atw.c revision 1.90 1 /* $NetBSD: atw.c,v 1.90 2005/11/18 16:53:56 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.90 2005/11/18 16:53:56 skrll Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_netbsd.h>
70 #include <net80211/ieee80211_var.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162
163 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
166 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
167 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
171 static void atw_print_regs(struct atw_softc *, const char *);
172
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 # ifdef ATW_BBPDEBUG
175 static void atw_rf3000_print(struct atw_softc *);
176 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177 # endif /* ATW_BBPDEBUG */
178
179 # ifdef ATW_SYNDEBUG
180 static void atw_si4126_print(struct atw_softc *);
181 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
182 # endif /* ATW_SYNDEBUG */
183
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define DPRINTF(sc, x) /* nothing */
189 #define DPRINTF2(sc, x) /* nothing */
190 #define DPRINTF3(sc, x) /* nothing */
191 #endif
192
193 /* ifnet methods */
194 int atw_init(struct ifnet *);
195 int atw_ioctl(struct ifnet *, u_long, caddr_t);
196 void atw_start(struct ifnet *);
197 void atw_stop(struct ifnet *, int);
198 void atw_watchdog(struct ifnet *);
199
200 /* Device attachment */
201 void atw_attach(struct atw_softc *);
202 int atw_detach(struct atw_softc *);
203
204 /* Rx/Tx process */
205 int atw_add_rxbuf(struct atw_softc *, int);
206 void atw_idle(struct atw_softc *, u_int32_t);
207 void atw_rxdrain(struct atw_softc *);
208 void atw_txdrain(struct atw_softc *);
209
210 /* Device (de)activation and power state */
211 void atw_disable(struct atw_softc *);
212 int atw_enable(struct atw_softc *);
213 void atw_power(int, void *);
214 void atw_reset(struct atw_softc *);
215 void atw_shutdown(void *);
216
217 /* Interrupt handlers */
218 void atw_linkintr(struct atw_softc *, u_int32_t);
219 void atw_rxintr(struct atw_softc *);
220 void atw_txintr(struct atw_softc *);
221
222 /* 802.11 state machine */
223 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static void atw_next_scan(void *);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static int atw_tune(struct atw_softc *);
228
229 /* Device initialization */
230 static void atw_bbp_io_init(struct atw_softc *);
231 static void atw_cfp_init(struct atw_softc *);
232 static void atw_cmdr_init(struct atw_softc *);
233 static void atw_ifs_init(struct atw_softc *);
234 static void atw_nar_init(struct atw_softc *);
235 static void atw_response_times_init(struct atw_softc *);
236 static void atw_rf_reset(struct atw_softc *);
237 static void atw_test1_init(struct atw_softc *);
238 static void atw_tofs0_init(struct atw_softc *);
239 static void atw_tofs2_init(struct atw_softc *);
240 static void atw_txlmt_init(struct atw_softc *);
241 static void atw_wcsr_init(struct atw_softc *);
242
243 /* Key management */
244 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
245 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
246 const u_int8_t[IEEE80211_ADDR_LEN]);
247 static void atw_key_update_begin(struct ieee80211com *);
248 static void atw_key_update_end(struct ieee80211com *);
249
250 /* RAM/ROM utilities */
251 static void atw_clear_sram(struct atw_softc *);
252 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
253 static int atw_read_srom(struct atw_softc *);
254
255 /* BSS setup */
256 static void atw_predict_beacon(struct atw_softc *);
257 static void atw_start_beacon(struct atw_softc *, int);
258 static void atw_write_bssid(struct atw_softc *);
259 static void atw_write_ssid(struct atw_softc *);
260 static void atw_write_sup_rates(struct atw_softc *);
261 static void atw_write_wep(struct atw_softc *);
262
263 /* Media */
264 static int atw_media_change(struct ifnet *);
265 static void atw_media_status(struct ifnet *, struct ifmediareq *);
266
267 static void atw_filter_setup(struct atw_softc *);
268
269 /* 802.11 utilities */
270 static void atw_frame_setdurs(struct atw_softc *,
271 struct atw_frame *, int, int);
272 static uint64_t atw_get_tsft(struct atw_softc *);
273 static __inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
274 uint32_t);
275 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
276 static void atw_node_free(struct ieee80211_node *);
277 static void atw_change_ibss(struct atw_softc *);
278
279 /*
280 * Tuner/transceiver/modem
281 */
282 static void atw_bbp_io_enable(struct atw_softc *, int);
283
284 /* RFMD RF3000 Baseband Processor */
285 static int atw_rf3000_init(struct atw_softc *);
286 static int atw_rf3000_tune(struct atw_softc *, u_int);
287 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
288
289 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
290 static void atw_si4126_tune(struct atw_softc *, u_int);
291 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
292
293 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
294 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
295
296 const char *atw_tx_state[] = {
297 "STOPPED",
298 "RUNNING - read descriptor",
299 "RUNNING - transmitting",
300 "RUNNING - filling fifo", /* XXX */
301 "SUSPENDED",
302 "RUNNING -- write descriptor",
303 "RUNNING -- write last descriptor",
304 "RUNNING - fifo full"
305 };
306
307 const char *atw_rx_state[] = {
308 "STOPPED",
309 "RUNNING - read descriptor",
310 "RUNNING - check this packet, pre-fetch next",
311 "RUNNING - wait for reception",
312 "SUSPENDED",
313 "RUNNING - write descriptor",
314 "RUNNING - flush fifo",
315 "RUNNING - fifo drain"
316 };
317
318 int
319 atw_activate(struct device *self, enum devact act)
320 {
321 struct atw_softc *sc = (struct atw_softc *)self;
322 int rv = 0, s;
323
324 s = splnet();
325 switch (act) {
326 case DVACT_ACTIVATE:
327 rv = EOPNOTSUPP;
328 break;
329
330 case DVACT_DEACTIVATE:
331 if_deactivate(&sc->sc_if);
332 break;
333 }
334 splx(s);
335 return rv;
336 }
337
338 /*
339 * atw_enable:
340 *
341 * Enable the ADM8211 chip.
342 */
343 int
344 atw_enable(struct atw_softc *sc)
345 {
346
347 if (ATW_IS_ENABLED(sc) == 0) {
348 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
349 printf("%s: device enable failed\n",
350 sc->sc_dev.dv_xname);
351 return (EIO);
352 }
353 sc->sc_flags |= ATWF_ENABLED;
354 }
355 return (0);
356 }
357
358 /*
359 * atw_disable:
360 *
361 * Disable the ADM8211 chip.
362 */
363 void
364 atw_disable(struct atw_softc *sc)
365 {
366 if (!ATW_IS_ENABLED(sc))
367 return;
368 if (sc->sc_disable != NULL)
369 (*sc->sc_disable)(sc);
370 sc->sc_flags &= ~ATWF_ENABLED;
371 }
372
373 /* Returns -1 on failure. */
374 static int
375 atw_read_srom(struct atw_softc *sc)
376 {
377 struct seeprom_descriptor sd;
378 uint32_t test0, fail_bits;
379
380 (void)memset(&sd, 0, sizeof(sd));
381
382 test0 = ATW_READ(sc, ATW_TEST0);
383
384 switch (sc->sc_rev) {
385 case ATW_REVISION_BA:
386 case ATW_REVISION_CA:
387 fail_bits = ATW_TEST0_EPNE;
388 break;
389 default:
390 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
391 break;
392 }
393 if ((test0 & fail_bits) != 0) {
394 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
395 return -1;
396 }
397
398 switch (test0 & ATW_TEST0_EPTYP_MASK) {
399 case ATW_TEST0_EPTYP_93c66:
400 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
401 sc->sc_sromsz = 512;
402 sd.sd_chip = C56_66;
403 break;
404 case ATW_TEST0_EPTYP_93c46:
405 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
406 sc->sc_sromsz = 128;
407 sd.sd_chip = C46;
408 break;
409 default:
410 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
411 MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
412 return -1;
413 }
414
415 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
416
417 if (sc->sc_srom == NULL) {
418 printf("%s: unable to allocate SROM buffer\n",
419 sc->sc_dev.dv_xname);
420 return -1;
421 }
422
423 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
424
425 /* ADM8211 has a single 32-bit register for controlling the
426 * 93cx6 SROM. Bit SRS enables the serial port. There is no
427 * "ready" bit. The ADM8211 input/output sense is the reverse
428 * of read_seeprom's.
429 */
430 sd.sd_tag = sc->sc_st;
431 sd.sd_bsh = sc->sc_sh;
432 sd.sd_regsize = 4;
433 sd.sd_control_offset = ATW_SPR;
434 sd.sd_status_offset = ATW_SPR;
435 sd.sd_dataout_offset = ATW_SPR;
436 sd.sd_CK = ATW_SPR_SCLK;
437 sd.sd_CS = ATW_SPR_SCS;
438 sd.sd_DI = ATW_SPR_SDO;
439 sd.sd_DO = ATW_SPR_SDI;
440 sd.sd_MS = ATW_SPR_SRS;
441 sd.sd_RDY = 0;
442
443 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
444 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
445 free(sc->sc_srom, M_DEVBUF);
446 return -1;
447 }
448 #ifdef ATW_DEBUG
449 {
450 int i;
451 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
452 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
453 if (((i % 8) == 0) && (i != 0)) {
454 ATW_DPRINTF(("\n\t"));
455 }
456 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
457 }
458 ATW_DPRINTF(("\n"));
459 }
460 #endif /* ATW_DEBUG */
461 return 0;
462 }
463
464 #ifdef ATW_DEBUG
465 static void
466 atw_print_regs(struct atw_softc *sc, const char *where)
467 {
468 #define PRINTREG(sc, reg) \
469 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
470 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
471
472 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
473
474 PRINTREG(sc, ATW_PAR);
475 PRINTREG(sc, ATW_FRCTL);
476 PRINTREG(sc, ATW_TDR);
477 PRINTREG(sc, ATW_WTDP);
478 PRINTREG(sc, ATW_RDR);
479 PRINTREG(sc, ATW_WRDP);
480 PRINTREG(sc, ATW_RDB);
481 PRINTREG(sc, ATW_CSR3A);
482 PRINTREG(sc, ATW_TDBD);
483 PRINTREG(sc, ATW_TDBP);
484 PRINTREG(sc, ATW_STSR);
485 PRINTREG(sc, ATW_CSR5A);
486 PRINTREG(sc, ATW_NAR);
487 PRINTREG(sc, ATW_CSR6A);
488 PRINTREG(sc, ATW_IER);
489 PRINTREG(sc, ATW_CSR7A);
490 PRINTREG(sc, ATW_LPC);
491 PRINTREG(sc, ATW_TEST1);
492 PRINTREG(sc, ATW_SPR);
493 PRINTREG(sc, ATW_TEST0);
494 PRINTREG(sc, ATW_WCSR);
495 PRINTREG(sc, ATW_WPDR);
496 PRINTREG(sc, ATW_GPTMR);
497 PRINTREG(sc, ATW_GPIO);
498 PRINTREG(sc, ATW_BBPCTL);
499 PRINTREG(sc, ATW_SYNCTL);
500 PRINTREG(sc, ATW_PLCPHD);
501 PRINTREG(sc, ATW_MMIWADDR);
502 PRINTREG(sc, ATW_MMIRADDR1);
503 PRINTREG(sc, ATW_MMIRADDR2);
504 PRINTREG(sc, ATW_TXBR);
505 PRINTREG(sc, ATW_CSR15A);
506 PRINTREG(sc, ATW_ALCSTAT);
507 PRINTREG(sc, ATW_TOFS2);
508 PRINTREG(sc, ATW_CMDR);
509 PRINTREG(sc, ATW_PCIC);
510 PRINTREG(sc, ATW_PMCSR);
511 PRINTREG(sc, ATW_PAR0);
512 PRINTREG(sc, ATW_PAR1);
513 PRINTREG(sc, ATW_MAR0);
514 PRINTREG(sc, ATW_MAR1);
515 PRINTREG(sc, ATW_ATIMDA0);
516 PRINTREG(sc, ATW_ABDA1);
517 PRINTREG(sc, ATW_BSSID0);
518 PRINTREG(sc, ATW_TXLMT);
519 PRINTREG(sc, ATW_MIBCNT);
520 PRINTREG(sc, ATW_BCNT);
521 PRINTREG(sc, ATW_TSFTH);
522 PRINTREG(sc, ATW_TSC);
523 PRINTREG(sc, ATW_SYNRF);
524 PRINTREG(sc, ATW_BPLI);
525 PRINTREG(sc, ATW_CAP0);
526 PRINTREG(sc, ATW_CAP1);
527 PRINTREG(sc, ATW_RMD);
528 PRINTREG(sc, ATW_CFPP);
529 PRINTREG(sc, ATW_TOFS0);
530 PRINTREG(sc, ATW_TOFS1);
531 PRINTREG(sc, ATW_IFST);
532 PRINTREG(sc, ATW_RSPT);
533 PRINTREG(sc, ATW_TSFTL);
534 PRINTREG(sc, ATW_WEPCTL);
535 PRINTREG(sc, ATW_WESK);
536 PRINTREG(sc, ATW_WEPCNT);
537 PRINTREG(sc, ATW_MACTEST);
538 PRINTREG(sc, ATW_FER);
539 PRINTREG(sc, ATW_FEMR);
540 PRINTREG(sc, ATW_FPSR);
541 PRINTREG(sc, ATW_FFER);
542 #undef PRINTREG
543 }
544 #endif /* ATW_DEBUG */
545
546 /*
547 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
548 */
549 void
550 atw_attach(struct atw_softc *sc)
551 {
552 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
553 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
554 };
555 struct ieee80211com *ic = &sc->sc_ic;
556 struct ifnet *ifp = &sc->sc_if;
557 int country_code, error, i, nrate, srom_major;
558 u_int32_t reg;
559 static const char *type_strings[] = {"Intersil (not supported)",
560 "RFMD", "Marvel (not supported)"};
561
562 sc->sc_txth = atw_txthresh_tab_lo;
563
564 SIMPLEQ_INIT(&sc->sc_txfreeq);
565 SIMPLEQ_INIT(&sc->sc_txdirtyq);
566
567 #ifdef ATW_DEBUG
568 atw_print_regs(sc, "atw_attach");
569 #endif /* ATW_DEBUG */
570
571 /*
572 * Allocate the control data structures, and create and load the
573 * DMA map for it.
574 */
575 if ((error = bus_dmamem_alloc(sc->sc_dmat,
576 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
577 1, &sc->sc_cdnseg, 0)) != 0) {
578 printf("%s: unable to allocate control data, error = %d\n",
579 sc->sc_dev.dv_xname, error);
580 goto fail_0;
581 }
582
583 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
584 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
585 BUS_DMA_COHERENT)) != 0) {
586 printf("%s: unable to map control data, error = %d\n",
587 sc->sc_dev.dv_xname, error);
588 goto fail_1;
589 }
590
591 if ((error = bus_dmamap_create(sc->sc_dmat,
592 sizeof(struct atw_control_data), 1,
593 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
594 printf("%s: unable to create control data DMA map, "
595 "error = %d\n", sc->sc_dev.dv_xname, error);
596 goto fail_2;
597 }
598
599 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
600 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
601 0)) != 0) {
602 printf("%s: unable to load control data DMA map, error = %d\n",
603 sc->sc_dev.dv_xname, error);
604 goto fail_3;
605 }
606
607 /*
608 * Create the transmit buffer DMA maps.
609 */
610 sc->sc_ntxsegs = ATW_NTXSEGS;
611 for (i = 0; i < ATW_TXQUEUELEN; i++) {
612 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
613 sc->sc_ntxsegs, MCLBYTES, 0, 0,
614 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
615 printf("%s: unable to create tx DMA map %d, "
616 "error = %d\n", sc->sc_dev.dv_xname, i, error);
617 goto fail_4;
618 }
619 }
620
621 /*
622 * Create the receive buffer DMA maps.
623 */
624 for (i = 0; i < ATW_NRXDESC; i++) {
625 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
626 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
627 printf("%s: unable to create rx DMA map %d, "
628 "error = %d\n", sc->sc_dev.dv_xname, i, error);
629 goto fail_5;
630 }
631 }
632 for (i = 0; i < ATW_NRXDESC; i++) {
633 sc->sc_rxsoft[i].rxs_mbuf = NULL;
634 }
635
636 switch (sc->sc_rev) {
637 case ATW_REVISION_AB:
638 case ATW_REVISION_AF:
639 sc->sc_sramlen = ATW_SRAM_A_SIZE;
640 break;
641 case ATW_REVISION_BA:
642 case ATW_REVISION_CA:
643 sc->sc_sramlen = ATW_SRAM_B_SIZE;
644 break;
645 }
646
647 /* Reset the chip to a known state. */
648 atw_reset(sc);
649
650 if (atw_read_srom(sc) == -1)
651 return;
652
653 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
654 ATW_SR_RFTYPE_MASK);
655
656 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
657 ATW_SR_BBPTYPE_MASK);
658
659 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
660 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
661 return;
662 }
663 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
664 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
665 return;
666 }
667
668 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
669 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
670
671 /* XXX There exists a Linux driver which seems to use RFType = 0 for
672 * MARVEL. My bug, or theirs?
673 */
674
675 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
676
677 switch (sc->sc_rftype) {
678 case ATW_RFTYPE_INTERSIL:
679 reg |= ATW_SYNCTL_CS1;
680 break;
681 case ATW_RFTYPE_RFMD:
682 reg |= ATW_SYNCTL_CS0;
683 break;
684 case ATW_RFTYPE_MARVEL:
685 break;
686 }
687
688 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
689 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
690
691 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
692
693 switch (sc->sc_bbptype) {
694 case ATW_BBPTYPE_INTERSIL:
695 reg |= ATW_BBPCTL_TWI;
696 break;
697 case ATW_BBPTYPE_RFMD:
698 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
699 ATW_BBPCTL_CCA_ACTLO;
700 break;
701 case ATW_BBPTYPE_MARVEL:
702 break;
703 case ATW_C_BBPTYPE_RFMD:
704 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
705 sc->sc_dev.dv_xname);
706 break;
707 }
708
709 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
710 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
711
712 /*
713 * From this point forward, the attachment cannot fail. A failure
714 * before this point releases all resources that may have been
715 * allocated.
716 */
717 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
718
719 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
720 htole16(sc->sc_srom[ATW_SR_MAC00]),
721 htole16(sc->sc_srom[ATW_SR_MAC01]),
722 htole16(sc->sc_srom[ATW_SR_MAC10])));
723
724 srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
725 ATW_SR_MAJOR_MASK);
726
727 if (srom_major < 2)
728 sc->sc_rf3000_options1 = 0;
729 else if (sc->sc_rev == ATW_REVISION_BA) {
730 sc->sc_rf3000_options1 =
731 MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
732 ATW_SR_CR28_MASK);
733 } else
734 sc->sc_rf3000_options1 = 0;
735
736 sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
737 ATW_SR_CR29_MASK);
738
739 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
740 ATW_SR_CTRY_MASK);
741
742 #define ADD_CHANNEL(_ic, _chan) do { \
743 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
744 _ic->ic_channels[_chan].ic_freq = \
745 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
746 } while (0)
747
748 /* Find available channels */
749 switch (country_code) {
750 case COUNTRY_MMK2: /* 1-14 */
751 ADD_CHANNEL(ic, 14);
752 /*FALLTHROUGH*/
753 case COUNTRY_ETSI: /* 1-13 */
754 for (i = 1; i <= 13; i++)
755 ADD_CHANNEL(ic, i);
756 break;
757 case COUNTRY_FCC: /* 1-11 */
758 case COUNTRY_IC: /* 1-11 */
759 for (i = 1; i <= 11; i++)
760 ADD_CHANNEL(ic, i);
761 break;
762 case COUNTRY_MMK: /* 14 */
763 ADD_CHANNEL(ic, 14);
764 break;
765 case COUNTRY_FRANCE: /* 10-13 */
766 for (i = 10; i <= 13; i++)
767 ADD_CHANNEL(ic, i);
768 break;
769 default: /* assume channels 10-11 */
770 case COUNTRY_SPAIN: /* 10-11 */
771 for (i = 10; i <= 11; i++)
772 ADD_CHANNEL(ic, i);
773 break;
774 }
775
776 /* Read the MAC address. */
777 reg = ATW_READ(sc, ATW_PAR0);
778 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
779 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
780 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
781 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
782 reg = ATW_READ(sc, ATW_PAR1);
783 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
784 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
785
786 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
787 printf(" could not get mac address, attach failed\n");
788 return;
789 }
790
791 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
792
793 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
794 ifp->if_softc = sc;
795 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
796 IFF_NOTRAILERS;
797 ifp->if_ioctl = atw_ioctl;
798 ifp->if_start = atw_start;
799 ifp->if_watchdog = atw_watchdog;
800 ifp->if_init = atw_init;
801 ifp->if_stop = atw_stop;
802 IFQ_SET_READY(&ifp->if_snd);
803
804 ic->ic_ifp = ifp;
805 ic->ic_phytype = IEEE80211_T_DS;
806 ic->ic_opmode = IEEE80211_M_STA;
807 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
808 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
809
810 nrate = 0;
811 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
812 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
813 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
814 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
815 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
816
817 /*
818 * Call MI attach routines.
819 */
820
821 if_attach(ifp);
822 ieee80211_ifattach(ic);
823
824 sc->sc_newstate = ic->ic_newstate;
825 ic->ic_newstate = atw_newstate;
826
827 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
828 ic->ic_recv_mgmt = atw_recv_mgmt;
829
830 sc->sc_node_free = ic->ic_node_free;
831 ic->ic_node_free = atw_node_free;
832
833 sc->sc_node_alloc = ic->ic_node_alloc;
834 ic->ic_node_alloc = atw_node_alloc;
835
836 ic->ic_crypto.cs_key_delete = atw_key_delete;
837 ic->ic_crypto.cs_key_set = atw_key_set;
838 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
839 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
840
841 /* possibly we should fill in our own sc_send_prresp, since
842 * the ADM8211 is probably sending probe responses in ad hoc
843 * mode.
844 */
845
846 /* complete initialization */
847 ieee80211_media_init(ic, atw_media_change, atw_media_status);
848 callout_init(&sc->sc_scan_ch);
849
850 #if NBPFILTER > 0
851 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
852 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
853 #endif
854
855 /*
856 * Make sure the interface is shutdown during reboot.
857 */
858 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
859 if (sc->sc_sdhook == NULL)
860 printf("%s: WARNING: unable to establish shutdown hook\n",
861 sc->sc_dev.dv_xname);
862
863 /*
864 * Add a suspend hook to make sure we come back up after a
865 * resume.
866 */
867 sc->sc_powerhook = powerhook_establish(atw_power, sc);
868 if (sc->sc_powerhook == NULL)
869 printf("%s: WARNING: unable to establish power hook\n",
870 sc->sc_dev.dv_xname);
871
872 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
873 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
874 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
875
876 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
877 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
878 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
879
880 ieee80211_announce(ic);
881 return;
882
883 /*
884 * Free any resources we've allocated during the failed attach
885 * attempt. Do this in reverse order and fall through.
886 */
887 fail_5:
888 for (i = 0; i < ATW_NRXDESC; i++) {
889 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
890 continue;
891 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
892 }
893 fail_4:
894 for (i = 0; i < ATW_TXQUEUELEN; i++) {
895 if (sc->sc_txsoft[i].txs_dmamap == NULL)
896 continue;
897 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
898 }
899 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
900 fail_3:
901 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
902 fail_2:
903 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
904 sizeof(struct atw_control_data));
905 fail_1:
906 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
907 fail_0:
908 return;
909 }
910
911 static struct ieee80211_node *
912 atw_node_alloc(struct ieee80211_node_table *nt)
913 {
914 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
915 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
916
917 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
918 return ni;
919 }
920
921 static void
922 atw_node_free(struct ieee80211_node *ni)
923 {
924 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
925
926 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
927 ether_sprintf(ni->ni_bssid)));
928 (*sc->sc_node_free)(ni);
929 }
930
931
932 static void
933 atw_test1_reset(struct atw_softc *sc)
934 {
935 switch (sc->sc_rev) {
936 case ATW_REVISION_BA:
937 if (1 /* XXX condition on transceiver type */) {
938 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
939 }
940 break;
941 case ATW_REVISION_CA:
942 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
943 break;
944 default:
945 break;
946 }
947 }
948
949 /*
950 * atw_reset:
951 *
952 * Perform a soft reset on the ADM8211.
953 */
954 void
955 atw_reset(struct atw_softc *sc)
956 {
957 int i;
958 uint32_t lpc;
959
960 ATW_WRITE(sc, ATW_NAR, 0x0);
961 DELAY(atw_nar_delay);
962
963 /* Reference driver has a cryptic remark indicating that this might
964 * power-on the chip. I know that it turns off power-saving....
965 */
966 ATW_WRITE(sc, ATW_FRCTL, 0x0);
967
968 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
969
970 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
971 if (ATW_READ(sc, ATW_PAR) == 0)
972 break;
973 DELAY(atw_pseudo_milli);
974 }
975
976 /* ... and then pause 100ms longer for good measure. */
977 DELAY(atw_magic_delay1);
978
979 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
980
981 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
982 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
983
984 atw_test1_reset(sc);
985 /*
986 * Initialize the PCI Access Register.
987 */
988 sc->sc_busmode = ATW_PAR_PBL_8DW;
989
990 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
991 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
992 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
993
994 /* Turn off maximum power saving, etc.
995 *
996 * XXX Following example of reference driver, should I set
997 * an AID of 1? It didn't seem to help....
998 */
999 ATW_WRITE(sc, ATW_FRCTL, 0x0);
1000
1001 DELAY(atw_magic_delay2);
1002
1003 /* Recall EEPROM. */
1004 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1005
1006 DELAY(atw_magic_delay4);
1007
1008 lpc = ATW_READ(sc, ATW_LPC);
1009
1010 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1011
1012 /* A reset seems to affect the SRAM contents, so put them into
1013 * a known state.
1014 */
1015 atw_clear_sram(sc);
1016
1017 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1018 }
1019
1020 static void
1021 atw_clear_sram(struct atw_softc *sc)
1022 {
1023 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1024 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1025 /* XXX not for revision 0x20. */
1026 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1027 }
1028
1029 /* TBD atw_init
1030 *
1031 * set MAC based on ic->ic_bss->myaddr
1032 * write WEP keys
1033 * set TX rate
1034 */
1035
1036 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1037 * without receiving a beacon with the preferred BSSID & SSID.
1038 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1039 */
1040 static void
1041 atw_wcsr_init(struct atw_softc *sc)
1042 {
1043 uint32_t wcsr;
1044
1045 wcsr = ATW_READ(sc, ATW_WCSR);
1046 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1047 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1048 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1049
1050 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1051 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1052 }
1053
1054 /* Turn off power management. Set Rx store-and-forward mode. */
1055 static void
1056 atw_cmdr_init(struct atw_softc *sc)
1057 {
1058 uint32_t cmdr;
1059 cmdr = ATW_READ(sc, ATW_CMDR);
1060 cmdr &= ~ATW_CMDR_APM;
1061 cmdr |= ATW_CMDR_RTE;
1062 cmdr &= ~ATW_CMDR_DRT_MASK;
1063 cmdr |= ATW_CMDR_DRT_SF;
1064
1065 ATW_WRITE(sc, ATW_CMDR, cmdr);
1066 }
1067
1068 static void
1069 atw_tofs2_init(struct atw_softc *sc)
1070 {
1071 uint32_t tofs2;
1072 /* XXX this magic can probably be figured out from the RFMD docs */
1073 #ifndef ATW_REFSLAVE
1074 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1075 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1076 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1077 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1078 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1079 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1080 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1081 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1082 #else
1083 /* XXX new magic from reference driver source */
1084 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1085 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1086 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1087 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1088 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1089 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1090 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1091 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1092 #endif
1093 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1094 }
1095
1096 static void
1097 atw_nar_init(struct atw_softc *sc)
1098 {
1099 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1100 }
1101
1102 static void
1103 atw_txlmt_init(struct atw_softc *sc)
1104 {
1105 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1106 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1107 }
1108
1109 static void
1110 atw_test1_init(struct atw_softc *sc)
1111 {
1112 uint32_t test1;
1113
1114 test1 = ATW_READ(sc, ATW_TEST1);
1115 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1116 /* XXX magic 0x1 */
1117 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1118 ATW_WRITE(sc, ATW_TEST1, test1);
1119 }
1120
1121 static void
1122 atw_rf_reset(struct atw_softc *sc)
1123 {
1124 /* XXX this resets an Intersil RF front-end? */
1125 /* TBD condition on Intersil RFType? */
1126 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1127 DELAY(atw_rf_delay1);
1128 ATW_WRITE(sc, ATW_SYNRF, 0);
1129 DELAY(atw_rf_delay2);
1130 }
1131
1132 /* Set 16 TU max duration for the contention-free period (CFP). */
1133 static void
1134 atw_cfp_init(struct atw_softc *sc)
1135 {
1136 uint32_t cfpp;
1137
1138 cfpp = ATW_READ(sc, ATW_CFPP);
1139 cfpp &= ~ATW_CFPP_CFPMD;
1140 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1141 ATW_WRITE(sc, ATW_CFPP, cfpp);
1142 }
1143
1144 static void
1145 atw_tofs0_init(struct atw_softc *sc)
1146 {
1147 /* XXX I guess that the Cardbus clock is 22MHz?
1148 * I am assuming that the role of ATW_TOFS0_USCNT is
1149 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1150 * very clear on this point. It says in the datasheet that it is
1151 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1152 * and 33MHz; maybe this is the way? I see a binary-only driver write
1153 * these values. These values are also the power-on default.
1154 */
1155 ATW_WRITE(sc, ATW_TOFS0,
1156 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1157 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1158 }
1159
1160 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1161 static void
1162 atw_ifs_init(struct atw_softc *sc)
1163 {
1164 uint32_t ifst;
1165 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1166 * Go figure.
1167 */
1168 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1169 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1170 ATW_IFST_SIFS_MASK) |
1171 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1172 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1173
1174 ATW_WRITE(sc, ATW_IFST, ifst);
1175 }
1176
1177 static void
1178 atw_response_times_init(struct atw_softc *sc)
1179 {
1180 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1181 * indicate that the MAC expects at least SIFS + MIRT microseconds
1182 * to pass after it transmits a frame that requires a response;
1183 * it waits at most SIFS + MART microseconds for the response.
1184 * Surely this is not the ACK timeout?
1185 */
1186 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1187 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1188 }
1189
1190 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1191 * engines read and write baseband registers after Rx and before
1192 * Tx, respectively.
1193 */
1194 static void
1195 atw_bbp_io_init(struct atw_softc *sc)
1196 {
1197 uint32_t mmiraddr2;
1198
1199 /* XXX The reference driver does this, but is it *really*
1200 * necessary?
1201 */
1202 switch (sc->sc_rev) {
1203 case ATW_REVISION_AB:
1204 case ATW_REVISION_AF:
1205 mmiraddr2 = 0x0;
1206 break;
1207 default:
1208 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1209 mmiraddr2 &=
1210 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1211 break;
1212 }
1213
1214 switch (sc->sc_bbptype) {
1215 case ATW_BBPTYPE_INTERSIL:
1216 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1217 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1218 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1219 break;
1220 case ATW_BBPTYPE_MARVEL:
1221 /* TBD find out the Marvel settings. */
1222 break;
1223 case ATW_BBPTYPE_RFMD:
1224 default:
1225 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1226 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1227 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1228 break;
1229 }
1230 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1231 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1232 }
1233
1234 /*
1235 * atw_init: [ ifnet interface function ]
1236 *
1237 * Initialize the interface. Must be called at splnet().
1238 */
1239 int
1240 atw_init(struct ifnet *ifp)
1241 {
1242 struct atw_softc *sc = ifp->if_softc;
1243 struct ieee80211com *ic = &sc->sc_ic;
1244 struct atw_txsoft *txs;
1245 struct atw_rxsoft *rxs;
1246 int i, error = 0;
1247
1248 if ((error = atw_enable(sc)) != 0)
1249 goto out;
1250
1251 /*
1252 * Cancel any pending I/O. This also resets.
1253 */
1254 atw_stop(ifp, 0);
1255
1256 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1257 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1258 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1259
1260 atw_wcsr_init(sc);
1261
1262 atw_cmdr_init(sc);
1263
1264 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1265 *
1266 * XXX Set transmit power for ATIM, RTS, Beacon.
1267 */
1268 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1269 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1270
1271 atw_tofs2_init(sc);
1272
1273 atw_nar_init(sc);
1274
1275 atw_txlmt_init(sc);
1276
1277 atw_test1_init(sc);
1278
1279 atw_rf_reset(sc);
1280
1281 atw_cfp_init(sc);
1282
1283 atw_tofs0_init(sc);
1284
1285 atw_ifs_init(sc);
1286
1287 /* XXX Fall asleep after one second of inactivity.
1288 * XXX A frame may only dribble in for 65536us.
1289 */
1290 ATW_WRITE(sc, ATW_RMD,
1291 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1292
1293 atw_response_times_init(sc);
1294
1295 atw_bbp_io_init(sc);
1296
1297 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1298
1299 if ((error = atw_rf3000_init(sc)) != 0)
1300 goto out;
1301
1302 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1303 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1304 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1305
1306 /*
1307 * Initialize the transmit descriptor ring.
1308 */
1309 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1310 for (i = 0; i < ATW_NTXDESC; i++) {
1311 sc->sc_txdescs[i].at_ctl = 0;
1312 /* no transmit chaining */
1313 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1314 sc->sc_txdescs[i].at_buf2 =
1315 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1316 }
1317 /* use ring mode */
1318 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1319 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1320 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1321 sc->sc_txfree = ATW_NTXDESC;
1322 sc->sc_txnext = 0;
1323
1324 /*
1325 * Initialize the transmit job descriptors.
1326 */
1327 SIMPLEQ_INIT(&sc->sc_txfreeq);
1328 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1329 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1330 txs = &sc->sc_txsoft[i];
1331 txs->txs_mbuf = NULL;
1332 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1333 }
1334
1335 /*
1336 * Initialize the receive descriptor and receive job
1337 * descriptor rings.
1338 */
1339 for (i = 0; i < ATW_NRXDESC; i++) {
1340 rxs = &sc->sc_rxsoft[i];
1341 if (rxs->rxs_mbuf == NULL) {
1342 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1343 printf("%s: unable to allocate or map rx "
1344 "buffer %d, error = %d\n",
1345 sc->sc_dev.dv_xname, i, error);
1346 /*
1347 * XXX Should attempt to run with fewer receive
1348 * XXX buffers instead of just failing.
1349 */
1350 atw_rxdrain(sc);
1351 goto out;
1352 }
1353 } else
1354 ATW_INIT_RXDESC(sc, i);
1355 }
1356 sc->sc_rxptr = 0;
1357
1358 /*
1359 * Initialize the interrupt mask and enable interrupts.
1360 */
1361 /* normal interrupts */
1362 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1363 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1364
1365 /* abnormal interrupts */
1366 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1367 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1368 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1369
1370 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1371 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1372 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1373 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1374 ATW_INTR_TRT;
1375
1376 sc->sc_linkint_mask &= sc->sc_inten;
1377 sc->sc_rxint_mask &= sc->sc_inten;
1378 sc->sc_txint_mask &= sc->sc_inten;
1379
1380 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1381 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1382
1383 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1384 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1385
1386 /*
1387 * Give the transmit and receive rings to the ADM8211.
1388 */
1389 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1390 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1391
1392 sc->sc_txthresh = 0;
1393 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1394 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1395
1396 /* common 802.11 configuration */
1397 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1398 switch (ic->ic_opmode) {
1399 case IEEE80211_M_STA:
1400 break;
1401 case IEEE80211_M_AHDEMO: /* XXX */
1402 case IEEE80211_M_IBSS:
1403 ic->ic_flags |= IEEE80211_F_IBSSON;
1404 /*FALLTHROUGH*/
1405 case IEEE80211_M_HOSTAP: /* XXX */
1406 break;
1407 case IEEE80211_M_MONITOR: /* XXX */
1408 break;
1409 }
1410
1411 switch (ic->ic_opmode) {
1412 case IEEE80211_M_AHDEMO:
1413 case IEEE80211_M_HOSTAP:
1414 #ifndef IEEE80211_NO_HOSTAP
1415 ic->ic_bss->ni_intval = ic->ic_lintval;
1416 ic->ic_bss->ni_rssi = 0;
1417 ic->ic_bss->ni_rstamp = 0;
1418 #endif /* !IEEE80211_NO_HOSTAP */
1419 break;
1420 default: /* XXX */
1421 break;
1422 }
1423
1424 sc->sc_wepctl = 0;
1425
1426 atw_write_ssid(sc);
1427 atw_write_sup_rates(sc);
1428 if (ic->ic_caps & IEEE80211_C_WEP)
1429 atw_write_wep(sc);
1430
1431 ic->ic_state = IEEE80211_S_INIT;
1432
1433 /*
1434 * Set the receive filter. This will start the transmit and
1435 * receive processes.
1436 */
1437 atw_filter_setup(sc);
1438
1439 /*
1440 * Start the receive process.
1441 */
1442 ATW_WRITE(sc, ATW_RDR, 0x1);
1443
1444 /*
1445 * Note that the interface is now running.
1446 */
1447 ifp->if_flags |= IFF_RUNNING;
1448 ifp->if_flags &= ~IFF_OACTIVE;
1449
1450 /* send no beacons, yet. */
1451 atw_start_beacon(sc, 0);
1452
1453 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1454 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1455 else
1456 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1457 out:
1458 if (error) {
1459 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1460 ifp->if_timer = 0;
1461 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1462 }
1463 #ifdef ATW_DEBUG
1464 atw_print_regs(sc, "end of init");
1465 #endif /* ATW_DEBUG */
1466
1467 return (error);
1468 }
1469
1470 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1471 * 0: MAC control of RF3000/Si4126.
1472 *
1473 * Applies power, or selects RF front-end? Sets reset condition.
1474 *
1475 * TBD support non-RFMD BBP, non-SiLabs synth.
1476 */
1477 static void
1478 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1479 {
1480 if (enable) {
1481 ATW_WRITE(sc, ATW_SYNRF,
1482 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1483 DELAY(atw_bbp_io_enable_delay);
1484 } else {
1485 ATW_WRITE(sc, ATW_SYNRF, 0);
1486 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1487 }
1488 }
1489
1490 static int
1491 atw_tune(struct atw_softc *sc)
1492 {
1493 int rc;
1494 u_int chan;
1495 struct ieee80211com *ic = &sc->sc_ic;
1496
1497 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1498 if (chan == IEEE80211_CHAN_ANY)
1499 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1500
1501 if (chan == sc->sc_cur_chan)
1502 return 0;
1503
1504 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1505 sc->sc_cur_chan, chan));
1506
1507 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1508
1509 atw_si4126_tune(sc, chan);
1510 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1511 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1512 chan);
1513
1514 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1515 DELAY(atw_nar_delay);
1516 ATW_WRITE(sc, ATW_RDR, 0x1);
1517
1518 if (rc == 0)
1519 sc->sc_cur_chan = chan;
1520
1521 return rc;
1522 }
1523
1524 #ifdef ATW_SYNDEBUG
1525 static void
1526 atw_si4126_print(struct atw_softc *sc)
1527 {
1528 struct ifnet *ifp = &sc->sc_if;
1529 u_int addr, val;
1530
1531 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1532 return;
1533
1534 for (addr = 0; addr <= 8; addr++) {
1535 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1536 if (atw_si4126_read(sc, addr, &val) == 0) {
1537 printf("<unknown> (quitting print-out)\n");
1538 break;
1539 }
1540 printf("%05x\n", val);
1541 }
1542 }
1543 #endif /* ATW_SYNDEBUG */
1544
1545 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1546 *
1547 * The RF/IF synthesizer produces two reference frequencies for
1548 * the RF2948B transceiver. The first frequency the RF2948B requires
1549 * is two times the so-called "intermediate frequency" (IF). Since
1550 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1551 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1552 * frequency required by the transceiver is the radio frequency
1553 * (RF). This is a superheterodyne transceiver; for f(chan) the
1554 * center frequency of the channel we are tuning, RF = f(chan) -
1555 * IF.
1556 *
1557 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1558 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1559 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1560 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1561 */
1562 static void
1563 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1564 {
1565 u_int mhz;
1566 u_int R;
1567 u_int32_t gpio;
1568 u_int16_t gain;
1569
1570 #ifdef ATW_SYNDEBUG
1571 atw_si4126_print(sc);
1572 #endif /* ATW_SYNDEBUG */
1573
1574 if (chan == 14)
1575 mhz = 2484;
1576 else
1577 mhz = 2412 + 5 * (chan - 1);
1578
1579 /* Tune IF to 748MHz to suit the IF LO input of the
1580 * RF2494B, which is 2 x IF. No need to set an IF divider
1581 * because an IF in 526MHz - 952MHz is allowed.
1582 *
1583 * XIN is 44.000MHz, so divide it by two to get allowable
1584 * range of 2-25MHz. SiLabs tells me that this is not
1585 * strictly necessary.
1586 */
1587
1588 if (atw_xindiv2)
1589 R = 44;
1590 else
1591 R = 88;
1592
1593 /* Power-up RF, IF synthesizers. */
1594 atw_si4126_write(sc, SI4126_POWER,
1595 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1596
1597 /* set LPWR, too? */
1598 atw_si4126_write(sc, SI4126_MAIN,
1599 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1600
1601 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1602 * set KP2 to 1.
1603 *
1604 * REFDIF This is different from the reference driver, which
1605 * always sets SI4126_GAIN to 0.
1606 */
1607 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1608
1609 atw_si4126_write(sc, SI4126_GAIN, gain);
1610
1611 /* XIN = 44MHz.
1612 *
1613 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1614 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1615 *
1616 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1617 * so that 1496/88 * 44MHz = 748MHz.
1618 */
1619 atw_si4126_write(sc, SI4126_IFN, 1496);
1620
1621 atw_si4126_write(sc, SI4126_IFR, R);
1622
1623 #ifndef ATW_REFSLAVE
1624 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1625 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1626 * which has no RF1!
1627 */
1628 atw_si4126_write(sc, SI4126_RF1R, R);
1629
1630 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1631 #endif
1632
1633 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1634 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1635 * Now let's multiply it to mhz. So mhz - IF = N.
1636 */
1637 atw_si4126_write(sc, SI4126_RF2R, R);
1638
1639 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1640
1641 /* wait 100us from power-up for RF, IF to settle */
1642 DELAY(100);
1643
1644 gpio = ATW_READ(sc, ATW_GPIO);
1645 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1646 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1647
1648 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1649 /* Set a Prism RF front-end to a special mode for channel 14?
1650 *
1651 * Apparently the SMC2635W needs this, although I don't think
1652 * it has a Prism RF.
1653 */
1654 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1655 }
1656 ATW_WRITE(sc, ATW_GPIO, gpio);
1657
1658 #ifdef ATW_SYNDEBUG
1659 atw_si4126_print(sc);
1660 #endif /* ATW_SYNDEBUG */
1661 }
1662
1663 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1664 * diversity.
1665 *
1666 * !!!
1667 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1668 * !!!
1669 */
1670 static int
1671 atw_rf3000_init(struct atw_softc *sc)
1672 {
1673 int rc = 0;
1674
1675 atw_bbp_io_enable(sc, 1);
1676
1677 /* CCA is acquisition sensitive */
1678 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1679 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1680
1681 if (rc != 0)
1682 goto out;
1683
1684 /* enable diversity */
1685 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1686
1687 if (rc != 0)
1688 goto out;
1689
1690 /* sensible setting from a binary-only driver */
1691 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1692 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1693
1694 if (rc != 0)
1695 goto out;
1696
1697 /* magic from a binary-only driver */
1698 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1699 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1700
1701 if (rc != 0)
1702 goto out;
1703
1704 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1705
1706 if (rc != 0)
1707 goto out;
1708
1709 /* XXX Reference driver remarks that Abocom sets this to 50.
1710 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1711 * in the "reserved" area of register RF3000_OPTIONS1.
1712 */
1713 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1714
1715 if (rc != 0)
1716 goto out;
1717
1718 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1719
1720 if (rc != 0)
1721 goto out;
1722
1723 out:
1724 atw_bbp_io_enable(sc, 0);
1725 return rc;
1726 }
1727
1728 #ifdef ATW_BBPDEBUG
1729 static void
1730 atw_rf3000_print(struct atw_softc *sc)
1731 {
1732 struct ifnet *ifp = &sc->sc_if;
1733 u_int addr, val;
1734
1735 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1736 return;
1737
1738 for (addr = 0x01; addr <= 0x15; addr++) {
1739 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1740 if (atw_rf3000_read(sc, addr, &val) != 0) {
1741 printf("<unknown> (quitting print-out)\n");
1742 break;
1743 }
1744 printf("%08x\n", val);
1745 }
1746 }
1747 #endif /* ATW_BBPDEBUG */
1748
1749 /* Set the power settings on the BBP for channel `chan'. */
1750 static int
1751 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1752 {
1753 int rc = 0;
1754 u_int32_t reg;
1755 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1756
1757 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1758 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1759 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1760
1761 /* odd channels: LSB, even channels: MSB */
1762 if (chan % 2 == 1) {
1763 txpower &= 0xFF;
1764 lpf_cutoff &= 0xFF;
1765 lna_gs_thresh &= 0xFF;
1766 } else {
1767 txpower >>= 8;
1768 lpf_cutoff >>= 8;
1769 lna_gs_thresh >>= 8;
1770 }
1771
1772 #ifdef ATW_BBPDEBUG
1773 atw_rf3000_print(sc);
1774 #endif /* ATW_BBPDEBUG */
1775
1776 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1777 "lna_gs_thresh %02x\n",
1778 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1779
1780 atw_bbp_io_enable(sc, 1);
1781
1782 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1783 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1784 goto out;
1785
1786 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1787 goto out;
1788
1789 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1790 goto out;
1791
1792 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1793
1794 if (rc != 0)
1795 goto out;
1796
1797 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1798
1799 if (rc != 0)
1800 goto out;
1801
1802 #ifdef ATW_BBPDEBUG
1803 atw_rf3000_print(sc);
1804 #endif /* ATW_BBPDEBUG */
1805
1806 out:
1807 atw_bbp_io_enable(sc, 0);
1808
1809 /* set beacon, rts, atim transmit power */
1810 reg = ATW_READ(sc, ATW_PLCPHD);
1811 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1812 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1813 ATW_PLCPHD_SERVICE_MASK);
1814 ATW_WRITE(sc, ATW_PLCPHD, reg);
1815 DELAY(atw_plcphd_delay);
1816
1817 return rc;
1818 }
1819
1820 /* Write a register on the RF3000 baseband processor using the
1821 * registers provided by the ADM8211 for this purpose.
1822 *
1823 * Return 0 on success.
1824 */
1825 static int
1826 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1827 {
1828 u_int32_t reg;
1829 int i;
1830
1831 reg = sc->sc_bbpctl_wr |
1832 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1833 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1834
1835 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1836 ATW_WRITE(sc, ATW_BBPCTL, reg);
1837 DELAY(2 * atw_pseudo_milli);
1838 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1839 break;
1840 }
1841
1842 if (i < 0) {
1843 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1844 return ETIMEDOUT;
1845 }
1846 return 0;
1847 }
1848
1849 /* Read a register on the RF3000 baseband processor using the registers
1850 * the ADM8211 provides for this purpose.
1851 *
1852 * The 7-bit register address is addr. Record the 8-bit data in the register
1853 * in *val.
1854 *
1855 * Return 0 on success.
1856 *
1857 * XXX This does not seem to work. The ADM8211 must require more or
1858 * different magic to read the chip than to write it. Possibly some
1859 * of the magic I have derived from a binary-only driver concerns
1860 * the "chip address" (see the RF3000 manual).
1861 */
1862 #ifdef ATW_BBPDEBUG
1863 static int
1864 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1865 {
1866 u_int32_t reg;
1867 int i;
1868
1869 for (i = 1000; --i >= 0; ) {
1870 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1871 break;
1872 DELAY(100);
1873 }
1874
1875 if (i < 0) {
1876 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1877 sc->sc_dev.dv_xname);
1878 return ETIMEDOUT;
1879 }
1880
1881 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1882
1883 ATW_WRITE(sc, ATW_BBPCTL, reg);
1884
1885 for (i = 1000; --i >= 0; ) {
1886 DELAY(100);
1887 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1888 break;
1889 }
1890
1891 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1892
1893 if (i < 0) {
1894 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1895 sc->sc_dev.dv_xname, reg);
1896 return ETIMEDOUT;
1897 }
1898 if (val != NULL)
1899 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1900 return 0;
1901 }
1902 #endif /* ATW_BBPDEBUG */
1903
1904 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1905 * provided by the ADM8211 for that purpose.
1906 *
1907 * val is 18 bits of data, and val is the 4-bit address of the register.
1908 *
1909 * Return 0 on success.
1910 */
1911 static void
1912 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1913 {
1914 uint32_t bits, mask, reg;
1915 const int nbits = 22;
1916
1917 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1918 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1919
1920 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1921 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1922
1923 reg = ATW_SYNRF_SELSYN;
1924 /* reference driver: reset Si4126 serial bus to initial
1925 * conditions?
1926 */
1927 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1928 ATW_WRITE(sc, ATW_SYNRF, reg);
1929
1930 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1931 if ((bits & mask) != 0)
1932 reg |= ATW_SYNRF_SYNDATA;
1933 else
1934 reg &= ~ATW_SYNRF_SYNDATA;
1935 ATW_WRITE(sc, ATW_SYNRF, reg);
1936 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1937 ATW_WRITE(sc, ATW_SYNRF, reg);
1938 }
1939 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1940 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1941 }
1942
1943 /* Read 18-bit data from the 4-bit address addr in Si4126
1944 * RF synthesizer and write the data to *val. Return 0 on success.
1945 *
1946 * XXX This does not seem to work. The ADM8211 must require more or
1947 * different magic to read the chip than to write it.
1948 */
1949 #ifdef ATW_SYNDEBUG
1950 static int
1951 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1952 {
1953 u_int32_t reg;
1954 int i;
1955
1956 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1957
1958 for (i = 1000; --i >= 0; ) {
1959 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1960 break;
1961 DELAY(100);
1962 }
1963
1964 if (i < 0) {
1965 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1966 sc->sc_dev.dv_xname);
1967 return ETIMEDOUT;
1968 }
1969
1970 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1971
1972 ATW_WRITE(sc, ATW_SYNCTL, reg);
1973
1974 for (i = 1000; --i >= 0; ) {
1975 DELAY(100);
1976 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1977 break;
1978 }
1979
1980 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1981
1982 if (i < 0) {
1983 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1984 sc->sc_dev.dv_xname, reg);
1985 return ETIMEDOUT;
1986 }
1987 if (val != NULL)
1988 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1989 ATW_SYNCTL_DATA_MASK);
1990 return 0;
1991 }
1992 #endif /* ATW_SYNDEBUG */
1993
1994 /* XXX is the endianness correct? test. */
1995 #define atw_calchash(addr) \
1996 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1997
1998 /*
1999 * atw_filter_setup:
2000 *
2001 * Set the ADM8211's receive filter.
2002 */
2003 static void
2004 atw_filter_setup(struct atw_softc *sc)
2005 {
2006 struct ieee80211com *ic = &sc->sc_ic;
2007 struct ethercom *ec = &sc->sc_ec;
2008 struct ifnet *ifp = &sc->sc_if;
2009 int hash;
2010 u_int32_t hashes[2];
2011 struct ether_multi *enm;
2012 struct ether_multistep step;
2013
2014 /* According to comments in tlp_al981_filter_setup
2015 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2016 * multicast filter to be set while it is running. Hopefully
2017 * the ADM8211 is not the same!
2018 */
2019 if ((ifp->if_flags & IFF_RUNNING) != 0)
2020 atw_idle(sc, ATW_NAR_SR);
2021
2022 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2023
2024 /* XXX in scan mode, do not filter packets. Maybe this is
2025 * unnecessary.
2026 */
2027 if (ic->ic_state == IEEE80211_S_SCAN ||
2028 (ifp->if_flags & IFF_PROMISC) != 0) {
2029 sc->sc_opmode |= ATW_NAR_PR;
2030 goto allmulti;
2031 }
2032
2033 hashes[0] = hashes[1] = 0x0;
2034
2035 /*
2036 * Program the 64-bit multicast hash filter.
2037 */
2038 ETHER_FIRST_MULTI(step, ec, enm);
2039 while (enm != NULL) {
2040 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2041 ETHER_ADDR_LEN) != 0)
2042 goto allmulti;
2043
2044 hash = atw_calchash(enm->enm_addrlo);
2045 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2046 ETHER_NEXT_MULTI(step, enm);
2047 sc->sc_opmode |= ATW_NAR_MM;
2048 }
2049 ifp->if_flags &= ~IFF_ALLMULTI;
2050 goto setit;
2051
2052 allmulti:
2053 sc->sc_opmode |= ATW_NAR_MM;
2054 ifp->if_flags |= IFF_ALLMULTI;
2055 hashes[0] = hashes[1] = 0xffffffff;
2056
2057 setit:
2058 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2059 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2060 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2061 DELAY(atw_nar_delay);
2062
2063 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2064 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2065 }
2066
2067 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2068 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2069 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2070 * no beacon with the preferred BSSID and SSID in the number of
2071 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2072 */
2073 static void
2074 atw_write_bssid(struct atw_softc *sc)
2075 {
2076 struct ieee80211com *ic = &sc->sc_ic;
2077 u_int8_t *bssid;
2078
2079 bssid = ic->ic_bss->ni_bssid;
2080
2081 ATW_WRITE(sc, ATW_BSSID0,
2082 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2083 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2084 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2085 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2086
2087 ATW_WRITE(sc, ATW_ABDA1,
2088 (ATW_READ(sc, ATW_ABDA1) &
2089 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2090 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2091 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2092
2093 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2094 ether_sprintf(sc->sc_bssid)));
2095 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2096
2097 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2098 }
2099
2100 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2101 * 16-bit word.
2102 */
2103 static void
2104 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2105 {
2106 u_int i;
2107 u_int8_t *ptr;
2108
2109 memcpy(&sc->sc_sram[ofs], buf, buflen);
2110
2111 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2112
2113 KASSERT(buflen + ofs <= sc->sc_sramlen);
2114
2115 ptr = &sc->sc_sram[ofs];
2116
2117 for (i = 0; i < buflen; i += 2) {
2118 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2119 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2120 DELAY(atw_writewep_delay);
2121
2122 ATW_WRITE(sc, ATW_WESK,
2123 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2124 DELAY(atw_writewep_delay);
2125 }
2126 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2127
2128 if (sc->sc_if.if_flags & IFF_DEBUG) {
2129 int n_octets = 0;
2130 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2131 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2132 for (i = 0; i < buflen; i++) {
2133 printf(" %02x", ptr[i]);
2134 if (++n_octets % 24 == 0)
2135 printf("\n");
2136 }
2137 if (n_octets % 24 != 0)
2138 printf("\n");
2139 }
2140 }
2141
2142 static int
2143 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2144 {
2145 struct atw_softc *sc = ic->ic_ifp->if_softc;
2146 u_int keyix = k->wk_keyix;
2147
2148 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2149
2150 if (keyix >= IEEE80211_WEP_NKID)
2151 return 0;
2152 if (k->wk_keylen != 0)
2153 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2154
2155 return 1;
2156 }
2157
2158 static int
2159 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2160 const u_int8_t mac[IEEE80211_ADDR_LEN])
2161 {
2162 struct atw_softc *sc = ic->ic_ifp->if_softc;
2163
2164 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2165
2166 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2167 return 0;
2168
2169 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2170
2171 return 1;
2172 }
2173
2174 static void
2175 atw_key_update_begin(struct ieee80211com *ic)
2176 {
2177 #ifdef ATW_DEBUG
2178 struct ifnet *ifp = ic->ic_ifp;
2179 struct atw_softc *sc = ifp->if_softc;
2180 #endif
2181
2182 DPRINTF(sc, ("%s:\n", __func__));
2183 }
2184
2185 static void
2186 atw_key_update_end(struct ieee80211com *ic)
2187 {
2188 struct ifnet *ifp = ic->ic_ifp;
2189 struct atw_softc *sc = ifp->if_softc;
2190
2191 DPRINTF(sc, ("%s:\n", __func__));
2192
2193 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2194 return;
2195 if (ATW_IS_ENABLED(sc) == 0)
2196 return;
2197 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2198 atw_write_wep(sc);
2199 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2200 }
2201
2202 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2203 static void
2204 atw_write_wep(struct atw_softc *sc)
2205 {
2206 struct ieee80211com *ic = &sc->sc_ic;
2207 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2208 u_int8_t buf[IEEE80211_WEP_NKID]
2209 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2210 u_int32_t reg;
2211 int i;
2212
2213 sc->sc_wepctl = 0;
2214 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2215
2216 memset(&buf[0][0], 0, sizeof(buf));
2217
2218 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2219 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2220 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2221 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2222 buf[i][1] = ATW_WEP_ENABLED;
2223 } else {
2224 buf[i][1] = 0;
2225 continue;
2226 }
2227 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2228 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2229 ic->ic_nw_keys[i].wk_keylen - 1);
2230 }
2231
2232 reg = ATW_READ(sc, ATW_MACTEST);
2233 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2234 reg &= ~ATW_MACTEST_KEYID_MASK;
2235 reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2236 ATW_WRITE(sc, ATW_MACTEST, reg);
2237
2238 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2239 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2240
2241 switch (sc->sc_rev) {
2242 case ATW_REVISION_AB:
2243 case ATW_REVISION_AF:
2244 /* Bypass WEP on Rx. */
2245 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2246 break;
2247 default:
2248 break;
2249 }
2250
2251 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2252 sizeof(buf));
2253
2254 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2255 }
2256
2257 static void
2258 atw_change_ibss(struct atw_softc *sc)
2259 {
2260 atw_predict_beacon(sc);
2261 atw_write_bssid(sc);
2262 atw_start_beacon(sc, 1);
2263 }
2264
2265 static void
2266 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2267 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2268 {
2269 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2270
2271 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2272 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2273 return;
2274
2275 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2276
2277 switch (subtype) {
2278 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2279 case IEEE80211_FC0_SUBTYPE_BEACON:
2280 if (ic->ic_opmode != IEEE80211_M_IBSS ||
2281 ic->ic_state != IEEE80211_S_RUN)
2282 break;
2283 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc) &&
2284 ieee80211_ibss_merge(ni) == ENETRESET)
2285 atw_change_ibss(sc);
2286 break;
2287 default:
2288 break;
2289 }
2290 return;
2291 }
2292
2293 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2294 * In ad hoc mode, the SSID is written to the beacons sent by the
2295 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2296 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2297 * indications.
2298 */
2299 static void
2300 atw_write_ssid(struct atw_softc *sc)
2301 {
2302 struct ieee80211com *ic = &sc->sc_ic;
2303 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2304 * it only expects the element length, not its ID.
2305 */
2306 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2307
2308 memset(buf, 0, sizeof(buf));
2309 buf[0] = ic->ic_bss->ni_esslen;
2310 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2311
2312 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2313 roundup(1 + ic->ic_bss->ni_esslen, 2));
2314 }
2315
2316 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2317 * In ad hoc mode, the supported rates are written to beacons sent by the
2318 * ADM8211.
2319 */
2320 static void
2321 atw_write_sup_rates(struct atw_softc *sc)
2322 {
2323 struct ieee80211com *ic = &sc->sc_ic;
2324 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2325 * supported rates
2326 */
2327 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2328
2329 memset(buf, 0, sizeof(buf));
2330
2331 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2332
2333 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2334 ic->ic_bss->ni_rates.rs_nrates);
2335
2336 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2337 }
2338
2339 /* Start/stop sending beacons. */
2340 void
2341 atw_start_beacon(struct atw_softc *sc, int start)
2342 {
2343 struct ieee80211com *ic = &sc->sc_ic;
2344 uint16_t chan;
2345 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2346 size_t len;
2347
2348 if (ATW_IS_ENABLED(sc) == 0)
2349 return;
2350
2351 /* start beacons */
2352 len = sizeof(struct ieee80211_frame) +
2353 8 /* timestamp */ + 2 /* beacon interval */ +
2354 2 /* capability info */ +
2355 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2356 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2357 3 /* DS parameters */ +
2358 IEEE80211_CRC_LEN;
2359
2360 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2361 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2362 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2363
2364 ATW_WRITE(sc, ATW_BCNT, bcnt);
2365 ATW_WRITE(sc, ATW_CAP1, cap1);
2366
2367 if (!start)
2368 return;
2369
2370 /* TBD use ni_capinfo */
2371
2372 capinfo = 0;
2373 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2374 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2375 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2376 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2377
2378 switch (ic->ic_opmode) {
2379 case IEEE80211_M_IBSS:
2380 len += 4; /* IBSS parameters */
2381 capinfo |= IEEE80211_CAPINFO_IBSS;
2382 break;
2383 case IEEE80211_M_HOSTAP:
2384 /* XXX 6-byte minimum TIM */
2385 len += atw_beacon_len_adjust;
2386 capinfo |= IEEE80211_CAPINFO_ESS;
2387 break;
2388 default:
2389 return;
2390 }
2391
2392 /* set listen interval
2393 * XXX do software units agree w/ hardware?
2394 */
2395 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2396 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2397
2398 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2399
2400 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2401 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2402 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2403
2404 ATW_WRITE(sc, ATW_BCNT, bcnt);
2405 ATW_WRITE(sc, ATW_BPLI, bpli);
2406 ATW_WRITE(sc, ATW_CAP0, cap0);
2407 ATW_WRITE(sc, ATW_CAP1, cap1);
2408
2409 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2410 sc->sc_dev.dv_xname, bcnt));
2411
2412 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2413 sc->sc_dev.dv_xname, cap1));
2414 }
2415
2416 /* Return the 32 lsb of the last TSFT divisible by ival. */
2417 static __inline uint32_t
2418 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2419 {
2420 /* Following the reference driver's lead, I compute
2421 *
2422 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2423 *
2424 * without using 64-bit arithmetic, using the following
2425 * relationship:
2426 *
2427 * (0x100000000 * H + L) % m
2428 * = ((0x100000000 % m) * H + L) % m
2429 * = (((0xffffffff + 1) % m) * H + L) % m
2430 * = ((0xffffffff % m + 1 % m) * H + L) % m
2431 * = ((0xffffffff % m + 1) * H + L) % m
2432 */
2433 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2434 }
2435
2436 static uint64_t
2437 atw_get_tsft(struct atw_softc *sc)
2438 {
2439 int i;
2440 uint32_t tsfth, tsftl;
2441 for (i = 0; i < 2; i++) {
2442 tsfth = ATW_READ(sc, ATW_TSFTH);
2443 tsftl = ATW_READ(sc, ATW_TSFTL);
2444 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2445 break;
2446 }
2447 return ((uint64_t)tsfth << 32) | tsftl;
2448 }
2449
2450 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2451 * the ieee80211com.
2452 *
2453 * Predict the next target beacon transmission time (TBTT) and
2454 * write it to the ADM8211.
2455 */
2456 static void
2457 atw_predict_beacon(struct atw_softc *sc)
2458 {
2459 #define TBTTOFS 20 /* TU */
2460
2461 struct ieee80211com *ic = &sc->sc_ic;
2462 uint64_t tsft;
2463 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2464 union {
2465 uint64_t word;
2466 uint8_t tstamp[8];
2467 } u;
2468
2469 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2470 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2471 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2472 tsft = atw_get_tsft(sc);
2473 u.word = htole64(tsft);
2474 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2475 sizeof(ic->ic_bss->ni_tstamp));
2476 } else
2477 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2478
2479 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2480
2481 tsftl = tsft & 0xFFFFFFFF;
2482 tsfth = tsft >> 32;
2483
2484 /* We sent/received the last beacon `past' microseconds
2485 * after the interval divided the TSF timer.
2486 */
2487 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2488
2489 /* Skip ten beacons so that the TBTT cannot pass before
2490 * we've programmed it. Ten is an arbitrary number.
2491 */
2492 tbtt = past_even + ival * 10;
2493
2494 ATW_WRITE(sc, ATW_TOFS1,
2495 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2496 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2497 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2498 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2499 #undef TBTTOFS
2500 }
2501
2502 static void
2503 atw_next_scan(void *arg)
2504 {
2505 struct atw_softc *sc = arg;
2506 struct ieee80211com *ic = &sc->sc_ic;
2507 int s;
2508
2509 /* don't call atw_start w/o network interrupts blocked */
2510 s = splnet();
2511 if (ic->ic_state == IEEE80211_S_SCAN)
2512 ieee80211_next_scan(ic);
2513 splx(s);
2514 }
2515
2516 /* Synchronize the hardware state with the software state. */
2517 static int
2518 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2519 {
2520 struct ifnet *ifp = ic->ic_ifp;
2521 struct atw_softc *sc = ifp->if_softc;
2522 enum ieee80211_state ostate;
2523 int error = 0;
2524
2525 ostate = ic->ic_state;
2526 callout_stop(&sc->sc_scan_ch);
2527 atw_start_beacon(sc, 0);
2528
2529 switch (nstate) {
2530 case IEEE80211_S_ASSOC:
2531 error = atw_tune(sc);
2532 break;
2533 case IEEE80211_S_INIT:
2534 callout_stop(&sc->sc_scan_ch);
2535 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2536 break;
2537 case IEEE80211_S_SCAN:
2538 error = atw_tune(sc);
2539 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2540 atw_next_scan, sc);
2541 break;
2542 case IEEE80211_S_AUTH:
2543 error = atw_tune(sc);
2544 break;
2545 case IEEE80211_S_RUN:
2546 error = atw_tune(sc);
2547 atw_write_bssid(sc);
2548 atw_write_ssid(sc);
2549 atw_write_sup_rates(sc);
2550
2551 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2552 ic->ic_opmode == IEEE80211_M_MONITOR)
2553 break;
2554
2555 /* set listen interval
2556 * XXX do software units agree w/ hardware?
2557 */
2558 ATW_WRITE(sc, ATW_BPLI,
2559 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2560 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2561 ATW_BPLI_LI_MASK));
2562
2563 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2564 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2565
2566 atw_predict_beacon(sc);
2567 atw_start_beacon(sc,
2568 ic->ic_opmode == IEEE80211_M_HOSTAP ||
2569 ic->ic_opmode == IEEE80211_M_IBSS);
2570 break;
2571 }
2572 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2573 }
2574
2575 /*
2576 * atw_add_rxbuf:
2577 *
2578 * Add a receive buffer to the indicated descriptor.
2579 */
2580 int
2581 atw_add_rxbuf(struct atw_softc *sc, int idx)
2582 {
2583 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2584 struct mbuf *m;
2585 int error;
2586
2587 MGETHDR(m, M_DONTWAIT, MT_DATA);
2588 if (m == NULL)
2589 return (ENOBUFS);
2590
2591 MCLGET(m, M_DONTWAIT);
2592 if ((m->m_flags & M_EXT) == 0) {
2593 m_freem(m);
2594 return (ENOBUFS);
2595 }
2596
2597 if (rxs->rxs_mbuf != NULL)
2598 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2599
2600 rxs->rxs_mbuf = m;
2601
2602 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2603 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2604 BUS_DMA_READ|BUS_DMA_NOWAIT);
2605 if (error) {
2606 printf("%s: can't load rx DMA map %d, error = %d\n",
2607 sc->sc_dev.dv_xname, idx, error);
2608 panic("atw_add_rxbuf"); /* XXX */
2609 }
2610
2611 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2612 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2613
2614 ATW_INIT_RXDESC(sc, idx);
2615
2616 return (0);
2617 }
2618
2619 /*
2620 * Release any queued transmit buffers.
2621 */
2622 void
2623 atw_txdrain(struct atw_softc *sc)
2624 {
2625 struct atw_txsoft *txs;
2626
2627 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2628 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2629 if (txs->txs_mbuf != NULL) {
2630 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2631 m_freem(txs->txs_mbuf);
2632 txs->txs_mbuf = NULL;
2633 }
2634 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2635 }
2636 sc->sc_tx_timer = 0;
2637 }
2638
2639 /*
2640 * atw_stop: [ ifnet interface function ]
2641 *
2642 * Stop transmission on the interface.
2643 */
2644 void
2645 atw_stop(struct ifnet *ifp, int disable)
2646 {
2647 struct atw_softc *sc = ifp->if_softc;
2648 struct ieee80211com *ic = &sc->sc_ic;
2649
2650 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2651
2652 /* Disable interrupts. */
2653 ATW_WRITE(sc, ATW_IER, 0);
2654
2655 /* Stop the transmit and receive processes. */
2656 sc->sc_opmode = 0;
2657 ATW_WRITE(sc, ATW_NAR, 0);
2658 DELAY(atw_nar_delay);
2659 ATW_WRITE(sc, ATW_TDBD, 0);
2660 ATW_WRITE(sc, ATW_TDBP, 0);
2661 ATW_WRITE(sc, ATW_RDB, 0);
2662
2663 atw_txdrain(sc);
2664
2665 if (disable) {
2666 atw_rxdrain(sc);
2667 atw_disable(sc);
2668 }
2669
2670 /*
2671 * Mark the interface down and cancel the watchdog timer.
2672 */
2673 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2674 ifp->if_timer = 0;
2675
2676 if (!disable)
2677 atw_reset(sc);
2678 }
2679
2680 /*
2681 * atw_rxdrain:
2682 *
2683 * Drain the receive queue.
2684 */
2685 void
2686 atw_rxdrain(struct atw_softc *sc)
2687 {
2688 struct atw_rxsoft *rxs;
2689 int i;
2690
2691 for (i = 0; i < ATW_NRXDESC; i++) {
2692 rxs = &sc->sc_rxsoft[i];
2693 if (rxs->rxs_mbuf == NULL)
2694 continue;
2695 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2696 m_freem(rxs->rxs_mbuf);
2697 rxs->rxs_mbuf = NULL;
2698 }
2699 }
2700
2701 /*
2702 * atw_detach:
2703 *
2704 * Detach an ADM8211 interface.
2705 */
2706 int
2707 atw_detach(struct atw_softc *sc)
2708 {
2709 struct ifnet *ifp = &sc->sc_if;
2710 struct atw_rxsoft *rxs;
2711 struct atw_txsoft *txs;
2712 int i;
2713
2714 /*
2715 * Succeed now if there isn't any work to do.
2716 */
2717 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2718 return (0);
2719
2720 callout_stop(&sc->sc_scan_ch);
2721
2722 ieee80211_ifdetach(&sc->sc_ic);
2723 if_detach(ifp);
2724
2725 for (i = 0; i < ATW_NRXDESC; i++) {
2726 rxs = &sc->sc_rxsoft[i];
2727 if (rxs->rxs_mbuf != NULL) {
2728 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2729 m_freem(rxs->rxs_mbuf);
2730 rxs->rxs_mbuf = NULL;
2731 }
2732 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2733 }
2734 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2735 txs = &sc->sc_txsoft[i];
2736 if (txs->txs_mbuf != NULL) {
2737 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2738 m_freem(txs->txs_mbuf);
2739 txs->txs_mbuf = NULL;
2740 }
2741 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2742 }
2743 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2744 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2745 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2746 sizeof(struct atw_control_data));
2747 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2748
2749 shutdownhook_disestablish(sc->sc_sdhook);
2750 powerhook_disestablish(sc->sc_powerhook);
2751
2752 if (sc->sc_srom)
2753 free(sc->sc_srom, M_DEVBUF);
2754
2755 return (0);
2756 }
2757
2758 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2759 void
2760 atw_shutdown(void *arg)
2761 {
2762 struct atw_softc *sc = arg;
2763
2764 atw_stop(&sc->sc_if, 1);
2765 }
2766
2767 int
2768 atw_intr(void *arg)
2769 {
2770 struct atw_softc *sc = arg;
2771 struct ifnet *ifp = &sc->sc_if;
2772 u_int32_t status, rxstatus, txstatus, linkstatus;
2773 int handled = 0, txthresh;
2774
2775 #ifdef DEBUG
2776 if (ATW_IS_ENABLED(sc) == 0)
2777 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2778 #endif
2779
2780 /*
2781 * If the interface isn't running, the interrupt couldn't
2782 * possibly have come from us.
2783 */
2784 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2785 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2786 return (0);
2787
2788 for (;;) {
2789 status = ATW_READ(sc, ATW_STSR);
2790
2791 if (status)
2792 ATW_WRITE(sc, ATW_STSR, status);
2793
2794 #ifdef ATW_DEBUG
2795 #define PRINTINTR(flag) do { \
2796 if ((status & flag) != 0) { \
2797 printf("%s" #flag, delim); \
2798 delim = ","; \
2799 } \
2800 } while (0)
2801
2802 if (atw_debug > 1 && status) {
2803 const char *delim = "<";
2804
2805 printf("%s: reg[STSR] = %x",
2806 sc->sc_dev.dv_xname, status);
2807
2808 PRINTINTR(ATW_INTR_FBE);
2809 PRINTINTR(ATW_INTR_LINKOFF);
2810 PRINTINTR(ATW_INTR_LINKON);
2811 PRINTINTR(ATW_INTR_RCI);
2812 PRINTINTR(ATW_INTR_RDU);
2813 PRINTINTR(ATW_INTR_REIS);
2814 PRINTINTR(ATW_INTR_RPS);
2815 PRINTINTR(ATW_INTR_TCI);
2816 PRINTINTR(ATW_INTR_TDU);
2817 PRINTINTR(ATW_INTR_TLT);
2818 PRINTINTR(ATW_INTR_TPS);
2819 PRINTINTR(ATW_INTR_TRT);
2820 PRINTINTR(ATW_INTR_TUF);
2821 PRINTINTR(ATW_INTR_BCNTC);
2822 PRINTINTR(ATW_INTR_ATIME);
2823 PRINTINTR(ATW_INTR_TBTT);
2824 PRINTINTR(ATW_INTR_TSCZ);
2825 PRINTINTR(ATW_INTR_TSFTF);
2826 printf(">\n");
2827 }
2828 #undef PRINTINTR
2829 #endif /* ATW_DEBUG */
2830
2831 if ((status & sc->sc_inten) == 0)
2832 break;
2833
2834 handled = 1;
2835
2836 rxstatus = status & sc->sc_rxint_mask;
2837 txstatus = status & sc->sc_txint_mask;
2838 linkstatus = status & sc->sc_linkint_mask;
2839
2840 if (linkstatus) {
2841 atw_linkintr(sc, linkstatus);
2842 }
2843
2844 if (rxstatus) {
2845 /* Grab any new packets. */
2846 atw_rxintr(sc);
2847
2848 if (rxstatus & ATW_INTR_RDU) {
2849 printf("%s: receive ring overrun\n",
2850 sc->sc_dev.dv_xname);
2851 /* Get the receive process going again. */
2852 ATW_WRITE(sc, ATW_RDR, 0x1);
2853 break;
2854 }
2855 }
2856
2857 if (txstatus) {
2858 /* Sweep up transmit descriptors. */
2859 atw_txintr(sc);
2860
2861 if (txstatus & ATW_INTR_TLT)
2862 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2863 sc->sc_dev.dv_xname));
2864
2865 if (txstatus & ATW_INTR_TRT)
2866 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2867 sc->sc_dev.dv_xname));
2868
2869 /* If Tx under-run, increase our transmit threshold
2870 * if another is available.
2871 */
2872 txthresh = sc->sc_txthresh + 1;
2873 if ((txstatus & ATW_INTR_TUF) &&
2874 sc->sc_txth[txthresh].txth_name != NULL) {
2875 /* Idle the transmit process. */
2876 atw_idle(sc, ATW_NAR_ST);
2877
2878 sc->sc_txthresh = txthresh;
2879 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2880 sc->sc_opmode |=
2881 sc->sc_txth[txthresh].txth_opmode;
2882 printf("%s: transmit underrun; new "
2883 "threshold: %s\n", sc->sc_dev.dv_xname,
2884 sc->sc_txth[txthresh].txth_name);
2885
2886 /* Set the new threshold and restart
2887 * the transmit process.
2888 */
2889 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2890 DELAY(atw_nar_delay);
2891 ATW_WRITE(sc, ATW_RDR, 0x1);
2892 /* XXX Log every Nth underrun from
2893 * XXX now on?
2894 */
2895 }
2896 }
2897
2898 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2899 if (status & ATW_INTR_TPS)
2900 printf("%s: transmit process stopped\n",
2901 sc->sc_dev.dv_xname);
2902 if (status & ATW_INTR_RPS)
2903 printf("%s: receive process stopped\n",
2904 sc->sc_dev.dv_xname);
2905 (void)atw_init(ifp);
2906 break;
2907 }
2908
2909 if (status & ATW_INTR_FBE) {
2910 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2911 (void)atw_init(ifp);
2912 break;
2913 }
2914
2915 /*
2916 * Not handled:
2917 *
2918 * Transmit buffer unavailable -- normal
2919 * condition, nothing to do, really.
2920 *
2921 * Early receive interrupt -- not available on
2922 * all chips, we just use RI. We also only
2923 * use single-segment receive DMA, so this
2924 * is mostly useless.
2925 *
2926 * TBD others
2927 */
2928 }
2929
2930 /* Try to get more packets going. */
2931 atw_start(ifp);
2932
2933 return (handled);
2934 }
2935
2936 /*
2937 * atw_idle:
2938 *
2939 * Cause the transmit and/or receive processes to go idle.
2940 *
2941 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2942 * process in STSR if I clear SR or ST after the process has already
2943 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2944 * do not seem to be too reliable. Perhaps I have the sense of the
2945 * Rx bits switched with the Tx bits?
2946 */
2947 void
2948 atw_idle(struct atw_softc *sc, u_int32_t bits)
2949 {
2950 u_int32_t ackmask = 0, opmode, stsr, test0;
2951 int i, s;
2952
2953 s = splnet();
2954
2955 opmode = sc->sc_opmode & ~bits;
2956
2957 if (bits & ATW_NAR_SR)
2958 ackmask |= ATW_INTR_RPS;
2959
2960 if (bits & ATW_NAR_ST) {
2961 ackmask |= ATW_INTR_TPS;
2962 /* set ATW_NAR_HF to flush TX FIFO. */
2963 opmode |= ATW_NAR_HF;
2964 }
2965
2966 ATW_WRITE(sc, ATW_NAR, opmode);
2967 DELAY(atw_nar_delay);
2968
2969 for (i = 0; i < 1000; i++) {
2970 stsr = ATW_READ(sc, ATW_STSR);
2971 if ((stsr & ackmask) == ackmask)
2972 break;
2973 DELAY(10);
2974 }
2975
2976 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2977
2978 if ((stsr & ackmask) == ackmask)
2979 goto out;
2980
2981 test0 = ATW_READ(sc, ATW_TEST0);
2982
2983 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2984 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2985 printf("%s: transmit process not idle [%s]\n",
2986 sc->sc_dev.dv_xname,
2987 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2988 printf("%s: bits %08x test0 %08x stsr %08x\n",
2989 sc->sc_dev.dv_xname, bits, test0, stsr);
2990 }
2991
2992 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2993 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2994 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2995 sc->sc_dev.dv_xname,
2996 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2997 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2998 sc->sc_dev.dv_xname, bits, test0, stsr));
2999 }
3000 out:
3001 if ((bits & ATW_NAR_ST) != 0)
3002 atw_txdrain(sc);
3003 splx(s);
3004 return;
3005 }
3006
3007 /*
3008 * atw_linkintr:
3009 *
3010 * Helper; handle link-status interrupts.
3011 */
3012 void
3013 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3014 {
3015 struct ieee80211com *ic = &sc->sc_ic;
3016
3017 if (ic->ic_state != IEEE80211_S_RUN)
3018 return;
3019
3020 if (linkstatus & ATW_INTR_LINKON) {
3021 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3022 sc->sc_rescan_timer = 0;
3023 } else if (linkstatus & ATW_INTR_LINKOFF) {
3024 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3025 if (ic->ic_opmode != IEEE80211_M_STA)
3026 return;
3027 sc->sc_rescan_timer = 3;
3028 sc->sc_if.if_timer = 1;
3029 }
3030 }
3031
3032 static __inline int
3033 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3034 {
3035 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3036 return 0;
3037 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3038 return 0;
3039 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3040 }
3041
3042 /*
3043 * atw_rxintr:
3044 *
3045 * Helper; handle receive interrupts.
3046 */
3047 void
3048 atw_rxintr(struct atw_softc *sc)
3049 {
3050 static int rate_tbl[] = {2, 4, 11, 22, 44};
3051 struct ieee80211com *ic = &sc->sc_ic;
3052 struct ieee80211_node *ni;
3053 struct ieee80211_frame_min *wh;
3054 struct ifnet *ifp = &sc->sc_if;
3055 struct atw_rxsoft *rxs;
3056 struct mbuf *m;
3057 u_int32_t rxstat;
3058 int i, len, rate, rate0;
3059 u_int32_t rssi, rssi0;
3060
3061 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3062 rxs = &sc->sc_rxsoft[i];
3063
3064 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3065
3066 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3067 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3068 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3069
3070 if (rxstat & ATW_RXSTAT_OWN)
3071 break; /* We have processed all receive buffers. */
3072
3073 DPRINTF3(sc,
3074 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3075 sc->sc_dev.dv_xname,
3076 rxstat, rssi0,
3077 le32toh(sc->sc_rxdescs[i].ar_buf1),
3078 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3079
3080 /*
3081 * Make sure the packet fits in one buffer. This should
3082 * always be the case.
3083 */
3084 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3085 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3086 printf("%s: incoming packet spilled, resetting\n",
3087 sc->sc_dev.dv_xname);
3088 (void)atw_init(ifp);
3089 return;
3090 }
3091
3092 /*
3093 * If an error occurred, update stats, clear the status
3094 * word, and leave the packet buffer in place. It will
3095 * simply be reused the next time the ring comes around.
3096 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3097 * error.
3098 */
3099
3100 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3101 ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3102 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3103 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3104 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3105 ATW_RXSTAT_ICVE)) != 0)) {
3106 #define PRINTERR(bit, str) \
3107 if (rxstat & (bit)) \
3108 printf("%s: receive error: %s\n", \
3109 sc->sc_dev.dv_xname, str)
3110 ifp->if_ierrors++;
3111 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3112 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3113 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3114 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3115 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3116 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3117 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3118 #undef PRINTERR
3119 ATW_INIT_RXDESC(sc, i);
3120 continue;
3121 }
3122
3123 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3124 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3125
3126 /*
3127 * No errors; receive the packet. Note the ADM8211
3128 * includes the CRC in promiscuous mode.
3129 */
3130 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3131
3132 /*
3133 * Allocate a new mbuf cluster. If that fails, we are
3134 * out of memory, and must drop the packet and recycle
3135 * the buffer that's already attached to this descriptor.
3136 */
3137 m = rxs->rxs_mbuf;
3138 if (atw_add_rxbuf(sc, i) != 0) {
3139 ifp->if_ierrors++;
3140 ATW_INIT_RXDESC(sc, i);
3141 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3142 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3143 continue;
3144 }
3145
3146 ifp->if_ipackets++;
3147 if (sc->sc_opmode & ATW_NAR_PR)
3148 len -= IEEE80211_CRC_LEN;
3149 m->m_pkthdr.rcvif = ifp;
3150 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3151
3152 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3153 rate = 0;
3154 else
3155 rate = rate_tbl[rate0];
3156
3157 /* The RSSI comes straight from a register in the
3158 * baseband processor. I know that for the RF3000,
3159 * the RSSI register also contains the antenna-selection
3160 * bits. Mask those off.
3161 *
3162 * TBD Treat other basebands.
3163 */
3164 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3165 rssi = rssi0 & RF3000_RSSI_MASK;
3166 else
3167 rssi = rssi0;
3168
3169 #if NBPFILTER > 0
3170 /* Pass this up to any BPF listeners. */
3171 if (sc->sc_radiobpf != NULL) {
3172 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3173
3174 tap->ar_rate = rate;
3175 tap->ar_chan_freq = ic->ic_curchan->ic_freq;
3176 tap->ar_chan_flags = ic->ic_curchan->ic_flags;
3177
3178 /* TBD verify units are dB */
3179 tap->ar_antsignal = (int)rssi;
3180 /* TBD tap->ar_flags */
3181
3182 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3183 tap->ar_ihdr.it_len, m);
3184 }
3185 #endif /* NPBFILTER > 0 */
3186
3187 wh = mtod(m, struct ieee80211_frame_min *);
3188 ni = ieee80211_find_rxnode(ic, wh);
3189 if (atw_hw_decrypted(sc, wh)) {
3190 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3191 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3192 }
3193 ieee80211_input(ic, m, ni, (int)rssi, 0);
3194 ieee80211_free_node(ni);
3195 }
3196
3197 /* Update the receive pointer. */
3198 sc->sc_rxptr = i;
3199 }
3200
3201 /*
3202 * atw_txintr:
3203 *
3204 * Helper; handle transmit interrupts.
3205 */
3206 void
3207 atw_txintr(struct atw_softc *sc)
3208 {
3209 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3210 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3211 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3212 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3213
3214 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3215 struct ifnet *ifp = &sc->sc_if;
3216 struct atw_txsoft *txs;
3217 u_int32_t txstat;
3218
3219 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3220 sc->sc_dev.dv_xname, sc->sc_flags));
3221
3222 ifp->if_flags &= ~IFF_OACTIVE;
3223
3224 /*
3225 * Go through our Tx list and free mbufs for those
3226 * frames that have been transmitted.
3227 */
3228 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3229 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3230 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3231
3232 #ifdef ATW_DEBUG
3233 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3234 int i;
3235 printf(" txsoft %p transmit chain:\n", txs);
3236 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3237 txs->txs_ndescs - 1,
3238 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3239 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3240 printf(" descriptor %d:\n", i);
3241 printf(" at_status: 0x%08x\n",
3242 le32toh(sc->sc_txdescs[i].at_stat));
3243 printf(" at_flags: 0x%08x\n",
3244 le32toh(sc->sc_txdescs[i].at_flags));
3245 printf(" at_buf1: 0x%08x\n",
3246 le32toh(sc->sc_txdescs[i].at_buf1));
3247 printf(" at_buf2: 0x%08x\n",
3248 le32toh(sc->sc_txdescs[i].at_buf2));
3249 if (i == txs->txs_lastdesc)
3250 break;
3251 }
3252 }
3253 #endif
3254
3255 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3256 if (txstat & ATW_TXSTAT_OWN)
3257 break;
3258
3259 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3260
3261 sc->sc_txfree += txs->txs_ndescs;
3262
3263 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3264 0, txs->txs_dmamap->dm_mapsize,
3265 BUS_DMASYNC_POSTWRITE);
3266 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3267 m_freem(txs->txs_mbuf);
3268 txs->txs_mbuf = NULL;
3269
3270 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3271
3272 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3273 (txstat & TXSTAT_ERRMASK) != 0) {
3274 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3275 txstat_buf, sizeof(txstat_buf));
3276 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3277 txstat_buf,
3278 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3279 }
3280
3281 /*
3282 * Check for errors and collisions.
3283 */
3284 if (txstat & ATW_TXSTAT_TUF)
3285 sc->sc_stats.ts_tx_tuf++;
3286 if (txstat & ATW_TXSTAT_TLT)
3287 sc->sc_stats.ts_tx_tlt++;
3288 if (txstat & ATW_TXSTAT_TRT)
3289 sc->sc_stats.ts_tx_trt++;
3290 if (txstat & ATW_TXSTAT_TRO)
3291 sc->sc_stats.ts_tx_tro++;
3292 if (txstat & ATW_TXSTAT_SOFBR) {
3293 sc->sc_stats.ts_tx_sofbr++;
3294 }
3295
3296 if ((txstat & ATW_TXSTAT_ES) == 0)
3297 ifp->if_collisions +=
3298 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3299 else
3300 ifp->if_oerrors++;
3301
3302 ifp->if_opackets++;
3303 }
3304
3305 /*
3306 * If there are no more pending transmissions, cancel the watchdog
3307 * timer.
3308 */
3309 if (txs == NULL)
3310 sc->sc_tx_timer = 0;
3311 #undef TXSTAT_ERRMASK
3312 #undef TXSTAT_FMT
3313 }
3314
3315 /*
3316 * atw_watchdog: [ifnet interface function]
3317 *
3318 * Watchdog timer handler.
3319 */
3320 void
3321 atw_watchdog(struct ifnet *ifp)
3322 {
3323 struct atw_softc *sc = ifp->if_softc;
3324 struct ieee80211com *ic = &sc->sc_ic;
3325
3326 ifp->if_timer = 0;
3327 if (ATW_IS_ENABLED(sc) == 0)
3328 return;
3329
3330 if (sc->sc_rescan_timer) {
3331 if (--sc->sc_rescan_timer == 0)
3332 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3333 }
3334 if (sc->sc_tx_timer) {
3335 if (--sc->sc_tx_timer == 0 &&
3336 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3337 printf("%s: transmit timeout\n", ifp->if_xname);
3338 ifp->if_oerrors++;
3339 (void)atw_init(ifp);
3340 atw_start(ifp);
3341 }
3342 }
3343 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3344 ifp->if_timer = 1;
3345 ieee80211_watchdog(ic);
3346 }
3347
3348 /* Compute the 802.11 Duration field and the PLCP Length fields for
3349 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3350 * Write the fields to the ADM8211 Tx header, frm.
3351 *
3352 * TBD use the fragmentation threshold to find the right duration for
3353 * the first & last fragments.
3354 *
3355 * TBD make certain of the duration fields applied by the ADM8211 to each
3356 * fragment. I think that the ADM8211 knows how to subtract the CTS
3357 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3358 * I also think that the ADM8211 does *some* arithmetic for us, because
3359 * otherwise I think we would have to set a first duration for CTS/first
3360 * fragment, a second duration for fragments between the first and the
3361 * last, and a third duration for the last fragment.
3362 *
3363 * TBD make certain that duration fields reflect addition of FCS/WEP
3364 * and correct duration arithmetic as necessary.
3365 */
3366 static void
3367 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3368 int len)
3369 {
3370 int remainder;
3371
3372 /* deal also with encrypted fragments */
3373 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3374 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3375 sc->sc_dev.dv_xname));
3376 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3377 IEEE80211_WEP_CRCLEN;
3378 }
3379
3380 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3381 * duration (XXX added by MAC?).
3382 */
3383 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3384 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3385
3386 if (rate <= 4)
3387 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3388 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3389 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3390 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3391 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3392 else
3393 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3394 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3395 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3396 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3397 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3398
3399 /* lengthen duration if long preamble */
3400 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3401 frm->atw_head_dur +=
3402 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3403 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3404 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3405 IEEE80211_DUR_DS_FAST_PLCPHDR);
3406
3407 if (remainder != 0)
3408 frm->atw_head_dur++;
3409
3410 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3411 (rate == 2 || rate == 4)) {
3412 /* derived from Linux: how could this be right? */
3413 frm->atw_head_plcplen = frm->atw_head_dur;
3414 } else {
3415 frm->atw_head_plcplen = (16 * len) / rate;
3416 remainder = (80 * len) % (rate * 5);
3417
3418 if (remainder != 0) {
3419 frm->atw_head_plcplen++;
3420
3421 /* XXX magic */
3422 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3423 rate == 22 && remainder <= 30)
3424 frm->atw_head_plcplen |= 0x8000;
3425 }
3426 }
3427 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3428 htole16(frm->atw_head_plcplen);
3429 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3430 }
3431
3432 #ifdef ATW_DEBUG
3433 static void
3434 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3435 {
3436 struct atw_softc *sc = ifp->if_softc;
3437 struct mbuf *m;
3438 int i, noctets = 0;
3439
3440 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3441 m0->m_pkthdr.len);
3442
3443 for (m = m0; m; m = m->m_next) {
3444 if (m->m_len == 0)
3445 continue;
3446 for (i = 0; i < m->m_len; i++) {
3447 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3448 if (++noctets % 24 == 0)
3449 printf("\n");
3450 }
3451 }
3452 printf("%s%s: %d bytes emitted\n",
3453 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3454 }
3455 #endif /* ATW_DEBUG */
3456
3457 /*
3458 * atw_start: [ifnet interface function]
3459 *
3460 * Start packet transmission on the interface.
3461 */
3462 void
3463 atw_start(struct ifnet *ifp)
3464 {
3465 struct atw_softc *sc = ifp->if_softc;
3466 struct ieee80211com *ic = &sc->sc_ic;
3467 struct ieee80211_node *ni;
3468 struct ieee80211_frame *wh;
3469 struct atw_frame *hh;
3470 struct mbuf *m0, *m;
3471 struct atw_txsoft *txs, *last_txs;
3472 struct atw_txdesc *txd;
3473 int do_encrypt, rate;
3474 bus_dmamap_t dmamap;
3475 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3476
3477 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3478 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3479
3480 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3481 return;
3482
3483 /*
3484 * Remember the previous number of free descriptors and
3485 * the first descriptor we'll use.
3486 */
3487 ofree = sc->sc_txfree;
3488 firsttx = sc->sc_txnext;
3489
3490 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3491 sc->sc_dev.dv_xname, ofree, firsttx));
3492
3493 /*
3494 * Loop through the send queue, setting up transmit descriptors
3495 * until we drain the queue, or use up all available transmit
3496 * descriptors.
3497 */
3498 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3499 sc->sc_txfree != 0) {
3500
3501 /*
3502 * Grab a packet off the management queue, if it
3503 * is not empty. Otherwise, from the data queue.
3504 */
3505 IF_DEQUEUE(&ic->ic_mgtq, m0);
3506 if (m0 != NULL) {
3507 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3508 m0->m_pkthdr.rcvif = NULL;
3509 } else {
3510 /* send no data packets until we are associated */
3511 if (ic->ic_state != IEEE80211_S_RUN)
3512 break;
3513 IFQ_DEQUEUE(&ifp->if_snd, m0);
3514 if (m0 == NULL)
3515 break;
3516 #if NBPFILTER > 0
3517 if (ifp->if_bpf != NULL)
3518 bpf_mtap(ifp->if_bpf, m0);
3519 #endif /* NBPFILTER > 0 */
3520 ni = ieee80211_find_txnode(ic,
3521 mtod(m0, struct ether_header *)->ether_dhost);
3522 if (ni == NULL) {
3523 ifp->if_oerrors++;
3524 break;
3525 }
3526 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3527 ieee80211_free_node(ni);
3528 ifp->if_oerrors++;
3529 break;
3530 }
3531 }
3532
3533 rate = MAX(ieee80211_get_rate(ic), 2);
3534
3535 #if NBPFILTER > 0
3536 /*
3537 * Pass the packet to any BPF listeners.
3538 */
3539 if (ic->ic_rawbpf != NULL)
3540 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3541
3542 if (sc->sc_radiobpf != NULL) {
3543 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3544
3545 tap->at_rate = rate;
3546 tap->at_chan_freq = ic->ic_curchan->ic_freq;
3547 tap->at_chan_flags = ic->ic_curchan->ic_flags;
3548
3549 /* TBD tap->at_flags */
3550
3551 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3552 tap->at_ihdr.it_len, m0);
3553 }
3554 #endif /* NBPFILTER > 0 */
3555
3556 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3557
3558 if (ni != NULL)
3559 ieee80211_free_node(ni);
3560
3561 if (m0 == NULL) {
3562 ifp->if_oerrors++;
3563 break;
3564 }
3565
3566 /* just to make sure. */
3567 m0 = m_pullup(m0, sizeof(struct atw_frame));
3568
3569 if (m0 == NULL) {
3570 ifp->if_oerrors++;
3571 break;
3572 }
3573
3574 hh = mtod(m0, struct atw_frame *);
3575 wh = &hh->atw_ihdr;
3576
3577 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3578
3579 /* Copy everything we need from the 802.11 header:
3580 * Frame Control; address 1, address 3, or addresses
3581 * 3 and 4. NIC fills in BSSID, SA.
3582 */
3583 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3584 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3585 panic("%s: illegal WDS frame",
3586 sc->sc_dev.dv_xname);
3587 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3588 } else
3589 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3590
3591 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3592
3593 /* initialize remaining Tx parameters */
3594 memset(&hh->u, 0, sizeof(hh->u));
3595
3596 hh->atw_rate = rate * 5;
3597 /* XXX this could be incorrect if M_FCS. _encap should
3598 * probably strip FCS just in case it sticks around in
3599 * bridged packets.
3600 */
3601 hh->atw_service = 0x00; /* XXX guess */
3602 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3603 sizeof(struct atw_frame));
3604
3605 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3606 hh->atw_rtylmt = 3;
3607 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3608 if (do_encrypt) {
3609 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3610 hh->atw_keyid = ic->ic_def_txkey;
3611 }
3612
3613 /* TBD 4-addr frames */
3614 atw_frame_setdurs(sc, hh, rate,
3615 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3616 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3617
3618 /* never fragment multicast frames */
3619 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3620 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3621 } else if (sc->sc_flags & ATWF_RTSCTS) {
3622 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3623 }
3624
3625 #ifdef ATW_DEBUG
3626 hh->atw_fragnum = 0;
3627
3628 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3629 printf("%s: dst = %s, rate = 0x%02x, "
3630 "service = 0x%02x, paylen = 0x%04x\n",
3631 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3632 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3633
3634 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3635 "dur1 = 0x%04x, dur2 = 0x%04x, "
3636 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3637 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3638 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3639 hh->atw_tail_dur, hh->atw_head_dur);
3640
3641 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3642 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3643 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3644 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3645
3646 printf("%s: keyid = %d\n",
3647 sc->sc_dev.dv_xname, hh->atw_keyid);
3648
3649 atw_dump_pkt(ifp, m0);
3650 }
3651 #endif /* ATW_DEBUG */
3652
3653 dmamap = txs->txs_dmamap;
3654
3655 /*
3656 * Load the DMA map. Copy and try (once) again if the packet
3657 * didn't fit in the alloted number of segments.
3658 */
3659 for (first = 1;
3660 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3661 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3662 first = 0) {
3663 MGETHDR(m, M_DONTWAIT, MT_DATA);
3664 if (m == NULL) {
3665 printf("%s: unable to allocate Tx mbuf\n",
3666 sc->sc_dev.dv_xname);
3667 break;
3668 }
3669 if (m0->m_pkthdr.len > MHLEN) {
3670 MCLGET(m, M_DONTWAIT);
3671 if ((m->m_flags & M_EXT) == 0) {
3672 printf("%s: unable to allocate Tx "
3673 "cluster\n", sc->sc_dev.dv_xname);
3674 m_freem(m);
3675 break;
3676 }
3677 }
3678 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3679 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3680 m_freem(m0);
3681 m0 = m;
3682 m = NULL;
3683 }
3684 if (error != 0) {
3685 printf("%s: unable to load Tx buffer, "
3686 "error = %d\n", sc->sc_dev.dv_xname, error);
3687 m_freem(m0);
3688 break;
3689 }
3690
3691 /*
3692 * Ensure we have enough descriptors free to describe
3693 * the packet.
3694 */
3695 if (dmamap->dm_nsegs > sc->sc_txfree) {
3696 /*
3697 * Not enough free descriptors to transmit
3698 * this packet. Unload the DMA map and
3699 * drop the packet. Notify the upper layer
3700 * that there are no more slots left.
3701 *
3702 * XXX We could allocate an mbuf and copy, but
3703 * XXX it is worth it?
3704 */
3705 ifp->if_flags |= IFF_OACTIVE;
3706 bus_dmamap_unload(sc->sc_dmat, dmamap);
3707 m_freem(m0);
3708 break;
3709 }
3710
3711 /*
3712 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3713 */
3714
3715 /* Sync the DMA map. */
3716 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3717 BUS_DMASYNC_PREWRITE);
3718
3719 /* XXX arbitrary retry limit; 8 because I have seen it in
3720 * use already and maybe 0 means "no tries" !
3721 */
3722 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3723
3724 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3725 sc->sc_dev.dv_xname, rate * 5));
3726 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3727
3728 /*
3729 * Initialize the transmit descriptors.
3730 */
3731 for (nexttx = sc->sc_txnext, seg = 0;
3732 seg < dmamap->dm_nsegs;
3733 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3734 /*
3735 * If this is the first descriptor we're
3736 * enqueueing, don't set the OWN bit just
3737 * yet. That could cause a race condition.
3738 * We'll do it below.
3739 */
3740 txd = &sc->sc_txdescs[nexttx];
3741 txd->at_ctl = ctl |
3742 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3743
3744 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3745 txd->at_flags =
3746 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3747 ATW_TXFLAG_TBS1_MASK)) |
3748 ((nexttx == (ATW_NTXDESC - 1))
3749 ? htole32(ATW_TXFLAG_TER) : 0);
3750 lasttx = nexttx;
3751 }
3752
3753 IASSERT(lasttx != -1, ("bad lastx"));
3754 /* Set `first segment' and `last segment' appropriately. */
3755 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3756 htole32(ATW_TXFLAG_FS);
3757 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3758
3759 #ifdef ATW_DEBUG
3760 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3761 printf(" txsoft %p transmit chain:\n", txs);
3762 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3763 printf(" descriptor %d:\n", seg);
3764 printf(" at_ctl: 0x%08x\n",
3765 le32toh(sc->sc_txdescs[seg].at_ctl));
3766 printf(" at_flags: 0x%08x\n",
3767 le32toh(sc->sc_txdescs[seg].at_flags));
3768 printf(" at_buf1: 0x%08x\n",
3769 le32toh(sc->sc_txdescs[seg].at_buf1));
3770 printf(" at_buf2: 0x%08x\n",
3771 le32toh(sc->sc_txdescs[seg].at_buf2));
3772 if (seg == lasttx)
3773 break;
3774 }
3775 }
3776 #endif
3777
3778 /* Sync the descriptors we're using. */
3779 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3780 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3781
3782 /*
3783 * Store a pointer to the packet so we can free it later,
3784 * and remember what txdirty will be once the packet is
3785 * done.
3786 */
3787 txs->txs_mbuf = m0;
3788 txs->txs_firstdesc = sc->sc_txnext;
3789 txs->txs_lastdesc = lasttx;
3790 txs->txs_ndescs = dmamap->dm_nsegs;
3791
3792 /* Advance the tx pointer. */
3793 sc->sc_txfree -= dmamap->dm_nsegs;
3794 sc->sc_txnext = nexttx;
3795
3796 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3797 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3798
3799 last_txs = txs;
3800 }
3801
3802 if (txs == NULL || sc->sc_txfree == 0) {
3803 /* No more slots left; notify upper layer. */
3804 ifp->if_flags |= IFF_OACTIVE;
3805 }
3806
3807 if (sc->sc_txfree != ofree) {
3808 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3809 sc->sc_dev.dv_xname, lasttx, firsttx));
3810 /*
3811 * Cause a transmit interrupt to happen on the
3812 * last packet we enqueued.
3813 */
3814 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3815 ATW_CDTXSYNC(sc, lasttx, 1,
3816 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3817
3818 /*
3819 * The entire packet chain is set up. Give the
3820 * first descriptor to the chip now.
3821 */
3822 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3823 ATW_CDTXSYNC(sc, firsttx, 1,
3824 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3825
3826 /* Wake up the transmitter. */
3827 ATW_WRITE(sc, ATW_TDR, 0x1);
3828
3829 /* Set a watchdog timer in case the chip flakes out. */
3830 sc->sc_tx_timer = 5;
3831 ifp->if_timer = 1;
3832 }
3833 }
3834
3835 /*
3836 * atw_power:
3837 *
3838 * Power management (suspend/resume) hook.
3839 */
3840 void
3841 atw_power(int why, void *arg)
3842 {
3843 struct atw_softc *sc = arg;
3844 struct ifnet *ifp = &sc->sc_if;
3845 int s;
3846
3847 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3848
3849 s = splnet();
3850 switch (why) {
3851 case PWR_STANDBY:
3852 /* XXX do nothing. */
3853 break;
3854 case PWR_SUSPEND:
3855 atw_stop(ifp, 0);
3856 if (sc->sc_power != NULL)
3857 (*sc->sc_power)(sc, why);
3858 break;
3859 case PWR_RESUME:
3860 if (ifp->if_flags & IFF_UP) {
3861 if (sc->sc_power != NULL)
3862 (*sc->sc_power)(sc, why);
3863 atw_init(ifp);
3864 }
3865 break;
3866 case PWR_SOFTSUSPEND:
3867 case PWR_SOFTSTANDBY:
3868 case PWR_SOFTRESUME:
3869 break;
3870 }
3871 splx(s);
3872 }
3873
3874 /*
3875 * atw_ioctl: [ifnet interface function]
3876 *
3877 * Handle control requests from the operator.
3878 */
3879 int
3880 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3881 {
3882 struct atw_softc *sc = ifp->if_softc;
3883 struct ifreq *ifr = (struct ifreq *)data;
3884 int s, error = 0;
3885
3886 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3887 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3888 return ENXIO;
3889
3890 s = splnet();
3891
3892 switch (cmd) {
3893 case SIOCSIFFLAGS:
3894 if (ifp->if_flags & IFF_UP) {
3895 if (ATW_IS_ENABLED(sc)) {
3896 /*
3897 * To avoid rescanning another access point,
3898 * do not call atw_init() here. Instead,
3899 * only reflect media settings.
3900 */
3901 atw_filter_setup(sc);
3902 } else
3903 error = atw_init(ifp);
3904 } else if (ATW_IS_ENABLED(sc))
3905 atw_stop(ifp, 1);
3906 break;
3907 case SIOCADDMULTI:
3908 case SIOCDELMULTI:
3909 error = (cmd == SIOCADDMULTI) ?
3910 ether_addmulti(ifr, &sc->sc_ec) :
3911 ether_delmulti(ifr, &sc->sc_ec);
3912 if (error == ENETRESET) {
3913 if (ifp->if_flags & IFF_RUNNING)
3914 atw_filter_setup(sc); /* do not rescan */
3915 error = 0;
3916 }
3917 break;
3918 default:
3919 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3920 if (error == ENETRESET) {
3921 if (ATW_IS_ENABLED(sc))
3922 error = atw_init(ifp);
3923 else
3924 error = 0;
3925 }
3926 break;
3927 }
3928
3929 /* Try to get more packets going. */
3930 if (ATW_IS_ENABLED(sc))
3931 atw_start(ifp);
3932
3933 splx(s);
3934 return (error);
3935 }
3936
3937 static int
3938 atw_media_change(struct ifnet *ifp)
3939 {
3940 int error;
3941
3942 error = ieee80211_media_change(ifp);
3943 if (error == ENETRESET) {
3944 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3945 (IFF_RUNNING|IFF_UP))
3946 atw_init(ifp); /* XXX lose error */
3947 error = 0;
3948 }
3949 return error;
3950 }
3951
3952 static void
3953 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3954 {
3955 struct atw_softc *sc = ifp->if_softc;
3956
3957 if (ATW_IS_ENABLED(sc) == 0) {
3958 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3959 imr->ifm_status = 0;
3960 return;
3961 }
3962 ieee80211_media_status(ifp, imr);
3963 }
3964