case it sticks around in
3634 * bridged packets.
3635 */
3636 hh->atw_service = 0x00; /* XXX guess */
3637 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3638 sizeof(struct atw_frame));
3639
3640 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3641 hh->atw_rtylmt = 3;
3642 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3643 if (do_encrypt) {
3644 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3645 hh->atw_keyid = ic->ic_def_txkey;
3646 }
3647
3648 /* TBD 4-addr frames */
3649 atw_frame_setdurs(sc, hh, rate,
3650 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3651 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3652
3653 /* never fragment multicast frames */
3654 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3655 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3656 } else if (sc->sc_flags & ATWF_RTSCTS) {
3657 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3658 }
3659
3660 #ifdef ATW_DEBUG
3661 hh->atw_fragnum = 0;
3662
3663 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3664 printf("%s: dst = %s, rate = 0x%02x, "
3665 "service = 0x%02x, paylen = 0x%04x\n",
3666 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3667 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3668
3669 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3670 "dur1 = 0x%04x, dur2 = 0x%04x, "
3671 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3672 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3673 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3674 hh->atw_tail_dur, hh->atw_head_dur);
3675
3676 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3677 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3678 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3679 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3680
3681 printf("%s: keyid = %d\n",
3682 sc->sc_dev.dv_xname, hh->atw_keyid);
3683
3684 atw_dump_pkt(ifp, m0);
3685 }
3686 #endif /* ATW_DEBUG */
3687
3688 dmamap = txs->txs_dmamap;
3689
3690 /*
3691 * Load the DMA map. Copy and try (once) again if the packet
3692 * didn't fit in the alloted number of segments.
3693 */
3694 for (first = 1;
3695 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3696 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3697 first = 0) {
3698 MGETHDR(m, M_DONTWAIT, MT_DATA);
3699 if (m == NULL) {
3700 printf("%s: unable to allocate Tx mbuf\n",
3701 sc->sc_dev.dv_xname);
3702 break;
3703 }
3704 if (m0->m_pkthdr.len > MHLEN) {
3705 MCLGET(m, M_DONTWAIT);
3706 if ((m->m_flags & M_EXT) == 0) {
3707 printf("%s: unable to allocate Tx "
3708 "cluster\n", sc->sc_dev.dv_xname);
3709 m_freem(m);
3710 break;
3711 }
3712 }
3713 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3714 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3715 m_freem(m0);
3716 m0 = m;
3717 m = NULL;
3718 }
3719 if (error != 0) {
3720 printf("%s: unable to load Tx buffer, "
3721 "error = %d\n", sc->sc_dev.dv_xname, error);
3722 m_freem(m0);
3723 break;
3724 }
3725
3726 /*
3727 * Ensure we have enough descriptors free to describe
3728 * the packet.
3729 */
3730 if (dmamap->dm_nsegs > sc->sc_txfree) {
3731 /*
3732 * Not enough free descriptors to transmit
3733 * this packet. Unload the DMA map and
3734 * drop the packet. Notify the upper layer
3735 * that there are no more slots left.
3736 *
3737 * XXX We could allocate an mbuf and copy, but
3738 * XXX it is worth it?
3739 */
3740 ifp->if_flags |= IFF_OACTIVE;
3741 bus_dmamap_unload(sc->sc_dmat, dmamap);
3742 m_freem(m0);
3743 break;
3744 }
3745
3746 /*
3747 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3748 */
3749
3750 /* Sync the DMA map. */
3751 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3752 BUS_DMASYNC_PREWRITE);
3753
3754 /* XXX arbitrary retry limit; 8 because I have seen it in
3755 * use already and maybe 0 means "no tries" !
3756 */
3757 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3758
3759 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3760 sc->sc_dev.dv_xname, rate * 5));
3761 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3762
3763 /*
3764 * Initialize the transmit descriptors.
3765 */
3766 for (nexttx = sc->sc_txnext, seg = 0;
3767 seg < dmamap->dm_nsegs;
3768 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3769 /*
3770 * If this is the first descriptor we're
3771 * enqueueing, don't set the OWN bit just
3772 * yet. That could cause a race condition.
3773 * We'll do it below.
3774 */
3775 txd = &sc->sc_txdescs[nexttx];
3776 txd->at_ctl = ctl |
3777 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3778
3779 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3780 txd->at_flags =
3781 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3782 ATW_TXFLAG_TBS1_MASK)) |
3783 ((nexttx == (ATW_NTXDESC - 1))
3784 ? htole32(ATW_TXFLAG_TER) : 0);
3785 lasttx = nexttx;
3786 }
3787
3788 IASSERT(lasttx != -1, ("bad lastx"));
3789 /* Set `first segment' and `last segment' appropriately. */
3790 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3791 htole32(ATW_TXFLAG_FS);
3792 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3793
3794 #ifdef ATW_DEBUG
3795 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3796 printf(" txsoft %p transmit chain:\n", txs);
3797 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3798 printf(" descriptor %d:\n", seg);
3799 printf(" at_ctl: 0x%08x\n",
3800 le32toh(sc->sc_txdescs[seg].at_ctl));
3801 printf(" at_flags: 0x%08x\n",
3802 le32toh(sc->sc_txdescs[seg].at_flags));
3803 printf(" at_buf1: 0x%08x\n",
3804 le32toh(sc->sc_txdescs[seg].at_buf1));
3805 printf(" at_buf2: 0x%08x\n",
3806 le32toh(sc->sc_txdescs[seg].at_buf2));
3807 if (seg == lasttx)
3808 break;
3809 }
3810 }
3811 #endif
3812
3813 /* Sync the descriptors we're using. */
3814 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3815 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3816
3817 /*
3818 * Store a pointer to the packet so we can free it later,
3819 * and remember what txdirty will be once the packet is
3820 * done.
3821 */
3822 txs->txs_mbuf = m0;
3823 txs->txs_firstdesc = sc->sc_txnext;
3824 txs->txs_lastdesc = lasttx;
3825 txs->txs_ndescs = dmamap->dm_nsegs;
3826
3827 /* Advance the tx pointer. */
3828 sc->sc_txfree -= dmamap->dm_nsegs;
3829 sc->sc_txnext = nexttx;
3830
3831 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3832 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3833
3834 last_txs = txs;
3835 }
3836
3837 if (txs == NULL || sc->sc_txfree == 0) {
3838 /* No more slots left; notify upper layer. */
3839 ifp->if_flags |= IFF_OACTIVE;
3840 }
3841
3842 if (sc->sc_txfree != ofree) {
3843 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3844 sc->sc_dev.dv_xname, lasttx, firsttx));
3845 /*
3846 * Cause a transmit interrupt to happen on the
3847 * last packet we enqueued.
3848 */
3849 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3850 ATW_CDTXSYNC(sc, lasttx, 1,
3851 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3852
3853 /*
3854 * The entire packet chain is set up. Give the
3855 * first descriptor to the chip now.
3856 */
3857 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3858 ATW_CDTXSYNC(sc, firsttx, 1,
3859 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3860
3861 /* Wake up the transmitter. */
3862 ATW_WRITE(sc, ATW_TDR, 0x1);
3863
3864 /* Set a watchdog timer in case the chip flakes out. */
3865 sc->sc_tx_timer = 5;
3866 ifp->if_timer = 1;
3867 }
3868 }
3869
3870 /*
3871 * atw_power:
3872 *
3873 * Power management (suspend/resume) hook.
3874 */
3875 void
3876 atw_power(int why, void *arg)
3877 {
3878 struct atw_softc *sc = arg;
3879 struct ifnet *ifp = &sc->sc_if;
3880 int s;
3881
3882 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3883
3884 s = splnet();
3885 switch (why) {
3886 case PWR_STANDBY:
3887 /* XXX do nothing. */
3888 break;
3889 case PWR_SUSPEND:
3890 atw_stop(ifp, 0);
3891 if (sc->sc_power != NULL)
3892 (*sc->sc_power)(sc, why);
3893 break;
3894 case PWR_RESUME:
3895 if (ifp->if_flags & IFF_UP) {
3896 if (sc->sc_power != NULL)
3897 (*sc->sc_power)(sc, why);
3898 atw_init(ifp);
3899 }
3900 break;
3901 case PWR_SOFTSUSPEND:
3902 case PWR_SOFTSTANDBY:
3903 case PWR_SOFTRESUME:
3904 break;
3905 }
3906 splx(s);
3907 }
3908
3909 /*
3910 * atw_ioctl: [ifnet interface function]
3911 *
3912 * Handle control requests from the operator.
3913 */
3914 int
3915 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3916 {
3917 struct atw_softc *sc = ifp->if_softc;
3918 struct ifreq *ifr = (struct ifreq *)data;
3919 int s, error = 0;
3920
3921 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3922 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3923 return ENXIO;
3924
3925 s = splnet();
3926
3927 switch (cmd) {
3928 case SIOCSIFFLAGS:
3929 if (ifp->if_flags & IFF_UP) {
3930 if (ATW_IS_ENABLED(sc)) {
3931 /*
3932 * To avoid rescanning another access point,
3933 * do not call atw_init() here. Instead,
3934 * only reflect media settings.
3935 */
3936 atw_filter_setup(sc);
3937 } else
3938 error = atw_init(ifp);
3939 } else if (ATW_IS_ENABLED(sc))
3940 atw_stop(ifp, 1);
3941 break;
3942 case SIOCADDMULTI:
3943 case SIOCDELMULTI:
3944 error = (cmd == SIOCADDMULTI) ?
3945 ether_addmulti(ifr, &sc->sc_ec) :
3946 ether_delmulti(ifr, &sc->sc_ec);
3947 if (error == ENETRESET) {
3948 if (ifp->if_flags & IFF_RUNNING)
3949 atw_filter_setup(sc); /* do not rescan */
3950 error = 0;
3951 }
3952 break;
3953 default:
3954 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3955 if (error == ENETRESET) {
3956 if (ATW_IS_ENABLED(sc))
3957 error = atw_init(ifp);
3958 else
3959 error = 0;
3960 }
3961 break;
3962 }
3963
3964 /* Try to get more packets going. */
3965 if (ATW_IS_ENABLED(sc))
3966 atw_start(ifp);
3967
3968 splx(s);
3969 return (error);
3970 }
3971
3972 static int
3973 atw_media_change(struct ifnet *ifp)
3974 {
3975 int error;
3976
3977 error = ieee80211_media_change(ifp);
3978 if (error == ENETRESET) {
3979 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3980 (IFF_RUNNING|IFF_UP))
3981 atw_init(ifp); /* XXX lose error */
3982 error = 0;
3983 }
3984 return error;
3985 }
3986
3987 static void
3988 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3989 {
3990 struct atw_softc *sc = ifp->if_softc;
3991
3992 if (ATW_IS_ENABLED(sc) == 0) {
3993 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3994 imr->ifm_status = 0;
3995 return;
3996 }
3997 ieee80211_media_status(ifp, imr);
3998 }
3999