atw.c revision 1.97 1 /* $NetBSD: atw.c,v 1.97 2005/12/29 21:40:41 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.97 2005/12/29 21:40:41 dyoung Exp $");
45
46 #include "bpfilter.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59
60 #include <machine/endian.h>
61
62 #include <uvm/uvm_extern.h>
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68
69 #include <net80211/ieee80211_netbsd.h>
70 #include <net80211/ieee80211_var.h>
71 #include <net80211/ieee80211_radiotap.h>
72
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85
86 /* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94 /* device attachment
95 *
96 * print TOFS[012]
97 *
98 * device initialization
99 *
100 * clear ATW_FRCTL_MAXPSP to disable max power saving
101 * set ATW_TXBR_ALCUPDATE to enable ALC
102 * set TOFS[012]? (hope not)
103 * disable rx/tx
104 * set ATW_PAR_SWR (software reset)
105 * wait for ATW_PAR_SWR clear
106 * disable interrupts
107 * ack status register
108 * enable interrupts
109 *
110 * rx/tx initialization
111 *
112 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 * allocate and init descriptor rings
114 * write ATW_PAR_DSL (descriptor skip length)
115 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 * write ATW_NAR_SQ for one/both transmit descriptor rings
117 * write ATW_NAR_SQ for one/both transmit descriptor rings
118 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 * stop DMA
123 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 * flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 * initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 * set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138 #define ATW_REFSLAVE /* slavishly do what the reference driver does */
139
140 #define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
141 #define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162
163 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
166 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
167 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
171 static void atw_print_regs(struct atw_softc *, const char *);
172
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 # ifdef ATW_BBPDEBUG
175 static void atw_rf3000_print(struct atw_softc *);
176 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177 # endif /* ATW_BBPDEBUG */
178
179 # ifdef ATW_SYNDEBUG
180 static void atw_si4126_print(struct atw_softc *);
181 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
182 # endif /* ATW_SYNDEBUG */
183
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define DPRINTF(sc, x) /* nothing */
189 #define DPRINTF2(sc, x) /* nothing */
190 #define DPRINTF3(sc, x) /* nothing */
191 #endif
192
193 /* ifnet methods */
194 int atw_init(struct ifnet *);
195 int atw_ioctl(struct ifnet *, u_long, caddr_t);
196 void atw_start(struct ifnet *);
197 void atw_stop(struct ifnet *, int);
198 void atw_watchdog(struct ifnet *);
199
200 /* Device attachment */
201 void atw_attach(struct atw_softc *);
202 int atw_detach(struct atw_softc *);
203
204 /* Rx/Tx process */
205 int atw_add_rxbuf(struct atw_softc *, int);
206 void atw_idle(struct atw_softc *, u_int32_t);
207 void atw_rxdrain(struct atw_softc *);
208 void atw_txdrain(struct atw_softc *);
209
210 /* Device (de)activation and power state */
211 void atw_disable(struct atw_softc *);
212 int atw_enable(struct atw_softc *);
213 void atw_power(int, void *);
214 void atw_reset(struct atw_softc *);
215 void atw_shutdown(void *);
216
217 /* Interrupt handlers */
218 void atw_linkintr(struct atw_softc *, u_int32_t);
219 void atw_rxintr(struct atw_softc *);
220 void atw_txintr(struct atw_softc *);
221
222 /* 802.11 state machine */
223 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static void atw_next_scan(void *);
225 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 struct ieee80211_node *, int, int, u_int32_t);
227 static int atw_tune(struct atw_softc *);
228
229 /* Device initialization */
230 static void atw_bbp_io_init(struct atw_softc *);
231 static void atw_cfp_init(struct atw_softc *);
232 static void atw_cmdr_init(struct atw_softc *);
233 static void atw_ifs_init(struct atw_softc *);
234 static void atw_nar_init(struct atw_softc *);
235 static void atw_response_times_init(struct atw_softc *);
236 static void atw_rf_reset(struct atw_softc *);
237 static void atw_test1_init(struct atw_softc *);
238 static void atw_tofs0_init(struct atw_softc *);
239 static void atw_tofs2_init(struct atw_softc *);
240 static void atw_txlmt_init(struct atw_softc *);
241 static void atw_wcsr_init(struct atw_softc *);
242
243 /* Key management */
244 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
245 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
246 const u_int8_t[IEEE80211_ADDR_LEN]);
247 static void atw_key_update_begin(struct ieee80211com *);
248 static void atw_key_update_end(struct ieee80211com *);
249
250 /* RAM/ROM utilities */
251 static void atw_clear_sram(struct atw_softc *);
252 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
253 static int atw_read_srom(struct atw_softc *);
254
255 /* BSS setup */
256 static void atw_predict_beacon(struct atw_softc *);
257 static void atw_start_beacon(struct atw_softc *, int);
258 static void atw_write_bssid(struct atw_softc *);
259 static void atw_write_ssid(struct atw_softc *);
260 static void atw_write_sup_rates(struct atw_softc *);
261 static void atw_write_wep(struct atw_softc *);
262
263 /* Media */
264 static int atw_media_change(struct ifnet *);
265
266 static void atw_filter_setup(struct atw_softc *);
267
268 /* 802.11 utilities */
269 static uint64_t atw_get_tsft(struct atw_softc *);
270 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
271 uint32_t);
272 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
273 static void atw_node_free(struct ieee80211_node *);
274 static void atw_change_ibss(struct atw_softc *);
275
276 /*
277 * Tuner/transceiver/modem
278 */
279 static void atw_bbp_io_enable(struct atw_softc *, int);
280
281 /* RFMD RF3000 Baseband Processor */
282 static int atw_rf3000_init(struct atw_softc *);
283 static int atw_rf3000_tune(struct atw_softc *, u_int);
284 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
285
286 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
287 static void atw_si4126_tune(struct atw_softc *, u_int);
288 static void atw_si4126_write(struct atw_softc *, u_int, u_int);
289
290 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
291 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
292
293 const char *atw_tx_state[] = {
294 "STOPPED",
295 "RUNNING - read descriptor",
296 "RUNNING - transmitting",
297 "RUNNING - filling fifo", /* XXX */
298 "SUSPENDED",
299 "RUNNING -- write descriptor",
300 "RUNNING -- write last descriptor",
301 "RUNNING - fifo full"
302 };
303
304 const char *atw_rx_state[] = {
305 "STOPPED",
306 "RUNNING - read descriptor",
307 "RUNNING - check this packet, pre-fetch next",
308 "RUNNING - wait for reception",
309 "SUSPENDED",
310 "RUNNING - write descriptor",
311 "RUNNING - flush fifo",
312 "RUNNING - fifo drain"
313 };
314
315 int
316 atw_activate(struct device *self, enum devact act)
317 {
318 struct atw_softc *sc = (struct atw_softc *)self;
319 int rv = 0, s;
320
321 s = splnet();
322 switch (act) {
323 case DVACT_ACTIVATE:
324 rv = EOPNOTSUPP;
325 break;
326
327 case DVACT_DEACTIVATE:
328 if_deactivate(&sc->sc_if);
329 break;
330 }
331 splx(s);
332 return rv;
333 }
334
335 /*
336 * atw_enable:
337 *
338 * Enable the ADM8211 chip.
339 */
340 int
341 atw_enable(struct atw_softc *sc)
342 {
343
344 if (ATW_IS_ENABLED(sc) == 0) {
345 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
346 printf("%s: device enable failed\n",
347 sc->sc_dev.dv_xname);
348 return (EIO);
349 }
350 sc->sc_flags |= ATWF_ENABLED;
351 }
352 return (0);
353 }
354
355 /*
356 * atw_disable:
357 *
358 * Disable the ADM8211 chip.
359 */
360 void
361 atw_disable(struct atw_softc *sc)
362 {
363 if (!ATW_IS_ENABLED(sc))
364 return;
365 if (sc->sc_disable != NULL)
366 (*sc->sc_disable)(sc);
367 sc->sc_flags &= ~ATWF_ENABLED;
368 }
369
370 /* Returns -1 on failure. */
371 static int
372 atw_read_srom(struct atw_softc *sc)
373 {
374 struct seeprom_descriptor sd;
375 uint32_t test0, fail_bits;
376
377 (void)memset(&sd, 0, sizeof(sd));
378
379 test0 = ATW_READ(sc, ATW_TEST0);
380
381 switch (sc->sc_rev) {
382 case ATW_REVISION_BA:
383 case ATW_REVISION_CA:
384 fail_bits = ATW_TEST0_EPNE;
385 break;
386 default:
387 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
388 break;
389 }
390 if ((test0 & fail_bits) != 0) {
391 printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
392 return -1;
393 }
394
395 switch (test0 & ATW_TEST0_EPTYP_MASK) {
396 case ATW_TEST0_EPTYP_93c66:
397 ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
398 sc->sc_sromsz = 512;
399 sd.sd_chip = C56_66;
400 break;
401 case ATW_TEST0_EPTYP_93c46:
402 ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
403 sc->sc_sromsz = 128;
404 sd.sd_chip = C46;
405 break;
406 default:
407 printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
408 MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
409 return -1;
410 }
411
412 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
413
414 if (sc->sc_srom == NULL) {
415 printf("%s: unable to allocate SROM buffer\n",
416 sc->sc_dev.dv_xname);
417 return -1;
418 }
419
420 (void)memset(sc->sc_srom, 0, sc->sc_sromsz);
421
422 /* ADM8211 has a single 32-bit register for controlling the
423 * 93cx6 SROM. Bit SRS enables the serial port. There is no
424 * "ready" bit. The ADM8211 input/output sense is the reverse
425 * of read_seeprom's.
426 */
427 sd.sd_tag = sc->sc_st;
428 sd.sd_bsh = sc->sc_sh;
429 sd.sd_regsize = 4;
430 sd.sd_control_offset = ATW_SPR;
431 sd.sd_status_offset = ATW_SPR;
432 sd.sd_dataout_offset = ATW_SPR;
433 sd.sd_CK = ATW_SPR_SCLK;
434 sd.sd_CS = ATW_SPR_SCS;
435 sd.sd_DI = ATW_SPR_SDO;
436 sd.sd_DO = ATW_SPR_SDI;
437 sd.sd_MS = ATW_SPR_SRS;
438 sd.sd_RDY = 0;
439
440 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
441 printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
442 free(sc->sc_srom, M_DEVBUF);
443 return -1;
444 }
445 #ifdef ATW_DEBUG
446 {
447 int i;
448 ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
449 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
450 if (((i % 8) == 0) && (i != 0)) {
451 ATW_DPRINTF(("\n\t"));
452 }
453 ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
454 }
455 ATW_DPRINTF(("\n"));
456 }
457 #endif /* ATW_DEBUG */
458 return 0;
459 }
460
461 #ifdef ATW_DEBUG
462 static void
463 atw_print_regs(struct atw_softc *sc, const char *where)
464 {
465 #define PRINTREG(sc, reg) \
466 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
467 sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
468
469 ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
470
471 PRINTREG(sc, ATW_PAR);
472 PRINTREG(sc, ATW_FRCTL);
473 PRINTREG(sc, ATW_TDR);
474 PRINTREG(sc, ATW_WTDP);
475 PRINTREG(sc, ATW_RDR);
476 PRINTREG(sc, ATW_WRDP);
477 PRINTREG(sc, ATW_RDB);
478 PRINTREG(sc, ATW_CSR3A);
479 PRINTREG(sc, ATW_TDBD);
480 PRINTREG(sc, ATW_TDBP);
481 PRINTREG(sc, ATW_STSR);
482 PRINTREG(sc, ATW_CSR5A);
483 PRINTREG(sc, ATW_NAR);
484 PRINTREG(sc, ATW_CSR6A);
485 PRINTREG(sc, ATW_IER);
486 PRINTREG(sc, ATW_CSR7A);
487 PRINTREG(sc, ATW_LPC);
488 PRINTREG(sc, ATW_TEST1);
489 PRINTREG(sc, ATW_SPR);
490 PRINTREG(sc, ATW_TEST0);
491 PRINTREG(sc, ATW_WCSR);
492 PRINTREG(sc, ATW_WPDR);
493 PRINTREG(sc, ATW_GPTMR);
494 PRINTREG(sc, ATW_GPIO);
495 PRINTREG(sc, ATW_BBPCTL);
496 PRINTREG(sc, ATW_SYNCTL);
497 PRINTREG(sc, ATW_PLCPHD);
498 PRINTREG(sc, ATW_MMIWADDR);
499 PRINTREG(sc, ATW_MMIRADDR1);
500 PRINTREG(sc, ATW_MMIRADDR2);
501 PRINTREG(sc, ATW_TXBR);
502 PRINTREG(sc, ATW_CSR15A);
503 PRINTREG(sc, ATW_ALCSTAT);
504 PRINTREG(sc, ATW_TOFS2);
505 PRINTREG(sc, ATW_CMDR);
506 PRINTREG(sc, ATW_PCIC);
507 PRINTREG(sc, ATW_PMCSR);
508 PRINTREG(sc, ATW_PAR0);
509 PRINTREG(sc, ATW_PAR1);
510 PRINTREG(sc, ATW_MAR0);
511 PRINTREG(sc, ATW_MAR1);
512 PRINTREG(sc, ATW_ATIMDA0);
513 PRINTREG(sc, ATW_ABDA1);
514 PRINTREG(sc, ATW_BSSID0);
515 PRINTREG(sc, ATW_TXLMT);
516 PRINTREG(sc, ATW_MIBCNT);
517 PRINTREG(sc, ATW_BCNT);
518 PRINTREG(sc, ATW_TSFTH);
519 PRINTREG(sc, ATW_TSC);
520 PRINTREG(sc, ATW_SYNRF);
521 PRINTREG(sc, ATW_BPLI);
522 PRINTREG(sc, ATW_CAP0);
523 PRINTREG(sc, ATW_CAP1);
524 PRINTREG(sc, ATW_RMD);
525 PRINTREG(sc, ATW_CFPP);
526 PRINTREG(sc, ATW_TOFS0);
527 PRINTREG(sc, ATW_TOFS1);
528 PRINTREG(sc, ATW_IFST);
529 PRINTREG(sc, ATW_RSPT);
530 PRINTREG(sc, ATW_TSFTL);
531 PRINTREG(sc, ATW_WEPCTL);
532 PRINTREG(sc, ATW_WESK);
533 PRINTREG(sc, ATW_WEPCNT);
534 PRINTREG(sc, ATW_MACTEST);
535 PRINTREG(sc, ATW_FER);
536 PRINTREG(sc, ATW_FEMR);
537 PRINTREG(sc, ATW_FPSR);
538 PRINTREG(sc, ATW_FFER);
539 #undef PRINTREG
540 }
541 #endif /* ATW_DEBUG */
542
543 /*
544 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
545 */
546 void
547 atw_attach(struct atw_softc *sc)
548 {
549 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
550 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
551 };
552 struct ieee80211com *ic = &sc->sc_ic;
553 struct ifnet *ifp = &sc->sc_if;
554 int country_code, error, i, nrate, srom_major;
555 u_int32_t reg;
556 static const char *type_strings[] = {"Intersil (not supported)",
557 "RFMD", "Marvel (not supported)"};
558
559 sc->sc_txth = atw_txthresh_tab_lo;
560
561 SIMPLEQ_INIT(&sc->sc_txfreeq);
562 SIMPLEQ_INIT(&sc->sc_txdirtyq);
563
564 #ifdef ATW_DEBUG
565 atw_print_regs(sc, "atw_attach");
566 #endif /* ATW_DEBUG */
567
568 /*
569 * Allocate the control data structures, and create and load the
570 * DMA map for it.
571 */
572 if ((error = bus_dmamem_alloc(sc->sc_dmat,
573 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
574 1, &sc->sc_cdnseg, 0)) != 0) {
575 printf("%s: unable to allocate control data, error = %d\n",
576 sc->sc_dev.dv_xname, error);
577 goto fail_0;
578 }
579
580 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
581 sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
582 BUS_DMA_COHERENT)) != 0) {
583 printf("%s: unable to map control data, error = %d\n",
584 sc->sc_dev.dv_xname, error);
585 goto fail_1;
586 }
587
588 if ((error = bus_dmamap_create(sc->sc_dmat,
589 sizeof(struct atw_control_data), 1,
590 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
591 printf("%s: unable to create control data DMA map, "
592 "error = %d\n", sc->sc_dev.dv_xname, error);
593 goto fail_2;
594 }
595
596 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
597 sc->sc_control_data, sizeof(struct atw_control_data), NULL,
598 0)) != 0) {
599 printf("%s: unable to load control data DMA map, error = %d\n",
600 sc->sc_dev.dv_xname, error);
601 goto fail_3;
602 }
603
604 /*
605 * Create the transmit buffer DMA maps.
606 */
607 sc->sc_ntxsegs = ATW_NTXSEGS;
608 for (i = 0; i < ATW_TXQUEUELEN; i++) {
609 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
610 sc->sc_ntxsegs, MCLBYTES, 0, 0,
611 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
612 printf("%s: unable to create tx DMA map %d, "
613 "error = %d\n", sc->sc_dev.dv_xname, i, error);
614 goto fail_4;
615 }
616 }
617
618 /*
619 * Create the receive buffer DMA maps.
620 */
621 for (i = 0; i < ATW_NRXDESC; i++) {
622 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
623 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
624 printf("%s: unable to create rx DMA map %d, "
625 "error = %d\n", sc->sc_dev.dv_xname, i, error);
626 goto fail_5;
627 }
628 }
629 for (i = 0; i < ATW_NRXDESC; i++) {
630 sc->sc_rxsoft[i].rxs_mbuf = NULL;
631 }
632
633 switch (sc->sc_rev) {
634 case ATW_REVISION_AB:
635 case ATW_REVISION_AF:
636 sc->sc_sramlen = ATW_SRAM_A_SIZE;
637 break;
638 case ATW_REVISION_BA:
639 case ATW_REVISION_CA:
640 sc->sc_sramlen = ATW_SRAM_B_SIZE;
641 break;
642 }
643
644 /* Reset the chip to a known state. */
645 atw_reset(sc);
646
647 if (atw_read_srom(sc) == -1)
648 return;
649
650 sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
651 ATW_SR_RFTYPE_MASK);
652
653 sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
654 ATW_SR_BBPTYPE_MASK);
655
656 if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
657 printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
658 return;
659 }
660 if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
661 printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
662 return;
663 }
664
665 printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
666 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
667
668 /* XXX There exists a Linux driver which seems to use RFType = 0 for
669 * MARVEL. My bug, or theirs?
670 */
671
672 reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
673
674 switch (sc->sc_rftype) {
675 case ATW_RFTYPE_INTERSIL:
676 reg |= ATW_SYNCTL_CS1;
677 break;
678 case ATW_RFTYPE_RFMD:
679 reg |= ATW_SYNCTL_CS0;
680 break;
681 case ATW_RFTYPE_MARVEL:
682 break;
683 }
684
685 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
686 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
687
688 reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
689
690 switch (sc->sc_bbptype) {
691 case ATW_BBPTYPE_INTERSIL:
692 reg |= ATW_BBPCTL_TWI;
693 break;
694 case ATW_BBPTYPE_RFMD:
695 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
696 ATW_BBPCTL_CCA_ACTLO;
697 break;
698 case ATW_BBPTYPE_MARVEL:
699 break;
700 case ATW_C_BBPTYPE_RFMD:
701 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
702 sc->sc_dev.dv_xname);
703 break;
704 }
705
706 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
707 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
708
709 /*
710 * From this point forward, the attachment cannot fail. A failure
711 * before this point releases all resources that may have been
712 * allocated.
713 */
714 sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
715
716 ATW_DPRINTF((" SROM MAC %04x%04x%04x",
717 htole16(sc->sc_srom[ATW_SR_MAC00]),
718 htole16(sc->sc_srom[ATW_SR_MAC01]),
719 htole16(sc->sc_srom[ATW_SR_MAC10])));
720
721 srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
722 ATW_SR_MAJOR_MASK);
723
724 if (srom_major < 2)
725 sc->sc_rf3000_options1 = 0;
726 else if (sc->sc_rev == ATW_REVISION_BA) {
727 sc->sc_rf3000_options1 =
728 MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
729 ATW_SR_CR28_MASK);
730 } else
731 sc->sc_rf3000_options1 = 0;
732
733 sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
734 ATW_SR_CR29_MASK);
735
736 country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
737 ATW_SR_CTRY_MASK);
738
739 #define ADD_CHANNEL(_ic, _chan) do { \
740 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
741 _ic->ic_channels[_chan].ic_freq = \
742 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
743 } while (0)
744
745 /* Find available channels */
746 switch (country_code) {
747 case COUNTRY_MMK2: /* 1-14 */
748 ADD_CHANNEL(ic, 14);
749 /*FALLTHROUGH*/
750 case COUNTRY_ETSI: /* 1-13 */
751 for (i = 1; i <= 13; i++)
752 ADD_CHANNEL(ic, i);
753 break;
754 case COUNTRY_FCC: /* 1-11 */
755 case COUNTRY_IC: /* 1-11 */
756 for (i = 1; i <= 11; i++)
757 ADD_CHANNEL(ic, i);
758 break;
759 case COUNTRY_MMK: /* 14 */
760 ADD_CHANNEL(ic, 14);
761 break;
762 case COUNTRY_FRANCE: /* 10-13 */
763 for (i = 10; i <= 13; i++)
764 ADD_CHANNEL(ic, i);
765 break;
766 default: /* assume channels 10-11 */
767 case COUNTRY_SPAIN: /* 10-11 */
768 for (i = 10; i <= 11; i++)
769 ADD_CHANNEL(ic, i);
770 break;
771 }
772
773 /* Read the MAC address. */
774 reg = ATW_READ(sc, ATW_PAR0);
775 ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
776 ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
777 ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
778 ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
779 reg = ATW_READ(sc, ATW_PAR1);
780 ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
781 ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
782
783 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
784 printf(" could not get mac address, attach failed\n");
785 return;
786 }
787
788 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
789
790 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
791 ifp->if_softc = sc;
792 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
793 IFF_NOTRAILERS;
794 ifp->if_ioctl = atw_ioctl;
795 ifp->if_start = atw_start;
796 ifp->if_watchdog = atw_watchdog;
797 ifp->if_init = atw_init;
798 ifp->if_stop = atw_stop;
799 IFQ_SET_READY(&ifp->if_snd);
800
801 ic->ic_ifp = ifp;
802 ic->ic_phytype = IEEE80211_T_DS;
803 ic->ic_opmode = IEEE80211_M_STA;
804 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
805 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
806
807 nrate = 0;
808 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
809 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
810 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
811 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
812 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
813
814 /*
815 * Call MI attach routines.
816 */
817
818 if_attach(ifp);
819 ieee80211_ifattach(ic);
820
821 sc->sc_newstate = ic->ic_newstate;
822 ic->ic_newstate = atw_newstate;
823
824 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
825 ic->ic_recv_mgmt = atw_recv_mgmt;
826
827 sc->sc_node_free = ic->ic_node_free;
828 ic->ic_node_free = atw_node_free;
829
830 sc->sc_node_alloc = ic->ic_node_alloc;
831 ic->ic_node_alloc = atw_node_alloc;
832
833 ic->ic_crypto.cs_key_delete = atw_key_delete;
834 ic->ic_crypto.cs_key_set = atw_key_set;
835 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
836 ic->ic_crypto.cs_key_update_end = atw_key_update_end;
837
838 /* possibly we should fill in our own sc_send_prresp, since
839 * the ADM8211 is probably sending probe responses in ad hoc
840 * mode.
841 */
842
843 /* complete initialization */
844 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
845 callout_init(&sc->sc_scan_ch);
846
847 #if NBPFILTER > 0
848 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
849 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
850 #endif
851
852 /*
853 * Make sure the interface is shutdown during reboot.
854 */
855 sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
856 if (sc->sc_sdhook == NULL)
857 printf("%s: WARNING: unable to establish shutdown hook\n",
858 sc->sc_dev.dv_xname);
859
860 /*
861 * Add a suspend hook to make sure we come back up after a
862 * resume.
863 */
864 sc->sc_powerhook = powerhook_establish(atw_power, sc);
865 if (sc->sc_powerhook == NULL)
866 printf("%s: WARNING: unable to establish power hook\n",
867 sc->sc_dev.dv_xname);
868
869 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
870 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
871 sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
872
873 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
874 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
875 sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
876
877 ieee80211_announce(ic);
878 return;
879
880 /*
881 * Free any resources we've allocated during the failed attach
882 * attempt. Do this in reverse order and fall through.
883 */
884 fail_5:
885 for (i = 0; i < ATW_NRXDESC; i++) {
886 if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
887 continue;
888 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
889 }
890 fail_4:
891 for (i = 0; i < ATW_TXQUEUELEN; i++) {
892 if (sc->sc_txsoft[i].txs_dmamap == NULL)
893 continue;
894 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
895 }
896 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
897 fail_3:
898 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
899 fail_2:
900 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
901 sizeof(struct atw_control_data));
902 fail_1:
903 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
904 fail_0:
905 return;
906 }
907
908 static struct ieee80211_node *
909 atw_node_alloc(struct ieee80211_node_table *nt)
910 {
911 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
912 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
913
914 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
915 return ni;
916 }
917
918 static void
919 atw_node_free(struct ieee80211_node *ni)
920 {
921 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
922
923 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
924 ether_sprintf(ni->ni_bssid)));
925 (*sc->sc_node_free)(ni);
926 }
927
928
929 static void
930 atw_test1_reset(struct atw_softc *sc)
931 {
932 switch (sc->sc_rev) {
933 case ATW_REVISION_BA:
934 if (1 /* XXX condition on transceiver type */) {
935 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
936 }
937 break;
938 case ATW_REVISION_CA:
939 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
940 break;
941 default:
942 break;
943 }
944 }
945
946 /*
947 * atw_reset:
948 *
949 * Perform a soft reset on the ADM8211.
950 */
951 void
952 atw_reset(struct atw_softc *sc)
953 {
954 int i;
955 uint32_t lpc;
956
957 ATW_WRITE(sc, ATW_NAR, 0x0);
958 DELAY(atw_nar_delay);
959
960 /* Reference driver has a cryptic remark indicating that this might
961 * power-on the chip. I know that it turns off power-saving....
962 */
963 ATW_WRITE(sc, ATW_FRCTL, 0x0);
964
965 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
966
967 for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
968 if (ATW_READ(sc, ATW_PAR) == 0)
969 break;
970 DELAY(atw_pseudo_milli);
971 }
972
973 /* ... and then pause 100ms longer for good measure. */
974 DELAY(atw_magic_delay1);
975
976 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
977
978 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
979 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
980
981 atw_test1_reset(sc);
982 /*
983 * Initialize the PCI Access Register.
984 */
985 sc->sc_busmode = ATW_PAR_PBL_8DW;
986
987 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
988 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
989 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
990
991 /* Turn off maximum power saving, etc.
992 *
993 * XXX Following example of reference driver, should I set
994 * an AID of 1? It didn't seem to help....
995 */
996 ATW_WRITE(sc, ATW_FRCTL, 0x0);
997
998 DELAY(atw_magic_delay2);
999
1000 /* Recall EEPROM. */
1001 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1002
1003 DELAY(atw_magic_delay4);
1004
1005 lpc = ATW_READ(sc, ATW_LPC);
1006
1007 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1008
1009 /* A reset seems to affect the SRAM contents, so put them into
1010 * a known state.
1011 */
1012 atw_clear_sram(sc);
1013
1014 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1015 }
1016
1017 static void
1018 atw_clear_sram(struct atw_softc *sc)
1019 {
1020 memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1021 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1022 /* XXX not for revision 0x20. */
1023 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1024 }
1025
1026 /* TBD atw_init
1027 *
1028 * set MAC based on ic->ic_bss->myaddr
1029 * write WEP keys
1030 * set TX rate
1031 */
1032
1033 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1034 * without receiving a beacon with the preferred BSSID & SSID.
1035 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1036 */
1037 static void
1038 atw_wcsr_init(struct atw_softc *sc)
1039 {
1040 uint32_t wcsr;
1041
1042 wcsr = ATW_READ(sc, ATW_WCSR);
1043 wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1044 wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1045 ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
1046
1047 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1048 sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1049 }
1050
1051 /* Turn off power management. Set Rx store-and-forward mode. */
1052 static void
1053 atw_cmdr_init(struct atw_softc *sc)
1054 {
1055 uint32_t cmdr;
1056 cmdr = ATW_READ(sc, ATW_CMDR);
1057 cmdr &= ~ATW_CMDR_APM;
1058 cmdr |= ATW_CMDR_RTE;
1059 cmdr &= ~ATW_CMDR_DRT_MASK;
1060 cmdr |= ATW_CMDR_DRT_SF;
1061
1062 ATW_WRITE(sc, ATW_CMDR, cmdr);
1063 }
1064
1065 static void
1066 atw_tofs2_init(struct atw_softc *sc)
1067 {
1068 uint32_t tofs2;
1069 /* XXX this magic can probably be figured out from the RFMD docs */
1070 #ifndef ATW_REFSLAVE
1071 tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1072 LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1073 LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1074 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1075 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1076 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1077 LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1078 LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1079 #else
1080 /* XXX new magic from reference driver source */
1081 tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
1082 LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1083 LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
1084 LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
1085 LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1086 LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
1087 LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
1088 LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
1089 #endif
1090 ATW_WRITE(sc, ATW_TOFS2, tofs2);
1091 }
1092
1093 static void
1094 atw_nar_init(struct atw_softc *sc)
1095 {
1096 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1097 }
1098
1099 static void
1100 atw_txlmt_init(struct atw_softc *sc)
1101 {
1102 ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1103 LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1104 }
1105
1106 static void
1107 atw_test1_init(struct atw_softc *sc)
1108 {
1109 uint32_t test1;
1110
1111 test1 = ATW_READ(sc, ATW_TEST1);
1112 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1113 /* XXX magic 0x1 */
1114 test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1115 ATW_WRITE(sc, ATW_TEST1, test1);
1116 }
1117
1118 static void
1119 atw_rf_reset(struct atw_softc *sc)
1120 {
1121 /* XXX this resets an Intersil RF front-end? */
1122 /* TBD condition on Intersil RFType? */
1123 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1124 DELAY(atw_rf_delay1);
1125 ATW_WRITE(sc, ATW_SYNRF, 0);
1126 DELAY(atw_rf_delay2);
1127 }
1128
1129 /* Set 16 TU max duration for the contention-free period (CFP). */
1130 static void
1131 atw_cfp_init(struct atw_softc *sc)
1132 {
1133 uint32_t cfpp;
1134
1135 cfpp = ATW_READ(sc, ATW_CFPP);
1136 cfpp &= ~ATW_CFPP_CFPMD;
1137 cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1138 ATW_WRITE(sc, ATW_CFPP, cfpp);
1139 }
1140
1141 static void
1142 atw_tofs0_init(struct atw_softc *sc)
1143 {
1144 /* XXX I guess that the Cardbus clock is 22MHz?
1145 * I am assuming that the role of ATW_TOFS0_USCNT is
1146 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1147 * very clear on this point. It says in the datasheet that it is
1148 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1149 * and 33MHz; maybe this is the way? I see a binary-only driver write
1150 * these values. These values are also the power-on default.
1151 */
1152 ATW_WRITE(sc, ATW_TOFS0,
1153 LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1154 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1155 }
1156
1157 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1158 static void
1159 atw_ifs_init(struct atw_softc *sc)
1160 {
1161 uint32_t ifst;
1162 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1163 * Go figure.
1164 */
1165 ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1166 LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1167 ATW_IFST_SIFS_MASK) |
1168 LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1169 LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1170
1171 ATW_WRITE(sc, ATW_IFST, ifst);
1172 }
1173
1174 static void
1175 atw_response_times_init(struct atw_softc *sc)
1176 {
1177 /* XXX More magic. Relates to ACK timing? The datasheet seems to
1178 * indicate that the MAC expects at least SIFS + MIRT microseconds
1179 * to pass after it transmits a frame that requires a response;
1180 * it waits at most SIFS + MART microseconds for the response.
1181 * Surely this is not the ACK timeout?
1182 */
1183 ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1184 LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1185 }
1186
1187 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1188 * engines read and write baseband registers after Rx and before
1189 * Tx, respectively.
1190 */
1191 static void
1192 atw_bbp_io_init(struct atw_softc *sc)
1193 {
1194 uint32_t mmiraddr2;
1195
1196 /* XXX The reference driver does this, but is it *really*
1197 * necessary?
1198 */
1199 switch (sc->sc_rev) {
1200 case ATW_REVISION_AB:
1201 case ATW_REVISION_AF:
1202 mmiraddr2 = 0x0;
1203 break;
1204 default:
1205 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1206 mmiraddr2 &=
1207 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1208 break;
1209 }
1210
1211 switch (sc->sc_bbptype) {
1212 case ATW_BBPTYPE_INTERSIL:
1213 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1214 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1215 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1216 break;
1217 case ATW_BBPTYPE_MARVEL:
1218 /* TBD find out the Marvel settings. */
1219 break;
1220 case ATW_BBPTYPE_RFMD:
1221 default:
1222 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1223 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1224 mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1225 break;
1226 }
1227 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1228 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1229 }
1230
1231 /*
1232 * atw_init: [ ifnet interface function ]
1233 *
1234 * Initialize the interface. Must be called at splnet().
1235 */
1236 int
1237 atw_init(struct ifnet *ifp)
1238 {
1239 struct atw_softc *sc = ifp->if_softc;
1240 struct ieee80211com *ic = &sc->sc_ic;
1241 struct atw_txsoft *txs;
1242 struct atw_rxsoft *rxs;
1243 int i, error = 0;
1244
1245 if ((error = atw_enable(sc)) != 0)
1246 goto out;
1247
1248 /*
1249 * Cancel any pending I/O. This also resets.
1250 */
1251 atw_stop(ifp, 0);
1252
1253 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1254 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1255 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1256
1257 atw_wcsr_init(sc);
1258
1259 atw_cmdr_init(sc);
1260
1261 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1262 *
1263 * XXX Set transmit power for ATIM, RTS, Beacon.
1264 */
1265 ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1266 LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1267
1268 atw_tofs2_init(sc);
1269
1270 atw_nar_init(sc);
1271
1272 atw_txlmt_init(sc);
1273
1274 atw_test1_init(sc);
1275
1276 atw_rf_reset(sc);
1277
1278 atw_cfp_init(sc);
1279
1280 atw_tofs0_init(sc);
1281
1282 atw_ifs_init(sc);
1283
1284 /* XXX Fall asleep after one second of inactivity.
1285 * XXX A frame may only dribble in for 65536us.
1286 */
1287 ATW_WRITE(sc, ATW_RMD,
1288 LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1289
1290 atw_response_times_init(sc);
1291
1292 atw_bbp_io_init(sc);
1293
1294 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1295
1296 if ((error = atw_rf3000_init(sc)) != 0)
1297 goto out;
1298
1299 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1300 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1301 ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1302
1303 /*
1304 * Initialize the transmit descriptor ring.
1305 */
1306 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1307 for (i = 0; i < ATW_NTXDESC; i++) {
1308 sc->sc_txdescs[i].at_ctl = 0;
1309 /* no transmit chaining */
1310 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1311 sc->sc_txdescs[i].at_buf2 =
1312 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1313 }
1314 /* use ring mode */
1315 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1316 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1317 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1318 sc->sc_txfree = ATW_NTXDESC;
1319 sc->sc_txnext = 0;
1320
1321 /*
1322 * Initialize the transmit job descriptors.
1323 */
1324 SIMPLEQ_INIT(&sc->sc_txfreeq);
1325 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1326 for (i = 0; i < ATW_TXQUEUELEN; i++) {
1327 txs = &sc->sc_txsoft[i];
1328 txs->txs_mbuf = NULL;
1329 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1330 }
1331
1332 /*
1333 * Initialize the receive descriptor and receive job
1334 * descriptor rings.
1335 */
1336 for (i = 0; i < ATW_NRXDESC; i++) {
1337 rxs = &sc->sc_rxsoft[i];
1338 if (rxs->rxs_mbuf == NULL) {
1339 if ((error = atw_add_rxbuf(sc, i)) != 0) {
1340 printf("%s: unable to allocate or map rx "
1341 "buffer %d, error = %d\n",
1342 sc->sc_dev.dv_xname, i, error);
1343 /*
1344 * XXX Should attempt to run with fewer receive
1345 * XXX buffers instead of just failing.
1346 */
1347 atw_rxdrain(sc);
1348 goto out;
1349 }
1350 } else
1351 ATW_INIT_RXDESC(sc, i);
1352 }
1353 sc->sc_rxptr = 0;
1354
1355 /*
1356 * Initialize the interrupt mask and enable interrupts.
1357 */
1358 /* normal interrupts */
1359 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1360 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1361
1362 /* abnormal interrupts */
1363 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1364 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1365 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1366
1367 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1368 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1369 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1370 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1371 ATW_INTR_TRT;
1372
1373 sc->sc_linkint_mask &= sc->sc_inten;
1374 sc->sc_rxint_mask &= sc->sc_inten;
1375 sc->sc_txint_mask &= sc->sc_inten;
1376
1377 ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1378 ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1379
1380 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1381 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1382
1383 /*
1384 * Give the transmit and receive rings to the ADM8211.
1385 */
1386 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1387 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1388
1389 sc->sc_txthresh = 0;
1390 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1391 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1392
1393 /* common 802.11 configuration */
1394 ic->ic_flags &= ~IEEE80211_F_IBSSON;
1395 switch (ic->ic_opmode) {
1396 case IEEE80211_M_STA:
1397 break;
1398 case IEEE80211_M_AHDEMO: /* XXX */
1399 case IEEE80211_M_IBSS:
1400 ic->ic_flags |= IEEE80211_F_IBSSON;
1401 /*FALLTHROUGH*/
1402 case IEEE80211_M_HOSTAP: /* XXX */
1403 break;
1404 case IEEE80211_M_MONITOR: /* XXX */
1405 break;
1406 }
1407
1408 switch (ic->ic_opmode) {
1409 case IEEE80211_M_AHDEMO:
1410 case IEEE80211_M_HOSTAP:
1411 #ifndef IEEE80211_NO_HOSTAP
1412 ic->ic_bss->ni_intval = ic->ic_lintval;
1413 ic->ic_bss->ni_rssi = 0;
1414 ic->ic_bss->ni_rstamp = 0;
1415 #endif /* !IEEE80211_NO_HOSTAP */
1416 break;
1417 default: /* XXX */
1418 break;
1419 }
1420
1421 sc->sc_wepctl = 0;
1422
1423 atw_write_ssid(sc);
1424 atw_write_sup_rates(sc);
1425 atw_write_wep(sc);
1426
1427 ic->ic_state = IEEE80211_S_INIT;
1428
1429 /*
1430 * Set the receive filter. This will start the transmit and
1431 * receive processes.
1432 */
1433 atw_filter_setup(sc);
1434
1435 /*
1436 * Start the receive process.
1437 */
1438 ATW_WRITE(sc, ATW_RDR, 0x1);
1439
1440 /*
1441 * Note that the interface is now running.
1442 */
1443 ifp->if_flags |= IFF_RUNNING;
1444 ifp->if_flags &= ~IFF_OACTIVE;
1445
1446 /* send no beacons, yet. */
1447 atw_start_beacon(sc, 0);
1448
1449 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1450 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1451 else
1452 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1453 out:
1454 if (error) {
1455 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1456 sc->sc_tx_timer = 0;
1457 ifp->if_timer = 0;
1458 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1459 }
1460 #ifdef ATW_DEBUG
1461 atw_print_regs(sc, "end of init");
1462 #endif /* ATW_DEBUG */
1463
1464 return (error);
1465 }
1466
1467 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1468 * 0: MAC control of RF3000/Si4126.
1469 *
1470 * Applies power, or selects RF front-end? Sets reset condition.
1471 *
1472 * TBD support non-RFMD BBP, non-SiLabs synth.
1473 */
1474 static void
1475 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1476 {
1477 if (enable) {
1478 ATW_WRITE(sc, ATW_SYNRF,
1479 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1480 DELAY(atw_bbp_io_enable_delay);
1481 } else {
1482 ATW_WRITE(sc, ATW_SYNRF, 0);
1483 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1484 }
1485 }
1486
1487 static int
1488 atw_tune(struct atw_softc *sc)
1489 {
1490 int rc;
1491 u_int chan;
1492 struct ieee80211com *ic = &sc->sc_ic;
1493
1494 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1495 if (chan == IEEE80211_CHAN_ANY)
1496 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1497
1498 if (chan == sc->sc_cur_chan)
1499 return 0;
1500
1501 DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1502 sc->sc_cur_chan, chan));
1503
1504 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1505
1506 atw_si4126_tune(sc, chan);
1507 if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1508 printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1509 chan);
1510
1511 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1512 DELAY(atw_nar_delay);
1513 ATW_WRITE(sc, ATW_RDR, 0x1);
1514
1515 if (rc == 0)
1516 sc->sc_cur_chan = chan;
1517
1518 return rc;
1519 }
1520
1521 #ifdef ATW_SYNDEBUG
1522 static void
1523 atw_si4126_print(struct atw_softc *sc)
1524 {
1525 struct ifnet *ifp = &sc->sc_if;
1526 u_int addr, val;
1527
1528 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1529 return;
1530
1531 for (addr = 0; addr <= 8; addr++) {
1532 printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1533 if (atw_si4126_read(sc, addr, &val) == 0) {
1534 printf("<unknown> (quitting print-out)\n");
1535 break;
1536 }
1537 printf("%05x\n", val);
1538 }
1539 }
1540 #endif /* ATW_SYNDEBUG */
1541
1542 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1543 *
1544 * The RF/IF synthesizer produces two reference frequencies for
1545 * the RF2948B transceiver. The first frequency the RF2948B requires
1546 * is two times the so-called "intermediate frequency" (IF). Since
1547 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1548 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
1549 * frequency required by the transceiver is the radio frequency
1550 * (RF). This is a superheterodyne transceiver; for f(chan) the
1551 * center frequency of the channel we are tuning, RF = f(chan) -
1552 * IF.
1553 *
1554 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1555 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1556 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it
1557 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1558 */
1559 static void
1560 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1561 {
1562 u_int mhz;
1563 u_int R;
1564 u_int32_t gpio;
1565 u_int16_t gain;
1566
1567 #ifdef ATW_SYNDEBUG
1568 atw_si4126_print(sc);
1569 #endif /* ATW_SYNDEBUG */
1570
1571 if (chan == 14)
1572 mhz = 2484;
1573 else
1574 mhz = 2412 + 5 * (chan - 1);
1575
1576 /* Tune IF to 748MHz to suit the IF LO input of the
1577 * RF2494B, which is 2 x IF. No need to set an IF divider
1578 * because an IF in 526MHz - 952MHz is allowed.
1579 *
1580 * XIN is 44.000MHz, so divide it by two to get allowable
1581 * range of 2-25MHz. SiLabs tells me that this is not
1582 * strictly necessary.
1583 */
1584
1585 if (atw_xindiv2)
1586 R = 44;
1587 else
1588 R = 88;
1589
1590 /* Power-up RF, IF synthesizers. */
1591 atw_si4126_write(sc, SI4126_POWER,
1592 SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1593
1594 /* set LPWR, too? */
1595 atw_si4126_write(sc, SI4126_MAIN,
1596 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1597
1598 /* Set the phase-locked loop gain. If RF2 N > 2047, then
1599 * set KP2 to 1.
1600 *
1601 * REFDIF This is different from the reference driver, which
1602 * always sets SI4126_GAIN to 0.
1603 */
1604 gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1605
1606 atw_si4126_write(sc, SI4126_GAIN, gain);
1607
1608 /* XIN = 44MHz.
1609 *
1610 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
1611 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1612 *
1613 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
1614 * so that 1496/88 * 44MHz = 748MHz.
1615 */
1616 atw_si4126_write(sc, SI4126_IFN, 1496);
1617
1618 atw_si4126_write(sc, SI4126_IFR, R);
1619
1620 #ifndef ATW_REFSLAVE
1621 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1622 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1623 * which has no RF1!
1624 */
1625 atw_si4126_write(sc, SI4126_RF1R, R);
1626
1627 atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1628 #endif
1629
1630 /* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1631 * where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
1632 * Now let's multiply it to mhz. So mhz - IF = N.
1633 */
1634 atw_si4126_write(sc, SI4126_RF2R, R);
1635
1636 atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1637
1638 /* wait 100us from power-up for RF, IF to settle */
1639 DELAY(100);
1640
1641 gpio = ATW_READ(sc, ATW_GPIO);
1642 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1643 gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1644
1645 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1646 /* Set a Prism RF front-end to a special mode for channel 14?
1647 *
1648 * Apparently the SMC2635W needs this, although I don't think
1649 * it has a Prism RF.
1650 */
1651 gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1652 }
1653 ATW_WRITE(sc, ATW_GPIO, gpio);
1654
1655 #ifdef ATW_SYNDEBUG
1656 atw_si4126_print(sc);
1657 #endif /* ATW_SYNDEBUG */
1658 }
1659
1660 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1661 * diversity.
1662 *
1663 * !!!
1664 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1665 * !!!
1666 */
1667 static int
1668 atw_rf3000_init(struct atw_softc *sc)
1669 {
1670 int rc = 0;
1671
1672 atw_bbp_io_enable(sc, 1);
1673
1674 /* CCA is acquisition sensitive */
1675 rc = atw_rf3000_write(sc, RF3000_CCACTL,
1676 LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1677
1678 if (rc != 0)
1679 goto out;
1680
1681 /* enable diversity */
1682 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1683
1684 if (rc != 0)
1685 goto out;
1686
1687 /* sensible setting from a binary-only driver */
1688 rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1689 LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1690
1691 if (rc != 0)
1692 goto out;
1693
1694 /* magic from a binary-only driver */
1695 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1696 LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1697
1698 if (rc != 0)
1699 goto out;
1700
1701 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1702
1703 if (rc != 0)
1704 goto out;
1705
1706 /* XXX Reference driver remarks that Abocom sets this to 50.
1707 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit
1708 * in the "reserved" area of register RF3000_OPTIONS1.
1709 */
1710 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1711
1712 if (rc != 0)
1713 goto out;
1714
1715 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1716
1717 if (rc != 0)
1718 goto out;
1719
1720 out:
1721 atw_bbp_io_enable(sc, 0);
1722 return rc;
1723 }
1724
1725 #ifdef ATW_BBPDEBUG
1726 static void
1727 atw_rf3000_print(struct atw_softc *sc)
1728 {
1729 struct ifnet *ifp = &sc->sc_if;
1730 u_int addr, val;
1731
1732 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1733 return;
1734
1735 for (addr = 0x01; addr <= 0x15; addr++) {
1736 printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1737 if (atw_rf3000_read(sc, addr, &val) != 0) {
1738 printf("<unknown> (quitting print-out)\n");
1739 break;
1740 }
1741 printf("%08x\n", val);
1742 }
1743 }
1744 #endif /* ATW_BBPDEBUG */
1745
1746 /* Set the power settings on the BBP for channel `chan'. */
1747 static int
1748 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1749 {
1750 int rc = 0;
1751 u_int32_t reg;
1752 u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1753
1754 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1755 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1756 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1757
1758 /* odd channels: LSB, even channels: MSB */
1759 if (chan % 2 == 1) {
1760 txpower &= 0xFF;
1761 lpf_cutoff &= 0xFF;
1762 lna_gs_thresh &= 0xFF;
1763 } else {
1764 txpower >>= 8;
1765 lpf_cutoff >>= 8;
1766 lna_gs_thresh >>= 8;
1767 }
1768
1769 #ifdef ATW_BBPDEBUG
1770 atw_rf3000_print(sc);
1771 #endif /* ATW_BBPDEBUG */
1772
1773 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1774 "lna_gs_thresh %02x\n",
1775 sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1776
1777 atw_bbp_io_enable(sc, 1);
1778
1779 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1780 LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1781 goto out;
1782
1783 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1784 goto out;
1785
1786 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1787 goto out;
1788
1789 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1790
1791 if (rc != 0)
1792 goto out;
1793
1794 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1795
1796 if (rc != 0)
1797 goto out;
1798
1799 #ifdef ATW_BBPDEBUG
1800 atw_rf3000_print(sc);
1801 #endif /* ATW_BBPDEBUG */
1802
1803 out:
1804 atw_bbp_io_enable(sc, 0);
1805
1806 /* set beacon, rts, atim transmit power */
1807 reg = ATW_READ(sc, ATW_PLCPHD);
1808 reg &= ~ATW_PLCPHD_SERVICE_MASK;
1809 reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1810 ATW_PLCPHD_SERVICE_MASK);
1811 ATW_WRITE(sc, ATW_PLCPHD, reg);
1812 DELAY(atw_plcphd_delay);
1813
1814 return rc;
1815 }
1816
1817 /* Write a register on the RF3000 baseband processor using the
1818 * registers provided by the ADM8211 for this purpose.
1819 *
1820 * Return 0 on success.
1821 */
1822 static int
1823 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1824 {
1825 u_int32_t reg;
1826 int i;
1827
1828 reg = sc->sc_bbpctl_wr |
1829 LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1830 LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1831
1832 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1833 ATW_WRITE(sc, ATW_BBPCTL, reg);
1834 DELAY(2 * atw_pseudo_milli);
1835 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1836 break;
1837 }
1838
1839 if (i < 0) {
1840 printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1841 return ETIMEDOUT;
1842 }
1843 return 0;
1844 }
1845
1846 /* Read a register on the RF3000 baseband processor using the registers
1847 * the ADM8211 provides for this purpose.
1848 *
1849 * The 7-bit register address is addr. Record the 8-bit data in the register
1850 * in *val.
1851 *
1852 * Return 0 on success.
1853 *
1854 * XXX This does not seem to work. The ADM8211 must require more or
1855 * different magic to read the chip than to write it. Possibly some
1856 * of the magic I have derived from a binary-only driver concerns
1857 * the "chip address" (see the RF3000 manual).
1858 */
1859 #ifdef ATW_BBPDEBUG
1860 static int
1861 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1862 {
1863 u_int32_t reg;
1864 int i;
1865
1866 for (i = 1000; --i >= 0; ) {
1867 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1868 break;
1869 DELAY(100);
1870 }
1871
1872 if (i < 0) {
1873 printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1874 sc->sc_dev.dv_xname);
1875 return ETIMEDOUT;
1876 }
1877
1878 reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1879
1880 ATW_WRITE(sc, ATW_BBPCTL, reg);
1881
1882 for (i = 1000; --i >= 0; ) {
1883 DELAY(100);
1884 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1885 break;
1886 }
1887
1888 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1889
1890 if (i < 0) {
1891 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1892 sc->sc_dev.dv_xname, reg);
1893 return ETIMEDOUT;
1894 }
1895 if (val != NULL)
1896 *val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1897 return 0;
1898 }
1899 #endif /* ATW_BBPDEBUG */
1900
1901 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1902 * provided by the ADM8211 for that purpose.
1903 *
1904 * val is 18 bits of data, and val is the 4-bit address of the register.
1905 *
1906 * Return 0 on success.
1907 */
1908 static void
1909 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1910 {
1911 uint32_t bits, mask, reg;
1912 const int nbits = 22;
1913
1914 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1915 KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1916
1917 bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1918 LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1919
1920 reg = ATW_SYNRF_SELSYN;
1921 /* reference driver: reset Si4126 serial bus to initial
1922 * conditions?
1923 */
1924 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1925 ATW_WRITE(sc, ATW_SYNRF, reg);
1926
1927 for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1928 if ((bits & mask) != 0)
1929 reg |= ATW_SYNRF_SYNDATA;
1930 else
1931 reg &= ~ATW_SYNRF_SYNDATA;
1932 ATW_WRITE(sc, ATW_SYNRF, reg);
1933 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1934 ATW_WRITE(sc, ATW_SYNRF, reg);
1935 }
1936 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1937 ATW_WRITE(sc, ATW_SYNRF, 0x0);
1938 }
1939
1940 /* Read 18-bit data from the 4-bit address addr in Si4126
1941 * RF synthesizer and write the data to *val. Return 0 on success.
1942 *
1943 * XXX This does not seem to work. The ADM8211 must require more or
1944 * different magic to read the chip than to write it.
1945 */
1946 #ifdef ATW_SYNDEBUG
1947 static int
1948 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1949 {
1950 u_int32_t reg;
1951 int i;
1952
1953 KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1954
1955 for (i = 1000; --i >= 0; ) {
1956 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1957 break;
1958 DELAY(100);
1959 }
1960
1961 if (i < 0) {
1962 printf("%s: start atw_si4126_read, SYNCTL busy\n",
1963 sc->sc_dev.dv_xname);
1964 return ETIMEDOUT;
1965 }
1966
1967 reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1968
1969 ATW_WRITE(sc, ATW_SYNCTL, reg);
1970
1971 for (i = 1000; --i >= 0; ) {
1972 DELAY(100);
1973 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1974 break;
1975 }
1976
1977 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1978
1979 if (i < 0) {
1980 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1981 sc->sc_dev.dv_xname, reg);
1982 return ETIMEDOUT;
1983 }
1984 if (val != NULL)
1985 *val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1986 ATW_SYNCTL_DATA_MASK);
1987 return 0;
1988 }
1989 #endif /* ATW_SYNDEBUG */
1990
1991 /* XXX is the endianness correct? test. */
1992 #define atw_calchash(addr) \
1993 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1994
1995 /*
1996 * atw_filter_setup:
1997 *
1998 * Set the ADM8211's receive filter.
1999 */
2000 static void
2001 atw_filter_setup(struct atw_softc *sc)
2002 {
2003 struct ieee80211com *ic = &sc->sc_ic;
2004 struct ethercom *ec = &sc->sc_ec;
2005 struct ifnet *ifp = &sc->sc_if;
2006 int hash;
2007 u_int32_t hashes[2];
2008 struct ether_multi *enm;
2009 struct ether_multistep step;
2010
2011 /* According to comments in tlp_al981_filter_setup
2012 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2013 * multicast filter to be set while it is running. Hopefully
2014 * the ADM8211 is not the same!
2015 */
2016 if ((ifp->if_flags & IFF_RUNNING) != 0)
2017 atw_idle(sc, ATW_NAR_SR);
2018
2019 sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2020 ifp->if_flags &= ~IFF_ALLMULTI;
2021
2022 /* XXX in scan mode, do not filter packets. Maybe this is
2023 * unnecessary.
2024 */
2025 if (ic->ic_state == IEEE80211_S_SCAN ||
2026 (ifp->if_flags & IFF_PROMISC) != 0) {
2027 sc->sc_opmode |= ATW_NAR_PR;
2028 goto allmulti;
2029 }
2030
2031 hashes[0] = hashes[1] = 0x0;
2032
2033 /*
2034 * Program the 64-bit multicast hash filter.
2035 */
2036 ETHER_FIRST_MULTI(step, ec, enm);
2037 while (enm != NULL) {
2038 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2039 ETHER_ADDR_LEN) != 0)
2040 goto allmulti;
2041
2042 hash = atw_calchash(enm->enm_addrlo);
2043 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2044 ETHER_NEXT_MULTI(step, enm);
2045 sc->sc_opmode |= ATW_NAR_MM;
2046 }
2047 ifp->if_flags &= ~IFF_ALLMULTI;
2048 goto setit;
2049
2050 allmulti:
2051 sc->sc_opmode |= ATW_NAR_MM;
2052 ifp->if_flags |= IFF_ALLMULTI;
2053 hashes[0] = hashes[1] = 0xffffffff;
2054
2055 setit:
2056 ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2057 ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2058 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2059 DELAY(atw_nar_delay);
2060
2061 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2062 ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2063 }
2064
2065 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2066 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2067 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2068 * no beacon with the preferred BSSID and SSID in the number of
2069 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2070 */
2071 static void
2072 atw_write_bssid(struct atw_softc *sc)
2073 {
2074 struct ieee80211com *ic = &sc->sc_ic;
2075 u_int8_t *bssid;
2076
2077 bssid = ic->ic_bss->ni_bssid;
2078
2079 ATW_WRITE(sc, ATW_BSSID0,
2080 LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2081 LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2082 LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2083 LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2084
2085 ATW_WRITE(sc, ATW_ABDA1,
2086 (ATW_READ(sc, ATW_ABDA1) &
2087 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2088 LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2089 LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2090
2091 DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2092 ether_sprintf(sc->sc_bssid)));
2093 DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2094
2095 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2096 }
2097
2098 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2099 * 16-bit word.
2100 */
2101 static void
2102 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2103 {
2104 u_int i;
2105 u_int8_t *ptr;
2106
2107 memcpy(&sc->sc_sram[ofs], buf, buflen);
2108
2109 KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2110
2111 KASSERT(buflen + ofs <= sc->sc_sramlen);
2112
2113 ptr = &sc->sc_sram[ofs];
2114
2115 for (i = 0; i < buflen; i += 2) {
2116 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2117 LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2118 DELAY(atw_writewep_delay);
2119
2120 ATW_WRITE(sc, ATW_WESK,
2121 LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2122 DELAY(atw_writewep_delay);
2123 }
2124 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2125
2126 if (sc->sc_if.if_flags & IFF_DEBUG) {
2127 int n_octets = 0;
2128 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2129 sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2130 for (i = 0; i < buflen; i++) {
2131 printf(" %02x", ptr[i]);
2132 if (++n_octets % 24 == 0)
2133 printf("\n");
2134 }
2135 if (n_octets % 24 != 0)
2136 printf("\n");
2137 }
2138 }
2139
2140 static int
2141 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2142 {
2143 struct atw_softc *sc = ic->ic_ifp->if_softc;
2144 u_int keyix = k->wk_keyix;
2145
2146 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2147
2148 if (keyix >= IEEE80211_WEP_NKID)
2149 return 0;
2150 if (k->wk_keylen != 0)
2151 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2152
2153 return 1;
2154 }
2155
2156 static int
2157 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2158 const u_int8_t mac[IEEE80211_ADDR_LEN])
2159 {
2160 struct atw_softc *sc = ic->ic_ifp->if_softc;
2161
2162 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2163
2164 if (k->wk_keyix >= IEEE80211_WEP_NKID)
2165 return 0;
2166
2167 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2168
2169 return 1;
2170 }
2171
2172 static void
2173 atw_key_update_begin(struct ieee80211com *ic)
2174 {
2175 #ifdef ATW_DEBUG
2176 struct ifnet *ifp = ic->ic_ifp;
2177 struct atw_softc *sc = ifp->if_softc;
2178 #endif
2179
2180 DPRINTF(sc, ("%s:\n", __func__));
2181 }
2182
2183 static void
2184 atw_key_update_end(struct ieee80211com *ic)
2185 {
2186 struct ifnet *ifp = ic->ic_ifp;
2187 struct atw_softc *sc = ifp->if_softc;
2188
2189 DPRINTF(sc, ("%s:\n", __func__));
2190
2191 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2192 return;
2193 if (ATW_IS_ENABLED(sc) == 0)
2194 return;
2195 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2196 atw_write_wep(sc);
2197 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2198 }
2199
2200 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2201 static void
2202 atw_write_wep(struct atw_softc *sc)
2203 {
2204 struct ieee80211com *ic = &sc->sc_ic;
2205 /* SRAM shared-key record format: key0 flags key1 ... key12 */
2206 u_int8_t buf[IEEE80211_WEP_NKID]
2207 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2208 u_int32_t reg;
2209 int i;
2210
2211 sc->sc_wepctl = 0;
2212 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2213
2214 memset(&buf[0][0], 0, sizeof(buf));
2215
2216 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2217 if (ic->ic_nw_keys[i].wk_keylen > 5) {
2218 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2219 } else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2220 buf[i][1] = ATW_WEP_ENABLED;
2221 } else {
2222 buf[i][1] = 0;
2223 continue;
2224 }
2225 buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2226 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2227 ic->ic_nw_keys[i].wk_keylen - 1);
2228 }
2229
2230 reg = ATW_READ(sc, ATW_MACTEST);
2231 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2232 reg &= ~ATW_MACTEST_KEYID_MASK;
2233 reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2234 ATW_WRITE(sc, ATW_MACTEST, reg);
2235
2236 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2237 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2238
2239 switch (sc->sc_rev) {
2240 case ATW_REVISION_AB:
2241 case ATW_REVISION_AF:
2242 /* Bypass WEP on Rx. */
2243 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2244 break;
2245 default:
2246 break;
2247 }
2248
2249 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2250 sizeof(buf));
2251
2252 sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2253 }
2254
2255 static void
2256 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2257 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2258 {
2259 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2260
2261 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2262 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2263 return;
2264
2265 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2266
2267 switch (subtype) {
2268 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2269 case IEEE80211_FC0_SUBTYPE_BEACON:
2270 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2271 ic->ic_state == IEEE80211_S_RUN) {
2272 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2273 (void)ieee80211_ibss_merge(ni);
2274 }
2275 break;
2276 default:
2277 break;
2278 }
2279 return;
2280 }
2281
2282 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2283 * In ad hoc mode, the SSID is written to the beacons sent by the
2284 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2285 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2286 * indications.
2287 */
2288 static void
2289 atw_write_ssid(struct atw_softc *sc)
2290 {
2291 struct ieee80211com *ic = &sc->sc_ic;
2292 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2293 * it only expects the element length, not its ID.
2294 */
2295 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2296
2297 memset(buf, 0, sizeof(buf));
2298 buf[0] = ic->ic_bss->ni_esslen;
2299 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2300
2301 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2302 roundup(1 + ic->ic_bss->ni_esslen, 2));
2303 }
2304
2305 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2306 * In ad hoc mode, the supported rates are written to beacons sent by the
2307 * ADM8211.
2308 */
2309 static void
2310 atw_write_sup_rates(struct atw_softc *sc)
2311 {
2312 struct ieee80211com *ic = &sc->sc_ic;
2313 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2314 * supported rates
2315 */
2316 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2317
2318 memset(buf, 0, sizeof(buf));
2319
2320 buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2321
2322 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2323 ic->ic_bss->ni_rates.rs_nrates);
2324
2325 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2326 }
2327
2328 /* Start/stop sending beacons. */
2329 void
2330 atw_start_beacon(struct atw_softc *sc, int start)
2331 {
2332 struct ieee80211com *ic = &sc->sc_ic;
2333 uint16_t chan;
2334 uint32_t bcnt, bpli, cap0, cap1, capinfo;
2335 size_t len;
2336
2337 if (ATW_IS_ENABLED(sc) == 0)
2338 return;
2339
2340 /* start beacons */
2341 len = sizeof(struct ieee80211_frame) +
2342 8 /* timestamp */ + 2 /* beacon interval */ +
2343 2 /* capability info */ +
2344 2 + ic->ic_bss->ni_esslen /* SSID element */ +
2345 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2346 3 /* DS parameters */ +
2347 IEEE80211_CRC_LEN;
2348
2349 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2350 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2351 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2352
2353 ATW_WRITE(sc, ATW_BCNT, bcnt);
2354 ATW_WRITE(sc, ATW_CAP1, cap1);
2355
2356 if (!start)
2357 return;
2358
2359 /* TBD use ni_capinfo */
2360
2361 capinfo = 0;
2362 if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2363 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2364 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2365 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2366
2367 switch (ic->ic_opmode) {
2368 case IEEE80211_M_IBSS:
2369 len += 4; /* IBSS parameters */
2370 capinfo |= IEEE80211_CAPINFO_IBSS;
2371 break;
2372 case IEEE80211_M_HOSTAP:
2373 /* XXX 6-byte minimum TIM */
2374 len += atw_beacon_len_adjust;
2375 capinfo |= IEEE80211_CAPINFO_ESS;
2376 break;
2377 default:
2378 return;
2379 }
2380
2381 /* set listen interval
2382 * XXX do software units agree w/ hardware?
2383 */
2384 bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2385 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2386
2387 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2388
2389 bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2390 cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2391 cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2392
2393 ATW_WRITE(sc, ATW_BCNT, bcnt);
2394 ATW_WRITE(sc, ATW_BPLI, bpli);
2395 ATW_WRITE(sc, ATW_CAP0, cap0);
2396 ATW_WRITE(sc, ATW_CAP1, cap1);
2397
2398 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2399 sc->sc_dev.dv_xname, bcnt));
2400
2401 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2402 sc->sc_dev.dv_xname, cap1));
2403 }
2404
2405 /* Return the 32 lsb of the last TSFT divisible by ival. */
2406 static inline uint32_t
2407 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2408 {
2409 /* Following the reference driver's lead, I compute
2410 *
2411 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2412 *
2413 * without using 64-bit arithmetic, using the following
2414 * relationship:
2415 *
2416 * (0x100000000 * H + L) % m
2417 * = ((0x100000000 % m) * H + L) % m
2418 * = (((0xffffffff + 1) % m) * H + L) % m
2419 * = ((0xffffffff % m + 1 % m) * H + L) % m
2420 * = ((0xffffffff % m + 1) * H + L) % m
2421 */
2422 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2423 }
2424
2425 static uint64_t
2426 atw_get_tsft(struct atw_softc *sc)
2427 {
2428 int i;
2429 uint32_t tsfth, tsftl;
2430 for (i = 0; i < 2; i++) {
2431 tsfth = ATW_READ(sc, ATW_TSFTH);
2432 tsftl = ATW_READ(sc, ATW_TSFTL);
2433 if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2434 break;
2435 }
2436 return ((uint64_t)tsfth << 32) | tsftl;
2437 }
2438
2439 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2440 * the ieee80211com.
2441 *
2442 * Predict the next target beacon transmission time (TBTT) and
2443 * write it to the ADM8211.
2444 */
2445 static void
2446 atw_predict_beacon(struct atw_softc *sc)
2447 {
2448 #define TBTTOFS 20 /* TU */
2449
2450 struct ieee80211com *ic = &sc->sc_ic;
2451 uint64_t tsft;
2452 uint32_t ival, past_even, tbtt, tsfth, tsftl;
2453 union {
2454 uint64_t word;
2455 uint8_t tstamp[8];
2456 } u;
2457
2458 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2459 ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2460 (ic->ic_flags & IEEE80211_F_SIBSS))) {
2461 tsft = atw_get_tsft(sc);
2462 u.word = htole64(tsft);
2463 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2464 sizeof(ic->ic_bss->ni_tstamp));
2465 } else
2466 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2467
2468 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2469
2470 tsftl = tsft & 0xFFFFFFFF;
2471 tsfth = tsft >> 32;
2472
2473 /* We sent/received the last beacon `past' microseconds
2474 * after the interval divided the TSF timer.
2475 */
2476 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2477
2478 /* Skip ten beacons so that the TBTT cannot pass before
2479 * we've programmed it. Ten is an arbitrary number.
2480 */
2481 tbtt = past_even + ival * 10;
2482
2483 ATW_WRITE(sc, ATW_TOFS1,
2484 LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2485 LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2486 LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2487 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2488 #undef TBTTOFS
2489 }
2490
2491 static void
2492 atw_next_scan(void *arg)
2493 {
2494 struct atw_softc *sc = arg;
2495 struct ieee80211com *ic = &sc->sc_ic;
2496 int s;
2497
2498 /* don't call atw_start w/o network interrupts blocked */
2499 s = splnet();
2500 if (ic->ic_state == IEEE80211_S_SCAN)
2501 ieee80211_next_scan(ic);
2502 splx(s);
2503 }
2504
2505 /* Synchronize the hardware state with the software state. */
2506 static int
2507 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2508 {
2509 struct ifnet *ifp = ic->ic_ifp;
2510 struct atw_softc *sc = ifp->if_softc;
2511 enum ieee80211_state ostate;
2512 int error = 0;
2513
2514 ostate = ic->ic_state;
2515 callout_stop(&sc->sc_scan_ch);
2516 atw_start_beacon(sc, 0);
2517
2518 switch (nstate) {
2519 case IEEE80211_S_ASSOC:
2520 error = atw_tune(sc);
2521 break;
2522 case IEEE80211_S_INIT:
2523 callout_stop(&sc->sc_scan_ch);
2524 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2525 break;
2526 case IEEE80211_S_SCAN:
2527 error = atw_tune(sc);
2528 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2529 atw_next_scan, sc);
2530 break;
2531 case IEEE80211_S_AUTH:
2532 error = atw_tune(sc);
2533 break;
2534 case IEEE80211_S_RUN:
2535 error = atw_tune(sc);
2536 atw_write_bssid(sc);
2537 atw_write_ssid(sc);
2538 atw_write_sup_rates(sc);
2539
2540 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2541 ic->ic_opmode == IEEE80211_M_MONITOR)
2542 break;
2543
2544 /* set listen interval
2545 * XXX do software units agree w/ hardware?
2546 */
2547 ATW_WRITE(sc, ATW_BPLI,
2548 LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2549 LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2550 ATW_BPLI_LI_MASK));
2551
2552 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2553 sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2554
2555 atw_predict_beacon(sc);
2556 atw_start_beacon(sc,
2557 ic->ic_opmode == IEEE80211_M_HOSTAP ||
2558 ic->ic_opmode == IEEE80211_M_IBSS);
2559 break;
2560 }
2561 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2562 }
2563
2564 /*
2565 * atw_add_rxbuf:
2566 *
2567 * Add a receive buffer to the indicated descriptor.
2568 */
2569 int
2570 atw_add_rxbuf(struct atw_softc *sc, int idx)
2571 {
2572 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2573 struct mbuf *m;
2574 int error;
2575
2576 MGETHDR(m, M_DONTWAIT, MT_DATA);
2577 if (m == NULL)
2578 return (ENOBUFS);
2579
2580 MCLGET(m, M_DONTWAIT);
2581 if ((m->m_flags & M_EXT) == 0) {
2582 m_freem(m);
2583 return (ENOBUFS);
2584 }
2585
2586 if (rxs->rxs_mbuf != NULL)
2587 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2588
2589 rxs->rxs_mbuf = m;
2590
2591 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2592 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2593 BUS_DMA_READ|BUS_DMA_NOWAIT);
2594 if (error) {
2595 printf("%s: can't load rx DMA map %d, error = %d\n",
2596 sc->sc_dev.dv_xname, idx, error);
2597 panic("atw_add_rxbuf"); /* XXX */
2598 }
2599
2600 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2601 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2602
2603 ATW_INIT_RXDESC(sc, idx);
2604
2605 return (0);
2606 }
2607
2608 /*
2609 * Release any queued transmit buffers.
2610 */
2611 void
2612 atw_txdrain(struct atw_softc *sc)
2613 {
2614 struct atw_txsoft *txs;
2615
2616 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2617 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2618 if (txs->txs_mbuf != NULL) {
2619 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2620 m_freem(txs->txs_mbuf);
2621 txs->txs_mbuf = NULL;
2622 }
2623 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2624 sc->sc_txfree += txs->txs_ndescs;
2625 }
2626 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2627 sc->sc_tx_timer = 0;
2628 }
2629
2630 /*
2631 * atw_stop: [ ifnet interface function ]
2632 *
2633 * Stop transmission on the interface.
2634 */
2635 void
2636 atw_stop(struct ifnet *ifp, int disable)
2637 {
2638 struct atw_softc *sc = ifp->if_softc;
2639 struct ieee80211com *ic = &sc->sc_ic;
2640
2641 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2642
2643 /* Disable interrupts. */
2644 ATW_WRITE(sc, ATW_IER, 0);
2645
2646 /* Stop the transmit and receive processes. */
2647 sc->sc_opmode = 0;
2648 ATW_WRITE(sc, ATW_NAR, 0);
2649 DELAY(atw_nar_delay);
2650 ATW_WRITE(sc, ATW_TDBD, 0);
2651 ATW_WRITE(sc, ATW_TDBP, 0);
2652 ATW_WRITE(sc, ATW_RDB, 0);
2653
2654 atw_txdrain(sc);
2655
2656 if (disable) {
2657 atw_rxdrain(sc);
2658 atw_disable(sc);
2659 }
2660
2661 /*
2662 * Mark the interface down and cancel the watchdog timer.
2663 */
2664 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2665 sc->sc_tx_timer = 0;
2666 ifp->if_timer = 0;
2667
2668 if (!disable)
2669 atw_reset(sc);
2670 }
2671
2672 /*
2673 * atw_rxdrain:
2674 *
2675 * Drain the receive queue.
2676 */
2677 void
2678 atw_rxdrain(struct atw_softc *sc)
2679 {
2680 struct atw_rxsoft *rxs;
2681 int i;
2682
2683 for (i = 0; i < ATW_NRXDESC; i++) {
2684 rxs = &sc->sc_rxsoft[i];
2685 if (rxs->rxs_mbuf == NULL)
2686 continue;
2687 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2688 m_freem(rxs->rxs_mbuf);
2689 rxs->rxs_mbuf = NULL;
2690 }
2691 }
2692
2693 /*
2694 * atw_detach:
2695 *
2696 * Detach an ADM8211 interface.
2697 */
2698 int
2699 atw_detach(struct atw_softc *sc)
2700 {
2701 struct ifnet *ifp = &sc->sc_if;
2702 struct atw_rxsoft *rxs;
2703 struct atw_txsoft *txs;
2704 int i;
2705
2706 /*
2707 * Succeed now if there isn't any work to do.
2708 */
2709 if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2710 return (0);
2711
2712 callout_stop(&sc->sc_scan_ch);
2713
2714 ieee80211_ifdetach(&sc->sc_ic);
2715 if_detach(ifp);
2716
2717 for (i = 0; i < ATW_NRXDESC; i++) {
2718 rxs = &sc->sc_rxsoft[i];
2719 if (rxs->rxs_mbuf != NULL) {
2720 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2721 m_freem(rxs->rxs_mbuf);
2722 rxs->rxs_mbuf = NULL;
2723 }
2724 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2725 }
2726 for (i = 0; i < ATW_TXQUEUELEN; i++) {
2727 txs = &sc->sc_txsoft[i];
2728 if (txs->txs_mbuf != NULL) {
2729 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2730 m_freem(txs->txs_mbuf);
2731 txs->txs_mbuf = NULL;
2732 }
2733 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2734 }
2735 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2736 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2737 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2738 sizeof(struct atw_control_data));
2739 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2740
2741 shutdownhook_disestablish(sc->sc_sdhook);
2742 powerhook_disestablish(sc->sc_powerhook);
2743
2744 if (sc->sc_srom)
2745 free(sc->sc_srom, M_DEVBUF);
2746
2747 return (0);
2748 }
2749
2750 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2751 void
2752 atw_shutdown(void *arg)
2753 {
2754 struct atw_softc *sc = arg;
2755
2756 atw_stop(&sc->sc_if, 1);
2757 }
2758
2759 int
2760 atw_intr(void *arg)
2761 {
2762 struct atw_softc *sc = arg;
2763 struct ifnet *ifp = &sc->sc_if;
2764 u_int32_t status, rxstatus, txstatus, linkstatus;
2765 int handled = 0, txthresh;
2766
2767 #ifdef DEBUG
2768 if (ATW_IS_ENABLED(sc) == 0)
2769 panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2770 #endif
2771
2772 /*
2773 * If the interface isn't running, the interrupt couldn't
2774 * possibly have come from us.
2775 */
2776 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2777 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2778 return (0);
2779
2780 for (;;) {
2781 status = ATW_READ(sc, ATW_STSR);
2782
2783 if (status)
2784 ATW_WRITE(sc, ATW_STSR, status);
2785
2786 #ifdef ATW_DEBUG
2787 #define PRINTINTR(flag) do { \
2788 if ((status & flag) != 0) { \
2789 printf("%s" #flag, delim); \
2790 delim = ","; \
2791 } \
2792 } while (0)
2793
2794 if (atw_debug > 1 && status) {
2795 const char *delim = "<";
2796
2797 printf("%s: reg[STSR] = %x",
2798 sc->sc_dev.dv_xname, status);
2799
2800 PRINTINTR(ATW_INTR_FBE);
2801 PRINTINTR(ATW_INTR_LINKOFF);
2802 PRINTINTR(ATW_INTR_LINKON);
2803 PRINTINTR(ATW_INTR_RCI);
2804 PRINTINTR(ATW_INTR_RDU);
2805 PRINTINTR(ATW_INTR_REIS);
2806 PRINTINTR(ATW_INTR_RPS);
2807 PRINTINTR(ATW_INTR_TCI);
2808 PRINTINTR(ATW_INTR_TDU);
2809 PRINTINTR(ATW_INTR_TLT);
2810 PRINTINTR(ATW_INTR_TPS);
2811 PRINTINTR(ATW_INTR_TRT);
2812 PRINTINTR(ATW_INTR_TUF);
2813 PRINTINTR(ATW_INTR_BCNTC);
2814 PRINTINTR(ATW_INTR_ATIME);
2815 PRINTINTR(ATW_INTR_TBTT);
2816 PRINTINTR(ATW_INTR_TSCZ);
2817 PRINTINTR(ATW_INTR_TSFTF);
2818 printf(">\n");
2819 }
2820 #undef PRINTINTR
2821 #endif /* ATW_DEBUG */
2822
2823 if ((status & sc->sc_inten) == 0)
2824 break;
2825
2826 handled = 1;
2827
2828 rxstatus = status & sc->sc_rxint_mask;
2829 txstatus = status & sc->sc_txint_mask;
2830 linkstatus = status & sc->sc_linkint_mask;
2831
2832 if (linkstatus) {
2833 atw_linkintr(sc, linkstatus);
2834 }
2835
2836 if (rxstatus) {
2837 /* Grab any new packets. */
2838 atw_rxintr(sc);
2839
2840 if (rxstatus & ATW_INTR_RDU) {
2841 printf("%s: receive ring overrun\n",
2842 sc->sc_dev.dv_xname);
2843 /* Get the receive process going again. */
2844 ATW_WRITE(sc, ATW_RDR, 0x1);
2845 break;
2846 }
2847 }
2848
2849 if (txstatus) {
2850 /* Sweep up transmit descriptors. */
2851 atw_txintr(sc);
2852
2853 if (txstatus & ATW_INTR_TLT)
2854 DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2855 sc->sc_dev.dv_xname));
2856
2857 if (txstatus & ATW_INTR_TRT)
2858 DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2859 sc->sc_dev.dv_xname));
2860
2861 /* If Tx under-run, increase our transmit threshold
2862 * if another is available.
2863 */
2864 txthresh = sc->sc_txthresh + 1;
2865 if ((txstatus & ATW_INTR_TUF) &&
2866 sc->sc_txth[txthresh].txth_name != NULL) {
2867 /* Idle the transmit process. */
2868 atw_idle(sc, ATW_NAR_ST);
2869
2870 sc->sc_txthresh = txthresh;
2871 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2872 sc->sc_opmode |=
2873 sc->sc_txth[txthresh].txth_opmode;
2874 printf("%s: transmit underrun; new "
2875 "threshold: %s\n", sc->sc_dev.dv_xname,
2876 sc->sc_txth[txthresh].txth_name);
2877
2878 /* Set the new threshold and restart
2879 * the transmit process.
2880 */
2881 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2882 DELAY(atw_nar_delay);
2883 ATW_WRITE(sc, ATW_RDR, 0x1);
2884 /* XXX Log every Nth underrun from
2885 * XXX now on?
2886 */
2887 }
2888 }
2889
2890 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2891 if (status & ATW_INTR_TPS)
2892 printf("%s: transmit process stopped\n",
2893 sc->sc_dev.dv_xname);
2894 if (status & ATW_INTR_RPS)
2895 printf("%s: receive process stopped\n",
2896 sc->sc_dev.dv_xname);
2897 (void)atw_init(ifp);
2898 break;
2899 }
2900
2901 if (status & ATW_INTR_FBE) {
2902 printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2903 (void)atw_init(ifp);
2904 break;
2905 }
2906
2907 /*
2908 * Not handled:
2909 *
2910 * Transmit buffer unavailable -- normal
2911 * condition, nothing to do, really.
2912 *
2913 * Early receive interrupt -- not available on
2914 * all chips, we just use RI. We also only
2915 * use single-segment receive DMA, so this
2916 * is mostly useless.
2917 *
2918 * TBD others
2919 */
2920 }
2921
2922 /* Try to get more packets going. */
2923 atw_start(ifp);
2924
2925 return (handled);
2926 }
2927
2928 /*
2929 * atw_idle:
2930 *
2931 * Cause the transmit and/or receive processes to go idle.
2932 *
2933 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2934 * process in STSR if I clear SR or ST after the process has already
2935 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2936 * do not seem to be too reliable. Perhaps I have the sense of the
2937 * Rx bits switched with the Tx bits?
2938 */
2939 void
2940 atw_idle(struct atw_softc *sc, u_int32_t bits)
2941 {
2942 u_int32_t ackmask = 0, opmode, stsr, test0;
2943 int i, s;
2944
2945 s = splnet();
2946
2947 opmode = sc->sc_opmode & ~bits;
2948
2949 if (bits & ATW_NAR_SR)
2950 ackmask |= ATW_INTR_RPS;
2951
2952 if (bits & ATW_NAR_ST) {
2953 ackmask |= ATW_INTR_TPS;
2954 /* set ATW_NAR_HF to flush TX FIFO. */
2955 opmode |= ATW_NAR_HF;
2956 }
2957
2958 ATW_WRITE(sc, ATW_NAR, opmode);
2959 DELAY(atw_nar_delay);
2960
2961 for (i = 0; i < 1000; i++) {
2962 stsr = ATW_READ(sc, ATW_STSR);
2963 if ((stsr & ackmask) == ackmask)
2964 break;
2965 DELAY(10);
2966 }
2967
2968 ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2969
2970 if ((stsr & ackmask) == ackmask)
2971 goto out;
2972
2973 test0 = ATW_READ(sc, ATW_TEST0);
2974
2975 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2976 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2977 printf("%s: transmit process not idle [%s]\n",
2978 sc->sc_dev.dv_xname,
2979 atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2980 printf("%s: bits %08x test0 %08x stsr %08x\n",
2981 sc->sc_dev.dv_xname, bits, test0, stsr);
2982 }
2983
2984 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2985 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2986 DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2987 sc->sc_dev.dv_xname,
2988 atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2989 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2990 sc->sc_dev.dv_xname, bits, test0, stsr));
2991 }
2992 out:
2993 if ((bits & ATW_NAR_ST) != 0)
2994 atw_txdrain(sc);
2995 splx(s);
2996 return;
2997 }
2998
2999 /*
3000 * atw_linkintr:
3001 *
3002 * Helper; handle link-status interrupts.
3003 */
3004 void
3005 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3006 {
3007 struct ieee80211com *ic = &sc->sc_ic;
3008
3009 if (ic->ic_state != IEEE80211_S_RUN)
3010 return;
3011
3012 if (linkstatus & ATW_INTR_LINKON) {
3013 DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3014 sc->sc_rescan_timer = 0;
3015 } else if (linkstatus & ATW_INTR_LINKOFF) {
3016 DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3017 if (ic->ic_opmode != IEEE80211_M_STA)
3018 return;
3019 sc->sc_rescan_timer = 3;
3020 sc->sc_if.if_timer = 1;
3021 }
3022 }
3023
3024 static inline int
3025 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3026 {
3027 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3028 return 0;
3029 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3030 return 0;
3031 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3032 }
3033
3034 /*
3035 * atw_rxintr:
3036 *
3037 * Helper; handle receive interrupts.
3038 */
3039 void
3040 atw_rxintr(struct atw_softc *sc)
3041 {
3042 static int rate_tbl[] = {2, 4, 11, 22, 44};
3043 struct ieee80211com *ic = &sc->sc_ic;
3044 struct ieee80211_node *ni;
3045 struct ieee80211_frame_min *wh;
3046 struct ifnet *ifp = &sc->sc_if;
3047 struct atw_rxsoft *rxs;
3048 struct mbuf *m;
3049 u_int32_t rxstat;
3050 int i, len, rate, rate0;
3051 u_int32_t rssi, rssi0;
3052
3053 for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3054 rxs = &sc->sc_rxsoft[i];
3055
3056 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3057
3058 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3059 rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3060 rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3061
3062 if (rxstat & ATW_RXSTAT_OWN)
3063 break; /* We have processed all receive buffers. */
3064
3065 DPRINTF3(sc,
3066 ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3067 sc->sc_dev.dv_xname,
3068 rxstat, rssi0,
3069 le32toh(sc->sc_rxdescs[i].ar_buf1),
3070 le32toh(sc->sc_rxdescs[i].ar_buf2)));
3071
3072 /*
3073 * Make sure the packet fits in one buffer. This should
3074 * always be the case.
3075 */
3076 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3077 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3078 printf("%s: incoming packet spilled, resetting\n",
3079 sc->sc_dev.dv_xname);
3080 (void)atw_init(ifp);
3081 return;
3082 }
3083
3084 /*
3085 * If an error occurred, update stats, clear the status
3086 * word, and leave the packet buffer in place. It will
3087 * simply be reused the next time the ring comes around.
3088 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3089 * error.
3090 */
3091
3092 if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3093 ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3094 (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3095 ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3096 ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3097 ATW_RXSTAT_ICVE)) != 0)) {
3098 #define PRINTERR(bit, str) \
3099 if (rxstat & (bit)) \
3100 printf("%s: receive error: %s\n", \
3101 sc->sc_dev.dv_xname, str)
3102 ifp->if_ierrors++;
3103 PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3104 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3105 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3106 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3107 PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3108 PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3109 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3110 #undef PRINTERR
3111 ATW_INIT_RXDESC(sc, i);
3112 continue;
3113 }
3114
3115 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3116 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3117
3118 /*
3119 * No errors; receive the packet. Note the ADM8211
3120 * includes the CRC in promiscuous mode.
3121 */
3122 len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3123
3124 /*
3125 * Allocate a new mbuf cluster. If that fails, we are
3126 * out of memory, and must drop the packet and recycle
3127 * the buffer that's already attached to this descriptor.
3128 */
3129 m = rxs->rxs_mbuf;
3130 if (atw_add_rxbuf(sc, i) != 0) {
3131 ifp->if_ierrors++;
3132 ATW_INIT_RXDESC(sc, i);
3133 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3134 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3135 continue;
3136 }
3137
3138 ifp->if_ipackets++;
3139 if (sc->sc_opmode & ATW_NAR_PR)
3140 len -= IEEE80211_CRC_LEN;
3141 m->m_pkthdr.rcvif = ifp;
3142 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3143
3144 if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3145 rate = 0;
3146 else
3147 rate = rate_tbl[rate0];
3148
3149 /* The RSSI comes straight from a register in the
3150 * baseband processor. I know that for the RF3000,
3151 * the RSSI register also contains the antenna-selection
3152 * bits. Mask those off.
3153 *
3154 * TBD Treat other basebands.
3155 */
3156 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3157 rssi = rssi0 & RF3000_RSSI_MASK;
3158 else
3159 rssi = rssi0;
3160
3161 #if NBPFILTER > 0
3162 /* Pass this up to any BPF listeners. */
3163 if (sc->sc_radiobpf != NULL) {
3164 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3165
3166 tap->ar_rate = rate;
3167 tap->ar_chan_freq = ic->ic_curchan->ic_freq;
3168 tap->ar_chan_flags = ic->ic_curchan->ic_flags;
3169
3170 /* TBD verify units are dB */
3171 tap->ar_antsignal = (int)rssi;
3172 /* TBD tap->ar_flags */
3173
3174 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3175 tap->ar_ihdr.it_len, m);
3176 }
3177 #endif /* NPBFILTER > 0 */
3178
3179 wh = mtod(m, struct ieee80211_frame_min *);
3180 ni = ieee80211_find_rxnode(ic, wh);
3181 if (atw_hw_decrypted(sc, wh)) {
3182 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3183 DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3184 }
3185 ieee80211_input(ic, m, ni, (int)rssi, 0);
3186 ieee80211_free_node(ni);
3187 }
3188
3189 /* Update the receive pointer. */
3190 sc->sc_rxptr = i;
3191 }
3192
3193 /*
3194 * atw_txintr:
3195 *
3196 * Helper; handle transmit interrupts.
3197 */
3198 void
3199 atw_txintr(struct atw_softc *sc)
3200 {
3201 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3202 ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3203 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3204 "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3205
3206 static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3207 struct ifnet *ifp = &sc->sc_if;
3208 struct atw_txsoft *txs;
3209 u_int32_t txstat;
3210
3211 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3212 sc->sc_dev.dv_xname, sc->sc_flags));
3213
3214 /*
3215 * Go through our Tx list and free mbufs for those
3216 * frames that have been transmitted.
3217 */
3218 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3219 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3220 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3221
3222 #ifdef ATW_DEBUG
3223 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3224 int i;
3225 printf(" txsoft %p transmit chain:\n", txs);
3226 ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3227 txs->txs_ndescs - 1,
3228 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3229 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3230 printf(" descriptor %d:\n", i);
3231 printf(" at_status: 0x%08x\n",
3232 le32toh(sc->sc_txdescs[i].at_stat));
3233 printf(" at_flags: 0x%08x\n",
3234 le32toh(sc->sc_txdescs[i].at_flags));
3235 printf(" at_buf1: 0x%08x\n",
3236 le32toh(sc->sc_txdescs[i].at_buf1));
3237 printf(" at_buf2: 0x%08x\n",
3238 le32toh(sc->sc_txdescs[i].at_buf2));
3239 if (i == txs->txs_lastdesc)
3240 break;
3241 }
3242 }
3243 #endif
3244
3245 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3246 if (txstat & ATW_TXSTAT_OWN)
3247 break;
3248
3249 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3250
3251 sc->sc_txfree += txs->txs_ndescs;
3252
3253 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3254 0, txs->txs_dmamap->dm_mapsize,
3255 BUS_DMASYNC_POSTWRITE);
3256 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3257 m_freem(txs->txs_mbuf);
3258 txs->txs_mbuf = NULL;
3259
3260 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3261
3262 ifp->if_flags &= ~IFF_OACTIVE;
3263
3264 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3265 (txstat & TXSTAT_ERRMASK) != 0) {
3266 bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3267 txstat_buf, sizeof(txstat_buf));
3268 printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3269 txstat_buf,
3270 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3271 }
3272
3273 /*
3274 * Check for errors and collisions.
3275 */
3276 if (txstat & ATW_TXSTAT_TUF)
3277 sc->sc_stats.ts_tx_tuf++;
3278 if (txstat & ATW_TXSTAT_TLT)
3279 sc->sc_stats.ts_tx_tlt++;
3280 if (txstat & ATW_TXSTAT_TRT)
3281 sc->sc_stats.ts_tx_trt++;
3282 if (txstat & ATW_TXSTAT_TRO)
3283 sc->sc_stats.ts_tx_tro++;
3284 if (txstat & ATW_TXSTAT_SOFBR) {
3285 sc->sc_stats.ts_tx_sofbr++;
3286 }
3287
3288 if ((txstat & ATW_TXSTAT_ES) == 0)
3289 ifp->if_collisions +=
3290 MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3291 else
3292 ifp->if_oerrors++;
3293
3294 ifp->if_opackets++;
3295 }
3296
3297 /*
3298 * If there are no more pending transmissions, cancel the watchdog
3299 * timer.
3300 */
3301 if (txs == NULL)
3302 sc->sc_tx_timer = 0;
3303 #undef TXSTAT_ERRMASK
3304 #undef TXSTAT_FMT
3305 }
3306
3307 /*
3308 * atw_watchdog: [ifnet interface function]
3309 *
3310 * Watchdog timer handler.
3311 */
3312 void
3313 atw_watchdog(struct ifnet *ifp)
3314 {
3315 struct atw_softc *sc = ifp->if_softc;
3316 struct ieee80211com *ic = &sc->sc_ic;
3317
3318 ifp->if_timer = 0;
3319 if (ATW_IS_ENABLED(sc) == 0)
3320 return;
3321
3322 if (sc->sc_rescan_timer) {
3323 if (--sc->sc_rescan_timer == 0)
3324 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3325 }
3326 if (sc->sc_tx_timer) {
3327 if (--sc->sc_tx_timer == 0 &&
3328 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3329 printf("%s: transmit timeout\n", ifp->if_xname);
3330 ifp->if_oerrors++;
3331 (void)atw_init(ifp);
3332 atw_start(ifp);
3333 }
3334 }
3335 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3336 ifp->if_timer = 1;
3337 ieee80211_watchdog(ic);
3338 }
3339
3340 #ifdef ATW_DEBUG
3341 static void
3342 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3343 {
3344 struct atw_softc *sc = ifp->if_softc;
3345 struct mbuf *m;
3346 int i, noctets = 0;
3347
3348 printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3349 m0->m_pkthdr.len);
3350
3351 for (m = m0; m; m = m->m_next) {
3352 if (m->m_len == 0)
3353 continue;
3354 for (i = 0; i < m->m_len; i++) {
3355 printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3356 if (++noctets % 24 == 0)
3357 printf("\n");
3358 }
3359 }
3360 printf("%s%s: %d bytes emitted\n",
3361 (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3362 }
3363 #endif /* ATW_DEBUG */
3364
3365 /*
3366 * atw_start: [ifnet interface function]
3367 *
3368 * Start packet transmission on the interface.
3369 */
3370 void
3371 atw_start(struct ifnet *ifp)
3372 {
3373 struct atw_softc *sc = ifp->if_softc;
3374 struct ieee80211_key *k;
3375 struct ieee80211com *ic = &sc->sc_ic;
3376 struct ieee80211_node *ni;
3377 struct ieee80211_frame_min *whm;
3378 struct ieee80211_frame *wh;
3379 struct atw_frame *hh;
3380 struct mbuf *m0, *m;
3381 struct atw_txsoft *txs, *last_txs;
3382 struct atw_txdesc *txd;
3383 int do_encrypt, npkt, rate;
3384 bus_dmamap_t dmamap;
3385 int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3386
3387 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3388 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3389
3390 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3391 return;
3392
3393 /*
3394 * Remember the previous number of free descriptors and
3395 * the first descriptor we'll use.
3396 */
3397 ofree = sc->sc_txfree;
3398 firsttx = sc->sc_txnext;
3399
3400 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3401 sc->sc_dev.dv_xname, ofree, firsttx));
3402
3403 /*
3404 * Loop through the send queue, setting up transmit descriptors
3405 * until we drain the queue, or use up all available transmit
3406 * descriptors.
3407 */
3408 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3409 sc->sc_txfree != 0) {
3410
3411 /*
3412 * Grab a packet off the management queue, if it
3413 * is not empty. Otherwise, from the data queue.
3414 */
3415 IF_DEQUEUE(&ic->ic_mgtq, m0);
3416 if (m0 != NULL) {
3417 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3418 m0->m_pkthdr.rcvif = NULL;
3419 } else {
3420 /* send no data packets until we are associated */
3421 if (ic->ic_state != IEEE80211_S_RUN)
3422 break;
3423 IFQ_DEQUEUE(&ifp->if_snd, m0);
3424 if (m0 == NULL)
3425 break;
3426 #if NBPFILTER > 0
3427 if (ifp->if_bpf != NULL)
3428 bpf_mtap(ifp->if_bpf, m0);
3429 #endif /* NBPFILTER > 0 */
3430 ni = ieee80211_find_txnode(ic,
3431 mtod(m0, struct ether_header *)->ether_dhost);
3432 if (ni == NULL) {
3433 ifp->if_oerrors++;
3434 break;
3435 }
3436 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3437 ieee80211_free_node(ni);
3438 ifp->if_oerrors++;
3439 break;
3440 }
3441 }
3442
3443 rate = MAX(ieee80211_get_rate(ic), 2);
3444
3445 whm = mtod(m0, struct ieee80211_frame_min *);
3446
3447 do_encrypt = ((whm->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3448 if (do_encrypt)
3449 k = &ic->ic_nw_keys[ic->ic_def_txkey];
3450 else
3451 k = NULL;
3452
3453 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3454 ic->ic_flags, ic->ic_fragthreshold, rate,
3455 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3456 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3457 m_freem(m0);
3458 break;
3459 }
3460
3461 /* XXX Misleading if fragmentation is enabled. Better
3462 * to fragment in software?
3463 */
3464 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3465
3466 #if NBPFILTER > 0
3467 /*
3468 * Pass the packet to any BPF listeners.
3469 */
3470 if (ic->ic_rawbpf != NULL)
3471 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3472
3473 if (sc->sc_radiobpf != NULL) {
3474 struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3475
3476 tap->at_rate = rate;
3477 tap->at_chan_freq = ic->ic_curchan->ic_freq;
3478 tap->at_chan_flags = ic->ic_curchan->ic_flags;
3479
3480 /* TBD tap->at_flags */
3481
3482 bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3483 tap->at_ihdr.it_len, m0);
3484 }
3485 #endif /* NBPFILTER > 0 */
3486
3487 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3488
3489 if (ni != NULL)
3490 ieee80211_free_node(ni);
3491
3492 if (m0 == NULL) {
3493 ifp->if_oerrors++;
3494 break;
3495 }
3496
3497 /* just to make sure. */
3498 m0 = m_pullup(m0, sizeof(struct atw_frame));
3499
3500 if (m0 == NULL) {
3501 ifp->if_oerrors++;
3502 break;
3503 }
3504
3505 hh = mtod(m0, struct atw_frame *);
3506 wh = &hh->atw_ihdr;
3507
3508 /* Copy everything we need from the 802.11 header:
3509 * Frame Control; address 1, address 3, or addresses
3510 * 3 and 4. NIC fills in BSSID, SA.
3511 */
3512 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3513 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3514 panic("%s: illegal WDS frame",
3515 sc->sc_dev.dv_xname);
3516 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3517 } else
3518 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3519
3520 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3521
3522 /* initialize remaining Tx parameters */
3523 memset(&hh->u, 0, sizeof(hh->u));
3524
3525 hh->atw_rate = rate * 5;
3526 /* XXX this could be incorrect if M_FCS. _encap should
3527 * probably strip FCS just in case it sticks around in
3528 * bridged packets.
3529 */
3530 hh->atw_service = 0x00; /* XXX guess */
3531 hh->atw_paylen = htole16(m0->m_pkthdr.len -
3532 sizeof(struct atw_frame));
3533
3534 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3535 hh->atw_rtylmt = 3;
3536 hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3537 if (do_encrypt) {
3538 hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3539 hh->atw_keyid = ic->ic_def_txkey;
3540 }
3541
3542 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3543 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3544 if (txs->txs_d0.d_residue)
3545 hh->atw_head_plcplen |= htole16(0x8000);
3546 if (txs->txs_dn.d_residue)
3547 hh->atw_tail_plcplen |= htole16(0x8000);
3548 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3549 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3550
3551 /* never fragment multicast frames */
3552 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3553 hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3554 } else if (sc->sc_flags & ATWF_RTSCTS) {
3555 hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3556 }
3557
3558 #ifdef ATW_DEBUG
3559 hh->atw_fragnum = 0;
3560
3561 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3562 printf("%s: dst = %s, rate = 0x%02x, "
3563 "service = 0x%02x, paylen = 0x%04x\n",
3564 sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3565 hh->atw_rate, hh->atw_service, hh->atw_paylen);
3566
3567 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3568 "dur1 = 0x%04x, dur2 = 0x%04x, "
3569 "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3570 sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3571 hh->atw_tail_plcplen, hh->atw_head_plcplen,
3572 hh->atw_tail_dur, hh->atw_head_dur);
3573
3574 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3575 "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3576 sc->sc_dev.dv_xname, hh->atw_hdrctl,
3577 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3578
3579 printf("%s: keyid = %d\n",
3580 sc->sc_dev.dv_xname, hh->atw_keyid);
3581
3582 atw_dump_pkt(ifp, m0);
3583 }
3584 #endif /* ATW_DEBUG */
3585
3586 dmamap = txs->txs_dmamap;
3587
3588 /*
3589 * Load the DMA map. Copy and try (once) again if the packet
3590 * didn't fit in the alloted number of segments.
3591 */
3592 for (first = 1;
3593 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3594 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3595 first = 0) {
3596 MGETHDR(m, M_DONTWAIT, MT_DATA);
3597 if (m == NULL) {
3598 printf("%s: unable to allocate Tx mbuf\n",
3599 sc->sc_dev.dv_xname);
3600 break;
3601 }
3602 if (m0->m_pkthdr.len > MHLEN) {
3603 MCLGET(m, M_DONTWAIT);
3604 if ((m->m_flags & M_EXT) == 0) {
3605 printf("%s: unable to allocate Tx "
3606 "cluster\n", sc->sc_dev.dv_xname);
3607 m_freem(m);
3608 break;
3609 }
3610 }
3611 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3612 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3613 m_freem(m0);
3614 m0 = m;
3615 m = NULL;
3616 }
3617 if (error != 0) {
3618 printf("%s: unable to load Tx buffer, "
3619 "error = %d\n", sc->sc_dev.dv_xname, error);
3620 m_freem(m0);
3621 break;
3622 }
3623
3624 /*
3625 * Ensure we have enough descriptors free to describe
3626 * the packet.
3627 */
3628 if (dmamap->dm_nsegs > sc->sc_txfree) {
3629 /*
3630 * Not enough free descriptors to transmit
3631 * this packet. Unload the DMA map and
3632 * drop the packet. Notify the upper layer
3633 * that there are no more slots left.
3634 *
3635 * XXX We could allocate an mbuf and copy, but
3636 * XXX it is worth it?
3637 */
3638 bus_dmamap_unload(sc->sc_dmat, dmamap);
3639 m_freem(m0);
3640 break;
3641 }
3642
3643 /*
3644 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3645 */
3646
3647 /* Sync the DMA map. */
3648 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3649 BUS_DMASYNC_PREWRITE);
3650
3651 /* XXX arbitrary retry limit; 8 because I have seen it in
3652 * use already and maybe 0 means "no tries" !
3653 */
3654 ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3655
3656 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3657 sc->sc_dev.dv_xname, rate * 5));
3658 ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3659
3660 /*
3661 * Initialize the transmit descriptors.
3662 */
3663 for (nexttx = sc->sc_txnext, seg = 0;
3664 seg < dmamap->dm_nsegs;
3665 seg++, nexttx = ATW_NEXTTX(nexttx)) {
3666 /*
3667 * If this is the first descriptor we're
3668 * enqueueing, don't set the OWN bit just
3669 * yet. That could cause a race condition.
3670 * We'll do it below.
3671 */
3672 txd = &sc->sc_txdescs[nexttx];
3673 txd->at_ctl = ctl |
3674 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3675
3676 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3677 txd->at_flags =
3678 htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3679 ATW_TXFLAG_TBS1_MASK)) |
3680 ((nexttx == (ATW_NTXDESC - 1))
3681 ? htole32(ATW_TXFLAG_TER) : 0);
3682 lasttx = nexttx;
3683 }
3684
3685 IASSERT(lasttx != -1, ("bad lastx"));
3686 /* Set `first segment' and `last segment' appropriately. */
3687 sc->sc_txdescs[sc->sc_txnext].at_flags |=
3688 htole32(ATW_TXFLAG_FS);
3689 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3690
3691 #ifdef ATW_DEBUG
3692 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3693 printf(" txsoft %p transmit chain:\n", txs);
3694 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3695 printf(" descriptor %d:\n", seg);
3696 printf(" at_ctl: 0x%08x\n",
3697 le32toh(sc->sc_txdescs[seg].at_ctl));
3698 printf(" at_flags: 0x%08x\n",
3699 le32toh(sc->sc_txdescs[seg].at_flags));
3700 printf(" at_buf1: 0x%08x\n",
3701 le32toh(sc->sc_txdescs[seg].at_buf1));
3702 printf(" at_buf2: 0x%08x\n",
3703 le32toh(sc->sc_txdescs[seg].at_buf2));
3704 if (seg == lasttx)
3705 break;
3706 }
3707 }
3708 #endif
3709
3710 /* Sync the descriptors we're using. */
3711 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3712 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3713
3714 /*
3715 * Store a pointer to the packet so we can free it later,
3716 * and remember what txdirty will be once the packet is
3717 * done.
3718 */
3719 txs->txs_mbuf = m0;
3720 txs->txs_firstdesc = sc->sc_txnext;
3721 txs->txs_lastdesc = lasttx;
3722 txs->txs_ndescs = dmamap->dm_nsegs;
3723
3724 /* Advance the tx pointer. */
3725 sc->sc_txfree -= dmamap->dm_nsegs;
3726 sc->sc_txnext = nexttx;
3727
3728 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3729 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3730
3731 last_txs = txs;
3732 }
3733
3734 if (txs == NULL || sc->sc_txfree == 0) {
3735 /* No more slots left; notify upper layer. */
3736 ifp->if_flags |= IFF_OACTIVE;
3737 }
3738
3739 if (sc->sc_txfree != ofree) {
3740 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3741 sc->sc_dev.dv_xname, lasttx, firsttx));
3742 /*
3743 * Cause a transmit interrupt to happen on the
3744 * last packet we enqueued.
3745 */
3746 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3747 ATW_CDTXSYNC(sc, lasttx, 1,
3748 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3749
3750 /*
3751 * The entire packet chain is set up. Give the
3752 * first descriptor to the chip now.
3753 */
3754 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3755 ATW_CDTXSYNC(sc, firsttx, 1,
3756 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3757
3758 /* Wake up the transmitter. */
3759 ATW_WRITE(sc, ATW_TDR, 0x1);
3760
3761 /* Set a watchdog timer in case the chip flakes out. */
3762 sc->sc_tx_timer = 5;
3763 ifp->if_timer = 1;
3764 }
3765 }
3766
3767 /*
3768 * atw_power:
3769 *
3770 * Power management (suspend/resume) hook.
3771 */
3772 void
3773 atw_power(int why, void *arg)
3774 {
3775 struct atw_softc *sc = arg;
3776 struct ifnet *ifp = &sc->sc_if;
3777 int s;
3778
3779 DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3780
3781 s = splnet();
3782 switch (why) {
3783 case PWR_STANDBY:
3784 /* XXX do nothing. */
3785 break;
3786 case PWR_SUSPEND:
3787 atw_stop(ifp, 0);
3788 if (sc->sc_power != NULL)
3789 (*sc->sc_power)(sc, why);
3790 break;
3791 case PWR_RESUME:
3792 if (ifp->if_flags & IFF_UP) {
3793 if (sc->sc_power != NULL)
3794 (*sc->sc_power)(sc, why);
3795 atw_init(ifp);
3796 }
3797 break;
3798 case PWR_SOFTSUSPEND:
3799 case PWR_SOFTSTANDBY:
3800 case PWR_SOFTRESUME:
3801 break;
3802 }
3803 splx(s);
3804 }
3805
3806 /*
3807 * atw_ioctl: [ifnet interface function]
3808 *
3809 * Handle control requests from the operator.
3810 */
3811 int
3812 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3813 {
3814 struct atw_softc *sc = ifp->if_softc;
3815 struct ifreq *ifr = (struct ifreq *)data;
3816 int s, error = 0;
3817
3818 /* XXX monkey see, monkey do. comes from wi_ioctl. */
3819 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3820 return ENXIO;
3821
3822 s = splnet();
3823
3824 switch (cmd) {
3825 case SIOCSIFFLAGS:
3826 if (ifp->if_flags & IFF_UP) {
3827 if (ATW_IS_ENABLED(sc)) {
3828 /*
3829 * To avoid rescanning another access point,
3830 * do not call atw_init() here. Instead,
3831 * only reflect media settings.
3832 */
3833 atw_filter_setup(sc);
3834 } else
3835 error = atw_init(ifp);
3836 } else if (ATW_IS_ENABLED(sc))
3837 atw_stop(ifp, 1);
3838 break;
3839 case SIOCADDMULTI:
3840 case SIOCDELMULTI:
3841 error = (cmd == SIOCADDMULTI) ?
3842 ether_addmulti(ifr, &sc->sc_ec) :
3843 ether_delmulti(ifr, &sc->sc_ec);
3844 if (error == ENETRESET) {
3845 if (ifp->if_flags & IFF_RUNNING)
3846 atw_filter_setup(sc); /* do not rescan */
3847 error = 0;
3848 }
3849 break;
3850 default:
3851 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3852 if (error == ENETRESET) {
3853 if (ATW_IS_ENABLED(sc))
3854 error = atw_init(ifp);
3855 else
3856 error = 0;
3857 }
3858 break;
3859 }
3860
3861 /* Try to get more packets going. */
3862 if (ATW_IS_ENABLED(sc))
3863 atw_start(ifp);
3864
3865 splx(s);
3866 return (error);
3867 }
3868
3869 static int
3870 atw_media_change(struct ifnet *ifp)
3871 {
3872 int error;
3873
3874 error = ieee80211_media_change(ifp);
3875 if (error == ENETRESET) {
3876 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3877 (IFF_RUNNING|IFF_UP))
3878 atw_init(ifp); /* XXX lose error */
3879 error = 0;
3880 }
3881 return error;
3882 }
3883