atw.c revision 1.92 1 /* $NetBSD: atw.c,v 1.92 2005/12/24 20:27:29 perry Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.92 2005/12/24 20:27:29 perry Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_netbsd.h>
70 #include <net80211/ieee80211_var.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162
163 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
166 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
167 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
171 static void atw_print_regs(struct atw_softc *, const char *);
172
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 # ifdef ATW_BBPDEBUG
175 static void atw_rf3000_print(struct atw_softc *);
176 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177 # endif /* ATW_BBPDEBUG */
178
179 # ifdef ATW_SYNDEBUG
180 static void atw_si4126_print(struct atw_softc *);
181 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
182 # endif /* ATW_SYNDEBUG */
183
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define DPRINTF(sc, x) /* nothing */
189 #define DPRINTF2(sc, x) /* nothing */
190 #define DPRINTF3(sc, x) /* nothing */
191 #endif
192
193 /* ifnet methods */
194 int atw_init(struct ifnet *);
195 int atw_ioctl(struct ifnet *, u_long, caddr_t);
196 void atw_start(struct ifnet *);
197 void atw_stop(struct ifnet *, int);
198 void atw_watchdog(struct ifnet *);
199
200 /* Device attachment */
201 void atw_attach(struct atw_softc *);
202 int atw_detach(struct atw_softc *);
203
204 /* Rx/Tx process */
205 int atw_add_rxbuf(struct atw_softc *, int);
206 void atw_idle(struct atw_softc *, u_int32_t);
207 void atw_rxdrain(struct atw_softc *);
208 void atw_txdrain(struct atw_softc *);
209
210 /* Device (de)activation and power state */
211 void atw_disable(struct atw_softc *);
212 int atw_enable(struct atw_softc *);
213 void atw_power(int, void *);
214 void atw_reset(struct atw_softc *);
215 void atw_shutdown(void *);
216
217 /* Interrupt handlers */
218 void atw_linkintr(struct atw_softc *, u_int32_t);
219 void atw_rxintr(struct atw_softc *);
220 void atw_txintr(struct atw_softc *);
221
222 /* 802.11 state machine */
223 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static void atw_next_scan(void *);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static int atw_tune(struct atw_softc *);
228
229 /* Device initialization */
230 static void atw_bbp_io_init(struct atw_softc *);
231 static void atw_cfp_init(struct atw_softc *);
232 static void atw_cmdr_init(struct atw_softc *);
233 static void atw_ifs_init(struct atw_softc *);
234 static void atw_nar_init(struct atw_softc *);
235 static void atw_response_times_init(struct atw_softc *);
236 static void atw_rf_reset(struct atw_softc *);
237 static void atw_test1_init(struct atw_softc *);
238 static void atw_tofs0_init(struct atw_softc *);
239 static void atw_tofs2_init(struct atw_softc *);
240 static void atw_txlmt_init(struct atw_softc *);
241 static void atw_wcsr_init(struct atw_softc *);
242
243 /* Key management */
244 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
245 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
246 const u_int8_t[IEEE80211_ADDR_LEN]);
247 static void atw_key_update_begin(struct ieee80211com *);
248 static void atw_key_update_end(struct ieee80211com *);
249
250 /* RAM/ROM utilities */
251 static void atw_clear_sram(struct atw_softc *);
252 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
253 static int atw_read_srom(struct atw_softc *);
254
255 /* BSS setup */
256 static void atw_predict_beacon(struct atw_softc *);
257 static void atw_start_beacon(struct atw_softc *, int);
258 static void atw_write_bssid(struct atw_softc *);
259 static void atw_write_ssid(struct atw_softc *);
260 static void atw_write_sup_rates(struct atw_softc *);
261 static void atw_write_wep(struct atw_softc *);
262
263 /* Media */
264 static int atw_media_change(struct ifnet *);
265 static void atw_media_status(struct ifnet *, struct ifmediareq *);
266
267 static void atw_filter_setup(struct atw_softc *);
268
269 /* 802.11 utilities */
270 static void atw_frame_setdurs(struct atw_softc *,
271 struct atw_frame *, int, int);
272 static uint64_t atw_get_tsft(struct atw_softc *);
273 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
274 uint32_t);
275 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
276 static void atw_node_free(struct ieee80211_node *);
277 static void atw_change_ibss(struct atw_softc *);
278
279 /*
280 * Tuner/transceiver/modem
281 */
282 static void atw_bbp_io_enable(struct atw_softc *, int);
283
284 /* RFMD RF3000 Baseband Processor */
285 static int atw_rf3000_init(struct atw_softc *);
286 static int atw_rf3000_tune(struct atw_softc *, u_int);
287 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
288
289 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
290 static void atw_si4126_tune(struct atw_softc *, u_int);
291 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
292
293 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
294 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
295
296 const char *atw_tx_state[] = {
297 "STOPPED",
298 "RUNNING - read descriptor",
299 "RUNNING - transmitting",
300 "RUNNING - filling fifo", /* XXX */
301 "SUSPENDED",
302 "RUNNING -- write descriptor",
303 "RUNNING -- write last descriptor",
304 "RUNNING - fifo full"
305 };
306
307 const char *atw_rx_state[] = {
308 "STOPPED",
309 "RUNNING - read descriptor",
310 "RUNNING - check this packet, pre-fetch next",
311 "RUNNING - wait for reception",
312 "SUSPENDED",
313 "RUNNING - write descriptor",
314 "RUNNING - flush fifo",
315 "RUNNING - fifo drain"
316 };
317
318 int
319 atw_activate(struct device *self, enum devact act)
320 {
321 struct atw_softc *sc = (struct atw_softc *)self;
322 int rv = 0, s;
323
324 s = splnet();
325 switch (act) {
326 case DVACT_ACTIVATE:
327 rv = EOPNOTSUPP;
328 break;
329
330 case DVACT_DEACTIVATE:
331 if_deactivate(&sc->sc_if);
332 break;
333 }
334 splx(s);
335 return rv;
336 }
337
338 /*
339 * atw_enable:
340 *
341 * Enable the ADM8211 chip.
342 */
343 int
344 atw_enable(struct atw_softc *sc)
345 {
346
347 if (ATW_IS_ENABLED(sc) == 0) {
348 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
349 printf("%s: device enable failed\n",
350 sc->sc_dev.dv_xname);
351 return (EIO);
352 }
353 sc->sc_flags |= ATWF_ENABLED;
354 }
355 return (0);
356 }
357
358 /*
359 * atw_disable:
360 *
361 * Disable the ADM8211 chip.
362 */
363 void
364 atw_disable(struct atw_softc *sc)
365 {
366 if (!ATW_IS_ENABLED(sc))
367 return;
368 if (sc->sc_disable != NULL)
369 (*sc->sc_disable)(sc);
370 sc->sc_flags &= ~ATWF_ENABLED;
371 }
372
373 /* Returns -1 on failure. */
374 static int
375 atw_read_srom(struct atw_softc *sc)
376 {
377 struct seeprom_descriptor sd;
378 uint32_t test0, fail_bits;
379
380 (void)memset(&sd, 0, sizeof(sd));
381
382 test0 = ATW_READ(sc, ATW_TEST0);
383
384 switch (sc->sc_rev) {
385 case ATW_REVISION_BA:
386 case ATW_REVISION_CA:
387 fail_bits = ATW_TEST0_EPNE;
388 break;
389 default:
390 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
391 break;
392 }
393 if ((test0 & fail_bits) != 0) {
394 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
395 return -1;
396 }
397
398 switch (test0 & ATW_TEST0_EPTYP_MASK) {
399 case ATW_TEST0_EPTYP_93c66:
400 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
401 sc->sc_sromsz = 512;
402 sd.sd_chip = C56_66;
403 break;
404 case ATW_TEST0_EPTYP_93c46:
405 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
406 sc->sc_sromsz = 128;
407 sd.sd_chip = C46;
408 break;
409 default:
410 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
411 MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
412 return -1;
413 }
414
415 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
416
417 if (sc->sc_srom == NULL) {
418 printf("%s: unable to allocate SROM buffer\n",
419 sc->sc_dev.dv_xname);
420 return -1;
421 }
422
423 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
424
425 /* ADM8211 has a single 32-bit register for controlling the
426 * 93cx6 SROM. Bit SRS enables the serial port. There is no
427 * "ready" bit. The ADM8211 input/output sense is the reverse
428 * of read_seeprom's.
429 */
430 sd.sd_tag = sc->sc_st;
431 sd.sd_bsh = sc->sc_sh;
432 sd.sd_regsize = 4;
433 sd.sd_control_offset = ATW_SPR;
434 sd.sd_status_offset = ATW_SPR;
435 sd.sd_dataout_offset = ATW_SPR;
436 sd.sd_CK = ATW_SPR_SCLK;
437 sd.sd_CS = ATW_SPR_SCS;
438 sd.sd_DI = ATW_SPR_SDO;
439 sd.sd_DO = ATW_SPR_SDI;
440 sd.sd_MS = ATW_SPR_SRS;
441 sd.sd_RDY = 0;
442
443 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
444 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
445 free(sc->sc_srom, M_DEVBUF);
446 return -1;
447 }
448 #ifdef ATW_DEBUG
449 {
450 int i;
451 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
452 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
453 if (((i % 8) == 0) && (i != 0)) {
454 ATW_DPRINTF(("\n\t"));
455 }
456 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
457 }
458 ATW_DPRINTF(("\n"));
459 }
460 #endif /* ATW_DEBUG */
461 return 0;
462 }
463
464 #ifdef ATW_DEBUG
465 static void
466 atw_print_regs(struct atw_softc *sc, const char *where)
467 {
468 #define PRINTREG(sc, reg) \
469 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
470 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
471
472 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
473
474 PRINTREG(sc, ATW_PAR);
475 PRINTREG(sc, ATW_FRCTL);
476 PRINTREG(sc, ATW_TDR);
477 PRINTREG(sc, ATW_WTDP);
478 PRINTREG(sc, ATW_RDR);
479 PRINTREG(sc, ATW_WRDP);
480 PRINTREG(sc, ATW_RDB);
481 PRINTREG(sc, ATW_CSR3A);
482 PRINTREG(sc, ATW_TDBD);
483 PRINTREG(sc, ATW_TDBP);
484 PRINTREG(sc, ATW_STSR);
485 PRINTREG(sc, ATW_CSR5A);
486 PRINTREG(sc, ATW_NAR);
487 PRINTREG(sc, ATW_CSR6A);
488 PRINTREG(sc, ATW_IER);
489 PRINTREG(sc, ATW_CSR7A);
490 PRINTREG(sc, ATW_LPC);
491 PRINTREG(sc, ATW_TEST1);
492 PRINTREG(sc, ATW_SPR);
493 PRINTREG(sc, ATW_TEST0);
494 PRINTREG(sc, ATW_WCSR);
495 PRINTREG(sc, ATW_WPDR);
496 PRINTREG(sc, ATW_GPTMR);
497 PRINTREG(sc, ATW_GPIO);
498 PRINTREG(sc, ATW_BBPCTL);
499 PRINTREG(sc, ATW_SYNCTL);
500 PRINTREG(sc, ATW_PLCPHD);
501 PRINTREG(sc, ATW_MMIWADDR);
502 PRINTREG(sc, ATW_MMIRADDR1);
503 PRINTREG(sc, ATW_MMIRADDR2);
504 PRINTREG(sc, ATW_TXBR);
505 PRINTREG(sc, ATW_CSR15A);
506 PRINTREG(sc, ATW_ALCSTAT);
507 PRINTREG(sc, ATW_TOFS2);
508 PRINTREG(sc, ATW_CMDR);
509 PRINTREG(sc, ATW_PCIC);
510 PRINTREG(sc, ATW_PMCSR);
511 PRINTREG(sc, ATW_PAR0);
512 PRINTREG(sc, ATW_PAR1);
513 PRINTREG(sc, ATW_MAR0);
514 PRINTREG(sc, ATW_MAR1);
515 PRINTREG(sc, ATW_ATIMDA0);
516 PRINTREG(sc, ATW_ABDA1);
517 PRINTREG(sc, ATW_BSSID0);
518 PRINTREG(sc, ATW_TXLMT);
519 PRINTREG(sc, ATW_MIBCNT);
520 PRINTREG(sc, ATW_BCNT);
521 PRINTREG(sc, ATW_TSFTH);
522 PRINTREG(sc, ATW_TSC);
523 PRINTREG(sc, ATW_SYNRF);
524 PRINTREG(sc, ATW_BPLI);
525 PRINTREG(sc, ATW_CAP0);
526 PRINTREG(sc, ATW_CAP1);
527 PRINTREG(sc, ATW_RMD);
528 PRINTREG(sc, ATW_CFPP);
529 PRINTREG(sc, ATW_TOFS0);
530 PRINTREG(sc, ATW_TOFS1);
531 PRINTREG(sc, ATW_IFST);
532 PRINTREG(sc, ATW_RSPT);
533 PRINTREG(sc, ATW_TSFTL);
534 PRINTREG(sc, ATW_WEPCTL);
535 PRINTREG(sc, ATW_WESK);
536 PRINTREG(sc, ATW_WEPCNT);
537 PRINTREG(sc, ATW_MACTEST);
538 PRINTREG(sc, ATW_FER);
539 PRINTREG(sc, ATW_FEMR);
540 PRINTREG(sc, ATW_FPSR);
541 PRINTREG(sc, ATW_FFER);
542 #undef PRINTREG
543 }
544 #endif /* ATW_DEBUG */
545
546 /*
547 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
548 */
549 void
550 atw_attach(struct atw_softc *sc)
551 {
552 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
553 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
554 };
555 struct ieee80211com *ic = &sc->sc_ic;
556 struct ifnet *ifp = &sc->sc_if;
557 int country_code, error, i, nrate, srom_major;
558 u_int32_t reg;
559 static const char *type_strings[] = {"Intersil (not supported)",
560 "RFMD", "Marvel (not supported)"};
561
562 sc->sc_txth = atw_txthresh_tab_lo;
563
564 SIMPLEQ_INIT(&sc->sc_txfreeq);
565 SIMPLEQ_INIT(&sc->sc_txdirtyq);
566
567 #ifdef ATW_DEBUG
568 atw_print_regs(sc, "atw_attach");
569 #endif /* ATW_DEBUG */
570
571 /*
572 * Allocate the control data structures, and create and load the
573 * DMA map for it.
574 */
575 if ((error = bus_dmamem_alloc(sc->sc_dmat,
576 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
577 1, &sc->sc_cdnseg, 0)) != 0) {
578 printf("%s: unable to allocate control data, error = %d\n",
579 sc->sc_dev.dv_xname, error);
580 goto fail_0;
581 }
582
583 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
584 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
585 BUS_DMA_COHERENT)) != 0) {
586 printf("%s: unable to map control data, error = %d\n",
587 sc->sc_dev.dv_xname, error);
588 goto fail_1;
589 }
590
591 if ((error = bus_dmamap_create(sc->sc_dmat,
592 sizeof(struct atw_control_data), 1,
593 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
594 printf("%s: unable to create control data DMA map, "
595 "error = %d\n", sc->sc_dev.dv_xname, error);
596 goto fail_2;
597 }
598
599 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
600 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
601 0)) != 0) {
602 printf("%s: unable to load control data DMA map, error = %d\n",
603 sc->sc_dev.dv_xname, error);
604 goto fail_3;
605 }
606
607 /*
608 * Create the transmit buffer DMA maps.
609 */
610 sc->sc_ntxsegs = ATW_NTXSEGS;
611 for (i = 0; i < ATW_TXQUEUELEN; i++) {
612 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
613 sc->sc_ntxsegs, MCLBYTES, 0, 0,
614 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
615 printf("%s: unable to create tx DMA map %d, "
616 "error = %d\n", sc->sc_dev.dv_xname, i, error);
617 goto fail_4;
618 }
619 }
620
621 /*
622 * Create the receive buffer DMA maps.
623 */
624 for (i = 0; i < ATW_NRXDESC; i++) {
625 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
626 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
627 printf("%s: unable to create rx DMA map %d, "
628 "error = %d\n", sc->sc_dev.dv_xname, i, error);
629 goto fail_5;
630 }
631 }
632 for (i = 0; i < ATW_NRXDESC; i++) {
633 sc->sc_rxsoft[i].rxs_mbuf = NULL;
634 }
635
636 switch (sc->sc_rev) {
637 case ATW_REVISION_AB:
638 case ATW_REVISION_AF:
639 sc->sc_sramlen = ATW_SRAM_A_SIZE;
640 break;
641 case ATW_REVISION_BA:
642 case ATW_REVISION_CA:
643 sc->sc_sramlen = ATW_SRAM_B_SIZE;
644 break;
645 }
646
647 /* Reset the chip to a known state. */
648 atw_reset(sc);
649
650 if (atw_read_srom(sc) == -1)
651 return;
652
653 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
654 ATW_SR_RFTYPE_MASK);
655
656 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
657 ATW_SR_BBPTYPE_MASK);
658
659 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
660 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
661 return;
662 }
663 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
664 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
665 return;
666 }
667
668 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
669 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
670
671 /* XXX There exists a Linux driver which seems to use RFType = 0 for
672 * MARVEL. My bug, or theirs?
673 */
674
675 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
676
677 switch (sc->sc_rftype) {
678 case ATW_RFTYPE_INTERSIL:
679 reg |= ATW_SYNCTL_CS1;
680 break;
681 case ATW_RFTYPE_RFMD:
682 reg |= ATW_SYNCTL_CS0;
683 break;
684 case ATW_RFTYPE_MARVEL:
685 break;
686 }
687
688 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
689 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
690
691 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
692
693 switch (sc->sc_bbptype) {
694 case ATW_BBPTYPE_INTERSIL:
695 reg |= ATW_BBPCTL_TWI;
696 break;
697 case ATW_BBPTYPE_RFMD:
698 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
699 ATW_BBPCTL_CCA_ACTLO;
700 break;
701 case ATW_BBPTYPE_MARVEL:
702 break;
703 case ATW_C_BBPTYPE_RFMD:
704 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
705 sc->sc_dev.dv_xname);
706 break;
707 }
708
709 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
710 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
711
712 /*
713 * From this point forward, the attachment cannot fail. A failure
714 * before this point releases all resources that may have been
715 * allocated.
716 */
717 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
718
719 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
720 htole16(sc->sc_srom[ATW_SR_MAC00]),
721 htole16(sc->sc_srom[ATW_SR_MAC01]),
722 htole16(sc->sc_srom[ATW_SR_MAC10])));
723
724 srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
725 ATW_SR_MAJOR_MASK);
726
727 if (srom_major < 2)
728 sc->sc_rf3000_options1 = 0;
729 else if (sc->sc_rev == ATW_REVISION_BA) {
730 sc->sc_rf3000_options1 =
731 MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
732 ATW_SR_CR28_MASK);
733 } else
734 sc->sc_rf3000_options1 = 0;
735
736 sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
737 ATW_SR_CR29_MASK);
738
739 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
740 ATW_SR_CTRY_MASK);
741
742 #define ADD_CHANNEL(_ic, _chan) do { \
743 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
744 _ic->ic_channels[_chan].ic_freq = \
745 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
746 } while (0)
747
748 /* Find available channels */
749 switch (country_code) {
750 case COUNTRY_MMK2: /* 1-14 */
751 ADD_CHANNEL(ic, 14);
752 /*FALLTHROUGH*/
753 case COUNTRY_ETSI: /* 1-13 */
754 for (i = 1; i <= 13; i++)
755 ADD_CHANNEL(ic, i);
756 break;
757 case COUNTRY_FCC: /* 1-11 */
758 case COUNTRY_IC: /* 1-11 */
759 for (i = 1; i <= 11; i++)
760 ADD_CHANNEL(ic, i);
761 break;
762 case COUNTRY_MMK: /* 14 */
763 ADD_CHANNEL(ic, 14);
764 break;
765 case COUNTRY_FRANCE: /* 10-13 */
766 for (i = 10; i <= 13; i++)
767 ADD_CHANNEL(ic, i);
768 break;
769 default: /* assume channels 10-11 */
770 case COUNTRY_SPAIN: /* 10-11 */
771 for (i = 10; i <= 11; i++)
772 ADD_CHANNEL(ic, i);
773 break;
774 }
775
776 /* Read the MAC address. */
777 reg = ATW_READ(sc, ATW_PAR0);
778 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
779 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
780 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
781 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
782 reg = ATW_READ(sc, ATW_PAR1);
783 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
784 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
785
786 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
787 printf(" could not get mac address, attach failed\n");
788 return;
789 }
790
791 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
792
793 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
794 ifp->if_softc = sc;
795 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
796 IFF_NOTRAILERS;
797 ifp->if_ioctl = atw_ioctl;
798 ifp->if_start = atw_start;
799 ifp->if_watchdog = atw_watchdog;
800 ifp->if_init = atw_init;
801 ifp->if_stop = atw_stop;
802 IFQ_SET_READY(&ifp->if_snd);
803
804 ic->ic_ifp = ifp;
805 ic->ic_phytype = IEEE80211_T_DS;
806 ic->ic_opmode = IEEE80211_M_STA;
807 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
808 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
809
810 nrate = 0;
811 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
812 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
813 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
814 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
815 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
816
817 /*
818 * Call MI attach routines.
819 */
820
821 if_attach(ifp);
822 ieee80211_ifattach(ic);
823
824 sc->sc_newstate = ic->ic_newstate;
825 ic->ic_newstate = atw_newstate;
826
827 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
828 ic->ic_recv_mgmt = atw_recv_mgmt;
829
830 sc->sc_node_free = ic->ic_node_free;
831 ic->ic_node_free = atw_node_free;
832
833 sc->sc_node_alloc = ic->ic_node_alloc;
834 ic->ic_node_alloc = atw_node_alloc;
835
836 ic->ic_crypto.cs_key_delete = atw_key_delete;
837 ic->ic_crypto.cs_key_set = atw_key_set;
838 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
839 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
840
841 /* possibly we should fill in our own sc_send_prresp, since
842 * the ADM8211 is probably sending probe responses in ad hoc
843 * mode.
844 */
845
846 /* complete initialization */
847 ieee80211_media_init(ic, atw_media_change, atw_media_status);
848 callout_init(&sc->sc_scan_ch);
849
850 #if NBPFILTER > 0
851 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
852 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
853 #endif
854
855 /*
856 * Make sure the interface is shutdown during reboot.
857 */
858 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
859 if (sc->sc_sdhook == NULL)
860 printf("%s: WARNING: unable to establish shutdown hook\n",
861 sc->sc_dev.dv_xname);
862
863 /*
864 * Add a suspend hook to make sure we come back up after a
865 * resume.
866 */
867 sc->sc_powerhook = powerhook_establish(atw_power, sc);
868 if (sc->sc_powerhook == NULL)
869 printf("%s: WARNING: unable to establish power hook\n",
870 sc->sc_dev.dv_xname);
871
872 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
873 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
874 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
875
876 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
877 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
878 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
879
880 ieee80211_announce(ic);
881 return;
882
883 /*
884 * Free any resources we've allocated during the failed attach
885 * attempt. Do this in reverse order and fall through.
886 */
887 fail_5:
888 for (i = 0; i < ATW_NRXDESC; i++) {
889 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
890 continue;
891 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
892 }
893 fail_4:
894 for (i = 0; i < ATW_TXQUEUELEN; i++) {
895 if (sc->sc_txsoft[i].txs_dmamap == NULL)
896 continue;
897 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
898 }
899 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
900 fail_3:
901 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
902 fail_2:
903 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
904 sizeof(struct atw_control_data));
905 fail_1:
906 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
907 fail_0:
908 return;
909 }
910
911 static struct ieee80211_node *
912 atw_node_alloc(struct ieee80211_node_table *nt)
913 {
914 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
915 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
916
917 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
918 return ni;
919 }
920
921 static void
922 atw_node_free(struct ieee80211_node *ni)
923 {
924 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
925
926 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
927 ether_sprintf(ni->ni_bssid)));
928 (*sc->sc_node_free)(ni);
929 }
930
931
932 static void
933 atw_test1_reset(struct atw_softc *sc)
934 {
935 switch (sc->sc_rev) {
936 case ATW_REVISION_BA:
937 if (1 /* XXX condition on transceiver type */) {
938 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
939 }
940 break;
941 case ATW_REVISION_CA:
942 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
943 break;
944 default:
945 break;
946 }
947 }
948
949 /*
950 * atw_reset:
951 *
952 * Perform a soft reset on the ADM8211.
953 */
954 void
955 atw_reset(struct atw_softc *sc)
956 {
957 int i;
958 uint32_t lpc;
959
960 ATW_WRITE(sc, ATW_NAR, 0x0);
961 DELAY(atw_nar_delay);
962
963 /* Reference driver has a cryptic remark indicating that this might
964 * power-on the chip. I know that it turns off power-saving....
965 */
966 ATW_WRITE(sc, ATW_FRCTL, 0x0);
967
968 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
969
970 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
971 if (ATW_READ(sc, ATW_PAR) == 0)
972 break;
973 DELAY(atw_pseudo_milli);
974 }
975
976 /* ... and then pause 100ms longer for good measure. */
977 DELAY(atw_magic_delay1);
978
979 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
980
981 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
982 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
983
984 atw_test1_reset(sc);
985 /*
986 * Initialize the PCI Access Register.
987 */
988 sc->sc_busmode = ATW_PAR_PBL_8DW;
989
990 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
991 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
992 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
993
994 /* Turn off maximum power saving, etc.
995 *
996 * XXX Following example of reference driver, should I set
997 * an AID of 1? It didn't seem to help....
998 */
999 ATW_WRITE(sc, ATW_FRCTL, 0x0);
1000
1001 DELAY(atw_magic_delay2);
1002
1003 /* Recall EEPROM. */
1004 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1005
1006 DELAY(atw_magic_delay4);
1007
1008 lpc = ATW_READ(sc, ATW_LPC);
1009
1010 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1011
1012 /* A reset seems to affect the SRAM contents, so put them into
1013 * a known state.
1014 */
1015 atw_clear_sram(sc);
1016
1017 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1018 }
1019
1020 static void
1021 atw_clear_sram(struct atw_softc *sc)
1022 {
1023 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1024 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1025 /* XXX not for revision 0x20. */
1026 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1027 }
1028
1029 /* TBD atw_init
1030 *
1031 * set MAC based on ic->ic_bss->myaddr
1032 * write WEP keys
1033 * set TX rate
1034 */
1035
1036 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1037 * without receiving a beacon with the preferred BSSID & SSID.
1038 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1039 */
1040 static void
1041 atw_wcsr_init(struct atw_softc *sc)
1042 {
1043 uint32_t wcsr;
1044
1045 wcsr = ATW_READ(sc, ATW_WCSR);
1046 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1047 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1048 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1049
1050 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1051 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1052 }
1053
1054 /* Turn off power management. Set Rx store-and-forward mode. */
1055 static void
1056 atw_cmdr_init(struct atw_softc *sc)
1057 {
1058 uint32_t cmdr;
1059 cmdr = ATW_READ(sc, ATW_CMDR);
1060 cmdr &= ~ATW_CMDR_APM;
1061 cmdr |= ATW_CMDR_RTE;
1062 cmdr &= ~ATW_CMDR_DRT_MASK;
1063 cmdr |= ATW_CMDR_DRT_SF;
1064
1065 ATW_WRITE(sc, ATW_CMDR, cmdr);
1066 }
1067
1068 static void
1069 atw_tofs2_init(struct atw_softc *sc)
1070 {
1071 uint32_t tofs2;
1072 /* XXX this magic can probably be figured out from the RFMD docs */
1073 #ifndef ATW_REFSLAVE
1074 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1075 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1076 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1077 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1078 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1079 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1080 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1081 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1082 #else
1083 /* XXX new magic from reference driver source */
1084 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1085 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1086 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1087 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1088 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1089 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1090 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1091 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1092 #endif
1093 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1094 }
1095
1096 static void
1097 atw_nar_init(struct atw_softc *sc)
1098 {
1099 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1100 }
1101
1102 static void
1103 atw_txlmt_init(struct atw_softc *sc)
1104 {
1105 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1106 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1107 }
1108
1109 static void
1110 atw_test1_init(struct atw_softc *sc)
1111 {
1112 uint32_t test1;
1113
1114 test1 = ATW_READ(sc, ATW_TEST1);
1115 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1116 /* XXX magic 0x1 */
1117 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1118 ATW_WRITE(sc, ATW_TEST1, test1);
1119 }
1120
1121 static void
1122 atw_rf_reset(struct atw_softc *sc)
1123 {
1124 /* XXX this resets an Intersil RF front-end? */
1125 /* TBD condition on Intersil RFType? */
1126 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1127 DELAY(atw_rf_delay1);
1128 ATW_WRITE(sc, ATW_SYNRF, 0);
1129 DELAY(atw_rf_delay2);
1130 }
1131
1132 /* Set 16 TU max duration for the contention-free period (CFP). */
1133 static void
1134 atw_cfp_init(struct atw_softc *sc)
1135 {
1136 uint32_t cfpp;
1137
1138 cfpp = ATW_READ(sc, ATW_CFPP);
1139 cfpp &= ~ATW_CFPP_CFPMD;
1140 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1141 ATW_WRITE(sc, ATW_CFPP, cfpp);
1142 }
1143
1144 static void
1145 atw_tofs0_init(struct atw_softc *sc)
1146 {
1147 /* XXX I guess that the Cardbus clock is 22MHz?
1148 * I am assuming that the role of ATW_TOFS0_USCNT is
1149 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1150 * very clear on this point. It says in the datasheet that it is
1151 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1152 * and 33MHz; maybe this is the way? I see a binary-only driver write
1153 * these values. These values are also the power-on default.
1154 */
1155 ATW_WRITE(sc, ATW_TOFS0,
1156 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1157 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1158 }
1159
1160 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1161 static void
1162 atw_ifs_init(struct atw_softc *sc)
1163 {
1164 uint32_t ifst;
1165 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1166 * Go figure.
1167 */
1168 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1169 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1170 ATW_IFST_SIFS_MASK) |
1171 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1172 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1173
1174 ATW_WRITE(sc, ATW_IFST, ifst);
1175 }
1176
1177 static void
1178 atw_response_times_init(struct atw_softc *sc)
1179 {
1180 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1181 * indicate that the MAC expects at least SIFS + MIRT microseconds
1182 * to pass after it transmits a frame that requires a response;
1183 * it waits at most SIFS + MART microseconds for the response.
1184 * Surely this is not the ACK timeout?
1185 */
1186 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1187 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1188 }
1189
1190 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1191 * engines read and write baseband registers after Rx and before
1192 * Tx, respectively.
1193 */
1194 static void
1195 atw_bbp_io_init(struct atw_softc *sc)
1196 {
1197 uint32_t mmiraddr2;
1198
1199 /* XXX The reference driver does this, but is it *really*
1200 * necessary?
1201 */
1202 switch (sc->sc_rev) {
1203 case ATW_REVISION_AB:
1204 case ATW_REVISION_AF:
1205 mmiraddr2 = 0x0;
1206 break;
1207 default:
1208 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1209 mmiraddr2 &=
1210 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1211 break;
1212 }
1213
1214 switch (sc->sc_bbptype) {
1215 case ATW_BBPTYPE_INTERSIL:
1216 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1217 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1218 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1219 break;
1220 case ATW_BBPTYPE_MARVEL:
1221 /* TBD find out the Marvel settings. */
1222 break;
1223 case ATW_BBPTYPE_RFMD:
1224 default:
1225 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1226 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1227 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1228 break;
1229 }
1230 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1231 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1232 }
1233
1234 /*
1235 * atw_init: [ ifnet interface function ]
1236 *
1237 * Initialize the interface. Must be called at splnet().
1238 */
1239 int
1240 atw_init(struct ifnet *ifp)
1241 {
1242 struct atw_softc *sc = ifp->if_softc;
1243 struct ieee80211com *ic = &sc->sc_ic;
1244 struct atw_txsoft *txs;
1245 struct atw_rxsoft *rxs;
1246 int i, error = 0;
1247
1248 if ((error = atw_enable(sc)) != 0)
1249 goto out;
1250
1251 /*
1252 * Cancel any pending I/O. This also resets.
1253 */
1254 atw_stop(ifp, 0);
1255
1256 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1257 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1258 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1259
1260 atw_wcsr_init(sc);
1261
1262 atw_cmdr_init(sc);
1263
1264 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1265 *
1266 * XXX Set transmit power for ATIM, RTS, Beacon.
1267 */
1268 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1269 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1270
1271 atw_tofs2_init(sc);
1272
1273 atw_nar_init(sc);
1274
1275 atw_txlmt_init(sc);
1276
1277 atw_test1_init(sc);
1278
1279 atw_rf_reset(sc);
1280
1281 atw_cfp_init(sc);
1282
1283 atw_tofs0_init(sc);
1284
1285 atw_ifs_init(sc);
1286
1287 /* XXX Fall asleep after one second of inactivity.
1288 * XXX A frame may only dribble in for 65536us.
1289 */
1290 ATW_WRITE(sc, ATW_RMD,
1291 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1292
1293 atw_response_times_init(sc);
1294
1295 atw_bbp_io_init(sc);
1296
1297 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1298
1299 if ((error = atw_rf3000_init(sc)) != 0)
1300 goto out;
1301
1302 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1303 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1304 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1305
1306 /*
1307 * Initialize the transmit descriptor ring.
1308 */
1309 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1310 for (i = 0; i < ATW_NTXDESC; i++) {
1311 sc->sc_txdescs[i].at_ctl = 0;
1312 /* no transmit chaining */
1313 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1314 sc->sc_txdescs[i].at_buf2 =
1315 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1316 }
1317 /* use ring mode */
1318 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1319 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1320 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1321 sc->sc_txfree = ATW_NTXDESC;
1322 sc->sc_txnext = 0;
1323
1324 /*
1325 * Initialize the transmit job descriptors.
1326 */
1327 SIMPLEQ_INIT(&sc->sc_txfreeq);
1328 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1329 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1330 txs = &sc->sc_txsoft[i];
1331 txs->txs_mbuf = NULL;
1332 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1333 }
1334
1335 /*
1336 * Initialize the receive descriptor and receive job
1337 * descriptor rings.
1338 */
1339 for (i = 0; i < ATW_NRXDESC; i++) {
1340 rxs = &sc->sc_rxsoft[i];
1341 if (rxs->rxs_mbuf == NULL) {
1342 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1343 printf("%s: unable to allocate or map rx "
1344 "buffer %d, error = %d\n",
1345 sc->sc_dev.dv_xname, i, error);
1346 /*
1347 * XXX Should attempt to run with fewer receive
1348 * XXX buffers instead of just failing.
1349 */
1350 atw_rxdrain(sc);
1351 goto out;
1352 }
1353 } else
1354 ATW_INIT_RXDESC(sc, i);
1355 }
1356 sc->sc_rxptr = 0;
1357
1358 /*
1359 * Initialize the interrupt mask and enable interrupts.
1360 */
1361 /* normal interrupts */
1362 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1363 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1364
1365 /* abnormal interrupts */
1366 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1367 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1368 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1369
1370 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1371 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1372 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1373 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1374 ATW_INTR_TRT;
1375
1376 sc->sc_linkint_mask &= sc->sc_inten;
1377 sc->sc_rxint_mask &= sc->sc_inten;
1378 sc->sc_txint_mask &= sc->sc_inten;
1379
1380 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1381 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1382
1383 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1384 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1385
1386 /*
1387 * Give the transmit and receive rings to the ADM8211.
1388 */
1389 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1390 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1391
1392 sc->sc_txthresh = 0;
1393 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1394 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1395
1396 /* common 802.11 configuration */
1397 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1398 switch (ic->ic_opmode) {
1399 case IEEE80211_M_STA:
1400 break;
1401 case IEEE80211_M_AHDEMO: /* XXX */
1402 case IEEE80211_M_IBSS:
1403 ic->ic_flags |= IEEE80211_F_IBSSON;
1404 /*FALLTHROUGH*/
1405 case IEEE80211_M_HOSTAP: /* XXX */
1406 break;
1407 case IEEE80211_M_MONITOR: /* XXX */
1408 break;
1409 }
1410
1411 switch (ic->ic_opmode) {
1412 case IEEE80211_M_AHDEMO:
1413 case IEEE80211_M_HOSTAP:
1414 #ifndef IEEE80211_NO_HOSTAP
1415 ic->ic_bss->ni_intval = ic->ic_lintval;
1416 ic->ic_bss->ni_rssi = 0;
1417 ic->ic_bss->ni_rstamp = 0;
1418 #endif /* !IEEE80211_NO_HOSTAP */
1419 break;
1420 default: /* XXX */
1421 break;
1422 }
1423
1424 sc->sc_wepctl = 0;
1425
1426 atw_write_ssid(sc);
1427 atw_write_sup_rates(sc);
1428 if (ic->ic_caps & IEEE80211_C_WEP)
1429 atw_write_wep(sc);
1430
1431 ic->ic_state = IEEE80211_S_INIT;
1432
1433 /*
1434 * Set the receive filter. This will start the transmit and
1435 * receive processes.
1436 */
1437 atw_filter_setup(sc);
1438
1439 /*
1440 * Start the receive process.
1441 */
1442 ATW_WRITE(sc, ATW_RDR, 0x1);
1443
1444 /*
1445 * Note that the interface is now running.
1446 */
1447 ifp->if_flags |= IFF_RUNNING;
1448 ifp->if_flags &= ~IFF_OACTIVE;
1449
1450 /* send no beacons, yet. */
1451 atw_start_beacon(sc, 0);
1452
1453 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1454 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1455 else
1456 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1457 out:
1458 if (error) {
1459 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1460 sc->sc_tx_timer = 0;
1461 ifp->if_timer = 0;
1462 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1463 }
1464 #ifdef ATW_DEBUG
1465 atw_print_regs(sc, "end of init");
1466 #endif /* ATW_DEBUG */
1467
1468 return (error);
1469 }
1470
1471 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1472 * 0: MAC control of RF3000/Si4126.
1473 *
1474 * Applies power, or selects RF front-end? Sets reset condition.
1475 *
1476 * TBD support non-RFMD BBP, non-SiLabs synth.
1477 */
1478 static void
1479 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1480 {
1481 if (enable) {
1482 ATW_WRITE(sc, ATW_SYNRF,
1483 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1484 DELAY(atw_bbp_io_enable_delay);
1485 } else {
1486 ATW_WRITE(sc, ATW_SYNRF, 0);
1487 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1488 }
1489 }
1490
1491 static int
1492 atw_tune(struct atw_softc *sc)
1493 {
1494 int rc;
1495 u_int chan;
1496 struct ieee80211com *ic = &sc->sc_ic;
1497
1498 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1499 if (chan == IEEE80211_CHAN_ANY)
1500 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1501
1502 if (chan == sc->sc_cur_chan)
1503 return 0;
1504
1505 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1506 sc->sc_cur_chan, chan));
1507
1508 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1509
1510 atw_si4126_tune(sc, chan);
1511 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1512 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1513 chan);
1514
1515 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1516 DELAY(atw_nar_delay);
1517 ATW_WRITE(sc, ATW_RDR, 0x1);
1518
1519 if (rc == 0)
1520 sc->sc_cur_chan = chan;
1521
1522 return rc;
1523 }
1524
1525 #ifdef ATW_SYNDEBUG
1526 static void
1527 atw_si4126_print(struct atw_softc *sc)
1528 {
1529 struct ifnet *ifp = &sc->sc_if;
1530 u_int addr, val;
1531
1532 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1533 return;
1534
1535 for (addr = 0; addr <= 8; addr++) {
1536 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1537 if (atw_si4126_read(sc, addr, &val) == 0) {
1538 printf("<unknown> (quitting print-out)\n");
1539 break;
1540 }
1541 printf("%05x\n", val);
1542 }
1543 }
1544 #endif /* ATW_SYNDEBUG */
1545
1546 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1547 *
1548 * The RF/IF synthesizer produces two reference frequencies for
1549 * the RF2948B transceiver. The first frequency the RF2948B requires
1550 * is two times the so-called "intermediate frequency" (IF). Since
1551 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1552 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1553 * frequency required by the transceiver is the radio frequency
1554 * (RF). This is a superheterodyne transceiver; for f(chan) the
1555 * center frequency of the channel we are tuning, RF = f(chan) -
1556 * IF.
1557 *
1558 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1559 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1560 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1561 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1562 */
1563 static void
1564 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1565 {
1566 u_int mhz;
1567 u_int R;
1568 u_int32_t gpio;
1569 u_int16_t gain;
1570
1571 #ifdef ATW_SYNDEBUG
1572 atw_si4126_print(sc);
1573 #endif /* ATW_SYNDEBUG */
1574
1575 if (chan == 14)
1576 mhz = 2484;
1577 else
1578 mhz = 2412 + 5 * (chan - 1);
1579
1580 /* Tune IF to 748MHz to suit the IF LO input of the
1581 * RF2494B, which is 2 x IF. No need to set an IF divider
1582 * because an IF in 526MHz - 952MHz is allowed.
1583 *
1584 * XIN is 44.000MHz, so divide it by two to get allowable
1585 * range of 2-25MHz. SiLabs tells me that this is not
1586 * strictly necessary.
1587 */
1588
1589 if (atw_xindiv2)
1590 R = 44;
1591 else
1592 R = 88;
1593
1594 /* Power-up RF, IF synthesizers. */
1595 atw_si4126_write(sc, SI4126_POWER,
1596 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1597
1598 /* set LPWR, too? */
1599 atw_si4126_write(sc, SI4126_MAIN,
1600 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1601
1602 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1603 * set KP2 to 1.
1604 *
1605 * REFDIF This is different from the reference driver, which
1606 * always sets SI4126_GAIN to 0.
1607 */
1608 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1609
1610 atw_si4126_write(sc, SI4126_GAIN, gain);
1611
1612 /* XIN = 44MHz.
1613 *
1614 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1615 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1616 *
1617 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1618 * so that 1496/88 * 44MHz = 748MHz.
1619 */
1620 atw_si4126_write(sc, SI4126_IFN, 1496);
1621
1622 atw_si4126_write(sc, SI4126_IFR, R);
1623
1624 #ifndef ATW_REFSLAVE
1625 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1626 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1627 * which has no RF1!
1628 */
1629 atw_si4126_write(sc, SI4126_RF1R, R);
1630
1631 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1632 #endif
1633
1634 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1635 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1636 * Now let's multiply it to mhz. So mhz - IF = N.
1637 */
1638 atw_si4126_write(sc, SI4126_RF2R, R);
1639
1640 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1641
1642 /* wait 100us from power-up for RF, IF to settle */
1643 DELAY(100);
1644
1645 gpio = ATW_READ(sc, ATW_GPIO);
1646 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1647 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1648
1649 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1650 /* Set a Prism RF front-end to a special mode for channel 14?
1651 *
1652 * Apparently the SMC2635W needs this, although I don't think
1653 * it has a Prism RF.
1654 */
1655 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1656 }
1657 ATW_WRITE(sc, ATW_GPIO, gpio);
1658
1659 #ifdef ATW_SYNDEBUG
1660 atw_si4126_print(sc);
1661 #endif /* ATW_SYNDEBUG */
1662 }
1663
1664 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1665 * diversity.
1666 *
1667 * !!!
1668 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1669 * !!!
1670 */
1671 static int
1672 atw_rf3000_init(struct atw_softc *sc)
1673 {
1674 int rc = 0;
1675
1676 atw_bbp_io_enable(sc, 1);
1677
1678 /* CCA is acquisition sensitive */
1679 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1680 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1681
1682 if (rc != 0)
1683 goto out;
1684
1685 /* enable diversity */
1686 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1687
1688 if (rc != 0)
1689 goto out;
1690
1691 /* sensible setting from a binary-only driver */
1692 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1693 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1694
1695 if (rc != 0)
1696 goto out;
1697
1698 /* magic from a binary-only driver */
1699 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1700 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1701
1702 if (rc != 0)
1703 goto out;
1704
1705 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1706
1707 if (rc != 0)
1708 goto out;
1709
1710 /* XXX Reference driver remarks that Abocom sets this to 50.
1711 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1712 * in the "reserved" area of register RF3000_OPTIONS1.
1713 */
1714 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1715
1716 if (rc != 0)
1717 goto out;
1718
1719 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1720
1721 if (rc != 0)
1722 goto out;
1723
1724 out:
1725 atw_bbp_io_enable(sc, 0);
1726 return rc;
1727 }
1728
1729 #ifdef ATW_BBPDEBUG
1730 static void
1731 atw_rf3000_print(struct atw_softc *sc)
1732 {
1733 struct ifnet *ifp = &sc->sc_if;
1734 u_int addr, val;
1735
1736 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1737 return;
1738
1739 for (addr = 0x01; addr <= 0x15; addr++) {
1740 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1741 if (atw_rf3000_read(sc, addr, &val) != 0) {
1742 printf("<unknown> (quitting print-out)\n");
1743 break;
1744 }
1745 printf("%08x\n", val);
1746 }
1747 }
1748 #endif /* ATW_BBPDEBUG */
1749
1750 /* Set the power settings on the BBP for channel `chan'. */
1751 static int
1752 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1753 {
1754 int rc = 0;
1755 u_int32_t reg;
1756 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1757
1758 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1759 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1760 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1761
1762 /* odd channels: LSB, even channels: MSB */
1763 if (chan % 2 == 1) {
1764 txpower &= 0xFF;
1765 lpf_cutoff &= 0xFF;
1766 lna_gs_thresh &= 0xFF;
1767 } else {
1768 txpower >>= 8;
1769 lpf_cutoff >>= 8;
1770 lna_gs_thresh >>= 8;
1771 }
1772
1773 #ifdef ATW_BBPDEBUG
1774 atw_rf3000_print(sc);
1775 #endif /* ATW_BBPDEBUG */
1776
1777 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1778 "lna_gs_thresh %02x\n",
1779 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1780
1781 atw_bbp_io_enable(sc, 1);
1782
1783 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1784 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1785 goto out;
1786
1787 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1788 goto out;
1789
1790 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1791 goto out;
1792
1793 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1794
1795 if (rc != 0)
1796 goto out;
1797
1798 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1799
1800 if (rc != 0)
1801 goto out;
1802
1803 #ifdef ATW_BBPDEBUG
1804 atw_rf3000_print(sc);
1805 #endif /* ATW_BBPDEBUG */
1806
1807 out:
1808 atw_bbp_io_enable(sc, 0);
1809
1810 /* set beacon, rts, atim transmit power */
1811 reg = ATW_READ(sc, ATW_PLCPHD);
1812 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1813 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1814 ATW_PLCPHD_SERVICE_MASK);
1815 ATW_WRITE(sc, ATW_PLCPHD, reg);
1816 DELAY(atw_plcphd_delay);
1817
1818 return rc;
1819 }
1820
1821 /* Write a register on the RF3000 baseband processor using the
1822 * registers provided by the ADM8211 for this purpose.
1823 *
1824 * Return 0 on success.
1825 */
1826 static int
1827 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1828 {
1829 u_int32_t reg;
1830 int i;
1831
1832 reg = sc->sc_bbpctl_wr |
1833 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1834 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1835
1836 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1837 ATW_WRITE(sc, ATW_BBPCTL, reg);
1838 DELAY(2 * atw_pseudo_milli);
1839 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1840 break;
1841 }
1842
1843 if (i < 0) {
1844 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1845 return ETIMEDOUT;
1846 }
1847 return 0;
1848 }
1849
1850 /* Read a register on the RF3000 baseband processor using the registers
1851 * the ADM8211 provides for this purpose.
1852 *
1853 * The 7-bit register address is addr. Record the 8-bit data in the register
1854 * in *val.
1855 *
1856 * Return 0 on success.
1857 *
1858 * XXX This does not seem to work. The ADM8211 must require more or
1859 * different magic to read the chip than to write it. Possibly some
1860 * of the magic I have derived from a binary-only driver concerns
1861 * the "chip address" (see the RF3000 manual).
1862 */
1863 #ifdef ATW_BBPDEBUG
1864 static int
1865 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1866 {
1867 u_int32_t reg;
1868 int i;
1869
1870 for (i = 1000; --i >= 0; ) {
1871 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1872 break;
1873 DELAY(100);
1874 }
1875
1876 if (i < 0) {
1877 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1878 sc->sc_dev.dv_xname);
1879 return ETIMEDOUT;
1880 }
1881
1882 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1883
1884 ATW_WRITE(sc, ATW_BBPCTL, reg);
1885
1886 for (i = 1000; --i >= 0; ) {
1887 DELAY(100);
1888 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1889 break;
1890 }
1891
1892 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1893
1894 if (i < 0) {
1895 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1896 sc->sc_dev.dv_xname, reg);
1897 return ETIMEDOUT;
1898 }
1899 if (val != NULL)
1900 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1901 return 0;
1902 }
1903 #endif /* ATW_BBPDEBUG */
1904
1905 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1906 * provided by the ADM8211 for that purpose.
1907 *
1908 * val is 18 bits of data, and val is the 4-bit address of the register.
1909 *
1910 * Return 0 on success.
1911 */
1912 static void
1913 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1914 {
1915 uint32_t bits, mask, reg;
1916 const int nbits = 22;
1917
1918 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1919 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1920
1921 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1922 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1923
1924 reg = ATW_SYNRF_SELSYN;
1925 /* reference driver: reset Si4126 serial bus to initial
1926 * conditions?
1927 */
1928 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1929 ATW_WRITE(sc, ATW_SYNRF, reg);
1930
1931 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1932 if ((bits & mask) != 0)
1933 reg |= ATW_SYNRF_SYNDATA;
1934 else
1935 reg &= ~ATW_SYNRF_SYNDATA;
1936 ATW_WRITE(sc, ATW_SYNRF, reg);
1937 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1938 ATW_WRITE(sc, ATW_SYNRF, reg);
1939 }
1940 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1941 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1942 }
1943
1944 /* Read 18-bit data from the 4-bit address addr in Si4126
1945 * RF synthesizer and write the data to *val. Return 0 on success.
1946 *
1947 * XXX This does not seem to work. The ADM8211 must require more or
1948 * different magic to read the chip than to write it.
1949 */
1950 #ifdef ATW_SYNDEBUG
1951 static int
1952 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1953 {
1954 u_int32_t reg;
1955 int i;
1956
1957 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1958
1959 for (i = 1000; --i >= 0; ) {
1960 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1961 break;
1962 DELAY(100);
1963 }
1964
1965 if (i < 0) {
1966 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1967 sc->sc_dev.dv_xname);
1968 return ETIMEDOUT;
1969 }
1970
1971 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1972
1973 ATW_WRITE(sc, ATW_SYNCTL, reg);
1974
1975 for (i = 1000; --i >= 0; ) {
1976 DELAY(100);
1977 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1978 break;
1979 }
1980
1981 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1982
1983 if (i < 0) {
1984 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1985 sc->sc_dev.dv_xname, reg);
1986 return ETIMEDOUT;
1987 }
1988 if (val != NULL)
1989 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1990 ATW_SYNCTL_DATA_MASK);
1991 return 0;
1992 }
1993 #endif /* ATW_SYNDEBUG */
1994
1995 /* XXX is the endianness correct? test. */
1996 #define atw_calchash(addr) \
1997 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1998
1999 /*
2000 * atw_filter_setup:
2001 *
2002 * Set the ADM8211's receive filter.
2003 */
2004 static void
2005 atw_filter_setup(struct atw_softc *sc)
2006 {
2007 struct ieee80211com *ic = &sc->sc_ic;
2008 struct ethercom *ec = &sc->sc_ec;
2009 struct ifnet *ifp = &sc->sc_if;
2010 int hash;
2011 u_int32_t hashes[2];
2012 struct ether_multi *enm;
2013 struct ether_multistep step;
2014
2015 /* According to comments in tlp_al981_filter_setup
2016 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2017 * multicast filter to be set while it is running. Hopefully
2018 * the ADM8211 is not the same!
2019 */
2020 if ((ifp->if_flags & IFF_RUNNING) != 0)
2021 atw_idle(sc, ATW_NAR_SR);
2022
2023 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2024 ifp->if_flags &= ~IFF_ALLMULTI;
2025
2026 /* XXX in scan mode, do not filter packets. Maybe this is
2027 * unnecessary.
2028 */
2029 if (ic->ic_state == IEEE80211_S_SCAN ||
2030 (ifp->if_flags & IFF_PROMISC) != 0) {
2031 sc->sc_opmode |= ATW_NAR_PR;
2032 goto allmulti;
2033 }
2034
2035 hashes[0] = hashes[1] = 0x0;
2036
2037 /*
2038 * Program the 64-bit multicast hash filter.
2039 */
2040 ETHER_FIRST_MULTI(step, ec, enm);
2041 while (enm != NULL) {
2042 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2043 ETHER_ADDR_LEN) != 0)
2044 goto allmulti;
2045
2046 hash = atw_calchash(enm->enm_addrlo);
2047 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2048 ETHER_NEXT_MULTI(step, enm);
2049 sc->sc_opmode |= ATW_NAR_MM;
2050 }
2051 ifp->if_flags &= ~IFF_ALLMULTI;
2052 goto setit;
2053
2054 allmulti:
2055 sc->sc_opmode |= ATW_NAR_MM;
2056 ifp->if_flags |= IFF_ALLMULTI;
2057 hashes[0] = hashes[1] = 0xffffffff;
2058
2059 setit:
2060 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2061 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2062 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2063 DELAY(atw_nar_delay);
2064
2065 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2066 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2067 }
2068
2069 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2070 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2071 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2072 * no beacon with the preferred BSSID and SSID in the number of
2073 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2074 */
2075 static void
2076 atw_write_bssid(struct atw_softc *sc)
2077 {
2078 struct ieee80211com *ic = &sc->sc_ic;
2079 u_int8_t *bssid;
2080
2081 bssid = ic->ic_bss->ni_bssid;
2082
2083 ATW_WRITE(sc, ATW_BSSID0,
2084 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2085 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2086 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2087 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2088
2089 ATW_WRITE(sc, ATW_ABDA1,
2090 (ATW_READ(sc, ATW_ABDA1) &
2091 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2092 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2093 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2094
2095 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2096 ether_sprintf(sc->sc_bssid)));
2097 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2098
2099 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2100 }
2101
2102 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2103 * 16-bit word.
2104 */
2105 static void
2106 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2107 {
2108 u_int i;
2109 u_int8_t *ptr;
2110
2111 memcpy(&sc->sc_sram[ofs], buf, buflen);
2112
2113 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2114
2115 KASSERT(buflen + ofs <= sc->sc_sramlen);
2116
2117 ptr = &sc->sc_sram[ofs];
2118
2119 for (i = 0; i < buflen; i += 2) {
2120 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2121 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2122 DELAY(atw_writewep_delay);
2123
2124 ATW_WRITE(sc, ATW_WESK,
2125 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2126 DELAY(atw_writewep_delay);
2127 }
2128 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2129
2130 if (sc->sc_if.if_flags & IFF_DEBUG) {
2131 int n_octets = 0;
2132 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2133 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2134 for (i = 0; i < buflen; i++) {
2135 printf(" %02x", ptr[i]);
2136 if (++n_octets % 24 == 0)
2137 printf("\n");
2138 }
2139 if (n_octets % 24 != 0)
2140 printf("\n");
2141 }
2142 }
2143
2144 static int
2145 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2146 {
2147 struct atw_softc *sc = ic->ic_ifp->if_softc;
2148 u_int keyix = k->wk_keyix;
2149
2150 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2151
2152 if (keyix >= IEEE80211_WEP_NKID)
2153 return 0;
2154 if (k->wk_keylen != 0)
2155 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2156
2157 return 1;
2158 }
2159
2160 static int
2161 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2162 const u_int8_t mac[IEEE80211_ADDR_LEN])
2163 {
2164 struct atw_softc *sc = ic->ic_ifp->if_softc;
2165
2166 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2167
2168 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2169 return 0;
2170
2171 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2172
2173 return 1;
2174 }
2175
2176 static void
2177 atw_key_update_begin(struct ieee80211com *ic)
2178 {
2179 #ifdef ATW_DEBUG
2180 struct ifnet *ifp = ic->ic_ifp;
2181 struct atw_softc *sc = ifp->if_softc;
2182 #endif
2183
2184 DPRINTF(sc, ("%s:\n", __func__));
2185 }
2186
2187 static void
2188 atw_key_update_end(struct ieee80211com *ic)
2189 {
2190 struct ifnet *ifp = ic->ic_ifp;
2191 struct atw_softc *sc = ifp->if_softc;
2192
2193 DPRINTF(sc, ("%s:\n", __func__));
2194
2195 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2196 return;
2197 if (ATW_IS_ENABLED(sc) == 0)
2198 return;
2199 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2200 atw_write_wep(sc);
2201 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2202 }
2203
2204 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2205 static void
2206 atw_write_wep(struct atw_softc *sc)
2207 {
2208 struct ieee80211com *ic = &sc->sc_ic;
2209 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2210 u_int8_t buf[IEEE80211_WEP_NKID]
2211 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2212 u_int32_t reg;
2213 int i;
2214
2215 sc->sc_wepctl = 0;
2216 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2217
2218 memset(&buf[0][0], 0, sizeof(buf));
2219
2220 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2221 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2222 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2223 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2224 buf[i][1] = ATW_WEP_ENABLED;
2225 } else {
2226 buf[i][1] = 0;
2227 continue;
2228 }
2229 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2230 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2231 ic->ic_nw_keys[i].wk_keylen - 1);
2232 }
2233
2234 reg = ATW_READ(sc, ATW_MACTEST);
2235 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2236 reg &= ~ATW_MACTEST_KEYID_MASK;
2237 reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2238 ATW_WRITE(sc, ATW_MACTEST, reg);
2239
2240 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2241 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2242
2243 switch (sc->sc_rev) {
2244 case ATW_REVISION_AB:
2245 case ATW_REVISION_AF:
2246 /* Bypass WEP on Rx. */
2247 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2248 break;
2249 default:
2250 break;
2251 }
2252
2253 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2254 sizeof(buf));
2255
2256 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2257 }
2258
2259 static void
2260 atw_change_ibss(struct atw_softc *sc)
2261 {
2262 atw_predict_beacon(sc);
2263 atw_write_bssid(sc);
2264 atw_start_beacon(sc, 1);
2265 }
2266
2267 static void
2268 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2269 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2270 {
2271 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2272
2273 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2274 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2275 return;
2276
2277 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2278
2279 switch (subtype) {
2280 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2281 case IEEE80211_FC0_SUBTYPE_BEACON:
2282 if (ic->ic_opmode != IEEE80211_M_IBSS ||
2283 ic->ic_state != IEEE80211_S_RUN)
2284 break;
2285 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc) &&
2286 ieee80211_ibss_merge(ni) == ENETRESET)
2287 atw_change_ibss(sc);
2288 break;
2289 default:
2290 break;
2291 }
2292 return;
2293 }
2294
2295 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2296 * In ad hoc mode, the SSID is written to the beacons sent by the
2297 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2298 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2299 * indications.
2300 */
2301 static void
2302 atw_write_ssid(struct atw_softc *sc)
2303 {
2304 struct ieee80211com *ic = &sc->sc_ic;
2305 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2306 * it only expects the element length, not its ID.
2307 */
2308 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2309
2310 memset(buf, 0, sizeof(buf));
2311 buf[0] = ic->ic_bss->ni_esslen;
2312 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2313
2314 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2315 roundup(1 + ic->ic_bss->ni_esslen, 2));
2316 }
2317
2318 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2319 * In ad hoc mode, the supported rates are written to beacons sent by the
2320 * ADM8211.
2321 */
2322 static void
2323 atw_write_sup_rates(struct atw_softc *sc)
2324 {
2325 struct ieee80211com *ic = &sc->sc_ic;
2326 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2327 * supported rates
2328 */
2329 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2330
2331 memset(buf, 0, sizeof(buf));
2332
2333 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2334
2335 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2336 ic->ic_bss->ni_rates.rs_nrates);
2337
2338 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2339 }
2340
2341 /* Start/stop sending beacons. */
2342 void
2343 atw_start_beacon(struct atw_softc *sc, int start)
2344 {
2345 struct ieee80211com *ic = &sc->sc_ic;
2346 uint16_t chan;
2347 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2348 size_t len;
2349
2350 if (ATW_IS_ENABLED(sc) == 0)
2351 return;
2352
2353 /* start beacons */
2354 len = sizeof(struct ieee80211_frame) +
2355 8 /* timestamp */ + 2 /* beacon interval */ +
2356 2 /* capability info */ +
2357 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2358 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2359 3 /* DS parameters */ +
2360 IEEE80211_CRC_LEN;
2361
2362 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2363 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2364 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2365
2366 ATW_WRITE(sc, ATW_BCNT, bcnt);
2367 ATW_WRITE(sc, ATW_CAP1, cap1);
2368
2369 if (!start)
2370 return;
2371
2372 /* TBD use ni_capinfo */
2373
2374 capinfo = 0;
2375 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2376 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2377 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2378 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2379
2380 switch (ic->ic_opmode) {
2381 case IEEE80211_M_IBSS:
2382 len += 4; /* IBSS parameters */
2383 capinfo |= IEEE80211_CAPINFO_IBSS;
2384 break;
2385 case IEEE80211_M_HOSTAP:
2386 /* XXX 6-byte minimum TIM */
2387 len += atw_beacon_len_adjust;
2388 capinfo |= IEEE80211_CAPINFO_ESS;
2389 break;
2390 default:
2391 return;
2392 }
2393
2394 /* set listen interval
2395 * XXX do software units agree w/ hardware?
2396 */
2397 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2398 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2399
2400 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2401
2402 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2403 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2404 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2405
2406 ATW_WRITE(sc, ATW_BCNT, bcnt);
2407 ATW_WRITE(sc, ATW_BPLI, bpli);
2408 ATW_WRITE(sc, ATW_CAP0, cap0);
2409 ATW_WRITE(sc, ATW_CAP1, cap1);
2410
2411 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2412 sc->sc_dev.dv_xname, bcnt));
2413
2414 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2415 sc->sc_dev.dv_xname, cap1));
2416 }
2417
2418 /* Return the 32 lsb of the last TSFT divisible by ival. */
2419 static inline uint32_t
2420 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2421 {
2422 /* Following the reference driver's lead, I compute
2423 *
2424 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2425 *
2426 * without using 64-bit arithmetic, using the following
2427 * relationship:
2428 *
2429 * (0x100000000 * H + L) % m
2430 * = ((0x100000000 % m) * H + L) % m
2431 * = (((0xffffffff + 1) % m) * H + L) % m
2432 * = ((0xffffffff % m + 1 % m) * H + L) % m
2433 * = ((0xffffffff % m + 1) * H + L) % m
2434 */
2435 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2436 }
2437
2438 static uint64_t
2439 atw_get_tsft(struct atw_softc *sc)
2440 {
2441 int i;
2442 uint32_t tsfth, tsftl;
2443 for (i = 0; i < 2; i++) {
2444 tsfth = ATW_READ(sc, ATW_TSFTH);
2445 tsftl = ATW_READ(sc, ATW_TSFTL);
2446 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2447 break;
2448 }
2449 return ((uint64_t)tsfth << 32) | tsftl;
2450 }
2451
2452 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2453 * the ieee80211com.
2454 *
2455 * Predict the next target beacon transmission time (TBTT) and
2456 * write it to the ADM8211.
2457 */
2458 static void
2459 atw_predict_beacon(struct atw_softc *sc)
2460 {
2461 #define TBTTOFS 20 /* TU */
2462
2463 struct ieee80211com *ic = &sc->sc_ic;
2464 uint64_t tsft;
2465 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2466 union {
2467 uint64_t word;
2468 uint8_t tstamp[8];
2469 } u;
2470
2471 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2472 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2473 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2474 tsft = atw_get_tsft(sc);
2475 u.word = htole64(tsft);
2476 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2477 sizeof(ic->ic_bss->ni_tstamp));
2478 } else
2479 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2480
2481 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2482
2483 tsftl = tsft & 0xFFFFFFFF;
2484 tsfth = tsft >> 32;
2485
2486 /* We sent/received the last beacon `past' microseconds
2487 * after the interval divided the TSF timer.
2488 */
2489 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2490
2491 /* Skip ten beacons so that the TBTT cannot pass before
2492 * we've programmed it. Ten is an arbitrary number.
2493 */
2494 tbtt = past_even + ival * 10;
2495
2496 ATW_WRITE(sc, ATW_TOFS1,
2497 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2498 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2499 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2500 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2501 #undef TBTTOFS
2502 }
2503
2504 static void
2505 atw_next_scan(void *arg)
2506 {
2507 struct atw_softc *sc = arg;
2508 struct ieee80211com *ic = &sc->sc_ic;
2509 int s;
2510
2511 /* don't call atw_start w/o network interrupts blocked */
2512 s = splnet();
2513 if (ic->ic_state == IEEE80211_S_SCAN)
2514 ieee80211_next_scan(ic);
2515 splx(s);
2516 }
2517
2518 /* Synchronize the hardware state with the software state. */
2519 static int
2520 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2521 {
2522 struct ifnet *ifp = ic->ic_ifp;
2523 struct atw_softc *sc = ifp->if_softc;
2524 enum ieee80211_state ostate;
2525 int error = 0;
2526
2527 ostate = ic->ic_state;
2528 callout_stop(&sc->sc_scan_ch);
2529 atw_start_beacon(sc, 0);
2530
2531 switch (nstate) {
2532 case IEEE80211_S_ASSOC:
2533 error = atw_tune(sc);
2534 break;
2535 case IEEE80211_S_INIT:
2536 callout_stop(&sc->sc_scan_ch);
2537 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2538 break;
2539 case IEEE80211_S_SCAN:
2540 error = atw_tune(sc);
2541 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2542 atw_next_scan, sc);
2543 break;
2544 case IEEE80211_S_AUTH:
2545 error = atw_tune(sc);
2546 break;
2547 case IEEE80211_S_RUN:
2548 error = atw_tune(sc);
2549 atw_write_bssid(sc);
2550 atw_write_ssid(sc);
2551 atw_write_sup_rates(sc);
2552
2553 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2554 ic->ic_opmode == IEEE80211_M_MONITOR)
2555 break;
2556
2557 /* set listen interval
2558 * XXX do software units agree w/ hardware?
2559 */
2560 ATW_WRITE(sc, ATW_BPLI,
2561 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2562 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2563 ATW_BPLI_LI_MASK));
2564
2565 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2566 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2567
2568 atw_predict_beacon(sc);
2569 atw_start_beacon(sc,
2570 ic->ic_opmode == IEEE80211_M_HOSTAP ||
2571 ic->ic_opmode == IEEE80211_M_IBSS);
2572 break;
2573 }
2574 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2575 }
2576
2577 /*
2578 * atw_add_rxbuf:
2579 *
2580 * Add a receive buffer to the indicated descriptor.
2581 */
2582 int
2583 atw_add_rxbuf(struct atw_softc *sc, int idx)
2584 {
2585 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2586 struct mbuf *m;
2587 int error;
2588
2589 MGETHDR(m, M_DONTWAIT, MT_DATA);
2590 if (m == NULL)
2591 return (ENOBUFS);
2592
2593 MCLGET(m, M_DONTWAIT);
2594 if ((m->m_flags & M_EXT) == 0) {
2595 m_freem(m);
2596 return (ENOBUFS);
2597 }
2598
2599 if (rxs->rxs_mbuf != NULL)
2600 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2601
2602 rxs->rxs_mbuf = m;
2603
2604 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2605 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2606 BUS_DMA_READ|BUS_DMA_NOWAIT);
2607 if (error) {
2608 printf("%s: can't load rx DMA map %d, error = %d\n",
2609 sc->sc_dev.dv_xname, idx, error);
2610 panic("atw_add_rxbuf"); /* XXX */
2611 }
2612
2613 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2614 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2615
2616 ATW_INIT_RXDESC(sc, idx);
2617
2618 return (0);
2619 }
2620
2621 /*
2622 * Release any queued transmit buffers.
2623 */
2624 void
2625 atw_txdrain(struct atw_softc *sc)
2626 {
2627 struct atw_txsoft *txs;
2628
2629 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2630 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2631 if (txs->txs_mbuf != NULL) {
2632 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2633 m_freem(txs->txs_mbuf);
2634 txs->txs_mbuf = NULL;
2635 }
2636 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2637 sc->sc_txfree += txs->txs_ndescs;
2638 }
2639 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2640 sc->sc_tx_timer = 0;
2641 }
2642
2643 /*
2644 * atw_stop: [ ifnet interface function ]
2645 *
2646 * Stop transmission on the interface.
2647 */
2648 void
2649 atw_stop(struct ifnet *ifp, int disable)
2650 {
2651 struct atw_softc *sc = ifp->if_softc;
2652 struct ieee80211com *ic = &sc->sc_ic;
2653
2654 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2655
2656 /* Disable interrupts. */
2657 ATW_WRITE(sc, ATW_IER, 0);
2658
2659 /* Stop the transmit and receive processes. */
2660 sc->sc_opmode = 0;
2661 ATW_WRITE(sc, ATW_NAR, 0);
2662 DELAY(atw_nar_delay);
2663 ATW_WRITE(sc, ATW_TDBD, 0);
2664 ATW_WRITE(sc, ATW_TDBP, 0);
2665 ATW_WRITE(sc, ATW_RDB, 0);
2666
2667 atw_txdrain(sc);
2668
2669 if (disable) {
2670 atw_rxdrain(sc);
2671 atw_disable(sc);
2672 }
2673
2674 /*
2675 * Mark the interface down and cancel the watchdog timer.
2676 */
2677 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2678 sc->sc_tx_timer = 0;
2679 ifp->if_timer = 0;
2680
2681 if (!disable)
2682 atw_reset(sc);
2683 }
2684
2685 /*
2686 * atw_rxdrain:
2687 *
2688 * Drain the receive queue.
2689 */
2690 void
2691 atw_rxdrain(struct atw_softc *sc)
2692 {
2693 struct atw_rxsoft *rxs;
2694 int i;
2695
2696 for (i = 0; i < ATW_NRXDESC; i++) {
2697 rxs = &sc->sc_rxsoft[i];
2698 if (rxs->rxs_mbuf == NULL)
2699 continue;
2700 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2701 m_freem(rxs->rxs_mbuf);
2702 rxs->rxs_mbuf = NULL;
2703 }
2704 }
2705
2706 /*
2707 * atw_detach:
2708 *
2709 * Detach an ADM8211 interface.
2710 */
2711 int
2712 atw_detach(struct atw_softc *sc)
2713 {
2714 struct ifnet *ifp = &sc->sc_if;
2715 struct atw_rxsoft *rxs;
2716 struct atw_txsoft *txs;
2717 int i;
2718
2719 /*
2720 * Succeed now if there isn't any work to do.
2721 */
2722 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2723 return (0);
2724
2725 callout_stop(&sc->sc_scan_ch);
2726
2727 ieee80211_ifdetach(&sc->sc_ic);
2728 if_detach(ifp);
2729
2730 for (i = 0; i < ATW_NRXDESC; i++) {
2731 rxs = &sc->sc_rxsoft[i];
2732 if (rxs->rxs_mbuf != NULL) {
2733 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2734 m_freem(rxs->rxs_mbuf);
2735 rxs->rxs_mbuf = NULL;
2736 }
2737 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2738 }
2739 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2740 txs = &sc->sc_txsoft[i];
2741 if (txs->txs_mbuf != NULL) {
2742 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2743 m_freem(txs->txs_mbuf);
2744 txs->txs_mbuf = NULL;
2745 }
2746 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2747 }
2748 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2749 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2750 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2751 sizeof(struct atw_control_data));
2752 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2753
2754 shutdownhook_disestablish(sc->sc_sdhook);
2755 powerhook_disestablish(sc->sc_powerhook);
2756
2757 if (sc->sc_srom)
2758 free(sc->sc_srom, M_DEVBUF);
2759
2760 return (0);
2761 }
2762
2763 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2764 void
2765 atw_shutdown(void *arg)
2766 {
2767 struct atw_softc *sc = arg;
2768
2769 atw_stop(&sc->sc_if, 1);
2770 }
2771
2772 int
2773 atw_intr(void *arg)
2774 {
2775 struct atw_softc *sc = arg;
2776 struct ifnet *ifp = &sc->sc_if;
2777 u_int32_t status, rxstatus, txstatus, linkstatus;
2778 int handled = 0, txthresh;
2779
2780 #ifdef DEBUG
2781 if (ATW_IS_ENABLED(sc) == 0)
2782 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2783 #endif
2784
2785 /*
2786 * If the interface isn't running, the interrupt couldn't
2787 * possibly have come from us.
2788 */
2789 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2790 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2791 return (0);
2792
2793 for (;;) {
2794 status = ATW_READ(sc, ATW_STSR);
2795
2796 if (status)
2797 ATW_WRITE(sc, ATW_STSR, status);
2798
2799 #ifdef ATW_DEBUG
2800 #define PRINTINTR(flag) do { \
2801 if ((status & flag) != 0) { \
2802 printf("%s" #flag, delim); \
2803 delim = ","; \
2804 } \
2805 } while (0)
2806
2807 if (atw_debug > 1 && status) {
2808 const char *delim = "<";
2809
2810 printf("%s: reg[STSR] = %x",
2811 sc->sc_dev.dv_xname, status);
2812
2813 PRINTINTR(ATW_INTR_FBE);
2814 PRINTINTR(ATW_INTR_LINKOFF);
2815 PRINTINTR(ATW_INTR_LINKON);
2816 PRINTINTR(ATW_INTR_RCI);
2817 PRINTINTR(ATW_INTR_RDU);
2818 PRINTINTR(ATW_INTR_REIS);
2819 PRINTINTR(ATW_INTR_RPS);
2820 PRINTINTR(ATW_INTR_TCI);
2821 PRINTINTR(ATW_INTR_TDU);
2822 PRINTINTR(ATW_INTR_TLT);
2823 PRINTINTR(ATW_INTR_TPS);
2824 PRINTINTR(ATW_INTR_TRT);
2825 PRINTINTR(ATW_INTR_TUF);
2826 PRINTINTR(ATW_INTR_BCNTC);
2827 PRINTINTR(ATW_INTR_ATIME);
2828 PRINTINTR(ATW_INTR_TBTT);
2829 PRINTINTR(ATW_INTR_TSCZ);
2830 PRINTINTR(ATW_INTR_TSFTF);
2831 printf(">\n");
2832 }
2833 #undef PRINTINTR
2834 #endif /* ATW_DEBUG */
2835
2836 if ((status & sc->sc_inten) == 0)
2837 break;
2838
2839 handled = 1;
2840
2841 rxstatus = status & sc->sc_rxint_mask;
2842 txstatus = status & sc->sc_txint_mask;
2843 linkstatus = status & sc->sc_linkint_mask;
2844
2845 if (linkstatus) {
2846 atw_linkintr(sc, linkstatus);
2847 }
2848
2849 if (rxstatus) {
2850 /* Grab any new packets. */
2851 atw_rxintr(sc);
2852
2853 if (rxstatus & ATW_INTR_RDU) {
2854 printf("%s: receive ring overrun\n",
2855 sc->sc_dev.dv_xname);
2856 /* Get the receive process going again. */
2857 ATW_WRITE(sc, ATW_RDR, 0x1);
2858 break;
2859 }
2860 }
2861
2862 if (txstatus) {
2863 /* Sweep up transmit descriptors. */
2864 atw_txintr(sc);
2865
2866 if (txstatus & ATW_INTR_TLT)
2867 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2868 sc->sc_dev.dv_xname));
2869
2870 if (txstatus & ATW_INTR_TRT)
2871 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2872 sc->sc_dev.dv_xname));
2873
2874 /* If Tx under-run, increase our transmit threshold
2875 * if another is available.
2876 */
2877 txthresh = sc->sc_txthresh + 1;
2878 if ((txstatus & ATW_INTR_TUF) &&
2879 sc->sc_txth[txthresh].txth_name != NULL) {
2880 /* Idle the transmit process. */
2881 atw_idle(sc, ATW_NAR_ST);
2882
2883 sc->sc_txthresh = txthresh;
2884 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2885 sc->sc_opmode |=
2886 sc->sc_txth[txthresh].txth_opmode;
2887 printf("%s: transmit underrun; new "
2888 "threshold: %s\n", sc->sc_dev.dv_xname,
2889 sc->sc_txth[txthresh].txth_name);
2890
2891 /* Set the new threshold and restart
2892 * the transmit process.
2893 */
2894 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2895 DELAY(atw_nar_delay);
2896 ATW_WRITE(sc, ATW_RDR, 0x1);
2897 /* XXX Log every Nth underrun from
2898 * XXX now on?
2899 */
2900 }
2901 }
2902
2903 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2904 if (status & ATW_INTR_TPS)
2905 printf("%s: transmit process stopped\n",
2906 sc->sc_dev.dv_xname);
2907 if (status & ATW_INTR_RPS)
2908 printf("%s: receive process stopped\n",
2909 sc->sc_dev.dv_xname);
2910 (void)atw_init(ifp);
2911 break;
2912 }
2913
2914 if (status & ATW_INTR_FBE) {
2915 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2916 (void)atw_init(ifp);
2917 break;
2918 }
2919
2920 /*
2921 * Not handled:
2922 *
2923 * Transmit buffer unavailable -- normal
2924 * condition, nothing to do, really.
2925 *
2926 * Early receive interrupt -- not available on
2927 * all chips, we just use RI. We also only
2928 * use single-segment receive DMA, so this
2929 * is mostly useless.
2930 *
2931 * TBD others
2932 */
2933 }
2934
2935 /* Try to get more packets going. */
2936 atw_start(ifp);
2937
2938 return (handled);
2939 }
2940
2941 /*
2942 * atw_idle:
2943 *
2944 * Cause the transmit and/or receive processes to go idle.
2945 *
2946 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2947 * process in STSR if I clear SR or ST after the process has already
2948 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2949 * do not seem to be too reliable. Perhaps I have the sense of the
2950 * Rx bits switched with the Tx bits?
2951 */
2952 void
2953 atw_idle(struct atw_softc *sc, u_int32_t bits)
2954 {
2955 u_int32_t ackmask = 0, opmode, stsr, test0;
2956 int i, s;
2957
2958 s = splnet();
2959
2960 opmode = sc->sc_opmode & ~bits;
2961
2962 if (bits & ATW_NAR_SR)
2963 ackmask |= ATW_INTR_RPS;
2964
2965 if (bits & ATW_NAR_ST) {
2966 ackmask |= ATW_INTR_TPS;
2967 /* set ATW_NAR_HF to flush TX FIFO. */
2968 opmode |= ATW_NAR_HF;
2969 }
2970
2971 ATW_WRITE(sc, ATW_NAR, opmode);
2972 DELAY(atw_nar_delay);
2973
2974 for (i = 0; i < 1000; i++) {
2975 stsr = ATW_READ(sc, ATW_STSR);
2976 if ((stsr & ackmask) == ackmask)
2977 break;
2978 DELAY(10);
2979 }
2980
2981 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2982
2983 if ((stsr & ackmask) == ackmask)
2984 goto out;
2985
2986 test0 = ATW_READ(sc, ATW_TEST0);
2987
2988 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2989 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2990 printf("%s: transmit process not idle [%s]\n",
2991 sc->sc_dev.dv_xname,
2992 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2993 printf("%s: bits %08x test0 %08x stsr %08x\n",
2994 sc->sc_dev.dv_xname, bits, test0, stsr);
2995 }
2996
2997 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2998 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2999 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3000 sc->sc_dev.dv_xname,
3001 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
3002 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3003 sc->sc_dev.dv_xname, bits, test0, stsr));
3004 }
3005 out:
3006 if ((bits & ATW_NAR_ST) != 0)
3007 atw_txdrain(sc);
3008 splx(s);
3009 return;
3010 }
3011
3012 /*
3013 * atw_linkintr:
3014 *
3015 * Helper; handle link-status interrupts.
3016 */
3017 void
3018 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3019 {
3020 struct ieee80211com *ic = &sc->sc_ic;
3021
3022 if (ic->ic_state != IEEE80211_S_RUN)
3023 return;
3024
3025 if (linkstatus & ATW_INTR_LINKON) {
3026 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3027 sc->sc_rescan_timer = 0;
3028 } else if (linkstatus & ATW_INTR_LINKOFF) {
3029 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3030 if (ic->ic_opmode != IEEE80211_M_STA)
3031 return;
3032 sc->sc_rescan_timer = 3;
3033 sc->sc_if.if_timer = 1;
3034 }
3035 }
3036
3037 static inline int
3038 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3039 {
3040 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3041 return 0;
3042 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3043 return 0;
3044 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3045 }
3046
3047 /*
3048 * atw_rxintr:
3049 *
3050 * Helper; handle receive interrupts.
3051 */
3052 void
3053 atw_rxintr(struct atw_softc *sc)
3054 {
3055 static int rate_tbl[] = {2, 4, 11, 22, 44};
3056 struct ieee80211com *ic = &sc->sc_ic;
3057 struct ieee80211_node *ni;
3058 struct ieee80211_frame_min *wh;
3059 struct ifnet *ifp = &sc->sc_if;
3060 struct atw_rxsoft *rxs;
3061 struct mbuf *m;
3062 u_int32_t rxstat;
3063 int i, len, rate, rate0;
3064 u_int32_t rssi, rssi0;
3065
3066 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3067 rxs = &sc->sc_rxsoft[i];
3068
3069 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3070
3071 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3072 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3073 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3074
3075 if (rxstat & ATW_RXSTAT_OWN)
3076 break; /* We have processed all receive buffers. */
3077
3078 DPRINTF3(sc,
3079 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3080 sc->sc_dev.dv_xname,
3081 rxstat, rssi0,
3082 le32toh(sc->sc_rxdescs[i].ar_buf1),
3083 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3084
3085 /*
3086 * Make sure the packet fits in one buffer. This should
3087 * always be the case.
3088 */
3089 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3090 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3091 printf("%s: incoming packet spilled, resetting\n",
3092 sc->sc_dev.dv_xname);
3093 (void)atw_init(ifp);
3094 return;
3095 }
3096
3097 /*
3098 * If an error occurred, update stats, clear the status
3099 * word, and leave the packet buffer in place. It will
3100 * simply be reused the next time the ring comes around.
3101 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3102 * error.
3103 */
3104
3105 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3106 ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3107 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3108 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3109 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3110 ATW_RXSTAT_ICVE)) != 0)) {
3111 #define PRINTERR(bit, str) \
3112 if (rxstat & (bit)) \
3113 printf("%s: receive error: %s\n", \
3114 sc->sc_dev.dv_xname, str)
3115 ifp->if_ierrors++;
3116 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3117 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3118 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3119 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3120 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3121 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3122 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3123 #undef PRINTERR
3124 ATW_INIT_RXDESC(sc, i);
3125 continue;
3126 }
3127
3128 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3129 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3130
3131 /*
3132 * No errors; receive the packet. Note the ADM8211
3133 * includes the CRC in promiscuous mode.
3134 */
3135 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3136
3137 /*
3138 * Allocate a new mbuf cluster. If that fails, we are
3139 * out of memory, and must drop the packet and recycle
3140 * the buffer that's already attached to this descriptor.
3141 */
3142 m = rxs->rxs_mbuf;
3143 if (atw_add_rxbuf(sc, i) != 0) {
3144 ifp->if_ierrors++;
3145 ATW_INIT_RXDESC(sc, i);
3146 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3147 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3148 continue;
3149 }
3150
3151 ifp->if_ipackets++;
3152 if (sc->sc_opmode & ATW_NAR_PR)
3153 len -= IEEE80211_CRC_LEN;
3154 m->m_pkthdr.rcvif = ifp;
3155 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3156
3157 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3158 rate = 0;
3159 else
3160 rate = rate_tbl[rate0];
3161
3162 /* The RSSI comes straight from a register in the
3163 * baseband processor. I know that for the RF3000,
3164 * the RSSI register also contains the antenna-selection
3165 * bits. Mask those off.
3166 *
3167 * TBD Treat other basebands.
3168 */
3169 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3170 rssi = rssi0 & RF3000_RSSI_MASK;
3171 else
3172 rssi = rssi0;
3173
3174 #if NBPFILTER > 0
3175 /* Pass this up to any BPF listeners. */
3176 if (sc->sc_radiobpf != NULL) {
3177 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3178
3179 tap->ar_rate = rate;
3180 tap->ar_chan_freq = ic->ic_curchan->ic_freq;
3181 tap->ar_chan_flags = ic->ic_curchan->ic_flags;
3182
3183 /* TBD verify units are dB */
3184 tap->ar_antsignal = (int)rssi;
3185 /* TBD tap->ar_flags */
3186
3187 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3188 tap->ar_ihdr.it_len, m);
3189 }
3190 #endif /* NPBFILTER > 0 */
3191
3192 wh = mtod(m, struct ieee80211_frame_min *);
3193 ni = ieee80211_find_rxnode(ic, wh);
3194 if (atw_hw_decrypted(sc, wh)) {
3195 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3196 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3197 }
3198 ieee80211_input(ic, m, ni, (int)rssi, 0);
3199 ieee80211_free_node(ni);
3200 }
3201
3202 /* Update the receive pointer. */
3203 sc->sc_rxptr = i;
3204 }
3205
3206 /*
3207 * atw_txintr:
3208 *
3209 * Helper; handle transmit interrupts.
3210 */
3211 void
3212 atw_txintr(struct atw_softc *sc)
3213 {
3214 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3215 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3216 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3217 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3218
3219 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3220 struct ifnet *ifp = &sc->sc_if;
3221 struct atw_txsoft *txs;
3222 u_int32_t txstat;
3223
3224 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3225 sc->sc_dev.dv_xname, sc->sc_flags));
3226
3227 /*
3228 * Go through our Tx list and free mbufs for those
3229 * frames that have been transmitted.
3230 */
3231 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3232 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3233 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3234
3235 #ifdef ATW_DEBUG
3236 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3237 int i;
3238 printf(" txsoft %p transmit chain:\n", txs);
3239 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3240 txs->txs_ndescs - 1,
3241 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3242 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3243 printf(" descriptor %d:\n", i);
3244 printf(" at_status: 0x%08x\n",
3245 le32toh(sc->sc_txdescs[i].at_stat));
3246 printf(" at_flags: 0x%08x\n",
3247 le32toh(sc->sc_txdescs[i].at_flags));
3248 printf(" at_buf1: 0x%08x\n",
3249 le32toh(sc->sc_txdescs[i].at_buf1));
3250 printf(" at_buf2: 0x%08x\n",
3251 le32toh(sc->sc_txdescs[i].at_buf2));
3252 if (i == txs->txs_lastdesc)
3253 break;
3254 }
3255 }
3256 #endif
3257
3258 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3259 if (txstat & ATW_TXSTAT_OWN)
3260 break;
3261
3262 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3263
3264 sc->sc_txfree += txs->txs_ndescs;
3265
3266 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3267 0, txs->txs_dmamap->dm_mapsize,
3268 BUS_DMASYNC_POSTWRITE);
3269 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3270 m_freem(txs->txs_mbuf);
3271 txs->txs_mbuf = NULL;
3272
3273 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3274
3275 ifp->if_flags &= ~IFF_OACTIVE;
3276
3277 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3278 (txstat & TXSTAT_ERRMASK) != 0) {
3279 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3280 txstat_buf, sizeof(txstat_buf));
3281 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3282 txstat_buf,
3283 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3284 }
3285
3286 /*
3287 * Check for errors and collisions.
3288 */
3289 if (txstat & ATW_TXSTAT_TUF)
3290 sc->sc_stats.ts_tx_tuf++;
3291 if (txstat & ATW_TXSTAT_TLT)
3292 sc->sc_stats.ts_tx_tlt++;
3293 if (txstat & ATW_TXSTAT_TRT)
3294 sc->sc_stats.ts_tx_trt++;
3295 if (txstat & ATW_TXSTAT_TRO)
3296 sc->sc_stats.ts_tx_tro++;
3297 if (txstat & ATW_TXSTAT_SOFBR) {
3298 sc->sc_stats.ts_tx_sofbr++;
3299 }
3300
3301 if ((txstat & ATW_TXSTAT_ES) == 0)
3302 ifp->if_collisions +=
3303 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3304 else
3305 ifp->if_oerrors++;
3306
3307 ifp->if_opackets++;
3308 }
3309
3310 /*
3311 * If there are no more pending transmissions, cancel the watchdog
3312 * timer.
3313 */
3314 if (txs == NULL)
3315 sc->sc_tx_timer = 0;
3316 #undef TXSTAT_ERRMASK
3317 #undef TXSTAT_FMT
3318 }
3319
3320 /*
3321 * atw_watchdog: [ifnet interface function]
3322 *
3323 * Watchdog timer handler.
3324 */
3325 void
3326 atw_watchdog(struct ifnet *ifp)
3327 {
3328 struct atw_softc *sc = ifp->if_softc;
3329 struct ieee80211com *ic = &sc->sc_ic;
3330
3331 ifp->if_timer = 0;
3332 if (ATW_IS_ENABLED(sc) == 0)
3333 return;
3334
3335 if (sc->sc_rescan_timer) {
3336 if (--sc->sc_rescan_timer == 0)
3337 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3338 }
3339 if (sc->sc_tx_timer) {
3340 if (--sc->sc_tx_timer == 0 &&
3341 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3342 printf("%s: transmit timeout\n", ifp->if_xname);
3343 ifp->if_oerrors++;
3344 (void)atw_init(ifp);
3345 atw_start(ifp);
3346 }
3347 }
3348 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3349 ifp->if_timer = 1;
3350 ieee80211_watchdog(ic);
3351 }
3352
3353 /* Compute the 802.11 Duration field and the PLCP Length fields for
3354 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3355 * Write the fields to the ADM8211 Tx header, frm.
3356 *
3357 * TBD use the fragmentation threshold to find the right duration for
3358 * the first & last fragments.
3359 *
3360 * TBD make certain of the duration fields applied by the ADM8211 to each
3361 * fragment. I think that the ADM8211 knows how to subtract the CTS
3362 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3363 * I also think that the ADM8211 does *some* arithmetic for us, because
3364 * otherwise I think we would have to set a first duration for CTS/first
3365 * fragment, a second duration for fragments between the first and the
3366 * last, and a third duration for the last fragment.
3367 *
3368 * TBD make certain that duration fields reflect addition of FCS/WEP
3369 * and correct duration arithmetic as necessary.
3370 */
3371 static void
3372 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3373 int len)
3374 {
3375 int remainder;
3376
3377 /* deal also with encrypted fragments */
3378 if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3379 DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3380 sc->sc_dev.dv_xname));
3381 len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3382 IEEE80211_WEP_CRCLEN;
3383 }
3384
3385 /* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3386 * duration (XXX added by MAC?).
3387 */
3388 frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3389 remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3390
3391 if (rate <= 4)
3392 /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3393 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3394 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3395 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3396 IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3397 else
3398 /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3399 frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3400 IEEE80211_DUR_DS_SHORT_PREAMBLE +
3401 IEEE80211_DUR_DS_FAST_PLCPHDR) +
3402 IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3403
3404 /* lengthen duration if long preamble */
3405 if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3406 frm->atw_head_dur +=
3407 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3408 IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3409 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3410 IEEE80211_DUR_DS_FAST_PLCPHDR);
3411
3412 if (remainder != 0)
3413 frm->atw_head_dur++;
3414
3415 if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3416 (rate == 2 || rate == 4)) {
3417 /* derived from Linux: how could this be right? */
3418 frm->atw_head_plcplen = frm->atw_head_dur;
3419 } else {
3420 frm->atw_head_plcplen = (16 * len) / rate;
3421 remainder = (80 * len) % (rate * 5);
3422
3423 if (remainder != 0) {
3424 frm->atw_head_plcplen++;
3425
3426 /* XXX magic */
3427 if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3428 rate == 22 && remainder <= 30)
3429 frm->atw_head_plcplen |= 0x8000;
3430 }
3431 }
3432 frm->atw_tail_plcplen = frm->atw_head_plcplen =
3433 htole16(frm->atw_head_plcplen);
3434 frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3435 }
3436
3437 #ifdef ATW_DEBUG
3438 static void
3439 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3440 {
3441 struct atw_softc *sc = ifp->if_softc;
3442 struct mbuf *m;
3443 int i, noctets = 0;
3444
3445 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3446 m0->m_pkthdr.len);
3447
3448 for (m = m0; m; m = m->m_next) {
3449 if (m->m_len == 0)
3450 continue;
3451 for (i = 0; i < m->m_len; i++) {
3452 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3453 if (++noctets % 24 == 0)
3454 printf("\n");
3455 }
3456 }
3457 printf("%s%s: %d bytes emitted\n",
3458 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3459 }
3460 #endif /* ATW_DEBUG */
3461
3462 /*
3463 * atw_start: [ifnet interface function]
3464 *
3465 * Start packet transmission on the interface.
3466 */
3467 void
3468 atw_start(struct ifnet *ifp)
3469 {
3470 struct atw_softc *sc = ifp->if_softc;
3471 struct ieee80211com *ic = &sc->sc_ic;
3472 struct ieee80211_node *ni;
3473 struct ieee80211_frame *wh;
3474 struct atw_frame *hh;
3475 struct mbuf *m0, *m;
3476 struct atw_txsoft *txs, *last_txs;
3477 struct atw_txdesc *txd;
3478 int do_encrypt, rate;
3479 bus_dmamap_t dmamap;
3480 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3481
3482 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3483 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3484
3485 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3486 return;
3487
3488 /*
3489 * Remember the previous number of free descriptors and
3490 * the first descriptor we'll use.
3491 */
3492 ofree = sc->sc_txfree;
3493 firsttx = sc->sc_txnext;
3494
3495 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3496 sc->sc_dev.dv_xname, ofree, firsttx));
3497
3498 /*
3499 * Loop through the send queue, setting up transmit descriptors
3500 * until we drain the queue, or use up all available transmit
3501 * descriptors.
3502 */
3503 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3504 sc->sc_txfree != 0) {
3505
3506 /*
3507 * Grab a packet off the management queue, if it
3508 * is not empty. Otherwise, from the data queue.
3509 */
3510 IF_DEQUEUE(&ic->ic_mgtq, m0);
3511 if (m0 != NULL) {
3512 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3513 m0->m_pkthdr.rcvif = NULL;
3514 } else {
3515 /* send no data packets until we are associated */
3516 if (ic->ic_state != IEEE80211_S_RUN)
3517 break;
3518 IFQ_DEQUEUE(&ifp->if_snd, m0);
3519 if (m0 == NULL)
3520 break;
3521 #if NBPFILTER > 0
3522 if (ifp->if_bpf != NULL)
3523 bpf_mtap(ifp->if_bpf, m0);
3524 #endif /* NBPFILTER > 0 */
3525 ni = ieee80211_find_txnode(ic,
3526 mtod(m0, struct ether_header *)->ether_dhost);
3527 if (ni == NULL) {
3528 ifp->if_oerrors++;
3529 break;
3530 }
3531 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3532 ieee80211_free_node(ni);
3533 ifp->if_oerrors++;
3534 break;
3535 }
3536 }
3537
3538 rate = MAX(ieee80211_get_rate(ic), 2);
3539
3540 #if NBPFILTER > 0
3541 /*
3542 * Pass the packet to any BPF listeners.
3543 */
3544 if (ic->ic_rawbpf != NULL)
3545 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3546
3547 if (sc->sc_radiobpf != NULL) {
3548 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3549
3550 tap->at_rate = rate;
3551 tap->at_chan_freq = ic->ic_curchan->ic_freq;
3552 tap->at_chan_flags = ic->ic_curchan->ic_flags;
3553
3554 /* TBD tap->at_flags */
3555
3556 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3557 tap->at_ihdr.it_len, m0);
3558 }
3559 #endif /* NBPFILTER > 0 */
3560
3561 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3562
3563 if (ni != NULL)
3564 ieee80211_free_node(ni);
3565
3566 if (m0 == NULL) {
3567 ifp->if_oerrors++;
3568 break;
3569 }
3570
3571 /* just to make sure. */
3572 m0 = m_pullup(m0, sizeof(struct atw_frame));
3573
3574 if (m0 == NULL) {
3575 ifp->if_oerrors++;
3576 break;
3577 }
3578
3579 hh = mtod(m0, struct atw_frame *);
3580 wh = &hh->atw_ihdr;
3581
3582 do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3583
3584 /* Copy everything we need from the 802.11 header:
3585 * Frame Control; address 1, address 3, or addresses
3586 * 3 and 4. NIC fills in BSSID, SA.
3587 */
3588 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3589 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3590 panic("%s: illegal WDS frame",
3591 sc->sc_dev.dv_xname);
3592 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3593 } else
3594 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3595
3596 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3597
3598 /* initialize remaining Tx parameters */
3599 memset(&hh->u, 0, sizeof(hh->u));
3600
3601 hh->atw_rate = rate * 5;
3602 /* XXX this could be incorrect if M_FCS. _encap should
3603 * probably strip FCS just in case it sticks around in
3604 * bridged packets.
3605 */
3606 hh->atw_service = 0x00; /* XXX guess */
3607 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3608 sizeof(struct atw_frame));
3609
3610 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3611 hh->atw_rtylmt = 3;
3612 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3613 if (do_encrypt) {
3614 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3615 hh->atw_keyid = ic->ic_def_txkey;
3616 }
3617
3618 /* TBD 4-addr frames */
3619 atw_frame_setdurs(sc, hh, rate,
3620 m0->m_pkthdr.len - sizeof(struct atw_frame) +
3621 sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3622
3623 /* never fragment multicast frames */
3624 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3625 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3626 } else if (sc->sc_flags & ATWF_RTSCTS) {
3627 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3628 }
3629
3630 #ifdef ATW_DEBUG
3631 hh->atw_fragnum = 0;
3632
3633 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3634 printf("%s: dst = %s, rate = 0x%02x, "
3635 "service = 0x%02x, paylen = 0x%04x\n",
3636 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3637 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3638
3639 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3640 "dur1 = 0x%04x, dur2 = 0x%04x, "
3641 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3642 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3643 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3644 hh->atw_tail_dur, hh->atw_head_dur);
3645
3646 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3647 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3648 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3649 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3650
3651 printf("%s: keyid = %d\n",
3652 sc->sc_dev.dv_xname, hh->atw_keyid);
3653
3654 atw_dump_pkt(ifp, m0);
3655 }
3656 #endif /* ATW_DEBUG */
3657
3658 dmamap = txs->txs_dmamap;
3659
3660 /*
3661 * Load the DMA map. Copy and try (once) again if the packet
3662 * didn't fit in the alloted number of segments.
3663 */
3664 for (first = 1;
3665 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3666 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3667 first = 0) {
3668 MGETHDR(m, M_DONTWAIT, MT_DATA);
3669 if (m == NULL) {
3670 printf("%s: unable to allocate Tx mbuf\n",
3671 sc->sc_dev.dv_xname);
3672 break;
3673 }
3674 if (m0->m_pkthdr.len > MHLEN) {
3675 MCLGET(m, M_DONTWAIT);
3676 if ((m->m_flags & M_EXT) == 0) {
3677 printf("%s: unable to allocate Tx "
3678 "cluster\n", sc->sc_dev.dv_xname);
3679 m_freem(m);
3680 break;
3681 }
3682 }
3683 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3684 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3685 m_freem(m0);
3686 m0 = m;
3687 m = NULL;
3688 }
3689 if (error != 0) {
3690 printf("%s: unable to load Tx buffer, "
3691 "error = %d\n", sc->sc_dev.dv_xname, error);
3692 m_freem(m0);
3693 break;
3694 }
3695
3696 /*
3697 * Ensure we have enough descriptors free to describe
3698 * the packet.
3699 */
3700 if (dmamap->dm_nsegs > sc->sc_txfree) {
3701 /*
3702 * Not enough free descriptors to transmit
3703 * this packet. Unload the DMA map and
3704 * drop the packet. Notify the upper layer
3705 * that there are no more slots left.
3706 *
3707 * XXX We could allocate an mbuf and copy, but
3708 * XXX it is worth it?
3709 */
3710 bus_dmamap_unload(sc->sc_dmat, dmamap);
3711 m_freem(m0);
3712 break;
3713 }
3714
3715 /*
3716 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3717 */
3718
3719 /* Sync the DMA map. */
3720 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3721 BUS_DMASYNC_PREWRITE);
3722
3723 /* XXX arbitrary retry limit; 8 because I have seen it in
3724 * use already and maybe 0 means "no tries" !
3725 */
3726 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3727
3728 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3729 sc->sc_dev.dv_xname, rate * 5));
3730 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3731
3732 /*
3733 * Initialize the transmit descriptors.
3734 */
3735 for (nexttx = sc->sc_txnext, seg = 0;
3736 seg < dmamap->dm_nsegs;
3737 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3738 /*
3739 * If this is the first descriptor we're
3740 * enqueueing, don't set the OWN bit just
3741 * yet. That could cause a race condition.
3742 * We'll do it below.
3743 */
3744 txd = &sc->sc_txdescs[nexttx];
3745 txd->at_ctl = ctl |
3746 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3747
3748 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3749 txd->at_flags =
3750 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3751 ATW_TXFLAG_TBS1_MASK)) |
3752 ((nexttx == (ATW_NTXDESC - 1))
3753 ? htole32(ATW_TXFLAG_TER) : 0);
3754 lasttx = nexttx;
3755 }
3756
3757 IASSERT(lasttx != -1, ("bad lastx"));
3758 /* Set `first segment' and `last segment' appropriately. */
3759 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3760 htole32(ATW_TXFLAG_FS);
3761 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3762
3763 #ifdef ATW_DEBUG
3764 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3765 printf(" txsoft %p transmit chain:\n", txs);
3766 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3767 printf(" descriptor %d:\n", seg);
3768 printf(" at_ctl: 0x%08x\n",
3769 le32toh(sc->sc_txdescs[seg].at_ctl));
3770 printf(" at_flags: 0x%08x\n",
3771 le32toh(sc->sc_txdescs[seg].at_flags));
3772 printf(" at_buf1: 0x%08x\n",
3773 le32toh(sc->sc_txdescs[seg].at_buf1));
3774 printf(" at_buf2: 0x%08x\n",
3775 le32toh(sc->sc_txdescs[seg].at_buf2));
3776 if (seg == lasttx)
3777 break;
3778 }
3779 }
3780 #endif
3781
3782 /* Sync the descriptors we're using. */
3783 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3784 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3785
3786 /*
3787 * Store a pointer to the packet so we can free it later,
3788 * and remember what txdirty will be once the packet is
3789 * done.
3790 */
3791 txs->txs_mbuf = m0;
3792 txs->txs_firstdesc = sc->sc_txnext;
3793 txs->txs_lastdesc = lasttx;
3794 txs->txs_ndescs = dmamap->dm_nsegs;
3795
3796 /* Advance the tx pointer. */
3797 sc->sc_txfree -= dmamap->dm_nsegs;
3798 sc->sc_txnext = nexttx;
3799
3800 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3801 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3802
3803 last_txs = txs;
3804 }
3805
3806 if (txs == NULL || sc->sc_txfree == 0) {
3807 /* No more slots left; notify upper layer. */
3808 ifp->if_flags |= IFF_OACTIVE;
3809 }
3810
3811 if (sc->sc_txfree != ofree) {
3812 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3813 sc->sc_dev.dv_xname, lasttx, firsttx));
3814 /*
3815 * Cause a transmit interrupt to happen on the
3816 * last packet we enqueued.
3817 */
3818 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3819 ATW_CDTXSYNC(sc, lasttx, 1,
3820 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3821
3822 /*
3823 * The entire packet chain is set up. Give the
3824 * first descriptor to the chip now.
3825 */
3826 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3827 ATW_CDTXSYNC(sc, firsttx, 1,
3828 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3829
3830 /* Wake up the transmitter. */
3831 ATW_WRITE(sc, ATW_TDR, 0x1);
3832
3833 /* Set a watchdog timer in case the chip flakes out. */
3834 sc->sc_tx_timer = 5;
3835 ifp->if_timer = 1;
3836 }
3837 }
3838
3839 /*
3840 * atw_power:
3841 *
3842 * Power management (suspend/resume) hook.
3843 */
3844 void
3845 atw_power(int why, void *arg)
3846 {
3847 struct atw_softc *sc = arg;
3848 struct ifnet *ifp = &sc->sc_if;
3849 int s;
3850
3851 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3852
3853 s = splnet();
3854 switch (why) {
3855 case PWR_STANDBY:
3856 /* XXX do nothing. */
3857 break;
3858 case PWR_SUSPEND:
3859 atw_stop(ifp, 0);
3860 if (sc->sc_power != NULL)
3861 (*sc->sc_power)(sc, why);
3862 break;
3863 case PWR_RESUME:
3864 if (ifp->if_flags & IFF_UP) {
3865 if (sc->sc_power != NULL)
3866 (*sc->sc_power)(sc, why);
3867 atw_init(ifp);
3868 }
3869 break;
3870 case PWR_SOFTSUSPEND:
3871 case PWR_SOFTSTANDBY:
3872 case PWR_SOFTRESUME:
3873 break;
3874 }
3875 splx(s);
3876 }
3877
3878 /*
3879 * atw_ioctl: [ifnet interface function]
3880 *
3881 * Handle control requests from the operator.
3882 */
3883 int
3884 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3885 {
3886 struct atw_softc *sc = ifp->if_softc;
3887 struct ifreq *ifr = (struct ifreq *)data;
3888 int s, error = 0;
3889
3890 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3891 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3892 return ENXIO;
3893
3894 s = splnet();
3895
3896 switch (cmd) {
3897 case SIOCSIFFLAGS:
3898 if (ifp->if_flags & IFF_UP) {
3899 if (ATW_IS_ENABLED(sc)) {
3900 /*
3901 * To avoid rescanning another access point,
3902 * do not call atw_init() here. Instead,
3903 * only reflect media settings.
3904 */
3905 atw_filter_setup(sc);
3906 } else
3907 error = atw_init(ifp);
3908 } else if (ATW_IS_ENABLED(sc))
3909 atw_stop(ifp, 1);
3910 break;
3911 case SIOCADDMULTI:
3912 case SIOCDELMULTI:
3913 error = (cmd == SIOCADDMULTI) ?
3914 ether_addmulti(ifr, &sc->sc_ec) :
3915 ether_delmulti(ifr, &sc->sc_ec);
3916 if (error == ENETRESET) {
3917 if (ifp->if_flags & IFF_RUNNING)
3918 atw_filter_setup(sc); /* do not rescan */
3919 error = 0;
3920 }
3921 break;
3922 default:
3923 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3924 if (error == ENETRESET) {
3925 if (ATW_IS_ENABLED(sc))
3926 error = atw_init(ifp);
3927 else
3928 error = 0;
3929 }
3930 break;
3931 }
3932
3933 /* Try to get more packets going. */
3934 if (ATW_IS_ENABLED(sc))
3935 atw_start(ifp);
3936
3937 splx(s);
3938 return (error);
3939 }
3940
3941 static int
3942 atw_media_change(struct ifnet *ifp)
3943 {
3944 int error;
3945
3946 error = ieee80211_media_change(ifp);
3947 if (error == ENETRESET) {
3948 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3949 (IFF_RUNNING|IFF_UP))
3950 atw_init(ifp); /* XXX lose error */
3951 error = 0;
3952 }
3953 return error;
3954 }
3955
3956 static void
3957 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3958 {
3959 struct atw_softc *sc = ifp->if_softc;
3960
3961 if (ATW_IS_ENABLED(sc) == 0) {
3962 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3963 imr->ifm_status = 0;
3964 return;
3965 }
3966 ieee80211_media_status(ifp, imr);
3967 }
3968