Home | History | Annotate | Line # | Download | only in ic
atw.c revision 1.92
      1 /*	$NetBSD: atw.c,v 1.92 2005/12/24 20:27:29 perry Exp $  */
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.92 2005/12/24 20:27:29 perry Exp $");
     45 
     46 #include "bpfilter.h"
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/callout.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/malloc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/socket.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/errno.h>
     57 #include <sys/device.h>
     58 #include <sys/time.h>
     59 
     60 #include <machine/endian.h>
     61 
     62 #include <uvm/uvm_extern.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_media.h>
     67 #include <net/if_ether.h>
     68 
     69 #include <net80211/ieee80211_netbsd.h>
     70 #include <net80211/ieee80211_var.h>
     71 #include <net80211/ieee80211_radiotap.h>
     72 
     73 #if NBPFILTER > 0
     74 #include <net/bpf.h>
     75 #endif
     76 
     77 #include <machine/bus.h>
     78 #include <machine/intr.h>
     79 
     80 #include <dev/ic/atwreg.h>
     81 #include <dev/ic/rf3000reg.h>
     82 #include <dev/ic/si4136reg.h>
     83 #include <dev/ic/atwvar.h>
     84 #include <dev/ic/smc93cx6var.h>
     85 
     86 /* XXX TBD open questions
     87  *
     88  *
     89  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
     90  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
     91  * handle this for me?
     92  *
     93  */
     94 /* device attachment
     95  *
     96  *    print TOFS[012]
     97  *
     98  * device initialization
     99  *
    100  *    clear ATW_FRCTL_MAXPSP to disable max power saving
    101  *    set ATW_TXBR_ALCUPDATE to enable ALC
    102  *    set TOFS[012]? (hope not)
    103  *    disable rx/tx
    104  *    set ATW_PAR_SWR (software reset)
    105  *    wait for ATW_PAR_SWR clear
    106  *    disable interrupts
    107  *    ack status register
    108  *    enable interrupts
    109  *
    110  * rx/tx initialization
    111  *
    112  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    113  *    allocate and init descriptor rings
    114  *    write ATW_PAR_DSL (descriptor skip length)
    115  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
    116  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
    118  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    119  *
    120  * rx/tx end
    121  *
    122  *    stop DMA
    123  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
    124  *    flush tx w/ ATW_NAR_HF
    125  *
    126  * scan
    127  *
    128  *    initialize rx/tx
    129  *
    130  * BSS join: (re)association response
    131  *
    132  *    set ATW_FRCTL_AID
    133  *
    134  * optimizations ???
    135  *
    136  */
    137 
    138 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
    139 
    140 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
    141 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
    142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
    143 
    144 int atw_pseudo_milli = 1;
    145 int atw_magic_delay1 = 100 * 1000;
    146 int atw_magic_delay2 = 100 * 1000;
    147 /* more magic multi-millisecond delays (units: microseconds) */
    148 int atw_nar_delay = 20 * 1000;
    149 int atw_magic_delay4 = 10 * 1000;
    150 int atw_rf_delay1 = 10 * 1000;
    151 int atw_rf_delay2 = 5 * 1000;
    152 int atw_plcphd_delay = 2 * 1000;
    153 int atw_bbp_io_enable_delay = 20 * 1000;
    154 int atw_bbp_io_disable_delay = 2 * 1000;
    155 int atw_writewep_delay = 1000;
    156 int atw_beacon_len_adjust = 4;
    157 int atw_dwelltime = 200;
    158 int atw_xindiv2 = 0;
    159 
    160 #ifdef ATW_DEBUG
    161 int atw_debug = 0;
    162 
    163 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
    164 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
    165 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
    166 #define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
    167 #define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
    168 #define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
    169 
    170 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
    171 static void	atw_print_regs(struct atw_softc *, const char *);
    172 
    173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
    174 #	ifdef ATW_BBPDEBUG
    175 static void	atw_rf3000_print(struct atw_softc *);
    176 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
    177 #	endif /* ATW_BBPDEBUG */
    178 
    179 #	ifdef ATW_SYNDEBUG
    180 static void	atw_si4126_print(struct atw_softc *);
    181 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
    182 #	endif /* ATW_SYNDEBUG */
    183 
    184 #else
    185 #define ATW_DPRINTF(x)
    186 #define ATW_DPRINTF2(x)
    187 #define ATW_DPRINTF3(x)
    188 #define	DPRINTF(sc, x)	/* nothing */
    189 #define	DPRINTF2(sc, x)	/* nothing */
    190 #define	DPRINTF3(sc, x)	/* nothing */
    191 #endif
    192 
    193 /* ifnet methods */
    194 int	atw_init(struct ifnet *);
    195 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
    196 void	atw_start(struct ifnet *);
    197 void	atw_stop(struct ifnet *, int);
    198 void	atw_watchdog(struct ifnet *);
    199 
    200 /* Device attachment */
    201 void	atw_attach(struct atw_softc *);
    202 int	atw_detach(struct atw_softc *);
    203 
    204 /* Rx/Tx process */
    205 int	atw_add_rxbuf(struct atw_softc *, int);
    206 void	atw_idle(struct atw_softc *, u_int32_t);
    207 void	atw_rxdrain(struct atw_softc *);
    208 void	atw_txdrain(struct atw_softc *);
    209 
    210 /* Device (de)activation and power state */
    211 void	atw_disable(struct atw_softc *);
    212 int	atw_enable(struct atw_softc *);
    213 void	atw_power(int, void *);
    214 void	atw_reset(struct atw_softc *);
    215 void	atw_shutdown(void *);
    216 
    217 /* Interrupt handlers */
    218 void	atw_linkintr(struct atw_softc *, u_int32_t);
    219 void	atw_rxintr(struct atw_softc *);
    220 void	atw_txintr(struct atw_softc *);
    221 
    222 /* 802.11 state machine */
    223 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
    224 static void	atw_next_scan(void *);
    225 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
    226 		              struct ieee80211_node *, int, int, u_int32_t);
    227 static int	atw_tune(struct atw_softc *);
    228 
    229 /* Device initialization */
    230 static void	atw_bbp_io_init(struct atw_softc *);
    231 static void	atw_cfp_init(struct atw_softc *);
    232 static void	atw_cmdr_init(struct atw_softc *);
    233 static void	atw_ifs_init(struct atw_softc *);
    234 static void	atw_nar_init(struct atw_softc *);
    235 static void	atw_response_times_init(struct atw_softc *);
    236 static void	atw_rf_reset(struct atw_softc *);
    237 static void	atw_test1_init(struct atw_softc *);
    238 static void	atw_tofs0_init(struct atw_softc *);
    239 static void	atw_tofs2_init(struct atw_softc *);
    240 static void	atw_txlmt_init(struct atw_softc *);
    241 static void	atw_wcsr_init(struct atw_softc *);
    242 
    243 /* Key management */
    244 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
    245 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
    246 	const u_int8_t[IEEE80211_ADDR_LEN]);
    247 static void atw_key_update_begin(struct ieee80211com *);
    248 static void atw_key_update_end(struct ieee80211com *);
    249 
    250 /* RAM/ROM utilities */
    251 static void	atw_clear_sram(struct atw_softc *);
    252 static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
    253 static int	atw_read_srom(struct atw_softc *);
    254 
    255 /* BSS setup */
    256 static void	atw_predict_beacon(struct atw_softc *);
    257 static void	atw_start_beacon(struct atw_softc *, int);
    258 static void	atw_write_bssid(struct atw_softc *);
    259 static void	atw_write_ssid(struct atw_softc *);
    260 static void	atw_write_sup_rates(struct atw_softc *);
    261 static void	atw_write_wep(struct atw_softc *);
    262 
    263 /* Media */
    264 static int	atw_media_change(struct ifnet *);
    265 static void	atw_media_status(struct ifnet *, struct ifmediareq *);
    266 
    267 static void	atw_filter_setup(struct atw_softc *);
    268 
    269 /* 802.11 utilities */
    270 static void			atw_frame_setdurs(struct atw_softc *,
    271 				                  struct atw_frame *, int, int);
    272 static uint64_t			atw_get_tsft(struct atw_softc *);
    273 static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
    274 				                   uint32_t);
    275 static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
    276 static void			atw_node_free(struct ieee80211_node *);
    277 static void			atw_change_ibss(struct atw_softc *);
    278 
    279 /*
    280  * Tuner/transceiver/modem
    281  */
    282 static void	atw_bbp_io_enable(struct atw_softc *, int);
    283 
    284 /* RFMD RF3000 Baseband Processor */
    285 static int	atw_rf3000_init(struct atw_softc *);
    286 static int	atw_rf3000_tune(struct atw_softc *, u_int);
    287 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
    288 
    289 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
    290 static void	atw_si4126_tune(struct atw_softc *, u_int);
    291 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
    292 
    293 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
    294 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
    295 
    296 const char *atw_tx_state[] = {
    297 	"STOPPED",
    298 	"RUNNING - read descriptor",
    299 	"RUNNING - transmitting",
    300 	"RUNNING - filling fifo",	/* XXX */
    301 	"SUSPENDED",
    302 	"RUNNING -- write descriptor",
    303 	"RUNNING -- write last descriptor",
    304 	"RUNNING - fifo full"
    305 };
    306 
    307 const char *atw_rx_state[] = {
    308 	"STOPPED",
    309 	"RUNNING - read descriptor",
    310 	"RUNNING - check this packet, pre-fetch next",
    311 	"RUNNING - wait for reception",
    312 	"SUSPENDED",
    313 	"RUNNING - write descriptor",
    314 	"RUNNING - flush fifo",
    315 	"RUNNING - fifo drain"
    316 };
    317 
    318 int
    319 atw_activate(struct device *self, enum devact act)
    320 {
    321 	struct atw_softc *sc = (struct atw_softc *)self;
    322 	int rv = 0, s;
    323 
    324 	s = splnet();
    325 	switch (act) {
    326 	case DVACT_ACTIVATE:
    327 		rv = EOPNOTSUPP;
    328 		break;
    329 
    330 	case DVACT_DEACTIVATE:
    331 		if_deactivate(&sc->sc_if);
    332 		break;
    333 	}
    334 	splx(s);
    335 	return rv;
    336 }
    337 
    338 /*
    339  * atw_enable:
    340  *
    341  *	Enable the ADM8211 chip.
    342  */
    343 int
    344 atw_enable(struct atw_softc *sc)
    345 {
    346 
    347 	if (ATW_IS_ENABLED(sc) == 0) {
    348 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    349 			printf("%s: device enable failed\n",
    350 			    sc->sc_dev.dv_xname);
    351 			return (EIO);
    352 		}
    353 		sc->sc_flags |= ATWF_ENABLED;
    354 	}
    355 	return (0);
    356 }
    357 
    358 /*
    359  * atw_disable:
    360  *
    361  *	Disable the ADM8211 chip.
    362  */
    363 void
    364 atw_disable(struct atw_softc *sc)
    365 {
    366 	if (!ATW_IS_ENABLED(sc))
    367 		return;
    368 	if (sc->sc_disable != NULL)
    369 		(*sc->sc_disable)(sc);
    370 	sc->sc_flags &= ~ATWF_ENABLED;
    371 }
    372 
    373 /* Returns -1 on failure. */
    374 static int
    375 atw_read_srom(struct atw_softc *sc)
    376 {
    377 	struct seeprom_descriptor sd;
    378 	uint32_t test0, fail_bits;
    379 
    380 	(void)memset(&sd, 0, sizeof(sd));
    381 
    382 	test0 = ATW_READ(sc, ATW_TEST0);
    383 
    384 	switch (sc->sc_rev) {
    385 	case ATW_REVISION_BA:
    386 	case ATW_REVISION_CA:
    387 		fail_bits = ATW_TEST0_EPNE;
    388 		break;
    389 	default:
    390 		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
    391 		break;
    392 	}
    393 	if ((test0 & fail_bits) != 0) {
    394 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
    395 		return -1;
    396 	}
    397 
    398 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
    399 	case ATW_TEST0_EPTYP_93c66:
    400 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
    401 		sc->sc_sromsz = 512;
    402 		sd.sd_chip = C56_66;
    403 		break;
    404 	case ATW_TEST0_EPTYP_93c46:
    405 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
    406 		sc->sc_sromsz = 128;
    407 		sd.sd_chip = C46;
    408 		break;
    409 	default:
    410 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
    411 		    MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
    412 		return -1;
    413 	}
    414 
    415 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
    416 
    417 	if (sc->sc_srom == NULL) {
    418 		printf("%s: unable to allocate SROM buffer\n",
    419 		    sc->sc_dev.dv_xname);
    420 		return -1;
    421 	}
    422 
    423 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
    424 
    425 	/* ADM8211 has a single 32-bit register for controlling the
    426 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
    427 	 * "ready" bit. The ADM8211 input/output sense is the reverse
    428 	 * of read_seeprom's.
    429 	 */
    430 	sd.sd_tag = sc->sc_st;
    431 	sd.sd_bsh = sc->sc_sh;
    432 	sd.sd_regsize = 4;
    433 	sd.sd_control_offset = ATW_SPR;
    434 	sd.sd_status_offset = ATW_SPR;
    435 	sd.sd_dataout_offset = ATW_SPR;
    436 	sd.sd_CK = ATW_SPR_SCLK;
    437 	sd.sd_CS = ATW_SPR_SCS;
    438 	sd.sd_DI = ATW_SPR_SDO;
    439 	sd.sd_DO = ATW_SPR_SDI;
    440 	sd.sd_MS = ATW_SPR_SRS;
    441 	sd.sd_RDY = 0;
    442 
    443 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
    444 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
    445 		free(sc->sc_srom, M_DEVBUF);
    446 		return -1;
    447 	}
    448 #ifdef ATW_DEBUG
    449 	{
    450 		int i;
    451 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
    452 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
    453 			if (((i % 8) == 0) && (i != 0)) {
    454 				ATW_DPRINTF(("\n\t"));
    455 			}
    456 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
    457 		}
    458 		ATW_DPRINTF(("\n"));
    459 	}
    460 #endif /* ATW_DEBUG */
    461 	return 0;
    462 }
    463 
    464 #ifdef ATW_DEBUG
    465 static void
    466 atw_print_regs(struct atw_softc *sc, const char *where)
    467 {
    468 #define PRINTREG(sc, reg) \
    469 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
    470 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
    471 
    472 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
    473 
    474 	PRINTREG(sc, ATW_PAR);
    475 	PRINTREG(sc, ATW_FRCTL);
    476 	PRINTREG(sc, ATW_TDR);
    477 	PRINTREG(sc, ATW_WTDP);
    478 	PRINTREG(sc, ATW_RDR);
    479 	PRINTREG(sc, ATW_WRDP);
    480 	PRINTREG(sc, ATW_RDB);
    481 	PRINTREG(sc, ATW_CSR3A);
    482 	PRINTREG(sc, ATW_TDBD);
    483 	PRINTREG(sc, ATW_TDBP);
    484 	PRINTREG(sc, ATW_STSR);
    485 	PRINTREG(sc, ATW_CSR5A);
    486 	PRINTREG(sc, ATW_NAR);
    487 	PRINTREG(sc, ATW_CSR6A);
    488 	PRINTREG(sc, ATW_IER);
    489 	PRINTREG(sc, ATW_CSR7A);
    490 	PRINTREG(sc, ATW_LPC);
    491 	PRINTREG(sc, ATW_TEST1);
    492 	PRINTREG(sc, ATW_SPR);
    493 	PRINTREG(sc, ATW_TEST0);
    494 	PRINTREG(sc, ATW_WCSR);
    495 	PRINTREG(sc, ATW_WPDR);
    496 	PRINTREG(sc, ATW_GPTMR);
    497 	PRINTREG(sc, ATW_GPIO);
    498 	PRINTREG(sc, ATW_BBPCTL);
    499 	PRINTREG(sc, ATW_SYNCTL);
    500 	PRINTREG(sc, ATW_PLCPHD);
    501 	PRINTREG(sc, ATW_MMIWADDR);
    502 	PRINTREG(sc, ATW_MMIRADDR1);
    503 	PRINTREG(sc, ATW_MMIRADDR2);
    504 	PRINTREG(sc, ATW_TXBR);
    505 	PRINTREG(sc, ATW_CSR15A);
    506 	PRINTREG(sc, ATW_ALCSTAT);
    507 	PRINTREG(sc, ATW_TOFS2);
    508 	PRINTREG(sc, ATW_CMDR);
    509 	PRINTREG(sc, ATW_PCIC);
    510 	PRINTREG(sc, ATW_PMCSR);
    511 	PRINTREG(sc, ATW_PAR0);
    512 	PRINTREG(sc, ATW_PAR1);
    513 	PRINTREG(sc, ATW_MAR0);
    514 	PRINTREG(sc, ATW_MAR1);
    515 	PRINTREG(sc, ATW_ATIMDA0);
    516 	PRINTREG(sc, ATW_ABDA1);
    517 	PRINTREG(sc, ATW_BSSID0);
    518 	PRINTREG(sc, ATW_TXLMT);
    519 	PRINTREG(sc, ATW_MIBCNT);
    520 	PRINTREG(sc, ATW_BCNT);
    521 	PRINTREG(sc, ATW_TSFTH);
    522 	PRINTREG(sc, ATW_TSC);
    523 	PRINTREG(sc, ATW_SYNRF);
    524 	PRINTREG(sc, ATW_BPLI);
    525 	PRINTREG(sc, ATW_CAP0);
    526 	PRINTREG(sc, ATW_CAP1);
    527 	PRINTREG(sc, ATW_RMD);
    528 	PRINTREG(sc, ATW_CFPP);
    529 	PRINTREG(sc, ATW_TOFS0);
    530 	PRINTREG(sc, ATW_TOFS1);
    531 	PRINTREG(sc, ATW_IFST);
    532 	PRINTREG(sc, ATW_RSPT);
    533 	PRINTREG(sc, ATW_TSFTL);
    534 	PRINTREG(sc, ATW_WEPCTL);
    535 	PRINTREG(sc, ATW_WESK);
    536 	PRINTREG(sc, ATW_WEPCNT);
    537 	PRINTREG(sc, ATW_MACTEST);
    538 	PRINTREG(sc, ATW_FER);
    539 	PRINTREG(sc, ATW_FEMR);
    540 	PRINTREG(sc, ATW_FPSR);
    541 	PRINTREG(sc, ATW_FFER);
    542 #undef PRINTREG
    543 }
    544 #endif /* ATW_DEBUG */
    545 
    546 /*
    547  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
    548  */
    549 void
    550 atw_attach(struct atw_softc *sc)
    551 {
    552 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
    553 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
    554 	};
    555 	struct ieee80211com *ic = &sc->sc_ic;
    556 	struct ifnet *ifp = &sc->sc_if;
    557 	int country_code, error, i, nrate, srom_major;
    558 	u_int32_t reg;
    559 	static const char *type_strings[] = {"Intersil (not supported)",
    560 	    "RFMD", "Marvel (not supported)"};
    561 
    562 	sc->sc_txth = atw_txthresh_tab_lo;
    563 
    564 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    565 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    566 
    567 #ifdef ATW_DEBUG
    568 	atw_print_regs(sc, "atw_attach");
    569 #endif /* ATW_DEBUG */
    570 
    571 	/*
    572 	 * Allocate the control data structures, and create and load the
    573 	 * DMA map for it.
    574 	 */
    575 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    576 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    577 	    1, &sc->sc_cdnseg, 0)) != 0) {
    578 		printf("%s: unable to allocate control data, error = %d\n",
    579 		    sc->sc_dev.dv_xname, error);
    580 		goto fail_0;
    581 	}
    582 
    583 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
    584 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
    585 	    BUS_DMA_COHERENT)) != 0) {
    586 		printf("%s: unable to map control data, error = %d\n",
    587 		    sc->sc_dev.dv_xname, error);
    588 		goto fail_1;
    589 	}
    590 
    591 	if ((error = bus_dmamap_create(sc->sc_dmat,
    592 	    sizeof(struct atw_control_data), 1,
    593 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    594 		printf("%s: unable to create control data DMA map, "
    595 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    596 		goto fail_2;
    597 	}
    598 
    599 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    600 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
    601 	    0)) != 0) {
    602 		printf("%s: unable to load control data DMA map, error = %d\n",
    603 		    sc->sc_dev.dv_xname, error);
    604 		goto fail_3;
    605 	}
    606 
    607 	/*
    608 	 * Create the transmit buffer DMA maps.
    609 	 */
    610 	sc->sc_ntxsegs = ATW_NTXSEGS;
    611 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    612 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    613 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
    614 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    615 			printf("%s: unable to create tx DMA map %d, "
    616 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    617 			goto fail_4;
    618 		}
    619 	}
    620 
    621 	/*
    622 	 * Create the receive buffer DMA maps.
    623 	 */
    624 	for (i = 0; i < ATW_NRXDESC; i++) {
    625 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    626 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    627 			printf("%s: unable to create rx DMA map %d, "
    628 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    629 			goto fail_5;
    630 		}
    631 	}
    632 	for (i = 0; i < ATW_NRXDESC; i++) {
    633 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    634 	}
    635 
    636 	switch (sc->sc_rev) {
    637 	case ATW_REVISION_AB:
    638 	case ATW_REVISION_AF:
    639 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
    640 		break;
    641 	case ATW_REVISION_BA:
    642 	case ATW_REVISION_CA:
    643 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
    644 		break;
    645 	}
    646 
    647 	/* Reset the chip to a known state. */
    648 	atw_reset(sc);
    649 
    650 	if (atw_read_srom(sc) == -1)
    651 		return;
    652 
    653 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    654 	    ATW_SR_RFTYPE_MASK);
    655 
    656 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
    657 	    ATW_SR_BBPTYPE_MASK);
    658 
    659 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
    660 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
    661 		return;
    662 	}
    663 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
    664 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
    665 		return;
    666 	}
    667 
    668 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
    669 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
    670 
    671 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
    672 	 * MARVEL. My bug, or theirs?
    673 	 */
    674 
    675 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
    676 
    677 	switch (sc->sc_rftype) {
    678 	case ATW_RFTYPE_INTERSIL:
    679 		reg |= ATW_SYNCTL_CS1;
    680 		break;
    681 	case ATW_RFTYPE_RFMD:
    682 		reg |= ATW_SYNCTL_CS0;
    683 		break;
    684 	case ATW_RFTYPE_MARVEL:
    685 		break;
    686 	}
    687 
    688 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
    689 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
    690 
    691 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
    692 
    693 	switch (sc->sc_bbptype) {
    694 	case ATW_BBPTYPE_INTERSIL:
    695 		reg |= ATW_BBPCTL_TWI;
    696 		break;
    697 	case ATW_BBPTYPE_RFMD:
    698 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
    699 		    ATW_BBPCTL_CCA_ACTLO;
    700 		break;
    701 	case ATW_BBPTYPE_MARVEL:
    702 		break;
    703 	case ATW_C_BBPTYPE_RFMD:
    704 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
    705 		    sc->sc_dev.dv_xname);
    706 		break;
    707 	}
    708 
    709 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
    710 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
    711 
    712 	/*
    713 	 * From this point forward, the attachment cannot fail.  A failure
    714 	 * before this point releases all resources that may have been
    715 	 * allocated.
    716 	 */
    717 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
    718 
    719 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
    720 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
    721 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
    722 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
    723 
    724 	srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
    725 	    ATW_SR_MAJOR_MASK);
    726 
    727 	if (srom_major < 2)
    728 		sc->sc_rf3000_options1 = 0;
    729 	else if (sc->sc_rev == ATW_REVISION_BA) {
    730 		sc->sc_rf3000_options1 =
    731 		    MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
    732 		    ATW_SR_CR28_MASK);
    733 	} else
    734 		sc->sc_rf3000_options1 = 0;
    735 
    736 	sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    737 	    ATW_SR_CR29_MASK);
    738 
    739 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
    740 	    ATW_SR_CTRY_MASK);
    741 
    742 #define ADD_CHANNEL(_ic, _chan) do {					\
    743 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
    744 	_ic->ic_channels[_chan].ic_freq =				\
    745 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
    746 } while (0)
    747 
    748 	/* Find available channels */
    749 	switch (country_code) {
    750 	case COUNTRY_MMK2:	/* 1-14 */
    751 		ADD_CHANNEL(ic, 14);
    752 		/*FALLTHROUGH*/
    753 	case COUNTRY_ETSI:	/* 1-13 */
    754 		for (i = 1; i <= 13; i++)
    755 			ADD_CHANNEL(ic, i);
    756 		break;
    757 	case COUNTRY_FCC:	/* 1-11 */
    758 	case COUNTRY_IC:	/* 1-11 */
    759 		for (i = 1; i <= 11; i++)
    760 			ADD_CHANNEL(ic, i);
    761 		break;
    762 	case COUNTRY_MMK:	/* 14 */
    763 		ADD_CHANNEL(ic, 14);
    764 		break;
    765 	case COUNTRY_FRANCE:	/* 10-13 */
    766 		for (i = 10; i <= 13; i++)
    767 			ADD_CHANNEL(ic, i);
    768 		break;
    769 	default:	/* assume channels 10-11 */
    770 	case COUNTRY_SPAIN:	/* 10-11 */
    771 		for (i = 10; i <= 11; i++)
    772 			ADD_CHANNEL(ic, i);
    773 		break;
    774 	}
    775 
    776 	/* Read the MAC address. */
    777 	reg = ATW_READ(sc, ATW_PAR0);
    778 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
    779 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
    780 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
    781 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
    782 	reg = ATW_READ(sc, ATW_PAR1);
    783 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
    784 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
    785 
    786 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
    787 		printf(" could not get mac address, attach failed\n");
    788 		return;
    789 	}
    790 
    791 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
    792 
    793 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    794 	ifp->if_softc = sc;
    795 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
    796 	    IFF_NOTRAILERS;
    797 	ifp->if_ioctl = atw_ioctl;
    798 	ifp->if_start = atw_start;
    799 	ifp->if_watchdog = atw_watchdog;
    800 	ifp->if_init = atw_init;
    801 	ifp->if_stop = atw_stop;
    802 	IFQ_SET_READY(&ifp->if_snd);
    803 
    804 	ic->ic_ifp = ifp;
    805 	ic->ic_phytype = IEEE80211_T_DS;
    806 	ic->ic_opmode = IEEE80211_M_STA;
    807 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
    808 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
    809 
    810 	nrate = 0;
    811 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
    812 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
    813 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
    814 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
    815 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
    816 
    817 	/*
    818 	 * Call MI attach routines.
    819 	 */
    820 
    821 	if_attach(ifp);
    822 	ieee80211_ifattach(ic);
    823 
    824 	sc->sc_newstate = ic->ic_newstate;
    825 	ic->ic_newstate = atw_newstate;
    826 
    827 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    828 	ic->ic_recv_mgmt = atw_recv_mgmt;
    829 
    830 	sc->sc_node_free = ic->ic_node_free;
    831 	ic->ic_node_free = atw_node_free;
    832 
    833 	sc->sc_node_alloc = ic->ic_node_alloc;
    834 	ic->ic_node_alloc = atw_node_alloc;
    835 
    836 	ic->ic_crypto.cs_key_delete = atw_key_delete;
    837 	ic->ic_crypto.cs_key_set = atw_key_set;
    838 	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
    839 	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
    840 
    841 	/* possibly we should fill in our own sc_send_prresp, since
    842 	 * the ADM8211 is probably sending probe responses in ad hoc
    843 	 * mode.
    844 	 */
    845 
    846 	/* complete initialization */
    847 	ieee80211_media_init(ic, atw_media_change, atw_media_status);
    848 	callout_init(&sc->sc_scan_ch);
    849 
    850 #if NBPFILTER > 0
    851 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    852 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
    853 #endif
    854 
    855 	/*
    856 	 * Make sure the interface is shutdown during reboot.
    857 	 */
    858 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
    859 	if (sc->sc_sdhook == NULL)
    860 		printf("%s: WARNING: unable to establish shutdown hook\n",
    861 		    sc->sc_dev.dv_xname);
    862 
    863 	/*
    864 	 * Add a suspend hook to make sure we come back up after a
    865 	 * resume.
    866 	 */
    867 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
    868 	if (sc->sc_powerhook == NULL)
    869 		printf("%s: WARNING: unable to establish power hook\n",
    870 		    sc->sc_dev.dv_xname);
    871 
    872 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
    873 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
    874 	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
    875 
    876 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
    877 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
    878 	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
    879 
    880 	ieee80211_announce(ic);
    881 	return;
    882 
    883 	/*
    884 	 * Free any resources we've allocated during the failed attach
    885 	 * attempt.  Do this in reverse order and fall through.
    886 	 */
    887  fail_5:
    888 	for (i = 0; i < ATW_NRXDESC; i++) {
    889 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
    890 			continue;
    891 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
    892 	}
    893  fail_4:
    894 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
    895 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
    896 			continue;
    897 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
    898 	}
    899 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    900  fail_3:
    901 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    902  fail_2:
    903 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    904 	    sizeof(struct atw_control_data));
    905  fail_1:
    906 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
    907  fail_0:
    908 	return;
    909 }
    910 
    911 static struct ieee80211_node *
    912 atw_node_alloc(struct ieee80211_node_table *nt)
    913 {
    914 	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
    915 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
    916 
    917 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
    918 	return ni;
    919 }
    920 
    921 static void
    922 atw_node_free(struct ieee80211_node *ni)
    923 {
    924 	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
    925 
    926 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
    927 	    ether_sprintf(ni->ni_bssid)));
    928 	(*sc->sc_node_free)(ni);
    929 }
    930 
    931 
    932 static void
    933 atw_test1_reset(struct atw_softc *sc)
    934 {
    935 	switch (sc->sc_rev) {
    936 	case ATW_REVISION_BA:
    937 		if (1 /* XXX condition on transceiver type */) {
    938 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
    939 		}
    940 		break;
    941 	case ATW_REVISION_CA:
    942 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
    943 		break;
    944 	default:
    945 		break;
    946 	}
    947 }
    948 
    949 /*
    950  * atw_reset:
    951  *
    952  *	Perform a soft reset on the ADM8211.
    953  */
    954 void
    955 atw_reset(struct atw_softc *sc)
    956 {
    957 	int i;
    958 	uint32_t lpc;
    959 
    960 	ATW_WRITE(sc, ATW_NAR, 0x0);
    961 	DELAY(atw_nar_delay);
    962 
    963 	/* Reference driver has a cryptic remark indicating that this might
    964 	 * power-on the chip.  I know that it turns off power-saving....
    965 	 */
    966 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
    967 
    968 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
    969 
    970 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
    971 		if (ATW_READ(sc, ATW_PAR) == 0)
    972 			break;
    973 		DELAY(atw_pseudo_milli);
    974 	}
    975 
    976 	/* ... and then pause 100ms longer for good measure. */
    977 	DELAY(atw_magic_delay1);
    978 
    979 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
    980 
    981 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
    982 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
    983 
    984 	atw_test1_reset(sc);
    985 	/*
    986 	 * Initialize the PCI Access Register.
    987 	 */
    988 	sc->sc_busmode = ATW_PAR_PBL_8DW;
    989 
    990 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
    991 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
    992 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
    993 
    994 	/* Turn off maximum power saving, etc.
    995 	 *
    996 	 * XXX Following example of reference driver, should I set
    997 	 * an AID of 1?  It didn't seem to help....
    998 	 */
    999 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
   1000 
   1001 	DELAY(atw_magic_delay2);
   1002 
   1003 	/* Recall EEPROM. */
   1004 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
   1005 
   1006 	DELAY(atw_magic_delay4);
   1007 
   1008 	lpc = ATW_READ(sc, ATW_LPC);
   1009 
   1010 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
   1011 
   1012 	/* A reset seems to affect the SRAM contents, so put them into
   1013 	 * a known state.
   1014 	 */
   1015 	atw_clear_sram(sc);
   1016 
   1017 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
   1018 }
   1019 
   1020 static void
   1021 atw_clear_sram(struct atw_softc *sc)
   1022 {
   1023 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
   1024 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
   1025 	/* XXX not for revision 0x20. */
   1026 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
   1027 }
   1028 
   1029 /* TBD atw_init
   1030  *
   1031  * set MAC based on ic->ic_bss->myaddr
   1032  * write WEP keys
   1033  * set TX rate
   1034  */
   1035 
   1036 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
   1037  * without receiving a beacon with the preferred BSSID & SSID.
   1038  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
   1039  */
   1040 static void
   1041 atw_wcsr_init(struct atw_softc *sc)
   1042 {
   1043 	uint32_t wcsr;
   1044 
   1045 	wcsr = ATW_READ(sc, ATW_WCSR);
   1046 	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
   1047 	wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
   1048 	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
   1049 
   1050 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
   1051 	    sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
   1052 }
   1053 
   1054 /* Turn off power management.  Set Rx store-and-forward mode. */
   1055 static void
   1056 atw_cmdr_init(struct atw_softc *sc)
   1057 {
   1058 	uint32_t cmdr;
   1059 	cmdr = ATW_READ(sc, ATW_CMDR);
   1060 	cmdr &= ~ATW_CMDR_APM;
   1061 	cmdr |= ATW_CMDR_RTE;
   1062 	cmdr &= ~ATW_CMDR_DRT_MASK;
   1063 	cmdr |= ATW_CMDR_DRT_SF;
   1064 
   1065 	ATW_WRITE(sc, ATW_CMDR, cmdr);
   1066 }
   1067 
   1068 static void
   1069 atw_tofs2_init(struct atw_softc *sc)
   1070 {
   1071 	uint32_t tofs2;
   1072 	/* XXX this magic can probably be figured out from the RFMD docs */
   1073 #ifndef ATW_REFSLAVE
   1074 	tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
   1075 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
   1076 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
   1077 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
   1078 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
   1079 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
   1080 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
   1081 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
   1082 #else
   1083 	/* XXX new magic from reference driver source */
   1084 	tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
   1085 	      LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
   1086 	      LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
   1087 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
   1088 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
   1089 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
   1090 	      LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
   1091 	      LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
   1092 #endif
   1093 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
   1094 }
   1095 
   1096 static void
   1097 atw_nar_init(struct atw_softc *sc)
   1098 {
   1099 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
   1100 }
   1101 
   1102 static void
   1103 atw_txlmt_init(struct atw_softc *sc)
   1104 {
   1105 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
   1106 	                         LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
   1107 }
   1108 
   1109 static void
   1110 atw_test1_init(struct atw_softc *sc)
   1111 {
   1112 	uint32_t test1;
   1113 
   1114 	test1 = ATW_READ(sc, ATW_TEST1);
   1115 	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
   1116 	/* XXX magic 0x1 */
   1117 	test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
   1118 	ATW_WRITE(sc, ATW_TEST1, test1);
   1119 }
   1120 
   1121 static void
   1122 atw_rf_reset(struct atw_softc *sc)
   1123 {
   1124 	/* XXX this resets an Intersil RF front-end? */
   1125 	/* TBD condition on Intersil RFType? */
   1126 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
   1127 	DELAY(atw_rf_delay1);
   1128 	ATW_WRITE(sc, ATW_SYNRF, 0);
   1129 	DELAY(atw_rf_delay2);
   1130 }
   1131 
   1132 /* Set 16 TU max duration for the contention-free period (CFP). */
   1133 static void
   1134 atw_cfp_init(struct atw_softc *sc)
   1135 {
   1136 	uint32_t cfpp;
   1137 
   1138 	cfpp = ATW_READ(sc, ATW_CFPP);
   1139 	cfpp &= ~ATW_CFPP_CFPMD;
   1140 	cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
   1141 	ATW_WRITE(sc, ATW_CFPP, cfpp);
   1142 }
   1143 
   1144 static void
   1145 atw_tofs0_init(struct atw_softc *sc)
   1146 {
   1147 	/* XXX I guess that the Cardbus clock is 22MHz?
   1148 	 * I am assuming that the role of ATW_TOFS0_USCNT is
   1149 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
   1150 	 * very clear on this point. It says in the datasheet that it is
   1151 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
   1152 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
   1153 	 * these values. These values are also the power-on default.
   1154 	 */
   1155 	ATW_WRITE(sc, ATW_TOFS0,
   1156 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
   1157 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
   1158 }
   1159 
   1160 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
   1161 static void
   1162 atw_ifs_init(struct atw_softc *sc)
   1163 {
   1164 	uint32_t ifst;
   1165 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
   1166 	 * Go figure.
   1167 	 */
   1168 	ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
   1169 	      LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
   1170 	             ATW_IFST_SIFS_MASK) |
   1171 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
   1172 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
   1173 
   1174 	ATW_WRITE(sc, ATW_IFST, ifst);
   1175 }
   1176 
   1177 static void
   1178 atw_response_times_init(struct atw_softc *sc)
   1179 {
   1180 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
   1181 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
   1182 	 * to pass after it transmits a frame that requires a response;
   1183 	 * it waits at most SIFS + MART microseconds for the response.
   1184 	 * Surely this is not the ACK timeout?
   1185 	 */
   1186 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
   1187 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
   1188 }
   1189 
   1190 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
   1191  * engines read and write baseband registers after Rx and before
   1192  * Tx, respectively.
   1193  */
   1194 static void
   1195 atw_bbp_io_init(struct atw_softc *sc)
   1196 {
   1197 	uint32_t mmiraddr2;
   1198 
   1199 	/* XXX The reference driver does this, but is it *really*
   1200 	 * necessary?
   1201 	 */
   1202 	switch (sc->sc_rev) {
   1203 	case ATW_REVISION_AB:
   1204 	case ATW_REVISION_AF:
   1205 		mmiraddr2 = 0x0;
   1206 		break;
   1207 	default:
   1208 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
   1209 		mmiraddr2 &=
   1210 		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
   1211 		break;
   1212 	}
   1213 
   1214 	switch (sc->sc_bbptype) {
   1215 	case ATW_BBPTYPE_INTERSIL:
   1216 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
   1217 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
   1218 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
   1219 		break;
   1220 	case ATW_BBPTYPE_MARVEL:
   1221 		/* TBD find out the Marvel settings. */
   1222 		break;
   1223 	case ATW_BBPTYPE_RFMD:
   1224 	default:
   1225 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
   1226 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
   1227 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
   1228 		break;
   1229 	}
   1230 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
   1231 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
   1232 }
   1233 
   1234 /*
   1235  * atw_init:		[ ifnet interface function ]
   1236  *
   1237  *	Initialize the interface.  Must be called at splnet().
   1238  */
   1239 int
   1240 atw_init(struct ifnet *ifp)
   1241 {
   1242 	struct atw_softc *sc = ifp->if_softc;
   1243 	struct ieee80211com *ic = &sc->sc_ic;
   1244 	struct atw_txsoft *txs;
   1245 	struct atw_rxsoft *rxs;
   1246 	int i, error = 0;
   1247 
   1248 	if ((error = atw_enable(sc)) != 0)
   1249 		goto out;
   1250 
   1251 	/*
   1252 	 * Cancel any pending I/O. This also resets.
   1253 	 */
   1254 	atw_stop(ifp, 0);
   1255 
   1256 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
   1257 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
   1258 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
   1259 
   1260 	atw_wcsr_init(sc);
   1261 
   1262 	atw_cmdr_init(sc);
   1263 
   1264 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
   1265 	 *
   1266 	 * XXX Set transmit power for ATIM, RTS, Beacon.
   1267 	 */
   1268 	ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
   1269 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
   1270 
   1271 	atw_tofs2_init(sc);
   1272 
   1273 	atw_nar_init(sc);
   1274 
   1275 	atw_txlmt_init(sc);
   1276 
   1277 	atw_test1_init(sc);
   1278 
   1279 	atw_rf_reset(sc);
   1280 
   1281 	atw_cfp_init(sc);
   1282 
   1283 	atw_tofs0_init(sc);
   1284 
   1285 	atw_ifs_init(sc);
   1286 
   1287 	/* XXX Fall asleep after one second of inactivity.
   1288 	 * XXX A frame may only dribble in for 65536us.
   1289 	 */
   1290 	ATW_WRITE(sc, ATW_RMD,
   1291 	    LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
   1292 
   1293 	atw_response_times_init(sc);
   1294 
   1295 	atw_bbp_io_init(sc);
   1296 
   1297 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1298 
   1299 	if ((error = atw_rf3000_init(sc)) != 0)
   1300 		goto out;
   1301 
   1302 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
   1303 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
   1304 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
   1305 
   1306 	/*
   1307 	 * Initialize the transmit descriptor ring.
   1308 	 */
   1309 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1310 	for (i = 0; i < ATW_NTXDESC; i++) {
   1311 		sc->sc_txdescs[i].at_ctl = 0;
   1312 		/* no transmit chaining */
   1313 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
   1314 		sc->sc_txdescs[i].at_buf2 =
   1315 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
   1316 	}
   1317 	/* use ring mode */
   1318 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
   1319 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
   1320 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1321 	sc->sc_txfree = ATW_NTXDESC;
   1322 	sc->sc_txnext = 0;
   1323 
   1324 	/*
   1325 	 * Initialize the transmit job descriptors.
   1326 	 */
   1327 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1328 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1329 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   1330 		txs = &sc->sc_txsoft[i];
   1331 		txs->txs_mbuf = NULL;
   1332 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1333 	}
   1334 
   1335 	/*
   1336 	 * Initialize the receive descriptor and receive job
   1337 	 * descriptor rings.
   1338 	 */
   1339 	for (i = 0; i < ATW_NRXDESC; i++) {
   1340 		rxs = &sc->sc_rxsoft[i];
   1341 		if (rxs->rxs_mbuf == NULL) {
   1342 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
   1343 				printf("%s: unable to allocate or map rx "
   1344 				    "buffer %d, error = %d\n",
   1345 				    sc->sc_dev.dv_xname, i, error);
   1346 				/*
   1347 				 * XXX Should attempt to run with fewer receive
   1348 				 * XXX buffers instead of just failing.
   1349 				 */
   1350 				atw_rxdrain(sc);
   1351 				goto out;
   1352 			}
   1353 		} else
   1354 			ATW_INIT_RXDESC(sc, i);
   1355 	}
   1356 	sc->sc_rxptr = 0;
   1357 
   1358 	/*
   1359 	 * Initialize the interrupt mask and enable interrupts.
   1360 	 */
   1361 	/* normal interrupts */
   1362 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
   1363 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
   1364 
   1365 	/* abnormal interrupts */
   1366 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
   1367 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
   1368 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1369 
   1370 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
   1371 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
   1372 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
   1373 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
   1374 	    ATW_INTR_TRT;
   1375 
   1376 	sc->sc_linkint_mask &= sc->sc_inten;
   1377 	sc->sc_rxint_mask &= sc->sc_inten;
   1378 	sc->sc_txint_mask &= sc->sc_inten;
   1379 
   1380 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
   1381 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
   1382 
   1383 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
   1384 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
   1385 
   1386 	/*
   1387 	 * Give the transmit and receive rings to the ADM8211.
   1388 	 */
   1389 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
   1390 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
   1391 
   1392 	sc->sc_txthresh = 0;
   1393 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
   1394 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
   1395 
   1396 	/* common 802.11 configuration */
   1397 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
   1398 	switch (ic->ic_opmode) {
   1399 	case IEEE80211_M_STA:
   1400 		break;
   1401 	case IEEE80211_M_AHDEMO: /* XXX */
   1402 	case IEEE80211_M_IBSS:
   1403 		ic->ic_flags |= IEEE80211_F_IBSSON;
   1404 		/*FALLTHROUGH*/
   1405 	case IEEE80211_M_HOSTAP: /* XXX */
   1406 		break;
   1407 	case IEEE80211_M_MONITOR: /* XXX */
   1408 		break;
   1409 	}
   1410 
   1411 	switch (ic->ic_opmode) {
   1412 	case IEEE80211_M_AHDEMO:
   1413 	case IEEE80211_M_HOSTAP:
   1414 #ifndef IEEE80211_NO_HOSTAP
   1415 		ic->ic_bss->ni_intval = ic->ic_lintval;
   1416 		ic->ic_bss->ni_rssi = 0;
   1417 		ic->ic_bss->ni_rstamp = 0;
   1418 #endif /* !IEEE80211_NO_HOSTAP */
   1419 		break;
   1420 	default:					/* XXX */
   1421 		break;
   1422 	}
   1423 
   1424 	sc->sc_wepctl = 0;
   1425 
   1426 	atw_write_ssid(sc);
   1427 	atw_write_sup_rates(sc);
   1428 	if (ic->ic_caps & IEEE80211_C_WEP)
   1429 		atw_write_wep(sc);
   1430 
   1431 	ic->ic_state = IEEE80211_S_INIT;
   1432 
   1433 	/*
   1434 	 * Set the receive filter.  This will start the transmit and
   1435 	 * receive processes.
   1436 	 */
   1437 	atw_filter_setup(sc);
   1438 
   1439 	/*
   1440 	 * Start the receive process.
   1441 	 */
   1442 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1443 
   1444 	/*
   1445 	 * Note that the interface is now running.
   1446 	 */
   1447 	ifp->if_flags |= IFF_RUNNING;
   1448 	ifp->if_flags &= ~IFF_OACTIVE;
   1449 
   1450 	/* send no beacons, yet. */
   1451 	atw_start_beacon(sc, 0);
   1452 
   1453 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   1454 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1455 	else
   1456 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1457  out:
   1458 	if (error) {
   1459 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1460 		sc->sc_tx_timer = 0;
   1461 		ifp->if_timer = 0;
   1462 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1463 	}
   1464 #ifdef ATW_DEBUG
   1465 	atw_print_regs(sc, "end of init");
   1466 #endif /* ATW_DEBUG */
   1467 
   1468 	return (error);
   1469 }
   1470 
   1471 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
   1472  *           0: MAC control of RF3000/Si4126.
   1473  *
   1474  * Applies power, or selects RF front-end? Sets reset condition.
   1475  *
   1476  * TBD support non-RFMD BBP, non-SiLabs synth.
   1477  */
   1478 static void
   1479 atw_bbp_io_enable(struct atw_softc *sc, int enable)
   1480 {
   1481 	if (enable) {
   1482 		ATW_WRITE(sc, ATW_SYNRF,
   1483 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
   1484 		DELAY(atw_bbp_io_enable_delay);
   1485 	} else {
   1486 		ATW_WRITE(sc, ATW_SYNRF, 0);
   1487 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
   1488 	}
   1489 }
   1490 
   1491 static int
   1492 atw_tune(struct atw_softc *sc)
   1493 {
   1494 	int rc;
   1495 	u_int chan;
   1496 	struct ieee80211com *ic = &sc->sc_ic;
   1497 
   1498 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1499 	if (chan == IEEE80211_CHAN_ANY)
   1500 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
   1501 
   1502 	if (chan == sc->sc_cur_chan)
   1503 		return 0;
   1504 
   1505 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
   1506 	    sc->sc_cur_chan, chan));
   1507 
   1508 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
   1509 
   1510 	atw_si4126_tune(sc, chan);
   1511 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
   1512 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
   1513 		    chan);
   1514 
   1515 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   1516 	DELAY(atw_nar_delay);
   1517 	ATW_WRITE(sc, ATW_RDR, 0x1);
   1518 
   1519 	if (rc == 0)
   1520 		sc->sc_cur_chan = chan;
   1521 
   1522 	return rc;
   1523 }
   1524 
   1525 #ifdef ATW_SYNDEBUG
   1526 static void
   1527 atw_si4126_print(struct atw_softc *sc)
   1528 {
   1529 	struct ifnet *ifp = &sc->sc_if;
   1530 	u_int addr, val;
   1531 
   1532 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1533 		return;
   1534 
   1535 	for (addr = 0; addr <= 8; addr++) {
   1536 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
   1537 		if (atw_si4126_read(sc, addr, &val) == 0) {
   1538 			printf("<unknown> (quitting print-out)\n");
   1539 			break;
   1540 		}
   1541 		printf("%05x\n", val);
   1542 	}
   1543 }
   1544 #endif /* ATW_SYNDEBUG */
   1545 
   1546 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
   1547  *
   1548  * The RF/IF synthesizer produces two reference frequencies for
   1549  * the RF2948B transceiver.  The first frequency the RF2948B requires
   1550  * is two times the so-called "intermediate frequency" (IF). Since
   1551  * a SAW filter on the radio fixes the IF at 374MHz, I program the
   1552  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
   1553  * frequency required by the transceiver is the radio frequency
   1554  * (RF). This is a superheterodyne transceiver; for f(chan) the
   1555  * center frequency of the channel we are tuning, RF = f(chan) -
   1556  * IF.
   1557  *
   1558  * XXX I am told by SiLabs that the Si4126 will accept a broader range
   1559  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
   1560  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
   1561  * works, but I have still programmed for XINDIV2 = 1 to be safe.
   1562  */
   1563 static void
   1564 atw_si4126_tune(struct atw_softc *sc, u_int chan)
   1565 {
   1566 	u_int mhz;
   1567 	u_int R;
   1568 	u_int32_t gpio;
   1569 	u_int16_t gain;
   1570 
   1571 #ifdef ATW_SYNDEBUG
   1572 	atw_si4126_print(sc);
   1573 #endif /* ATW_SYNDEBUG */
   1574 
   1575 	if (chan == 14)
   1576 		mhz = 2484;
   1577 	else
   1578 		mhz = 2412 + 5 * (chan - 1);
   1579 
   1580 	/* Tune IF to 748MHz to suit the IF LO input of the
   1581 	 * RF2494B, which is 2 x IF. No need to set an IF divider
   1582          * because an IF in 526MHz - 952MHz is allowed.
   1583 	 *
   1584 	 * XIN is 44.000MHz, so divide it by two to get allowable
   1585 	 * range of 2-25MHz. SiLabs tells me that this is not
   1586 	 * strictly necessary.
   1587 	 */
   1588 
   1589 	if (atw_xindiv2)
   1590 		R = 44;
   1591 	else
   1592 		R = 88;
   1593 
   1594 	/* Power-up RF, IF synthesizers. */
   1595 	atw_si4126_write(sc, SI4126_POWER,
   1596 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
   1597 
   1598 	/* set LPWR, too? */
   1599 	atw_si4126_write(sc, SI4126_MAIN,
   1600 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
   1601 
   1602 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
   1603 	 * set KP2 to 1.
   1604 	 *
   1605 	 * REFDIF This is different from the reference driver, which
   1606 	 * always sets SI4126_GAIN to 0.
   1607 	 */
   1608 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
   1609 
   1610 	atw_si4126_write(sc, SI4126_GAIN, gain);
   1611 
   1612 	/* XIN = 44MHz.
   1613 	 *
   1614 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
   1615 	 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
   1616 	 *
   1617 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
   1618 	 * so that 1496/88 * 44MHz = 748MHz.
   1619 	 */
   1620 	atw_si4126_write(sc, SI4126_IFN, 1496);
   1621 
   1622 	atw_si4126_write(sc, SI4126_IFR, R);
   1623 
   1624 #ifndef ATW_REFSLAVE
   1625 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
   1626 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
   1627 	 * which has no RF1!
   1628 	 */
   1629 	atw_si4126_write(sc, SI4126_RF1R, R);
   1630 
   1631 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
   1632 #endif
   1633 
   1634 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
   1635 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
   1636 	 * Now let's multiply it to mhz. So mhz - IF = N.
   1637 	 */
   1638 	atw_si4126_write(sc, SI4126_RF2R, R);
   1639 
   1640 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
   1641 
   1642 	/* wait 100us from power-up for RF, IF to settle */
   1643 	DELAY(100);
   1644 
   1645 	gpio = ATW_READ(sc, ATW_GPIO);
   1646 	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
   1647 	gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
   1648 
   1649 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
   1650 		/* Set a Prism RF front-end to a special mode for channel 14?
   1651 		 *
   1652 		 * Apparently the SMC2635W needs this, although I don't think
   1653 		 * it has a Prism RF.
   1654 		 */
   1655 		gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
   1656 	}
   1657 	ATW_WRITE(sc, ATW_GPIO, gpio);
   1658 
   1659 #ifdef ATW_SYNDEBUG
   1660 	atw_si4126_print(sc);
   1661 #endif /* ATW_SYNDEBUG */
   1662 }
   1663 
   1664 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
   1665  * diversity.
   1666  *
   1667  * !!!
   1668  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
   1669  * !!!
   1670  */
   1671 static int
   1672 atw_rf3000_init(struct atw_softc *sc)
   1673 {
   1674 	int rc = 0;
   1675 
   1676 	atw_bbp_io_enable(sc, 1);
   1677 
   1678 	/* CCA is acquisition sensitive */
   1679 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
   1680 	    LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
   1681 
   1682 	if (rc != 0)
   1683 		goto out;
   1684 
   1685 	/* enable diversity */
   1686 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
   1687 
   1688 	if (rc != 0)
   1689 		goto out;
   1690 
   1691 	/* sensible setting from a binary-only driver */
   1692 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1693 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
   1694 
   1695 	if (rc != 0)
   1696 		goto out;
   1697 
   1698 	/* magic from a binary-only driver */
   1699 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
   1700 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
   1701 
   1702 	if (rc != 0)
   1703 		goto out;
   1704 
   1705 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
   1706 
   1707 	if (rc != 0)
   1708 		goto out;
   1709 
   1710 	/* XXX Reference driver remarks that Abocom sets this to 50.
   1711 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
   1712 	 * in the "reserved" area of register RF3000_OPTIONS1.
   1713 	 */
   1714 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
   1715 
   1716 	if (rc != 0)
   1717 		goto out;
   1718 
   1719 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
   1720 
   1721 	if (rc != 0)
   1722 		goto out;
   1723 
   1724 out:
   1725 	atw_bbp_io_enable(sc, 0);
   1726 	return rc;
   1727 }
   1728 
   1729 #ifdef ATW_BBPDEBUG
   1730 static void
   1731 atw_rf3000_print(struct atw_softc *sc)
   1732 {
   1733 	struct ifnet *ifp = &sc->sc_if;
   1734 	u_int addr, val;
   1735 
   1736 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
   1737 		return;
   1738 
   1739 	for (addr = 0x01; addr <= 0x15; addr++) {
   1740 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
   1741 		if (atw_rf3000_read(sc, addr, &val) != 0) {
   1742 			printf("<unknown> (quitting print-out)\n");
   1743 			break;
   1744 		}
   1745 		printf("%08x\n", val);
   1746 	}
   1747 }
   1748 #endif /* ATW_BBPDEBUG */
   1749 
   1750 /* Set the power settings on the BBP for channel `chan'. */
   1751 static int
   1752 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
   1753 {
   1754 	int rc = 0;
   1755 	u_int32_t reg;
   1756 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
   1757 
   1758 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
   1759 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
   1760 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
   1761 
   1762 	/* odd channels: LSB, even channels: MSB */
   1763 	if (chan % 2 == 1) {
   1764 		txpower &= 0xFF;
   1765 		lpf_cutoff &= 0xFF;
   1766 		lna_gs_thresh &= 0xFF;
   1767 	} else {
   1768 		txpower >>= 8;
   1769 		lpf_cutoff >>= 8;
   1770 		lna_gs_thresh >>= 8;
   1771 	}
   1772 
   1773 #ifdef ATW_BBPDEBUG
   1774 	atw_rf3000_print(sc);
   1775 #endif /* ATW_BBPDEBUG */
   1776 
   1777 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
   1778 	    "lna_gs_thresh %02x\n",
   1779 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
   1780 
   1781 	atw_bbp_io_enable(sc, 1);
   1782 
   1783 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
   1784 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
   1785 		goto out;
   1786 
   1787 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
   1788 		goto out;
   1789 
   1790 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
   1791 		goto out;
   1792 
   1793 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
   1794 
   1795 	if (rc != 0)
   1796 		goto out;
   1797 
   1798 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
   1799 
   1800 	if (rc != 0)
   1801 		goto out;
   1802 
   1803 #ifdef ATW_BBPDEBUG
   1804 	atw_rf3000_print(sc);
   1805 #endif /* ATW_BBPDEBUG */
   1806 
   1807 out:
   1808 	atw_bbp_io_enable(sc, 0);
   1809 
   1810 	/* set beacon, rts, atim transmit power */
   1811 	reg = ATW_READ(sc, ATW_PLCPHD);
   1812 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
   1813 	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
   1814 	    ATW_PLCPHD_SERVICE_MASK);
   1815 	ATW_WRITE(sc, ATW_PLCPHD, reg);
   1816 	DELAY(atw_plcphd_delay);
   1817 
   1818 	return rc;
   1819 }
   1820 
   1821 /* Write a register on the RF3000 baseband processor using the
   1822  * registers provided by the ADM8211 for this purpose.
   1823  *
   1824  * Return 0 on success.
   1825  */
   1826 static int
   1827 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
   1828 {
   1829 	u_int32_t reg;
   1830 	int i;
   1831 
   1832 	reg = sc->sc_bbpctl_wr |
   1833 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
   1834 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1835 
   1836 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
   1837 		ATW_WRITE(sc, ATW_BBPCTL, reg);
   1838 		DELAY(2 * atw_pseudo_milli);
   1839 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
   1840 			break;
   1841 	}
   1842 
   1843 	if (i < 0) {
   1844 		printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
   1845 		return ETIMEDOUT;
   1846 	}
   1847 	return 0;
   1848 }
   1849 
   1850 /* Read a register on the RF3000 baseband processor using the registers
   1851  * the ADM8211 provides for this purpose.
   1852  *
   1853  * The 7-bit register address is addr.  Record the 8-bit data in the register
   1854  * in *val.
   1855  *
   1856  * Return 0 on success.
   1857  *
   1858  * XXX This does not seem to work. The ADM8211 must require more or
   1859  * different magic to read the chip than to write it. Possibly some
   1860  * of the magic I have derived from a binary-only driver concerns
   1861  * the "chip address" (see the RF3000 manual).
   1862  */
   1863 #ifdef ATW_BBPDEBUG
   1864 static int
   1865 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
   1866 {
   1867 	u_int32_t reg;
   1868 	int i;
   1869 
   1870 	for (i = 1000; --i >= 0; ) {
   1871 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
   1872 			break;
   1873 		DELAY(100);
   1874 	}
   1875 
   1876 	if (i < 0) {
   1877 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
   1878 		    sc->sc_dev.dv_xname);
   1879 		return ETIMEDOUT;
   1880 	}
   1881 
   1882 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
   1883 
   1884 	ATW_WRITE(sc, ATW_BBPCTL, reg);
   1885 
   1886 	for (i = 1000; --i >= 0; ) {
   1887 		DELAY(100);
   1888 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
   1889 			break;
   1890 	}
   1891 
   1892 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
   1893 
   1894 	if (i < 0) {
   1895 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
   1896 		    sc->sc_dev.dv_xname, reg);
   1897 		return ETIMEDOUT;
   1898 	}
   1899 	if (val != NULL)
   1900 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
   1901 	return 0;
   1902 }
   1903 #endif /* ATW_BBPDEBUG */
   1904 
   1905 /* Write a register on the Si4126 RF/IF synthesizer using the registers
   1906  * provided by the ADM8211 for that purpose.
   1907  *
   1908  * val is 18 bits of data, and val is the 4-bit address of the register.
   1909  *
   1910  * Return 0 on success.
   1911  */
   1912 static void
   1913 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
   1914 {
   1915 	uint32_t bits, mask, reg;
   1916 	const int nbits = 22;
   1917 
   1918 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1919 	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
   1920 
   1921 	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
   1922 	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
   1923 
   1924 	reg = ATW_SYNRF_SELSYN;
   1925 	/* reference driver: reset Si4126 serial bus to initial
   1926 	 * conditions?
   1927 	 */
   1928 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
   1929 	ATW_WRITE(sc, ATW_SYNRF, reg);
   1930 
   1931 	for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
   1932 		if ((bits & mask) != 0)
   1933 			reg |= ATW_SYNRF_SYNDATA;
   1934 		else
   1935 			reg &= ~ATW_SYNRF_SYNDATA;
   1936 		ATW_WRITE(sc, ATW_SYNRF, reg);
   1937 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
   1938 		ATW_WRITE(sc, ATW_SYNRF, reg);
   1939 	}
   1940 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
   1941 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
   1942 }
   1943 
   1944 /* Read 18-bit data from the 4-bit address addr in Si4126
   1945  * RF synthesizer and write the data to *val. Return 0 on success.
   1946  *
   1947  * XXX This does not seem to work. The ADM8211 must require more or
   1948  * different magic to read the chip than to write it.
   1949  */
   1950 #ifdef ATW_SYNDEBUG
   1951 static int
   1952 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
   1953 {
   1954 	u_int32_t reg;
   1955 	int i;
   1956 
   1957 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
   1958 
   1959 	for (i = 1000; --i >= 0; ) {
   1960 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
   1961 			break;
   1962 		DELAY(100);
   1963 	}
   1964 
   1965 	if (i < 0) {
   1966 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
   1967 		    sc->sc_dev.dv_xname);
   1968 		return ETIMEDOUT;
   1969 	}
   1970 
   1971 	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
   1972 
   1973 	ATW_WRITE(sc, ATW_SYNCTL, reg);
   1974 
   1975 	for (i = 1000; --i >= 0; ) {
   1976 		DELAY(100);
   1977 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
   1978 			break;
   1979 	}
   1980 
   1981 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
   1982 
   1983 	if (i < 0) {
   1984 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
   1985 		    sc->sc_dev.dv_xname, reg);
   1986 		return ETIMEDOUT;
   1987 	}
   1988 	if (val != NULL)
   1989 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
   1990 		                       ATW_SYNCTL_DATA_MASK);
   1991 	return 0;
   1992 }
   1993 #endif /* ATW_SYNDEBUG */
   1994 
   1995 /* XXX is the endianness correct? test. */
   1996 #define	atw_calchash(addr) \
   1997 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
   1998 
   1999 /*
   2000  * atw_filter_setup:
   2001  *
   2002  *	Set the ADM8211's receive filter.
   2003  */
   2004 static void
   2005 atw_filter_setup(struct atw_softc *sc)
   2006 {
   2007 	struct ieee80211com *ic = &sc->sc_ic;
   2008 	struct ethercom *ec = &sc->sc_ec;
   2009 	struct ifnet *ifp = &sc->sc_if;
   2010 	int hash;
   2011 	u_int32_t hashes[2];
   2012 	struct ether_multi *enm;
   2013 	struct ether_multistep step;
   2014 
   2015 	/* According to comments in tlp_al981_filter_setup
   2016 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
   2017 	 * multicast filter to be set while it is running.  Hopefully
   2018 	 * the ADM8211 is not the same!
   2019 	 */
   2020 	if ((ifp->if_flags & IFF_RUNNING) != 0)
   2021 		atw_idle(sc, ATW_NAR_SR);
   2022 
   2023 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
   2024 	ifp->if_flags &= ~IFF_ALLMULTI;
   2025 
   2026 	/* XXX in scan mode, do not filter packets.  Maybe this is
   2027 	 * unnecessary.
   2028 	 */
   2029 	if (ic->ic_state == IEEE80211_S_SCAN ||
   2030 	    (ifp->if_flags & IFF_PROMISC) != 0) {
   2031 		sc->sc_opmode |= ATW_NAR_PR;
   2032 		goto allmulti;
   2033 	}
   2034 
   2035 	hashes[0] = hashes[1] = 0x0;
   2036 
   2037 	/*
   2038 	 * Program the 64-bit multicast hash filter.
   2039 	 */
   2040 	ETHER_FIRST_MULTI(step, ec, enm);
   2041 	while (enm != NULL) {
   2042 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   2043 		    ETHER_ADDR_LEN) != 0)
   2044 			goto allmulti;
   2045 
   2046 		hash = atw_calchash(enm->enm_addrlo);
   2047 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
   2048 		ETHER_NEXT_MULTI(step, enm);
   2049 		sc->sc_opmode |= ATW_NAR_MM;
   2050 	}
   2051 	ifp->if_flags &= ~IFF_ALLMULTI;
   2052 	goto setit;
   2053 
   2054 allmulti:
   2055 	sc->sc_opmode |= ATW_NAR_MM;
   2056 	ifp->if_flags |= IFF_ALLMULTI;
   2057 	hashes[0] = hashes[1] = 0xffffffff;
   2058 
   2059 setit:
   2060 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
   2061 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
   2062 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2063 	DELAY(atw_nar_delay);
   2064 
   2065 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
   2066 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
   2067 }
   2068 
   2069 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
   2070  * a beacon's BSSID and SSID against the preferred BSSID and SSID
   2071  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
   2072  * no beacon with the preferred BSSID and SSID in the number of
   2073  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
   2074  */
   2075 static void
   2076 atw_write_bssid(struct atw_softc *sc)
   2077 {
   2078 	struct ieee80211com *ic = &sc->sc_ic;
   2079 	u_int8_t *bssid;
   2080 
   2081 	bssid = ic->ic_bss->ni_bssid;
   2082 
   2083 	ATW_WRITE(sc, ATW_BSSID0,
   2084 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
   2085 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
   2086 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
   2087 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
   2088 
   2089 	ATW_WRITE(sc, ATW_ABDA1,
   2090 	    (ATW_READ(sc, ATW_ABDA1) &
   2091 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
   2092 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
   2093 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
   2094 
   2095 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
   2096 	    ether_sprintf(sc->sc_bssid)));
   2097 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
   2098 
   2099 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
   2100 }
   2101 
   2102 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
   2103  * 16-bit word.
   2104  */
   2105 static void
   2106 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
   2107 {
   2108 	u_int i;
   2109 	u_int8_t *ptr;
   2110 
   2111 	memcpy(&sc->sc_sram[ofs], buf, buflen);
   2112 
   2113 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
   2114 
   2115 	KASSERT(buflen + ofs <= sc->sc_sramlen);
   2116 
   2117 	ptr = &sc->sc_sram[ofs];
   2118 
   2119 	for (i = 0; i < buflen; i += 2) {
   2120 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
   2121 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
   2122 		DELAY(atw_writewep_delay);
   2123 
   2124 		ATW_WRITE(sc, ATW_WESK,
   2125 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
   2126 		DELAY(atw_writewep_delay);
   2127 	}
   2128 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
   2129 
   2130 	if (sc->sc_if.if_flags & IFF_DEBUG) {
   2131 		int n_octets = 0;
   2132 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
   2133 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
   2134 		for (i = 0; i < buflen; i++) {
   2135 			printf(" %02x", ptr[i]);
   2136 			if (++n_octets % 24 == 0)
   2137 				printf("\n");
   2138 		}
   2139 		if (n_octets % 24 != 0)
   2140 			printf("\n");
   2141 	}
   2142 }
   2143 
   2144 static int
   2145 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   2146 {
   2147 	struct atw_softc *sc = ic->ic_ifp->if_softc;
   2148 	u_int keyix = k->wk_keyix;
   2149 
   2150 	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
   2151 
   2152 	if (keyix >= IEEE80211_WEP_NKID)
   2153 		return 0;
   2154 	if (k->wk_keylen != 0)
   2155 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
   2156 
   2157 	return 1;
   2158 }
   2159 
   2160 static int
   2161 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   2162 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   2163 {
   2164 	struct atw_softc *sc = ic->ic_ifp->if_softc;
   2165 
   2166 	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
   2167 
   2168 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
   2169 		return 0;
   2170 
   2171 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
   2172 
   2173 	return 1;
   2174 }
   2175 
   2176 static void
   2177 atw_key_update_begin(struct ieee80211com *ic)
   2178 {
   2179 #ifdef ATW_DEBUG
   2180 	struct ifnet *ifp = ic->ic_ifp;
   2181 	struct atw_softc *sc = ifp->if_softc;
   2182 #endif
   2183 
   2184 	DPRINTF(sc, ("%s:\n", __func__));
   2185 }
   2186 
   2187 static void
   2188 atw_key_update_end(struct ieee80211com *ic)
   2189 {
   2190 	struct ifnet *ifp = ic->ic_ifp;
   2191 	struct atw_softc *sc = ifp->if_softc;
   2192 
   2193 	DPRINTF(sc, ("%s:\n", __func__));
   2194 
   2195 	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
   2196 		return;
   2197 	if (ATW_IS_ENABLED(sc) == 0)
   2198 		return;
   2199 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
   2200 	atw_write_wep(sc);
   2201 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2202 }
   2203 
   2204 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
   2205 static void
   2206 atw_write_wep(struct atw_softc *sc)
   2207 {
   2208 	struct ieee80211com *ic = &sc->sc_ic;
   2209 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
   2210 	u_int8_t buf[IEEE80211_WEP_NKID]
   2211 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
   2212 	u_int32_t reg;
   2213 	int i;
   2214 
   2215 	sc->sc_wepctl = 0;
   2216 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
   2217 
   2218 	memset(&buf[0][0], 0, sizeof(buf));
   2219 
   2220 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   2221 		if (ic->ic_nw_keys[i].wk_keylen > 5) {
   2222 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
   2223 		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
   2224 			buf[i][1] = ATW_WEP_ENABLED;
   2225 		} else {
   2226 			buf[i][1] = 0;
   2227 			continue;
   2228 		}
   2229 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
   2230 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
   2231 		    ic->ic_nw_keys[i].wk_keylen - 1);
   2232 	}
   2233 
   2234 	reg = ATW_READ(sc, ATW_MACTEST);
   2235 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
   2236 	reg &= ~ATW_MACTEST_KEYID_MASK;
   2237 	reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
   2238 	ATW_WRITE(sc, ATW_MACTEST, reg);
   2239 
   2240 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
   2241 		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
   2242 
   2243 	switch (sc->sc_rev) {
   2244 	case ATW_REVISION_AB:
   2245 	case ATW_REVISION_AF:
   2246 		/* Bypass WEP on Rx. */
   2247 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
   2248 		break;
   2249 	default:
   2250 		break;
   2251 	}
   2252 
   2253 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
   2254 	    sizeof(buf));
   2255 
   2256 	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
   2257 }
   2258 
   2259 static void
   2260 atw_change_ibss(struct atw_softc *sc)
   2261 {
   2262 	atw_predict_beacon(sc);
   2263 	atw_write_bssid(sc);
   2264 	atw_start_beacon(sc, 1);
   2265 }
   2266 
   2267 static void
   2268 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2269     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
   2270 {
   2271 	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
   2272 
   2273 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
   2274 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
   2275 		return;
   2276 
   2277 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
   2278 
   2279 	switch (subtype) {
   2280 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2281 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2282 		if (ic->ic_opmode != IEEE80211_M_IBSS ||
   2283 		    ic->ic_state != IEEE80211_S_RUN)
   2284 			break;
   2285 		if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc) &&
   2286 		    ieee80211_ibss_merge(ni) == ENETRESET)
   2287 			atw_change_ibss(sc);
   2288 		break;
   2289 	default:
   2290 		break;
   2291 	}
   2292 	return;
   2293 }
   2294 
   2295 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
   2296  * In ad hoc mode, the SSID is written to the beacons sent by the
   2297  * ADM8211. In both ad hoc and infrastructure mode, beacons received
   2298  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
   2299  * indications.
   2300  */
   2301 static void
   2302 atw_write_ssid(struct atw_softc *sc)
   2303 {
   2304 	struct ieee80211com *ic = &sc->sc_ic;
   2305 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
   2306 	 * it only expects the element length, not its ID.
   2307 	 */
   2308 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
   2309 
   2310 	memset(buf, 0, sizeof(buf));
   2311 	buf[0] = ic->ic_bss->ni_esslen;
   2312 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
   2313 
   2314 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
   2315 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
   2316 }
   2317 
   2318 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
   2319  * In ad hoc mode, the supported rates are written to beacons sent by the
   2320  * ADM8211.
   2321  */
   2322 static void
   2323 atw_write_sup_rates(struct atw_softc *sc)
   2324 {
   2325 	struct ieee80211com *ic = &sc->sc_ic;
   2326 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
   2327 	 * supported rates
   2328 	 */
   2329 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
   2330 
   2331 	memset(buf, 0, sizeof(buf));
   2332 
   2333 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
   2334 
   2335 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
   2336 	    ic->ic_bss->ni_rates.rs_nrates);
   2337 
   2338 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
   2339 }
   2340 
   2341 /* Start/stop sending beacons. */
   2342 void
   2343 atw_start_beacon(struct atw_softc *sc, int start)
   2344 {
   2345 	struct ieee80211com *ic = &sc->sc_ic;
   2346 	uint16_t chan;
   2347 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
   2348 	size_t len;
   2349 
   2350 	if (ATW_IS_ENABLED(sc) == 0)
   2351 		return;
   2352 
   2353 	/* start beacons */
   2354 	len = sizeof(struct ieee80211_frame) +
   2355 	    8 /* timestamp */ + 2 /* beacon interval */ +
   2356 	    2 /* capability info */ +
   2357 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
   2358 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
   2359 	    3 /* DS parameters */ +
   2360 	    IEEE80211_CRC_LEN;
   2361 
   2362 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
   2363 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
   2364 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
   2365 
   2366 	ATW_WRITE(sc, ATW_BCNT, bcnt);
   2367 	ATW_WRITE(sc, ATW_CAP1, cap1);
   2368 
   2369 	if (!start)
   2370 		return;
   2371 
   2372 	/* TBD use ni_capinfo */
   2373 
   2374 	capinfo = 0;
   2375 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
   2376 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   2377 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
   2378 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   2379 
   2380 	switch (ic->ic_opmode) {
   2381 	case IEEE80211_M_IBSS:
   2382 		len += 4; /* IBSS parameters */
   2383 		capinfo |= IEEE80211_CAPINFO_IBSS;
   2384 		break;
   2385 	case IEEE80211_M_HOSTAP:
   2386 		/* XXX 6-byte minimum TIM */
   2387 		len += atw_beacon_len_adjust;
   2388 		capinfo |= IEEE80211_CAPINFO_ESS;
   2389 		break;
   2390 	default:
   2391 		return;
   2392 	}
   2393 
   2394 	/* set listen interval
   2395 	 * XXX do software units agree w/ hardware?
   2396 	 */
   2397 	bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2398 	    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
   2399 
   2400 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
   2401 
   2402 	bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
   2403 	cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
   2404 	cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
   2405 
   2406 	ATW_WRITE(sc, ATW_BCNT, bcnt);
   2407 	ATW_WRITE(sc, ATW_BPLI, bpli);
   2408 	ATW_WRITE(sc, ATW_CAP0, cap0);
   2409 	ATW_WRITE(sc, ATW_CAP1, cap1);
   2410 
   2411 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
   2412 	    sc->sc_dev.dv_xname, bcnt));
   2413 
   2414 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
   2415 	    sc->sc_dev.dv_xname, cap1));
   2416 }
   2417 
   2418 /* Return the 32 lsb of the last TSFT divisible by ival. */
   2419 static inline uint32_t
   2420 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
   2421 {
   2422 	/* Following the reference driver's lead, I compute
   2423 	 *
   2424 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
   2425 	 *
   2426 	 * without using 64-bit arithmetic, using the following
   2427 	 * relationship:
   2428 	 *
   2429 	 *     (0x100000000 * H + L) % m
   2430 	 *   = ((0x100000000 % m) * H + L) % m
   2431 	 *   = (((0xffffffff + 1) % m) * H + L) % m
   2432 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
   2433 	 *   = ((0xffffffff % m + 1) * H + L) % m
   2434 	 */
   2435 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
   2436 }
   2437 
   2438 static uint64_t
   2439 atw_get_tsft(struct atw_softc *sc)
   2440 {
   2441 	int i;
   2442 	uint32_t tsfth, tsftl;
   2443 	for (i = 0; i < 2; i++) {
   2444 		tsfth = ATW_READ(sc, ATW_TSFTH);
   2445 		tsftl = ATW_READ(sc, ATW_TSFTL);
   2446 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
   2447 			break;
   2448 	}
   2449 	return ((uint64_t)tsfth << 32) | tsftl;
   2450 }
   2451 
   2452 /* If we've created an IBSS, write the TSF time in the ADM8211 to
   2453  * the ieee80211com.
   2454  *
   2455  * Predict the next target beacon transmission time (TBTT) and
   2456  * write it to the ADM8211.
   2457  */
   2458 static void
   2459 atw_predict_beacon(struct atw_softc *sc)
   2460 {
   2461 #define TBTTOFS 20 /* TU */
   2462 
   2463 	struct ieee80211com *ic = &sc->sc_ic;
   2464 	uint64_t tsft;
   2465 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
   2466 	union {
   2467 		uint64_t	word;
   2468 		uint8_t		tstamp[8];
   2469 	} u;
   2470 
   2471 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
   2472 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
   2473 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
   2474 		tsft = atw_get_tsft(sc);
   2475 		u.word = htole64(tsft);
   2476 		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
   2477 		    sizeof(ic->ic_bss->ni_tstamp));
   2478 	} else
   2479 		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
   2480 
   2481 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
   2482 
   2483 	tsftl = tsft & 0xFFFFFFFF;
   2484 	tsfth = tsft >> 32;
   2485 
   2486 	/* We sent/received the last beacon `past' microseconds
   2487 	 * after the interval divided the TSF timer.
   2488 	 */
   2489 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
   2490 
   2491 	/* Skip ten beacons so that the TBTT cannot pass before
   2492 	 * we've programmed it.  Ten is an arbitrary number.
   2493 	 */
   2494 	tbtt = past_even + ival * 10;
   2495 
   2496 	ATW_WRITE(sc, ATW_TOFS1,
   2497 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
   2498 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
   2499 	    LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
   2500 	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
   2501 #undef TBTTOFS
   2502 }
   2503 
   2504 static void
   2505 atw_next_scan(void *arg)
   2506 {
   2507 	struct atw_softc *sc = arg;
   2508 	struct ieee80211com *ic = &sc->sc_ic;
   2509 	int s;
   2510 
   2511 	/* don't call atw_start w/o network interrupts blocked */
   2512 	s = splnet();
   2513 	if (ic->ic_state == IEEE80211_S_SCAN)
   2514 		ieee80211_next_scan(ic);
   2515 	splx(s);
   2516 }
   2517 
   2518 /* Synchronize the hardware state with the software state. */
   2519 static int
   2520 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   2521 {
   2522 	struct ifnet *ifp = ic->ic_ifp;
   2523 	struct atw_softc *sc = ifp->if_softc;
   2524 	enum ieee80211_state ostate;
   2525 	int error = 0;
   2526 
   2527 	ostate = ic->ic_state;
   2528 	callout_stop(&sc->sc_scan_ch);
   2529 	atw_start_beacon(sc, 0);
   2530 
   2531 	switch (nstate) {
   2532 	case IEEE80211_S_ASSOC:
   2533 		error = atw_tune(sc);
   2534 		break;
   2535 	case IEEE80211_S_INIT:
   2536 		callout_stop(&sc->sc_scan_ch);
   2537 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
   2538 		break;
   2539 	case IEEE80211_S_SCAN:
   2540 		error = atw_tune(sc);
   2541 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
   2542 		    atw_next_scan, sc);
   2543 		break;
   2544 	case IEEE80211_S_AUTH:
   2545 		error = atw_tune(sc);
   2546 		break;
   2547 	case IEEE80211_S_RUN:
   2548 		error = atw_tune(sc);
   2549 		atw_write_bssid(sc);
   2550 		atw_write_ssid(sc);
   2551 		atw_write_sup_rates(sc);
   2552 
   2553 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
   2554 		    ic->ic_opmode == IEEE80211_M_MONITOR)
   2555 			break;
   2556 
   2557 		/* set listen interval
   2558 		 * XXX do software units agree w/ hardware?
   2559 		 */
   2560 		ATW_WRITE(sc, ATW_BPLI,
   2561 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
   2562 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
   2563 			   ATW_BPLI_LI_MASK));
   2564 
   2565 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
   2566 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
   2567 
   2568 		atw_predict_beacon(sc);
   2569 		atw_start_beacon(sc,
   2570 		    ic->ic_opmode == IEEE80211_M_HOSTAP ||
   2571 		    ic->ic_opmode == IEEE80211_M_IBSS);
   2572 		break;
   2573 	}
   2574 	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
   2575 }
   2576 
   2577 /*
   2578  * atw_add_rxbuf:
   2579  *
   2580  *	Add a receive buffer to the indicated descriptor.
   2581  */
   2582 int
   2583 atw_add_rxbuf(struct atw_softc *sc, int idx)
   2584 {
   2585 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2586 	struct mbuf *m;
   2587 	int error;
   2588 
   2589 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2590 	if (m == NULL)
   2591 		return (ENOBUFS);
   2592 
   2593 	MCLGET(m, M_DONTWAIT);
   2594 	if ((m->m_flags & M_EXT) == 0) {
   2595 		m_freem(m);
   2596 		return (ENOBUFS);
   2597 	}
   2598 
   2599 	if (rxs->rxs_mbuf != NULL)
   2600 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2601 
   2602 	rxs->rxs_mbuf = m;
   2603 
   2604 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2605 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2606 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2607 	if (error) {
   2608 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2609 		    sc->sc_dev.dv_xname, idx, error);
   2610 		panic("atw_add_rxbuf");	/* XXX */
   2611 	}
   2612 
   2613 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2614 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2615 
   2616 	ATW_INIT_RXDESC(sc, idx);
   2617 
   2618 	return (0);
   2619 }
   2620 
   2621 /*
   2622  * Release any queued transmit buffers.
   2623  */
   2624 void
   2625 atw_txdrain(struct atw_softc *sc)
   2626 {
   2627 	struct atw_txsoft *txs;
   2628 
   2629 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2630 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2631 		if (txs->txs_mbuf != NULL) {
   2632 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2633 			m_freem(txs->txs_mbuf);
   2634 			txs->txs_mbuf = NULL;
   2635 		}
   2636 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2637 		sc->sc_txfree += txs->txs_ndescs;
   2638 	}
   2639 	sc->sc_if.if_flags &= ~IFF_OACTIVE;
   2640 	sc->sc_tx_timer = 0;
   2641 }
   2642 
   2643 /*
   2644  * atw_stop:		[ ifnet interface function ]
   2645  *
   2646  *	Stop transmission on the interface.
   2647  */
   2648 void
   2649 atw_stop(struct ifnet *ifp, int disable)
   2650 {
   2651 	struct atw_softc *sc = ifp->if_softc;
   2652 	struct ieee80211com *ic = &sc->sc_ic;
   2653 
   2654 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   2655 
   2656 	/* Disable interrupts. */
   2657 	ATW_WRITE(sc, ATW_IER, 0);
   2658 
   2659 	/* Stop the transmit and receive processes. */
   2660 	sc->sc_opmode = 0;
   2661 	ATW_WRITE(sc, ATW_NAR, 0);
   2662 	DELAY(atw_nar_delay);
   2663 	ATW_WRITE(sc, ATW_TDBD, 0);
   2664 	ATW_WRITE(sc, ATW_TDBP, 0);
   2665 	ATW_WRITE(sc, ATW_RDB, 0);
   2666 
   2667 	atw_txdrain(sc);
   2668 
   2669 	if (disable) {
   2670 		atw_rxdrain(sc);
   2671 		atw_disable(sc);
   2672 	}
   2673 
   2674 	/*
   2675 	 * Mark the interface down and cancel the watchdog timer.
   2676 	 */
   2677 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2678 	sc->sc_tx_timer = 0;
   2679 	ifp->if_timer = 0;
   2680 
   2681 	if (!disable)
   2682 		atw_reset(sc);
   2683 }
   2684 
   2685 /*
   2686  * atw_rxdrain:
   2687  *
   2688  *	Drain the receive queue.
   2689  */
   2690 void
   2691 atw_rxdrain(struct atw_softc *sc)
   2692 {
   2693 	struct atw_rxsoft *rxs;
   2694 	int i;
   2695 
   2696 	for (i = 0; i < ATW_NRXDESC; i++) {
   2697 		rxs = &sc->sc_rxsoft[i];
   2698 		if (rxs->rxs_mbuf == NULL)
   2699 			continue;
   2700 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2701 		m_freem(rxs->rxs_mbuf);
   2702 		rxs->rxs_mbuf = NULL;
   2703 	}
   2704 }
   2705 
   2706 /*
   2707  * atw_detach:
   2708  *
   2709  *	Detach an ADM8211 interface.
   2710  */
   2711 int
   2712 atw_detach(struct atw_softc *sc)
   2713 {
   2714 	struct ifnet *ifp = &sc->sc_if;
   2715 	struct atw_rxsoft *rxs;
   2716 	struct atw_txsoft *txs;
   2717 	int i;
   2718 
   2719 	/*
   2720 	 * Succeed now if there isn't any work to do.
   2721 	 */
   2722 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
   2723 		return (0);
   2724 
   2725 	callout_stop(&sc->sc_scan_ch);
   2726 
   2727 	ieee80211_ifdetach(&sc->sc_ic);
   2728 	if_detach(ifp);
   2729 
   2730 	for (i = 0; i < ATW_NRXDESC; i++) {
   2731 		rxs = &sc->sc_rxsoft[i];
   2732 		if (rxs->rxs_mbuf != NULL) {
   2733 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2734 			m_freem(rxs->rxs_mbuf);
   2735 			rxs->rxs_mbuf = NULL;
   2736 		}
   2737 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
   2738 	}
   2739 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
   2740 		txs = &sc->sc_txsoft[i];
   2741 		if (txs->txs_mbuf != NULL) {
   2742 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2743 			m_freem(txs->txs_mbuf);
   2744 			txs->txs_mbuf = NULL;
   2745 		}
   2746 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
   2747 	}
   2748 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   2749 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   2750 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2751 	    sizeof(struct atw_control_data));
   2752 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2753 
   2754 	shutdownhook_disestablish(sc->sc_sdhook);
   2755 	powerhook_disestablish(sc->sc_powerhook);
   2756 
   2757 	if (sc->sc_srom)
   2758 		free(sc->sc_srom, M_DEVBUF);
   2759 
   2760 	return (0);
   2761 }
   2762 
   2763 /* atw_shutdown: make sure the interface is stopped at reboot time. */
   2764 void
   2765 atw_shutdown(void *arg)
   2766 {
   2767 	struct atw_softc *sc = arg;
   2768 
   2769 	atw_stop(&sc->sc_if, 1);
   2770 }
   2771 
   2772 int
   2773 atw_intr(void *arg)
   2774 {
   2775 	struct atw_softc *sc = arg;
   2776 	struct ifnet *ifp = &sc->sc_if;
   2777 	u_int32_t status, rxstatus, txstatus, linkstatus;
   2778 	int handled = 0, txthresh;
   2779 
   2780 #ifdef DEBUG
   2781 	if (ATW_IS_ENABLED(sc) == 0)
   2782 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
   2783 #endif
   2784 
   2785 	/*
   2786 	 * If the interface isn't running, the interrupt couldn't
   2787 	 * possibly have come from us.
   2788 	 */
   2789 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   2790 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   2791 		return (0);
   2792 
   2793 	for (;;) {
   2794 		status = ATW_READ(sc, ATW_STSR);
   2795 
   2796 		if (status)
   2797 			ATW_WRITE(sc, ATW_STSR, status);
   2798 
   2799 #ifdef ATW_DEBUG
   2800 #define PRINTINTR(flag) do { \
   2801 	if ((status & flag) != 0) { \
   2802 		printf("%s" #flag, delim); \
   2803 		delim = ","; \
   2804 	} \
   2805 } while (0)
   2806 
   2807 		if (atw_debug > 1 && status) {
   2808 			const char *delim = "<";
   2809 
   2810 			printf("%s: reg[STSR] = %x",
   2811 			    sc->sc_dev.dv_xname, status);
   2812 
   2813 			PRINTINTR(ATW_INTR_FBE);
   2814 			PRINTINTR(ATW_INTR_LINKOFF);
   2815 			PRINTINTR(ATW_INTR_LINKON);
   2816 			PRINTINTR(ATW_INTR_RCI);
   2817 			PRINTINTR(ATW_INTR_RDU);
   2818 			PRINTINTR(ATW_INTR_REIS);
   2819 			PRINTINTR(ATW_INTR_RPS);
   2820 			PRINTINTR(ATW_INTR_TCI);
   2821 			PRINTINTR(ATW_INTR_TDU);
   2822 			PRINTINTR(ATW_INTR_TLT);
   2823 			PRINTINTR(ATW_INTR_TPS);
   2824 			PRINTINTR(ATW_INTR_TRT);
   2825 			PRINTINTR(ATW_INTR_TUF);
   2826 			PRINTINTR(ATW_INTR_BCNTC);
   2827 			PRINTINTR(ATW_INTR_ATIME);
   2828 			PRINTINTR(ATW_INTR_TBTT);
   2829 			PRINTINTR(ATW_INTR_TSCZ);
   2830 			PRINTINTR(ATW_INTR_TSFTF);
   2831 			printf(">\n");
   2832 		}
   2833 #undef PRINTINTR
   2834 #endif /* ATW_DEBUG */
   2835 
   2836 		if ((status & sc->sc_inten) == 0)
   2837 			break;
   2838 
   2839 		handled = 1;
   2840 
   2841 		rxstatus = status & sc->sc_rxint_mask;
   2842 		txstatus = status & sc->sc_txint_mask;
   2843 		linkstatus = status & sc->sc_linkint_mask;
   2844 
   2845 		if (linkstatus) {
   2846 			atw_linkintr(sc, linkstatus);
   2847 		}
   2848 
   2849 		if (rxstatus) {
   2850 			/* Grab any new packets. */
   2851 			atw_rxintr(sc);
   2852 
   2853 			if (rxstatus & ATW_INTR_RDU) {
   2854 				printf("%s: receive ring overrun\n",
   2855 				    sc->sc_dev.dv_xname);
   2856 				/* Get the receive process going again. */
   2857 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2858 				break;
   2859 			}
   2860 		}
   2861 
   2862 		if (txstatus) {
   2863 			/* Sweep up transmit descriptors. */
   2864 			atw_txintr(sc);
   2865 
   2866 			if (txstatus & ATW_INTR_TLT)
   2867 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
   2868 				    sc->sc_dev.dv_xname));
   2869 
   2870 			if (txstatus & ATW_INTR_TRT)
   2871 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
   2872 				    sc->sc_dev.dv_xname));
   2873 
   2874 			/* If Tx under-run, increase our transmit threshold
   2875 			 * if another is available.
   2876 			 */
   2877 			txthresh = sc->sc_txthresh + 1;
   2878 			if ((txstatus & ATW_INTR_TUF) &&
   2879 			    sc->sc_txth[txthresh].txth_name != NULL) {
   2880 				/* Idle the transmit process. */
   2881 				atw_idle(sc, ATW_NAR_ST);
   2882 
   2883 				sc->sc_txthresh = txthresh;
   2884 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
   2885 				sc->sc_opmode |=
   2886 				    sc->sc_txth[txthresh].txth_opmode;
   2887 				printf("%s: transmit underrun; new "
   2888 				    "threshold: %s\n", sc->sc_dev.dv_xname,
   2889 				    sc->sc_txth[txthresh].txth_name);
   2890 
   2891 				/* Set the new threshold and restart
   2892 				 * the transmit process.
   2893 				 */
   2894 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
   2895 				DELAY(atw_nar_delay);
   2896 				ATW_WRITE(sc, ATW_RDR, 0x1);
   2897 				/* XXX Log every Nth underrun from
   2898 				 * XXX now on?
   2899 				 */
   2900 			}
   2901 		}
   2902 
   2903 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
   2904 			if (status & ATW_INTR_TPS)
   2905 				printf("%s: transmit process stopped\n",
   2906 				    sc->sc_dev.dv_xname);
   2907 			if (status & ATW_INTR_RPS)
   2908 				printf("%s: receive process stopped\n",
   2909 				    sc->sc_dev.dv_xname);
   2910 			(void)atw_init(ifp);
   2911 			break;
   2912 		}
   2913 
   2914 		if (status & ATW_INTR_FBE) {
   2915 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
   2916 			(void)atw_init(ifp);
   2917 			break;
   2918 		}
   2919 
   2920 		/*
   2921 		 * Not handled:
   2922 		 *
   2923 		 *	Transmit buffer unavailable -- normal
   2924 		 *	condition, nothing to do, really.
   2925 		 *
   2926 		 *	Early receive interrupt -- not available on
   2927 		 *	all chips, we just use RI.  We also only
   2928 		 *	use single-segment receive DMA, so this
   2929 		 *	is mostly useless.
   2930 		 *
   2931 		 *      TBD others
   2932 		 */
   2933 	}
   2934 
   2935 	/* Try to get more packets going. */
   2936 	atw_start(ifp);
   2937 
   2938 	return (handled);
   2939 }
   2940 
   2941 /*
   2942  * atw_idle:
   2943  *
   2944  *	Cause the transmit and/or receive processes to go idle.
   2945  *
   2946  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
   2947  *	process in STSR if I clear SR or ST after the process has already
   2948  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
   2949  *      do not seem to be too reliable. Perhaps I have the sense of the
   2950  *	Rx bits switched with the Tx bits?
   2951  */
   2952 void
   2953 atw_idle(struct atw_softc *sc, u_int32_t bits)
   2954 {
   2955 	u_int32_t ackmask = 0, opmode, stsr, test0;
   2956 	int i, s;
   2957 
   2958 	s = splnet();
   2959 
   2960 	opmode = sc->sc_opmode & ~bits;
   2961 
   2962 	if (bits & ATW_NAR_SR)
   2963 		ackmask |= ATW_INTR_RPS;
   2964 
   2965 	if (bits & ATW_NAR_ST) {
   2966 		ackmask |= ATW_INTR_TPS;
   2967 		/* set ATW_NAR_HF to flush TX FIFO. */
   2968 		opmode |= ATW_NAR_HF;
   2969 	}
   2970 
   2971 	ATW_WRITE(sc, ATW_NAR, opmode);
   2972 	DELAY(atw_nar_delay);
   2973 
   2974 	for (i = 0; i < 1000; i++) {
   2975 		stsr = ATW_READ(sc, ATW_STSR);
   2976 		if ((stsr & ackmask) == ackmask)
   2977 			break;
   2978 		DELAY(10);
   2979 	}
   2980 
   2981 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
   2982 
   2983 	if ((stsr & ackmask) == ackmask)
   2984 		goto out;
   2985 
   2986 	test0 = ATW_READ(sc, ATW_TEST0);
   2987 
   2988 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
   2989 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
   2990 		printf("%s: transmit process not idle [%s]\n",
   2991 		    sc->sc_dev.dv_xname,
   2992 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
   2993 		printf("%s: bits %08x test0 %08x stsr %08x\n",
   2994 		    sc->sc_dev.dv_xname, bits, test0, stsr);
   2995 	}
   2996 
   2997 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
   2998 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
   2999 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
   3000 		    sc->sc_dev.dv_xname,
   3001 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
   3002 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
   3003 		    sc->sc_dev.dv_xname, bits, test0, stsr));
   3004 	}
   3005 out:
   3006 	if ((bits & ATW_NAR_ST) != 0)
   3007 		atw_txdrain(sc);
   3008 	splx(s);
   3009 	return;
   3010 }
   3011 
   3012 /*
   3013  * atw_linkintr:
   3014  *
   3015  *	Helper; handle link-status interrupts.
   3016  */
   3017 void
   3018 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
   3019 {
   3020 	struct ieee80211com *ic = &sc->sc_ic;
   3021 
   3022 	if (ic->ic_state != IEEE80211_S_RUN)
   3023 		return;
   3024 
   3025 	if (linkstatus & ATW_INTR_LINKON) {
   3026 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
   3027 		sc->sc_rescan_timer = 0;
   3028 	} else if (linkstatus & ATW_INTR_LINKOFF) {
   3029 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
   3030 		if (ic->ic_opmode != IEEE80211_M_STA)
   3031 			return;
   3032 		sc->sc_rescan_timer = 3;
   3033 		sc->sc_if.if_timer = 1;
   3034 	}
   3035 }
   3036 
   3037 static inline int
   3038 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
   3039 {
   3040 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
   3041 		return 0;
   3042 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
   3043 		return 0;
   3044 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
   3045 }
   3046 
   3047 /*
   3048  * atw_rxintr:
   3049  *
   3050  *	Helper; handle receive interrupts.
   3051  */
   3052 void
   3053 atw_rxintr(struct atw_softc *sc)
   3054 {
   3055 	static int rate_tbl[] = {2, 4, 11, 22, 44};
   3056 	struct ieee80211com *ic = &sc->sc_ic;
   3057 	struct ieee80211_node *ni;
   3058 	struct ieee80211_frame_min *wh;
   3059 	struct ifnet *ifp = &sc->sc_if;
   3060 	struct atw_rxsoft *rxs;
   3061 	struct mbuf *m;
   3062 	u_int32_t rxstat;
   3063 	int i, len, rate, rate0;
   3064 	u_int32_t rssi, rssi0;
   3065 
   3066 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
   3067 		rxs = &sc->sc_rxsoft[i];
   3068 
   3069 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3070 
   3071 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
   3072 		rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
   3073 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
   3074 
   3075 		if (rxstat & ATW_RXSTAT_OWN)
   3076 			break; /* We have processed all receive buffers. */
   3077 
   3078 		DPRINTF3(sc,
   3079 		    ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
   3080 		    sc->sc_dev.dv_xname,
   3081 		    rxstat, rssi0,
   3082 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
   3083 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
   3084 
   3085 		/*
   3086 		 * Make sure the packet fits in one buffer.  This should
   3087 		 * always be the case.
   3088 		 */
   3089 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
   3090 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
   3091 			printf("%s: incoming packet spilled, resetting\n",
   3092 			    sc->sc_dev.dv_xname);
   3093 			(void)atw_init(ifp);
   3094 			return;
   3095 		}
   3096 
   3097 		/*
   3098 		 * If an error occurred, update stats, clear the status
   3099 		 * word, and leave the packet buffer in place.  It will
   3100 		 * simply be reused the next time the ring comes around.
   3101 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
   3102 		 * error.
   3103 		 */
   3104 
   3105 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
   3106 		    ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
   3107 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
   3108 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
   3109 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
   3110 				ATW_RXSTAT_ICVE)) != 0)) {
   3111 #define	PRINTERR(bit, str)						\
   3112 			if (rxstat & (bit))				\
   3113 				printf("%s: receive error: %s\n",	\
   3114 				    sc->sc_dev.dv_xname, str)
   3115 			ifp->if_ierrors++;
   3116 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
   3117 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
   3118 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
   3119 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
   3120 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
   3121 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
   3122 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
   3123 #undef PRINTERR
   3124 			ATW_INIT_RXDESC(sc, i);
   3125 			continue;
   3126 		}
   3127 
   3128 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3129 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3130 
   3131 		/*
   3132 		 * No errors; receive the packet.  Note the ADM8211
   3133 		 * includes the CRC in promiscuous mode.
   3134 		 */
   3135 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
   3136 
   3137 		/*
   3138 		 * Allocate a new mbuf cluster.  If that fails, we are
   3139 		 * out of memory, and must drop the packet and recycle
   3140 		 * the buffer that's already attached to this descriptor.
   3141 		 */
   3142 		m = rxs->rxs_mbuf;
   3143 		if (atw_add_rxbuf(sc, i) != 0) {
   3144 			ifp->if_ierrors++;
   3145 			ATW_INIT_RXDESC(sc, i);
   3146 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3147 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3148 			continue;
   3149 		}
   3150 
   3151 		ifp->if_ipackets++;
   3152 		if (sc->sc_opmode & ATW_NAR_PR)
   3153 			len -= IEEE80211_CRC_LEN;
   3154 		m->m_pkthdr.rcvif = ifp;
   3155 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
   3156 
   3157 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
   3158 			rate = 0;
   3159 		else
   3160 			rate = rate_tbl[rate0];
   3161 
   3162 		/* The RSSI comes straight from a register in the
   3163 		 * baseband processor.  I know that for the RF3000,
   3164 		 * the RSSI register also contains the antenna-selection
   3165 		 * bits.  Mask those off.
   3166 		 *
   3167 		 * TBD Treat other basebands.
   3168 		 */
   3169 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
   3170 			rssi = rssi0 & RF3000_RSSI_MASK;
   3171 		else
   3172 			rssi = rssi0;
   3173 
   3174  #if NBPFILTER > 0
   3175 		/* Pass this up to any BPF listeners. */
   3176 		if (sc->sc_radiobpf != NULL) {
   3177 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
   3178 
   3179 			tap->ar_rate = rate;
   3180 			tap->ar_chan_freq = ic->ic_curchan->ic_freq;
   3181 			tap->ar_chan_flags = ic->ic_curchan->ic_flags;
   3182 
   3183 			/* TBD verify units are dB */
   3184 			tap->ar_antsignal = (int)rssi;
   3185 			/* TBD tap->ar_flags */
   3186 
   3187 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3188 			    tap->ar_ihdr.it_len, m);
   3189  		}
   3190  #endif /* NPBFILTER > 0 */
   3191 
   3192 		wh = mtod(m, struct ieee80211_frame_min *);
   3193 		ni = ieee80211_find_rxnode(ic, wh);
   3194 		if (atw_hw_decrypted(sc, wh)) {
   3195 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
   3196 			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
   3197 		}
   3198 		ieee80211_input(ic, m, ni, (int)rssi, 0);
   3199 		ieee80211_free_node(ni);
   3200 	}
   3201 
   3202 	/* Update the receive pointer. */
   3203 	sc->sc_rxptr = i;
   3204 }
   3205 
   3206 /*
   3207  * atw_txintr:
   3208  *
   3209  *	Helper; handle transmit interrupts.
   3210  */
   3211 void
   3212 atw_txintr(struct atw_softc *sc)
   3213 {
   3214 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
   3215     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
   3216 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
   3217     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
   3218 
   3219 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
   3220 	struct ifnet *ifp = &sc->sc_if;
   3221 	struct atw_txsoft *txs;
   3222 	u_int32_t txstat;
   3223 
   3224 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
   3225 	    sc->sc_dev.dv_xname, sc->sc_flags));
   3226 
   3227 	/*
   3228 	 * Go through our Tx list and free mbufs for those
   3229 	 * frames that have been transmitted.
   3230 	 */
   3231 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   3232 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   3233 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3234 
   3235 #ifdef ATW_DEBUG
   3236 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3237 			int i;
   3238 			printf("    txsoft %p transmit chain:\n", txs);
   3239 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
   3240 			    txs->txs_ndescs - 1,
   3241 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   3242 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
   3243 				printf("     descriptor %d:\n", i);
   3244 				printf("       at_status:   0x%08x\n",
   3245 				    le32toh(sc->sc_txdescs[i].at_stat));
   3246 				printf("       at_flags:      0x%08x\n",
   3247 				    le32toh(sc->sc_txdescs[i].at_flags));
   3248 				printf("       at_buf1: 0x%08x\n",
   3249 				    le32toh(sc->sc_txdescs[i].at_buf1));
   3250 				printf("       at_buf2: 0x%08x\n",
   3251 				    le32toh(sc->sc_txdescs[i].at_buf2));
   3252 				if (i == txs->txs_lastdesc)
   3253 					break;
   3254 			}
   3255 		}
   3256 #endif
   3257 
   3258 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
   3259 		if (txstat & ATW_TXSTAT_OWN)
   3260 			break;
   3261 
   3262 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   3263 
   3264 		sc->sc_txfree += txs->txs_ndescs;
   3265 
   3266 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   3267 		    0, txs->txs_dmamap->dm_mapsize,
   3268 		    BUS_DMASYNC_POSTWRITE);
   3269 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   3270 		m_freem(txs->txs_mbuf);
   3271 		txs->txs_mbuf = NULL;
   3272 
   3273 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   3274 
   3275 		ifp->if_flags &= ~IFF_OACTIVE;
   3276 
   3277 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   3278 		    (txstat & TXSTAT_ERRMASK) != 0) {
   3279 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
   3280 			    txstat_buf, sizeof(txstat_buf));
   3281 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
   3282 			    txstat_buf,
   3283 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
   3284 		}
   3285 
   3286 		/*
   3287 		 * Check for errors and collisions.
   3288 		 */
   3289 		if (txstat & ATW_TXSTAT_TUF)
   3290 			sc->sc_stats.ts_tx_tuf++;
   3291 		if (txstat & ATW_TXSTAT_TLT)
   3292 			sc->sc_stats.ts_tx_tlt++;
   3293 		if (txstat & ATW_TXSTAT_TRT)
   3294 			sc->sc_stats.ts_tx_trt++;
   3295 		if (txstat & ATW_TXSTAT_TRO)
   3296 			sc->sc_stats.ts_tx_tro++;
   3297 		if (txstat & ATW_TXSTAT_SOFBR) {
   3298 			sc->sc_stats.ts_tx_sofbr++;
   3299 		}
   3300 
   3301 		if ((txstat & ATW_TXSTAT_ES) == 0)
   3302 			ifp->if_collisions +=
   3303 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
   3304 		else
   3305 			ifp->if_oerrors++;
   3306 
   3307 		ifp->if_opackets++;
   3308 	}
   3309 
   3310 	/*
   3311 	 * If there are no more pending transmissions, cancel the watchdog
   3312 	 * timer.
   3313 	 */
   3314 	if (txs == NULL)
   3315 		sc->sc_tx_timer = 0;
   3316 #undef TXSTAT_ERRMASK
   3317 #undef TXSTAT_FMT
   3318 }
   3319 
   3320 /*
   3321  * atw_watchdog:	[ifnet interface function]
   3322  *
   3323  *	Watchdog timer handler.
   3324  */
   3325 void
   3326 atw_watchdog(struct ifnet *ifp)
   3327 {
   3328 	struct atw_softc *sc = ifp->if_softc;
   3329 	struct ieee80211com *ic = &sc->sc_ic;
   3330 
   3331 	ifp->if_timer = 0;
   3332 	if (ATW_IS_ENABLED(sc) == 0)
   3333 		return;
   3334 
   3335 	if (sc->sc_rescan_timer) {
   3336 		if (--sc->sc_rescan_timer == 0)
   3337 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3338 	}
   3339 	if (sc->sc_tx_timer) {
   3340 		if (--sc->sc_tx_timer == 0 &&
   3341 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
   3342 			printf("%s: transmit timeout\n", ifp->if_xname);
   3343 			ifp->if_oerrors++;
   3344 			(void)atw_init(ifp);
   3345 			atw_start(ifp);
   3346 		}
   3347 	}
   3348 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
   3349 		ifp->if_timer = 1;
   3350 	ieee80211_watchdog(ic);
   3351 }
   3352 
   3353 /* Compute the 802.11 Duration field and the PLCP Length fields for
   3354  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
   3355  * Write the fields to the ADM8211 Tx header, frm.
   3356  *
   3357  * TBD use the fragmentation threshold to find the right duration for
   3358  * the first & last fragments.
   3359  *
   3360  * TBD make certain of the duration fields applied by the ADM8211 to each
   3361  * fragment. I think that the ADM8211 knows how to subtract the CTS
   3362  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
   3363  * I also think that the ADM8211 does *some* arithmetic for us, because
   3364  * otherwise I think we would have to set a first duration for CTS/first
   3365  * fragment, a second duration for fragments between the first and the
   3366  * last, and a third duration for the last fragment.
   3367  *
   3368  * TBD make certain that duration fields reflect addition of FCS/WEP
   3369  * and correct duration arithmetic as necessary.
   3370  */
   3371 static void
   3372 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
   3373     int len)
   3374 {
   3375 	int remainder;
   3376 
   3377 	/* deal also with encrypted fragments */
   3378 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
   3379 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
   3380 		    sc->sc_dev.dv_xname));
   3381 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
   3382 		       IEEE80211_WEP_CRCLEN;
   3383 	}
   3384 
   3385 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
   3386 	 * duration (XXX added by MAC?).
   3387 	 */
   3388 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
   3389 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
   3390 
   3391 	if (rate <= 4)
   3392 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
   3393 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3394 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3395 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3396 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
   3397 	else
   3398 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
   3399 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
   3400 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
   3401 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
   3402 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
   3403 
   3404 	/* lengthen duration if long preamble */
   3405 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
   3406 		frm->atw_head_dur +=
   3407 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
   3408 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
   3409 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
   3410 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
   3411 
   3412 	if (remainder != 0)
   3413 		frm->atw_head_dur++;
   3414 
   3415 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
   3416 	    (rate == 2 || rate == 4)) {
   3417 		/* derived from Linux: how could this be right? */
   3418 		frm->atw_head_plcplen = frm->atw_head_dur;
   3419 	} else {
   3420 		frm->atw_head_plcplen = (16 * len) / rate;
   3421 		remainder = (80 * len) % (rate * 5);
   3422 
   3423 		if (remainder != 0) {
   3424 			frm->atw_head_plcplen++;
   3425 
   3426 			/* XXX magic */
   3427 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
   3428 			    rate == 22 && remainder <= 30)
   3429 				frm->atw_head_plcplen |= 0x8000;
   3430 		}
   3431 	}
   3432 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
   3433 	    htole16(frm->atw_head_plcplen);
   3434 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
   3435 }
   3436 
   3437 #ifdef ATW_DEBUG
   3438 static void
   3439 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
   3440 {
   3441 	struct atw_softc *sc = ifp->if_softc;
   3442 	struct mbuf *m;
   3443 	int i, noctets = 0;
   3444 
   3445 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
   3446 	    m0->m_pkthdr.len);
   3447 
   3448 	for (m = m0; m; m = m->m_next) {
   3449 		if (m->m_len == 0)
   3450 			continue;
   3451 		for (i = 0; i < m->m_len; i++) {
   3452 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
   3453 			if (++noctets % 24 == 0)
   3454 				printf("\n");
   3455 		}
   3456 	}
   3457 	printf("%s%s: %d bytes emitted\n",
   3458 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
   3459 }
   3460 #endif /* ATW_DEBUG */
   3461 
   3462 /*
   3463  * atw_start:		[ifnet interface function]
   3464  *
   3465  *	Start packet transmission on the interface.
   3466  */
   3467 void
   3468 atw_start(struct ifnet *ifp)
   3469 {
   3470 	struct atw_softc *sc = ifp->if_softc;
   3471 	struct ieee80211com *ic = &sc->sc_ic;
   3472 	struct ieee80211_node *ni;
   3473 	struct ieee80211_frame *wh;
   3474 	struct atw_frame *hh;
   3475 	struct mbuf *m0, *m;
   3476 	struct atw_txsoft *txs, *last_txs;
   3477 	struct atw_txdesc *txd;
   3478 	int do_encrypt, rate;
   3479 	bus_dmamap_t dmamap;
   3480 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
   3481 
   3482 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
   3483 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
   3484 
   3485 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   3486 		return;
   3487 
   3488 	/*
   3489 	 * Remember the previous number of free descriptors and
   3490 	 * the first descriptor we'll use.
   3491 	 */
   3492 	ofree = sc->sc_txfree;
   3493 	firsttx = sc->sc_txnext;
   3494 
   3495 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
   3496 	    sc->sc_dev.dv_xname, ofree, firsttx));
   3497 
   3498 	/*
   3499 	 * Loop through the send queue, setting up transmit descriptors
   3500 	 * until we drain the queue, or use up all available transmit
   3501 	 * descriptors.
   3502 	 */
   3503 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   3504 	       sc->sc_txfree != 0) {
   3505 
   3506 		/*
   3507 		 * Grab a packet off the management queue, if it
   3508 		 * is not empty. Otherwise, from the data queue.
   3509 		 */
   3510 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   3511 		if (m0 != NULL) {
   3512 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   3513 			m0->m_pkthdr.rcvif = NULL;
   3514 		} else {
   3515 			/* send no data packets until we are associated */
   3516 			if (ic->ic_state != IEEE80211_S_RUN)
   3517 				break;
   3518 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   3519 			if (m0 == NULL)
   3520 				break;
   3521 #if NBPFILTER > 0
   3522 			if (ifp->if_bpf != NULL)
   3523 				bpf_mtap(ifp->if_bpf, m0);
   3524 #endif /* NBPFILTER > 0 */
   3525 			ni = ieee80211_find_txnode(ic,
   3526 			    mtod(m0, struct ether_header *)->ether_dhost);
   3527 			if (ni == NULL) {
   3528 				ifp->if_oerrors++;
   3529 				break;
   3530 			}
   3531 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
   3532 				ieee80211_free_node(ni);
   3533 				ifp->if_oerrors++;
   3534 				break;
   3535 			}
   3536 		}
   3537 
   3538 		rate = MAX(ieee80211_get_rate(ic), 2);
   3539 
   3540 #if NBPFILTER > 0
   3541 		/*
   3542 		 * Pass the packet to any BPF listeners.
   3543 		 */
   3544 		if (ic->ic_rawbpf != NULL)
   3545 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
   3546 
   3547 		if (sc->sc_radiobpf != NULL) {
   3548 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
   3549 
   3550 			tap->at_rate = rate;
   3551 			tap->at_chan_freq = ic->ic_curchan->ic_freq;
   3552 			tap->at_chan_flags = ic->ic_curchan->ic_flags;
   3553 
   3554 			/* TBD tap->at_flags */
   3555 
   3556 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
   3557 			    tap->at_ihdr.it_len, m0);
   3558 		}
   3559 #endif /* NBPFILTER > 0 */
   3560 
   3561 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
   3562 
   3563 		if (ni != NULL)
   3564 			ieee80211_free_node(ni);
   3565 
   3566 		if (m0 == NULL) {
   3567 			ifp->if_oerrors++;
   3568 			break;
   3569 		}
   3570 
   3571 		/* just to make sure. */
   3572 		m0 = m_pullup(m0, sizeof(struct atw_frame));
   3573 
   3574 		if (m0 == NULL) {
   3575 			ifp->if_oerrors++;
   3576 			break;
   3577 		}
   3578 
   3579 		hh = mtod(m0, struct atw_frame *);
   3580 		wh = &hh->atw_ihdr;
   3581 
   3582 		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
   3583 
   3584 		/* Copy everything we need from the 802.11 header:
   3585 		 * Frame Control; address 1, address 3, or addresses
   3586 		 * 3 and 4. NIC fills in BSSID, SA.
   3587 		 */
   3588 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
   3589 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
   3590 				panic("%s: illegal WDS frame",
   3591 				    sc->sc_dev.dv_xname);
   3592 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
   3593 		} else
   3594 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
   3595 
   3596 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
   3597 
   3598 		/* initialize remaining Tx parameters */
   3599 		memset(&hh->u, 0, sizeof(hh->u));
   3600 
   3601 		hh->atw_rate = rate * 5;
   3602 		/* XXX this could be incorrect if M_FCS. _encap should
   3603 		 * probably strip FCS just in case it sticks around in
   3604 		 * bridged packets.
   3605 		 */
   3606 		hh->atw_service = 0x00; /* XXX guess */
   3607 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
   3608 		    sizeof(struct atw_frame));
   3609 
   3610 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3611 		hh->atw_rtylmt = 3;
   3612 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
   3613 		if (do_encrypt) {
   3614 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
   3615 			hh->atw_keyid = ic->ic_def_txkey;
   3616 		}
   3617 
   3618 		/* TBD 4-addr frames */
   3619 		atw_frame_setdurs(sc, hh, rate,
   3620 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
   3621 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
   3622 
   3623 		/* never fragment multicast frames */
   3624 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
   3625 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
   3626 		} else if (sc->sc_flags & ATWF_RTSCTS) {
   3627 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
   3628 		}
   3629 
   3630 #ifdef ATW_DEBUG
   3631 		hh->atw_fragnum = 0;
   3632 
   3633 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3634 			printf("%s: dst = %s, rate = 0x%02x, "
   3635 			    "service = 0x%02x, paylen = 0x%04x\n",
   3636 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
   3637 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
   3638 
   3639 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
   3640 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
   3641 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
   3642 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
   3643 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
   3644 			    hh->atw_tail_dur, hh->atw_head_dur);
   3645 
   3646 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
   3647 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
   3648 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
   3649 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
   3650 
   3651 			printf("%s: keyid = %d\n",
   3652 			    sc->sc_dev.dv_xname, hh->atw_keyid);
   3653 
   3654 			atw_dump_pkt(ifp, m0);
   3655 		}
   3656 #endif /* ATW_DEBUG */
   3657 
   3658 		dmamap = txs->txs_dmamap;
   3659 
   3660 		/*
   3661 		 * Load the DMA map.  Copy and try (once) again if the packet
   3662 		 * didn't fit in the alloted number of segments.
   3663 		 */
   3664 		for (first = 1;
   3665 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   3666 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
   3667 		     first = 0) {
   3668 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   3669 			if (m == NULL) {
   3670 				printf("%s: unable to allocate Tx mbuf\n",
   3671 				    sc->sc_dev.dv_xname);
   3672 				break;
   3673 			}
   3674 			if (m0->m_pkthdr.len > MHLEN) {
   3675 				MCLGET(m, M_DONTWAIT);
   3676 				if ((m->m_flags & M_EXT) == 0) {
   3677 					printf("%s: unable to allocate Tx "
   3678 					    "cluster\n", sc->sc_dev.dv_xname);
   3679 					m_freem(m);
   3680 					break;
   3681 				}
   3682 			}
   3683 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   3684 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   3685 			m_freem(m0);
   3686 			m0 = m;
   3687 			m = NULL;
   3688 		}
   3689 		if (error != 0) {
   3690 			printf("%s: unable to load Tx buffer, "
   3691 			    "error = %d\n", sc->sc_dev.dv_xname, error);
   3692 			m_freem(m0);
   3693 			break;
   3694 		}
   3695 
   3696 		/*
   3697 		 * Ensure we have enough descriptors free to describe
   3698 		 * the packet.
   3699 		 */
   3700 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   3701 			/*
   3702 			 * Not enough free descriptors to transmit
   3703 			 * this packet.  Unload the DMA map and
   3704 			 * drop the packet.  Notify the upper layer
   3705 			 * that there are no more slots left.
   3706 			 *
   3707 			 * XXX We could allocate an mbuf and copy, but
   3708 			 * XXX it is worth it?
   3709 			 */
   3710 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   3711 			m_freem(m0);
   3712 			break;
   3713 		}
   3714 
   3715 		/*
   3716 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   3717 		 */
   3718 
   3719 		/* Sync the DMA map. */
   3720 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   3721 		    BUS_DMASYNC_PREWRITE);
   3722 
   3723 		/* XXX arbitrary retry limit; 8 because I have seen it in
   3724 		 * use already and maybe 0 means "no tries" !
   3725 		 */
   3726 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
   3727 
   3728 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
   3729 		    sc->sc_dev.dv_xname, rate * 5));
   3730 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
   3731 
   3732 		/*
   3733 		 * Initialize the transmit descriptors.
   3734 		 */
   3735 		for (nexttx = sc->sc_txnext, seg = 0;
   3736 		     seg < dmamap->dm_nsegs;
   3737 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
   3738 			/*
   3739 			 * If this is the first descriptor we're
   3740 			 * enqueueing, don't set the OWN bit just
   3741 			 * yet.  That could cause a race condition.
   3742 			 * We'll do it below.
   3743 			 */
   3744 			txd = &sc->sc_txdescs[nexttx];
   3745 			txd->at_ctl = ctl |
   3746 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
   3747 
   3748 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
   3749 			txd->at_flags =
   3750 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
   3751 			                   ATW_TXFLAG_TBS1_MASK)) |
   3752 			    ((nexttx == (ATW_NTXDESC - 1))
   3753 			        ? htole32(ATW_TXFLAG_TER) : 0);
   3754 			lasttx = nexttx;
   3755 		}
   3756 
   3757 		IASSERT(lasttx != -1, ("bad lastx"));
   3758 		/* Set `first segment' and `last segment' appropriately. */
   3759 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
   3760 		    htole32(ATW_TXFLAG_FS);
   3761 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
   3762 
   3763 #ifdef ATW_DEBUG
   3764 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
   3765 			printf("     txsoft %p transmit chain:\n", txs);
   3766 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
   3767 				printf("     descriptor %d:\n", seg);
   3768 				printf("       at_ctl:   0x%08x\n",
   3769 				    le32toh(sc->sc_txdescs[seg].at_ctl));
   3770 				printf("       at_flags:      0x%08x\n",
   3771 				    le32toh(sc->sc_txdescs[seg].at_flags));
   3772 				printf("       at_buf1: 0x%08x\n",
   3773 				    le32toh(sc->sc_txdescs[seg].at_buf1));
   3774 				printf("       at_buf2: 0x%08x\n",
   3775 				    le32toh(sc->sc_txdescs[seg].at_buf2));
   3776 				if (seg == lasttx)
   3777 					break;
   3778 			}
   3779 		}
   3780 #endif
   3781 
   3782 		/* Sync the descriptors we're using. */
   3783 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   3784 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3785 
   3786 		/*
   3787 		 * Store a pointer to the packet so we can free it later,
   3788 		 * and remember what txdirty will be once the packet is
   3789 		 * done.
   3790 		 */
   3791 		txs->txs_mbuf = m0;
   3792 		txs->txs_firstdesc = sc->sc_txnext;
   3793 		txs->txs_lastdesc = lasttx;
   3794 		txs->txs_ndescs = dmamap->dm_nsegs;
   3795 
   3796 		/* Advance the tx pointer. */
   3797 		sc->sc_txfree -= dmamap->dm_nsegs;
   3798 		sc->sc_txnext = nexttx;
   3799 
   3800 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   3801 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   3802 
   3803 		last_txs = txs;
   3804 	}
   3805 
   3806 	if (txs == NULL || sc->sc_txfree == 0) {
   3807 		/* No more slots left; notify upper layer. */
   3808 		ifp->if_flags |= IFF_OACTIVE;
   3809 	}
   3810 
   3811 	if (sc->sc_txfree != ofree) {
   3812 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   3813 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   3814 		/*
   3815 		 * Cause a transmit interrupt to happen on the
   3816 		 * last packet we enqueued.
   3817 		 */
   3818 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
   3819 		ATW_CDTXSYNC(sc, lasttx, 1,
   3820 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3821 
   3822 		/*
   3823 		 * The entire packet chain is set up.  Give the
   3824 		 * first descriptor to the chip now.
   3825 		 */
   3826 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
   3827 		ATW_CDTXSYNC(sc, firsttx, 1,
   3828 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   3829 
   3830 		/* Wake up the transmitter. */
   3831 		ATW_WRITE(sc, ATW_TDR, 0x1);
   3832 
   3833 		/* Set a watchdog timer in case the chip flakes out. */
   3834 		sc->sc_tx_timer = 5;
   3835 		ifp->if_timer = 1;
   3836 	}
   3837 }
   3838 
   3839 /*
   3840  * atw_power:
   3841  *
   3842  *	Power management (suspend/resume) hook.
   3843  */
   3844 void
   3845 atw_power(int why, void *arg)
   3846 {
   3847 	struct atw_softc *sc = arg;
   3848 	struct ifnet *ifp = &sc->sc_if;
   3849 	int s;
   3850 
   3851 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
   3852 
   3853 	s = splnet();
   3854 	switch (why) {
   3855 	case PWR_STANDBY:
   3856 		/* XXX do nothing. */
   3857 		break;
   3858 	case PWR_SUSPEND:
   3859 		atw_stop(ifp, 0);
   3860 		if (sc->sc_power != NULL)
   3861 			(*sc->sc_power)(sc, why);
   3862 		break;
   3863 	case PWR_RESUME:
   3864 		if (ifp->if_flags & IFF_UP) {
   3865 			if (sc->sc_power != NULL)
   3866 				(*sc->sc_power)(sc, why);
   3867 			atw_init(ifp);
   3868 		}
   3869 		break;
   3870 	case PWR_SOFTSUSPEND:
   3871 	case PWR_SOFTSTANDBY:
   3872 	case PWR_SOFTRESUME:
   3873 		break;
   3874 	}
   3875 	splx(s);
   3876 }
   3877 
   3878 /*
   3879  * atw_ioctl:		[ifnet interface function]
   3880  *
   3881  *	Handle control requests from the operator.
   3882  */
   3883 int
   3884 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   3885 {
   3886 	struct atw_softc *sc = ifp->if_softc;
   3887 	struct ifreq *ifr = (struct ifreq *)data;
   3888 	int s, error = 0;
   3889 
   3890 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
   3891 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   3892 		return ENXIO;
   3893 
   3894 	s = splnet();
   3895 
   3896 	switch (cmd) {
   3897 	case SIOCSIFFLAGS:
   3898 		if (ifp->if_flags & IFF_UP) {
   3899 			if (ATW_IS_ENABLED(sc)) {
   3900 				/*
   3901 				 * To avoid rescanning another access point,
   3902 				 * do not call atw_init() here.  Instead,
   3903 				 * only reflect media settings.
   3904 				 */
   3905 				atw_filter_setup(sc);
   3906 			} else
   3907 				error = atw_init(ifp);
   3908 		} else if (ATW_IS_ENABLED(sc))
   3909 			atw_stop(ifp, 1);
   3910 		break;
   3911 	case SIOCADDMULTI:
   3912 	case SIOCDELMULTI:
   3913 		error = (cmd == SIOCADDMULTI) ?
   3914 		    ether_addmulti(ifr, &sc->sc_ec) :
   3915 		    ether_delmulti(ifr, &sc->sc_ec);
   3916 		if (error == ENETRESET) {
   3917 			if (ifp->if_flags & IFF_RUNNING)
   3918 				atw_filter_setup(sc); /* do not rescan */
   3919 			error = 0;
   3920 		}
   3921 		break;
   3922 	default:
   3923 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
   3924 		if (error == ENETRESET) {
   3925 			if (ATW_IS_ENABLED(sc))
   3926 				error = atw_init(ifp);
   3927 			else
   3928 				error = 0;
   3929 		}
   3930 		break;
   3931 	}
   3932 
   3933 	/* Try to get more packets going. */
   3934 	if (ATW_IS_ENABLED(sc))
   3935 		atw_start(ifp);
   3936 
   3937 	splx(s);
   3938 	return (error);
   3939 }
   3940 
   3941 static int
   3942 atw_media_change(struct ifnet *ifp)
   3943 {
   3944 	int error;
   3945 
   3946 	error = ieee80211_media_change(ifp);
   3947 	if (error == ENETRESET) {
   3948 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   3949 		    (IFF_RUNNING|IFF_UP))
   3950 			atw_init(ifp);		/* XXX lose error */
   3951 		error = 0;
   3952 	}
   3953 	return error;
   3954 }
   3955 
   3956 static void
   3957 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
   3958 {
   3959 	struct atw_softc *sc = ifp->if_softc;
   3960 
   3961 	if (ATW_IS_ENABLED(sc) == 0) {
   3962 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
   3963 		imr->ifm_status = 0;
   3964 		return;
   3965 	}
   3966 	ieee80211_media_status(ifp, imr);
   3967 }
   3968