atwvar.h revision 1.9 1 1.9 dyoung /* $NetBSD: atwvar.h,v 1.9 2004/06/23 08:13:29 dyoung Exp $ */
2 1.1 dyoung
3 1.1 dyoung /*
4 1.1 dyoung * Copyright (c) 2003, 2004 The NetBSD Foundation, Inc. All rights reserved.
5 1.1 dyoung *
6 1.1 dyoung * This code is derived from software contributed to The NetBSD Foundation
7 1.1 dyoung * by David Young.
8 1.1 dyoung *
9 1.1 dyoung * Redistribution and use in source and binary forms, with or without
10 1.1 dyoung * modification, are permitted provided that the following conditions
11 1.1 dyoung * are met:
12 1.1 dyoung * 1. Redistributions of source code must retain the above copyright
13 1.1 dyoung * notice, this list of conditions and the following disclaimer.
14 1.1 dyoung * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 dyoung * notice, this list of conditions and the following disclaimer in the
16 1.1 dyoung * documentation and/or other materials provided with the distribution.
17 1.1 dyoung * 3. All advertising materials mentioning features or use of this software
18 1.1 dyoung * must display the following acknowledgement:
19 1.1 dyoung * This product includes software developed by the NetBSD
20 1.1 dyoung * Foundation, Inc. and its contributors.
21 1.1 dyoung * 4. Neither the name of the author nor the names of any co-contributors
22 1.1 dyoung * may be used to endorse or promote products derived from this software
23 1.1 dyoung * without specific prior written permission.
24 1.1 dyoung *
25 1.1 dyoung * THIS SOFTWARE IS PROVIDED BY David Young AND CONTRIBUTORS ``AS IS'' AND
26 1.1 dyoung * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 1.1 dyoung * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 1.1 dyoung * ARE DISCLAIMED. IN NO EVENT SHALL David Young
29 1.1 dyoung * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 dyoung * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 dyoung * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 dyoung * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 dyoung * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 dyoung * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
35 1.1 dyoung * THE POSSIBILITY OF SUCH DAMAGE.
36 1.1 dyoung */
37 1.1 dyoung
38 1.1 dyoung #ifndef _DEV_IC_ATWVAR_H_
39 1.1 dyoung #define _DEV_IC_ATWVAR_H_
40 1.1 dyoung
41 1.1 dyoung #include <sys/queue.h>
42 1.1 dyoung #include <sys/callout.h>
43 1.1 dyoung #include <sys/time.h>
44 1.1 dyoung
45 1.1 dyoung /*
46 1.1 dyoung * Some misc. statics, useful for debugging.
47 1.1 dyoung */
48 1.1 dyoung struct atw_stats {
49 1.1 dyoung u_long ts_tx_tuf; /* transmit underflow errors */
50 1.1 dyoung u_long ts_tx_tro; /* transmit jabber timeouts */
51 1.1 dyoung u_long ts_tx_trt; /* retry count exceeded */
52 1.1 dyoung u_long ts_tx_tlt; /* lifetime exceeded */
53 1.1 dyoung u_long ts_tx_sofbr; /* packet size mismatch */
54 1.1 dyoung };
55 1.1 dyoung
56 1.1 dyoung /*
57 1.1 dyoung * Transmit descriptor list size. This is arbitrary, but allocate
58 1.1 dyoung * enough descriptors for 64 pending transmissions and 16 segments
59 1.1 dyoung * per packet. Since a descriptor holds 2 buffer addresses, that's
60 1.1 dyoung * 8 descriptors per packet. This MUST work out to a power of 2.
61 1.1 dyoung */
62 1.1 dyoung #define ATW_NTXSEGS 16
63 1.1 dyoung
64 1.1 dyoung #define ATW_TXQUEUELEN 64
65 1.1 dyoung #define ATW_NTXDESC (ATW_TXQUEUELEN * ATW_NTXSEGS)
66 1.1 dyoung #define ATW_NTXDESC_MASK (ATW_NTXDESC - 1)
67 1.1 dyoung #define ATW_NEXTTX(x) ((x + 1) & ATW_NTXDESC_MASK)
68 1.1 dyoung
69 1.1 dyoung /*
70 1.1 dyoung * Receive descriptor list size. We have one Rx buffer per incoming
71 1.1 dyoung * packet, so this logic is a little simpler.
72 1.1 dyoung */
73 1.1 dyoung #define ATW_NRXDESC 64
74 1.1 dyoung #define ATW_NRXDESC_MASK (ATW_NRXDESC - 1)
75 1.1 dyoung #define ATW_NEXTRX(x) ((x + 1) & ATW_NRXDESC_MASK)
76 1.1 dyoung
77 1.1 dyoung /*
78 1.1 dyoung * Control structures are DMA'd to the ADM8211 chip. We allocate them in
79 1.1 dyoung * a single clump that maps to a single DMA segment to make several things
80 1.1 dyoung * easier.
81 1.1 dyoung */
82 1.1 dyoung struct atw_control_data {
83 1.1 dyoung /*
84 1.1 dyoung * The transmit descriptors.
85 1.1 dyoung */
86 1.1 dyoung struct atw_txdesc acd_txdescs[ATW_NTXDESC];
87 1.1 dyoung
88 1.1 dyoung /*
89 1.1 dyoung * The receive descriptors.
90 1.1 dyoung */
91 1.1 dyoung struct atw_rxdesc acd_rxdescs[ATW_NRXDESC];
92 1.1 dyoung };
93 1.1 dyoung
94 1.1 dyoung #define ATW_CDOFF(x) offsetof(struct atw_control_data, x)
95 1.1 dyoung #define ATW_CDTXOFF(x) ATW_CDOFF(acd_txdescs[(x)])
96 1.1 dyoung #define ATW_CDRXOFF(x) ATW_CDOFF(acd_rxdescs[(x)])
97 1.1 dyoung /*
98 1.1 dyoung * Software state for transmit jobs.
99 1.1 dyoung */
100 1.1 dyoung struct atw_txsoft {
101 1.1 dyoung struct mbuf *txs_mbuf; /* head of our mbuf chain */
102 1.1 dyoung bus_dmamap_t txs_dmamap; /* our DMA map */
103 1.1 dyoung int txs_firstdesc; /* first descriptor in packet */
104 1.1 dyoung int txs_lastdesc; /* last descriptor in packet */
105 1.1 dyoung int txs_ndescs; /* number of descriptors */
106 1.1 dyoung SIMPLEQ_ENTRY(atw_txsoft) txs_q;
107 1.1 dyoung };
108 1.1 dyoung
109 1.1 dyoung SIMPLEQ_HEAD(atw_txsq, atw_txsoft);
110 1.1 dyoung
111 1.1 dyoung /*
112 1.1 dyoung * Software state for receive jobs.
113 1.1 dyoung */
114 1.1 dyoung struct atw_rxsoft {
115 1.1 dyoung struct mbuf *rxs_mbuf; /* head of our mbuf chain */
116 1.1 dyoung bus_dmamap_t rxs_dmamap; /* our DMA map */
117 1.1 dyoung };
118 1.1 dyoung
119 1.1 dyoung /*
120 1.1 dyoung * Table which describes the transmit threshold mode. We generally
121 1.1 dyoung * start at index 0. Whenever we get a transmit underrun, we increment
122 1.1 dyoung * our index, falling back if we encounter the NULL terminator.
123 1.1 dyoung */
124 1.1 dyoung struct atw_txthresh_tab {
125 1.1 dyoung u_int32_t txth_opmode; /* OPMODE bits */
126 1.1 dyoung const char *txth_name; /* name of mode */
127 1.1 dyoung };
128 1.1 dyoung
129 1.1 dyoung #define ATW_TXTHRESH_TAB_LO_RATE { \
130 1.1 dyoung { ATW_NAR_TR_L64, "64 bytes" }, \
131 1.1 dyoung { ATW_NAR_TR_L160, "160 bytes" }, \
132 1.1 dyoung { ATW_NAR_TR_L192, "192 bytes" }, \
133 1.1 dyoung { ATW_NAR_SF, "store and forward" }, \
134 1.1 dyoung { 0, NULL }, \
135 1.1 dyoung }
136 1.1 dyoung
137 1.1 dyoung #define ATW_TXTHRESH_TAB_HI_RATE { \
138 1.1 dyoung { ATW_NAR_TR_H96, "96 bytes" }, \
139 1.1 dyoung { ATW_NAR_TR_H288, "288 bytes" }, \
140 1.1 dyoung { ATW_NAR_TR_H544, "544 bytes" }, \
141 1.1 dyoung { ATW_NAR_SF, "store and forward" }, \
142 1.1 dyoung { 0, NULL }, \
143 1.1 dyoung }
144 1.1 dyoung
145 1.1 dyoung enum atw_rftype { ATW_RFTYPE_INTERSIL = 0, ATW_RFTYPE_RFMD = 1,
146 1.1 dyoung ATW_RFTYPE_MARVEL = 2 };
147 1.1 dyoung
148 1.1 dyoung enum atw_bbptype { ATW_BBPTYPE_INTERSIL = 0, ATW_BBPTYPE_RFMD = 1,
149 1.9 dyoung ATW_BBPTYPE_MARVEL = 2, ATW_C_BBPTYPE_RFMD = 5 };
150 1.1 dyoung
151 1.3 dyoung /* Radio capture format for ADMtek. */
152 1.3 dyoung
153 1.3 dyoung #define ATW_RX_RADIOTAP_PRESENT \
154 1.3 dyoung ((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE) | \
155 1.3 dyoung (1 << IEEE80211_RADIOTAP_CHANNEL) | \
156 1.3 dyoung (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL))
157 1.3 dyoung
158 1.3 dyoung struct atw_rx_radiotap_header {
159 1.3 dyoung struct ieee80211_radiotap_header ar_ihdr;
160 1.3 dyoung u_int8_t ar_flags;
161 1.3 dyoung u_int8_t ar_rate;
162 1.3 dyoung u_int16_t ar_chan_freq;
163 1.3 dyoung u_int16_t ar_chan_flags;
164 1.5 dyoung u_int8_t ar_antsignal;
165 1.3 dyoung } __attribute__((__packed__));
166 1.3 dyoung
167 1.3 dyoung #define ATW_TX_RADIOTAP_PRESENT ((1 << IEEE80211_RADIOTAP_FLAGS) | \
168 1.3 dyoung (1 << IEEE80211_RADIOTAP_RATE) | \
169 1.3 dyoung (1 << IEEE80211_RADIOTAP_CHANNEL))
170 1.3 dyoung
171 1.3 dyoung struct atw_tx_radiotap_header {
172 1.3 dyoung struct ieee80211_radiotap_header at_ihdr;
173 1.3 dyoung u_int8_t at_flags;
174 1.3 dyoung u_int8_t at_rate;
175 1.3 dyoung u_int16_t at_chan_freq;
176 1.3 dyoung u_int16_t at_chan_flags;
177 1.3 dyoung } __attribute__((__packed__));
178 1.4 dyoung
179 1.1 dyoung struct atw_softc {
180 1.1 dyoung struct device sc_dev;
181 1.1 dyoung struct ieee80211com sc_ic;
182 1.1 dyoung int (*sc_enable)(struct atw_softc *);
183 1.1 dyoung void (*sc_disable)(struct atw_softc *);
184 1.1 dyoung void (*sc_power)(struct atw_softc *, int);
185 1.2 dyoung int (*sc_newstate)(struct ieee80211com *,
186 1.2 dyoung enum ieee80211_state, int);
187 1.2 dyoung void (*sc_recv_mgmt)(struct ieee80211com *,
188 1.2 dyoung struct mbuf *, struct ieee80211_node *,
189 1.2 dyoung int, int, u_int32_t);
190 1.2 dyoung struct ieee80211_node *(*sc_node_alloc)(struct ieee80211com *);
191 1.2 dyoung void (*sc_node_free)(struct ieee80211com *,
192 1.2 dyoung struct ieee80211_node *);
193 1.1 dyoung
194 1.1 dyoung struct atw_stats sc_stats; /* debugging stats */
195 1.1 dyoung
196 1.1 dyoung int sc_tx_timer;
197 1.1 dyoung int sc_rescan_timer;
198 1.1 dyoung
199 1.1 dyoung bus_space_tag_t sc_st; /* bus space tag */
200 1.1 dyoung bus_space_handle_t sc_sh; /* bus space handle */
201 1.1 dyoung bus_dma_tag_t sc_dmat; /* bus dma tag */
202 1.1 dyoung void *sc_sdhook; /* shutdown hook */
203 1.1 dyoung void *sc_powerhook; /* power management hook */
204 1.1 dyoung u_int32_t sc_cacheline; /* cache line size */
205 1.1 dyoung u_int32_t sc_maxburst; /* maximum burst length */
206 1.1 dyoung
207 1.1 dyoung const struct atw_txthresh_tab *sc_txth;
208 1.1 dyoung int sc_txthresh; /* current tx threshold */
209 1.1 dyoung
210 1.1 dyoung u_int sc_cur_chan; /* current channel */
211 1.1 dyoung
212 1.1 dyoung int sc_flags;
213 1.1 dyoung
214 1.1 dyoung u_int16_t *sc_srom;
215 1.1 dyoung u_int16_t sc_sromsz;
216 1.1 dyoung
217 1.1 dyoung caddr_t sc_radiobpf;
218 1.1 dyoung
219 1.1 dyoung bus_dma_segment_t sc_cdseg; /* control data memory */
220 1.1 dyoung int sc_cdnseg; /* number of segments */
221 1.1 dyoung bus_dmamap_t sc_cddmamap; /* control data DMA map */
222 1.1 dyoung #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
223 1.1 dyoung
224 1.1 dyoung /*
225 1.1 dyoung * Software state for transmit and receive descriptors.
226 1.1 dyoung */
227 1.1 dyoung struct atw_txsoft sc_txsoft[ATW_TXQUEUELEN];
228 1.1 dyoung struct atw_rxsoft sc_rxsoft[ATW_NRXDESC];
229 1.1 dyoung
230 1.1 dyoung /*
231 1.1 dyoung * Control data structures.
232 1.1 dyoung */
233 1.1 dyoung struct atw_control_data *sc_control_data;
234 1.1 dyoung #define sc_txdescs sc_control_data->acd_txdescs
235 1.1 dyoung #define sc_rxdescs sc_control_data->acd_rxdescs
236 1.1 dyoung #define sc_setup_desc sc_control_data->acd_setup_desc
237 1.1 dyoung
238 1.1 dyoung int sc_txfree; /* number of free Tx descriptors */
239 1.1 dyoung int sc_txnext; /* next ready Tx descriptor */
240 1.1 dyoung int sc_ntxsegs; /* number of transmit segs per pkt */
241 1.1 dyoung
242 1.1 dyoung struct atw_txsq sc_txfreeq; /* free Tx descsofts */
243 1.1 dyoung struct atw_txsq sc_txdirtyq; /* dirty Tx descsofts */
244 1.1 dyoung
245 1.1 dyoung int sc_rxptr; /* next ready RX descriptor/descsoft */
246 1.1 dyoung
247 1.1 dyoung u_int32_t sc_busmode; /* copy of ATW_PAR */
248 1.1 dyoung u_int32_t sc_opmode; /* copy of ATW_NAR */
249 1.1 dyoung u_int32_t sc_inten; /* copy of ATW_IER */
250 1.1 dyoung u_int32_t sc_wepctl; /* copy of ATW_WEPCTL */
251 1.1 dyoung
252 1.1 dyoung u_int32_t sc_rxint_mask; /* mask of Rx interrupts we want */
253 1.1 dyoung u_int32_t sc_txint_mask; /* mask of Tx interrupts we want */
254 1.1 dyoung u_int32_t sc_linkint_mask;/* link-state interrupts mask */
255 1.1 dyoung
256 1.1 dyoung /* interrupt acknowledge hook */
257 1.8 dyoung void (*sc_intr_ack)(struct atw_softc *);
258 1.1 dyoung
259 1.1 dyoung enum atw_rftype sc_rftype;
260 1.1 dyoung enum atw_bbptype sc_bbptype;
261 1.1 dyoung u_int32_t sc_synctl_rd;
262 1.1 dyoung u_int32_t sc_synctl_wr;
263 1.1 dyoung u_int32_t sc_bbpctl_rd;
264 1.1 dyoung u_int32_t sc_bbpctl_wr;
265 1.1 dyoung
266 1.1 dyoung void (*sc_recv_beacon)(struct ieee80211com *, struct mbuf *,
267 1.1 dyoung int, u_int32_t);
268 1.1 dyoung void (*sc_recv_prresp)(struct ieee80211com *, struct mbuf *,
269 1.1 dyoung int, u_int32_t);
270 1.1 dyoung
271 1.1 dyoung /* ADM8211 state variables. */
272 1.1 dyoung u_int8_t sc_sram[ATW_SRAM_SIZE];
273 1.1 dyoung u_int8_t sc_bssid[IEEE80211_ADDR_LEN];
274 1.1 dyoung u_int8_t sc_lost_bcn_thresh;
275 1.1 dyoung
276 1.1 dyoung struct timeval sc_last_beacon;
277 1.2 dyoung struct callout sc_scan_ch;
278 1.3 dyoung union {
279 1.3 dyoung struct atw_rx_radiotap_header tap;
280 1.3 dyoung u_int8_t pad[64];
281 1.3 dyoung } sc_rxtapu;
282 1.3 dyoung union {
283 1.3 dyoung struct atw_tx_radiotap_header tap;
284 1.3 dyoung u_int8_t pad[64];
285 1.3 dyoung } sc_txtapu;
286 1.1 dyoung };
287 1.3 dyoung
288 1.3 dyoung #define sc_rxtap sc_rxtapu.tap
289 1.3 dyoung #define sc_txtap sc_txtapu.tap
290 1.1 dyoung
291 1.1 dyoung #define sc_if sc_ic.ic_if
292 1.1 dyoung
293 1.1 dyoung /* XXX this is fragile. try not to introduce any u_int32_t's. */
294 1.1 dyoung struct atw_frame {
295 1.1 dyoung /*00*/ u_int8_t atw_dst[IEEE80211_ADDR_LEN];
296 1.1 dyoung /*06*/ u_int8_t atw_rate; /* TX rate in 100Kbps */
297 1.1 dyoung /*07*/ u_int8_t atw_service; /* 0 */
298 1.1 dyoung /*08*/ u_int16_t atw_paylen; /* payload length */
299 1.1 dyoung /*0a*/ u_int8_t atw_fc[2]; /* 802.11 Frame
300 1.1 dyoung * Control
301 1.1 dyoung */
302 1.1 dyoung /* 802.11 PLCP Length for first & last fragment */
303 1.1 dyoung /*0c*/ u_int16_t atw_tail_plcplen;
304 1.1 dyoung /*0e*/ u_int16_t atw_head_plcplen;
305 1.1 dyoung /* 802.11 Duration for first & last fragment */
306 1.1 dyoung /*10*/ u_int16_t atw_tail_dur;
307 1.1 dyoung /*12*/ u_int16_t atw_head_dur;
308 1.1 dyoung /*14*/ u_int8_t atw_addr4[IEEE80211_ADDR_LEN];
309 1.1 dyoung union {
310 1.1 dyoung struct {
311 1.1 dyoung /*1a*/ u_int16_t hdrctl; /*transmission control*/
312 1.1 dyoung /*1c*/ u_int16_t fragthr;/* fragmentation threshold
313 1.1 dyoung * [0:11], zero [12:15].
314 1.1 dyoung */
315 1.1 dyoung /*1e*/ u_int8_t fragnum;/* fragment number [4:7],
316 1.1 dyoung * zero [0:3].
317 1.1 dyoung */
318 1.1 dyoung /*1f*/ u_int8_t rtylmt; /* retry limit */
319 1.1 dyoung /*20*/ u_int8_t wepkey0[4];/* ??? */
320 1.1 dyoung /*24*/ u_int8_t wepkey1[4];/* ??? */
321 1.1 dyoung /*28*/ u_int8_t wepkey2[4];/* ??? */
322 1.1 dyoung /*2c*/ u_int8_t wepkey3[4];/* ??? */
323 1.1 dyoung /*30*/ u_int8_t keyid;
324 1.1 dyoung /*31*/ u_int8_t reserved0[7];
325 1.2 dyoung } s1;
326 1.2 dyoung struct {
327 1.2 dyoung u_int8_t pad[6];
328 1.2 dyoung struct ieee80211_frame ihdr;
329 1.2 dyoung } s2;
330 1.1 dyoung } u;
331 1.1 dyoung } __attribute__((__packed__));
332 1.1 dyoung
333 1.2 dyoung #define atw_hdrctl u.s1.hdrctl
334 1.2 dyoung #define atw_fragthr u.s1.fragthr
335 1.2 dyoung #define atw_fragnum u.s1.fragnum
336 1.2 dyoung #define atw_rtylmt u.s1.rtylmt
337 1.2 dyoung #define atw_keyid u.s1.keyid
338 1.2 dyoung #define atw_ihdr u.s2.ihdr
339 1.1 dyoung
340 1.1 dyoung #define ATW_HDRCTL_SHORT_PREAMBLE BIT(0) /* use short preamble */
341 1.1 dyoung #define ATW_HDRCTL_RTSCTS BIT(4) /* send RTS */
342 1.1 dyoung #define ATW_HDRCTL_WEP BIT(5)
343 1.1 dyoung #define ATW_HDRCTL_UNKNOWN1 BIT(15) /* MAC adds FCS? */
344 1.1 dyoung #define ATW_HDRCTL_UNKNOWN2 BIT(8)
345 1.1 dyoung
346 1.1 dyoung #define ATW_FRAGTHR_FRAGTHR_MASK BITS(0, 11)
347 1.1 dyoung #define ATW_FRAGNUM_FRAGNUM_MASK BITS(4, 7)
348 1.1 dyoung
349 1.1 dyoung /* Values for sc_flags. */
350 1.1 dyoung #define ATWF_MRL 0x00000010 /* memory read line okay */
351 1.1 dyoung #define ATWF_MRM 0x00000020 /* memory read multi okay */
352 1.1 dyoung #define ATWF_MWI 0x00000040 /* memory write inval okay */
353 1.1 dyoung #define ATWF_SHORT_PREAMBLE 0x00000080 /* short preamble enabled */
354 1.1 dyoung #define ATWF_RTSCTS 0x00000100 /* RTS/CTS enabled */
355 1.1 dyoung #define ATWF_ATTACHED 0x00000800 /* attach has succeeded */
356 1.1 dyoung #define ATWF_ENABLED 0x00001000 /* chip is enabled */
357 1.1 dyoung
358 1.1 dyoung #define ATW_IS_ENABLED(sc) ((sc)->sc_flags & ATWF_ENABLED)
359 1.1 dyoung
360 1.1 dyoung #define ATW_CDTXADDR(sc, x) ((sc)->sc_cddma + ATW_CDTXOFF((x)))
361 1.1 dyoung #define ATW_CDRXADDR(sc, x) ((sc)->sc_cddma + ATW_CDRXOFF((x)))
362 1.1 dyoung
363 1.1 dyoung #define ATW_CDTXSYNC(sc, x, n, ops) \
364 1.1 dyoung do { \
365 1.1 dyoung int __x, __n; \
366 1.1 dyoung \
367 1.1 dyoung __x = (x); \
368 1.1 dyoung __n = (n); \
369 1.1 dyoung \
370 1.1 dyoung /* If it will wrap around, sync to the end of the ring. */ \
371 1.1 dyoung if ((__x + __n) > ATW_NTXDESC) { \
372 1.1 dyoung bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
373 1.1 dyoung ATW_CDTXOFF(__x), sizeof(struct atw_txdesc) * \
374 1.1 dyoung (ATW_NTXDESC - __x), (ops)); \
375 1.1 dyoung __n -= (ATW_NTXDESC - __x); \
376 1.1 dyoung __x = 0; \
377 1.1 dyoung } \
378 1.1 dyoung \
379 1.1 dyoung /* Now sync whatever is left. */ \
380 1.1 dyoung bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
381 1.1 dyoung ATW_CDTXOFF(__x), sizeof(struct atw_txdesc) * __n, (ops)); \
382 1.1 dyoung } while (0)
383 1.1 dyoung
384 1.1 dyoung #define ATW_CDRXSYNC(sc, x, ops) \
385 1.1 dyoung bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
386 1.1 dyoung ATW_CDRXOFF((x)), sizeof(struct atw_rxdesc), (ops))
387 1.1 dyoung
388 1.1 dyoung /*
389 1.1 dyoung * Note we rely on MCLBYTES being a power of two. Because the `length'
390 1.1 dyoung * field is only 11 bits, we must subtract 1 from the length to avoid
391 1.1 dyoung * having it truncated to 0!
392 1.1 dyoung *
393 1.1 dyoung * Apparently we have to set ATW_RXSTAT_SQL to make the ADM8211 tell
394 1.1 dyoung * us RSSI.
395 1.1 dyoung */
396 1.1 dyoung #define ATW_INIT_RXDESC(sc, x) \
397 1.1 dyoung do { \
398 1.1 dyoung struct atw_rxsoft *__rxs = &sc->sc_rxsoft[(x)]; \
399 1.1 dyoung struct atw_rxdesc *__rxd = &sc->sc_rxdescs[(x)]; \
400 1.1 dyoung struct mbuf *__m = __rxs->rxs_mbuf; \
401 1.1 dyoung \
402 1.1 dyoung __m->m_data = __m->m_ext.ext_buf; \
403 1.1 dyoung __rxd->ar_buf1 = \
404 1.1 dyoung htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
405 1.1 dyoung __rxd->ar_buf2 = /* for descriptor chaining */ \
406 1.1 dyoung htole32(ATW_CDRXADDR((sc), ATW_NEXTRX((x)))); \
407 1.1 dyoung __rxd->ar_ctl = \
408 1.1 dyoung htole32(LSHIFT(((__m->m_ext.ext_size - 1) & ~0x3U), \
409 1.1 dyoung ATW_RXCTL_RBS1_MASK) | \
410 1.1 dyoung 0 /* ATW_RXCTL_RCH */ | \
411 1.1 dyoung ((x) == (ATW_NRXDESC - 1) ? ATW_RXCTL_RER : 0)); \
412 1.1 dyoung __rxd->ar_stat = \
413 1.1 dyoung htole32(ATW_RXSTAT_OWN|ATW_RXSTAT_SQL|ATW_RXSTAT_FS| \
414 1.1 dyoung ATW_RXSTAT_LS); \
415 1.1 dyoung ATW_CDRXSYNC((sc), (x), \
416 1.1 dyoung BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
417 1.1 dyoung } while (0)
418 1.1 dyoung
419 1.1 dyoung /* country codes from ADM8211 SROM */
420 1.1 dyoung #define ATW_COUNTRY_FCC 0 /* USA 1-11 */
421 1.1 dyoung #define ATW_COUNTRY_IC 1 /* Canada 1-11 */
422 1.1 dyoung #define ATW_COUNTRY_ETSI 2 /* European Union (?) 1-13 */
423 1.1 dyoung #define ATW_COUNTRY_SPAIN 3 /* 10-11 */
424 1.1 dyoung #define ATW_COUNTRY_FRANCE 4 /* 10-13 */
425 1.1 dyoung #define ATW_COUNTRY_MKK 5 /* Japan: 14 */
426 1.1 dyoung #define ATW_COUNTRY_MKK2 6 /* Japan: 1-14 */
427 1.2 dyoung
428 1.2 dyoung /* One Time Unit (TU) is 1Kus = 1024 microseconds. */
429 1.2 dyoung #define IEEE80211_DUR_TU 1024
430 1.2 dyoung
431 1.2 dyoung /* IEEE 802.11b durations for DSSS PHY in microseconds */
432 1.2 dyoung #define IEEE80211_DUR_DS_LONG_PREAMBLE 144
433 1.2 dyoung #define IEEE80211_DUR_DS_SHORT_PREAMBLE 72
434 1.2 dyoung #define IEEE80211_DUR_DS_FAST_PLCPHDR 24
435 1.2 dyoung #define IEEE80211_DUR_DS_SLOW_PLCPHDR 48
436 1.2 dyoung #define IEEE80211_DUR_DS_SLOW_ACK 112
437 1.2 dyoung #define IEEE80211_DUR_DS_FAST_ACK 56
438 1.2 dyoung #define IEEE80211_DUR_DS_SLOW_CTS 112
439 1.2 dyoung #define IEEE80211_DUR_DS_FAST_CTS 56
440 1.2 dyoung #define IEEE80211_DUR_DS_SLOT 20
441 1.2 dyoung #define IEEE80211_DUR_DS_SIFS 10
442 1.2 dyoung #define IEEE80211_DUR_DS_PIFS (IEEE80211_DUR_DS_SIFS + IEEE80211_DUR_DS_SLOT)
443 1.2 dyoung #define IEEE80211_DUR_DS_DIFS (IEEE80211_DUR_DS_SIFS + \
444 1.2 dyoung 2 * IEEE80211_DUR_DS_SLOT)
445 1.2 dyoung #define IEEE80211_DUR_DS_EIFS (IEEE80211_DUR_DS_SIFS + \
446 1.2 dyoung IEEE80211_DUR_DS_SLOW_ACK + \
447 1.2 dyoung IEEE80211_DUR_DS_LONG_PREAMBLE + \
448 1.2 dyoung IEEE80211_DUR_DS_SLOW_PLCPHDR + \
449 1.2 dyoung IEEE80211_DUR_DIFS)
450 1.1 dyoung
451 1.1 dyoung /*
452 1.1 dyoung * register space access macros
453 1.1 dyoung */
454 1.1 dyoung #define ATW_READ(sc, reg) \
455 1.1 dyoung bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
456 1.1 dyoung
457 1.1 dyoung #define ATW_WRITE(sc, reg, val) \
458 1.1 dyoung bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
459 1.1 dyoung
460 1.1 dyoung #define ATW_SET(sc, reg, mask) \
461 1.1 dyoung ATW_WRITE((sc), (reg), ATW_READ((sc), (reg)) | (mask))
462 1.1 dyoung
463 1.1 dyoung #define ATW_CLR(sc, reg, mask) \
464 1.1 dyoung ATW_WRITE((sc), (reg), ATW_READ((sc), (reg)) & ~(mask))
465 1.1 dyoung
466 1.1 dyoung #define ATW_ISSET(sc, reg, mask) \
467 1.1 dyoung (ATW_READ((sc), (reg)) & (mask))
468 1.1 dyoung
469 1.8 dyoung void atw_attach(struct atw_softc *);
470 1.8 dyoung int atw_detach(struct atw_softc *);
471 1.8 dyoung int atw_activate(struct device *, enum devact);
472 1.8 dyoung int atw_intr(void *arg);
473 1.8 dyoung void atw_power(int, void *);
474 1.8 dyoung void atw_shutdown(void *);
475 1.1 dyoung
476 1.1 dyoung #endif /* _DEV_IC_ATWVAR_H_ */
477