atw.c revision 1.94 1 /* $NetBSD: atw.c,v 1.94 2005/12/29 21:32:06 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.94 2005/12/29 21:32:06 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_netbsd.h>
70 #include <net80211/ieee80211_var.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162
163 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
166 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
167 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
171 static void atw_print_regs(struct atw_softc *, const char *);
172
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 # ifdef ATW_BBPDEBUG
175 static void atw_rf3000_print(struct atw_softc *);
176 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177 # endif /* ATW_BBPDEBUG */
178
179 # ifdef ATW_SYNDEBUG
180 static void atw_si4126_print(struct atw_softc *);
181 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
182 # endif /* ATW_SYNDEBUG */
183
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define DPRINTF(sc, x) /* nothing */
189 #define DPRINTF2(sc, x) /* nothing */
190 #define DPRINTF3(sc, x) /* nothing */
191 #endif
192
193 /* ifnet methods */
194 int atw_init(struct ifnet *);
195 int atw_ioctl(struct ifnet *, u_long, caddr_t);
196 void atw_start(struct ifnet *);
197 void atw_stop(struct ifnet *, int);
198 void atw_watchdog(struct ifnet *);
199
200 /* Device attachment */
201 void atw_attach(struct atw_softc *);
202 int atw_detach(struct atw_softc *);
203
204 /* Rx/Tx process */
205 int atw_add_rxbuf(struct atw_softc *, int);
206 void atw_idle(struct atw_softc *, u_int32_t);
207 void atw_rxdrain(struct atw_softc *);
208 void atw_txdrain(struct atw_softc *);
209
210 /* Device (de)activation and power state */
211 void atw_disable(struct atw_softc *);
212 int atw_enable(struct atw_softc *);
213 void atw_power(int, void *);
214 void atw_reset(struct atw_softc *);
215 void atw_shutdown(void *);
216
217 /* Interrupt handlers */
218 void atw_linkintr(struct atw_softc *, u_int32_t);
219 void atw_rxintr(struct atw_softc *);
220 void atw_txintr(struct atw_softc *);
221
222 /* 802.11 state machine */
223 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static void atw_next_scan(void *);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static int atw_tune(struct atw_softc *);
228
229 /* Device initialization */
230 static void atw_bbp_io_init(struct atw_softc *);
231 static void atw_cfp_init(struct atw_softc *);
232 static void atw_cmdr_init(struct atw_softc *);
233 static void atw_ifs_init(struct atw_softc *);
234 static void atw_nar_init(struct atw_softc *);
235 static void atw_response_times_init(struct atw_softc *);
236 static void atw_rf_reset(struct atw_softc *);
237 static void atw_test1_init(struct atw_softc *);
238 static void atw_tofs0_init(struct atw_softc *);
239 static void atw_tofs2_init(struct atw_softc *);
240 static void atw_txlmt_init(struct atw_softc *);
241 static void atw_wcsr_init(struct atw_softc *);
242
243 /* Key management */
244 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
245 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
246 const u_int8_t[IEEE80211_ADDR_LEN]);
247 static void atw_key_update_begin(struct ieee80211com *);
248 static void atw_key_update_end(struct ieee80211com *);
249
250 /* RAM/ROM utilities */
251 static void atw_clear_sram(struct atw_softc *);
252 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
253 static int atw_read_srom(struct atw_softc *);
254
255 /* BSS setup */
256 static void atw_predict_beacon(struct atw_softc *);
257 static void atw_start_beacon(struct atw_softc *, int);
258 static void atw_write_bssid(struct atw_softc *);
259 static void atw_write_ssid(struct atw_softc *);
260 static void atw_write_sup_rates(struct atw_softc *);
261 static void atw_write_wep(struct atw_softc *);
262
263 /* Media */
264 static int atw_media_change(struct ifnet *);
265 static void atw_media_status(struct ifnet *, struct ifmediareq *);
266
267 static void atw_filter_setup(struct atw_softc *);
268
269 /* 802.11 utilities */
270 static uint64_t atw_get_tsft(struct atw_softc *);
271 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
272 uint32_t);
273 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
274 static void atw_node_free(struct ieee80211_node *);
275 static void atw_change_ibss(struct atw_softc *);
276
277 /*
278 * Tuner/transceiver/modem
279 */
280 static void atw_bbp_io_enable(struct atw_softc *, int);
281
282 /* RFMD RF3000 Baseband Processor */
283 static int atw_rf3000_init(struct atw_softc *);
284 static int atw_rf3000_tune(struct atw_softc *, u_int);
285 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
286
287 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
288 static void atw_si4126_tune(struct atw_softc *, u_int);
289 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
290
291 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
292 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
293
294 const char *atw_tx_state[] = {
295 "STOPPED",
296 "RUNNING - read descriptor",
297 "RUNNING - transmitting",
298 "RUNNING - filling fifo", /* XXX */
299 "SUSPENDED",
300 "RUNNING -- write descriptor",
301 "RUNNING -- write last descriptor",
302 "RUNNING - fifo full"
303 };
304
305 const char *atw_rx_state[] = {
306 "STOPPED",
307 "RUNNING - read descriptor",
308 "RUNNING - check this packet, pre-fetch next",
309 "RUNNING - wait for reception",
310 "SUSPENDED",
311 "RUNNING - write descriptor",
312 "RUNNING - flush fifo",
313 "RUNNING - fifo drain"
314 };
315
316 int
317 atw_activate(struct device *self, enum devact act)
318 {
319 struct atw_softc *sc = (struct atw_softc *)self;
320 int rv = 0, s;
321
322 s = splnet();
323 switch (act) {
324 case DVACT_ACTIVATE:
325 rv = EOPNOTSUPP;
326 break;
327
328 case DVACT_DEACTIVATE:
329 if_deactivate(&sc->sc_if);
330 break;
331 }
332 splx(s);
333 return rv;
334 }
335
336 /*
337 * atw_enable:
338 *
339 * Enable the ADM8211 chip.
340 */
341 int
342 atw_enable(struct atw_softc *sc)
343 {
344
345 if (ATW_IS_ENABLED(sc) == 0) {
346 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
347 printf("%s: device enable failed\n",
348 sc->sc_dev.dv_xname);
349 return (EIO);
350 }
351 sc->sc_flags |= ATWF_ENABLED;
352 }
353 return (0);
354 }
355
356 /*
357 * atw_disable:
358 *
359 * Disable the ADM8211 chip.
360 */
361 void
362 atw_disable(struct atw_softc *sc)
363 {
364 if (!ATW_IS_ENABLED(sc))
365 return;
366 if (sc->sc_disable != NULL)
367 (*sc->sc_disable)(sc);
368 sc->sc_flags &= ~ATWF_ENABLED;
369 }
370
371 /* Returns -1 on failure. */
372 static int
373 atw_read_srom(struct atw_softc *sc)
374 {
375 struct seeprom_descriptor sd;
376 uint32_t test0, fail_bits;
377
378 (void)memset(&sd, 0, sizeof(sd));
379
380 test0 = ATW_READ(sc, ATW_TEST0);
381
382 switch (sc->sc_rev) {
383 case ATW_REVISION_BA:
384 case ATW_REVISION_CA:
385 fail_bits = ATW_TEST0_EPNE;
386 break;
387 default:
388 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
389 break;
390 }
391 if ((test0 & fail_bits) != 0) {
392 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
393 return -1;
394 }
395
396 switch (test0 & ATW_TEST0_EPTYP_MASK) {
397 case ATW_TEST0_EPTYP_93c66:
398 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
399 sc->sc_sromsz = 512;
400 sd.sd_chip = C56_66;
401 break;
402 case ATW_TEST0_EPTYP_93c46:
403 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
404 sc->sc_sromsz = 128;
405 sd.sd_chip = C46;
406 break;
407 default:
408 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
409 MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
410 return -1;
411 }
412
413 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
414
415 if (sc->sc_srom == NULL) {
416 printf("%s: unable to allocate SROM buffer\n",
417 sc->sc_dev.dv_xname);
418 return -1;
419 }
420
421 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
422
423 /* ADM8211 has a single 32-bit register for controlling the
424 * 93cx6 SROM. Bit SRS enables the serial port. There is no
425 * "ready" bit. The ADM8211 input/output sense is the reverse
426 * of read_seeprom's.
427 */
428 sd.sd_tag = sc->sc_st;
429 sd.sd_bsh = sc->sc_sh;
430 sd.sd_regsize = 4;
431 sd.sd_control_offset = ATW_SPR;
432 sd.sd_status_offset = ATW_SPR;
433 sd.sd_dataout_offset = ATW_SPR;
434 sd.sd_CK = ATW_SPR_SCLK;
435 sd.sd_CS = ATW_SPR_SCS;
436 sd.sd_DI = ATW_SPR_SDO;
437 sd.sd_DO = ATW_SPR_SDI;
438 sd.sd_MS = ATW_SPR_SRS;
439 sd.sd_RDY = 0;
440
441 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
442 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
443 free(sc->sc_srom, M_DEVBUF);
444 return -1;
445 }
446 #ifdef ATW_DEBUG
447 {
448 int i;
449 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
450 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
451 if (((i % 8) == 0) && (i != 0)) {
452 ATW_DPRINTF(("\n\t"));
453 }
454 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
455 }
456 ATW_DPRINTF(("\n"));
457 }
458 #endif /* ATW_DEBUG */
459 return 0;
460 }
461
462 #ifdef ATW_DEBUG
463 static void
464 atw_print_regs(struct atw_softc *sc, const char *where)
465 {
466 #define PRINTREG(sc, reg) \
467 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
468 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
469
470 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
471
472 PRINTREG(sc, ATW_PAR);
473 PRINTREG(sc, ATW_FRCTL);
474 PRINTREG(sc, ATW_TDR);
475 PRINTREG(sc, ATW_WTDP);
476 PRINTREG(sc, ATW_RDR);
477 PRINTREG(sc, ATW_WRDP);
478 PRINTREG(sc, ATW_RDB);
479 PRINTREG(sc, ATW_CSR3A);
480 PRINTREG(sc, ATW_TDBD);
481 PRINTREG(sc, ATW_TDBP);
482 PRINTREG(sc, ATW_STSR);
483 PRINTREG(sc, ATW_CSR5A);
484 PRINTREG(sc, ATW_NAR);
485 PRINTREG(sc, ATW_CSR6A);
486 PRINTREG(sc, ATW_IER);
487 PRINTREG(sc, ATW_CSR7A);
488 PRINTREG(sc, ATW_LPC);
489 PRINTREG(sc, ATW_TEST1);
490 PRINTREG(sc, ATW_SPR);
491 PRINTREG(sc, ATW_TEST0);
492 PRINTREG(sc, ATW_WCSR);
493 PRINTREG(sc, ATW_WPDR);
494 PRINTREG(sc, ATW_GPTMR);
495 PRINTREG(sc, ATW_GPIO);
496 PRINTREG(sc, ATW_BBPCTL);
497 PRINTREG(sc, ATW_SYNCTL);
498 PRINTREG(sc, ATW_PLCPHD);
499 PRINTREG(sc, ATW_MMIWADDR);
500 PRINTREG(sc, ATW_MMIRADDR1);
501 PRINTREG(sc, ATW_MMIRADDR2);
502 PRINTREG(sc, ATW_TXBR);
503 PRINTREG(sc, ATW_CSR15A);
504 PRINTREG(sc, ATW_ALCSTAT);
505 PRINTREG(sc, ATW_TOFS2);
506 PRINTREG(sc, ATW_CMDR);
507 PRINTREG(sc, ATW_PCIC);
508 PRINTREG(sc, ATW_PMCSR);
509 PRINTREG(sc, ATW_PAR0);
510 PRINTREG(sc, ATW_PAR1);
511 PRINTREG(sc, ATW_MAR0);
512 PRINTREG(sc, ATW_MAR1);
513 PRINTREG(sc, ATW_ATIMDA0);
514 PRINTREG(sc, ATW_ABDA1);
515 PRINTREG(sc, ATW_BSSID0);
516 PRINTREG(sc, ATW_TXLMT);
517 PRINTREG(sc, ATW_MIBCNT);
518 PRINTREG(sc, ATW_BCNT);
519 PRINTREG(sc, ATW_TSFTH);
520 PRINTREG(sc, ATW_TSC);
521 PRINTREG(sc, ATW_SYNRF);
522 PRINTREG(sc, ATW_BPLI);
523 PRINTREG(sc, ATW_CAP0);
524 PRINTREG(sc, ATW_CAP1);
525 PRINTREG(sc, ATW_RMD);
526 PRINTREG(sc, ATW_CFPP);
527 PRINTREG(sc, ATW_TOFS0);
528 PRINTREG(sc, ATW_TOFS1);
529 PRINTREG(sc, ATW_IFST);
530 PRINTREG(sc, ATW_RSPT);
531 PRINTREG(sc, ATW_TSFTL);
532 PRINTREG(sc, ATW_WEPCTL);
533 PRINTREG(sc, ATW_WESK);
534 PRINTREG(sc, ATW_WEPCNT);
535 PRINTREG(sc, ATW_MACTEST);
536 PRINTREG(sc, ATW_FER);
537 PRINTREG(sc, ATW_FEMR);
538 PRINTREG(sc, ATW_FPSR);
539 PRINTREG(sc, ATW_FFER);
540 #undef PRINTREG
541 }
542 #endif /* ATW_DEBUG */
543
544 /*
545 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
546 */
547 void
548 atw_attach(struct atw_softc *sc)
549 {
550 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
551 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
552 };
553 struct ieee80211com *ic = &sc->sc_ic;
554 struct ifnet *ifp = &sc->sc_if;
555 int country_code, error, i, nrate, srom_major;
556 u_int32_t reg;
557 static const char *type_strings[] = {"Intersil (not supported)",
558 "RFMD", "Marvel (not supported)"};
559
560 sc->sc_txth = atw_txthresh_tab_lo;
561
562 SIMPLEQ_INIT(&sc->sc_txfreeq);
563 SIMPLEQ_INIT(&sc->sc_txdirtyq);
564
565 #ifdef ATW_DEBUG
566 atw_print_regs(sc, "atw_attach");
567 #endif /* ATW_DEBUG */
568
569 /*
570 * Allocate the control data structures, and create and load the
571 * DMA map for it.
572 */
573 if ((error = bus_dmamem_alloc(sc->sc_dmat,
574 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
575 1, &sc->sc_cdnseg, 0)) != 0) {
576 printf("%s: unable to allocate control data, error = %d\n",
577 sc->sc_dev.dv_xname, error);
578 goto fail_0;
579 }
580
581 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
582 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
583 BUS_DMA_COHERENT)) != 0) {
584 printf("%s: unable to map control data, error = %d\n",
585 sc->sc_dev.dv_xname, error);
586 goto fail_1;
587 }
588
589 if ((error = bus_dmamap_create(sc->sc_dmat,
590 sizeof(struct atw_control_data), 1,
591 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
592 printf("%s: unable to create control data DMA map, "
593 "error = %d\n", sc->sc_dev.dv_xname, error);
594 goto fail_2;
595 }
596
597 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
598 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
599 0)) != 0) {
600 printf("%s: unable to load control data DMA map, error = %d\n",
601 sc->sc_dev.dv_xname, error);
602 goto fail_3;
603 }
604
605 /*
606 * Create the transmit buffer DMA maps.
607 */
608 sc->sc_ntxsegs = ATW_NTXSEGS;
609 for (i = 0; i < ATW_TXQUEUELEN; i++) {
610 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
611 sc->sc_ntxsegs, MCLBYTES, 0, 0,
612 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
613 printf("%s: unable to create tx DMA map %d, "
614 "error = %d\n", sc->sc_dev.dv_xname, i, error);
615 goto fail_4;
616 }
617 }
618
619 /*
620 * Create the receive buffer DMA maps.
621 */
622 for (i = 0; i < ATW_NRXDESC; i++) {
623 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
624 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
625 printf("%s: unable to create rx DMA map %d, "
626 "error = %d\n", sc->sc_dev.dv_xname, i, error);
627 goto fail_5;
628 }
629 }
630 for (i = 0; i < ATW_NRXDESC; i++) {
631 sc->sc_rxsoft[i].rxs_mbuf = NULL;
632 }
633
634 switch (sc->sc_rev) {
635 case ATW_REVISION_AB:
636 case ATW_REVISION_AF:
637 sc->sc_sramlen = ATW_SRAM_A_SIZE;
638 break;
639 case ATW_REVISION_BA:
640 case ATW_REVISION_CA:
641 sc->sc_sramlen = ATW_SRAM_B_SIZE;
642 break;
643 }
644
645 /* Reset the chip to a known state. */
646 atw_reset(sc);
647
648 if (atw_read_srom(sc) == -1)
649 return;
650
651 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
652 ATW_SR_RFTYPE_MASK);
653
654 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
655 ATW_SR_BBPTYPE_MASK);
656
657 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
658 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
659 return;
660 }
661 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
662 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
663 return;
664 }
665
666 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
667 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
668
669 /* XXX There exists a Linux driver which seems to use RFType = 0 for
670 * MARVEL. My bug, or theirs?
671 */
672
673 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
674
675 switch (sc->sc_rftype) {
676 case ATW_RFTYPE_INTERSIL:
677 reg |= ATW_SYNCTL_CS1;
678 break;
679 case ATW_RFTYPE_RFMD:
680 reg |= ATW_SYNCTL_CS0;
681 break;
682 case ATW_RFTYPE_MARVEL:
683 break;
684 }
685
686 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
687 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
688
689 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
690
691 switch (sc->sc_bbptype) {
692 case ATW_BBPTYPE_INTERSIL:
693 reg |= ATW_BBPCTL_TWI;
694 break;
695 case ATW_BBPTYPE_RFMD:
696 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
697 ATW_BBPCTL_CCA_ACTLO;
698 break;
699 case ATW_BBPTYPE_MARVEL:
700 break;
701 case ATW_C_BBPTYPE_RFMD:
702 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
703 sc->sc_dev.dv_xname);
704 break;
705 }
706
707 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
708 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
709
710 /*
711 * From this point forward, the attachment cannot fail. A failure
712 * before this point releases all resources that may have been
713 * allocated.
714 */
715 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
716
717 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
718 htole16(sc->sc_srom[ATW_SR_MAC00]),
719 htole16(sc->sc_srom[ATW_SR_MAC01]),
720 htole16(sc->sc_srom[ATW_SR_MAC10])));
721
722 srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
723 ATW_SR_MAJOR_MASK);
724
725 if (srom_major < 2)
726 sc->sc_rf3000_options1 = 0;
727 else if (sc->sc_rev == ATW_REVISION_BA) {
728 sc->sc_rf3000_options1 =
729 MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
730 ATW_SR_CR28_MASK);
731 } else
732 sc->sc_rf3000_options1 = 0;
733
734 sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
735 ATW_SR_CR29_MASK);
736
737 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
738 ATW_SR_CTRY_MASK);
739
740 #define ADD_CHANNEL(_ic, _chan) do { \
741 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
742 _ic->ic_channels[_chan].ic_freq = \
743 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
744 } while (0)
745
746 /* Find available channels */
747 switch (country_code) {
748 case COUNTRY_MMK2: /* 1-14 */
749 ADD_CHANNEL(ic, 14);
750 /*FALLTHROUGH*/
751 case COUNTRY_ETSI: /* 1-13 */
752 for (i = 1; i <= 13; i++)
753 ADD_CHANNEL(ic, i);
754 break;
755 case COUNTRY_FCC: /* 1-11 */
756 case COUNTRY_IC: /* 1-11 */
757 for (i = 1; i <= 11; i++)
758 ADD_CHANNEL(ic, i);
759 break;
760 case COUNTRY_MMK: /* 14 */
761 ADD_CHANNEL(ic, 14);
762 break;
763 case COUNTRY_FRANCE: /* 10-13 */
764 for (i = 10; i <= 13; i++)
765 ADD_CHANNEL(ic, i);
766 break;
767 default: /* assume channels 10-11 */
768 case COUNTRY_SPAIN: /* 10-11 */
769 for (i = 10; i <= 11; i++)
770 ADD_CHANNEL(ic, i);
771 break;
772 }
773
774 /* Read the MAC address. */
775 reg = ATW_READ(sc, ATW_PAR0);
776 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
777 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
778 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
779 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
780 reg = ATW_READ(sc, ATW_PAR1);
781 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
782 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
783
784 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
785 printf(" could not get mac address, attach failed\n");
786 return;
787 }
788
789 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
790
791 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
792 ifp->if_softc = sc;
793 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
794 IFF_NOTRAILERS;
795 ifp->if_ioctl = atw_ioctl;
796 ifp->if_start = atw_start;
797 ifp->if_watchdog = atw_watchdog;
798 ifp->if_init = atw_init;
799 ifp->if_stop = atw_stop;
800 IFQ_SET_READY(&ifp->if_snd);
801
802 ic->ic_ifp = ifp;
803 ic->ic_phytype = IEEE80211_T_DS;
804 ic->ic_opmode = IEEE80211_M_STA;
805 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
806 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
807
808 nrate = 0;
809 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
810 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
811 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
812 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
813 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
814
815 /*
816 * Call MI attach routines.
817 */
818
819 if_attach(ifp);
820 ieee80211_ifattach(ic);
821
822 sc->sc_newstate = ic->ic_newstate;
823 ic->ic_newstate = atw_newstate;
824
825 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
826 ic->ic_recv_mgmt = atw_recv_mgmt;
827
828 sc->sc_node_free = ic->ic_node_free;
829 ic->ic_node_free = atw_node_free;
830
831 sc->sc_node_alloc = ic->ic_node_alloc;
832 ic->ic_node_alloc = atw_node_alloc;
833
834 ic->ic_crypto.cs_key_delete = atw_key_delete;
835 ic->ic_crypto.cs_key_set = atw_key_set;
836 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
837 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
838
839 /* possibly we should fill in our own sc_send_prresp, since
840 * the ADM8211 is probably sending probe responses in ad hoc
841 * mode.
842 */
843
844 /* complete initialization */
845 ieee80211_media_init(ic, atw_media_change, atw_media_status);
846 callout_init(&sc->sc_scan_ch);
847
848 #if NBPFILTER > 0
849 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
850 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
851 #endif
852
853 /*
854 * Make sure the interface is shutdown during reboot.
855 */
856 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
857 if (sc->sc_sdhook == NULL)
858 printf("%s: WARNING: unable to establish shutdown hook\n",
859 sc->sc_dev.dv_xname);
860
861 /*
862 * Add a suspend hook to make sure we come back up after a
863 * resume.
864 */
865 sc->sc_powerhook = powerhook_establish(atw_power, sc);
866 if (sc->sc_powerhook == NULL)
867 printf("%s: WARNING: unable to establish power hook\n",
868 sc->sc_dev.dv_xname);
869
870 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
871 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
872 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
873
874 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
875 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
876 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
877
878 ieee80211_announce(ic);
879 return;
880
881 /*
882 * Free any resources we've allocated during the failed attach
883 * attempt. Do this in reverse order and fall through.
884 */
885 fail_5:
886 for (i = 0; i < ATW_NRXDESC; i++) {
887 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
888 continue;
889 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
890 }
891 fail_4:
892 for (i = 0; i < ATW_TXQUEUELEN; i++) {
893 if (sc->sc_txsoft[i].txs_dmamap == NULL)
894 continue;
895 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
896 }
897 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
898 fail_3:
899 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
900 fail_2:
901 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
902 sizeof(struct atw_control_data));
903 fail_1:
904 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
905 fail_0:
906 return;
907 }
908
909 static struct ieee80211_node *
910 atw_node_alloc(struct ieee80211_node_table *nt)
911 {
912 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
913 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
914
915 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
916 return ni;
917 }
918
919 static void
920 atw_node_free(struct ieee80211_node *ni)
921 {
922 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
923
924 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
925 ether_sprintf(ni->ni_bssid)));
926 (*sc->sc_node_free)(ni);
927 }
928
929
930 static void
931 atw_test1_reset(struct atw_softc *sc)
932 {
933 switch (sc->sc_rev) {
934 case ATW_REVISION_BA:
935 if (1 /* XXX condition on transceiver type */) {
936 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
937 }
938 break;
939 case ATW_REVISION_CA:
940 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
941 break;
942 default:
943 break;
944 }
945 }
946
947 /*
948 * atw_reset:
949 *
950 * Perform a soft reset on the ADM8211.
951 */
952 void
953 atw_reset(struct atw_softc *sc)
954 {
955 int i;
956 uint32_t lpc;
957
958 ATW_WRITE(sc, ATW_NAR, 0x0);
959 DELAY(atw_nar_delay);
960
961 /* Reference driver has a cryptic remark indicating that this might
962 * power-on the chip. I know that it turns off power-saving....
963 */
964 ATW_WRITE(sc, ATW_FRCTL, 0x0);
965
966 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
967
968 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
969 if (ATW_READ(sc, ATW_PAR) == 0)
970 break;
971 DELAY(atw_pseudo_milli);
972 }
973
974 /* ... and then pause 100ms longer for good measure. */
975 DELAY(atw_magic_delay1);
976
977 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
978
979 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
980 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
981
982 atw_test1_reset(sc);
983 /*
984 * Initialize the PCI Access Register.
985 */
986 sc->sc_busmode = ATW_PAR_PBL_8DW;
987
988 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
989 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
990 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
991
992 /* Turn off maximum power saving, etc.
993 *
994 * XXX Following example of reference driver, should I set
995 * an AID of 1? It didn't seem to help....
996 */
997 ATW_WRITE(sc, ATW_FRCTL, 0x0);
998
999 DELAY(atw_magic_delay2);
1000
1001 /* Recall EEPROM. */
1002 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1003
1004 DELAY(atw_magic_delay4);
1005
1006 lpc = ATW_READ(sc, ATW_LPC);
1007
1008 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1009
1010 /* A reset seems to affect the SRAM contents, so put them into
1011 * a known state.
1012 */
1013 atw_clear_sram(sc);
1014
1015 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1016 }
1017
1018 static void
1019 atw_clear_sram(struct atw_softc *sc)
1020 {
1021 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1022 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1023 /* XXX not for revision 0x20. */
1024 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1025 }
1026
1027 /* TBD atw_init
1028 *
1029 * set MAC based on ic->ic_bss->myaddr
1030 * write WEP keys
1031 * set TX rate
1032 */
1033
1034 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1035 * without receiving a beacon with the preferred BSSID & SSID.
1036 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1037 */
1038 static void
1039 atw_wcsr_init(struct atw_softc *sc)
1040 {
1041 uint32_t wcsr;
1042
1043 wcsr = ATW_READ(sc, ATW_WCSR);
1044 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1045 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1046 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1047
1048 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1049 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1050 }
1051
1052 /* Turn off power management. Set Rx store-and-forward mode. */
1053 static void
1054 atw_cmdr_init(struct atw_softc *sc)
1055 {
1056 uint32_t cmdr;
1057 cmdr = ATW_READ(sc, ATW_CMDR);
1058 cmdr &= ~ATW_CMDR_APM;
1059 cmdr |= ATW_CMDR_RTE;
1060 cmdr &= ~ATW_CMDR_DRT_MASK;
1061 cmdr |= ATW_CMDR_DRT_SF;
1062
1063 ATW_WRITE(sc, ATW_CMDR, cmdr);
1064 }
1065
1066 static void
1067 atw_tofs2_init(struct atw_softc *sc)
1068 {
1069 uint32_t tofs2;
1070 /* XXX this magic can probably be figured out from the RFMD docs */
1071 #ifndef ATW_REFSLAVE
1072 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1073 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1074 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1075 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1076 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1077 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1078 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1079 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1080 #else
1081 /* XXX new magic from reference driver source */
1082 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1083 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1084 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1085 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1086 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1087 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1088 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1089 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1090 #endif
1091 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1092 }
1093
1094 static void
1095 atw_nar_init(struct atw_softc *sc)
1096 {
1097 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1098 }
1099
1100 static void
1101 atw_txlmt_init(struct atw_softc *sc)
1102 {
1103 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1104 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1105 }
1106
1107 static void
1108 atw_test1_init(struct atw_softc *sc)
1109 {
1110 uint32_t test1;
1111
1112 test1 = ATW_READ(sc, ATW_TEST1);
1113 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1114 /* XXX magic 0x1 */
1115 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1116 ATW_WRITE(sc, ATW_TEST1, test1);
1117 }
1118
1119 static void
1120 atw_rf_reset(struct atw_softc *sc)
1121 {
1122 /* XXX this resets an Intersil RF front-end? */
1123 /* TBD condition on Intersil RFType? */
1124 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1125 DELAY(atw_rf_delay1);
1126 ATW_WRITE(sc, ATW_SYNRF, 0);
1127 DELAY(atw_rf_delay2);
1128 }
1129
1130 /* Set 16 TU max duration for the contention-free period (CFP). */
1131 static void
1132 atw_cfp_init(struct atw_softc *sc)
1133 {
1134 uint32_t cfpp;
1135
1136 cfpp = ATW_READ(sc, ATW_CFPP);
1137 cfpp &= ~ATW_CFPP_CFPMD;
1138 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1139 ATW_WRITE(sc, ATW_CFPP, cfpp);
1140 }
1141
1142 static void
1143 atw_tofs0_init(struct atw_softc *sc)
1144 {
1145 /* XXX I guess that the Cardbus clock is 22MHz?
1146 * I am assuming that the role of ATW_TOFS0_USCNT is
1147 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1148 * very clear on this point. It says in the datasheet that it is
1149 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1150 * and 33MHz; maybe this is the way? I see a binary-only driver write
1151 * these values. These values are also the power-on default.
1152 */
1153 ATW_WRITE(sc, ATW_TOFS0,
1154 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1155 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1156 }
1157
1158 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1159 static void
1160 atw_ifs_init(struct atw_softc *sc)
1161 {
1162 uint32_t ifst;
1163 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1164 * Go figure.
1165 */
1166 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1167 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1168 ATW_IFST_SIFS_MASK) |
1169 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1170 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1171
1172 ATW_WRITE(sc, ATW_IFST, ifst);
1173 }
1174
1175 static void
1176 atw_response_times_init(struct atw_softc *sc)
1177 {
1178 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1179 * indicate that the MAC expects at least SIFS + MIRT microseconds
1180 * to pass after it transmits a frame that requires a response;
1181 * it waits at most SIFS + MART microseconds for the response.
1182 * Surely this is not the ACK timeout?
1183 */
1184 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1185 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1186 }
1187
1188 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1189 * engines read and write baseband registers after Rx and before
1190 * Tx, respectively.
1191 */
1192 static void
1193 atw_bbp_io_init(struct atw_softc *sc)
1194 {
1195 uint32_t mmiraddr2;
1196
1197 /* XXX The reference driver does this, but is it *really*
1198 * necessary?
1199 */
1200 switch (sc->sc_rev) {
1201 case ATW_REVISION_AB:
1202 case ATW_REVISION_AF:
1203 mmiraddr2 = 0x0;
1204 break;
1205 default:
1206 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1207 mmiraddr2 &=
1208 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1209 break;
1210 }
1211
1212 switch (sc->sc_bbptype) {
1213 case ATW_BBPTYPE_INTERSIL:
1214 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1215 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1216 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1217 break;
1218 case ATW_BBPTYPE_MARVEL:
1219 /* TBD find out the Marvel settings. */
1220 break;
1221 case ATW_BBPTYPE_RFMD:
1222 default:
1223 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1224 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1225 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1226 break;
1227 }
1228 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1229 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1230 }
1231
1232 /*
1233 * atw_init: [ ifnet interface function ]
1234 *
1235 * Initialize the interface. Must be called at splnet().
1236 */
1237 int
1238 atw_init(struct ifnet *ifp)
1239 {
1240 struct atw_softc *sc = ifp->if_softc;
1241 struct ieee80211com *ic = &sc->sc_ic;
1242 struct atw_txsoft *txs;
1243 struct atw_rxsoft *rxs;
1244 int i, error = 0;
1245
1246 if ((error = atw_enable(sc)) != 0)
1247 goto out;
1248
1249 /*
1250 * Cancel any pending I/O. This also resets.
1251 */
1252 atw_stop(ifp, 0);
1253
1254 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1255 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1256 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1257
1258 atw_wcsr_init(sc);
1259
1260 atw_cmdr_init(sc);
1261
1262 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1263 *
1264 * XXX Set transmit power for ATIM, RTS, Beacon.
1265 */
1266 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1267 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1268
1269 atw_tofs2_init(sc);
1270
1271 atw_nar_init(sc);
1272
1273 atw_txlmt_init(sc);
1274
1275 atw_test1_init(sc);
1276
1277 atw_rf_reset(sc);
1278
1279 atw_cfp_init(sc);
1280
1281 atw_tofs0_init(sc);
1282
1283 atw_ifs_init(sc);
1284
1285 /* XXX Fall asleep after one second of inactivity.
1286 * XXX A frame may only dribble in for 65536us.
1287 */
1288 ATW_WRITE(sc, ATW_RMD,
1289 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1290
1291 atw_response_times_init(sc);
1292
1293 atw_bbp_io_init(sc);
1294
1295 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1296
1297 if ((error = atw_rf3000_init(sc)) != 0)
1298 goto out;
1299
1300 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1301 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1302 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1303
1304 /*
1305 * Initialize the transmit descriptor ring.
1306 */
1307 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1308 for (i = 0; i < ATW_NTXDESC; i++) {
1309 sc->sc_txdescs[i].at_ctl = 0;
1310 /* no transmit chaining */
1311 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1312 sc->sc_txdescs[i].at_buf2 =
1313 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1314 }
1315 /* use ring mode */
1316 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1317 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1318 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1319 sc->sc_txfree = ATW_NTXDESC;
1320 sc->sc_txnext = 0;
1321
1322 /*
1323 * Initialize the transmit job descriptors.
1324 */
1325 SIMPLEQ_INIT(&sc->sc_txfreeq);
1326 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1327 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1328 txs = &sc->sc_txsoft[i];
1329 txs->txs_mbuf = NULL;
1330 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1331 }
1332
1333 /*
1334 * Initialize the receive descriptor and receive job
1335 * descriptor rings.
1336 */
1337 for (i = 0; i < ATW_NRXDESC; i++) {
1338 rxs = &sc->sc_rxsoft[i];
1339 if (rxs->rxs_mbuf == NULL) {
1340 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1341 printf("%s: unable to allocate or map rx "
1342 "buffer %d, error = %d\n",
1343 sc->sc_dev.dv_xname, i, error);
1344 /*
1345 * XXX Should attempt to run with fewer receive
1346 * XXX buffers instead of just failing.
1347 */
1348 atw_rxdrain(sc);
1349 goto out;
1350 }
1351 } else
1352 ATW_INIT_RXDESC(sc, i);
1353 }
1354 sc->sc_rxptr = 0;
1355
1356 /*
1357 * Initialize the interrupt mask and enable interrupts.
1358 */
1359 /* normal interrupts */
1360 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1361 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1362
1363 /* abnormal interrupts */
1364 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1365 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1366 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1367
1368 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1369 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1370 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1371 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1372 ATW_INTR_TRT;
1373
1374 sc->sc_linkint_mask &= sc->sc_inten;
1375 sc->sc_rxint_mask &= sc->sc_inten;
1376 sc->sc_txint_mask &= sc->sc_inten;
1377
1378 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1379 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1380
1381 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1382 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1383
1384 /*
1385 * Give the transmit and receive rings to the ADM8211.
1386 */
1387 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1388 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1389
1390 sc->sc_txthresh = 0;
1391 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1392 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1393
1394 /* common 802.11 configuration */
1395 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1396 switch (ic->ic_opmode) {
1397 case IEEE80211_M_STA:
1398 break;
1399 case IEEE80211_M_AHDEMO: /* XXX */
1400 case IEEE80211_M_IBSS:
1401 ic->ic_flags |= IEEE80211_F_IBSSON;
1402 /*FALLTHROUGH*/
1403 case IEEE80211_M_HOSTAP: /* XXX */
1404 break;
1405 case IEEE80211_M_MONITOR: /* XXX */
1406 break;
1407 }
1408
1409 switch (ic->ic_opmode) {
1410 case IEEE80211_M_AHDEMO:
1411 case IEEE80211_M_HOSTAP:
1412 #ifndef IEEE80211_NO_HOSTAP
1413 ic->ic_bss->ni_intval = ic->ic_lintval;
1414 ic->ic_bss->ni_rssi = 0;
1415 ic->ic_bss->ni_rstamp = 0;
1416 #endif /* !IEEE80211_NO_HOSTAP */
1417 break;
1418 default: /* XXX */
1419 break;
1420 }
1421
1422 sc->sc_wepctl = 0;
1423
1424 atw_write_ssid(sc);
1425 atw_write_sup_rates(sc);
1426 atw_write_wep(sc);
1427
1428 ic->ic_state = IEEE80211_S_INIT;
1429
1430 /*
1431 * Set the receive filter. This will start the transmit and
1432 * receive processes.
1433 */
1434 atw_filter_setup(sc);
1435
1436 /*
1437 * Start the receive process.
1438 */
1439 ATW_WRITE(sc, ATW_RDR, 0x1);
1440
1441 /*
1442 * Note that the interface is now running.
1443 */
1444 ifp->if_flags |= IFF_RUNNING;
1445 ifp->if_flags &= ~IFF_OACTIVE;
1446
1447 /* send no beacons, yet. */
1448 atw_start_beacon(sc, 0);
1449
1450 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1451 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1452 else
1453 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1454 out:
1455 if (error) {
1456 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1457 sc->sc_tx_timer = 0;
1458 ifp->if_timer = 0;
1459 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1460 }
1461 #ifdef ATW_DEBUG
1462 atw_print_regs(sc, "end of init");
1463 #endif /* ATW_DEBUG */
1464
1465 return (error);
1466 }
1467
1468 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1469 * 0: MAC control of RF3000/Si4126.
1470 *
1471 * Applies power, or selects RF front-end? Sets reset condition.
1472 *
1473 * TBD support non-RFMD BBP, non-SiLabs synth.
1474 */
1475 static void
1476 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1477 {
1478 if (enable) {
1479 ATW_WRITE(sc, ATW_SYNRF,
1480 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1481 DELAY(atw_bbp_io_enable_delay);
1482 } else {
1483 ATW_WRITE(sc, ATW_SYNRF, 0);
1484 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1485 }
1486 }
1487
1488 static int
1489 atw_tune(struct atw_softc *sc)
1490 {
1491 int rc;
1492 u_int chan;
1493 struct ieee80211com *ic = &sc->sc_ic;
1494
1495 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1496 if (chan == IEEE80211_CHAN_ANY)
1497 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1498
1499 if (chan == sc->sc_cur_chan)
1500 return 0;
1501
1502 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1503 sc->sc_cur_chan, chan));
1504
1505 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1506
1507 atw_si4126_tune(sc, chan);
1508 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1509 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1510 chan);
1511
1512 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1513 DELAY(atw_nar_delay);
1514 ATW_WRITE(sc, ATW_RDR, 0x1);
1515
1516 if (rc == 0)
1517 sc->sc_cur_chan = chan;
1518
1519 return rc;
1520 }
1521
1522 #ifdef ATW_SYNDEBUG
1523 static void
1524 atw_si4126_print(struct atw_softc *sc)
1525 {
1526 struct ifnet *ifp = &sc->sc_if;
1527 u_int addr, val;
1528
1529 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1530 return;
1531
1532 for (addr = 0; addr <= 8; addr++) {
1533 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1534 if (atw_si4126_read(sc, addr, &val) == 0) {
1535 printf("<unknown> (quitting print-out)\n");
1536 break;
1537 }
1538 printf("%05x\n", val);
1539 }
1540 }
1541 #endif /* ATW_SYNDEBUG */
1542
1543 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1544 *
1545 * The RF/IF synthesizer produces two reference frequencies for
1546 * the RF2948B transceiver. The first frequency the RF2948B requires
1547 * is two times the so-called "intermediate frequency" (IF). Since
1548 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1549 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1550 * frequency required by the transceiver is the radio frequency
1551 * (RF). This is a superheterodyne transceiver; for f(chan) the
1552 * center frequency of the channel we are tuning, RF = f(chan) -
1553 * IF.
1554 *
1555 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1556 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1557 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1558 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1559 */
1560 static void
1561 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1562 {
1563 u_int mhz;
1564 u_int R;
1565 u_int32_t gpio;
1566 u_int16_t gain;
1567
1568 #ifdef ATW_SYNDEBUG
1569 atw_si4126_print(sc);
1570 #endif /* ATW_SYNDEBUG */
1571
1572 if (chan == 14)
1573 mhz = 2484;
1574 else
1575 mhz = 2412 + 5 * (chan - 1);
1576
1577 /* Tune IF to 748MHz to suit the IF LO input of the
1578 * RF2494B, which is 2 x IF. No need to set an IF divider
1579 * because an IF in 526MHz - 952MHz is allowed.
1580 *
1581 * XIN is 44.000MHz, so divide it by two to get allowable
1582 * range of 2-25MHz. SiLabs tells me that this is not
1583 * strictly necessary.
1584 */
1585
1586 if (atw_xindiv2)
1587 R = 44;
1588 else
1589 R = 88;
1590
1591 /* Power-up RF, IF synthesizers. */
1592 atw_si4126_write(sc, SI4126_POWER,
1593 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1594
1595 /* set LPWR, too? */
1596 atw_si4126_write(sc, SI4126_MAIN,
1597 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1598
1599 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1600 * set KP2 to 1.
1601 *
1602 * REFDIF This is different from the reference driver, which
1603 * always sets SI4126_GAIN to 0.
1604 */
1605 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1606
1607 atw_si4126_write(sc, SI4126_GAIN, gain);
1608
1609 /* XIN = 44MHz.
1610 *
1611 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1612 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1613 *
1614 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1615 * so that 1496/88 * 44MHz = 748MHz.
1616 */
1617 atw_si4126_write(sc, SI4126_IFN, 1496);
1618
1619 atw_si4126_write(sc, SI4126_IFR, R);
1620
1621 #ifndef ATW_REFSLAVE
1622 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1623 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1624 * which has no RF1!
1625 */
1626 atw_si4126_write(sc, SI4126_RF1R, R);
1627
1628 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1629 #endif
1630
1631 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1632 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1633 * Now let's multiply it to mhz. So mhz - IF = N.
1634 */
1635 atw_si4126_write(sc, SI4126_RF2R, R);
1636
1637 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1638
1639 /* wait 100us from power-up for RF, IF to settle */
1640 DELAY(100);
1641
1642 gpio = ATW_READ(sc, ATW_GPIO);
1643 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1644 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1645
1646 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1647 /* Set a Prism RF front-end to a special mode for channel 14?
1648 *
1649 * Apparently the SMC2635W needs this, although I don't think
1650 * it has a Prism RF.
1651 */
1652 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1653 }
1654 ATW_WRITE(sc, ATW_GPIO, gpio);
1655
1656 #ifdef ATW_SYNDEBUG
1657 atw_si4126_print(sc);
1658 #endif /* ATW_SYNDEBUG */
1659 }
1660
1661 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1662 * diversity.
1663 *
1664 * !!!
1665 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1666 * !!!
1667 */
1668 static int
1669 atw_rf3000_init(struct atw_softc *sc)
1670 {
1671 int rc = 0;
1672
1673 atw_bbp_io_enable(sc, 1);
1674
1675 /* CCA is acquisition sensitive */
1676 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1677 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1678
1679 if (rc != 0)
1680 goto out;
1681
1682 /* enable diversity */
1683 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1684
1685 if (rc != 0)
1686 goto out;
1687
1688 /* sensible setting from a binary-only driver */
1689 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1690 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1691
1692 if (rc != 0)
1693 goto out;
1694
1695 /* magic from a binary-only driver */
1696 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1697 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1698
1699 if (rc != 0)
1700 goto out;
1701
1702 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1703
1704 if (rc != 0)
1705 goto out;
1706
1707 /* XXX Reference driver remarks that Abocom sets this to 50.
1708 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1709 * in the "reserved" area of register RF3000_OPTIONS1.
1710 */
1711 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1712
1713 if (rc != 0)
1714 goto out;
1715
1716 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1717
1718 if (rc != 0)
1719 goto out;
1720
1721 out:
1722 atw_bbp_io_enable(sc, 0);
1723 return rc;
1724 }
1725
1726 #ifdef ATW_BBPDEBUG
1727 static void
1728 atw_rf3000_print(struct atw_softc *sc)
1729 {
1730 struct ifnet *ifp = &sc->sc_if;
1731 u_int addr, val;
1732
1733 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1734 return;
1735
1736 for (addr = 0x01; addr <= 0x15; addr++) {
1737 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1738 if (atw_rf3000_read(sc, addr, &val) != 0) {
1739 printf("<unknown> (quitting print-out)\n");
1740 break;
1741 }
1742 printf("%08x\n", val);
1743 }
1744 }
1745 #endif /* ATW_BBPDEBUG */
1746
1747 /* Set the power settings on the BBP for channel `chan'. */
1748 static int
1749 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1750 {
1751 int rc = 0;
1752 u_int32_t reg;
1753 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1754
1755 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1756 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1757 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1758
1759 /* odd channels: LSB, even channels: MSB */
1760 if (chan % 2 == 1) {
1761 txpower &= 0xFF;
1762 lpf_cutoff &= 0xFF;
1763 lna_gs_thresh &= 0xFF;
1764 } else {
1765 txpower >>= 8;
1766 lpf_cutoff >>= 8;
1767 lna_gs_thresh >>= 8;
1768 }
1769
1770 #ifdef ATW_BBPDEBUG
1771 atw_rf3000_print(sc);
1772 #endif /* ATW_BBPDEBUG */
1773
1774 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1775 "lna_gs_thresh %02x\n",
1776 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1777
1778 atw_bbp_io_enable(sc, 1);
1779
1780 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1781 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1782 goto out;
1783
1784 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1785 goto out;
1786
1787 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1788 goto out;
1789
1790 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1791
1792 if (rc != 0)
1793 goto out;
1794
1795 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1796
1797 if (rc != 0)
1798 goto out;
1799
1800 #ifdef ATW_BBPDEBUG
1801 atw_rf3000_print(sc);
1802 #endif /* ATW_BBPDEBUG */
1803
1804 out:
1805 atw_bbp_io_enable(sc, 0);
1806
1807 /* set beacon, rts, atim transmit power */
1808 reg = ATW_READ(sc, ATW_PLCPHD);
1809 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1810 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1811 ATW_PLCPHD_SERVICE_MASK);
1812 ATW_WRITE(sc, ATW_PLCPHD, reg);
1813 DELAY(atw_plcphd_delay);
1814
1815 return rc;
1816 }
1817
1818 /* Write a register on the RF3000 baseband processor using the
1819 * registers provided by the ADM8211 for this purpose.
1820 *
1821 * Return 0 on success.
1822 */
1823 static int
1824 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1825 {
1826 u_int32_t reg;
1827 int i;
1828
1829 reg = sc->sc_bbpctl_wr |
1830 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1831 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1832
1833 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1834 ATW_WRITE(sc, ATW_BBPCTL, reg);
1835 DELAY(2 * atw_pseudo_milli);
1836 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1837 break;
1838 }
1839
1840 if (i < 0) {
1841 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1842 return ETIMEDOUT;
1843 }
1844 return 0;
1845 }
1846
1847 /* Read a register on the RF3000 baseband processor using the registers
1848 * the ADM8211 provides for this purpose.
1849 *
1850 * The 7-bit register address is addr. Record the 8-bit data in the register
1851 * in *val.
1852 *
1853 * Return 0 on success.
1854 *
1855 * XXX This does not seem to work. The ADM8211 must require more or
1856 * different magic to read the chip than to write it. Possibly some
1857 * of the magic I have derived from a binary-only driver concerns
1858 * the "chip address" (see the RF3000 manual).
1859 */
1860 #ifdef ATW_BBPDEBUG
1861 static int
1862 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1863 {
1864 u_int32_t reg;
1865 int i;
1866
1867 for (i = 1000; --i >= 0; ) {
1868 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1869 break;
1870 DELAY(100);
1871 }
1872
1873 if (i < 0) {
1874 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1875 sc->sc_dev.dv_xname);
1876 return ETIMEDOUT;
1877 }
1878
1879 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1880
1881 ATW_WRITE(sc, ATW_BBPCTL, reg);
1882
1883 for (i = 1000; --i >= 0; ) {
1884 DELAY(100);
1885 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1886 break;
1887 }
1888
1889 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1890
1891 if (i < 0) {
1892 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1893 sc->sc_dev.dv_xname, reg);
1894 return ETIMEDOUT;
1895 }
1896 if (val != NULL)
1897 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1898 return 0;
1899 }
1900 #endif /* ATW_BBPDEBUG */
1901
1902 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1903 * provided by the ADM8211 for that purpose.
1904 *
1905 * val is 18 bits of data, and val is the 4-bit address of the register.
1906 *
1907 * Return 0 on success.
1908 */
1909 static void
1910 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1911 {
1912 uint32_t bits, mask, reg;
1913 const int nbits = 22;
1914
1915 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1916 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1917
1918 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1919 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1920
1921 reg = ATW_SYNRF_SELSYN;
1922 /* reference driver: reset Si4126 serial bus to initial
1923 * conditions?
1924 */
1925 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1926 ATW_WRITE(sc, ATW_SYNRF, reg);
1927
1928 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1929 if ((bits & mask) != 0)
1930 reg |= ATW_SYNRF_SYNDATA;
1931 else
1932 reg &= ~ATW_SYNRF_SYNDATA;
1933 ATW_WRITE(sc, ATW_SYNRF, reg);
1934 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1935 ATW_WRITE(sc, ATW_SYNRF, reg);
1936 }
1937 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1938 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1939 }
1940
1941 /* Read 18-bit data from the 4-bit address addr in Si4126
1942 * RF synthesizer and write the data to *val. Return 0 on success.
1943 *
1944 * XXX This does not seem to work. The ADM8211 must require more or
1945 * different magic to read the chip than to write it.
1946 */
1947 #ifdef ATW_SYNDEBUG
1948 static int
1949 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1950 {
1951 u_int32_t reg;
1952 int i;
1953
1954 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1955
1956 for (i = 1000; --i >= 0; ) {
1957 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1958 break;
1959 DELAY(100);
1960 }
1961
1962 if (i < 0) {
1963 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1964 sc->sc_dev.dv_xname);
1965 return ETIMEDOUT;
1966 }
1967
1968 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1969
1970 ATW_WRITE(sc, ATW_SYNCTL, reg);
1971
1972 for (i = 1000; --i >= 0; ) {
1973 DELAY(100);
1974 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1975 break;
1976 }
1977
1978 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1979
1980 if (i < 0) {
1981 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1982 sc->sc_dev.dv_xname, reg);
1983 return ETIMEDOUT;
1984 }
1985 if (val != NULL)
1986 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1987 ATW_SYNCTL_DATA_MASK);
1988 return 0;
1989 }
1990 #endif /* ATW_SYNDEBUG */
1991
1992 /* XXX is the endianness correct? test. */
1993 #define atw_calchash(addr) \
1994 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1995
1996 /*
1997 * atw_filter_setup:
1998 *
1999 * Set the ADM8211's receive filter.
2000 */
2001 static void
2002 atw_filter_setup(struct atw_softc *sc)
2003 {
2004 struct ieee80211com *ic = &sc->sc_ic;
2005 struct ethercom *ec = &sc->sc_ec;
2006 struct ifnet *ifp = &sc->sc_if;
2007 int hash;
2008 u_int32_t hashes[2];
2009 struct ether_multi *enm;
2010 struct ether_multistep step;
2011
2012 /* According to comments in tlp_al981_filter_setup
2013 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2014 * multicast filter to be set while it is running. Hopefully
2015 * the ADM8211 is not the same!
2016 */
2017 if ((ifp->if_flags & IFF_RUNNING) != 0)
2018 atw_idle(sc, ATW_NAR_SR);
2019
2020 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2021 ifp->if_flags &= ~IFF_ALLMULTI;
2022
2023 /* XXX in scan mode, do not filter packets. Maybe this is
2024 * unnecessary.
2025 */
2026 if (ic->ic_state == IEEE80211_S_SCAN ||
2027 (ifp->if_flags & IFF_PROMISC) != 0) {
2028 sc->sc_opmode |= ATW_NAR_PR;
2029 goto allmulti;
2030 }
2031
2032 hashes[0] = hashes[1] = 0x0;
2033
2034 /*
2035 * Program the 64-bit multicast hash filter.
2036 */
2037 ETHER_FIRST_MULTI(step, ec, enm);
2038 while (enm != NULL) {
2039 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2040 ETHER_ADDR_LEN) != 0)
2041 goto allmulti;
2042
2043 hash = atw_calchash(enm->enm_addrlo);
2044 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2045 ETHER_NEXT_MULTI(step, enm);
2046 sc->sc_opmode |= ATW_NAR_MM;
2047 }
2048 ifp->if_flags &= ~IFF_ALLMULTI;
2049 goto setit;
2050
2051 allmulti:
2052 sc->sc_opmode |= ATW_NAR_MM;
2053 ifp->if_flags |= IFF_ALLMULTI;
2054 hashes[0] = hashes[1] = 0xffffffff;
2055
2056 setit:
2057 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2058 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2059 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2060 DELAY(atw_nar_delay);
2061
2062 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2063 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2064 }
2065
2066 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2067 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2068 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2069 * no beacon with the preferred BSSID and SSID in the number of
2070 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2071 */
2072 static void
2073 atw_write_bssid(struct atw_softc *sc)
2074 {
2075 struct ieee80211com *ic = &sc->sc_ic;
2076 u_int8_t *bssid;
2077
2078 bssid = ic->ic_bss->ni_bssid;
2079
2080 ATW_WRITE(sc, ATW_BSSID0,
2081 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2082 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2083 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2084 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2085
2086 ATW_WRITE(sc, ATW_ABDA1,
2087 (ATW_READ(sc, ATW_ABDA1) &
2088 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2089 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2090 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2091
2092 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2093 ether_sprintf(sc->sc_bssid)));
2094 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2095
2096 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2097 }
2098
2099 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2100 * 16-bit word.
2101 */
2102 static void
2103 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2104 {
2105 u_int i;
2106 u_int8_t *ptr;
2107
2108 memcpy(&sc->sc_sram[ofs], buf, buflen);
2109
2110 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2111
2112 KASSERT(buflen + ofs <= sc->sc_sramlen);
2113
2114 ptr = &sc->sc_sram[ofs];
2115
2116 for (i = 0; i < buflen; i += 2) {
2117 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2118 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2119 DELAY(atw_writewep_delay);
2120
2121 ATW_WRITE(sc, ATW_WESK,
2122 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2123 DELAY(atw_writewep_delay);
2124 }
2125 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2126
2127 if (sc->sc_if.if_flags & IFF_DEBUG) {
2128 int n_octets = 0;
2129 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2130 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2131 for (i = 0; i < buflen; i++) {
2132 printf(" %02x", ptr[i]);
2133 if (++n_octets % 24 == 0)
2134 printf("\n");
2135 }
2136 if (n_octets % 24 != 0)
2137 printf("\n");
2138 }
2139 }
2140
2141 static int
2142 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2143 {
2144 struct atw_softc *sc = ic->ic_ifp->if_softc;
2145 u_int keyix = k->wk_keyix;
2146
2147 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2148
2149 if (keyix >= IEEE80211_WEP_NKID)
2150 return 0;
2151 if (k->wk_keylen != 0)
2152 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2153
2154 return 1;
2155 }
2156
2157 static int
2158 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2159 const u_int8_t mac[IEEE80211_ADDR_LEN])
2160 {
2161 struct atw_softc *sc = ic->ic_ifp->if_softc;
2162
2163 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2164
2165 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2166 return 0;
2167
2168 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2169
2170 return 1;
2171 }
2172
2173 static void
2174 atw_key_update_begin(struct ieee80211com *ic)
2175 {
2176 #ifdef ATW_DEBUG
2177 struct ifnet *ifp = ic->ic_ifp;
2178 struct atw_softc *sc = ifp->if_softc;
2179 #endif
2180
2181 DPRINTF(sc, ("%s:\n", __func__));
2182 }
2183
2184 static void
2185 atw_key_update_end(struct ieee80211com *ic)
2186 {
2187 struct ifnet *ifp = ic->ic_ifp;
2188 struct atw_softc *sc = ifp->if_softc;
2189
2190 DPRINTF(sc, ("%s:\n", __func__));
2191
2192 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2193 return;
2194 if (ATW_IS_ENABLED(sc) == 0)
2195 return;
2196 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2197 atw_write_wep(sc);
2198 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2199 }
2200
2201 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2202 static void
2203 atw_write_wep(struct atw_softc *sc)
2204 {
2205 struct ieee80211com *ic = &sc->sc_ic;
2206 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2207 u_int8_t buf[IEEE80211_WEP_NKID]
2208 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2209 u_int32_t reg;
2210 int i;
2211
2212 sc->sc_wepctl = 0;
2213 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2214
2215 memset(&buf[0][0], 0, sizeof(buf));
2216
2217 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2218 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2219 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2220 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2221 buf[i][1] = ATW_WEP_ENABLED;
2222 } else {
2223 buf[i][1] = 0;
2224 continue;
2225 }
2226 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2227 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2228 ic->ic_nw_keys[i].wk_keylen - 1);
2229 }
2230
2231 reg = ATW_READ(sc, ATW_MACTEST);
2232 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2233 reg &= ~ATW_MACTEST_KEYID_MASK;
2234 reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2235 ATW_WRITE(sc, ATW_MACTEST, reg);
2236
2237 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2238 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2239
2240 switch (sc->sc_rev) {
2241 case ATW_REVISION_AB:
2242 case ATW_REVISION_AF:
2243 /* Bypass WEP on Rx. */
2244 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2245 break;
2246 default:
2247 break;
2248 }
2249
2250 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2251 sizeof(buf));
2252
2253 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2254 }
2255
2256 static void
2257 atw_change_ibss(struct atw_softc *sc)
2258 {
2259 atw_predict_beacon(sc);
2260 atw_write_bssid(sc);
2261 atw_start_beacon(sc, 1);
2262 }
2263
2264 static void
2265 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2266 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2267 {
2268 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2269
2270 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2271 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2272 return;
2273
2274 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2275
2276 switch (subtype) {
2277 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2278 case IEEE80211_FC0_SUBTYPE_BEACON:
2279 if (ic->ic_opmode != IEEE80211_M_IBSS ||
2280 ic->ic_state != IEEE80211_S_RUN)
2281 break;
2282 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc) &&
2283 ieee80211_ibss_merge(ni) == ENETRESET)
2284 atw_change_ibss(sc);
2285 break;
2286 default:
2287 break;
2288 }
2289 return;
2290 }
2291
2292 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2293 * In ad hoc mode, the SSID is written to the beacons sent by the
2294 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2295 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2296 * indications.
2297 */
2298 static void
2299 atw_write_ssid(struct atw_softc *sc)
2300 {
2301 struct ieee80211com *ic = &sc->sc_ic;
2302 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2303 * it only expects the element length, not its ID.
2304 */
2305 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2306
2307 memset(buf, 0, sizeof(buf));
2308 buf[0] = ic->ic_bss->ni_esslen;
2309 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2310
2311 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2312 roundup(1 + ic->ic_bss->ni_esslen, 2));
2313 }
2314
2315 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2316 * In ad hoc mode, the supported rates are written to beacons sent by the
2317 * ADM8211.
2318 */
2319 static void
2320 atw_write_sup_rates(struct atw_softc *sc)
2321 {
2322 struct ieee80211com *ic = &sc->sc_ic;
2323 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2324 * supported rates
2325 */
2326 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2327
2328 memset(buf, 0, sizeof(buf));
2329
2330 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2331
2332 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2333 ic->ic_bss->ni_rates.rs_nrates);
2334
2335 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2336 }
2337
2338 /* Start/stop sending beacons. */
2339 void
2340 atw_start_beacon(struct atw_softc *sc, int start)
2341 {
2342 struct ieee80211com *ic = &sc->sc_ic;
2343 uint16_t chan;
2344 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2345 size_t len;
2346
2347 if (ATW_IS_ENABLED(sc) == 0)
2348 return;
2349
2350 /* start beacons */
2351 len = sizeof(struct ieee80211_frame) +
2352 8 /* timestamp */ + 2 /* beacon interval */ +
2353 2 /* capability info */ +
2354 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2355 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2356 3 /* DS parameters */ +
2357 IEEE80211_CRC_LEN;
2358
2359 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2360 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2361 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2362
2363 ATW_WRITE(sc, ATW_BCNT, bcnt);
2364 ATW_WRITE(sc, ATW_CAP1, cap1);
2365
2366 if (!start)
2367 return;
2368
2369 /* TBD use ni_capinfo */
2370
2371 capinfo = 0;
2372 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2373 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2374 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2375 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2376
2377 switch (ic->ic_opmode) {
2378 case IEEE80211_M_IBSS:
2379 len += 4; /* IBSS parameters */
2380 capinfo |= IEEE80211_CAPINFO_IBSS;
2381 break;
2382 case IEEE80211_M_HOSTAP:
2383 /* XXX 6-byte minimum TIM */
2384 len += atw_beacon_len_adjust;
2385 capinfo |= IEEE80211_CAPINFO_ESS;
2386 break;
2387 default:
2388 return;
2389 }
2390
2391 /* set listen interval
2392 * XXX do software units agree w/ hardware?
2393 */
2394 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2395 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2396
2397 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2398
2399 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2400 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2401 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2402
2403 ATW_WRITE(sc, ATW_BCNT, bcnt);
2404 ATW_WRITE(sc, ATW_BPLI, bpli);
2405 ATW_WRITE(sc, ATW_CAP0, cap0);
2406 ATW_WRITE(sc, ATW_CAP1, cap1);
2407
2408 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2409 sc->sc_dev.dv_xname, bcnt));
2410
2411 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2412 sc->sc_dev.dv_xname, cap1));
2413 }
2414
2415 /* Return the 32 lsb of the last TSFT divisible by ival. */
2416 static inline uint32_t
2417 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2418 {
2419 /* Following the reference driver's lead, I compute
2420 *
2421 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2422 *
2423 * without using 64-bit arithmetic, using the following
2424 * relationship:
2425 *
2426 * (0x100000000 * H + L) % m
2427 * = ((0x100000000 % m) * H + L) % m
2428 * = (((0xffffffff + 1) % m) * H + L) % m
2429 * = ((0xffffffff % m + 1 % m) * H + L) % m
2430 * = ((0xffffffff % m + 1) * H + L) % m
2431 */
2432 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2433 }
2434
2435 static uint64_t
2436 atw_get_tsft(struct atw_softc *sc)
2437 {
2438 int i;
2439 uint32_t tsfth, tsftl;
2440 for (i = 0; i < 2; i++) {
2441 tsfth = ATW_READ(sc, ATW_TSFTH);
2442 tsftl = ATW_READ(sc, ATW_TSFTL);
2443 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2444 break;
2445 }
2446 return ((uint64_t)tsfth << 32) | tsftl;
2447 }
2448
2449 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2450 * the ieee80211com.
2451 *
2452 * Predict the next target beacon transmission time (TBTT) and
2453 * write it to the ADM8211.
2454 */
2455 static void
2456 atw_predict_beacon(struct atw_softc *sc)
2457 {
2458 #define TBTTOFS 20 /* TU */
2459
2460 struct ieee80211com *ic = &sc->sc_ic;
2461 uint64_t tsft;
2462 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2463 union {
2464 uint64_t word;
2465 uint8_t tstamp[8];
2466 } u;
2467
2468 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2469 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2470 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2471 tsft = atw_get_tsft(sc);
2472 u.word = htole64(tsft);
2473 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2474 sizeof(ic->ic_bss->ni_tstamp));
2475 } else
2476 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2477
2478 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2479
2480 tsftl = tsft & 0xFFFFFFFF;
2481 tsfth = tsft >> 32;
2482
2483 /* We sent/received the last beacon `past' microseconds
2484 * after the interval divided the TSF timer.
2485 */
2486 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2487
2488 /* Skip ten beacons so that the TBTT cannot pass before
2489 * we've programmed it. Ten is an arbitrary number.
2490 */
2491 tbtt = past_even + ival * 10;
2492
2493 ATW_WRITE(sc, ATW_TOFS1,
2494 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2495 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2496 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2497 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2498 #undef TBTTOFS
2499 }
2500
2501 static void
2502 atw_next_scan(void *arg)
2503 {
2504 struct atw_softc *sc = arg;
2505 struct ieee80211com *ic = &sc->sc_ic;
2506 int s;
2507
2508 /* don't call atw_start w/o network interrupts blocked */
2509 s = splnet();
2510 if (ic->ic_state == IEEE80211_S_SCAN)
2511 ieee80211_next_scan(ic);
2512 splx(s);
2513 }
2514
2515 /* Synchronize the hardware state with the software state. */
2516 static int
2517 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2518 {
2519 struct ifnet *ifp = ic->ic_ifp;
2520 struct atw_softc *sc = ifp->if_softc;
2521 enum ieee80211_state ostate;
2522 int error = 0;
2523
2524 ostate = ic->ic_state;
2525 callout_stop(&sc->sc_scan_ch);
2526 atw_start_beacon(sc, 0);
2527
2528 switch (nstate) {
2529 case IEEE80211_S_ASSOC:
2530 error = atw_tune(sc);
2531 break;
2532 case IEEE80211_S_INIT:
2533 callout_stop(&sc->sc_scan_ch);
2534 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2535 break;
2536 case IEEE80211_S_SCAN:
2537 error = atw_tune(sc);
2538 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2539 atw_next_scan, sc);
2540 break;
2541 case IEEE80211_S_AUTH:
2542 error = atw_tune(sc);
2543 break;
2544 case IEEE80211_S_RUN:
2545 error = atw_tune(sc);
2546 atw_write_bssid(sc);
2547 atw_write_ssid(sc);
2548 atw_write_sup_rates(sc);
2549
2550 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2551 ic->ic_opmode == IEEE80211_M_MONITOR)
2552 break;
2553
2554 /* set listen interval
2555 * XXX do software units agree w/ hardware?
2556 */
2557 ATW_WRITE(sc, ATW_BPLI,
2558 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2559 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2560 ATW_BPLI_LI_MASK));
2561
2562 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2563 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2564
2565 atw_predict_beacon(sc);
2566 atw_start_beacon(sc,
2567 ic->ic_opmode == IEEE80211_M_HOSTAP ||
2568 ic->ic_opmode == IEEE80211_M_IBSS);
2569 break;
2570 }
2571 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2572 }
2573
2574 /*
2575 * atw_add_rxbuf:
2576 *
2577 * Add a receive buffer to the indicated descriptor.
2578 */
2579 int
2580 atw_add_rxbuf(struct atw_softc *sc, int idx)
2581 {
2582 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2583 struct mbuf *m;
2584 int error;
2585
2586 MGETHDR(m, M_DONTWAIT, MT_DATA);
2587 if (m == NULL)
2588 return (ENOBUFS);
2589
2590 MCLGET(m, M_DONTWAIT);
2591 if ((m->m_flags & M_EXT) == 0) {
2592 m_freem(m);
2593 return (ENOBUFS);
2594 }
2595
2596 if (rxs->rxs_mbuf != NULL)
2597 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2598
2599 rxs->rxs_mbuf = m;
2600
2601 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2602 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2603 BUS_DMA_READ|BUS_DMA_NOWAIT);
2604 if (error) {
2605 printf("%s: can't load rx DMA map %d, error = %d\n",
2606 sc->sc_dev.dv_xname, idx, error);
2607 panic("atw_add_rxbuf"); /* XXX */
2608 }
2609
2610 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2611 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2612
2613 ATW_INIT_RXDESC(sc, idx);
2614
2615 return (0);
2616 }
2617
2618 /*
2619 * Release any queued transmit buffers.
2620 */
2621 void
2622 atw_txdrain(struct atw_softc *sc)
2623 {
2624 struct atw_txsoft *txs;
2625
2626 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2627 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2628 if (txs->txs_mbuf != NULL) {
2629 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2630 m_freem(txs->txs_mbuf);
2631 txs->txs_mbuf = NULL;
2632 }
2633 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2634 sc->sc_txfree += txs->txs_ndescs;
2635 }
2636 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2637 sc->sc_tx_timer = 0;
2638 }
2639
2640 /*
2641 * atw_stop: [ ifnet interface function ]
2642 *
2643 * Stop transmission on the interface.
2644 */
2645 void
2646 atw_stop(struct ifnet *ifp, int disable)
2647 {
2648 struct atw_softc *sc = ifp->if_softc;
2649 struct ieee80211com *ic = &sc->sc_ic;
2650
2651 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2652
2653 /* Disable interrupts. */
2654 ATW_WRITE(sc, ATW_IER, 0);
2655
2656 /* Stop the transmit and receive processes. */
2657 sc->sc_opmode = 0;
2658 ATW_WRITE(sc, ATW_NAR, 0);
2659 DELAY(atw_nar_delay);
2660 ATW_WRITE(sc, ATW_TDBD, 0);
2661 ATW_WRITE(sc, ATW_TDBP, 0);
2662 ATW_WRITE(sc, ATW_RDB, 0);
2663
2664 atw_txdrain(sc);
2665
2666 if (disable) {
2667 atw_rxdrain(sc);
2668 atw_disable(sc);
2669 }
2670
2671 /*
2672 * Mark the interface down and cancel the watchdog timer.
2673 */
2674 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2675 sc->sc_tx_timer = 0;
2676 ifp->if_timer = 0;
2677
2678 if (!disable)
2679 atw_reset(sc);
2680 }
2681
2682 /*
2683 * atw_rxdrain:
2684 *
2685 * Drain the receive queue.
2686 */
2687 void
2688 atw_rxdrain(struct atw_softc *sc)
2689 {
2690 struct atw_rxsoft *rxs;
2691 int i;
2692
2693 for (i = 0; i < ATW_NRXDESC; i++) {
2694 rxs = &sc->sc_rxsoft[i];
2695 if (rxs->rxs_mbuf == NULL)
2696 continue;
2697 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2698 m_freem(rxs->rxs_mbuf);
2699 rxs->rxs_mbuf = NULL;
2700 }
2701 }
2702
2703 /*
2704 * atw_detach:
2705 *
2706 * Detach an ADM8211 interface.
2707 */
2708 int
2709 atw_detach(struct atw_softc *sc)
2710 {
2711 struct ifnet *ifp = &sc->sc_if;
2712 struct atw_rxsoft *rxs;
2713 struct atw_txsoft *txs;
2714 int i;
2715
2716 /*
2717 * Succeed now if there isn't any work to do.
2718 */
2719 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2720 return (0);
2721
2722 callout_stop(&sc->sc_scan_ch);
2723
2724 ieee80211_ifdetach(&sc->sc_ic);
2725 if_detach(ifp);
2726
2727 for (i = 0; i < ATW_NRXDESC; i++) {
2728 rxs = &sc->sc_rxsoft[i];
2729 if (rxs->rxs_mbuf != NULL) {
2730 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2731 m_freem(rxs->rxs_mbuf);
2732 rxs->rxs_mbuf = NULL;
2733 }
2734 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2735 }
2736 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2737 txs = &sc->sc_txsoft[i];
2738 if (txs->txs_mbuf != NULL) {
2739 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2740 m_freem(txs->txs_mbuf);
2741 txs->txs_mbuf = NULL;
2742 }
2743 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2744 }
2745 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2746 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2747 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2748 sizeof(struct atw_control_data));
2749 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2750
2751 shutdownhook_disestablish(sc->sc_sdhook);
2752 powerhook_disestablish(sc->sc_powerhook);
2753
2754 if (sc->sc_srom)
2755 free(sc->sc_srom, M_DEVBUF);
2756
2757 return (0);
2758 }
2759
2760 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2761 void
2762 atw_shutdown(void *arg)
2763 {
2764 struct atw_softc *sc = arg;
2765
2766 atw_stop(&sc->sc_if, 1);
2767 }
2768
2769 int
2770 atw_intr(void *arg)
2771 {
2772 struct atw_softc *sc = arg;
2773 struct ifnet *ifp = &sc->sc_if;
2774 u_int32_t status, rxstatus, txstatus, linkstatus;
2775 int handled = 0, txthresh;
2776
2777 #ifdef DEBUG
2778 if (ATW_IS_ENABLED(sc) == 0)
2779 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2780 #endif
2781
2782 /*
2783 * If the interface isn't running, the interrupt couldn't
2784 * possibly have come from us.
2785 */
2786 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2787 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2788 return (0);
2789
2790 for (;;) {
2791 status = ATW_READ(sc, ATW_STSR);
2792
2793 if (status)
2794 ATW_WRITE(sc, ATW_STSR, status);
2795
2796 #ifdef ATW_DEBUG
2797 #define PRINTINTR(flag) do { \
2798 if ((status & flag) != 0) { \
2799 printf("%s" #flag, delim); \
2800 delim = ","; \
2801 } \
2802 } while (0)
2803
2804 if (atw_debug > 1 && status) {
2805 const char *delim = "<";
2806
2807 printf("%s: reg[STSR] = %x",
2808 sc->sc_dev.dv_xname, status);
2809
2810 PRINTINTR(ATW_INTR_FBE);
2811 PRINTINTR(ATW_INTR_LINKOFF);
2812 PRINTINTR(ATW_INTR_LINKON);
2813 PRINTINTR(ATW_INTR_RCI);
2814 PRINTINTR(ATW_INTR_RDU);
2815 PRINTINTR(ATW_INTR_REIS);
2816 PRINTINTR(ATW_INTR_RPS);
2817 PRINTINTR(ATW_INTR_TCI);
2818 PRINTINTR(ATW_INTR_TDU);
2819 PRINTINTR(ATW_INTR_TLT);
2820 PRINTINTR(ATW_INTR_TPS);
2821 PRINTINTR(ATW_INTR_TRT);
2822 PRINTINTR(ATW_INTR_TUF);
2823 PRINTINTR(ATW_INTR_BCNTC);
2824 PRINTINTR(ATW_INTR_ATIME);
2825 PRINTINTR(ATW_INTR_TBTT);
2826 PRINTINTR(ATW_INTR_TSCZ);
2827 PRINTINTR(ATW_INTR_TSFTF);
2828 printf(">\n");
2829 }
2830 #undef PRINTINTR
2831 #endif /* ATW_DEBUG */
2832
2833 if ((status & sc->sc_inten) == 0)
2834 break;
2835
2836 handled = 1;
2837
2838 rxstatus = status & sc->sc_rxint_mask;
2839 txstatus = status & sc->sc_txint_mask;
2840 linkstatus = status & sc->sc_linkint_mask;
2841
2842 if (linkstatus) {
2843 atw_linkintr(sc, linkstatus);
2844 }
2845
2846 if (rxstatus) {
2847 /* Grab any new packets. */
2848 atw_rxintr(sc);
2849
2850 if (rxstatus & ATW_INTR_RDU) {
2851 printf("%s: receive ring overrun\n",
2852 sc->sc_dev.dv_xname);
2853 /* Get the receive process going again. */
2854 ATW_WRITE(sc, ATW_RDR, 0x1);
2855 break;
2856 }
2857 }
2858
2859 if (txstatus) {
2860 /* Sweep up transmit descriptors. */
2861 atw_txintr(sc);
2862
2863 if (txstatus & ATW_INTR_TLT)
2864 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2865 sc->sc_dev.dv_xname));
2866
2867 if (txstatus & ATW_INTR_TRT)
2868 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2869 sc->sc_dev.dv_xname));
2870
2871 /* If Tx under-run, increase our transmit threshold
2872 * if another is available.
2873 */
2874 txthresh = sc->sc_txthresh + 1;
2875 if ((txstatus & ATW_INTR_TUF) &&
2876 sc->sc_txth[txthresh].txth_name != NULL) {
2877 /* Idle the transmit process. */
2878 atw_idle(sc, ATW_NAR_ST);
2879
2880 sc->sc_txthresh = txthresh;
2881 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2882 sc->sc_opmode |=
2883 sc->sc_txth[txthresh].txth_opmode;
2884 printf("%s: transmit underrun; new "
2885 "threshold: %s\n", sc->sc_dev.dv_xname,
2886 sc->sc_txth[txthresh].txth_name);
2887
2888 /* Set the new threshold and restart
2889 * the transmit process.
2890 */
2891 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2892 DELAY(atw_nar_delay);
2893 ATW_WRITE(sc, ATW_RDR, 0x1);
2894 /* XXX Log every Nth underrun from
2895 * XXX now on?
2896 */
2897 }
2898 }
2899
2900 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2901 if (status & ATW_INTR_TPS)
2902 printf("%s: transmit process stopped\n",
2903 sc->sc_dev.dv_xname);
2904 if (status & ATW_INTR_RPS)
2905 printf("%s: receive process stopped\n",
2906 sc->sc_dev.dv_xname);
2907 (void)atw_init(ifp);
2908 break;
2909 }
2910
2911 if (status & ATW_INTR_FBE) {
2912 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2913 (void)atw_init(ifp);
2914 break;
2915 }
2916
2917 /*
2918 * Not handled:
2919 *
2920 * Transmit buffer unavailable -- normal
2921 * condition, nothing to do, really.
2922 *
2923 * Early receive interrupt -- not available on
2924 * all chips, we just use RI. We also only
2925 * use single-segment receive DMA, so this
2926 * is mostly useless.
2927 *
2928 * TBD others
2929 */
2930 }
2931
2932 /* Try to get more packets going. */
2933 atw_start(ifp);
2934
2935 return (handled);
2936 }
2937
2938 /*
2939 * atw_idle:
2940 *
2941 * Cause the transmit and/or receive processes to go idle.
2942 *
2943 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2944 * process in STSR if I clear SR or ST after the process has already
2945 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2946 * do not seem to be too reliable. Perhaps I have the sense of the
2947 * Rx bits switched with the Tx bits?
2948 */
2949 void
2950 atw_idle(struct atw_softc *sc, u_int32_t bits)
2951 {
2952 u_int32_t ackmask = 0, opmode, stsr, test0;
2953 int i, s;
2954
2955 s = splnet();
2956
2957 opmode = sc->sc_opmode & ~bits;
2958
2959 if (bits & ATW_NAR_SR)
2960 ackmask |= ATW_INTR_RPS;
2961
2962 if (bits & ATW_NAR_ST) {
2963 ackmask |= ATW_INTR_TPS;
2964 /* set ATW_NAR_HF to flush TX FIFO. */
2965 opmode |= ATW_NAR_HF;
2966 }
2967
2968 ATW_WRITE(sc, ATW_NAR, opmode);
2969 DELAY(atw_nar_delay);
2970
2971 for (i = 0; i < 1000; i++) {
2972 stsr = ATW_READ(sc, ATW_STSR);
2973 if ((stsr & ackmask) == ackmask)
2974 break;
2975 DELAY(10);
2976 }
2977
2978 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2979
2980 if ((stsr & ackmask) == ackmask)
2981 goto out;
2982
2983 test0 = ATW_READ(sc, ATW_TEST0);
2984
2985 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2986 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2987 printf("%s: transmit process not idle [%s]\n",
2988 sc->sc_dev.dv_xname,
2989 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2990 printf("%s: bits %08x test0 %08x stsr %08x\n",
2991 sc->sc_dev.dv_xname, bits, test0, stsr);
2992 }
2993
2994 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2995 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2996 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2997 sc->sc_dev.dv_xname,
2998 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2999 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3000 sc->sc_dev.dv_xname, bits, test0, stsr));
3001 }
3002 out:
3003 if ((bits & ATW_NAR_ST) != 0)
3004 atw_txdrain(sc);
3005 splx(s);
3006 return;
3007 }
3008
3009 /*
3010 * atw_linkintr:
3011 *
3012 * Helper; handle link-status interrupts.
3013 */
3014 void
3015 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3016 {
3017 struct ieee80211com *ic = &sc->sc_ic;
3018
3019 if (ic->ic_state != IEEE80211_S_RUN)
3020 return;
3021
3022 if (linkstatus & ATW_INTR_LINKON) {
3023 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3024 sc->sc_rescan_timer = 0;
3025 } else if (linkstatus & ATW_INTR_LINKOFF) {
3026 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3027 if (ic->ic_opmode != IEEE80211_M_STA)
3028 return;
3029 sc->sc_rescan_timer = 3;
3030 sc->sc_if.if_timer = 1;
3031 }
3032 }
3033
3034 static inline int
3035 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3036 {
3037 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3038 return 0;
3039 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3040 return 0;
3041 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3042 }
3043
3044 /*
3045 * atw_rxintr:
3046 *
3047 * Helper; handle receive interrupts.
3048 */
3049 void
3050 atw_rxintr(struct atw_softc *sc)
3051 {
3052 static int rate_tbl[] = {2, 4, 11, 22, 44};
3053 struct ieee80211com *ic = &sc->sc_ic;
3054 struct ieee80211_node *ni;
3055 struct ieee80211_frame_min *wh;
3056 struct ifnet *ifp = &sc->sc_if;
3057 struct atw_rxsoft *rxs;
3058 struct mbuf *m;
3059 u_int32_t rxstat;
3060 int i, len, rate, rate0;
3061 u_int32_t rssi, rssi0;
3062
3063 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3064 rxs = &sc->sc_rxsoft[i];
3065
3066 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3067
3068 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3069 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3070 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3071
3072 if (rxstat & ATW_RXSTAT_OWN)
3073 break; /* We have processed all receive buffers. */
3074
3075 DPRINTF3(sc,
3076 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3077 sc->sc_dev.dv_xname,
3078 rxstat, rssi0,
3079 le32toh(sc->sc_rxdescs[i].ar_buf1),
3080 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3081
3082 /*
3083 * Make sure the packet fits in one buffer. This should
3084 * always be the case.
3085 */
3086 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3087 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3088 printf("%s: incoming packet spilled, resetting\n",
3089 sc->sc_dev.dv_xname);
3090 (void)atw_init(ifp);
3091 return;
3092 }
3093
3094 /*
3095 * If an error occurred, update stats, clear the status
3096 * word, and leave the packet buffer in place. It will
3097 * simply be reused the next time the ring comes around.
3098 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3099 * error.
3100 */
3101
3102 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3103 ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3104 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3105 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3106 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3107 ATW_RXSTAT_ICVE)) != 0)) {
3108 #define PRINTERR(bit, str) \
3109 if (rxstat & (bit)) \
3110 printf("%s: receive error: %s\n", \
3111 sc->sc_dev.dv_xname, str)
3112 ifp->if_ierrors++;
3113 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3114 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3115 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3116 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3117 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3118 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3119 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3120 #undef PRINTERR
3121 ATW_INIT_RXDESC(sc, i);
3122 continue;
3123 }
3124
3125 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3126 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3127
3128 /*
3129 * No errors; receive the packet. Note the ADM8211
3130 * includes the CRC in promiscuous mode.
3131 */
3132 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3133
3134 /*
3135 * Allocate a new mbuf cluster. If that fails, we are
3136 * out of memory, and must drop the packet and recycle
3137 * the buffer that's already attached to this descriptor.
3138 */
3139 m = rxs->rxs_mbuf;
3140 if (atw_add_rxbuf(sc, i) != 0) {
3141 ifp->if_ierrors++;
3142 ATW_INIT_RXDESC(sc, i);
3143 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3144 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3145 continue;
3146 }
3147
3148 ifp->if_ipackets++;
3149 if (sc->sc_opmode & ATW_NAR_PR)
3150 len -= IEEE80211_CRC_LEN;
3151 m->m_pkthdr.rcvif = ifp;
3152 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3153
3154 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3155 rate = 0;
3156 else
3157 rate = rate_tbl[rate0];
3158
3159 /* The RSSI comes straight from a register in the
3160 * baseband processor. I know that for the RF3000,
3161 * the RSSI register also contains the antenna-selection
3162 * bits. Mask those off.
3163 *
3164 * TBD Treat other basebands.
3165 */
3166 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3167 rssi = rssi0 & RF3000_RSSI_MASK;
3168 else
3169 rssi = rssi0;
3170
3171 #if NBPFILTER > 0
3172 /* Pass this up to any BPF listeners. */
3173 if (sc->sc_radiobpf != NULL) {
3174 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3175
3176 tap->ar_rate = rate;
3177 tap->ar_chan_freq = ic->ic_curchan->ic_freq;
3178 tap->ar_chan_flags = ic->ic_curchan->ic_flags;
3179
3180 /* TBD verify units are dB */
3181 tap->ar_antsignal = (int)rssi;
3182 /* TBD tap->ar_flags */
3183
3184 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3185 tap->ar_ihdr.it_len, m);
3186 }
3187 #endif /* NPBFILTER > 0 */
3188
3189 wh = mtod(m, struct ieee80211_frame_min *);
3190 ni = ieee80211_find_rxnode(ic, wh);
3191 if (atw_hw_decrypted(sc, wh)) {
3192 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3193 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3194 }
3195 ieee80211_input(ic, m, ni, (int)rssi, 0);
3196 ieee80211_free_node(ni);
3197 }
3198
3199 /* Update the receive pointer. */
3200 sc->sc_rxptr = i;
3201 }
3202
3203 /*
3204 * atw_txintr:
3205 *
3206 * Helper; handle transmit interrupts.
3207 */
3208 void
3209 atw_txintr(struct atw_softc *sc)
3210 {
3211 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3212 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3213 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3214 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3215
3216 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3217 struct ifnet *ifp = &sc->sc_if;
3218 struct atw_txsoft *txs;
3219 u_int32_t txstat;
3220
3221 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3222 sc->sc_dev.dv_xname, sc->sc_flags));
3223
3224 /*
3225 * Go through our Tx list and free mbufs for those
3226 * frames that have been transmitted.
3227 */
3228 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3229 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3230 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3231
3232 #ifdef ATW_DEBUG
3233 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3234 int i;
3235 printf(" txsoft %p transmit chain:\n", txs);
3236 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3237 txs->txs_ndescs - 1,
3238 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3239 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3240 printf(" descriptor %d:\n", i);
3241 printf(" at_status: 0x%08x\n",
3242 le32toh(sc->sc_txdescs[i].at_stat));
3243 printf(" at_flags: 0x%08x\n",
3244 le32toh(sc->sc_txdescs[i].at_flags));
3245 printf(" at_buf1: 0x%08x\n",
3246 le32toh(sc->sc_txdescs[i].at_buf1));
3247 printf(" at_buf2: 0x%08x\n",
3248 le32toh(sc->sc_txdescs[i].at_buf2));
3249 if (i == txs->txs_lastdesc)
3250 break;
3251 }
3252 }
3253 #endif
3254
3255 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3256 if (txstat & ATW_TXSTAT_OWN)
3257 break;
3258
3259 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3260
3261 sc->sc_txfree += txs->txs_ndescs;
3262
3263 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3264 0, txs->txs_dmamap->dm_mapsize,
3265 BUS_DMASYNC_POSTWRITE);
3266 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3267 m_freem(txs->txs_mbuf);
3268 txs->txs_mbuf = NULL;
3269
3270 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3271
3272 ifp->if_flags &= ~IFF_OACTIVE;
3273
3274 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3275 (txstat & TXSTAT_ERRMASK) != 0) {
3276 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3277 txstat_buf, sizeof(txstat_buf));
3278 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3279 txstat_buf,
3280 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3281 }
3282
3283 /*
3284 * Check for errors and collisions.
3285 */
3286 if (txstat & ATW_TXSTAT_TUF)
3287 sc->sc_stats.ts_tx_tuf++;
3288 if (txstat & ATW_TXSTAT_TLT)
3289 sc->sc_stats.ts_tx_tlt++;
3290 if (txstat & ATW_TXSTAT_TRT)
3291 sc->sc_stats.ts_tx_trt++;
3292 if (txstat & ATW_TXSTAT_TRO)
3293 sc->sc_stats.ts_tx_tro++;
3294 if (txstat & ATW_TXSTAT_SOFBR) {
3295 sc->sc_stats.ts_tx_sofbr++;
3296 }
3297
3298 if ((txstat & ATW_TXSTAT_ES) == 0)
3299 ifp->if_collisions +=
3300 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3301 else
3302 ifp->if_oerrors++;
3303
3304 ifp->if_opackets++;
3305 }
3306
3307 /*
3308 * If there are no more pending transmissions, cancel the watchdog
3309 * timer.
3310 */
3311 if (txs == NULL)
3312 sc->sc_tx_timer = 0;
3313 #undef TXSTAT_ERRMASK
3314 #undef TXSTAT_FMT
3315 }
3316
3317 /*
3318 * atw_watchdog: [ifnet interface function]
3319 *
3320 * Watchdog timer handler.
3321 */
3322 void
3323 atw_watchdog(struct ifnet *ifp)
3324 {
3325 struct atw_softc *sc = ifp->if_softc;
3326 struct ieee80211com *ic = &sc->sc_ic;
3327
3328 ifp->if_timer = 0;
3329 if (ATW_IS_ENABLED(sc) == 0)
3330 return;
3331
3332 if (sc->sc_rescan_timer) {
3333 if (--sc->sc_rescan_timer == 0)
3334 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3335 }
3336 if (sc->sc_tx_timer) {
3337 if (--sc->sc_tx_timer == 0 &&
3338 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3339 printf("%s: transmit timeout\n", ifp->if_xname);
3340 ifp->if_oerrors++;
3341 (void)atw_init(ifp);
3342 atw_start(ifp);
3343 }
3344 }
3345 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3346 ifp->if_timer = 1;
3347 ieee80211_watchdog(ic);
3348 }
3349
3350 #ifdef ATW_DEBUG
3351 static void
3352 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3353 {
3354 struct atw_softc *sc = ifp->if_softc;
3355 struct mbuf *m;
3356 int i, noctets = 0;
3357
3358 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3359 m0->m_pkthdr.len);
3360
3361 for (m = m0; m; m = m->m_next) {
3362 if (m->m_len == 0)
3363 continue;
3364 for (i = 0; i < m->m_len; i++) {
3365 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3366 if (++noctets % 24 == 0)
3367 printf("\n");
3368 }
3369 }
3370 printf("%s%s: %d bytes emitted\n",
3371 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3372 }
3373 #endif /* ATW_DEBUG */
3374
3375 /*
3376 * atw_start: [ifnet interface function]
3377 *
3378 * Start packet transmission on the interface.
3379 */
3380 void
3381 atw_start(struct ifnet *ifp)
3382 {
3383 struct atw_softc *sc = ifp->if_softc;
3384 struct ieee80211_key *k;
3385 struct ieee80211com *ic = &sc->sc_ic;
3386 struct ieee80211_node *ni;
3387 struct ieee80211_frame_min *whm;
3388 struct ieee80211_frame *wh;
3389 struct atw_frame *hh;
3390 struct mbuf *m0, *m;
3391 struct atw_txsoft *txs, *last_txs;
3392 struct atw_txdesc *txd;
3393 int do_encrypt, npkt, rate;
3394 bus_dmamap_t dmamap;
3395 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3396
3397 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3398 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3399
3400 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3401 return;
3402
3403 /*
3404 * Remember the previous number of free descriptors and
3405 * the first descriptor we'll use.
3406 */
3407 ofree = sc->sc_txfree;
3408 firsttx = sc->sc_txnext;
3409
3410 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3411 sc->sc_dev.dv_xname, ofree, firsttx));
3412
3413 /*
3414 * Loop through the send queue, setting up transmit descriptors
3415 * until we drain the queue, or use up all available transmit
3416 * descriptors.
3417 */
3418 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3419 sc->sc_txfree != 0) {
3420
3421 /*
3422 * Grab a packet off the management queue, if it
3423 * is not empty. Otherwise, from the data queue.
3424 */
3425 IF_DEQUEUE(&ic->ic_mgtq, m0);
3426 if (m0 != NULL) {
3427 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3428 m0->m_pkthdr.rcvif = NULL;
3429 } else {
3430 /* send no data packets until we are associated */
3431 if (ic->ic_state != IEEE80211_S_RUN)
3432 break;
3433 IFQ_DEQUEUE(&ifp->if_snd, m0);
3434 if (m0 == NULL)
3435 break;
3436 #if NBPFILTER > 0
3437 if (ifp->if_bpf != NULL)
3438 bpf_mtap(ifp->if_bpf, m0);
3439 #endif /* NBPFILTER > 0 */
3440 ni = ieee80211_find_txnode(ic,
3441 mtod(m0, struct ether_header *)->ether_dhost);
3442 if (ni == NULL) {
3443 ifp->if_oerrors++;
3444 break;
3445 }
3446 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3447 ieee80211_free_node(ni);
3448 ifp->if_oerrors++;
3449 break;
3450 }
3451 }
3452
3453 rate = MAX(ieee80211_get_rate(ic), 2);
3454
3455 whm = mtod(m0, struct ieee80211_frame_min *);
3456
3457 do_encrypt = ((whm->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3458 if (do_encrypt)
3459 k = &ic->ic_nw_keys[ic->ic_def_txkey];
3460 else
3461 k = NULL;
3462
3463 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3464 ic->ic_flags, ic->ic_fragthreshold, rate,
3465 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3466 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3467 m_freem(m0);
3468 break;
3469 }
3470
3471 /* XXX Misleading if fragmentation is enabled. Better
3472 * to fragment in software?
3473 */
3474 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3475
3476 #if NBPFILTER > 0
3477 /*
3478 * Pass the packet to any BPF listeners.
3479 */
3480 if (ic->ic_rawbpf != NULL)
3481 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3482
3483 if (sc->sc_radiobpf != NULL) {
3484 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3485
3486 tap->at_rate = rate;
3487 tap->at_chan_freq = ic->ic_curchan->ic_freq;
3488 tap->at_chan_flags = ic->ic_curchan->ic_flags;
3489
3490 /* TBD tap->at_flags */
3491
3492 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3493 tap->at_ihdr.it_len, m0);
3494 }
3495 #endif /* NBPFILTER > 0 */
3496
3497 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3498
3499 if (ni != NULL)
3500 ieee80211_free_node(ni);
3501
3502 if (m0 == NULL) {
3503 ifp->if_oerrors++;
3504 break;
3505 }
3506
3507 /* just to make sure. */
3508 m0 = m_pullup(m0, sizeof(struct atw_frame));
3509
3510 if (m0 == NULL) {
3511 ifp->if_oerrors++;
3512 break;
3513 }
3514
3515 hh = mtod(m0, struct atw_frame *);
3516 wh = &hh->atw_ihdr;
3517
3518 /* Copy everything we need from the 802.11 header:
3519 * Frame Control; address 1, address 3, or addresses
3520 * 3 and 4. NIC fills in BSSID, SA.
3521 */
3522 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3523 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3524 panic("%s: illegal WDS frame",
3525 sc->sc_dev.dv_xname);
3526 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3527 } else
3528 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3529
3530 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3531
3532 /* initialize remaining Tx parameters */
3533 memset(&hh->u, 0, sizeof(hh->u));
3534
3535 hh->atw_rate = rate * 5;
3536 /* XXX this could be incorrect if M_FCS. _encap should
3537 * probably strip FCS just in case it sticks around in
3538 * bridged packets.
3539 */
3540 hh->atw_service = 0x00; /* XXX guess */
3541 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3542 sizeof(struct atw_frame));
3543
3544 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3545 hh->atw_rtylmt = 3;
3546 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3547 if (do_encrypt) {
3548 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3549 hh->atw_keyid = ic->ic_def_txkey;
3550 }
3551
3552 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3553 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3554 if (txs->txs_d0.d_residue)
3555 hh->atw_head_plcplen |= htole16(0x8000);
3556 if (txs->txs_dn.d_residue)
3557 hh->atw_tail_plcplen |= htole16(0x8000);
3558 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3559 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3560
3561 /* never fragment multicast frames */
3562 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3563 hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3564 } else if (sc->sc_flags & ATWF_RTSCTS) {
3565 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3566 }
3567
3568 #ifdef ATW_DEBUG
3569 hh->atw_fragnum = 0;
3570
3571 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3572 printf("%s: dst = %s, rate = 0x%02x, "
3573 "service = 0x%02x, paylen = 0x%04x\n",
3574 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3575 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3576
3577 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3578 "dur1 = 0x%04x, dur2 = 0x%04x, "
3579 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3580 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3581 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3582 hh->atw_tail_dur, hh->atw_head_dur);
3583
3584 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3585 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3586 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3587 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3588
3589 printf("%s: keyid = %d\n",
3590 sc->sc_dev.dv_xname, hh->atw_keyid);
3591
3592 atw_dump_pkt(ifp, m0);
3593 }
3594 #endif /* ATW_DEBUG */
3595
3596 dmamap = txs->txs_dmamap;
3597
3598 /*
3599 * Load the DMA map. Copy and try (once) again if the packet
3600 * didn't fit in the alloted number of segments.
3601 */
3602 for (first = 1;
3603 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3604 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3605 first = 0) {
3606 MGETHDR(m, M_DONTWAIT, MT_DATA);
3607 if (m == NULL) {
3608 printf("%s: unable to allocate Tx mbuf\n",
3609 sc->sc_dev.dv_xname);
3610 break;
3611 }
3612 if (m0->m_pkthdr.len > MHLEN) {
3613 MCLGET(m, M_DONTWAIT);
3614 if ((m->m_flags & M_EXT) == 0) {
3615 printf("%s: unable to allocate Tx "
3616 "cluster\n", sc->sc_dev.dv_xname);
3617 m_freem(m);
3618 break;
3619 }
3620 }
3621 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3622 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3623 m_freem(m0);
3624 m0 = m;
3625 m = NULL;
3626 }
3627 if (error != 0) {
3628 printf("%s: unable to load Tx buffer, "
3629 "error = %d\n", sc->sc_dev.dv_xname, error);
3630 m_freem(m0);
3631 break;
3632 }
3633
3634 /*
3635 * Ensure we have enough descriptors free to describe
3636 * the packet.
3637 */
3638 if (dmamap->dm_nsegs > sc->sc_txfree) {
3639 /*
3640 * Not enough free descriptors to transmit
3641 * this packet. Unload the DMA map and
3642 * drop the packet. Notify the upper layer
3643 * that there are no more slots left.
3644 *
3645 * XXX We could allocate an mbuf and copy, but
3646 * XXX it is worth it?
3647 */
3648 bus_dmamap_unload(sc->sc_dmat, dmamap);
3649 m_freem(m0);
3650 break;
3651 }
3652
3653 /*
3654 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3655 */
3656
3657 /* Sync the DMA map. */
3658 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3659 BUS_DMASYNC_PREWRITE);
3660
3661 /* XXX arbitrary retry limit; 8 because I have seen it in
3662 * use already and maybe 0 means "no tries" !
3663 */
3664 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3665
3666 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3667 sc->sc_dev.dv_xname, rate * 5));
3668 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3669
3670 /*
3671 * Initialize the transmit descriptors.
3672 */
3673 for (nexttx = sc->sc_txnext, seg = 0;
3674 seg < dmamap->dm_nsegs;
3675 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3676 /*
3677 * If this is the first descriptor we're
3678 * enqueueing, don't set the OWN bit just
3679 * yet. That could cause a race condition.
3680 * We'll do it below.
3681 */
3682 txd = &sc->sc_txdescs[nexttx];
3683 txd->at_ctl = ctl |
3684 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3685
3686 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3687 txd->at_flags =
3688 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3689 ATW_TXFLAG_TBS1_MASK)) |
3690 ((nexttx == (ATW_NTXDESC - 1))
3691 ? htole32(ATW_TXFLAG_TER) : 0);
3692 lasttx = nexttx;
3693 }
3694
3695 IASSERT(lasttx != -1, ("bad lastx"));
3696 /* Set `first segment' and `last segment' appropriately. */
3697 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3698 htole32(ATW_TXFLAG_FS);
3699 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3700
3701 #ifdef ATW_DEBUG
3702 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3703 printf(" txsoft %p transmit chain:\n", txs);
3704 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3705 printf(" descriptor %d:\n", seg);
3706 printf(" at_ctl: 0x%08x\n",
3707 le32toh(sc->sc_txdescs[seg].at_ctl));
3708 printf(" at_flags: 0x%08x\n",
3709 le32toh(sc->sc_txdescs[seg].at_flags));
3710 printf(" at_buf1: 0x%08x\n",
3711 le32toh(sc->sc_txdescs[seg].at_buf1));
3712 printf(" at_buf2: 0x%08x\n",
3713 le32toh(sc->sc_txdescs[seg].at_buf2));
3714 if (seg == lasttx)
3715 break;
3716 }
3717 }
3718 #endif
3719
3720 /* Sync the descriptors we're using. */
3721 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3722 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3723
3724 /*
3725 * Store a pointer to the packet so we can free it later,
3726 * and remember what txdirty will be once the packet is
3727 * done.
3728 */
3729 txs->txs_mbuf = m0;
3730 txs->txs_firstdesc = sc->sc_txnext;
3731 txs->txs_lastdesc = lasttx;
3732 txs->txs_ndescs = dmamap->dm_nsegs;
3733
3734 /* Advance the tx pointer. */
3735 sc->sc_txfree -= dmamap->dm_nsegs;
3736 sc->sc_txnext = nexttx;
3737
3738 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3739 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3740
3741 last_txs = txs;
3742 }
3743
3744 if (txs == NULL || sc->sc_txfree == 0) {
3745 /* No more slots left; notify upper layer. */
3746 ifp->if_flags |= IFF_OACTIVE;
3747 }
3748
3749 if (sc->sc_txfree != ofree) {
3750 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3751 sc->sc_dev.dv_xname, lasttx, firsttx));
3752 /*
3753 * Cause a transmit interrupt to happen on the
3754 * last packet we enqueued.
3755 */
3756 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3757 ATW_CDTXSYNC(sc, lasttx, 1,
3758 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3759
3760 /*
3761 * The entire packet chain is set up. Give the
3762 * first descriptor to the chip now.
3763 */
3764 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3765 ATW_CDTXSYNC(sc, firsttx, 1,
3766 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3767
3768 /* Wake up the transmitter. */
3769 ATW_WRITE(sc, ATW_TDR, 0x1);
3770
3771 /* Set a watchdog timer in case the chip flakes out. */
3772 sc->sc_tx_timer = 5;
3773 ifp->if_timer = 1;
3774 }
3775 }
3776
3777 /*
3778 * atw_power:
3779 *
3780 * Power management (suspend/resume) hook.
3781 */
3782 void
3783 atw_power(int why, void *arg)
3784 {
3785 struct atw_softc *sc = arg;
3786 struct ifnet *ifp = &sc->sc_if;
3787 int s;
3788
3789 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3790
3791 s = splnet();
3792 switch (why) {
3793 case PWR_STANDBY:
3794 /* XXX do nothing. */
3795 break;
3796 case PWR_SUSPEND:
3797 atw_stop(ifp, 0);
3798 if (sc->sc_power != NULL)
3799 (*sc->sc_power)(sc, why);
3800 break;
3801 case PWR_RESUME:
3802 if (ifp->if_flags & IFF_UP) {
3803 if (sc->sc_power != NULL)
3804 (*sc->sc_power)(sc, why);
3805 atw_init(ifp);
3806 }
3807 break;
3808 case PWR_SOFTSUSPEND:
3809 case PWR_SOFTSTANDBY:
3810 case PWR_SOFTRESUME:
3811 break;
3812 }
3813 splx(s);
3814 }
3815
3816 /*
3817 * atw_ioctl: [ifnet interface function]
3818 *
3819 * Handle control requests from the operator.
3820 */
3821 int
3822 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3823 {
3824 struct atw_softc *sc = ifp->if_softc;
3825 struct ifreq *ifr = (struct ifreq *)data;
3826 int s, error = 0;
3827
3828 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3829 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3830 return ENXIO;
3831
3832 s = splnet();
3833
3834 switch (cmd) {
3835 case SIOCSIFFLAGS:
3836 if (ifp->if_flags & IFF_UP) {
3837 if (ATW_IS_ENABLED(sc)) {
3838 /*
3839 * To avoid rescanning another access point,
3840 * do not call atw_init() here. Instead,
3841 * only reflect media settings.
3842 */
3843 atw_filter_setup(sc);
3844 } else
3845 error = atw_init(ifp);
3846 } else if (ATW_IS_ENABLED(sc))
3847 atw_stop(ifp, 1);
3848 break;
3849 case SIOCADDMULTI:
3850 case SIOCDELMULTI:
3851 error = (cmd == SIOCADDMULTI) ?
3852 ether_addmulti(ifr, &sc->sc_ec) :
3853 ether_delmulti(ifr, &sc->sc_ec);
3854 if (error == ENETRESET) {
3855 if (ifp->if_flags & IFF_RUNNING)
3856 atw_filter_setup(sc); /* do not rescan */
3857 error = 0;
3858 }
3859 break;
3860 default:
3861 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3862 if (error == ENETRESET) {
3863 if (ATW_IS_ENABLED(sc))
3864 error = atw_init(ifp);
3865 else
3866 error = 0;
3867 }
3868 break;
3869 }
3870
3871 /* Try to get more packets going. */
3872 if (ATW_IS_ENABLED(sc))
3873 atw_start(ifp);
3874
3875 splx(s);
3876 return (error);
3877 }
3878
3879 static int
3880 atw_media_change(struct ifnet *ifp)
3881 {
3882 int error;
3883
3884 error = ieee80211_media_change(ifp);
3885 if (error == ENETRESET) {
3886 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3887 (IFF_RUNNING|IFF_UP))
3888 atw_init(ifp); /* XXX lose error */
3889 error = 0;
3890 }
3891 return error;
3892 }
3893
3894 static void
3895 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3896 {
3897 struct atw_softc *sc = ifp->if_softc;
3898
3899 if (ATW_IS_ENABLED(sc) == 0) {
3900 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3901 imr->ifm_status = 0;
3902 return;
3903 }
3904 ieee80211_media_status(ifp, imr);
3905 }
3906