Home | History | Annotate | Line # | Download | only in ic
atw.c revision 1.9
      1 /*	$NetBSD: atw.c,v 1.9 2003/11/02 01:58:22 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.9 2003/11/02 01:58:22 dyoung Exp $");
     45 
     46 #include "bpfilter.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/callout.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/malloc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/socket.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/errno.h>
     57 #include <sys/device.h>
     58 #include <sys/time.h>
     59 
     60 #include <machine/endian.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_media.h>
     67 #include <net/if_ether.h>
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_compat.h>
     71 
     72 #if NBPFILTER > 0
     73 #include <net/bpf.h>
     74 #endif
     75 
     76 #include <machine/bus.h>
     77 #include <machine/intr.h>
     78 
     79 #include <dev/ic/atwreg.h>
     80 #include <dev/ic/atwvar.h>
     81 #include <dev/ic/smc93cx6var.h>
     82 
     83 /* XXX TBD open questions
     84  *
     85  *
     86  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
     87  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
     88  * handle this for me?
     89  *
     90  */
     91 /* device attachment
     92  *
     93  *    print TOFS[012]
     94  *
     95  * device initialization
     96  *
     97  *    clear ATW_FRCTL_MAXPSP to disable max power saving
     98  *    set ATW_TXBR_ALCUPDATE to enable ALC
     99  *    set TOFS[012]? (hope not)
    100  *    disable rx/tx
    101  *    set ATW_PAR_SWR (software reset)
    102  *    wait for ATW_PAR_SWR clear
    103  *    disable interrupts
    104  *    ack status register
    105  *    enable interrupts
    106  *
    107  * rx/tx initialization
    108  *
    109  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    110  *    allocate and init descriptor rings
    111  *    write ATW_PAR_DSL (descriptor skip length)
    112  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
    113  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    114  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    115  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    116  *
    117  * rx/tx end
    118  *
    119  *    stop DMA
    120  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    121  *    flush tx w/ ATW_NAR_HF
    122  *
    123  * scan
    124  *
    125  *    initialize rx/tx
    126  *
    127  * IBSS join/create
    128  *
    129  *    set ATW_NAR_EA (is set by ASIC?)
    130  *
    131  * BSS join: (re)association response
    132  *
    133  *    set ATW_FRCTL_AID
    134  *
    135  * optimizations ???
    136  *
    137  */
    138 
    139 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
    140 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
    141 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
    142 
    143 int atw_rfio_enable_delay = 20 * 1000;
    144 int atw_rfio_disable_delay = 2 * 1000;
    145 int atw_writewep_delay = 5;
    146 int atw_beacon_len_adjust = 4;
    147 int atw_dwelltime = 200;
    148 
    149 #ifdef ATW_DEBUG
    150 int atw_xhdrctl = 0;
    151 int atw_xrtylmt = ~0;
    152 int atw_xservice = IEEE80211_PLCP_SERVICE;
    153 int atw_xpaylen = 0;
    154 
    155 int atw_debug = 0;
    156 
    157 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
    158 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
    159 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
    160 #define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
    161 #define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
    162 #define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
    163 static void atw_print_regs(struct atw_softc *, const char *);
    164 static void atw_rf3000_print(struct atw_softc *);
    165 static void atw_si4126_print(struct atw_softc *);
    166 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
    167 #else
    168 #define ATW_DPRINTF(x)
    169 #define ATW_DPRINTF2(x)
    170 #define ATW_DPRINTF3(x)
    171 #define	DPRINTF(sc, x)	/* nothing */
    172 #define	DPRINTF2(sc, x)	/* nothing */
    173 #define	DPRINTF3(sc, x)	/* nothing */
    174 #endif
    175 
    176 #ifdef ATW_STATS
    177 void	atw_print_stats __P((struct atw_softc *));
    178 #endif
    179 
    180 void	atw_start __P((struct ifnet *));
    181 void	atw_watchdog __P((struct ifnet *));
    182 int	atw_ioctl __P((struct ifnet *, u_long, caddr_t));
    183 int	atw_init __P((struct ifnet *));
    184 void	atw_stop __P((struct ifnet *, int));
    185 
    186 void	atw_reset __P((struct atw_softc *));
    187 int	atw_read_srom __P((struct atw_softc *));
    188 
    189 void	atw_shutdown __P((void *));
    190 
    191 void	atw_rxdrain __P((struct atw_softc *));
    192 int	atw_add_rxbuf __P((struct atw_softc *, int));
    193 void	atw_idle __P((struct atw_softc *, u_int32_t));
    194 
    195 int	atw_enable __P((struct atw_softc *));
    196 void	atw_disable __P((struct atw_softc *));
    197 void	atw_power __P((int, void *));
    198 
    199 void	atw_rxintr __P((struct atw_softc *));
    200 void	atw_txintr __P((struct atw_softc *));
    201 void	atw_linkintr __P((struct atw_softc *, u_int32_t));
    202 
    203 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
    204 static void atw_tsf(struct atw_softc *);
    205 static void atw_start_beacon(struct atw_softc *, int);
    206 static void atw_write_wep(struct atw_softc *);
    207 static void atw_write_bssid(struct atw_softc *);
    208 static void atw_write_bcn_thresh(struct atw_softc *);
    209 static void atw_write_ssid(struct atw_softc *);
    210 static void atw_write_sup_rates(struct atw_softc *);
    211 static void atw_clear_sram(struct atw_softc *);
    212 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
    213 static int atw_media_change(struct ifnet *);
    214 static void atw_media_status(struct ifnet *, struct ifmediareq *);
    215 static void atw_filter_setup(struct atw_softc *);
    216 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
    217 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
    218 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
    219     struct ieee80211_node *, int, int, u_int32_t);
    220 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
    221     struct ieee80211_node *, int, int, u_int32_t);
    222 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
    223 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
    224 
    225 static int atw_tune(struct atw_softc *);
    226 
    227 static void atw_rfio_enable(struct atw_softc *, int);
    228 
    229 /* RFMD RF3000 Baseband Processor */
    230 static int atw_rf3000_init(struct atw_softc *);
    231 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
    232 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
    233 #ifdef ATW_DEBUG
    234 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    235 #endif /* ATW_DEBUG */
    236 
    237 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
    238 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
    239 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
    240 #ifdef ATW_DEBUG
    241 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
    242 #endif /* ATW_DEBUG */
    243 
    244 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
    245 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
    246 
    247 const char *atw_tx_state[] = {
    248 	"STOPPED",
    249 	"RUNNING - FETCH",
    250 	"RUNNING - WAIT",
    251 	"RUNNING - READING",
    252 	"-- RESERVED1 --",
    253 	"-- RESERVED2 --",
    254 	"SUSPENDED",
    255 	"RUNNING - CLOSE"
    256 };
    257 
    258 const char *atw_rx_state[] = {
    259 	"STOPPED",
    260 	"RUNNING - FETCH",
    261 	"RUNNING - CHECK",
    262 	"RUNNING - WAIT",
    263 	"SUSPENDED",
    264 	"RUNNING - CLOSE",
    265 	"RUNNING - FLUSH",
    266 	"RUNNING - QUEUE"
    267 };
    268 
    269 int
    270 atw_activate(struct device *self, enum devact act)
    271 {
    272 	struct atw_softc *sc = (struct atw_softc *)self;
    273 	int rv = 0, s;
    274 
    275 	s = splnet();
    276 	switch (act) {
    277 	case DVACT_ACTIVATE:
    278 		rv = EOPNOTSUPP;
    279 		break;
    280 
    281 	case DVACT_DEACTIVATE:
    282 		if_deactivate(&sc->sc_ic.ic_if);
    283 		break;
    284 	}
    285 	splx(s);
    286 	return rv;
    287 }
    288 
    289 /*
    290  * atw_enable:
    291  *
    292  *	Enable the ADM8211 chip.
    293  */
    294 int
    295 atw_enable(sc)
    296 	struct atw_softc *sc;
    297 {
    298 
    299 	if (ATW_IS_ENABLED(sc) == 0) {
    300 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    301 			printf("%s: device enable failed\n",
    302 			    sc->sc_dev.dv_xname);
    303 			return (EIO);
    304 		}
    305 		sc->sc_flags |= ATWF_ENABLED;
    306 	}
    307 	return (0);
    308 }
    309 
    310 /*
    311  * atw_disable:
    312  *
    313  *	Disable the ADM8211 chip.
    314  */
    315 void
    316 atw_disable(sc)
    317 	struct atw_softc *sc;
    318 {
    319 	if (!ATW_IS_ENABLED(sc))
    320 		return;
    321 	if (sc->sc_disable != NULL)
    322 		(*sc->sc_disable)(sc);
    323 	sc->sc_flags &= ~ATWF_ENABLED;
    324 }
    325 
    326 /* Returns -1 on failure. */
    327 int
    328 atw_read_srom(struct atw_softc *sc)
    329 {
    330 	struct seeprom_descriptor sd;
    331 	u_int32_t reg;
    332 
    333 	(void)memset(&sd, 0, sizeof(sd));
    334 
    335 	reg = ATW_READ(sc, ATW_TEST0);
    336 
    337 	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
    338 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
    339 		return -1;
    340 	}
    341 
    342 	switch (reg & ATW_TEST0_EPTYP_MASK) {
    343 	case ATW_TEST0_EPTYP_93c66:
    344 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
    345 		sc->sc_sromsz = 512;
    346 		sd.sd_chip = C56_66;
    347 		break;
    348 	case ATW_TEST0_EPTYP_93c46:
    349 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
    350 		sc->sc_sromsz = 128;
    351 		sd.sd_chip = C46;
    352 		break;
    353 	default:
    354 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
    355 		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
    356 		return -1;
    357 	}
    358 
    359 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
    360 
    361 	if (sc->sc_srom == NULL) {
    362 		printf("%s: unable to allocate SROM buffer\n",
    363 		    sc->sc_dev.dv_xname);
    364 		return -1;
    365 	}
    366 
    367 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
    368 
    369 	/* ADM8211 has a single 32-bit register for controlling the
    370 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
    371 	 * "ready" bit. The ADM8211 input/output sense is the reverse
    372 	 * of read_seeprom's.
    373 	 */
    374 	sd.sd_tag = sc->sc_st;
    375 	sd.sd_bsh = sc->sc_sh;
    376 	sd.sd_regsize = 4;
    377 	sd.sd_control_offset = ATW_SPR;
    378 	sd.sd_status_offset = ATW_SPR;
    379 	sd.sd_dataout_offset = ATW_SPR;
    380 	sd.sd_CK = ATW_SPR_SCLK;
    381 	sd.sd_CS = ATW_SPR_SCS;
    382 	sd.sd_DI = ATW_SPR_SDO;
    383 	sd.sd_DO = ATW_SPR_SDI;
    384 	sd.sd_MS = ATW_SPR_SRS;
    385 	sd.sd_RDY = 0;
    386 
    387 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
    388 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
    389 		free(sc->sc_srom, M_DEVBUF);
    390 		return -1;
    391 	}
    392 #ifdef ATW_DEBUG
    393 	{
    394 		int i;
    395 		ATW_DPRINTF2(("\nSerial EEPROM:\n\t"));
    396 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
    397 			if (((i % 8) == 0) && (i != 0)) {
    398 				ATW_DPRINTF2(("\n\t"));
    399 			}
    400 			ATW_DPRINTF2((" 0x%x", sc->sc_srom[i]));
    401 		}
    402 		ATW_DPRINTF2(("\n"));
    403 	}
    404 #endif /* ATW_DEBUG */
    405 	return 0;
    406 }
    407 
    408 #ifdef ATW_DEBUG
    409 static void
    410 atw_print_regs(struct atw_softc *sc, const char *where)
    411 {
    412 #define PRINTREG(sc, reg) \
    413 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
    414 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
    415 
    416 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
    417 
    418 	PRINTREG(sc, ATW_PAR);
    419 	PRINTREG(sc, ATW_FRCTL);
    420 	PRINTREG(sc, ATW_TDR);
    421 	PRINTREG(sc, ATW_WTDP);
    422 	PRINTREG(sc, ATW_RDR);
    423 	PRINTREG(sc, ATW_WRDP);
    424 	PRINTREG(sc, ATW_RDB);
    425 	PRINTREG(sc, ATW_CSR3A);
    426 	PRINTREG(sc, ATW_TDBD);
    427 	PRINTREG(sc, ATW_TDBP);
    428 	PRINTREG(sc, ATW_STSR);
    429 	PRINTREG(sc, ATW_CSR5A);
    430 	PRINTREG(sc, ATW_NAR);
    431 	PRINTREG(sc, ATW_CSR6A);
    432 	PRINTREG(sc, ATW_IER);
    433 	PRINTREG(sc, ATW_CSR7A);
    434 	PRINTREG(sc, ATW_LPC);
    435 	PRINTREG(sc, ATW_TEST1);
    436 	PRINTREG(sc, ATW_SPR);
    437 	PRINTREG(sc, ATW_TEST0);
    438 	PRINTREG(sc, ATW_WCSR);
    439 	PRINTREG(sc, ATW_WPDR);
    440 	PRINTREG(sc, ATW_GPTMR);
    441 	PRINTREG(sc, ATW_GPIO);
    442 	PRINTREG(sc, ATW_BBPCTL);
    443 	PRINTREG(sc, ATW_SYNCTL);
    444 	PRINTREG(sc, ATW_PLCPHD);
    445 	PRINTREG(sc, ATW_MMIWADDR);
    446 	PRINTREG(sc, ATW_MMIRADDR1);
    447 	PRINTREG(sc, ATW_MMIRADDR2);
    448 	PRINTREG(sc, ATW_TXBR);
    449 	PRINTREG(sc, ATW_CSR15A);
    450 	PRINTREG(sc, ATW_ALCSTAT);
    451 	PRINTREG(sc, ATW_TOFS2);
    452 	PRINTREG(sc, ATW_CMDR);
    453 	PRINTREG(sc, ATW_PCIC);
    454 	PRINTREG(sc, ATW_PMCSR);
    455 	PRINTREG(sc, ATW_PAR0);
    456 	PRINTREG(sc, ATW_PAR1);
    457 	PRINTREG(sc, ATW_MAR0);
    458 	PRINTREG(sc, ATW_MAR1);
    459 	PRINTREG(sc, ATW_ATIMDA0);
    460 	PRINTREG(sc, ATW_ABDA1);
    461 	PRINTREG(sc, ATW_BSSID0);
    462 	PRINTREG(sc, ATW_TXLMT);
    463 	PRINTREG(sc, ATW_MIBCNT);
    464 	PRINTREG(sc, ATW_BCNT);
    465 	PRINTREG(sc, ATW_TSFTH);
    466 	PRINTREG(sc, ATW_TSC);
    467 	PRINTREG(sc, ATW_SYNRF);
    468 	PRINTREG(sc, ATW_BPLI);
    469 	PRINTREG(sc, ATW_CAP0);
    470 	PRINTREG(sc, ATW_CAP1);
    471 	PRINTREG(sc, ATW_RMD);
    472 	PRINTREG(sc, ATW_CFPP);
    473 	PRINTREG(sc, ATW_TOFS0);
    474 	PRINTREG(sc, ATW_TOFS1);
    475 	PRINTREG(sc, ATW_IFST);
    476 	PRINTREG(sc, ATW_RSPT);
    477 	PRINTREG(sc, ATW_TSFTL);
    478 	PRINTREG(sc, ATW_WEPCTL);
    479 	PRINTREG(sc, ATW_WESK);
    480 	PRINTREG(sc, ATW_WEPCNT);
    481 	PRINTREG(sc, ATW_MACTEST);
    482 	PRINTREG(sc, ATW_FER);
    483 	PRINTREG(sc, ATW_FEMR);
    484 	PRINTREG(sc, ATW_FPSR);
    485 	PRINTREG(sc, ATW_FFER);
    486 #undef PRINTREG
    487 }
    488 #endif /* ATW_DEBUG */
    489 
    490 /*
    491  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
    492  */
    493 void
    494 atw_attach(struct atw_softc *sc)
    495 {
    496 	struct ieee80211com *ic = &sc->sc_ic;
    497 	struct ifnet *ifp = &ic->ic_if;
    498 	int country_code, error, i, nrate;
    499 	u_int32_t reg;
    500 	static const char *type_strings[] = {"Intersil (not supported)",
    501 	    "RFMD", "Marvel (not supported)"};
    502 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
    503 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    504 	};
    505 
    506 	sc->sc_txth = atw_txthresh_tab_lo;
    507 
    508 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    509 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    510 
    511 #ifdef ATW_DEBUG
    512 	atw_print_regs(sc, "atw_attach");
    513 #endif /* ATW_DEBUG */
    514 
    515 	/*
    516 	 * Allocate the control data structures, and create and load the
    517 	 * DMA map for it.
    518 	 */
    519 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    520 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    521 	    1, &sc->sc_cdnseg, 0)) != 0) {
    522 		printf("%s: unable to allocate control data, error = %d\n",
    523 		    sc->sc_dev.dv_xname, error);
    524 		goto fail_0;
    525 	}
    526 
    527 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
    528 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
    529 	    BUS_DMA_COHERENT)) != 0) {
    530 		printf("%s: unable to map control data, error = %d\n",
    531 		    sc->sc_dev.dv_xname, error);
    532 		goto fail_1;
    533 	}
    534 
    535 	if ((error = bus_dmamap_create(sc->sc_dmat,
    536 	    sizeof(struct atw_control_data), 1,
    537 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    538 		printf("%s: unable to create control data DMA map, "
    539 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    540 		goto fail_2;
    541 	}
    542 
    543 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    544 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
    545 	    0)) != 0) {
    546 		printf("%s: unable to load control data DMA map, error = %d\n",
    547 		    sc->sc_dev.dv_xname, error);
    548 		goto fail_3;
    549 	}
    550 
    551 	/*
    552 	 * Create the transmit buffer DMA maps.
    553 	 */
    554 	sc->sc_ntxsegs = ATW_NTXSEGS;
    555 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    556 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    557 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
    558 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    559 			printf("%s: unable to create tx DMA map %d, "
    560 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    561 			goto fail_4;
    562 		}
    563 	}
    564 
    565 	/*
    566 	 * Create the receive buffer DMA maps.
    567 	 */
    568 	for (i = 0; i < ATW_NRXDESC; i++) {
    569 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    570 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    571 			printf("%s: unable to create rx DMA map %d, "
    572 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    573 			goto fail_5;
    574 		}
    575 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    576 	}
    577 
    578 	/* Reset the chip to a known state. */
    579 	atw_reset(sc);
    580 
    581 	if (atw_read_srom(sc) == -1)
    582 		return;
    583 
    584 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    585 	    ATW_SR_RFTYPE_MASK);
    586 
    587 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    588 	    ATW_SR_BBPTYPE_MASK);
    589 
    590 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
    591 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
    592 		return;
    593 	}
    594 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
    595 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
    596 		return;
    597 	}
    598 
    599 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
    600 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
    601 
    602 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
    603 	 * MARVEL. My bug, or theirs?
    604 	 */
    605 
    606 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
    607 
    608 	switch (sc->sc_rftype) {
    609 	case ATW_RFTYPE_INTERSIL:
    610 		reg |= ATW_SYNCTL_CS1;
    611 		break;
    612 	case ATW_RFTYPE_RFMD:
    613 		reg |= ATW_SYNCTL_CS0;
    614 		break;
    615 	case ATW_RFTYPE_MARVEL:
    616 		break;
    617 	}
    618 
    619 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
    620 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
    621 
    622 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
    623 
    624 	switch (sc->sc_bbptype) {
    625 	case ATW_RFTYPE_INTERSIL:
    626 		reg |= ATW_BBPCTL_TWI;
    627 		break;
    628 	case ATW_RFTYPE_RFMD:
    629 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
    630 		    ATW_BBPCTL_CCA_ACTLO;
    631 		break;
    632 	case ATW_RFTYPE_MARVEL:
    633 		break;
    634 	}
    635 
    636 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
    637 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
    638 
    639 	/*
    640 	 * From this point forward, the attachment cannot fail.  A failure
    641 	 * before this point releases all resources that may have been
    642 	 * allocated.
    643 	 */
    644 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
    645 
    646 	ATW_DPRINTF2((" SROM MAC %04x%04x%04x",
    647 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
    648 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
    649 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
    650 
    651 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    652 	    ATW_SR_CTRY_MASK);
    653 
    654 #define ADD_CHANNEL(_ic, _chan) do {					\
    655 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
    656 	_ic->ic_channels[_chan].ic_freq =				\
    657 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
    658 } while (0)
    659 
    660 	/* Find available channels */
    661 	switch (country_code) {
    662 	case COUNTRY_MMK2:	/* 1-14 */
    663 		ADD_CHANNEL(ic, 14);
    664 		/*FALLTHROUGH*/
    665 	case COUNTRY_ETSI:	/* 1-13 */
    666 		for (i = 1; i <= 13; i++)
    667 			ADD_CHANNEL(ic, i);
    668 		break;
    669 	case COUNTRY_FCC:	/* 1-11 */
    670 	case COUNTRY_IC:	/* 1-11 */
    671 		for (i = 1; i <= 11; i++)
    672 			ADD_CHANNEL(ic, i);
    673 		break;
    674 	case COUNTRY_MMK:	/* 14 */
    675 		ADD_CHANNEL(ic, 14);
    676 		break;
    677 	case COUNTRY_FRANCE:	/* 10-13 */
    678 		for (i = 10; i <= 13; i++)
    679 			ADD_CHANNEL(ic, i);
    680 		break;
    681 	default:	/* assume channels 10-11 */
    682 	case COUNTRY_SPAIN:	/* 10-11 */
    683 		for (i = 10; i <= 11; i++)
    684 			ADD_CHANNEL(ic, i);
    685 		break;
    686 	}
    687 
    688 	/* Read the MAC address. */
    689 	reg = ATW_READ(sc, ATW_PAR0);
    690 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
    691 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
    692 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
    693 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
    694 	reg = ATW_READ(sc, ATW_PAR1);
    695 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
    696 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
    697 
    698 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
    699 		printf(" could not get mac address, attach failed\n");
    700 		return;
    701 	}
    702 
    703 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
    704 
    705 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    706 	ifp->if_softc = sc;
    707 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
    708 	    IFF_NOTRAILERS;
    709 	ifp->if_ioctl = atw_ioctl;
    710 	ifp->if_start = atw_start;
    711 	ifp->if_watchdog = atw_watchdog;
    712 	ifp->if_init = atw_init;
    713 	ifp->if_stop = atw_stop;
    714 	IFQ_SET_READY(&ifp->if_snd);
    715 
    716 	ic->ic_phytype = IEEE80211_T_DS;
    717 	ic->ic_opmode = IEEE80211_M_STA;
    718 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
    719 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
    720 
    721 	nrate = 0;
    722 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
    723 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
    724 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
    725 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
    726 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
    727 
    728 	/*
    729 	 * Call MI attach routines.
    730 	 */
    731 
    732 	if_attach(ifp);
    733 	ieee80211_ifattach(ifp);
    734 
    735 	sc->sc_newstate = ic->ic_newstate;
    736 	ic->ic_newstate = atw_newstate;
    737 
    738 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    739 	ic->ic_recv_mgmt = atw_recv_mgmt;
    740 
    741 	sc->sc_node_free = ic->ic_node_free;
    742 	ic->ic_node_free = atw_node_free;
    743 
    744 	sc->sc_node_alloc = ic->ic_node_alloc;
    745 	ic->ic_node_alloc = atw_node_alloc;
    746 
    747 	/* possibly we should fill in our own sc_send_prresp, since
    748 	 * the ADM8211 is probably sending probe responses in ad hoc
    749 	 * mode.
    750 	 */
    751 
    752 	/* complete initialization */
    753 	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
    754 	callout_init(&sc->sc_scan_ch);
    755 
    756 #if 0
    757 #if NBPFILTER > 0
    758 	bpfattach2(ifp, DLT_IEEE802_11_RADIO, /* ??? */,
    759 		   &sc->sc_radiobpf);
    760 #endif
    761 #endif
    762 
    763 	/*
    764 	 * Make sure the interface is shutdown during reboot.
    765 	 */
    766 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
    767 	if (sc->sc_sdhook == NULL)
    768 		printf("%s: WARNING: unable to establish shutdown hook\n",
    769 		    sc->sc_dev.dv_xname);
    770 
    771 	/*
    772 	 * Add a suspend hook to make sure we come back up after a
    773 	 * resume.
    774 	 */
    775 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
    776 	if (sc->sc_powerhook == NULL)
    777 		printf("%s: WARNING: unable to establish power hook\n",
    778 		    sc->sc_dev.dv_xname);
    779 
    780 	return;
    781 
    782 	/*
    783 	 * Free any resources we've allocated during the failed attach
    784 	 * attempt.  Do this in reverse order and fall through.
    785 	 */
    786  fail_5:
    787 	for (i = 0; i < ATW_NRXDESC; i++) {
    788 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
    789 			continue;
    790 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
    791 	}
    792  fail_4:
    793 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    794 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
    795 			continue;
    796 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
    797 	}
    798 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    799  fail_3:
    800 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    801  fail_2:
    802 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    803 	    sizeof(struct atw_control_data));
    804  fail_1:
    805 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
    806  fail_0:
    807 	return;
    808 }
    809 
    810 static struct ieee80211_node *
    811 atw_node_alloc(struct ieee80211com *ic)
    812 {
    813 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    814 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
    815 
    816 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
    817 	return ni;
    818 }
    819 
    820 static void
    821 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
    822 {
    823 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
    824 
    825 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
    826 	    ether_sprintf(ni->ni_bssid)));
    827 	(*sc->sc_node_free)(ic, ni);
    828 }
    829 
    830 /*
    831  * atw_reset:
    832  *
    833  *	Perform a soft reset on the ADM8211.
    834  */
    835 void
    836 atw_reset(sc)
    837 	struct atw_softc *sc;
    838 {
    839 	int i;
    840 
    841 	if (ATW_IS_ENABLED(sc) == 0)
    842 		return;
    843 
    844 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
    845 
    846 	for (i = 0; i < 10000; i++) {
    847 		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
    848 			break;
    849 		DELAY(1);
    850 	}
    851 
    852 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
    853 
    854 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
    855 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
    856 
    857 	/* Turn off maximum power saving. */
    858 	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
    859 
    860 	/* Recall EEPROM. */
    861 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
    862 
    863 	DELAY(10 * 1000);
    864 
    865 	/* A reset seems to affect the SRAM contents, so put them into
    866 	 * a known state.
    867 	 */
    868 	atw_clear_sram(sc);
    869 
    870 	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
    871 
    872 	sc->sc_lost_bcn_thresh = 0;
    873 }
    874 
    875 static void
    876 atw_clear_sram(sc)
    877 	struct atw_softc *sc;
    878 {
    879 #if 0
    880 	for (addr = 0; addr < 448; addr++) {
    881 		ATW_WRITE(sc, ATW_WEPCTL,
    882 		    ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0	| addr);
    883 		DELAY(1000);
    884 		ATW_WRITE(sc, ATW_WESK, 0);
    885 		DELAY(1000); /* paranoia */
    886 	}
    887 	return;
    888 #endif
    889 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
    890 	/* XXX not for revision 0x20. */
    891 	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
    892 }
    893 
    894 /* TBD atw_init
    895  *
    896  * set MAC based on ic->ic_bss->myaddr
    897  * write WEP keys
    898  * set TX rate
    899  */
    900 
    901 /*
    902  * atw_init:		[ ifnet interface function ]
    903  *
    904  *	Initialize the interface.  Must be called at splnet().
    905  */
    906 int
    907 atw_init(ifp)
    908 	struct ifnet *ifp;
    909 {
    910 	struct atw_softc *sc = ifp->if_softc;
    911 	struct ieee80211com *ic = &sc->sc_ic;
    912 	struct atw_txsoft *txs;
    913 	struct atw_rxsoft *rxs;
    914 	u_int32_t reg;
    915 	int i, error = 0;
    916 
    917 	if ((error = atw_enable(sc)) != 0)
    918 		goto out;
    919 
    920 	/*
    921 	 * Cancel any pending I/O. This also resets.
    922 	 */
    923 	atw_stop(ifp, 0);
    924 
    925 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
    926 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
    927 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
    928 	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
    929 
    930 	/* Turn off APM??? (A binary-only driver does this.)
    931 	 *
    932 	 * Set Rx store-and-forward mode.
    933 	 */
    934 	reg = ATW_READ(sc, ATW_CMDR);
    935 	reg &= ~ATW_CMDR_APM;
    936 	reg &= ~ATW_CMDR_DRT_MASK;
    937 	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
    938 
    939 	ATW_WRITE(sc, ATW_CMDR, reg);
    940 
    941 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
    942 	 *
    943 	 * XXX a binary-only driver sets a different service field than
    944 	 * 0. why?
    945 	 */
    946 	reg = ATW_READ(sc, ATW_PLCPHD);
    947 	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
    948 	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
    949 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
    950 	ATW_WRITE(sc, ATW_PLCPHD, reg);
    951 
    952 	/* XXX */
    953 	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
    954 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
    955 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
    956 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
    957 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
    958 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
    959 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
    960 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
    961 	ATW_WRITE(sc, ATW_TOFS2, reg);
    962 
    963 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
    964 	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
    965 
    966 	/* XXX this resets an Intersil RF front-end? */
    967 	/* TBD condition on Intersil RFType? */
    968 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
    969 	DELAY(10 * 1000);
    970 	ATW_WRITE(sc, ATW_SYNRF, 0);
    971 	DELAY(5 * 1000);
    972 
    973 	/* 16 TU max duration for contention-free period */
    974 	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
    975 	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
    976 
    977 	/* XXX I guess that the Cardbus clock is 22MHz?
    978 	 * I am assuming that the role of ATW_TOFS0_USCNT is
    979 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
    980 	 * very clear on this point. It says in the datasheet that it is
    981 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
    982 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
    983 	 * these values. These values are also the power-on default.
    984 	 */
    985 	ATW_WRITE(sc, ATW_TOFS0,
    986 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
    987 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
    988 
    989 	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
    990 	 * driver. go figure.
    991 	 */
    992 	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
    993 	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
    994 	             ATW_IFST_SIFS_MASK) |
    995 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
    996 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
    997 
    998 	ATW_WRITE(sc, ATW_IFST, reg);
    999 
   1000 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
   1001 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
   1002 
   1003 	/* Set up the MMI read/write addresses for the BBP.
   1004 	 *
   1005 	 * TBD find out the Marvel settings.
   1006 	 */
   1007 	switch (sc->sc_bbptype) {
   1008 	case ATW_BBPTYPE_INTERSIL:
   1009 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
   1010 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
   1011 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
   1012 		break;
   1013 	case ATW_BBPTYPE_MARVEL:
   1014 		break;
   1015 	case ATW_BBPTYPE_RFMD:
   1016 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
   1017 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
   1018 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
   1019 	default:
   1020 		break;
   1021 	}
   1022 
   1023 	sc->sc_wepctl = 0;
   1024 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
   1025 
   1026 	if ((error = atw_rf3000_init(sc)) != 0)
   1027 		goto out;
   1028 
   1029 	/*
   1030 	 * Initialize the PCI Access Register.
   1031 	 */
   1032 	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
   1033 
   1034 	/*
   1035 	 * If we're allowed to do so, use Memory Read Line
   1036 	 * and Memory Read Multiple.
   1037 	 *
   1038 	 * XXX Should we use Memory Write and Invalidate?
   1039 	 */
   1040 	if (sc->sc_flags & ATWF_MRL)
   1041 		sc->sc_busmode |= ATW_PAR_MRLE;
   1042 	if (sc->sc_flags & ATWF_MRM)
   1043 		sc->sc_busmode |= ATW_PAR_MRME;
   1044 	if (sc->sc_flags & ATWF_MWI)
   1045 		sc->sc_busmode |= ATW_PAR_MWIE;
   1046 	if (sc->sc_maxburst == 0)
   1047 		sc->sc_maxburst = 8;	/* ADM8211 default */
   1048 
   1049 	switch (sc->sc_cacheline) {
   1050 	default:
   1051 		/* Use burst length. */
   1052 		break;
   1053 	case 8:
   1054 		sc->sc_busmode |= ATW_PAR_CAL_8DW;
   1055 		break;
   1056 	case 16:
   1057 		sc->sc_busmode |= ATW_PAR_CAL_16DW;
   1058 		break;
   1059 	case 32:
   1060 		sc->sc_busmode |= ATW_PAR_CAL_32DW;
   1061 		break;
   1062 	}
   1063 	switch (sc->sc_maxburst) {
   1064 	case 1:
   1065 		sc->sc_busmode |= ATW_PAR_PBL_1DW;
   1066 		break;
   1067 	case 2:
   1068 		sc->sc_busmode |= ATW_PAR_PBL_2DW;
   1069 		break;
   1070 	case 4:
   1071 		sc->sc_busmode |= ATW_PAR_PBL_4DW;
   1072 		break;
   1073 	case 8:
   1074 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1075 		break;
   1076 	case 16:
   1077 		sc->sc_busmode |= ATW_PAR_PBL_16DW;
   1078 		break;
   1079 	case 32:
   1080 		sc->sc_busmode |= ATW_PAR_PBL_32DW;
   1081 		break;
   1082 	default:
   1083 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
   1084 		break;
   1085 	}
   1086 
   1087 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
   1088 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
   1089 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
   1090 
   1091 	/*
   1092 	 * Initialize the OPMODE register.  We don't write it until
   1093 	 * we're ready to begin the transmit and receive processes.
   1094 	 */
   1095 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
   1096 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
   1097 
   1098 	/*
   1099 	 * Initialize the transmit descriptor ring.
   1100 	 */
   1101 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1102 	for (i = 0; i < ATW_NTXDESC; i++) {
   1103 		/* no transmit chaining */
   1104 		sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
   1105 		sc->sc_txdescs[i].at_buf2 =
   1106 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
   1107 	}
   1108 	/* use ring mode */
   1109 	sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
   1110 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
   1111 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1112 	sc->sc_txfree = ATW_NTXDESC;
   1113 	sc->sc_txnext = 0;
   1114 
   1115 	/*
   1116 	 * Initialize the transmit job descriptors.
   1117 	 */
   1118 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1119 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1120 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   1121 		txs = &sc->sc_txsoft[i];
   1122 		txs->txs_mbuf = NULL;
   1123 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1124 	}
   1125 
   1126 	/*
   1127 	 * Initialize the receive descriptor and receive job
   1128 	 * descriptor rings.
   1129 	 */
   1130 	for (i = 0; i < ATW_NRXDESC; i++) {
   1131 		rxs = &sc->sc_rxsoft[i];
   1132 		if (rxs->rxs_mbuf == NULL) {
   1133 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
   1134 				printf("%s: unable to allocate or map rx "
   1135 				    "buffer %d, error = %d\n",
   1136 				    sc->sc_dev.dv_xname, i, error);
   1137 				/*
   1138 				 * XXX Should attempt to run with fewer receive
   1139 				 * XXX buffers instead of just failing.
   1140 				 */
   1141 				atw_rxdrain(sc);
   1142 				goto out;
   1143 			}
   1144 		} else
   1145 			ATW_INIT_RXDESC(sc, i);
   1146 	}
   1147 	sc->sc_rxptr = 0;
   1148 
   1149 	/* disable all wake-up events */
   1150 	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
   1151 	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
   1152 			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
   1153 			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
   1154 
   1155 	/* ack all wake-up events */
   1156 	ATW_SET(sc, ATW_WCSR, 0);
   1157 
   1158 	/*
   1159 	 * Initialize the interrupt mask and enable interrupts.
   1160 	 */
   1161 	/* normal interrupts */
   1162 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
   1163 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
   1164 
   1165 	/* abnormal interrupts */
   1166 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
   1167 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
   1168 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1169 
   1170 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
   1171 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1172 
   1173 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
   1174 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
   1175 	    ATW_INTR_TRT;
   1176 
   1177 	sc->sc_linkint_mask &= sc->sc_inten;
   1178 	sc->sc_rxint_mask &= sc->sc_inten;
   1179 	sc->sc_txint_mask &= sc->sc_inten;
   1180 
   1181 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
   1182 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1183 	if (sc->sc_intr_ack != NULL)
   1184 		(*sc->sc_intr_ack)(sc);
   1185 
   1186 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
   1187 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
   1188 
   1189 	/*
   1190 	 * Give the transmit and receive rings to the ADM8211.
   1191 	 */
   1192 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
   1193 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
   1194 
   1195 	/* common 802.11 configuration */
   1196 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
   1197 	switch (ic->ic_opmode) {
   1198 	case IEEE80211_M_HOSTAP: /* XXX */
   1199 	case IEEE80211_M_STA:
   1200 		sc->sc_opmode &= ~ATW_NAR_EA;
   1201 		break;
   1202 	case IEEE80211_M_AHDEMO: /* XXX */
   1203 	case IEEE80211_M_IBSS:
   1204 		/* EA bit seems important for ad hoc reception. */
   1205 		sc->sc_opmode |= ATW_NAR_EA;
   1206 		ic->ic_flags |= IEEE80211_F_IBSSON;
   1207 		break;
   1208 	case IEEE80211_M_MONITOR: /* XXX */
   1209 		break;
   1210 	}
   1211 
   1212 	atw_start_beacon(sc, 0);
   1213 
   1214 	switch (ic->ic_opmode) {
   1215 	case IEEE80211_M_IBSS:
   1216 	case IEEE80211_M_STA:
   1217 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1218 		if (error)
   1219 			goto out;
   1220 		break;
   1221 	case IEEE80211_M_AHDEMO:
   1222 	case IEEE80211_M_HOSTAP:
   1223 		ic->ic_bss->ni_intval = ic->ic_lintval;
   1224 		ic->ic_bss->ni_rssi = 0;
   1225 		ic->ic_bss->ni_rstamp = 0;
   1226 		ic->ic_state = IEEE80211_S_SCAN;	/*XXX*/
   1227 
   1228 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1229 		if (error)
   1230 			goto out;
   1231 		break;
   1232 	case IEEE80211_M_MONITOR: /* XXX */
   1233 		break;
   1234 	}
   1235 
   1236 	atw_write_ssid(sc);
   1237 	atw_write_sup_rates(sc);
   1238 	if (ic->ic_caps & IEEE80211_C_WEP)
   1239 		atw_write_wep(sc);
   1240 
   1241 	/*
   1242 	 * Set the receive filter.  This will start the transmit and
   1243 	 * receive processes.
   1244 	 */
   1245 	atw_filter_setup(sc);
   1246 
   1247 	/*
   1248 	 * Start the receive process.
   1249 	 */
   1250 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1251 
   1252 	/*
   1253 	 * Note that the interface is now running.
   1254 	 */
   1255 	ifp->if_flags |= IFF_RUNNING;
   1256 	ifp->if_flags &= ~IFF_OACTIVE;
   1257 	ic->ic_state = IEEE80211_S_INIT;
   1258 
   1259  out:
   1260 	if (error) {
   1261 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1262 		ifp->if_timer = 0;
   1263 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1264 	}
   1265 #ifdef ATW_DEBUG
   1266 	atw_print_regs(sc, "end of init");
   1267 #endif /* ATW_DEBUG */
   1268 
   1269 	return (error);
   1270 }
   1271 
   1272 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
   1273  *           0: MAC control of RF3000/Si4126.
   1274  *
   1275  * Applies power, or selects RF front-end? Sets reset condition.
   1276  *
   1277  * TBD support non-RFMD BBP, non-SiLabs synth.
   1278  */
   1279 static void
   1280 atw_rfio_enable(struct atw_softc *sc, int enable)
   1281 {
   1282 	if (enable) {
   1283 		ATW_WRITE(sc, ATW_SYNRF,
   1284 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
   1285 		DELAY(atw_rfio_enable_delay);
   1286 	} else {
   1287 		ATW_WRITE(sc, ATW_SYNRF, 0);
   1288 		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
   1289 	}
   1290 }
   1291 
   1292 static int
   1293 atw_tune(sc)
   1294 	struct atw_softc *sc;
   1295 {
   1296 	int rc;
   1297 	u_int32_t reg;
   1298 	int chan;
   1299 	struct ieee80211com *ic = &sc->sc_ic;
   1300 
   1301 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
   1302 	if (chan == IEEE80211_CHAN_ANY)
   1303 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
   1304 
   1305 	if (chan == sc->sc_cur_chan)
   1306 		return 0;
   1307 
   1308 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
   1309 	    sc->sc_cur_chan, chan));
   1310 
   1311 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1312 
   1313 	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
   1314 	    (rc = atw_rf3000_tune(sc, chan)) != 0)
   1315 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
   1316 		    chan);
   1317 
   1318 	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
   1319 	ATW_WRITE(sc, ATW_CAP0,
   1320 	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
   1321 
   1322 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1323 
   1324 	if (rc == 0)
   1325 		sc->sc_cur_chan = chan;
   1326 
   1327 	return rc;
   1328 }
   1329 
   1330 #ifdef ATW_DEBUG
   1331 static void
   1332 atw_si4126_print(sc)
   1333 	struct atw_softc *sc;
   1334 {
   1335 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1336 	u_int addr, val;
   1337 
   1338 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1339 		return;
   1340 
   1341 	for (addr = 0; addr <= 8; addr++) {
   1342 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
   1343 		if (atw_si4126_read(sc, addr, &val) == 0) {
   1344 			printf("<unknown> (quitting print-out)\n");
   1345 			break;
   1346 		}
   1347 		printf("%05x\n", val);
   1348 	}
   1349 }
   1350 #endif /* ATW_DEBUG */
   1351 
   1352 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
   1353  *
   1354  * The RF/IF synthesizer produces two reference frequencies for
   1355  * the RF2948B transceiver.  The first frequency the RF2948B requires
   1356  * is two times the so-called "intermediate frequency" (IF). Since
   1357  * a SAW filter on the radio fixes the IF at 374MHz, I program the
   1358  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
   1359  * frequency required by the transceiver is the radio frequency
   1360  * (RF). This is a superheterodyne transceiver; for f(chan) the
   1361  * center frequency of the channel we are tuning, RF = f(chan) -
   1362  * IF.
   1363  *
   1364  * XXX I am told by SiLabs that the Si4126 will accept a broader range
   1365  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
   1366  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
   1367  * works, but I have still programmed for XINDIV2 = 1 to be safe.
   1368  */
   1369 static int
   1370 atw_si4126_tune(sc, chan)
   1371 	struct atw_softc *sc;
   1372 	u_int8_t chan;
   1373 {
   1374 	int rc = 0;
   1375 	u_int mhz;
   1376 	u_int R;
   1377 	u_int32_t reg;
   1378 	u_int16_t gain;
   1379 
   1380 #ifdef ATW_DEBUG
   1381 	atw_si4126_print(sc);
   1382 #endif /* ATW_DEBUG */
   1383 
   1384 	if (chan == 14)
   1385 		mhz = 2484;
   1386 	else
   1387 		mhz = 2412 + 5 * (chan - 1);
   1388 
   1389 	/* Tune IF to 748MHz to suit the IF LO input of the
   1390 	 * RF2494B, which is 2 x IF. No need to set an IF divider
   1391          * because an IF in 526MHz - 952MHz is allowed.
   1392 	 *
   1393 	 * XIN is 44.000MHz, so divide it by two to get allowable
   1394 	 * range of 2-25MHz. SiLabs tells me that this is not
   1395 	 * strictly necessary.
   1396 	 */
   1397 
   1398 	R = 44;
   1399 
   1400 	atw_rfio_enable(sc, 1);
   1401 
   1402 	/* Power-up RF, IF synthesizers. */
   1403 	if ((rc = atw_si4126_write(sc, SI4126_POWER,
   1404 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
   1405 		goto out;
   1406 
   1407 	/* If RF2 N > 2047, then set KP2 to 1. */
   1408 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
   1409 
   1410 	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
   1411 		goto out;
   1412 
   1413 	/* set LPWR, too? */
   1414 	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
   1415 	    SI4126_MAIN_XINDIV2)) != 0)
   1416 		goto out;
   1417 
   1418 	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
   1419 	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
   1420 	 */
   1421 	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
   1422 		goto out;
   1423 
   1424 	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
   1425 		goto out;
   1426 
   1427 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
   1428 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
   1429 	 * which has no RF1!
   1430 	 */
   1431 	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
   1432 		goto out;
   1433 
   1434 	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
   1435 		goto out;
   1436 
   1437 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
   1438 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
   1439 	 * Now let's multiply it to mhz. So mhz - IF = N.
   1440 	 */
   1441 	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
   1442 		goto out;
   1443 
   1444 	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
   1445 		goto out;
   1446 
   1447 	/* wait 100us from power-up for RF, IF to settle */
   1448 	DELAY(100);
   1449 
   1450 	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
   1451 		/* XXX there is a binary driver which sends
   1452 		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
   1453 		 * that this enables the Si4126 by raising its PWDN#, but I
   1454 		 * think that it actually sets the Prism RF front-end
   1455 		 * to a special mode for channel 14.
   1456 		 */
   1457 		reg = ATW_READ(sc, ATW_GPIO);
   1458 		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
   1459 		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
   1460 		ATW_WRITE(sc, ATW_GPIO, reg);
   1461 	}
   1462 
   1463 #ifdef ATW_DEBUG
   1464 	atw_si4126_print(sc);
   1465 #endif /* ATW_DEBUG */
   1466 
   1467 out:
   1468 	atw_rfio_enable(sc, 0);
   1469 
   1470 	return rc;
   1471 }
   1472 
   1473 /* Baseline initialization of RF3000 BBP: set CCA mode, enable antenna
   1474  * diversity, and write some magic.
   1475  *
   1476  * Call this w/ Tx/Rx suspended.
   1477  */
   1478 static int
   1479 atw_rf3000_init(sc)
   1480 	struct atw_softc *sc;
   1481 {
   1482 	int rc = 0;
   1483 
   1484 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1485 
   1486 	atw_rfio_enable(sc, 1);
   1487 
   1488 	/* enable diversity */
   1489 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
   1490 
   1491 	if (rc != 0)
   1492 		goto out;
   1493 
   1494 	/* sensible setting from a binary-only driver */
   1495 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1496 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
   1497 
   1498 	if (rc != 0)
   1499 		goto out;
   1500 
   1501 	/* magic from a binary-only driver */
   1502 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
   1503 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
   1504 
   1505 	if (rc != 0)
   1506 		goto out;
   1507 
   1508 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
   1509 
   1510 	if (rc != 0)
   1511 		goto out;
   1512 
   1513 	/* magic derived from binary-only driver */
   1514 	rc = atw_rf3000_write(sc, RF3000_MAGIC0, RF3000_MAGIC0_VAL);
   1515 
   1516 	if (rc != 0)
   1517 		goto out;
   1518 
   1519 	rc = atw_rf3000_write(sc, RF3000_MAGIC1, RF3000_MAGIC1_VAL);
   1520 
   1521 	if (rc != 0)
   1522 		goto out;
   1523 
   1524 	/* CCA is acquisition sensitive */
   1525 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
   1526 	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
   1527 
   1528 	if (rc != 0)
   1529 		goto out;
   1530 
   1531 out:
   1532 	atw_rfio_enable(sc, 0);
   1533 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1534 	return rc;
   1535 }
   1536 
   1537 #ifdef ATW_DEBUG
   1538 static void
   1539 atw_rf3000_print(sc)
   1540 	struct atw_softc *sc;
   1541 {
   1542 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1543 	u_int addr, val;
   1544 
   1545 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1546 		return;
   1547 
   1548 	for (addr = 0x01; addr <= 0x15; addr++) {
   1549 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
   1550 		if (atw_rf3000_read(sc, addr, &val) != 0) {
   1551 			printf("<unknown> (quitting print-out)\n");
   1552 			break;
   1553 		}
   1554 		printf("%08x\n", val);
   1555 	}
   1556 }
   1557 #endif /* ATW_DEBUG */
   1558 
   1559 /* Set the power settings on the BBP for channel `chan'. */
   1560 static int
   1561 atw_rf3000_tune(sc, chan)
   1562 	struct atw_softc *sc;
   1563 	u_int8_t chan;
   1564 {
   1565 	int rc = 0;
   1566 	u_int32_t reg;
   1567 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
   1568 
   1569 	atw_rfio_enable(sc, 1);
   1570 
   1571 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
   1572 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
   1573 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
   1574 
   1575 	/* odd channels: LSB, even channels: MSB */
   1576 	if (chan % 2 == 1) {
   1577 		txpower &= 0xFF;
   1578 		lpf_cutoff &= 0xFF;
   1579 		lna_gs_thresh &= 0xFF;
   1580 	} else {
   1581 		txpower >>= 8;
   1582 		lpf_cutoff >>= 8;
   1583 		lna_gs_thresh >>= 8;
   1584 	}
   1585 
   1586 #ifdef ATW_DEBUG
   1587 	atw_rf3000_print(sc);
   1588 #endif /* ATW_DEBUG */
   1589 
   1590 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
   1591 	    "lna_gs_thresh %02x\n",
   1592 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
   1593 
   1594 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1595 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
   1596 		goto out;
   1597 
   1598 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
   1599 		goto out;
   1600 
   1601 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
   1602 		goto out;
   1603 
   1604 	/* from a binary-only driver. */
   1605 	reg = ATW_READ(sc, ATW_PLCPHD);
   1606 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
   1607 	reg |= LSHIFT(txpower << 2, ATW_PLCPHD_SERVICE_MASK);
   1608 	ATW_WRITE(sc, ATW_PLCPHD, reg);
   1609 
   1610 #ifdef ATW_DEBUG
   1611 	atw_rf3000_print(sc);
   1612 #endif /* ATW_DEBUG */
   1613 
   1614 out:
   1615 	atw_rfio_enable(sc, 0);
   1616 
   1617 	return rc;
   1618 }
   1619 
   1620 /* Write a register on the RF3000 baseband processor using the
   1621  * registers provided by the ADM8211 for this purpose.
   1622  *
   1623  * Return 0 on success.
   1624  */
   1625 static int
   1626 atw_rf3000_write(sc, addr, val)
   1627 	struct atw_softc *sc;
   1628 	u_int addr, val;
   1629 {
   1630 	u_int32_t reg;
   1631 	int i;
   1632 
   1633 	for (i = 1000; --i >= 0; ) {
   1634 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1635 			break;
   1636 		DELAY(100);
   1637 	}
   1638 
   1639 	if (i < 0) {
   1640 		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
   1641 		return ETIMEDOUT;
   1642 	}
   1643 
   1644 	reg = sc->sc_bbpctl_wr |
   1645 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
   1646 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1647 
   1648 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1649 
   1650 	for (i = 1000; --i >= 0; ) {
   1651 		DELAY(100);
   1652 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
   1653 			break;
   1654 	}
   1655 
   1656 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
   1657 
   1658 	if (i < 0) {
   1659 		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
   1660 		return ETIMEDOUT;
   1661 	}
   1662 	return 0;
   1663 }
   1664 
   1665 /* Read a register on the RF3000 baseband processor using the registers
   1666  * the ADM8211 provides for this purpose.
   1667  *
   1668  * The 7-bit register address is addr.  Record the 8-bit data in the register
   1669  * in *val.
   1670  *
   1671  * Return 0 on success.
   1672  *
   1673  * XXX This does not seem to work. The ADM8211 must require more or
   1674  * different magic to read the chip than to write it. Possibly some
   1675  * of the magic I have derived from a binary-only driver concerns
   1676  * the "chip address" (see the RF3000 manual).
   1677  */
   1678 #ifdef ATW_DEBUG
   1679 static int
   1680 atw_rf3000_read(sc, addr, val)
   1681 	struct atw_softc *sc;
   1682 	u_int addr, *val;
   1683 {
   1684 	u_int32_t reg;
   1685 	int i;
   1686 
   1687 	for (i = 1000; --i >= 0; ) {
   1688 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1689 			break;
   1690 		DELAY(100);
   1691 	}
   1692 
   1693 	if (i < 0) {
   1694 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
   1695 		    sc->sc_dev.dv_xname);
   1696 		return ETIMEDOUT;
   1697 	}
   1698 
   1699 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1700 
   1701 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1702 
   1703 	for (i = 1000; --i >= 0; ) {
   1704 		DELAY(100);
   1705 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
   1706 			break;
   1707 	}
   1708 
   1709 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
   1710 
   1711 	if (i < 0) {
   1712 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
   1713 		    sc->sc_dev.dv_xname, reg);
   1714 		return ETIMEDOUT;
   1715 	}
   1716 	if (val != NULL)
   1717 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
   1718 	return 0;
   1719 }
   1720 #endif /* ATW_DEBUG */
   1721 
   1722 /* Write a register on the Si4126 RF/IF synthesizer using the registers
   1723  * provided by the ADM8211 for that purpose.
   1724  *
   1725  * val is 18 bits of data, and val is the 4-bit address of the register.
   1726  *
   1727  * Return 0 on success.
   1728  */
   1729 static int
   1730 atw_si4126_write(sc, addr, val)
   1731 	struct atw_softc *sc;
   1732 	u_int addr, val;
   1733 {
   1734 	u_int32_t reg;
   1735 	int i;
   1736 
   1737 	for (i = 1000; --i >= 0; ) {
   1738 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1739 			break;
   1740 		DELAY(100);
   1741 	}
   1742 
   1743 	if (i < 0) {
   1744 		printf("%s: start atw_si4126_write, SYNCTL busy\n",
   1745 		    sc->sc_dev.dv_xname);
   1746 		return ETIMEDOUT;
   1747 	}
   1748 
   1749 	reg = sc->sc_synctl_wr |
   1750 	    LSHIFT(((val & 0x3ffff) << 4) | (addr & 0xf), ATW_SYNCTL_DATA_MASK);
   1751 
   1752 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1753 
   1754 	for (i = 1000; --i >= 0; ) {
   1755 		DELAY(100);
   1756 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
   1757 			break;
   1758 	}
   1759 
   1760 	/* restore to acceptable starting condition */
   1761 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
   1762 
   1763 	if (i < 0) {
   1764 		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
   1765 		    sc->sc_dev.dv_xname, reg);
   1766 		return ETIMEDOUT;
   1767 	}
   1768 	return 0;
   1769 }
   1770 
   1771 /* Read 18-bit data from the 4-bit address addr in Si4126
   1772  * RF synthesizer and write the data to *val. Return 0 on success.
   1773  *
   1774  * XXX This does not seem to work. The ADM8211 must require more or
   1775  * different magic to read the chip than to write it.
   1776  */
   1777 #ifdef ATW_DEBUG
   1778 static int
   1779 atw_si4126_read(sc, addr, val)
   1780 	struct atw_softc *sc;
   1781 	u_int addr;
   1782 	u_int *val;
   1783 {
   1784 	u_int32_t reg;
   1785 	int i;
   1786 
   1787 	for (i = 1000; --i >= 0; ) {
   1788 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1789 			break;
   1790 		DELAY(100);
   1791 	}
   1792 
   1793 	if (i < 0) {
   1794 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
   1795 		    sc->sc_dev.dv_xname);
   1796 		return ETIMEDOUT;
   1797 	}
   1798 
   1799 	reg = sc->sc_synctl_rd | LSHIFT(addr & 0xf, ATW_SYNCTL_DATA_MASK);
   1800 
   1801 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1802 
   1803 	for (i = 1000; --i >= 0; ) {
   1804 		DELAY(100);
   1805 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
   1806 			break;
   1807 	}
   1808 
   1809 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
   1810 
   1811 	if (i < 0) {
   1812 		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
   1813 		    sc->sc_dev.dv_xname, reg);
   1814 		return ETIMEDOUT;
   1815 	}
   1816 	if (val != NULL)
   1817 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
   1818 		                       ATW_SYNCTL_DATA_MASK);
   1819 	return 0;
   1820 }
   1821 #endif /* ATW_DEBUG */
   1822 
   1823 /* XXX is the endianness correct? test. */
   1824 #define	atw_calchash(addr) \
   1825 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
   1826 
   1827 /*
   1828  * atw_filter_setup:
   1829  *
   1830  *	Set the ADM8211's receive filter.
   1831  */
   1832 static void
   1833 atw_filter_setup(sc)
   1834 	struct atw_softc *sc;
   1835 {
   1836 	struct ieee80211com *ic = &sc->sc_ic;
   1837 	struct ethercom *ec = &ic->ic_ec;
   1838 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1839 	int hash;
   1840 	u_int32_t hashes[2] = { 0, 0 };
   1841 	struct ether_multi *enm;
   1842 	struct ether_multistep step;
   1843 
   1844 	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
   1845 	    sc->sc_dev.dv_xname, sc->sc_flags));
   1846 
   1847 	/*
   1848 	 * If we're running, idle the receive engine.  If we're NOT running,
   1849 	 * we're being called from atw_init(), and our writing ATW_NAR will
   1850 	 * start the transmit and receive processes in motion.
   1851 	 */
   1852 	if (ifp->if_flags & IFF_RUNNING)
   1853 		atw_idle(sc, ATW_NAR_SR);
   1854 
   1855 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
   1856 
   1857 	ifp->if_flags &= ~IFF_ALLMULTI;
   1858 
   1859 	if (ifp->if_flags & IFF_PROMISC) {
   1860 		sc->sc_opmode |= ATW_NAR_PR;
   1861 allmulti:
   1862 		ifp->if_flags |= IFF_ALLMULTI;
   1863 		goto setit;
   1864 	}
   1865 
   1866 	/*
   1867 	 * Program the 64-bit multicast hash filter.
   1868 	 */
   1869 	ETHER_FIRST_MULTI(step, ec, enm);
   1870 	while (enm != NULL) {
   1871 		/* XXX */
   1872 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1873 		    ETHER_ADDR_LEN) != 0)
   1874 			goto allmulti;
   1875 
   1876 		hash = atw_calchash(enm->enm_addrlo);
   1877 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1878 		ETHER_NEXT_MULTI(step, enm);
   1879 	}
   1880 
   1881 	if (ifp->if_flags & IFF_BROADCAST) {
   1882 		hash = atw_calchash(etherbroadcastaddr);
   1883 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   1884 	}
   1885 
   1886 	/* all bits set => hash is useless */
   1887 	if (~(hashes[0] & hashes[1]) == 0)
   1888 		goto allmulti;
   1889 
   1890  setit:
   1891 	if (ifp->if_flags & IFF_ALLMULTI)
   1892 		sc->sc_opmode |= ATW_NAR_MM;
   1893 
   1894 	/* XXX in scan mode, do not filter packets. maybe this is
   1895 	 * unnecessary.
   1896 	 */
   1897 	if (ic->ic_state == IEEE80211_S_SCAN)
   1898 		sc->sc_opmode |= ATW_NAR_PR;
   1899 
   1900 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
   1901 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
   1902 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1903 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
   1904 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
   1905 
   1906 	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
   1907 }
   1908 
   1909 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
   1910  * a beacon's BSSID and SSID against the preferred BSSID and SSID
   1911  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
   1912  * no beacon with the preferred BSSID and SSID in the number of
   1913  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
   1914  */
   1915 static void
   1916 atw_write_bssid(sc)
   1917 	struct atw_softc *sc;
   1918 {
   1919 	struct ieee80211com *ic = &sc->sc_ic;
   1920 	u_int8_t *bssid;
   1921 
   1922 	bssid = ic->ic_bss->ni_bssid;
   1923 
   1924 	ATW_WRITE(sc, ATW_ABDA1,
   1925 	    (ATW_READ(sc, ATW_ABDA1) &
   1926 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
   1927 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
   1928 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
   1929 
   1930 	ATW_WRITE(sc, ATW_BSSID0,
   1931 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
   1932 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
   1933 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
   1934 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
   1935 
   1936 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
   1937 	    ether_sprintf(sc->sc_bssid)));
   1938 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
   1939 
   1940 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
   1941 }
   1942 
   1943 /* Tell the ADM8211 how many beacon intervals must pass without
   1944  * receiving a beacon with the preferred BSSID & SSID set by
   1945  * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
   1946  * raised.
   1947  */
   1948 static void
   1949 atw_write_bcn_thresh(sc)
   1950 	struct atw_softc *sc;
   1951 {
   1952 	struct ieee80211com *ic = &sc->sc_ic;
   1953 	int lost_bcn_thresh;
   1954 
   1955 	/* Lose link after one second or 7 beacons, whichever comes
   1956 	 * first, but do not lose link before 2 beacons are lost.
   1957 	 *
   1958 	 * In host AP mode, set the lost-beacon threshold to 0.
   1959 	 */
   1960 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1961 		lost_bcn_thresh = 0;
   1962 	else
   1963 		lost_bcn_thresh = MAX(2,
   1964 		    MIN(1000000/(IEEE80211_DUR_TU * ic->ic_bss->ni_intval), 7));
   1965 
   1966 	/* XXX resets wake-up status bits */
   1967 	ATW_WRITE(sc, ATW_WCSR,
   1968 	    (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
   1969 	    (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
   1970 
   1971 	DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
   1972 	    sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
   1973 
   1974 	sc->sc_lost_bcn_thresh = lost_bcn_thresh;
   1975 
   1976 	DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
   1977 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
   1978 }
   1979 
   1980 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
   1981  * 16-bit word.
   1982  */
   1983 static void
   1984 atw_write_sram(sc, ofs, buf, buflen)
   1985 	struct atw_softc *sc;
   1986 	u_int ofs;
   1987 	u_int8_t *buf;
   1988 	u_int buflen;
   1989 {
   1990 	u_int i;
   1991 	u_int8_t *ptr;
   1992 
   1993 	memcpy(&sc->sc_sram[ofs], buf, buflen);
   1994 
   1995 	if (ofs % 2 != 0) {
   1996 		ofs--;
   1997 		buflen++;
   1998 	}
   1999 
   2000 	if (buflen % 2 != 0)
   2001 		buflen++;
   2002 
   2003 	assert(buflen + ofs <= ATW_SRAM_SIZE);
   2004 
   2005 	ptr = &sc->sc_sram[ofs];
   2006 
   2007 	for (i = 0; i < buflen; i += 2) {
   2008 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
   2009 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
   2010 		DELAY(atw_writewep_delay);
   2011 
   2012 		ATW_WRITE(sc, ATW_WESK,
   2013 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
   2014 		DELAY(atw_writewep_delay);
   2015 	}
   2016 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
   2017 
   2018 	if (sc->sc_if.if_flags & IFF_DEBUG) {
   2019 		int n_octets = 0;
   2020 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
   2021 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
   2022 		for (i = 0; i < buflen; i++) {
   2023 			printf(" %02x", ptr[i]);
   2024 			if (++n_octets % 24 == 0)
   2025 				printf("\n");
   2026 		}
   2027 		if (n_octets % 24 != 0)
   2028 			printf("\n");
   2029 	}
   2030 }
   2031 
   2032 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
   2033 static void
   2034 atw_write_wep(sc)
   2035 	struct atw_softc *sc;
   2036 {
   2037 	struct ieee80211com *ic = &sc->sc_ic;
   2038 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
   2039 	u_int8_t buf[IEEE80211_WEP_NKID]
   2040 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
   2041 	u_int32_t reg;
   2042 	int i;
   2043 
   2044 	sc->sc_wepctl = 0;
   2045 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
   2046 
   2047 	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
   2048 		return;
   2049 
   2050 	memset(&buf[0][0], 0, sizeof(buf));
   2051 
   2052 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   2053 		if (ic->ic_nw_keys[i].wk_len > 5) {
   2054 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
   2055 		} else if (ic->ic_nw_keys[i].wk_len != 0) {
   2056 			buf[i][1] = ATW_WEP_ENABLED;
   2057 		} else {
   2058 			buf[i][1] = 0;
   2059 			continue;
   2060 		}
   2061 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
   2062 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
   2063 		    ic->ic_nw_keys[i].wk_len - 1);
   2064 	}
   2065 
   2066 	reg = ATW_READ(sc, ATW_MACTEST);
   2067 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
   2068 	reg &= ~ATW_MACTEST_KEYID_MASK;
   2069 	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
   2070 	ATW_WRITE(sc, ATW_MACTEST, reg);
   2071 
   2072 	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
   2073 	 * throughout.)
   2074 	 */
   2075 	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
   2076 	if (sc->sc_if.if_flags & IFF_LINK2)
   2077 		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
   2078 
   2079 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
   2080 	    sizeof(buf));
   2081 }
   2082 
   2083 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
   2084 
   2085 static void
   2086 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2087     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2088 {
   2089 	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
   2090 
   2091 	switch (subtype) {
   2092 	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
   2093 		/* do nothing: hardware answers probe request */
   2094 		break;
   2095 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2096 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2097 		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
   2098 		break;
   2099 	default:
   2100 		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
   2101 		break;
   2102 	}
   2103 	return;
   2104 }
   2105 
   2106 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
   2107  * of IBSSs with like SSID/channel but different BSSID. It joins the
   2108  * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
   2109  * convention. Possibly the ADMtek chip does this for us; I will have
   2110  * to test to find out.
   2111  *
   2112  * XXX we should add the duration field of the received beacon to
   2113  * the TSF time it contains before comparing it with the ADM8211's
   2114  * TSF.
   2115  */
   2116 static void
   2117 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
   2118     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2119 {
   2120 	struct atw_softc *sc;
   2121 	struct ieee80211_frame *wh;
   2122 	u_int64_t tsft, bcn_tsft;
   2123 	u_int32_t tsftl, tsfth;
   2124 	int do_print = 0;
   2125 
   2126 	sc = (struct atw_softc*)ic->ic_if.if_softc;
   2127 
   2128 	if (ic->ic_if.if_flags & IFF_DEBUG)
   2129 		do_print = (ic->ic_if.if_flags & IFF_LINK0)
   2130 		    ? 1 : ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval);
   2131 
   2132 	wh = mtod(m0, struct ieee80211_frame *);
   2133 
   2134 	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
   2135 
   2136 	if (ic->ic_state != IEEE80211_S_RUN) {
   2137 		if (do_print)
   2138 			printf("%s: atw_recv_beacon: not running\n",
   2139 			    sc->sc_dev.dv_xname);
   2140 		return;
   2141 	}
   2142 
   2143 	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
   2144 	    ic->ic_bss->ni_chan)) == NULL) {
   2145 		if (do_print)
   2146 			printf("%s: atw_recv_beacon: no node %s\n",
   2147 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2148 		return;
   2149 	}
   2150 
   2151 	if (ieee80211_match_bss(ic, ni) != 0) {
   2152 		if (do_print)
   2153 			printf("%s: atw_recv_beacon: ssid mismatch %s\n",
   2154 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
   2155 		return;
   2156 	}
   2157 
   2158 	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
   2159 		return;
   2160 
   2161 	if (do_print)
   2162 		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
   2163 		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
   2164 
   2165 	if (ic->ic_opmode != IEEE80211_M_IBSS)
   2166 		return;
   2167 
   2168 	/* If we read TSFTL right before rollover, we read a TSF timer
   2169 	 * that is too high rather than too low. This prevents a spurious
   2170 	 * synchronization down the line, however, our IBSS could suffer
   2171 	 * from a creeping TSF....
   2172 	 */
   2173 	tsftl = ATW_READ(sc, ATW_TSFTL);
   2174 	tsfth = ATW_READ(sc, ATW_TSFTH);
   2175 
   2176 	tsft = (u_int64_t)tsfth << 32 | tsftl;
   2177 	bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
   2178 
   2179 	if (do_print)
   2180 		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
   2181 		    sc->sc_dev.dv_xname, tsft, bcn_tsft);
   2182 
   2183 	/* we are faster, let the other guy catch up */
   2184 	if (bcn_tsft < tsft)
   2185 		return;
   2186 
   2187 	if (do_print)
   2188 		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
   2189 		    ether_sprintf(wh->i_addr2));
   2190 
   2191 	ic->ic_flags &= ~IEEE80211_F_SIBSS;
   2192 
   2193 #if 0
   2194 	atw_tsf(sc);
   2195 #endif
   2196 
   2197 	/* negotiate rates with new IBSS */
   2198 	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
   2199 	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
   2200 	if (ni->ni_rates.rs_nrates == 0) {
   2201 		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
   2202 			ether_sprintf(ni->ni_bssid));
   2203 		return;
   2204 	}
   2205 
   2206 	if (do_print) {
   2207 		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
   2208 		    ether_sprintf(ic->ic_bss->ni_bssid));
   2209 		printf("%s ", ether_sprintf(ni->ni_bssid));
   2210 		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
   2211 	}
   2212 
   2213 	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
   2214 
   2215 	atw_write_bssid(sc);
   2216 	atw_write_bcn_thresh(sc);
   2217 	atw_start_beacon(sc, 1);
   2218 }
   2219 
   2220 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
   2221  * In ad hoc mode, the SSID is written to the beacons sent by the
   2222  * ADM8211. In both ad hoc and infrastructure mode, beacons received
   2223  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
   2224  * indications.
   2225  */
   2226 static void
   2227 atw_write_ssid(sc)
   2228 	struct atw_softc *sc;
   2229 {
   2230 	struct ieee80211com *ic = &sc->sc_ic;
   2231 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID */
   2232 	u_int8_t buf[1 /* length */ + IEEE80211_NWID_LEN +
   2233 	             1 /* for a round number */];
   2234 
   2235 	memset(buf, 0, sizeof(buf));
   2236 	buf[0] = ic->ic_bss->ni_esslen;
   2237 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
   2238 
   2239 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
   2240 }
   2241 
   2242 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
   2243  * In ad hoc mode, the supported rates are written to beacons sent by the
   2244  * ADM8211.
   2245  */
   2246 static void
   2247 atw_write_sup_rates(sc)
   2248 	struct atw_softc *sc;
   2249 {
   2250 	struct ieee80211com *ic = &sc->sc_ic;
   2251 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
   2252 	 * supported rates
   2253 	 */
   2254 	u_int8_t buf[1 /* length */ + IEEE80211_RATE_SIZE +
   2255 	             1 /* for a round number */];
   2256 
   2257 	memset(buf, 0, sizeof(buf));
   2258 
   2259 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
   2260 
   2261 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
   2262 	    ic->ic_bss->ni_rates.rs_nrates);
   2263 
   2264 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
   2265 }
   2266 
   2267 /* Start/stop sending beacons. */
   2268 void
   2269 atw_start_beacon(struct atw_softc *sc, int start)
   2270 {
   2271 	struct ieee80211com *ic = &sc->sc_ic;
   2272 	u_int32_t len, capinfo, reg_bcnt, reg_cap1;
   2273 
   2274 	if (ATW_IS_ENABLED(sc) == 0)
   2275 		return;
   2276 
   2277 	len = capinfo = 0;
   2278 
   2279 	/* start beacons */
   2280 	len = sizeof(struct ieee80211_frame) +
   2281 	    8 /* timestamp */ + 2 /* beacon interval */ +
   2282 	    2 /* capability info */ +
   2283 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
   2284 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
   2285 	    3 /* DS parameters */ +
   2286 	    IEEE80211_CRC_LEN;
   2287 
   2288 	reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
   2289 
   2290 	reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
   2291 
   2292 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2293 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2294 
   2295 	if (!start)
   2296 		return;
   2297 
   2298 	/* TBD use ni_capinfo */
   2299 
   2300 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
   2301 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   2302 	if (ic->ic_flags & IEEE80211_F_WEPON)
   2303 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   2304 
   2305 	switch (ic->ic_opmode) {
   2306 	case IEEE80211_M_IBSS:
   2307 		len += 4; /* IBSS parameters */
   2308 		capinfo |= IEEE80211_CAPINFO_IBSS;
   2309 		break;
   2310 	case IEEE80211_M_HOSTAP:
   2311 		/* XXX 6-byte minimum TIM */
   2312 		len += atw_beacon_len_adjust;
   2313 		capinfo |= IEEE80211_CAPINFO_ESS;
   2314 		break;
   2315 	default:
   2316 		return;
   2317 	}
   2318 
   2319 	reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
   2320 	reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
   2321 
   2322 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
   2323 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
   2324 
   2325 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
   2326 	    sc->sc_dev.dv_xname, reg_bcnt));
   2327 
   2328 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
   2329 	    sc->sc_dev.dv_xname, reg_cap1));
   2330 }
   2331 
   2332 /* First beacon was sent at time 0 microseconds, current time is
   2333  * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
   2334  * microseconds.  Return the expected time in microseconds for the
   2335  * beacon after next.
   2336  */
   2337 static __inline u_int64_t
   2338 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
   2339 {
   2340 	return tsft + (tbtt - tsft % tbtt);
   2341 }
   2342 
   2343 /* If we've created an IBSS, write the TSF time in the ADM8211 to
   2344  * the ieee80211com.
   2345  *
   2346  * Predict the next target beacon transmission time (TBTT) and
   2347  * write it to the ADM8211.
   2348  */
   2349 static void
   2350 atw_tsf(struct atw_softc *sc)
   2351 {
   2352 #define TBTTOFS 20 /* TU */
   2353 
   2354 	struct ieee80211com *ic = &sc->sc_ic;
   2355 	u_int64_t tsft, tbtt;
   2356 
   2357 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
   2358 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
   2359 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
   2360 		tsft = ATW_READ(sc, ATW_TSFTH);
   2361 		tsft <<= 32;
   2362 		tsft |= ATW_READ(sc, ATW_TSFTL);
   2363 		*(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
   2364 	} else
   2365 		tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
   2366 
   2367 	tbtt = atw_predict_beacon(tsft,
   2368 	    ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
   2369 
   2370 	/* skip one more beacon so that the TBTT cannot pass before
   2371 	 * we've programmed it, and also so that we can subtract a
   2372 	 * few TU so that we wake a little before TBTT.
   2373 	 */
   2374 	tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
   2375 
   2376 	/* wake up a little early */
   2377 	tbtt -= TBTTOFS * IEEE80211_DUR_TU;
   2378 
   2379 	DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
   2380 	    sc->sc_dev.dv_xname, tsft, tbtt));
   2381 
   2382 	ATW_WRITE(sc, ATW_TOFS1,
   2383 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
   2384 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
   2385 	    LSHIFT(
   2386 		MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
   2387 		ATW_TOFS1_TBTTPRE_MASK));
   2388 #undef TBTTOFS
   2389 }
   2390 
   2391 static void
   2392 atw_next_scan(void *arg)
   2393 {
   2394 	struct atw_softc *sc = arg;
   2395 	struct ieee80211com *ic = &sc->sc_ic;
   2396 	struct ifnet *ifp = &ic->ic_if;
   2397 	int s;
   2398 
   2399 	/* don't call atw_start w/o network interrupts blocked */
   2400 	s = splnet();
   2401 	if (ic->ic_state == IEEE80211_S_SCAN)
   2402 		ieee80211_next_scan(ifp);
   2403 	splx(s);
   2404 }
   2405 
   2406 /* Synchronize the hardware state with the software state. */
   2407 static int
   2408 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   2409 {
   2410 	struct ifnet *ifp = &ic->ic_if;
   2411 	struct atw_softc *sc = ifp->if_softc;
   2412 	enum ieee80211_state ostate;
   2413 	int error;
   2414 
   2415 	ostate = ic->ic_state;
   2416 
   2417 	if (nstate == IEEE80211_S_INIT) {
   2418 		callout_stop(&sc->sc_scan_ch);
   2419 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
   2420 		atw_start_beacon(sc, 0);
   2421 		return (*sc->sc_newstate)(ic, nstate, arg);
   2422 	}
   2423 
   2424 	if ((error = atw_tune(sc)) != 0)
   2425 		return error;
   2426 
   2427 	switch (nstate) {
   2428 	case IEEE80211_S_ASSOC:
   2429 		break;
   2430 	case IEEE80211_S_INIT:
   2431 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
   2432 		break;
   2433 	case IEEE80211_S_SCAN:
   2434 		memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
   2435 		atw_write_bssid(sc);
   2436 
   2437 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
   2438 		    atw_next_scan, sc);
   2439 
   2440 		break;
   2441 	case IEEE80211_S_RUN:
   2442 		if (ic->ic_opmode == IEEE80211_M_STA)
   2443 			break;
   2444 		/*FALLTHROUGH*/
   2445 	case IEEE80211_S_AUTH:
   2446 		atw_write_bssid(sc);
   2447 		atw_write_bcn_thresh(sc);
   2448 		atw_write_ssid(sc);
   2449 		atw_write_sup_rates(sc);
   2450 
   2451 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
   2452 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   2453 			break;
   2454 
   2455 		/* set listen interval
   2456 		 * XXX do software units agree w/ hardware?
   2457 		 */
   2458 		ATW_WRITE(sc, ATW_BPLI,
   2459 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2460 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
   2461 			   ATW_BPLI_LI_MASK));
   2462 
   2463 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
   2464 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
   2465 
   2466 		atw_tsf(sc);
   2467 		break;
   2468 	}
   2469 
   2470 	if (ostate == IEEE80211_S_SCAN && nstate != IEEE80211_S_SCAN)
   2471 		callout_stop(&sc->sc_scan_ch);
   2472 
   2473 	if (nstate == IEEE80211_S_RUN &&
   2474 	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   2475 	     ic->ic_opmode == IEEE80211_M_IBSS))
   2476 		atw_start_beacon(sc, 1);
   2477 	else
   2478 		atw_start_beacon(sc, 0);
   2479 
   2480 	return (*sc->sc_newstate)(ic, nstate, arg);
   2481 }
   2482 
   2483 /*
   2484  * atw_add_rxbuf:
   2485  *
   2486  *	Add a receive buffer to the indicated descriptor.
   2487  */
   2488 int
   2489 atw_add_rxbuf(sc, idx)
   2490 	struct atw_softc *sc;
   2491 	int idx;
   2492 {
   2493 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2494 	struct mbuf *m;
   2495 	int error;
   2496 
   2497 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2498 	if (m == NULL)
   2499 		return (ENOBUFS);
   2500 
   2501 	MCLGET(m, M_DONTWAIT);
   2502 	if ((m->m_flags & M_EXT) == 0) {
   2503 		m_freem(m);
   2504 		return (ENOBUFS);
   2505 	}
   2506 
   2507 	if (rxs->rxs_mbuf != NULL)
   2508 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2509 
   2510 	rxs->rxs_mbuf = m;
   2511 
   2512 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2513 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2514 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2515 	if (error) {
   2516 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2517 		    sc->sc_dev.dv_xname, idx, error);
   2518 		panic("atw_add_rxbuf");	/* XXX */
   2519 	}
   2520 
   2521 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2522 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2523 
   2524 	ATW_INIT_RXDESC(sc, idx);
   2525 
   2526 	return (0);
   2527 }
   2528 
   2529 /*
   2530  * atw_stop:		[ ifnet interface function ]
   2531  *
   2532  *	Stop transmission on the interface.
   2533  */
   2534 void
   2535 atw_stop(ifp, disable)
   2536 	struct ifnet *ifp;
   2537 	int disable;
   2538 {
   2539 	struct atw_softc *sc = ifp->if_softc;
   2540 	struct ieee80211com *ic = &sc->sc_ic;
   2541 	struct atw_txsoft *txs;
   2542 
   2543 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   2544 
   2545 	/* Disable interrupts. */
   2546 	ATW_WRITE(sc, ATW_IER, 0);
   2547 
   2548 	/* Stop the transmit and receive processes. */
   2549 	sc->sc_opmode = 0;
   2550 	ATW_WRITE(sc, ATW_NAR, 0);
   2551 	ATW_WRITE(sc, ATW_TDBD, 0);
   2552 	ATW_WRITE(sc, ATW_TDBP, 0);
   2553 	ATW_WRITE(sc, ATW_RDB, 0);
   2554 
   2555 	/*
   2556 	 * Release any queued transmit buffers.
   2557 	 */
   2558 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2559 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2560 		if (txs->txs_mbuf != NULL) {
   2561 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2562 			m_freem(txs->txs_mbuf);
   2563 			txs->txs_mbuf = NULL;
   2564 		}
   2565 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2566 	}
   2567 
   2568 	if (disable) {
   2569 		atw_rxdrain(sc);
   2570 		atw_disable(sc);
   2571 	}
   2572 
   2573 	/*
   2574 	 * Mark the interface down and cancel the watchdog timer.
   2575 	 */
   2576 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2577 	ifp->if_timer = 0;
   2578 
   2579 	/* XXX */
   2580 	atw_reset(sc);
   2581 }
   2582 
   2583 /*
   2584  * atw_rxdrain:
   2585  *
   2586  *	Drain the receive queue.
   2587  */
   2588 void
   2589 atw_rxdrain(sc)
   2590 	struct atw_softc *sc;
   2591 {
   2592 	struct atw_rxsoft *rxs;
   2593 	int i;
   2594 
   2595 	for (i = 0; i < ATW_NRXDESC; i++) {
   2596 		rxs = &sc->sc_rxsoft[i];
   2597 		if (rxs->rxs_mbuf == NULL)
   2598 			continue;
   2599 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2600 		m_freem(rxs->rxs_mbuf);
   2601 		rxs->rxs_mbuf = NULL;
   2602 	}
   2603 }
   2604 
   2605 /*
   2606  * atw_detach:
   2607  *
   2608  *	Detach an ADM8211 interface.
   2609  */
   2610 int
   2611 atw_detach(sc)
   2612 	struct atw_softc *sc;
   2613 {
   2614 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2615 	struct atw_rxsoft *rxs;
   2616 	struct atw_txsoft *txs;
   2617 	int i;
   2618 
   2619 	/*
   2620 	 * Succeed now if there isn't any work to do.
   2621 	 */
   2622 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
   2623 		return (0);
   2624 
   2625 	ieee80211_ifdetach(ifp);
   2626 	if_detach(ifp);
   2627 
   2628 	for (i = 0; i < ATW_NRXDESC; i++) {
   2629 		rxs = &sc->sc_rxsoft[i];
   2630 		if (rxs->rxs_mbuf != NULL) {
   2631 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2632 			m_freem(rxs->rxs_mbuf);
   2633 			rxs->rxs_mbuf = NULL;
   2634 		}
   2635 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
   2636 	}
   2637 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   2638 		txs = &sc->sc_txsoft[i];
   2639 		if (txs->txs_mbuf != NULL) {
   2640 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2641 			m_freem(txs->txs_mbuf);
   2642 			txs->txs_mbuf = NULL;
   2643 		}
   2644 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
   2645 	}
   2646 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2647 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2648 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2649 	    sizeof(struct atw_control_data));
   2650 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2651 
   2652 	shutdownhook_disestablish(sc->sc_sdhook);
   2653 	powerhook_disestablish(sc->sc_powerhook);
   2654 
   2655 	if (sc->sc_srom)
   2656 		free(sc->sc_srom, M_DEVBUF);
   2657 
   2658 	return (0);
   2659 }
   2660 
   2661 /* atw_shutdown: make sure the interface is stopped at reboot time. */
   2662 void
   2663 atw_shutdown(arg)
   2664 	void *arg;
   2665 {
   2666 	struct atw_softc *sc = arg;
   2667 
   2668 	atw_stop(&sc->sc_ic.ic_if, 1);
   2669 }
   2670 
   2671 int
   2672 atw_intr(arg)
   2673 	void *arg;
   2674 {
   2675 	struct atw_softc *sc = arg;
   2676 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2677 	u_int32_t status, rxstatus, txstatus, linkstatus;
   2678 	int handled = 0, txthresh;
   2679 
   2680 #ifdef DEBUG
   2681 	if (ATW_IS_ENABLED(sc) == 0)
   2682 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
   2683 #endif
   2684 
   2685 	/*
   2686 	 * If the interface isn't running, the interrupt couldn't
   2687 	 * possibly have come from us.
   2688 	 */
   2689 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   2690 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   2691 		return (0);
   2692 
   2693 	for (;;) {
   2694 		status = ATW_READ(sc, ATW_STSR);
   2695 
   2696 		if (status)
   2697 			ATW_WRITE(sc, ATW_STSR, status);
   2698 
   2699 		if (sc->sc_intr_ack != NULL)
   2700 			(*sc->sc_intr_ack)(sc);
   2701 
   2702 #ifdef ATW_DEBUG
   2703 #define PRINTINTR(flag) do { \
   2704 	if ((status & flag) != 0) { \
   2705 		printf("%s" #flag, delim); \
   2706 		delim = ","; \
   2707 	} \
   2708 } while (0)
   2709 
   2710 		if (atw_debug > 1 && status) {
   2711 			const char *delim = "<";
   2712 
   2713 			printf("%s: reg[STSR] = %x",
   2714 			    sc->sc_dev.dv_xname, status);
   2715 
   2716 			PRINTINTR(ATW_INTR_FBE);
   2717 			PRINTINTR(ATW_INTR_LINKOFF);
   2718 			PRINTINTR(ATW_INTR_LINKON);
   2719 			PRINTINTR(ATW_INTR_RCI);
   2720 			PRINTINTR(ATW_INTR_RDU);
   2721 			PRINTINTR(ATW_INTR_RPS);
   2722 			PRINTINTR(ATW_INTR_TCI);
   2723 			PRINTINTR(ATW_INTR_TDU);
   2724 			PRINTINTR(ATW_INTR_TLT);
   2725 			PRINTINTR(ATW_INTR_TPS);
   2726 			PRINTINTR(ATW_INTR_TRT);
   2727 			PRINTINTR(ATW_INTR_TUF);
   2728 			PRINTINTR(ATW_INTR_BCNTC);
   2729 			PRINTINTR(ATW_INTR_ATIME);
   2730 			PRINTINTR(ATW_INTR_TBTT);
   2731 			PRINTINTR(ATW_INTR_TSCZ);
   2732 			PRINTINTR(ATW_INTR_TSFTF);
   2733 			printf(">\n");
   2734 		}
   2735 #undef PRINTINTR
   2736 #endif /* ATW_DEBUG */
   2737 
   2738 		if ((status & sc->sc_inten) == 0)
   2739 			break;
   2740 
   2741 		handled = 1;
   2742 
   2743 		rxstatus = status & sc->sc_rxint_mask;
   2744 		txstatus = status & sc->sc_txint_mask;
   2745 		linkstatus = status & sc->sc_linkint_mask;
   2746 
   2747 		if (linkstatus) {
   2748 			atw_linkintr(sc, linkstatus);
   2749 		}
   2750 
   2751 		if (rxstatus) {
   2752 			/* Grab any new packets. */
   2753 			atw_rxintr(sc);
   2754 
   2755 			if (rxstatus & ATW_INTR_RDU) {
   2756 				printf("%s: receive ring overrun\n",
   2757 				    sc->sc_dev.dv_xname);
   2758 				/* Get the receive process going again. */
   2759 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2760 				break;
   2761 			}
   2762 		}
   2763 
   2764 		if (txstatus) {
   2765 			/* Sweep up transmit descriptors. */
   2766 			atw_txintr(sc);
   2767 
   2768 			if (txstatus & ATW_INTR_TLT)
   2769 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
   2770 				    sc->sc_dev.dv_xname));
   2771 
   2772 			if (txstatus & ATW_INTR_TRT)
   2773 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
   2774 				    sc->sc_dev.dv_xname));
   2775 
   2776 			/* If Tx under-run, increase our transmit threshold
   2777 			 * if another is available.
   2778 			 */
   2779 			txthresh = sc->sc_txthresh + 1;
   2780 			if ((txstatus & ATW_INTR_TUF) &&
   2781 			    sc->sc_txth[txthresh].txth_name != NULL) {
   2782 				/* Idle the transmit process. */
   2783 				atw_idle(sc, ATW_NAR_ST);
   2784 
   2785 				sc->sc_txthresh = txthresh;
   2786 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
   2787 				sc->sc_opmode |=
   2788 				    sc->sc_txth[txthresh].txth_opmode;
   2789 				printf("%s: transmit underrun; new "
   2790 				    "threshold: %s\n", sc->sc_dev.dv_xname,
   2791 				    sc->sc_txth[txthresh].txth_name);
   2792 
   2793 				/* Set the new threshold and restart
   2794 				 * the transmit process.
   2795 				 */
   2796 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2797 				/* XXX Log every Nth underrun from
   2798 				 * XXX now on?
   2799 				 */
   2800 			}
   2801 		}
   2802 
   2803 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
   2804 			if (status & ATW_INTR_TPS)
   2805 				printf("%s: transmit process stopped\n",
   2806 				    sc->sc_dev.dv_xname);
   2807 			if (status & ATW_INTR_RPS)
   2808 				printf("%s: receive process stopped\n",
   2809 				    sc->sc_dev.dv_xname);
   2810 			(void)atw_init(ifp);
   2811 			break;
   2812 		}
   2813 
   2814 		if (status & ATW_INTR_FBE) {
   2815 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
   2816 			(void)atw_init(ifp);
   2817 			break;
   2818 		}
   2819 
   2820 		/*
   2821 		 * Not handled:
   2822 		 *
   2823 		 *	Transmit buffer unavailable -- normal
   2824 		 *	condition, nothing to do, really.
   2825 		 *
   2826 		 *	Early receive interrupt -- not available on
   2827 		 *	all chips, we just use RI.  We also only
   2828 		 *	use single-segment receive DMA, so this
   2829 		 *	is mostly useless.
   2830 		 *
   2831 		 *      TBD others
   2832 		 */
   2833 	}
   2834 
   2835 	/* Try to get more packets going. */
   2836 	atw_start(ifp);
   2837 
   2838 	return (handled);
   2839 }
   2840 
   2841 /*
   2842  * atw_idle:
   2843  *
   2844  *	Cause the transmit and/or receive processes to go idle.
   2845  *
   2846  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
   2847  *	process in STSR if I clear SR or ST after the process has already
   2848  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
   2849  *      do not seem to be too reliable. Perhaps I have the sense of the
   2850  *	Rx bits switched with the Tx bits?
   2851  */
   2852 void
   2853 atw_idle(sc, bits)
   2854 	struct atw_softc *sc;
   2855 	u_int32_t bits;
   2856 {
   2857 	u_int32_t ackmask = 0, opmode, stsr, test0;
   2858 	int i, s;
   2859 
   2860 	/* without this, somehow we run concurrently w/ interrupt handler */
   2861 	s = splnet();
   2862 
   2863 	opmode = sc->sc_opmode & ~bits;
   2864 
   2865 	if (bits & ATW_NAR_SR)
   2866 		ackmask |= ATW_INTR_RPS;
   2867 
   2868 	if (bits & ATW_NAR_ST) {
   2869 		ackmask |= ATW_INTR_TPS;
   2870 		/* set ATW_NAR_HF to flush TX FIFO. */
   2871 		opmode |= ATW_NAR_HF;
   2872 	}
   2873 
   2874 	ATW_WRITE(sc, ATW_NAR, opmode);
   2875 
   2876 	for (i = 0; i < 1000; i++) {
   2877 		stsr = ATW_READ(sc, ATW_STSR);
   2878 		if ((stsr & ackmask) == ackmask)
   2879 			break;
   2880 		DELAY(10);
   2881 	}
   2882 
   2883 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
   2884 
   2885 	if ((stsr & ackmask) == ackmask)
   2886 		goto out;
   2887 
   2888 	test0 = ATW_READ(sc, ATW_TEST0);
   2889 
   2890 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
   2891 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
   2892 		printf("%s: transmit process not idle [%s]\n",
   2893 		    sc->sc_dev.dv_xname,
   2894 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
   2895 		printf("%s: bits %08x test0 %08x stsr %08x\n",
   2896 		    sc->sc_dev.dv_xname, bits, test0, stsr);
   2897 	}
   2898 
   2899 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
   2900 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
   2901 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
   2902 		    sc->sc_dev.dv_xname,
   2903 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
   2904 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
   2905 		    sc->sc_dev.dv_xname, bits, test0, stsr));
   2906 	}
   2907 out:
   2908 	splx(s);
   2909 	return;
   2910 }
   2911 
   2912 /*
   2913  * atw_linkintr:
   2914  *
   2915  *	Helper; handle link-status interrupts.
   2916  */
   2917 void
   2918 atw_linkintr(sc, linkstatus)
   2919 	struct atw_softc *sc;
   2920 	u_int32_t linkstatus;
   2921 {
   2922 	struct ieee80211com *ic = &sc->sc_ic;
   2923 
   2924 	if (ic->ic_state != IEEE80211_S_RUN)
   2925 		return;
   2926 
   2927 	if (linkstatus & ATW_INTR_LINKON) {
   2928 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
   2929 		sc->sc_rescan_timer = 0;
   2930 	} else if (linkstatus & ATW_INTR_LINKOFF) {
   2931 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
   2932 		switch (ic->ic_opmode) {
   2933 		case IEEE80211_M_IBSS:
   2934 			if (ic->ic_flags & IEEE80211_F_SIBSS)
   2935 				return;
   2936 			/* FALL THROUGH */
   2937 		case IEEE80211_M_STA:
   2938 			sc->sc_rescan_timer = 3;
   2939 			ic->ic_if.if_timer = 1;
   2940 			break;
   2941 		default:
   2942 			break;
   2943 		}
   2944 	}
   2945 }
   2946 
   2947 /*
   2948  * atw_rxintr:
   2949  *
   2950  *	Helper; handle receive interrupts.
   2951  */
   2952 void
   2953 atw_rxintr(sc)
   2954 	struct atw_softc *sc;
   2955 {
   2956 	static int rate_tbl[] = {2, 4, 11, 22, 44};
   2957 	struct ieee80211com *ic = &sc->sc_ic;
   2958 	struct ieee80211_node *ni;
   2959 	struct ieee80211_frame *wh;
   2960 	struct ifnet *ifp = &ic->ic_if;
   2961 	struct atw_rxsoft *rxs;
   2962 	struct mbuf *m;
   2963 	u_int32_t rxstat;
   2964 	int i, len, rate, rate0, rssi;
   2965 
   2966 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
   2967 		rxs = &sc->sc_rxsoft[i];
   2968 
   2969 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2970 
   2971 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
   2972 		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
   2973 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
   2974 
   2975 		if (rxstat & ATW_RXSTAT_OWN)
   2976 			break; /* We have processed all receive buffers. */
   2977 
   2978 		ATW_DPRINTF3(("%s: rssi %d\n", sc->sc_dev.dv_xname, rssi));
   2979 
   2980 		/*
   2981 		 * Make sure the packet fit in one buffer.  This should
   2982 		 * always be the case.
   2983 		 */
   2984 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
   2985 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
   2986 			printf("%s: incoming packet spilled, resetting\n",
   2987 			    sc->sc_dev.dv_xname);
   2988 			(void)atw_init(ifp);
   2989 			return;
   2990 		}
   2991 
   2992 		/*
   2993 		 * If an error occurred, update stats, clear the status
   2994 		 * word, and leave the packet buffer in place.  It will
   2995 		 * simply be reused the next time the ring comes around.
   2996 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
   2997 		 * error.
   2998 		 */
   2999 
   3000 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
   3001 		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
   3002 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
   3003 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
   3004 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
   3005 				ATW_RXSTAT_ICVE)) != 0)) {
   3006 #define	PRINTERR(bit, str)						\
   3007 			if (rxstat & (bit))				\
   3008 				printf("%s: receive error: %s\n",	\
   3009 				    sc->sc_dev.dv_xname, str)
   3010 			ifp->if_ierrors++;
   3011 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
   3012 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
   3013 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
   3014 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
   3015 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
   3016 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
   3017 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
   3018 #undef PRINTERR
   3019 			ATW_INIT_RXDESC(sc, i);
   3020 			continue;
   3021 		}
   3022 
   3023 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3024 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3025 
   3026 		/*
   3027 		 * No errors; receive the packet.  Note the ADM8211
   3028 		 * includes the CRC in promiscuous mode.
   3029 		 */
   3030 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
   3031 
   3032 		/*
   3033 		 * Allocate a new mbuf cluster.  If that fails, we are
   3034 		 * out of memory, and must drop the packet and recycle
   3035 		 * the buffer that's already attached to this descriptor.
   3036 		 */
   3037 		m = rxs->rxs_mbuf;
   3038 		if (atw_add_rxbuf(sc, i) != 0) {
   3039 			ifp->if_ierrors++;
   3040 			ATW_INIT_RXDESC(sc, i);
   3041 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3042 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3043 			continue;
   3044 		}
   3045 
   3046 		ifp->if_ipackets++;
   3047 		if (sc->sc_opmode & ATW_NAR_PR)
   3048 			m->m_flags |= M_HASFCS;
   3049 		m->m_pkthdr.rcvif = ifp;
   3050 		m->m_pkthdr.len = m->m_len = len;
   3051 
   3052 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
   3053 			rate = 0;
   3054 		else
   3055 			rate = rate_tbl[rate0];
   3056 
   3057 #if NBPFILTER > 0
   3058 		/*
   3059 		 * Pass this up to any BPF listeners, but only
   3060 		 * pass it up the stack if it's for us.
   3061 		 */
   3062 		if (sc->sc_radiobpf) {
   3063 			/* TBD capture DLT_IEEE802_11_RADIO */
   3064 		}
   3065 #endif /* NPBFILTER > 0 */
   3066 
   3067 		wh = mtod(m, struct ieee80211_frame *);
   3068 		ni = ieee80211_find_rxnode(ic, wh);
   3069 		ieee80211_input(ifp, m, ni, rssi, 0);
   3070 		/*
   3071 		 * The frame may have caused the node to be marked for
   3072 		 * reclamation (e.g. in response to a DEAUTH message)
   3073 		 * so use free_node here instead of unref_node.
   3074 		 */
   3075 		if (ni == ic->ic_bss)
   3076 			ieee80211_unref_node(&ni);
   3077 		else
   3078 			ieee80211_free_node(ic, ni);
   3079 	}
   3080 
   3081 	/* Update the receive pointer. */
   3082 	sc->sc_rxptr = i;
   3083 }
   3084 
   3085 /*
   3086  * atw_txintr:
   3087  *
   3088  *	Helper; handle transmit interrupts.
   3089  */
   3090 void
   3091 atw_txintr(sc)
   3092 	struct atw_softc *sc;
   3093 {
   3094 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
   3095     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
   3096 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
   3097     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
   3098 
   3099 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
   3100 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3101 	struct atw_txsoft *txs;
   3102 	u_int32_t txstat;
   3103 
   3104 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
   3105 	    sc->sc_dev.dv_xname, sc->sc_flags));
   3106 
   3107 	ifp->if_flags &= ~IFF_OACTIVE;
   3108 
   3109 	/*
   3110 	 * Go through our Tx list and free mbufs for those
   3111 	 * frames that have been transmitted.
   3112 	 */
   3113 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   3114 		ATW_CDTXSYNC(sc, txs->txs_lastdesc,
   3115 		    txs->txs_ndescs,
   3116 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3117 
   3118 #ifdef ATW_DEBUG
   3119 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3120 			int i;
   3121 			printf("    txsoft %p transmit chain:\n", txs);
   3122 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
   3123 				printf("     descriptor %d:\n", i);
   3124 				printf("       at_status:   0x%08x\n",
   3125 				    le32toh(sc->sc_txdescs[i].at_stat));
   3126 				printf("       at_flags:      0x%08x\n",
   3127 				    le32toh(sc->sc_txdescs[i].at_flags));
   3128 				printf("       at_buf1: 0x%08x\n",
   3129 				    le32toh(sc->sc_txdescs[i].at_buf1));
   3130 				printf("       at_buf2: 0x%08x\n",
   3131 				    le32toh(sc->sc_txdescs[i].at_buf2));
   3132 				if (i == txs->txs_lastdesc)
   3133 					break;
   3134 			}
   3135 		}
   3136 #endif
   3137 
   3138 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
   3139 		if (txstat & ATW_TXSTAT_OWN)
   3140 			break;
   3141 
   3142 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   3143 
   3144 		sc->sc_txfree += txs->txs_ndescs;
   3145 
   3146 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   3147 		    0, txs->txs_dmamap->dm_mapsize,
   3148 		    BUS_DMASYNC_POSTWRITE);
   3149 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3150 		m_freem(txs->txs_mbuf);
   3151 		txs->txs_mbuf = NULL;
   3152 
   3153 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   3154 
   3155 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   3156 		    (txstat & TXSTAT_ERRMASK) != 0) {
   3157 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
   3158 			    txstat_buf, sizeof(txstat_buf));
   3159 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
   3160 			    txstat_buf,
   3161 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
   3162 		}
   3163 
   3164 		/*
   3165 		 * Check for errors and collisions.
   3166 		 */
   3167 		if (txstat & ATW_TXSTAT_TUF)
   3168 			sc->sc_stats.ts_tx_tuf++;
   3169 		if (txstat & ATW_TXSTAT_TLT)
   3170 			sc->sc_stats.ts_tx_tlt++;
   3171 		if (txstat & ATW_TXSTAT_TRT)
   3172 			sc->sc_stats.ts_tx_trt++;
   3173 		if (txstat & ATW_TXSTAT_TRO)
   3174 			sc->sc_stats.ts_tx_tro++;
   3175 		if (txstat & ATW_TXSTAT_SOFBR) {
   3176 			sc->sc_stats.ts_tx_sofbr++;
   3177 		}
   3178 
   3179 		if ((txstat & ATW_TXSTAT_ES) == 0)
   3180 			ifp->if_collisions +=
   3181 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
   3182 		else
   3183 			ifp->if_oerrors++;
   3184 
   3185 		ifp->if_opackets++;
   3186 	}
   3187 
   3188 	/*
   3189 	 * If there are no more pending transmissions, cancel the watchdog
   3190 	 * timer.
   3191 	 */
   3192 	if (txs == NULL)
   3193 		sc->sc_tx_timer = 0;
   3194 #undef TXSTAT_ERRMASK
   3195 #undef TXSTAT_FMT
   3196 }
   3197 
   3198 /*
   3199  * atw_watchdog:	[ifnet interface function]
   3200  *
   3201  *	Watchdog timer handler.
   3202  */
   3203 void
   3204 atw_watchdog(ifp)
   3205 	struct ifnet *ifp;
   3206 {
   3207 	struct atw_softc *sc = ifp->if_softc;
   3208 	struct ieee80211com *ic = &sc->sc_ic;
   3209 
   3210 	ifp->if_timer = 0;
   3211 	if (ATW_IS_ENABLED(sc) == 0)
   3212 		return;
   3213 
   3214 	if (sc->sc_rescan_timer) {
   3215 		if (--sc->sc_rescan_timer == 0)
   3216 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3217 	}
   3218 	if (sc->sc_tx_timer) {
   3219 		if (--sc->sc_tx_timer == 0 &&
   3220 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
   3221 			printf("%s: transmit timeout\n", ifp->if_xname);
   3222 			ifp->if_oerrors++;
   3223 			(void)atw_init(ifp);
   3224 			atw_start(ifp);
   3225 		}
   3226 	}
   3227 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
   3228 		ifp->if_timer = 1;
   3229 	ieee80211_watchdog(ifp);
   3230 }
   3231 
   3232 /* Compute the 802.11 Duration field and the PLCP Length fields for
   3233  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
   3234  * Write the fields to the ADM8211 Tx header, frm.
   3235  *
   3236  * TBD use the fragmentation threshold to find the right duration for
   3237  * the first & last fragments.
   3238  *
   3239  * TBD make certain of the duration fields applied by the ADM8211 to each
   3240  * fragment. I think that the ADM8211 knows how to subtract the CTS
   3241  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
   3242  * I also think that the ADM8211 does *some* arithmetic for us, because
   3243  * otherwise I think we would have to set a first duration for CTS/first
   3244  * fragment, a second duration for fragments between the first and the
   3245  * last, and a third duration for the last fragment.
   3246  *
   3247  * TBD make certain that duration fields reflect addition of FCS/WEP
   3248  * and correct duration arithmetic as necessary.
   3249  */
   3250 static void
   3251 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
   3252     int len)
   3253 {
   3254 	int remainder;
   3255 
   3256 	/* deal also with encrypted fragments */
   3257 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
   3258 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
   3259 		    sc->sc_dev.dv_xname));
   3260 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
   3261 		       IEEE80211_WEP_CRCLEN;
   3262 	}
   3263 
   3264 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
   3265 	 * duration (XXX added by MAC?).
   3266 	 */
   3267 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
   3268 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
   3269 
   3270 	if (rate <= 4)
   3271 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
   3272 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3273 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3274 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3275 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
   3276 	else
   3277 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
   3278 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3279 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3280 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3281 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
   3282 
   3283 	/* lengthen duration if long preamble */
   3284 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
   3285 		frm->atw_head_dur +=
   3286 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
   3287 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
   3288 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
   3289 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
   3290 
   3291 	if (remainder != 0)
   3292 		frm->atw_head_dur++;
   3293 
   3294 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
   3295 	    (rate == 2 || rate == 4)) {
   3296 		/* derived from Linux: how could this be right? */
   3297 		frm->atw_head_plcplen = frm->atw_head_dur;
   3298 	} else {
   3299 		frm->atw_head_plcplen = (16 * len) / rate;
   3300 		remainder = (80 * len) % (rate * 5);
   3301 
   3302 		if (remainder != 0) {
   3303 			frm->atw_head_plcplen++;
   3304 
   3305 			/* XXX magic */
   3306 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
   3307 			    rate == 22 && remainder <= 30)
   3308 				frm->atw_head_plcplen |= 0x8000;
   3309 		}
   3310 	}
   3311 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
   3312 	    htole16(frm->atw_head_plcplen);
   3313 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
   3314 }
   3315 
   3316 #ifdef ATW_DEBUG
   3317 static void
   3318 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
   3319 {
   3320 	struct atw_softc *sc = ifp->if_softc;
   3321 	struct mbuf *m;
   3322 	int i, noctets = 0;
   3323 
   3324 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
   3325 	    m0->m_pkthdr.len);
   3326 
   3327 	for (m = m0; m; m = m->m_next) {
   3328 		if (m->m_len == 0)
   3329 			continue;
   3330 		for (i = 0; i < m->m_len; i++) {
   3331 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
   3332 			if (++noctets % 24 == 0)
   3333 				printf("\n");
   3334 		}
   3335 	}
   3336 	printf("%s%s: %d bytes emitted\n",
   3337 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
   3338 }
   3339 #endif /* ATW_DEBUG */
   3340 
   3341 /*
   3342  * atw_start:		[ifnet interface function]
   3343  *
   3344  *	Start packet transmission on the interface.
   3345  */
   3346 void
   3347 atw_start(ifp)
   3348 	struct ifnet *ifp;
   3349 {
   3350 	struct atw_softc *sc = ifp->if_softc;
   3351 	struct ieee80211com *ic = &sc->sc_ic;
   3352 	struct ieee80211_node *ni;
   3353 	struct ieee80211_frame *wh;
   3354 	struct atw_frame *hh;
   3355 	struct mbuf *m0, *m;
   3356 	struct atw_txsoft *txs, *last_txs;
   3357 	struct atw_txdesc *txd;
   3358 	int do_encrypt, rate;
   3359 	bus_dmamap_t dmamap;
   3360 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
   3361 
   3362 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
   3363 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
   3364 
   3365 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3366 		return;
   3367 
   3368 #if 0 /* TBD ??? */
   3369 	if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
   3370 		return;
   3371 #endif
   3372 
   3373 	/*
   3374 	 * Remember the previous number of free descriptors and
   3375 	 * the first descriptor we'll use.
   3376 	 */
   3377 	ofree = sc->sc_txfree;
   3378 	firsttx = sc->sc_txnext;
   3379 
   3380 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
   3381 	    sc->sc_dev.dv_xname, ofree, firsttx));
   3382 
   3383 	/*
   3384 	 * Loop through the send queue, setting up transmit descriptors
   3385 	 * until we drain the queue, or use up all available transmit
   3386 	 * descriptors.
   3387 	 */
   3388 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   3389 	       sc->sc_txfree != 0) {
   3390 
   3391 		do_encrypt = 0;
   3392 		/*
   3393 		 * Grab a packet off the management queue, if it
   3394 		 * is not empty. Otherwise, from the data queue.
   3395 		 */
   3396 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   3397 		if (m0 != NULL) {
   3398 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   3399 			m0->m_pkthdr.rcvif = NULL;
   3400 		} else {
   3401 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   3402 			if (m0 == NULL)
   3403 				break;
   3404 #if NBPFILTER > 0
   3405 			if (ifp->if_bpf != NULL)
   3406 				bpf_mtap(ifp->if_bpf, m0);
   3407 #endif /* NBPFILTER > 0 */
   3408 			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
   3409 				ifp->if_oerrors++;
   3410 				break;
   3411 			}
   3412 		}
   3413 
   3414 #if NBPFILTER > 0
   3415 		/*
   3416 		 * Pass the packet to any BPF listeners.
   3417 		 */
   3418 		if (ic->ic_rawbpf != NULL)
   3419 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
   3420 		if (sc->sc_radiobpf != NULL)
   3421 			; /* TBD tap w/ radio header */
   3422 #endif /* NBPFILTER > 0 */
   3423 
   3424 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
   3425 
   3426 		if (ni != NULL && ni != ic->ic_bss)
   3427 			ieee80211_free_node(ic, ni);
   3428 
   3429 		if (m0 == NULL) {
   3430 			ifp->if_oerrors++;
   3431 			break;
   3432 		}
   3433 
   3434 		/* just to make sure. */
   3435 		m0 = m_pullup(m0, sizeof(struct atw_frame));
   3436 
   3437 		if (m0 == NULL) {
   3438 			ifp->if_oerrors++;
   3439 			break;
   3440 		}
   3441 
   3442 		hh = mtod(m0, struct atw_frame *);
   3443 		wh = &hh->atw_ihdr;
   3444 
   3445 		do_encrypt = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
   3446 
   3447 		/* Copy everything we need from the 802.11 header:
   3448 		 * Frame Control; address 1, address 3, or addresses
   3449 		 * 3 and 4. NIC fills in BSSID, SA.
   3450 		 */
   3451 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
   3452 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
   3453 				panic("%s: illegal WDS frame",
   3454 				    sc->sc_dev.dv_xname);
   3455 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
   3456 		} else
   3457 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
   3458 
   3459 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
   3460 
   3461 		/* initialize remaining Tx parameters */
   3462 		memset(&hh->u, 0, sizeof(hh->u));
   3463 
   3464 		rate = MAX(ieee80211_get_rate(ic), 2);
   3465 
   3466 		hh->atw_rate = rate * 5;
   3467 		/* XXX this could be incorrect if M_FCS. _encap should
   3468 		 * probably strip FCS just in case it sticks around in
   3469 		 * bridged packets.
   3470 		 */
   3471 		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
   3472 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
   3473 		    sizeof(struct atw_frame));
   3474 
   3475 #if 0
   3476 		/* this virtually guaranteed that WEP-encrypted frames
   3477 		 * are fragmented. oops.
   3478 		 */
   3479 		hh->atw_fragthr = htole16(m0->m_pkthdr.len -
   3480 		    sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
   3481 		hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3482 #else
   3483 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3484 #endif
   3485 
   3486 		hh->atw_rtylmt = 3;
   3487 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
   3488 		if (do_encrypt) {
   3489 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
   3490 			hh->atw_keyid = ic->ic_wep_txkey;
   3491 		}
   3492 
   3493 		/* TBD 4-addr frames */
   3494 		atw_frame_setdurs(sc, hh, rate,
   3495 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
   3496 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
   3497 
   3498 		/* never fragment multicast frames */
   3499 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
   3500 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3501 		} else if (sc->sc_flags & ATWF_RTSCTS) {
   3502 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
   3503 		}
   3504 
   3505 #ifdef ATW_DEBUG
   3506 		/* experimental stuff */
   3507 		if (atw_xrtylmt != ~0)
   3508 			hh->atw_rtylmt = atw_xrtylmt;
   3509 		if (atw_xhdrctl != 0)
   3510 			hh->atw_hdrctl |= htole16(atw_xhdrctl);
   3511 		if (atw_xservice != IEEE80211_PLCP_SERVICE)
   3512 			hh->atw_service = atw_xservice;
   3513 		if (atw_xpaylen != 0)
   3514 			hh->atw_paylen = htole16(atw_xpaylen);
   3515 		hh->atw_fragnum = 0;
   3516 
   3517 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3518 			printf("%s: dst = %s, rate = 0x%02x, "
   3519 			    "service = 0x%02x, paylen = 0x%04x\n",
   3520 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
   3521 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
   3522 
   3523 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
   3524 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
   3525 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
   3526 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
   3527 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
   3528 			    hh->atw_tail_dur, hh->atw_head_dur);
   3529 
   3530 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
   3531 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
   3532 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
   3533 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
   3534 
   3535 			printf("%s: keyid = %d\n",
   3536 			    sc->sc_dev.dv_xname, hh->atw_keyid);
   3537 
   3538 			atw_dump_pkt(ifp, m0);
   3539 		}
   3540 #endif /* ATW_DEBUG */
   3541 
   3542 		dmamap = txs->txs_dmamap;
   3543 
   3544 		/*
   3545 		 * Load the DMA map.  Copy and try (once) again if the packet
   3546 		 * didn't fit in the alloted number of segments.
   3547 		 */
   3548 		for (first = 1;
   3549 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   3550 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
   3551 		     first = 0) {
   3552 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   3553 			if (m == NULL) {
   3554 				printf("%s: unable to allocate Tx mbuf\n",
   3555 				    sc->sc_dev.dv_xname);
   3556 				break;
   3557 			}
   3558 			if (m0->m_pkthdr.len > MHLEN) {
   3559 				MCLGET(m, M_DONTWAIT);
   3560 				if ((m->m_flags & M_EXT) == 0) {
   3561 					printf("%s: unable to allocate Tx "
   3562 					    "cluster\n", sc->sc_dev.dv_xname);
   3563 					m_freem(m);
   3564 					break;
   3565 				}
   3566 			}
   3567 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   3568 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   3569 			m_freem(m0);
   3570 			m0 = m;
   3571 			m = NULL;
   3572 		}
   3573 		if (error != 0) {
   3574 			printf("%s: unable to load Tx buffer, "
   3575 			    "error = %d\n", sc->sc_dev.dv_xname, error);
   3576 			m_freem(m0);
   3577 			break;
   3578 		}
   3579 
   3580 		/*
   3581 		 * Ensure we have enough descriptors free to describe
   3582 		 * the packet.
   3583 		 */
   3584 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   3585 			/*
   3586 			 * Not enough free descriptors to transmit
   3587 			 * this packet.  Unload the DMA map and
   3588 			 * drop the packet.  Notify the upper layer
   3589 			 * that there are no more slots left.
   3590 			 *
   3591 			 * XXX We could allocate an mbuf and copy, but
   3592 			 * XXX it is worth it?
   3593 			 */
   3594 			ifp->if_flags |= IFF_OACTIVE;
   3595 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   3596 			m_freem(m0);
   3597 			break;
   3598 		}
   3599 
   3600 		/*
   3601 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   3602 		 */
   3603 
   3604 		/* Sync the DMA map. */
   3605 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   3606 		    BUS_DMASYNC_PREWRITE);
   3607 
   3608 		/* XXX arbitrary retry limit; 8 because I have seen it in
   3609 		 * use already and maybe 0 means "no tries" !
   3610 		 */
   3611 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
   3612 
   3613 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
   3614 		    sc->sc_dev.dv_xname, rate * 5));
   3615 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
   3616 
   3617 		/*
   3618 		 * Initialize the transmit descriptors.
   3619 		 */
   3620 		for (nexttx = sc->sc_txnext, seg = 0;
   3621 		     seg < dmamap->dm_nsegs;
   3622 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
   3623 			/*
   3624 			 * If this is the first descriptor we're
   3625 			 * enqueueing, don't set the OWN bit just
   3626 			 * yet.  That could cause a race condition.
   3627 			 * We'll do it below.
   3628 			 */
   3629 			txd = &sc->sc_txdescs[nexttx];
   3630 			txd->at_ctl = ctl |
   3631 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
   3632 
   3633 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
   3634 			txd->at_flags =
   3635 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
   3636 			                   ATW_TXFLAG_TBS1_MASK)) |
   3637 			    ((nexttx == (ATW_NTXDESC - 1))
   3638 			        ? htole32(ATW_TXFLAG_TER) : 0);
   3639 			lasttx = nexttx;
   3640 		}
   3641 
   3642 		KASSERT(lasttx != -1, ("bad lastx"));
   3643 		/* Set `first segment' and `last segment' appropriately. */
   3644 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
   3645 		    htole32(ATW_TXFLAG_FS);
   3646 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
   3647 
   3648 #ifdef ATW_DEBUG
   3649 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3650 			printf("     txsoft %p transmit chain:\n", txs);
   3651 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
   3652 				printf("     descriptor %d:\n", seg);
   3653 				printf("       at_ctl:   0x%08x\n",
   3654 				    le32toh(sc->sc_txdescs[seg].at_ctl));
   3655 				printf("       at_flags:      0x%08x\n",
   3656 				    le32toh(sc->sc_txdescs[seg].at_flags));
   3657 				printf("       at_buf1: 0x%08x\n",
   3658 				    le32toh(sc->sc_txdescs[seg].at_buf1));
   3659 				printf("       at_buf2: 0x%08x\n",
   3660 				    le32toh(sc->sc_txdescs[seg].at_buf2));
   3661 				if (seg == lasttx)
   3662 					break;
   3663 			}
   3664 		}
   3665 #endif
   3666 
   3667 		/* Sync the descriptors we're using. */
   3668 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   3669 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3670 
   3671 		/*
   3672 		 * Store a pointer to the packet so we can free it later,
   3673 		 * and remember what txdirty will be once the packet is
   3674 		 * done.
   3675 		 */
   3676 		txs->txs_mbuf = m0;
   3677 		txs->txs_firstdesc = sc->sc_txnext;
   3678 		txs->txs_lastdesc = lasttx;
   3679 		txs->txs_ndescs = dmamap->dm_nsegs;
   3680 
   3681 		/* Advance the tx pointer. */
   3682 		sc->sc_txfree -= dmamap->dm_nsegs;
   3683 		sc->sc_txnext = nexttx;
   3684 
   3685 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   3686 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   3687 
   3688 		last_txs = txs;
   3689 	}
   3690 
   3691 	if (txs == NULL || sc->sc_txfree == 0) {
   3692 		/* No more slots left; notify upper layer. */
   3693 		ifp->if_flags |= IFF_OACTIVE;
   3694 	}
   3695 
   3696 	if (sc->sc_txfree != ofree) {
   3697 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   3698 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   3699 		/*
   3700 		 * Cause a transmit interrupt to happen on the
   3701 		 * last packet we enqueued.
   3702 		 */
   3703 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
   3704 		ATW_CDTXSYNC(sc, lasttx, 1,
   3705 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3706 
   3707 		/*
   3708 		 * The entire packet chain is set up.  Give the
   3709 		 * first descriptor to the chip now.
   3710 		 */
   3711 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
   3712 		ATW_CDTXSYNC(sc, firsttx, 1,
   3713 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3714 
   3715 		/* Wake up the transmitter. */
   3716 		/* XXX USE AUTOPOLLING? */
   3717 		ATW_WRITE(sc, ATW_TDR, 0x1);
   3718 
   3719 		/* Set a watchdog timer in case the chip flakes out. */
   3720 		sc->sc_tx_timer = 5;
   3721 		ifp->if_timer = 1;
   3722 	}
   3723 }
   3724 
   3725 /*
   3726  * atw_power:
   3727  *
   3728  *	Power management (suspend/resume) hook.
   3729  */
   3730 void
   3731 atw_power(why, arg)
   3732 	int why;
   3733 	void *arg;
   3734 {
   3735 	struct atw_softc *sc = arg;
   3736 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   3737 	int s;
   3738 
   3739 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
   3740 
   3741 	s = splnet();
   3742 	switch (why) {
   3743 	case PWR_STANDBY:
   3744 		/* XXX do nothing. */
   3745 		break;
   3746 	case PWR_SUSPEND:
   3747 		atw_stop(ifp, 0);
   3748 		if (sc->sc_power != NULL)
   3749 			(*sc->sc_power)(sc, why);
   3750 		break;
   3751 	case PWR_RESUME:
   3752 		if (ifp->if_flags & IFF_UP) {
   3753 			if (sc->sc_power != NULL)
   3754 				(*sc->sc_power)(sc, why);
   3755 			atw_init(ifp);
   3756 		}
   3757 		break;
   3758 	case PWR_SOFTSUSPEND:
   3759 	case PWR_SOFTSTANDBY:
   3760 	case PWR_SOFTRESUME:
   3761 		break;
   3762 	}
   3763 	splx(s);
   3764 }
   3765 
   3766 /*
   3767  * atw_ioctl:		[ifnet interface function]
   3768  *
   3769  *	Handle control requests from the operator.
   3770  */
   3771 int
   3772 atw_ioctl(ifp, cmd, data)
   3773 	struct ifnet *ifp;
   3774 	u_long cmd;
   3775 	caddr_t data;
   3776 {
   3777 	struct atw_softc *sc = ifp->if_softc;
   3778 	struct ifreq *ifr = (struct ifreq *)data;
   3779 	int s, error = 0;
   3780 
   3781 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
   3782 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   3783 		return ENXIO;
   3784 
   3785 	s = splnet();
   3786 
   3787 	switch (cmd) {
   3788 	case SIOCSIFFLAGS:
   3789 		if (ifp->if_flags & IFF_UP) {
   3790 			if (ATW_IS_ENABLED(sc)) {
   3791 				/*
   3792 				 * To avoid rescanning another access point,
   3793 				 * do not call atw_init() here.  Instead,
   3794 				 * only reflect media settings.
   3795 				 */
   3796 				atw_filter_setup(sc);
   3797 			} else
   3798 				error = atw_init(ifp);
   3799 		} else if (ATW_IS_ENABLED(sc))
   3800 			atw_stop(ifp, 1);
   3801 		break;
   3802 	case SIOCADDMULTI:
   3803 	case SIOCDELMULTI:
   3804 		error = (cmd == SIOCADDMULTI) ?
   3805 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
   3806 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
   3807 		if (error == ENETRESET) {
   3808 			if (ATW_IS_ENABLED(sc))
   3809 				atw_filter_setup(sc); /* do not rescan */
   3810 			error = 0;
   3811 		}
   3812 		break;
   3813 	default:
   3814 		error = ieee80211_ioctl(ifp, cmd, data);
   3815 		if (error == ENETRESET) {
   3816 			if (ATW_IS_ENABLED(sc))
   3817 				error = atw_init(ifp);
   3818 			else
   3819 				error = 0;
   3820 		}
   3821 		break;
   3822 	}
   3823 
   3824 	/* Try to get more packets going. */
   3825 	if (ATW_IS_ENABLED(sc))
   3826 		atw_start(ifp);
   3827 
   3828 	splx(s);
   3829 	return (error);
   3830 }
   3831 
   3832 static int
   3833 atw_media_change(struct ifnet *ifp)
   3834 {
   3835 	int error;
   3836 
   3837 	error = ieee80211_media_change(ifp);
   3838 	if (error == ENETRESET) {
   3839 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   3840 		    (IFF_RUNNING|IFF_UP))
   3841 			atw_init(ifp);		/* XXX lose error */
   3842 		error = 0;
   3843 	}
   3844 	return error;
   3845 }
   3846 
   3847 static void
   3848 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
   3849 {
   3850 	struct atw_softc *sc = ifp->if_softc;
   3851 
   3852 	if (ATW_IS_ENABLED(sc) == 0) {
   3853 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
   3854 		imr->ifm_status = 0;
   3855 		return;
   3856 	}
   3857 	ieee80211_media_status(ifp, imr);
   3858 }
   3859