clmpcc.c revision 1.1 1 1.1 scw /* $NetBSD: clmpcc.c,v 1.1 1999/02/13 17:05:19 scw Exp $ */
2 1.1 scw
3 1.1 scw /*-
4 1.1 scw * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 scw * All rights reserved.
6 1.1 scw *
7 1.1 scw * This code is derived from software contributed to The NetBSD Foundation
8 1.1 scw * by Steve C. Woodford.
9 1.1 scw *
10 1.1 scw * Redistribution and use in source and binary forms, with or without
11 1.1 scw * modification, are permitted provided that the following conditions
12 1.1 scw * are met:
13 1.1 scw * 1. Redistributions of source code must retain the above copyright
14 1.1 scw * notice, this list of conditions and the following disclaimer.
15 1.1 scw * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 scw * notice, this list of conditions and the following disclaimer in the
17 1.1 scw * documentation and/or other materials provided with the distribution.
18 1.1 scw * 3. All advertising materials mentioning features or use of this software
19 1.1 scw * must display the following acknowledgement:
20 1.1 scw * This product includes software developed by the NetBSD
21 1.1 scw * Foundation, Inc. and its contributors.
22 1.1 scw * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 scw * contributors may be used to endorse or promote products derived
24 1.1 scw * from this software without specific prior written permission.
25 1.1 scw *
26 1.1 scw * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 scw * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 scw * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 scw * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 scw * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 scw * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 scw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 scw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 scw * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 scw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 scw * POSSIBILITY OF SUCH DAMAGE.
37 1.1 scw */
38 1.1 scw
39 1.1 scw /*
40 1.1 scw * Cirrus Logic CD2400/CD2401 Four Channel Multi-Protocol Comms. Controller.
41 1.1 scw */
42 1.1 scw
43 1.1 scw #include "opt_ddb.h"
44 1.1 scw
45 1.1 scw #include <sys/types.h>
46 1.1 scw #include <sys/param.h>
47 1.1 scw #include <sys/systm.h>
48 1.1 scw #include <sys/ioctl.h>
49 1.1 scw #include <sys/select.h>
50 1.1 scw #include <sys/tty.h>
51 1.1 scw #include <sys/proc.h>
52 1.1 scw #include <sys/user.h>
53 1.1 scw #include <sys/conf.h>
54 1.1 scw #include <sys/file.h>
55 1.1 scw #include <sys/uio.h>
56 1.1 scw #include <sys/kernel.h>
57 1.1 scw #include <sys/syslog.h>
58 1.1 scw #include <sys/device.h>
59 1.1 scw #include <sys/malloc.h>
60 1.1 scw
61 1.1 scw #include <machine/bus.h>
62 1.1 scw
63 1.1 scw #include <dev/ic/clmpccreg.h>
64 1.1 scw #include <dev/ic/clmpccvar.h>
65 1.1 scw #include <dev/cons.h>
66 1.1 scw
67 1.1 scw
68 1.1 scw #if defined(CLMPCC_ONLY_BYTESWAP_LOW) && defined(CLMPCC_ONLY_BYTESWAP_HIGH)
69 1.1 scw #error "CLMPCC_ONLY_BYTESWAP_LOW and CLMPCC_ONLY_BYTESWAP_HIGH are mutually exclusive."
70 1.1 scw #endif
71 1.1 scw
72 1.1 scw
73 1.1 scw static int clmpcc_init __P((struct clmpcc_softc *sc));
74 1.1 scw static void clmpcc_shutdown __P((struct clmpcc_chan *));
75 1.1 scw static int clmpcc_speed __P((struct clmpcc_softc *, speed_t,
76 1.1 scw int *, int *));
77 1.1 scw static int clmpcc_param __P((struct tty *, struct termios *));
78 1.1 scw static void clmpcc_start __P((struct tty *));
79 1.1 scw static int clmpcc_modem_control __P((struct clmpcc_chan *, int, int));
80 1.1 scw
81 1.1 scw
82 1.1 scw cdev_decl(clmpcc);
83 1.1 scw
84 1.1 scw #define CLMPCCUNIT(x) (minor(x) & 0x7fffc)
85 1.1 scw #define CLMPCCCHAN(x) (minor(x) & 0x00003)
86 1.1 scw #define CLMPCCDIALOUT(x) (minor(x) & 0x80000)
87 1.1 scw
88 1.1 scw /*
89 1.1 scw * These should be in a header file somewhere...
90 1.1 scw */
91 1.1 scw #define ISSET(v, f) (((v) & (f)) != 0)
92 1.1 scw #define ISCLR(v, f) (((v) & (f)) == 0)
93 1.1 scw #define SET(v, f) (v) |= (f)
94 1.1 scw #define CLR(v, f) (v) &= ~(f)
95 1.1 scw
96 1.1 scw
97 1.1 scw extern struct cfdriver clmpcc_cd;
98 1.1 scw
99 1.1 scw
100 1.1 scw /*
101 1.1 scw * Make this an option variable one can patch.
102 1.1 scw * But be warned: this must be a power of 2!
103 1.1 scw */
104 1.1 scw u_int clmpcc_ibuf_size = CLMPCC_RING_SIZE;
105 1.1 scw
106 1.1 scw
107 1.1 scw /*
108 1.1 scw * Things needed when the device is used as a console
109 1.1 scw */
110 1.1 scw static struct clmpcc_softc *cons_sc = NULL;
111 1.1 scw static int cons_chan;
112 1.1 scw static int cons_rate;
113 1.1 scw
114 1.1 scw static int clmpcc_common_getc __P((struct clmpcc_softc *, int));
115 1.1 scw static void clmpcc_common_putc __P((struct clmpcc_softc *, int, int));
116 1.1 scw int clmpcccngetc __P((dev_t));
117 1.1 scw void clmpcccnputc __P((dev_t, int));
118 1.1 scw
119 1.1 scw
120 1.1 scw /*
121 1.1 scw * Convenience functions, inlined for speed
122 1.1 scw */
123 1.1 scw #define integrate static inline
124 1.1 scw integrate u_int8_t clmpcc_rdreg __P((struct clmpcc_softc *, u_int));
125 1.1 scw integrate void clmpcc_wrreg __P((struct clmpcc_softc *, u_int, u_int));
126 1.1 scw integrate u_int8_t clmpcc_rdreg_odd __P((struct clmpcc_softc *, u_int));
127 1.1 scw integrate void clmpcc_wrreg_odd __P((struct clmpcc_softc *, u_int, u_int));
128 1.1 scw integrate u_int8_t clmpcc_select_channel __P((struct clmpcc_softc *, u_int));
129 1.1 scw integrate void clmpcc_channel_cmd __P((struct clmpcc_softc *,int,int));
130 1.1 scw integrate void clmpcc_enable_transmitter __P((struct clmpcc_chan *));
131 1.1 scw
132 1.1 scw #define clmpcc_rd_msvr(s) clmpcc_rdreg_odd(s,CLMPCC_REG_MSVR)
133 1.1 scw #define clmpcc_wr_msvr(s,r,v) clmpcc_wrreg_odd(s,r,v)
134 1.1 scw #define clmpcc_wr_pilr(s,r,v) clmpcc_wrreg_odd(s,r,v)
135 1.1 scw #define clmpcc_rd_rxdata(s) clmpcc_rdreg_odd(s,CLMPCC_REG_RDR)
136 1.1 scw #define clmpcc_wr_txdata(s,v) clmpcc_wrreg_odd(s,CLMPCC_REG_TDR,v)
137 1.1 scw
138 1.1 scw
139 1.1 scw integrate u_int8_t
140 1.1 scw clmpcc_rdreg(sc, offset)
141 1.1 scw struct clmpcc_softc *sc;
142 1.1 scw u_int offset;
143 1.1 scw {
144 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
145 1.1 scw offset ^= sc->sc_byteswap;
146 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
147 1.1 scw offset ^= CLMPCC_BYTESWAP_HIGH;
148 1.1 scw #endif
149 1.1 scw return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
150 1.1 scw }
151 1.1 scw
152 1.1 scw integrate void
153 1.1 scw clmpcc_wrreg(sc, offset, val)
154 1.1 scw struct clmpcc_softc *sc;
155 1.1 scw u_int offset;
156 1.1 scw u_int val;
157 1.1 scw {
158 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
159 1.1 scw offset ^= sc->sc_byteswap;
160 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
161 1.1 scw offset ^= CLMPCC_BYTESWAP_HIGH;
162 1.1 scw #endif
163 1.1 scw bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
164 1.1 scw }
165 1.1 scw
166 1.1 scw integrate u_int8_t
167 1.1 scw clmpcc_rdreg_odd(sc, offset)
168 1.1 scw struct clmpcc_softc *sc;
169 1.1 scw u_int offset;
170 1.1 scw {
171 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
172 1.1 scw offset ^= (sc->sc_byteswap & 2);
173 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
174 1.1 scw offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
175 1.1 scw #endif
176 1.1 scw return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
177 1.1 scw }
178 1.1 scw
179 1.1 scw integrate void
180 1.1 scw clmpcc_wrreg_odd(sc, offset, val)
181 1.1 scw struct clmpcc_softc *sc;
182 1.1 scw u_int offset;
183 1.1 scw u_int val;
184 1.1 scw {
185 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
186 1.1 scw offset ^= (sc->sc_byteswap & 2);
187 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
188 1.1 scw offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
189 1.1 scw #endif
190 1.1 scw bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
191 1.1 scw }
192 1.1 scw
193 1.1 scw integrate u_int8_t
194 1.1 scw clmpcc_select_channel(sc, new_chan)
195 1.1 scw struct clmpcc_softc *sc;
196 1.1 scw u_int new_chan;
197 1.1 scw {
198 1.1 scw u_int old_chan = clmpcc_rdreg_odd(sc, CLMPCC_REG_CAR);
199 1.1 scw
200 1.1 scw clmpcc_wrreg_odd(sc, CLMPCC_REG_CAR, new_chan);
201 1.1 scw
202 1.1 scw return old_chan;
203 1.1 scw }
204 1.1 scw
205 1.1 scw integrate void
206 1.1 scw clmpcc_channel_cmd(sc, chan, cmd)
207 1.1 scw struct clmpcc_softc *sc;
208 1.1 scw int chan;
209 1.1 scw int cmd;
210 1.1 scw {
211 1.1 scw int i;
212 1.1 scw
213 1.1 scw for (i = 5000; i; i--) {
214 1.1 scw if ( clmpcc_rdreg(sc, CLMPCC_REG_CCR) == 0 )
215 1.1 scw break;
216 1.1 scw delay(1);
217 1.1 scw }
218 1.1 scw
219 1.1 scw if ( i == 0 )
220 1.1 scw printf("%s: channel %d command timeout (idle)\n",
221 1.1 scw sc->sc_dev.dv_xname, chan);
222 1.1 scw
223 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_CCR, cmd);
224 1.1 scw }
225 1.1 scw
226 1.1 scw integrate void
227 1.1 scw clmpcc_enable_transmitter(ch)
228 1.1 scw struct clmpcc_chan *ch;
229 1.1 scw {
230 1.1 scw u_int old;
231 1.1 scw
232 1.1 scw old = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
233 1.1 scw
234 1.1 scw clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
235 1.1 scw clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) | CLMPCC_IER_TX_EMPTY);
236 1.1 scw
237 1.1 scw clmpcc_select_channel(ch->ch_sc, old);
238 1.1 scw }
239 1.1 scw
240 1.1 scw static int
241 1.1 scw clmpcc_speed(sc, speed, cor, bpr)
242 1.1 scw struct clmpcc_softc *sc;
243 1.1 scw speed_t speed;
244 1.1 scw int *cor, *bpr;
245 1.1 scw {
246 1.1 scw int c, co, br;
247 1.1 scw
248 1.1 scw for (co = 0, c = 8; c <= 2048; co++, c *= 4) {
249 1.1 scw br = ((sc->sc_clk / c) / speed) - 1;
250 1.1 scw if ( br < 0x100 ) {
251 1.1 scw *cor = co;
252 1.1 scw *bpr = br;
253 1.1 scw return 0;
254 1.1 scw }
255 1.1 scw }
256 1.1 scw
257 1.1 scw return -1;
258 1.1 scw }
259 1.1 scw
260 1.1 scw void
261 1.1 scw clmpcc_attach(sc)
262 1.1 scw struct clmpcc_softc *sc;
263 1.1 scw {
264 1.1 scw struct clmpcc_chan *ch;
265 1.1 scw struct tty *tp;
266 1.1 scw int chan;
267 1.1 scw
268 1.1 scw if ( cons_sc != NULL &&
269 1.1 scw sc->sc_iot == cons_sc->sc_iot && sc->sc_ioh == cons_sc->sc_ioh )
270 1.1 scw cons_sc = sc;
271 1.1 scw
272 1.1 scw /* Initialise the chip */
273 1.1 scw clmpcc_init(sc);
274 1.1 scw
275 1.1 scw printf(": Cirrus Logic CD240%c Serial Controller\n",
276 1.1 scw (clmpcc_rd_msvr(sc) & CLMPCC_MSVR_PORT_ID) ? '0' : '1');
277 1.1 scw
278 1.1 scw sc->sc_soft_running = 0;
279 1.1 scw memset(&(sc->sc_chans[0]), 0, sizeof(sc->sc_chans));
280 1.1 scw
281 1.1 scw for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
282 1.1 scw ch = &sc->sc_chans[chan];
283 1.1 scw
284 1.1 scw ch->ch_sc = sc;
285 1.1 scw ch->ch_car = chan;
286 1.1 scw
287 1.1 scw tp = ttymalloc();
288 1.1 scw tp->t_oproc = clmpcc_start;
289 1.1 scw tp->t_param = clmpcc_param;
290 1.1 scw
291 1.1 scw ch->ch_tty = tp;
292 1.1 scw
293 1.1 scw ch->ch_ibuf = malloc(clmpcc_ibuf_size * 2, M_DEVBUF, M_NOWAIT);
294 1.1 scw if ( ch->ch_ibuf == NULL ) {
295 1.1 scw printf("%s(%d): unable to allocate ring buffer\n",
296 1.1 scw sc->sc_dev.dv_xname, chan);
297 1.1 scw return;
298 1.1 scw }
299 1.1 scw
300 1.1 scw ch->ch_ibuf_end = &(ch->ch_ibuf[clmpcc_ibuf_size * 2]);
301 1.1 scw ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
302 1.1 scw
303 1.1 scw tty_attach(tp);
304 1.1 scw }
305 1.1 scw
306 1.1 scw printf("%s: %d channels available", sc->sc_dev.dv_xname,
307 1.1 scw CLMPCC_NUM_CHANS);
308 1.1 scw if ( cons_sc == sc ) {
309 1.1 scw printf(", console on channel %d.\n", cons_chan);
310 1.1 scw SET(sc->sc_chans[cons_chan].ch_flags, CLMPCC_FLG_IS_CONSOLE);
311 1.1 scw SET(sc->sc_chans[cons_chan].ch_openflags, TIOCFLAG_SOFTCAR);
312 1.1 scw } else
313 1.1 scw printf(".\n");
314 1.1 scw }
315 1.1 scw
316 1.1 scw static int
317 1.1 scw clmpcc_init(sc)
318 1.1 scw struct clmpcc_softc *sc;
319 1.1 scw {
320 1.1 scw u_int tcor, tbpr;
321 1.1 scw u_int rcor, rbpr;
322 1.1 scw u_int msvr_rts, msvr_dtr;
323 1.1 scw u_int ccr;
324 1.1 scw int is_console;
325 1.1 scw int i;
326 1.1 scw
327 1.1 scw /*
328 1.1 scw * All we're really concerned about here is putting the chip
329 1.1 scw * into a quiescent state so that it won't do anything until
330 1.1 scw * clmpccopen() is called. (Except the console channel.)
331 1.1 scw */
332 1.1 scw
333 1.1 scw /*
334 1.1 scw * If the chip is acting as console, set all channels to the supplied
335 1.1 scw * console baud rate. Otherwise, plump for 9600.
336 1.1 scw */
337 1.1 scw if ( cons_sc &&
338 1.1 scw sc->sc_ioh == cons_sc->sc_ioh && sc->sc_iot == cons_sc->sc_iot ) {
339 1.1 scw clmpcc_speed(sc, cons_rate, &tcor, &tbpr);
340 1.1 scw clmpcc_speed(sc, cons_rate, &rcor, &rbpr);
341 1.1 scw is_console = 1;
342 1.1 scw } else {
343 1.1 scw clmpcc_speed(sc, 9600, &tcor, &tbpr);
344 1.1 scw clmpcc_speed(sc, 9600, &rcor, &rbpr);
345 1.1 scw is_console = 0;
346 1.1 scw }
347 1.1 scw
348 1.1 scw /* Allow any pending output to be sent */
349 1.1 scw delay(10000);
350 1.1 scw
351 1.1 scw /* Send the Reset All command to channel 0 (resets all channels!) */
352 1.1 scw clmpcc_channel_cmd(sc, 0, CLMPCC_CCR_T0_RESET_ALL);
353 1.1 scw
354 1.1 scw delay(1000);
355 1.1 scw
356 1.1 scw /*
357 1.1 scw * The chip will set it's firmware revision register to a non-zero
358 1.1 scw * value to indicate completion of reset.
359 1.1 scw */
360 1.1 scw for (i = 10000; clmpcc_rdreg(sc, CLMPCC_REG_GFRCR) == 0 && i; i--)
361 1.1 scw delay(1);
362 1.1 scw
363 1.1 scw if ( i == 0 ) {
364 1.1 scw /*
365 1.1 scw * Watch out... If this chip is console, the message
366 1.1 scw * probably won't be sent since we just reset it!
367 1.1 scw */
368 1.1 scw printf("%s: Failed to reset chip\n", sc->sc_dev.dv_xname);
369 1.1 scw return -1;
370 1.1 scw }
371 1.1 scw
372 1.1 scw for (i = 0; i < CLMPCC_NUM_CHANS; i++) {
373 1.1 scw clmpcc_select_channel(sc, i);
374 1.1 scw
375 1.1 scw /* All interrupts are disabled to begin with */
376 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
377 1.1 scw
378 1.1 scw /* Make sure the channel interrupts on the correct vectors */
379 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_LIVR, sc->sc_vector_base);
380 1.1 scw clmpcc_wr_pilr(sc, CLMPCC_REG_RPILR, sc->sc_rpilr);
381 1.1 scw clmpcc_wr_pilr(sc, CLMPCC_REG_TPILR, sc->sc_tpilr);
382 1.1 scw clmpcc_wr_pilr(sc, CLMPCC_REG_MPILR, sc->sc_mpilr);
383 1.1 scw
384 1.1 scw /* Receive timer prescaler set to 1ms */
385 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TPR,
386 1.1 scw CLMPCC_MSEC_TO_TPR(sc->sc_clk, 1));
387 1.1 scw
388 1.1 scw /* We support Async mode only */
389 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_CMR, CLMPCC_CMR_ASYNC);
390 1.1 scw
391 1.1 scw /* Set the required baud rate */
392 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(tcor));
393 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TBPR, tbpr);
394 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(rcor));
395 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RBPR, rbpr);
396 1.1 scw
397 1.1 scw /* Always default to 8N1 (XXX what about console?) */
398 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR1, CLMPCC_COR1_CHAR_8BITS |
399 1.1 scw CLMPCC_COR1_NO_PARITY |
400 1.1 scw CLMPCC_COR1_IGNORE_PAR);
401 1.1 scw
402 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2, 0);
403 1.1 scw
404 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR3, CLMPCC_COR3_STOP_1);
405 1.1 scw
406 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, CLMPCC_COR4_DSRzd |
407 1.1 scw CLMPCC_COR4_CDzd |
408 1.1 scw CLMPCC_COR4_CTSzd);
409 1.1 scw
410 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR5, CLMPCC_COR5_DSRod |
411 1.1 scw CLMPCC_COR5_CDod |
412 1.1 scw CLMPCC_COR5_CTSod |
413 1.1 scw CLMPCC_COR5_FLOW_NORM);
414 1.1 scw
415 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR6, 0);
416 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR7, 0);
417 1.1 scw
418 1.1 scw /* Set the receive FIFO timeout */
419 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RTPRl, CLMPCC_RTPR_DEFAULT);
420 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RTPRh, 0);
421 1.1 scw
422 1.1 scw /* At this point, we set up the console differently */
423 1.1 scw if ( is_console && i == cons_chan ) {
424 1.1 scw msvr_rts = CLMPCC_MSVR_RTS;
425 1.1 scw msvr_dtr = CLMPCC_MSVR_DTR;
426 1.1 scw ccr = CLMPCC_CCR_T0_RX_EN | CLMPCC_CCR_T0_TX_EN;
427 1.1 scw } else {
428 1.1 scw msvr_rts = 0;
429 1.1 scw msvr_dtr = 0;
430 1.1 scw ccr = CLMPCC_CCR_T0_RX_DIS | CLMPCC_CCR_T0_TX_DIS;
431 1.1 scw }
432 1.1 scw
433 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_MSVR_RTS, msvr_rts);
434 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_MSVR_DTR, msvr_dtr);
435 1.1 scw clmpcc_channel_cmd(sc, i, CLMPCC_CCR_T0_INIT | ccr);
436 1.1 scw delay(100);
437 1.1 scw }
438 1.1 scw
439 1.1 scw return 0;
440 1.1 scw }
441 1.1 scw
442 1.1 scw static void
443 1.1 scw clmpcc_shutdown(ch)
444 1.1 scw struct clmpcc_chan *ch;
445 1.1 scw {
446 1.1 scw int oldch;
447 1.1 scw
448 1.1 scw oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
449 1.1 scw
450 1.1 scw /* Turn off interrupts. */
451 1.1 scw clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER, 0);
452 1.1 scw
453 1.1 scw if ( ISCLR(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
454 1.1 scw /* Disable the transmitter and receiver */
455 1.1 scw clmpcc_channel_cmd(ch->ch_sc, ch->ch_car, CLMPCC_CCR_T0_RX_DIS |
456 1.1 scw CLMPCC_CCR_T0_TX_DIS);
457 1.1 scw
458 1.1 scw /* Drop RTS and DTR */
459 1.1 scw clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
460 1.1 scw }
461 1.1 scw
462 1.1 scw clmpcc_select_channel(ch->ch_sc, oldch);
463 1.1 scw }
464 1.1 scw
465 1.1 scw int
466 1.1 scw clmpccopen(dev, flag, mode, p)
467 1.1 scw dev_t dev;
468 1.1 scw int flag, mode;
469 1.1 scw struct proc *p;
470 1.1 scw {
471 1.1 scw struct clmpcc_softc *sc;
472 1.1 scw struct clmpcc_chan *ch;
473 1.1 scw struct tty *tp;
474 1.1 scw int oldch;
475 1.1 scw int error;
476 1.1 scw int unit;
477 1.1 scw
478 1.1 scw if ( (unit = CLMPCCUNIT(dev)) >= clmpcc_cd.cd_ndevs ||
479 1.1 scw (sc = clmpcc_cd.cd_devs[unit]) == NULL ) {
480 1.1 scw return ENXIO;
481 1.1 scw }
482 1.1 scw
483 1.1 scw ch = &sc->sc_chans[CLMPCCCHAN(dev)];
484 1.1 scw
485 1.1 scw tp = ch->ch_tty;
486 1.1 scw
487 1.1 scw if ( ISSET(tp->t_state, TS_ISOPEN) &&
488 1.1 scw ISSET(tp->t_state, TS_XCLUDE) && p->p_ucred->cr_uid != 0 )
489 1.1 scw return EBUSY;
490 1.1 scw
491 1.1 scw /*
492 1.1 scw * Do the following iff this is a first open.
493 1.1 scw */
494 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
495 1.1 scw
496 1.1 scw ttychars(tp);
497 1.1 scw
498 1.1 scw tp->t_dev = dev;
499 1.1 scw tp->t_iflag = TTYDEF_IFLAG;
500 1.1 scw tp->t_oflag = TTYDEF_OFLAG;
501 1.1 scw tp->t_lflag = TTYDEF_LFLAG;
502 1.1 scw tp->t_cflag = TTYDEF_CFLAG;
503 1.1 scw tp->t_ospeed = tp->t_ispeed = TTYDEF_SPEED;
504 1.1 scw
505 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_CLOCAL) )
506 1.1 scw SET(tp->t_cflag, CLOCAL);
507 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_CRTSCTS) )
508 1.1 scw SET(tp->t_cflag, CRTSCTS);
509 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_MDMBUF) )
510 1.1 scw SET(tp->t_cflag, MDMBUF);
511 1.1 scw
512 1.1 scw /*
513 1.1 scw * Override some settings if the channel is being
514 1.1 scw * used as the console.
515 1.1 scw */
516 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
517 1.1 scw tp->t_ospeed = tp->t_ispeed = cons_rate;
518 1.1 scw SET(tp->t_cflag, CLOCAL);
519 1.1 scw CLR(tp->t_cflag, CRTSCTS);
520 1.1 scw CLR(tp->t_cflag, HUPCL);
521 1.1 scw }
522 1.1 scw
523 1.1 scw ch->ch_control = 0;
524 1.1 scw
525 1.1 scw clmpcc_param(tp, &tp->t_termios);
526 1.1 scw ttsetwater(tp);
527 1.1 scw
528 1.1 scw /* Clear the input ring */
529 1.1 scw ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
530 1.1 scw
531 1.1 scw /* Select the channel */
532 1.1 scw oldch = clmpcc_select_channel(sc, ch->ch_car);
533 1.1 scw
534 1.1 scw /* Reset it */
535 1.1 scw clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_CLEAR |
536 1.1 scw CLMPCC_CCR_T0_RX_EN |
537 1.1 scw CLMPCC_CCR_T0_TX_EN);
538 1.1 scw
539 1.1 scw /* Enable receiver and modem change interrupts. */
540 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_MODEM |
541 1.1 scw CLMPCC_IER_RET |
542 1.1 scw CLMPCC_IER_RX_FIFO);
543 1.1 scw
544 1.1 scw /* Raise RTS and DTR */
545 1.1 scw clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
546 1.1 scw
547 1.1 scw clmpcc_select_channel(sc, oldch);
548 1.1 scw } else
549 1.1 scw if ( ISSET(tp->t_state, TS_XCLUDE) && p->p_ucred->cr_uid != 0 )
550 1.1 scw return EBUSY;
551 1.1 scw
552 1.1 scw error = ttyopen(tp, CLMPCCDIALOUT(dev), ISSET(flag, O_NONBLOCK));
553 1.1 scw if (error)
554 1.1 scw goto bad;
555 1.1 scw
556 1.1 scw error = (*linesw[tp->t_line].l_open)(dev, tp);
557 1.1 scw if (error)
558 1.1 scw goto bad;
559 1.1 scw
560 1.1 scw return 0;
561 1.1 scw
562 1.1 scw bad:
563 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
564 1.1 scw /*
565 1.1 scw * We failed to open the device, and nobody else had it opened.
566 1.1 scw * Clean up the state as appropriate.
567 1.1 scw */
568 1.1 scw clmpcc_shutdown(ch);
569 1.1 scw }
570 1.1 scw
571 1.1 scw return error;
572 1.1 scw }
573 1.1 scw
574 1.1 scw int
575 1.1 scw clmpccclose(dev, flag, mode, p)
576 1.1 scw dev_t dev;
577 1.1 scw int flag, mode;
578 1.1 scw struct proc *p;
579 1.1 scw {
580 1.1 scw struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
581 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
582 1.1 scw struct tty *tp = ch->ch_tty;
583 1.1 scw int s;
584 1.1 scw
585 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) )
586 1.1 scw return 0;
587 1.1 scw
588 1.1 scw (*linesw[tp->t_line].l_close)(tp, flag);
589 1.1 scw
590 1.1 scw s = spltty();
591 1.1 scw
592 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
593 1.1 scw /*
594 1.1 scw * Although we got a last close, the device may still be in
595 1.1 scw * use; e.g. if this was the dialout node, and there are still
596 1.1 scw * processes waiting for carrier on the non-dialout node.
597 1.1 scw */
598 1.1 scw clmpcc_shutdown(ch);
599 1.1 scw }
600 1.1 scw
601 1.1 scw ttyclose(tp);
602 1.1 scw
603 1.1 scw splx(s);
604 1.1 scw
605 1.1 scw return 0;
606 1.1 scw }
607 1.1 scw
608 1.1 scw int
609 1.1 scw clmpccread(dev, uio, flag)
610 1.1 scw dev_t dev;
611 1.1 scw struct uio *uio;
612 1.1 scw int flag;
613 1.1 scw {
614 1.1 scw struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
615 1.1 scw struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
616 1.1 scw
617 1.1 scw return ((*linesw[tp->t_line].l_read)(tp, uio, flag));
618 1.1 scw }
619 1.1 scw
620 1.1 scw int
621 1.1 scw clmpccwrite(dev, uio, flag)
622 1.1 scw dev_t dev;
623 1.1 scw struct uio *uio;
624 1.1 scw int flag;
625 1.1 scw {
626 1.1 scw struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
627 1.1 scw struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
628 1.1 scw
629 1.1 scw return ((*linesw[tp->t_line].l_write)(tp, uio, flag));
630 1.1 scw }
631 1.1 scw
632 1.1 scw struct tty *
633 1.1 scw clmpcctty(dev)
634 1.1 scw dev_t dev;
635 1.1 scw {
636 1.1 scw struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
637 1.1 scw
638 1.1 scw return (sc->sc_chans[CLMPCCCHAN(dev)].ch_tty);
639 1.1 scw }
640 1.1 scw
641 1.1 scw int
642 1.1 scw clmpccioctl(dev, cmd, data, flag, p)
643 1.1 scw dev_t dev;
644 1.1 scw u_long cmd;
645 1.1 scw caddr_t data;
646 1.1 scw int flag;
647 1.1 scw struct proc *p;
648 1.1 scw {
649 1.1 scw struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
650 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
651 1.1 scw struct tty *tp = ch->ch_tty;
652 1.1 scw int error;
653 1.1 scw
654 1.1 scw error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
655 1.1 scw if (error >= 0)
656 1.1 scw return error;
657 1.1 scw
658 1.1 scw error = ttioctl(tp, cmd, data, flag, p);
659 1.1 scw if (error >= 0)
660 1.1 scw return error;
661 1.1 scw
662 1.1 scw error = 0;
663 1.1 scw
664 1.1 scw switch (cmd) {
665 1.1 scw case TIOCSBRK:
666 1.1 scw SET(ch->ch_flags, CLMPCC_FLG_START_BREAK);
667 1.1 scw clmpcc_enable_transmitter(ch);
668 1.1 scw break;
669 1.1 scw
670 1.1 scw case TIOCCBRK:
671 1.1 scw SET(ch->ch_flags, CLMPCC_FLG_END_BREAK);
672 1.1 scw clmpcc_enable_transmitter(ch);
673 1.1 scw break;
674 1.1 scw
675 1.1 scw case TIOCSDTR:
676 1.1 scw clmpcc_modem_control(ch, TIOCM_DTR, DMBIS);
677 1.1 scw break;
678 1.1 scw
679 1.1 scw case TIOCCDTR:
680 1.1 scw clmpcc_modem_control(ch, TIOCM_DTR, DMBIC);
681 1.1 scw break;
682 1.1 scw
683 1.1 scw case TIOCMSET:
684 1.1 scw clmpcc_modem_control(ch, *((int *)data), DMSET);
685 1.1 scw break;
686 1.1 scw
687 1.1 scw case TIOCMBIS:
688 1.1 scw clmpcc_modem_control(ch, *((int *)data), DMBIS);
689 1.1 scw break;
690 1.1 scw
691 1.1 scw case TIOCMBIC:
692 1.1 scw clmpcc_modem_control(ch, *((int *)data), DMBIC);
693 1.1 scw break;
694 1.1 scw
695 1.1 scw case TIOCMGET:
696 1.1 scw *((int *)data) = clmpcc_modem_control(ch, 0, DMGET);
697 1.1 scw break;
698 1.1 scw
699 1.1 scw case TIOCGFLAGS:
700 1.1 scw *((int *)data) = ch->ch_openflags;
701 1.1 scw break;
702 1.1 scw
703 1.1 scw case TIOCSFLAGS:
704 1.1 scw error = suser(p->p_ucred, &p->p_acflag);
705 1.1 scw if ( error )
706 1.1 scw break;
707 1.1 scw ch->ch_openflags = *((int *)data) &
708 1.1 scw (TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
709 1.1 scw TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
710 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) )
711 1.1 scw SET(ch->ch_openflags, TIOCFLAG_SOFTCAR);
712 1.1 scw break;
713 1.1 scw
714 1.1 scw default:
715 1.1 scw error = ENOTTY;
716 1.1 scw break;
717 1.1 scw }
718 1.1 scw
719 1.1 scw return error;
720 1.1 scw }
721 1.1 scw
722 1.1 scw int
723 1.1 scw clmpcc_modem_control(ch, bits, howto)
724 1.1 scw struct clmpcc_chan *ch;
725 1.1 scw int bits;
726 1.1 scw int howto;
727 1.1 scw {
728 1.1 scw struct clmpcc_softc *sc = ch->ch_sc;
729 1.1 scw struct tty *tp = ch->ch_tty;
730 1.1 scw int oldch;
731 1.1 scw int msvr;
732 1.1 scw int rbits = 0;
733 1.1 scw
734 1.1 scw oldch = clmpcc_select_channel(sc, ch->ch_car);
735 1.1 scw
736 1.1 scw switch ( howto ) {
737 1.1 scw case DMGET:
738 1.1 scw msvr = clmpcc_rd_msvr(sc);
739 1.1 scw
740 1.1 scw if ( sc->sc_swaprtsdtr ) {
741 1.1 scw rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_DTR : 0;
742 1.1 scw rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_RTS : 0;
743 1.1 scw } else {
744 1.1 scw rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_RTS : 0;
745 1.1 scw rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_DTR : 0;
746 1.1 scw }
747 1.1 scw
748 1.1 scw rbits |= (msvr & CLMPCC_MSVR_CTS) ? TIOCM_CTS : 0;
749 1.1 scw rbits |= (msvr & CLMPCC_MSVR_CD) ? TIOCM_CD : 0;
750 1.1 scw rbits |= (msvr & CLMPCC_MSVR_DSR) ? TIOCM_DSR : 0;
751 1.1 scw break;
752 1.1 scw
753 1.1 scw case DMSET:
754 1.1 scw if ( sc->sc_swaprtsdtr ) {
755 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) )
756 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
757 1.1 scw bits & TIOCM_RTS ? CLMPCC_MSVR_DTR : 0);
758 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
759 1.1 scw bits & TIOCM_DTR ? CLMPCC_MSVR_RTS : 0);
760 1.1 scw } else {
761 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) )
762 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
763 1.1 scw bits & TIOCM_RTS ? CLMPCC_MSVR_RTS : 0);
764 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
765 1.1 scw bits & TIOCM_DTR ? CLMPCC_MSVR_DTR : 0);
766 1.1 scw }
767 1.1 scw break;
768 1.1 scw
769 1.1 scw case DMBIS:
770 1.1 scw if ( sc->sc_swaprtsdtr ) {
771 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
772 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
773 1.1 scw if ( ISSET(bits, TIOCM_DTR) )
774 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
775 1.1 scw } else {
776 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
777 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
778 1.1 scw if ( ISSET(bits, TIOCM_DTR) )
779 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
780 1.1 scw }
781 1.1 scw break;
782 1.1 scw
783 1.1 scw case DMBIC:
784 1.1 scw if ( sc->sc_swaprtsdtr ) {
785 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
786 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
787 1.1 scw if ( ISCLR(bits, TIOCM_DTR) )
788 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
789 1.1 scw } else {
790 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
791 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
792 1.1 scw if ( ISCLR(bits, TIOCM_DTR) )
793 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
794 1.1 scw }
795 1.1 scw break;
796 1.1 scw }
797 1.1 scw
798 1.1 scw clmpcc_select_channel(sc, oldch);
799 1.1 scw
800 1.1 scw return rbits;
801 1.1 scw }
802 1.1 scw
803 1.1 scw static int
804 1.1 scw clmpcc_param(tp, t)
805 1.1 scw struct tty *tp;
806 1.1 scw struct termios *t;
807 1.1 scw {
808 1.1 scw struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(tp->t_dev)];
809 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
810 1.1 scw int oclk, obpr;
811 1.1 scw int iclk, ibpr;
812 1.1 scw int oldch;
813 1.1 scw int cor;
814 1.1 scw int ier;
815 1.1 scw int s;
816 1.1 scw
817 1.1 scw /* Check requested parameters. */
818 1.1 scw if ( t->c_ospeed && clmpcc_speed(sc, t->c_ospeed, &oclk, &obpr) < 0 )
819 1.1 scw return EINVAL;
820 1.1 scw
821 1.1 scw if ( t->c_ispeed && clmpcc_speed(sc, t->c_ispeed, &iclk, &ibpr) < 0 )
822 1.1 scw return EINVAL;
823 1.1 scw
824 1.1 scw oldch = clmpcc_select_channel(sc, ch->ch_car);
825 1.1 scw
826 1.1 scw s = splhigh();
827 1.1 scw /* Disable channel interrupt while we do all this */
828 1.1 scw ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
829 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
830 1.1 scw splx(s);
831 1.1 scw
832 1.1 scw /*
833 1.1 scw * For the console, always force CLOCAL and !HUPCL, so that the port
834 1.1 scw * is always active.
835 1.1 scw */
836 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_SOFTCAR) ||
837 1.1 scw ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
838 1.1 scw SET(t->c_cflag, CLOCAL);
839 1.1 scw CLR(t->c_cflag, HUPCL);
840 1.1 scw }
841 1.1 scw
842 1.1 scw /* If ospeed it zero, hangup the line */
843 1.1 scw clmpcc_modem_control(ch, TIOCM_DTR, t->c_ospeed == 0 ? DMBIC : DMBIS);
844 1.1 scw
845 1.1 scw if ( t->c_ospeed ) {
846 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(oclk));
847 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TBPR, obpr);
848 1.1 scw }
849 1.1 scw
850 1.1 scw if ( t->c_ispeed ) {
851 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(iclk));
852 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RBPR, ibpr);
853 1.1 scw }
854 1.1 scw
855 1.1 scw /* Work out value to use for COR1 */
856 1.1 scw cor = 0;
857 1.1 scw if ( ISSET(t->c_cflag, PARENB) ) {
858 1.1 scw cor |= CLMPCC_COR1_NORM_PARITY;
859 1.1 scw if ( ISSET(t->c_cflag, PARODD) )
860 1.1 scw cor |= CLMPCC_COR1_ODD_PARITY;
861 1.1 scw }
862 1.1 scw
863 1.1 scw if ( ISCLR(t->c_cflag, INPCK) )
864 1.1 scw cor |= CLMPCC_COR1_IGNORE_PAR;
865 1.1 scw
866 1.1 scw switch ( t->c_cflag & CSIZE ) {
867 1.1 scw case CS5:
868 1.1 scw cor |= CLMPCC_COR1_CHAR_5BITS;
869 1.1 scw break;
870 1.1 scw
871 1.1 scw case CS6:
872 1.1 scw cor |= CLMPCC_COR1_CHAR_6BITS;
873 1.1 scw break;
874 1.1 scw
875 1.1 scw case CS7:
876 1.1 scw cor |= CLMPCC_COR1_CHAR_7BITS;
877 1.1 scw break;
878 1.1 scw
879 1.1 scw case CS8:
880 1.1 scw cor |= CLMPCC_COR1_CHAR_8BITS;
881 1.1 scw break;
882 1.1 scw }
883 1.1 scw
884 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR1, cor);
885 1.1 scw
886 1.1 scw /*
887 1.1 scw * The only interesting bit in COR2 is 'CTS Automatic Enable'
888 1.1 scw * when hardware flow control is in effect.
889 1.1 scw */
890 1.1 scw cor = ISSET(t->c_cflag, CRTSCTS) ? CLMPCC_COR2_CtsAE : 0;
891 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2, cor);
892 1.1 scw
893 1.1 scw /* COR3 needs to be set to the number of stop bits... */
894 1.1 scw cor = ISSET(t->c_cflag, CSTOPB) ? CLMPCC_COR3_STOP_2 :
895 1.1 scw CLMPCC_COR3_STOP_1;
896 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR3, cor);
897 1.1 scw
898 1.1 scw /*
899 1.1 scw * COR4 contains the FIFO threshold setting.
900 1.1 scw * We adjust the threshold depending on the input speed...
901 1.1 scw */
902 1.1 scw cor = clmpcc_rdreg(sc, CLMPCC_REG_COR4) & ~CLMPCC_COR4_FIFO_MASK;
903 1.1 scw if ( t->c_ispeed <= 1200 )
904 1.1 scw ch->ch_fifo = CLMPCC_COR4_FIFO_LOW;
905 1.1 scw else if ( t->c_ispeed <= 19200 )
906 1.1 scw ch->ch_fifo = CLMPCC_COR4_FIFO_MED;
907 1.1 scw else
908 1.1 scw ch->ch_fifo = CLMPCC_COR4_FIFO_HIGH;
909 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, cor | ch->ch_fifo);
910 1.1 scw
911 1.1 scw /* This ensure the new fifo threshold causes an initial interrupt */
912 1.1 scw ier |= CLMPCC_IER_RET;
913 1.1 scw CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
914 1.1 scw
915 1.1 scw /*
916 1.1 scw * If chip is used with CTS and DTR swapped, we can enable
917 1.1 scw * automatic hardware flow control.
918 1.1 scw */
919 1.1 scw cor = clmpcc_rdreg(sc, CLMPCC_REG_COR5) & ~CLMPCC_COR5_FLOW_MASK;
920 1.1 scw if ( sc->sc_swaprtsdtr && ISSET(t->c_cflag, CRTSCTS) )
921 1.1 scw cor |= CLMPCC_COR5_FLOW_NORM;
922 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR5, cor);
923 1.1 scw
924 1.1 scw /* The chip needs to be told that registers have changed... */
925 1.1 scw clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_INIT |
926 1.1 scw CLMPCC_CCR_T0_RX_EN |
927 1.1 scw CLMPCC_CCR_T0_TX_EN);
928 1.1 scw
929 1.1 scw /* Restore channel interrupts */
930 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, ier);
931 1.1 scw
932 1.1 scw /*
933 1.1 scw * Update the tty layer's idea of the carrier bit, in case we changed
934 1.1 scw * CLOCAL or MDMBUF. We don't hang up here; we only do that by
935 1.1 scw * explicit request.
936 1.1 scw */
937 1.1 scw cor = clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
938 1.1 scw (void) (*linesw[tp->t_line].l_modem)(tp, cor != 0);
939 1.1 scw
940 1.1 scw clmpcc_select_channel(sc, oldch);
941 1.1 scw
942 1.1 scw return 0;
943 1.1 scw }
944 1.1 scw
945 1.1 scw static void
946 1.1 scw clmpcc_start(tp)
947 1.1 scw struct tty *tp;
948 1.1 scw {
949 1.1 scw struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(tp->t_dev)];
950 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
951 1.1 scw int s;
952 1.1 scw
953 1.1 scw s = spltty();
954 1.1 scw
955 1.1 scw if ( ISCLR(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
956 1.1 scw if ( tp->t_outq.c_cc <= tp->t_lowat ) {
957 1.1 scw if ( ISSET(tp->t_state, TS_ASLEEP) ) {
958 1.1 scw CLR(tp->t_state, TS_ASLEEP);
959 1.1 scw wakeup(&tp->t_outq);
960 1.1 scw }
961 1.1 scw selwakeup(&tp->t_wsel);
962 1.1 scw
963 1.1 scw if ( tp->t_outq.c_cc == 0 )
964 1.1 scw goto out;
965 1.1 scw }
966 1.1 scw SET(tp->t_state, TS_BUSY);
967 1.1 scw clmpcc_enable_transmitter(ch);
968 1.1 scw }
969 1.1 scw
970 1.1 scw out:
971 1.1 scw splx(s);
972 1.1 scw }
973 1.1 scw
974 1.1 scw /*
975 1.1 scw * Stop output on a line.
976 1.1 scw */
977 1.1 scw void
978 1.1 scw clmpccstop(tp, flag)
979 1.1 scw struct tty *tp;
980 1.1 scw int flag;
981 1.1 scw {
982 1.1 scw struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(tp->t_dev)];
983 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
984 1.1 scw int s;
985 1.1 scw
986 1.1 scw s = spltty();
987 1.1 scw
988 1.1 scw if ( ISSET(tp->t_state, TS_BUSY) ) {
989 1.1 scw if ( ISCLR(tp->t_state, TS_TTSTOP) )
990 1.1 scw SET(tp->t_state, TS_FLUSH);
991 1.1 scw
992 1.1 scw /*
993 1.1 scw * The transmit interrupt routine will disable transmit when it
994 1.1 scw * notices that CLMPCC_FLG_STOP has been set.
995 1.1 scw */
996 1.1 scw SET(ch->ch_flags, CLMPCC_FLG_STOP);
997 1.1 scw }
998 1.1 scw splx(s);
999 1.1 scw }
1000 1.1 scw
1001 1.1 scw /*
1002 1.1 scw * RX interrupt routine
1003 1.1 scw */
1004 1.1 scw int
1005 1.1 scw clmpcc_rxintr(arg)
1006 1.1 scw void *arg;
1007 1.1 scw {
1008 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1009 1.1 scw struct clmpcc_chan *ch;
1010 1.1 scw u_int8_t *put, *end, rxd;
1011 1.1 scw u_char errstat;
1012 1.1 scw u_int fc, tc;
1013 1.1 scw int risr;
1014 1.1 scw int rir;
1015 1.1 scw #ifdef DDB
1016 1.1 scw int saw_break = 0;
1017 1.1 scw #endif
1018 1.1 scw
1019 1.1 scw /* Receive interrupt active? */
1020 1.1 scw rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1021 1.1 scw
1022 1.1 scw /*
1023 1.1 scw * If we're using auto-vectored interrupts, we have to
1024 1.1 scw * verify if the chip is generating the interrupt.
1025 1.1 scw */
1026 1.1 scw if ( sc->sc_vector_base == 0 && (rir & CLMPCC_RIR_RACT) == 0 )
1027 1.1 scw return 0;
1028 1.1 scw
1029 1.1 scw /* Get pointer to interrupting channel's data structure */
1030 1.1 scw ch = &sc->sc_chans[rir & CLMPCC_RIR_RCN_MASK];
1031 1.1 scw
1032 1.1 scw /* Get the interrupt status register */
1033 1.1 scw risr = clmpcc_rdreg(sc, CLMPCC_REG_RISRl);
1034 1.1 scw if ( risr & CLMPCC_RISR_TIMEOUT ) {
1035 1.1 scw u_char reg;
1036 1.1 scw /*
1037 1.1 scw * Set the FIFO threshold to zero, and disable
1038 1.1 scw * further receive timeout interrupts.
1039 1.1 scw */
1040 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1041 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg & CLMPCC_COR4_FIFO_MASK);
1042 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1043 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, reg & ~CLMPCC_IER_RET);
1044 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1045 1.1 scw SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1046 1.1 scw return 1;
1047 1.1 scw }
1048 1.1 scw
1049 1.1 scw /* How many bytes are waiting in the FIFO? */
1050 1.1 scw fc = tc = clmpcc_rdreg(sc, CLMPCC_REG_RFOC) & CLMPCC_RFOC_MASK;
1051 1.1 scw
1052 1.1 scw #ifdef DDB
1053 1.1 scw /*
1054 1.1 scw * Allow BREAK on the console to drop to the debugger.
1055 1.1 scw */
1056 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) &&
1057 1.1 scw risr & CLMPCC_RISR_BREAK ) {
1058 1.1 scw saw_break = 1;
1059 1.1 scw }
1060 1.1 scw #endif
1061 1.1 scw
1062 1.1 scw if ( ISCLR(ch->ch_tty->t_state, TS_ISOPEN) && fc ) {
1063 1.1 scw /* Just get rid of the data */
1064 1.1 scw while ( fc-- )
1065 1.1 scw (void) clmpcc_rd_rxdata(sc);
1066 1.1 scw goto rx_done;
1067 1.1 scw }
1068 1.1 scw
1069 1.1 scw put = ch->ch_ibuf_wr;
1070 1.1 scw end = ch->ch_ibuf_end;
1071 1.1 scw
1072 1.1 scw /*
1073 1.1 scw * Note: The chip is completely hosed WRT these error
1074 1.1 scw * conditions; there seems to be no way to associate
1075 1.1 scw * the error with the correct character in the FIFO.
1076 1.1 scw * We compromise by tagging the first character we read
1077 1.1 scw * with the error. Not perfect, but there's no other way.
1078 1.1 scw */
1079 1.1 scw errstat = 0;
1080 1.1 scw if ( risr & CLMPCC_RISR_PARITY )
1081 1.1 scw errstat |= TTY_PE;
1082 1.1 scw if ( risr & (CLMPCC_RISR_FRAMING | CLMPCC_RISR_BREAK) )
1083 1.1 scw errstat |= TTY_FE;
1084 1.1 scw
1085 1.1 scw /*
1086 1.1 scw * As long as there are characters in the FIFO, and we
1087 1.1 scw * have space for them...
1088 1.1 scw */
1089 1.1 scw while ( fc > 0 ) {
1090 1.1 scw
1091 1.1 scw *put++ = rxd = clmpcc_rd_rxdata(sc);
1092 1.1 scw *put++ = errstat;
1093 1.1 scw
1094 1.1 scw if ( put >= end )
1095 1.1 scw put = ch->ch_ibuf;
1096 1.1 scw
1097 1.1 scw if ( put == ch->ch_ibuf_rd ) {
1098 1.1 scw put -= 2;
1099 1.1 scw if ( put < ch->ch_ibuf )
1100 1.1 scw put = end - 2;
1101 1.1 scw }
1102 1.1 scw
1103 1.1 scw errstat = 0;
1104 1.1 scw fc--;
1105 1.1 scw }
1106 1.1 scw
1107 1.1 scw ch->ch_ibuf_wr = put;
1108 1.1 scw
1109 1.1 scw #if 0
1110 1.1 scw if ( sc->sc_swaprtsdtr == 0 &&
1111 1.1 scw ISSET(cy->cy_tty->t_cflag, CRTSCTS) && cc < ch->ch_r_hiwat) {
1112 1.1 scw /*
1113 1.1 scw * If RTS/DTR are not physically swapped, we have to
1114 1.1 scw * do hardware flow control manually
1115 1.1 scw */
1116 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_MSVR_RTS, 0);
1117 1.1 scw }
1118 1.1 scw #endif
1119 1.1 scw
1120 1.1 scw rx_done:
1121 1.1 scw if ( fc != tc ) {
1122 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR) ) {
1123 1.1 scw u_char reg;
1124 1.1 scw /*
1125 1.1 scw * Set the FIFO threshold to the preset value,
1126 1.1 scw * and enable receive timeout interrupts.
1127 1.1 scw */
1128 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1129 1.1 scw reg = (reg & ~CLMPCC_COR4_FIFO_MASK) | ch->ch_fifo;
1130 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg);
1131 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1132 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, reg | CLMPCC_IER_RET);
1133 1.1 scw CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1134 1.1 scw }
1135 1.1 scw
1136 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1137 1.1 scw if ( sc->sc_soft_running == 0 ) {
1138 1.1 scw sc->sc_soft_running = 1;
1139 1.1 scw (sc->sc_softhook)(sc);
1140 1.1 scw }
1141 1.1 scw } else
1142 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1143 1.1 scw
1144 1.1 scw #ifdef DDB
1145 1.1 scw /*
1146 1.1 scw * Only =after= we write REOIR is it safe to drop to the debugger.
1147 1.1 scw */
1148 1.1 scw if ( saw_break )
1149 1.1 scw Debugger();
1150 1.1 scw #endif
1151 1.1 scw
1152 1.1 scw return 1;
1153 1.1 scw }
1154 1.1 scw
1155 1.1 scw /*
1156 1.1 scw * Tx interrupt routine
1157 1.1 scw */
1158 1.1 scw int
1159 1.1 scw clmpcc_txintr(arg)
1160 1.1 scw void *arg;
1161 1.1 scw {
1162 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1163 1.1 scw struct clmpcc_chan *ch;
1164 1.1 scw struct tty *tp;
1165 1.1 scw int ftc, oftc;
1166 1.1 scw int tir;
1167 1.1 scw
1168 1.1 scw /* Tx interrupt active? */
1169 1.1 scw tir = clmpcc_rdreg(sc, CLMPCC_REG_TIR);
1170 1.1 scw
1171 1.1 scw /*
1172 1.1 scw * If we're using auto-vectored interrupts, we have to
1173 1.1 scw * verify if the chip is generating the interrupt.
1174 1.1 scw */
1175 1.1 scw if ( sc->sc_vector_base == 0 && (tir & CLMPCC_TIR_TACT) == 0 )
1176 1.1 scw return 0;
1177 1.1 scw
1178 1.1 scw /* Get pointer to interrupting channel's data structure */
1179 1.1 scw ch = &sc->sc_chans[tir & CLMPCC_TIR_TCN_MASK];
1180 1.1 scw
1181 1.1 scw /* Dummy read of the interrupt status register */
1182 1.1 scw (void) clmpcc_rdreg(sc, CLMPCC_REG_TISR);
1183 1.1 scw
1184 1.1 scw ftc = oftc = clmpcc_rdreg(sc, CLMPCC_REG_TFTC);
1185 1.1 scw
1186 1.1 scw /* Stop transmitting if CLMPCC_FLG_STOP is set */
1187 1.1 scw tp = ch->ch_tty;
1188 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_STOP) )
1189 1.1 scw goto tx_done;
1190 1.1 scw
1191 1.1 scw if ( tp->t_outq.c_cc > 0 ) {
1192 1.1 scw SET(tp->t_state, TS_BUSY);
1193 1.1 scw while (tp->t_outq.c_cc > 0 && ftc > 0 ) {
1194 1.1 scw clmpcc_wr_txdata(sc, getc(&tp->t_outq));
1195 1.1 scw ftc--;
1196 1.1 scw }
1197 1.1 scw } else {
1198 1.1 scw /*
1199 1.1 scw * No data to send -- check if we should
1200 1.1 scw * start/stop a break
1201 1.1 scw */
1202 1.1 scw /*
1203 1.1 scw * XXX does this cause too much delay before
1204 1.1 scw * breaks?
1205 1.1 scw */
1206 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK) ) {
1207 1.1 scw CLR(ch->ch_flags, CLMPCC_FLG_START_BREAK);
1208 1.1 scw }
1209 1.1 scw
1210 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_END_BREAK) ) {
1211 1.1 scw CLR(ch->ch_flags, CLMPCC_FLG_END_BREAK);
1212 1.1 scw }
1213 1.1 scw }
1214 1.1 scw
1215 1.1 scw if ( tp->t_outq.c_cc == 0 ) {
1216 1.1 scw tx_done:
1217 1.1 scw /*
1218 1.1 scw * No data to send or requested to stop.
1219 1.1 scw * Disable transmit interrupt
1220 1.1 scw */
1221 1.1 scw clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
1222 1.1 scw clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) &
1223 1.1 scw ~CLMPCC_IER_TX_EMPTY);
1224 1.1 scw CLR(ch->ch_flags, CLMPCC_FLG_STOP);
1225 1.1 scw CLR(tp->t_state, TS_BUSY);
1226 1.1 scw }
1227 1.1 scw
1228 1.1 scw if ( tp->t_outq.c_cc <= tp->t_lowat )
1229 1.1 scw SET(ch->ch_flags, CLMPCC_FLG_START);
1230 1.1 scw
1231 1.1 scw if ( ftc != oftc )
1232 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, 0);
1233 1.1 scw else
1234 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, CLMPCC_TEOIR_NO_TRANS);
1235 1.1 scw
1236 1.1 scw return 1;
1237 1.1 scw }
1238 1.1 scw
1239 1.1 scw /*
1240 1.1 scw * Modem change interrupt routine
1241 1.1 scw */
1242 1.1 scw int
1243 1.1 scw clmpcc_mdintr(arg)
1244 1.1 scw void *arg;
1245 1.1 scw {
1246 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1247 1.1 scw int mir;
1248 1.1 scw
1249 1.1 scw /* Modem status interrupt active? */
1250 1.1 scw mir = clmpcc_rdreg(sc, CLMPCC_REG_MIR);
1251 1.1 scw
1252 1.1 scw /*
1253 1.1 scw * If we're using auto-vectored interrupts, we have to
1254 1.1 scw * verify if the chip is generating the interrupt.
1255 1.1 scw */
1256 1.1 scw if ( sc->sc_vector_base == 0 && (mir & CLMPCC_MIR_MACT) == 0 )
1257 1.1 scw return 0;
1258 1.1 scw
1259 1.1 scw /* Dummy read of the interrupt status register */
1260 1.1 scw (void) clmpcc_rdreg(sc, CLMPCC_REG_MISR);
1261 1.1 scw
1262 1.1 scw /* Retrieve current status of modem lines. */
1263 1.1 scw sc->sc_chans[mir & CLMPCC_MIR_MCN_MASK].ch_control |=
1264 1.1 scw clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1265 1.1 scw
1266 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_MEOIR, 0);
1267 1.1 scw
1268 1.1 scw if ( sc->sc_soft_running == 0 ) {
1269 1.1 scw sc->sc_soft_running = 1;
1270 1.1 scw (sc->sc_softhook)(sc);
1271 1.1 scw }
1272 1.1 scw
1273 1.1 scw return 1;
1274 1.1 scw }
1275 1.1 scw
1276 1.1 scw int
1277 1.1 scw clmpcc_softintr(arg)
1278 1.1 scw void *arg;
1279 1.1 scw {
1280 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1281 1.1 scw struct clmpcc_chan *ch;
1282 1.1 scw int (*rint) __P((int, struct tty *));
1283 1.1 scw u_char *get;
1284 1.1 scw u_int c;
1285 1.1 scw int chan;
1286 1.1 scw
1287 1.1 scw sc->sc_soft_running = 0;
1288 1.1 scw
1289 1.1 scw /* Handle Modem state changes too... */
1290 1.1 scw
1291 1.1 scw for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
1292 1.1 scw ch = &sc->sc_chans[chan];
1293 1.1 scw get = ch->ch_ibuf_rd;
1294 1.1 scw rint = linesw[ch->ch_tty->t_line].l_rint;
1295 1.1 scw
1296 1.1 scw /* Squirt buffered incoming data into the tty layer */
1297 1.1 scw while ( get != ch->ch_ibuf_wr ) {
1298 1.1 scw c = *get++;
1299 1.1 scw c |= ((u_int)*get++) << 8;
1300 1.1 scw (rint)(c, ch->ch_tty);
1301 1.1 scw
1302 1.1 scw if ( get == ch->ch_ibuf_end )
1303 1.1 scw get = ch->ch_ibuf;
1304 1.1 scw
1305 1.1 scw ch->ch_ibuf_rd = get;
1306 1.1 scw }
1307 1.1 scw }
1308 1.1 scw
1309 1.1 scw return 0;
1310 1.1 scw }
1311 1.1 scw
1312 1.1 scw
1313 1.1 scw /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1314 1.1 scw /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1315 1.1 scw /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1316 1.1 scw /*
1317 1.1 scw * Following are all routines needed for a cd240x channel to act as console
1318 1.1 scw */
1319 1.1 scw int
1320 1.1 scw clmpcc_cnattach(sc, chan, rate)
1321 1.1 scw struct clmpcc_softc *sc;
1322 1.1 scw int chan;
1323 1.1 scw int rate;
1324 1.1 scw {
1325 1.1 scw cons_sc = sc;
1326 1.1 scw cons_chan = chan;
1327 1.1 scw cons_rate = rate;
1328 1.1 scw
1329 1.1 scw return 0;
1330 1.1 scw }
1331 1.1 scw
1332 1.1 scw /*
1333 1.1 scw * The following functions are polled getc and putc routines, for console use.
1334 1.1 scw */
1335 1.1 scw static int
1336 1.1 scw clmpcc_common_getc(sc, chan)
1337 1.1 scw struct clmpcc_softc *sc;
1338 1.1 scw int chan;
1339 1.1 scw {
1340 1.1 scw u_char old_chan;
1341 1.1 scw u_char old_ier;
1342 1.1 scw u_char ch, rir, risr;
1343 1.1 scw int s;
1344 1.1 scw
1345 1.1 scw s = splhigh();
1346 1.1 scw
1347 1.1 scw old_chan = clmpcc_select_channel(sc, chan);
1348 1.1 scw
1349 1.1 scw /*
1350 1.1 scw * We have to put the channel into RX interrupt mode before
1351 1.1 scw * trying to read the Rx data register. So save the previous
1352 1.1 scw * interrupt mode.
1353 1.1 scw */
1354 1.1 scw old_ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1355 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_RX_FIFO);
1356 1.1 scw
1357 1.1 scw /* Loop until we get a character */
1358 1.1 scw for (;;) {
1359 1.1 scw /*
1360 1.1 scw * The REN bit will be set in the Receive Interrupt Register
1361 1.1 scw * when the CD240x has a character to process. Remember,
1362 1.1 scw * the RACT bit won't be set until we generate an interrupt
1363 1.1 scw * acknowledge cycle via the MD front-end.
1364 1.1 scw */
1365 1.1 scw rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1366 1.1 scw if ( (rir & CLMPCC_RIR_REN) == 0 )
1367 1.1 scw continue;
1368 1.1 scw
1369 1.1 scw /* Acknowledge the request */
1370 1.1 scw if ( sc->sc_iackhook )
1371 1.1 scw (sc->sc_iackhook)(sc, CLMPCC_IACK_RX);
1372 1.1 scw
1373 1.1 scw /*
1374 1.1 scw * Determine if the interrupt is for the required channel
1375 1.1 scw * and if valid data is available.
1376 1.1 scw */
1377 1.1 scw rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1378 1.1 scw risr = clmpcc_rdreg(sc, CLMPCC_REG_RISR);
1379 1.1 scw if ( (rir & CLMPCC_RIR_RCN_MASK) != chan ||
1380 1.1 scw risr != 0 ) {
1381 1.1 scw /* Rx error, or BREAK */
1382 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR,
1383 1.1 scw CLMPCC_REOIR_NO_TRANS);
1384 1.1 scw } else {
1385 1.1 scw /* Dummy read of the FIFO count register */
1386 1.1 scw (void) clmpcc_rdreg(sc, CLMPCC_REG_RFOC);
1387 1.1 scw
1388 1.1 scw /* Fetch the received character */
1389 1.1 scw ch = clmpcc_rd_rxdata(sc);
1390 1.1 scw
1391 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1392 1.1 scw break;
1393 1.1 scw }
1394 1.1 scw }
1395 1.1 scw
1396 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, old_ier);
1397 1.1 scw clmpcc_select_channel(sc, old_chan);
1398 1.1 scw
1399 1.1 scw splx(s);
1400 1.1 scw return ch;
1401 1.1 scw }
1402 1.1 scw
1403 1.1 scw
1404 1.1 scw static void
1405 1.1 scw clmpcc_common_putc(sc, chan, c)
1406 1.1 scw struct clmpcc_softc *sc;
1407 1.1 scw int chan;
1408 1.1 scw int c;
1409 1.1 scw {
1410 1.1 scw u_char old_chan;
1411 1.1 scw int s = splhigh();
1412 1.1 scw
1413 1.1 scw old_chan = clmpcc_select_channel(sc, chan);
1414 1.1 scw
1415 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_SCHR4, c);
1416 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_STCR, CLMPCC_STCR_SSPC(4) |
1417 1.1 scw CLMPCC_STCR_SND_SPC);
1418 1.1 scw
1419 1.1 scw while ( clmpcc_rdreg(sc, CLMPCC_REG_STCR) != 0 )
1420 1.1 scw ;
1421 1.1 scw
1422 1.1 scw delay(5);
1423 1.1 scw
1424 1.1 scw clmpcc_select_channel(sc, old_chan);
1425 1.1 scw
1426 1.1 scw splx(s);
1427 1.1 scw }
1428 1.1 scw
1429 1.1 scw int
1430 1.1 scw clmpcccngetc(dev)
1431 1.1 scw dev_t dev;
1432 1.1 scw {
1433 1.1 scw return clmpcc_common_getc(cons_sc, cons_chan);
1434 1.1 scw }
1435 1.1 scw
1436 1.1 scw /*
1437 1.1 scw * Console kernel output character routine.
1438 1.1 scw */
1439 1.1 scw void
1440 1.1 scw clmpcccnputc(dev, c)
1441 1.1 scw dev_t dev;
1442 1.1 scw int c;
1443 1.1 scw {
1444 1.1 scw if ( c == '\n' )
1445 1.1 scw clmpcc_common_putc(cons_sc, cons_chan, '\r');
1446 1.1 scw
1447 1.1 scw clmpcc_common_putc(cons_sc, cons_chan, c);
1448 1.1 scw }
1449