clmpcc.c revision 1.35 1 1.35 ad /* $NetBSD: clmpcc.c,v 1.35 2007/10/19 11:59:49 ad Exp $ */
2 1.1 scw
3 1.1 scw /*-
4 1.1 scw * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 scw * All rights reserved.
6 1.1 scw *
7 1.1 scw * This code is derived from software contributed to The NetBSD Foundation
8 1.1 scw * by Steve C. Woodford.
9 1.1 scw *
10 1.1 scw * Redistribution and use in source and binary forms, with or without
11 1.1 scw * modification, are permitted provided that the following conditions
12 1.1 scw * are met:
13 1.1 scw * 1. Redistributions of source code must retain the above copyright
14 1.1 scw * notice, this list of conditions and the following disclaimer.
15 1.1 scw * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 scw * notice, this list of conditions and the following disclaimer in the
17 1.1 scw * documentation and/or other materials provided with the distribution.
18 1.1 scw * 3. All advertising materials mentioning features or use of this software
19 1.1 scw * must display the following acknowledgement:
20 1.1 scw * This product includes software developed by the NetBSD
21 1.1 scw * Foundation, Inc. and its contributors.
22 1.1 scw * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 scw * contributors may be used to endorse or promote products derived
24 1.1 scw * from this software without specific prior written permission.
25 1.1 scw *
26 1.1 scw * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 scw * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 scw * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 scw * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 scw * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 scw * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 scw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 scw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 scw * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 scw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 scw * POSSIBILITY OF SUCH DAMAGE.
37 1.1 scw */
38 1.1 scw
39 1.1 scw /*
40 1.1 scw * Cirrus Logic CD2400/CD2401 Four Channel Multi-Protocol Comms. Controller.
41 1.1 scw */
42 1.18 lukem
43 1.18 lukem #include <sys/cdefs.h>
44 1.35 ad __KERNEL_RCSID(0, "$NetBSD: clmpcc.c,v 1.35 2007/10/19 11:59:49 ad Exp $");
45 1.1 scw
46 1.1 scw #include "opt_ddb.h"
47 1.1 scw
48 1.1 scw #include <sys/param.h>
49 1.1 scw #include <sys/systm.h>
50 1.1 scw #include <sys/ioctl.h>
51 1.1 scw #include <sys/select.h>
52 1.1 scw #include <sys/tty.h>
53 1.1 scw #include <sys/proc.h>
54 1.1 scw #include <sys/user.h>
55 1.1 scw #include <sys/conf.h>
56 1.1 scw #include <sys/file.h>
57 1.1 scw #include <sys/uio.h>
58 1.1 scw #include <sys/kernel.h>
59 1.1 scw #include <sys/syslog.h>
60 1.1 scw #include <sys/device.h>
61 1.1 scw #include <sys/malloc.h>
62 1.28 elad #include <sys/kauth.h>
63 1.34 ad #include <sys/intr.h>
64 1.1 scw
65 1.35 ad #include <sys/bus.h>
66 1.3 scw #include <machine/param.h>
67 1.1 scw
68 1.1 scw #include <dev/ic/clmpccreg.h>
69 1.1 scw #include <dev/ic/clmpccvar.h>
70 1.1 scw #include <dev/cons.h>
71 1.1 scw
72 1.1 scw
73 1.1 scw #if defined(CLMPCC_ONLY_BYTESWAP_LOW) && defined(CLMPCC_ONLY_BYTESWAP_HIGH)
74 1.1 scw #error "CLMPCC_ONLY_BYTESWAP_LOW and CLMPCC_ONLY_BYTESWAP_HIGH are mutually exclusive."
75 1.1 scw #endif
76 1.1 scw
77 1.2 scw
78 1.23 perry static int clmpcc_init(struct clmpcc_softc *sc);
79 1.23 perry static void clmpcc_shutdown(struct clmpcc_chan *);
80 1.23 perry static int clmpcc_speed(struct clmpcc_softc *, speed_t, int *, int *);
81 1.23 perry static int clmpcc_param(struct tty *, struct termios *);
82 1.23 perry static void clmpcc_set_params(struct clmpcc_chan *);
83 1.23 perry static void clmpcc_start(struct tty *);
84 1.23 perry static int clmpcc_modem_control(struct clmpcc_chan *, int, int);
85 1.1 scw
86 1.1 scw #define CLMPCCUNIT(x) (minor(x) & 0x7fffc)
87 1.1 scw #define CLMPCCCHAN(x) (minor(x) & 0x00003)
88 1.1 scw #define CLMPCCDIALOUT(x) (minor(x) & 0x80000)
89 1.1 scw
90 1.1 scw /*
91 1.1 scw * These should be in a header file somewhere...
92 1.1 scw */
93 1.1 scw #define ISCLR(v, f) (((v) & (f)) == 0)
94 1.1 scw
95 1.1 scw extern struct cfdriver clmpcc_cd;
96 1.1 scw
97 1.21 gehenna dev_type_open(clmpccopen);
98 1.21 gehenna dev_type_close(clmpccclose);
99 1.21 gehenna dev_type_read(clmpccread);
100 1.21 gehenna dev_type_write(clmpccwrite);
101 1.21 gehenna dev_type_ioctl(clmpccioctl);
102 1.21 gehenna dev_type_stop(clmpccstop);
103 1.21 gehenna dev_type_tty(clmpcctty);
104 1.21 gehenna dev_type_poll(clmpccpoll);
105 1.21 gehenna
106 1.21 gehenna const struct cdevsw clmpcc_cdevsw = {
107 1.21 gehenna clmpccopen, clmpccclose, clmpccread, clmpccwrite, clmpccioctl,
108 1.22 jdolecek clmpccstop, clmpcctty, clmpccpoll, nommap, ttykqfilter, D_TTY
109 1.21 gehenna };
110 1.1 scw
111 1.1 scw /*
112 1.1 scw * Make this an option variable one can patch.
113 1.1 scw */
114 1.1 scw u_int clmpcc_ibuf_size = CLMPCC_RING_SIZE;
115 1.1 scw
116 1.1 scw
117 1.1 scw /*
118 1.1 scw * Things needed when the device is used as a console
119 1.1 scw */
120 1.1 scw static struct clmpcc_softc *cons_sc = NULL;
121 1.1 scw static int cons_chan;
122 1.1 scw static int cons_rate;
123 1.1 scw
124 1.23 perry static int clmpcc_common_getc(struct clmpcc_softc *, int);
125 1.23 perry static void clmpcc_common_putc(struct clmpcc_softc *, int, int);
126 1.23 perry int clmpcccngetc(dev_t);
127 1.23 perry void clmpcccnputc(dev_t, int);
128 1.1 scw
129 1.1 scw
130 1.1 scw /*
131 1.1 scw * Convenience functions, inlined for speed
132 1.1 scw */
133 1.1 scw #define integrate static inline
134 1.23 perry integrate u_int8_t clmpcc_rdreg(struct clmpcc_softc *, u_int);
135 1.23 perry integrate void clmpcc_wrreg(struct clmpcc_softc *, u_int, u_int);
136 1.23 perry integrate u_int8_t clmpcc_rdreg_odd(struct clmpcc_softc *, u_int);
137 1.23 perry integrate void clmpcc_wrreg_odd(struct clmpcc_softc *, u_int, u_int);
138 1.23 perry integrate void clmpcc_wrtx_multi(struct clmpcc_softc *, u_int8_t *,
139 1.23 perry u_int);
140 1.23 perry integrate u_int8_t clmpcc_select_channel(struct clmpcc_softc *, u_int);
141 1.23 perry integrate void clmpcc_channel_cmd(struct clmpcc_softc *,int,int);
142 1.23 perry integrate void clmpcc_enable_transmitter(struct clmpcc_chan *);
143 1.1 scw
144 1.1 scw #define clmpcc_rd_msvr(s) clmpcc_rdreg_odd(s,CLMPCC_REG_MSVR)
145 1.1 scw #define clmpcc_wr_msvr(s,r,v) clmpcc_wrreg_odd(s,r,v)
146 1.1 scw #define clmpcc_wr_pilr(s,r,v) clmpcc_wrreg_odd(s,r,v)
147 1.1 scw #define clmpcc_rd_rxdata(s) clmpcc_rdreg_odd(s,CLMPCC_REG_RDR)
148 1.1 scw #define clmpcc_wr_txdata(s,v) clmpcc_wrreg_odd(s,CLMPCC_REG_TDR,v)
149 1.1 scw
150 1.1 scw
151 1.1 scw integrate u_int8_t
152 1.1 scw clmpcc_rdreg(sc, offset)
153 1.1 scw struct clmpcc_softc *sc;
154 1.1 scw u_int offset;
155 1.1 scw {
156 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
157 1.1 scw offset ^= sc->sc_byteswap;
158 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
159 1.1 scw offset ^= CLMPCC_BYTESWAP_HIGH;
160 1.1 scw #endif
161 1.1 scw return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
162 1.1 scw }
163 1.1 scw
164 1.1 scw integrate void
165 1.1 scw clmpcc_wrreg(sc, offset, val)
166 1.1 scw struct clmpcc_softc *sc;
167 1.1 scw u_int offset;
168 1.1 scw u_int val;
169 1.1 scw {
170 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
171 1.1 scw offset ^= sc->sc_byteswap;
172 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
173 1.1 scw offset ^= CLMPCC_BYTESWAP_HIGH;
174 1.1 scw #endif
175 1.1 scw bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
176 1.1 scw }
177 1.1 scw
178 1.1 scw integrate u_int8_t
179 1.1 scw clmpcc_rdreg_odd(sc, offset)
180 1.1 scw struct clmpcc_softc *sc;
181 1.1 scw u_int offset;
182 1.1 scw {
183 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
184 1.1 scw offset ^= (sc->sc_byteswap & 2);
185 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
186 1.1 scw offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
187 1.1 scw #endif
188 1.1 scw return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
189 1.1 scw }
190 1.1 scw
191 1.1 scw integrate void
192 1.1 scw clmpcc_wrreg_odd(sc, offset, val)
193 1.1 scw struct clmpcc_softc *sc;
194 1.1 scw u_int offset;
195 1.1 scw u_int val;
196 1.1 scw {
197 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
198 1.1 scw offset ^= (sc->sc_byteswap & 2);
199 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
200 1.1 scw offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
201 1.1 scw #endif
202 1.1 scw bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
203 1.1 scw }
204 1.1 scw
205 1.6 scw integrate void
206 1.6 scw clmpcc_wrtx_multi(sc, buff, count)
207 1.6 scw struct clmpcc_softc *sc;
208 1.6 scw u_int8_t *buff;
209 1.6 scw u_int count;
210 1.6 scw {
211 1.6 scw u_int offset = CLMPCC_REG_TDR;
212 1.6 scw
213 1.6 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
214 1.6 scw offset ^= (sc->sc_byteswap & 2);
215 1.6 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
216 1.6 scw offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
217 1.6 scw #endif
218 1.6 scw bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh, offset, buff, count);
219 1.6 scw }
220 1.6 scw
221 1.1 scw integrate u_int8_t
222 1.1 scw clmpcc_select_channel(sc, new_chan)
223 1.1 scw struct clmpcc_softc *sc;
224 1.1 scw u_int new_chan;
225 1.1 scw {
226 1.1 scw u_int old_chan = clmpcc_rdreg_odd(sc, CLMPCC_REG_CAR);
227 1.1 scw
228 1.1 scw clmpcc_wrreg_odd(sc, CLMPCC_REG_CAR, new_chan);
229 1.1 scw
230 1.1 scw return old_chan;
231 1.1 scw }
232 1.1 scw
233 1.1 scw integrate void
234 1.1 scw clmpcc_channel_cmd(sc, chan, cmd)
235 1.1 scw struct clmpcc_softc *sc;
236 1.1 scw int chan;
237 1.1 scw int cmd;
238 1.1 scw {
239 1.1 scw int i;
240 1.1 scw
241 1.1 scw for (i = 5000; i; i--) {
242 1.1 scw if ( clmpcc_rdreg(sc, CLMPCC_REG_CCR) == 0 )
243 1.1 scw break;
244 1.1 scw delay(1);
245 1.1 scw }
246 1.1 scw
247 1.1 scw if ( i == 0 )
248 1.1 scw printf("%s: channel %d command timeout (idle)\n",
249 1.1 scw sc->sc_dev.dv_xname, chan);
250 1.1 scw
251 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_CCR, cmd);
252 1.1 scw }
253 1.1 scw
254 1.1 scw integrate void
255 1.1 scw clmpcc_enable_transmitter(ch)
256 1.1 scw struct clmpcc_chan *ch;
257 1.1 scw {
258 1.1 scw u_int old;
259 1.2 scw int s;
260 1.1 scw
261 1.1 scw old = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
262 1.1 scw
263 1.2 scw s = splserial();
264 1.1 scw clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
265 1.1 scw clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) | CLMPCC_IER_TX_EMPTY);
266 1.2 scw SET(ch->ch_tty->t_state, TS_BUSY);
267 1.2 scw splx(s);
268 1.2 scw
269 1.1 scw clmpcc_select_channel(ch->ch_sc, old);
270 1.1 scw }
271 1.1 scw
272 1.1 scw static int
273 1.1 scw clmpcc_speed(sc, speed, cor, bpr)
274 1.1 scw struct clmpcc_softc *sc;
275 1.1 scw speed_t speed;
276 1.1 scw int *cor, *bpr;
277 1.1 scw {
278 1.1 scw int c, co, br;
279 1.1 scw
280 1.1 scw for (co = 0, c = 8; c <= 2048; co++, c *= 4) {
281 1.1 scw br = ((sc->sc_clk / c) / speed) - 1;
282 1.1 scw if ( br < 0x100 ) {
283 1.1 scw *cor = co;
284 1.1 scw *bpr = br;
285 1.1 scw return 0;
286 1.1 scw }
287 1.1 scw }
288 1.1 scw
289 1.1 scw return -1;
290 1.1 scw }
291 1.1 scw
292 1.1 scw void
293 1.1 scw clmpcc_attach(sc)
294 1.1 scw struct clmpcc_softc *sc;
295 1.1 scw {
296 1.1 scw struct clmpcc_chan *ch;
297 1.1 scw struct tty *tp;
298 1.1 scw int chan;
299 1.1 scw
300 1.1 scw if ( cons_sc != NULL &&
301 1.1 scw sc->sc_iot == cons_sc->sc_iot && sc->sc_ioh == cons_sc->sc_ioh )
302 1.1 scw cons_sc = sc;
303 1.1 scw
304 1.1 scw /* Initialise the chip */
305 1.1 scw clmpcc_init(sc);
306 1.1 scw
307 1.1 scw printf(": Cirrus Logic CD240%c Serial Controller\n",
308 1.1 scw (clmpcc_rd_msvr(sc) & CLMPCC_MSVR_PORT_ID) ? '0' : '1');
309 1.1 scw
310 1.13 scw sc->sc_softintr_cookie =
311 1.34 ad softint_establish(SOFTINT_SERIAL, clmpcc_softintr, sc);
312 1.13 scw if (sc->sc_softintr_cookie == NULL)
313 1.13 scw panic("clmpcc_attach: softintr_establish");
314 1.1 scw memset(&(sc->sc_chans[0]), 0, sizeof(sc->sc_chans));
315 1.1 scw
316 1.1 scw for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
317 1.1 scw ch = &sc->sc_chans[chan];
318 1.1 scw
319 1.1 scw ch->ch_sc = sc;
320 1.1 scw ch->ch_car = chan;
321 1.1 scw
322 1.1 scw tp = ttymalloc();
323 1.1 scw tp->t_oproc = clmpcc_start;
324 1.1 scw tp->t_param = clmpcc_param;
325 1.1 scw
326 1.1 scw ch->ch_tty = tp;
327 1.1 scw
328 1.1 scw ch->ch_ibuf = malloc(clmpcc_ibuf_size * 2, M_DEVBUF, M_NOWAIT);
329 1.1 scw if ( ch->ch_ibuf == NULL ) {
330 1.1 scw printf("%s(%d): unable to allocate ring buffer\n",
331 1.1 scw sc->sc_dev.dv_xname, chan);
332 1.1 scw return;
333 1.1 scw }
334 1.1 scw
335 1.1 scw ch->ch_ibuf_end = &(ch->ch_ibuf[clmpcc_ibuf_size * 2]);
336 1.1 scw ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
337 1.1 scw
338 1.1 scw tty_attach(tp);
339 1.1 scw }
340 1.1 scw
341 1.1 scw printf("%s: %d channels available", sc->sc_dev.dv_xname,
342 1.1 scw CLMPCC_NUM_CHANS);
343 1.1 scw if ( cons_sc == sc ) {
344 1.1 scw printf(", console on channel %d.\n", cons_chan);
345 1.1 scw SET(sc->sc_chans[cons_chan].ch_flags, CLMPCC_FLG_IS_CONSOLE);
346 1.1 scw SET(sc->sc_chans[cons_chan].ch_openflags, TIOCFLAG_SOFTCAR);
347 1.1 scw } else
348 1.1 scw printf(".\n");
349 1.1 scw }
350 1.1 scw
351 1.1 scw static int
352 1.1 scw clmpcc_init(sc)
353 1.1 scw struct clmpcc_softc *sc;
354 1.1 scw {
355 1.1 scw u_int tcor, tbpr;
356 1.1 scw u_int rcor, rbpr;
357 1.1 scw u_int msvr_rts, msvr_dtr;
358 1.1 scw u_int ccr;
359 1.1 scw int is_console;
360 1.1 scw int i;
361 1.1 scw
362 1.1 scw /*
363 1.1 scw * All we're really concerned about here is putting the chip
364 1.1 scw * into a quiescent state so that it won't do anything until
365 1.1 scw * clmpccopen() is called. (Except the console channel.)
366 1.1 scw */
367 1.1 scw
368 1.1 scw /*
369 1.1 scw * If the chip is acting as console, set all channels to the supplied
370 1.1 scw * console baud rate. Otherwise, plump for 9600.
371 1.1 scw */
372 1.1 scw if ( cons_sc &&
373 1.1 scw sc->sc_ioh == cons_sc->sc_ioh && sc->sc_iot == cons_sc->sc_iot ) {
374 1.1 scw clmpcc_speed(sc, cons_rate, &tcor, &tbpr);
375 1.1 scw clmpcc_speed(sc, cons_rate, &rcor, &rbpr);
376 1.1 scw is_console = 1;
377 1.1 scw } else {
378 1.1 scw clmpcc_speed(sc, 9600, &tcor, &tbpr);
379 1.1 scw clmpcc_speed(sc, 9600, &rcor, &rbpr);
380 1.1 scw is_console = 0;
381 1.1 scw }
382 1.1 scw
383 1.1 scw /* Allow any pending output to be sent */
384 1.1 scw delay(10000);
385 1.1 scw
386 1.1 scw /* Send the Reset All command to channel 0 (resets all channels!) */
387 1.1 scw clmpcc_channel_cmd(sc, 0, CLMPCC_CCR_T0_RESET_ALL);
388 1.1 scw
389 1.1 scw delay(1000);
390 1.1 scw
391 1.1 scw /*
392 1.1 scw * The chip will set it's firmware revision register to a non-zero
393 1.1 scw * value to indicate completion of reset.
394 1.1 scw */
395 1.1 scw for (i = 10000; clmpcc_rdreg(sc, CLMPCC_REG_GFRCR) == 0 && i; i--)
396 1.1 scw delay(1);
397 1.1 scw
398 1.1 scw if ( i == 0 ) {
399 1.1 scw /*
400 1.1 scw * Watch out... If this chip is console, the message
401 1.1 scw * probably won't be sent since we just reset it!
402 1.1 scw */
403 1.1 scw printf("%s: Failed to reset chip\n", sc->sc_dev.dv_xname);
404 1.1 scw return -1;
405 1.1 scw }
406 1.1 scw
407 1.1 scw for (i = 0; i < CLMPCC_NUM_CHANS; i++) {
408 1.1 scw clmpcc_select_channel(sc, i);
409 1.1 scw
410 1.1 scw /* All interrupts are disabled to begin with */
411 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
412 1.1 scw
413 1.1 scw /* Make sure the channel interrupts on the correct vectors */
414 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_LIVR, sc->sc_vector_base);
415 1.1 scw clmpcc_wr_pilr(sc, CLMPCC_REG_RPILR, sc->sc_rpilr);
416 1.1 scw clmpcc_wr_pilr(sc, CLMPCC_REG_TPILR, sc->sc_tpilr);
417 1.1 scw clmpcc_wr_pilr(sc, CLMPCC_REG_MPILR, sc->sc_mpilr);
418 1.1 scw
419 1.1 scw /* Receive timer prescaler set to 1ms */
420 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TPR,
421 1.1 scw CLMPCC_MSEC_TO_TPR(sc->sc_clk, 1));
422 1.1 scw
423 1.1 scw /* We support Async mode only */
424 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_CMR, CLMPCC_CMR_ASYNC);
425 1.1 scw
426 1.1 scw /* Set the required baud rate */
427 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(tcor));
428 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TBPR, tbpr);
429 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(rcor));
430 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RBPR, rbpr);
431 1.1 scw
432 1.1 scw /* Always default to 8N1 (XXX what about console?) */
433 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR1, CLMPCC_COR1_CHAR_8BITS |
434 1.1 scw CLMPCC_COR1_NO_PARITY |
435 1.1 scw CLMPCC_COR1_IGNORE_PAR);
436 1.1 scw
437 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2, 0);
438 1.1 scw
439 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR3, CLMPCC_COR3_STOP_1);
440 1.1 scw
441 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, CLMPCC_COR4_DSRzd |
442 1.1 scw CLMPCC_COR4_CDzd |
443 1.1 scw CLMPCC_COR4_CTSzd);
444 1.1 scw
445 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR5, CLMPCC_COR5_DSRod |
446 1.1 scw CLMPCC_COR5_CDod |
447 1.1 scw CLMPCC_COR5_CTSod |
448 1.1 scw CLMPCC_COR5_FLOW_NORM);
449 1.1 scw
450 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR6, 0);
451 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR7, 0);
452 1.1 scw
453 1.1 scw /* Set the receive FIFO timeout */
454 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RTPRl, CLMPCC_RTPR_DEFAULT);
455 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RTPRh, 0);
456 1.1 scw
457 1.1 scw /* At this point, we set up the console differently */
458 1.1 scw if ( is_console && i == cons_chan ) {
459 1.1 scw msvr_rts = CLMPCC_MSVR_RTS;
460 1.1 scw msvr_dtr = CLMPCC_MSVR_DTR;
461 1.1 scw ccr = CLMPCC_CCR_T0_RX_EN | CLMPCC_CCR_T0_TX_EN;
462 1.1 scw } else {
463 1.1 scw msvr_rts = 0;
464 1.1 scw msvr_dtr = 0;
465 1.1 scw ccr = CLMPCC_CCR_T0_RX_DIS | CLMPCC_CCR_T0_TX_DIS;
466 1.1 scw }
467 1.1 scw
468 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_MSVR_RTS, msvr_rts);
469 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_MSVR_DTR, msvr_dtr);
470 1.1 scw clmpcc_channel_cmd(sc, i, CLMPCC_CCR_T0_INIT | ccr);
471 1.1 scw delay(100);
472 1.1 scw }
473 1.1 scw
474 1.1 scw return 0;
475 1.1 scw }
476 1.1 scw
477 1.1 scw static void
478 1.1 scw clmpcc_shutdown(ch)
479 1.1 scw struct clmpcc_chan *ch;
480 1.1 scw {
481 1.1 scw int oldch;
482 1.1 scw
483 1.1 scw oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
484 1.1 scw
485 1.1 scw /* Turn off interrupts. */
486 1.1 scw clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER, 0);
487 1.1 scw
488 1.1 scw if ( ISCLR(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
489 1.1 scw /* Disable the transmitter and receiver */
490 1.1 scw clmpcc_channel_cmd(ch->ch_sc, ch->ch_car, CLMPCC_CCR_T0_RX_DIS |
491 1.1 scw CLMPCC_CCR_T0_TX_DIS);
492 1.1 scw
493 1.1 scw /* Drop RTS and DTR */
494 1.1 scw clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
495 1.1 scw }
496 1.1 scw
497 1.1 scw clmpcc_select_channel(ch->ch_sc, oldch);
498 1.1 scw }
499 1.1 scw
500 1.1 scw int
501 1.26 christos clmpccopen(dev, flag, mode, l)
502 1.1 scw dev_t dev;
503 1.1 scw int flag, mode;
504 1.26 christos struct lwp *l;
505 1.1 scw {
506 1.1 scw struct clmpcc_softc *sc;
507 1.1 scw struct clmpcc_chan *ch;
508 1.1 scw struct tty *tp;
509 1.1 scw int oldch;
510 1.1 scw int error;
511 1.11 thorpej
512 1.11 thorpej sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
513 1.11 thorpej if (sc == NULL)
514 1.11 thorpej return (ENXIO);
515 1.1 scw
516 1.1 scw ch = &sc->sc_chans[CLMPCCCHAN(dev)];
517 1.1 scw
518 1.1 scw tp = ch->ch_tty;
519 1.1 scw
520 1.30 elad if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
521 1.1 scw return EBUSY;
522 1.1 scw
523 1.1 scw /*
524 1.1 scw * Do the following iff this is a first open.
525 1.1 scw */
526 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
527 1.1 scw
528 1.1 scw ttychars(tp);
529 1.1 scw
530 1.1 scw tp->t_dev = dev;
531 1.1 scw tp->t_iflag = TTYDEF_IFLAG;
532 1.1 scw tp->t_oflag = TTYDEF_OFLAG;
533 1.1 scw tp->t_lflag = TTYDEF_LFLAG;
534 1.1 scw tp->t_cflag = TTYDEF_CFLAG;
535 1.1 scw tp->t_ospeed = tp->t_ispeed = TTYDEF_SPEED;
536 1.1 scw
537 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_CLOCAL) )
538 1.1 scw SET(tp->t_cflag, CLOCAL);
539 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_CRTSCTS) )
540 1.1 scw SET(tp->t_cflag, CRTSCTS);
541 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_MDMBUF) )
542 1.1 scw SET(tp->t_cflag, MDMBUF);
543 1.1 scw
544 1.1 scw /*
545 1.1 scw * Override some settings if the channel is being
546 1.1 scw * used as the console.
547 1.1 scw */
548 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
549 1.1 scw tp->t_ospeed = tp->t_ispeed = cons_rate;
550 1.1 scw SET(tp->t_cflag, CLOCAL);
551 1.1 scw CLR(tp->t_cflag, CRTSCTS);
552 1.1 scw CLR(tp->t_cflag, HUPCL);
553 1.1 scw }
554 1.1 scw
555 1.1 scw ch->ch_control = 0;
556 1.1 scw
557 1.1 scw clmpcc_param(tp, &tp->t_termios);
558 1.1 scw ttsetwater(tp);
559 1.1 scw
560 1.1 scw /* Clear the input ring */
561 1.1 scw ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
562 1.1 scw
563 1.1 scw /* Select the channel */
564 1.1 scw oldch = clmpcc_select_channel(sc, ch->ch_car);
565 1.1 scw
566 1.1 scw /* Reset it */
567 1.1 scw clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_CLEAR |
568 1.1 scw CLMPCC_CCR_T0_RX_EN |
569 1.1 scw CLMPCC_CCR_T0_TX_EN);
570 1.1 scw
571 1.1 scw /* Enable receiver and modem change interrupts. */
572 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_MODEM |
573 1.1 scw CLMPCC_IER_RET |
574 1.1 scw CLMPCC_IER_RX_FIFO);
575 1.1 scw
576 1.1 scw /* Raise RTS and DTR */
577 1.1 scw clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
578 1.1 scw
579 1.1 scw clmpcc_select_channel(sc, oldch);
580 1.25 kleink }
581 1.24 perry
582 1.1 scw error = ttyopen(tp, CLMPCCDIALOUT(dev), ISSET(flag, O_NONBLOCK));
583 1.1 scw if (error)
584 1.1 scw goto bad;
585 1.1 scw
586 1.14 eeh error = (*tp->t_linesw->l_open)(dev, tp);
587 1.1 scw if (error)
588 1.1 scw goto bad;
589 1.1 scw
590 1.1 scw return 0;
591 1.1 scw
592 1.1 scw bad:
593 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
594 1.1 scw /*
595 1.1 scw * We failed to open the device, and nobody else had it opened.
596 1.1 scw * Clean up the state as appropriate.
597 1.1 scw */
598 1.1 scw clmpcc_shutdown(ch);
599 1.1 scw }
600 1.1 scw
601 1.1 scw return error;
602 1.1 scw }
603 1.24 perry
604 1.1 scw int
605 1.26 christos clmpccclose(dev, flag, mode, l)
606 1.1 scw dev_t dev;
607 1.1 scw int flag, mode;
608 1.26 christos struct lwp *l;
609 1.1 scw {
610 1.11 thorpej struct clmpcc_softc *sc =
611 1.11 thorpej device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
612 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
613 1.1 scw struct tty *tp = ch->ch_tty;
614 1.1 scw int s;
615 1.1 scw
616 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) )
617 1.1 scw return 0;
618 1.1 scw
619 1.14 eeh (*tp->t_linesw->l_close)(tp, flag);
620 1.1 scw
621 1.1 scw s = spltty();
622 1.1 scw
623 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
624 1.1 scw /*
625 1.1 scw * Although we got a last close, the device may still be in
626 1.1 scw * use; e.g. if this was the dialout node, and there are still
627 1.1 scw * processes waiting for carrier on the non-dialout node.
628 1.1 scw */
629 1.1 scw clmpcc_shutdown(ch);
630 1.1 scw }
631 1.1 scw
632 1.1 scw ttyclose(tp);
633 1.1 scw
634 1.1 scw splx(s);
635 1.1 scw
636 1.1 scw return 0;
637 1.1 scw }
638 1.24 perry
639 1.1 scw int
640 1.1 scw clmpccread(dev, uio, flag)
641 1.1 scw dev_t dev;
642 1.1 scw struct uio *uio;
643 1.1 scw int flag;
644 1.1 scw {
645 1.11 thorpej struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
646 1.1 scw struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
647 1.24 perry
648 1.14 eeh return ((*tp->t_linesw->l_read)(tp, uio, flag));
649 1.1 scw }
650 1.24 perry
651 1.1 scw int
652 1.1 scw clmpccwrite(dev, uio, flag)
653 1.1 scw dev_t dev;
654 1.1 scw struct uio *uio;
655 1.1 scw int flag;
656 1.1 scw {
657 1.11 thorpej struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
658 1.1 scw struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
659 1.24 perry
660 1.14 eeh return ((*tp->t_linesw->l_write)(tp, uio, flag));
661 1.16 scw }
662 1.16 scw
663 1.16 scw int
664 1.26 christos clmpccpoll(dev, events, l)
665 1.16 scw dev_t dev;
666 1.16 scw int events;
667 1.26 christos struct lwp *l;
668 1.16 scw {
669 1.16 scw struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
670 1.16 scw struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
671 1.16 scw
672 1.26 christos return ((*tp->t_linesw->l_poll)(tp, events, l));
673 1.1 scw }
674 1.1 scw
675 1.1 scw struct tty *
676 1.1 scw clmpcctty(dev)
677 1.1 scw dev_t dev;
678 1.1 scw {
679 1.11 thorpej struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
680 1.1 scw
681 1.1 scw return (sc->sc_chans[CLMPCCCHAN(dev)].ch_tty);
682 1.1 scw }
683 1.1 scw
684 1.1 scw int
685 1.26 christos clmpccioctl(dev, cmd, data, flag, l)
686 1.1 scw dev_t dev;
687 1.1 scw u_long cmd;
688 1.32 christos void *data;
689 1.1 scw int flag;
690 1.26 christos struct lwp *l;
691 1.1 scw {
692 1.11 thorpej struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
693 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
694 1.1 scw struct tty *tp = ch->ch_tty;
695 1.1 scw int error;
696 1.1 scw
697 1.26 christos error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
698 1.20 atatat if (error != EPASSTHROUGH)
699 1.1 scw return error;
700 1.1 scw
701 1.26 christos error = ttioctl(tp, cmd, data, flag, l);
702 1.20 atatat if (error != EPASSTHROUGH)
703 1.1 scw return error;
704 1.1 scw
705 1.1 scw error = 0;
706 1.1 scw
707 1.1 scw switch (cmd) {
708 1.1 scw case TIOCSBRK:
709 1.1 scw SET(ch->ch_flags, CLMPCC_FLG_START_BREAK);
710 1.1 scw clmpcc_enable_transmitter(ch);
711 1.1 scw break;
712 1.1 scw
713 1.1 scw case TIOCCBRK:
714 1.1 scw SET(ch->ch_flags, CLMPCC_FLG_END_BREAK);
715 1.1 scw clmpcc_enable_transmitter(ch);
716 1.1 scw break;
717 1.1 scw
718 1.1 scw case TIOCSDTR:
719 1.1 scw clmpcc_modem_control(ch, TIOCM_DTR, DMBIS);
720 1.1 scw break;
721 1.1 scw
722 1.1 scw case TIOCCDTR:
723 1.1 scw clmpcc_modem_control(ch, TIOCM_DTR, DMBIC);
724 1.1 scw break;
725 1.1 scw
726 1.1 scw case TIOCMSET:
727 1.1 scw clmpcc_modem_control(ch, *((int *)data), DMSET);
728 1.1 scw break;
729 1.1 scw
730 1.1 scw case TIOCMBIS:
731 1.1 scw clmpcc_modem_control(ch, *((int *)data), DMBIS);
732 1.1 scw break;
733 1.1 scw
734 1.1 scw case TIOCMBIC:
735 1.1 scw clmpcc_modem_control(ch, *((int *)data), DMBIC);
736 1.1 scw break;
737 1.1 scw
738 1.1 scw case TIOCMGET:
739 1.1 scw *((int *)data) = clmpcc_modem_control(ch, 0, DMGET);
740 1.1 scw break;
741 1.1 scw
742 1.1 scw case TIOCGFLAGS:
743 1.1 scw *((int *)data) = ch->ch_openflags;
744 1.1 scw break;
745 1.1 scw
746 1.1 scw case TIOCSFLAGS:
747 1.31 elad error = kauth_authorize_device_tty(l->l_cred,
748 1.31 elad KAUTH_DEVICE_TTY_PRIVSET, tp);
749 1.1 scw if ( error )
750 1.1 scw break;
751 1.1 scw ch->ch_openflags = *((int *)data) &
752 1.1 scw (TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
753 1.1 scw TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
754 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) )
755 1.1 scw SET(ch->ch_openflags, TIOCFLAG_SOFTCAR);
756 1.1 scw break;
757 1.1 scw
758 1.1 scw default:
759 1.20 atatat error = EPASSTHROUGH;
760 1.1 scw break;
761 1.1 scw }
762 1.1 scw
763 1.1 scw return error;
764 1.1 scw }
765 1.1 scw
766 1.1 scw int
767 1.1 scw clmpcc_modem_control(ch, bits, howto)
768 1.1 scw struct clmpcc_chan *ch;
769 1.1 scw int bits;
770 1.1 scw int howto;
771 1.1 scw {
772 1.1 scw struct clmpcc_softc *sc = ch->ch_sc;
773 1.1 scw struct tty *tp = ch->ch_tty;
774 1.1 scw int oldch;
775 1.1 scw int msvr;
776 1.1 scw int rbits = 0;
777 1.1 scw
778 1.1 scw oldch = clmpcc_select_channel(sc, ch->ch_car);
779 1.1 scw
780 1.1 scw switch ( howto ) {
781 1.1 scw case DMGET:
782 1.1 scw msvr = clmpcc_rd_msvr(sc);
783 1.1 scw
784 1.1 scw if ( sc->sc_swaprtsdtr ) {
785 1.1 scw rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_DTR : 0;
786 1.1 scw rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_RTS : 0;
787 1.1 scw } else {
788 1.1 scw rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_RTS : 0;
789 1.1 scw rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_DTR : 0;
790 1.1 scw }
791 1.1 scw
792 1.1 scw rbits |= (msvr & CLMPCC_MSVR_CTS) ? TIOCM_CTS : 0;
793 1.1 scw rbits |= (msvr & CLMPCC_MSVR_CD) ? TIOCM_CD : 0;
794 1.1 scw rbits |= (msvr & CLMPCC_MSVR_DSR) ? TIOCM_DSR : 0;
795 1.1 scw break;
796 1.1 scw
797 1.1 scw case DMSET:
798 1.1 scw if ( sc->sc_swaprtsdtr ) {
799 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) )
800 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
801 1.1 scw bits & TIOCM_RTS ? CLMPCC_MSVR_DTR : 0);
802 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
803 1.1 scw bits & TIOCM_DTR ? CLMPCC_MSVR_RTS : 0);
804 1.1 scw } else {
805 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) )
806 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
807 1.1 scw bits & TIOCM_RTS ? CLMPCC_MSVR_RTS : 0);
808 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
809 1.1 scw bits & TIOCM_DTR ? CLMPCC_MSVR_DTR : 0);
810 1.1 scw }
811 1.1 scw break;
812 1.1 scw
813 1.1 scw case DMBIS:
814 1.1 scw if ( sc->sc_swaprtsdtr ) {
815 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
816 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
817 1.1 scw if ( ISSET(bits, TIOCM_DTR) )
818 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
819 1.1 scw } else {
820 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
821 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
822 1.1 scw if ( ISSET(bits, TIOCM_DTR) )
823 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
824 1.1 scw }
825 1.1 scw break;
826 1.1 scw
827 1.1 scw case DMBIC:
828 1.1 scw if ( sc->sc_swaprtsdtr ) {
829 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
830 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
831 1.1 scw if ( ISCLR(bits, TIOCM_DTR) )
832 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
833 1.1 scw } else {
834 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
835 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
836 1.1 scw if ( ISCLR(bits, TIOCM_DTR) )
837 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
838 1.1 scw }
839 1.1 scw break;
840 1.1 scw }
841 1.1 scw
842 1.1 scw clmpcc_select_channel(sc, oldch);
843 1.1 scw
844 1.1 scw return rbits;
845 1.1 scw }
846 1.1 scw
847 1.1 scw static int
848 1.1 scw clmpcc_param(tp, t)
849 1.1 scw struct tty *tp;
850 1.1 scw struct termios *t;
851 1.1 scw {
852 1.11 thorpej struct clmpcc_softc *sc =
853 1.11 thorpej device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
854 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
855 1.2 scw u_char cor;
856 1.5 scw u_char oldch;
857 1.1 scw int oclk, obpr;
858 1.1 scw int iclk, ibpr;
859 1.1 scw int s;
860 1.1 scw
861 1.1 scw /* Check requested parameters. */
862 1.1 scw if ( t->c_ospeed && clmpcc_speed(sc, t->c_ospeed, &oclk, &obpr) < 0 )
863 1.1 scw return EINVAL;
864 1.1 scw
865 1.1 scw if ( t->c_ispeed && clmpcc_speed(sc, t->c_ispeed, &iclk, &ibpr) < 0 )
866 1.1 scw return EINVAL;
867 1.1 scw
868 1.1 scw /*
869 1.1 scw * For the console, always force CLOCAL and !HUPCL, so that the port
870 1.1 scw * is always active.
871 1.1 scw */
872 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_SOFTCAR) ||
873 1.1 scw ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
874 1.1 scw SET(t->c_cflag, CLOCAL);
875 1.1 scw CLR(t->c_cflag, HUPCL);
876 1.1 scw }
877 1.1 scw
878 1.2 scw CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
879 1.2 scw
880 1.1 scw /* If ospeed it zero, hangup the line */
881 1.1 scw clmpcc_modem_control(ch, TIOCM_DTR, t->c_ospeed == 0 ? DMBIC : DMBIS);
882 1.1 scw
883 1.1 scw if ( t->c_ospeed ) {
884 1.2 scw ch->ch_tcor = CLMPCC_TCOR_CLK(oclk);
885 1.2 scw ch->ch_tbpr = obpr;
886 1.2 scw } else {
887 1.2 scw ch->ch_tcor = 0;
888 1.2 scw ch->ch_tbpr = 0;
889 1.1 scw }
890 1.1 scw
891 1.1 scw if ( t->c_ispeed ) {
892 1.2 scw ch->ch_rcor = CLMPCC_RCOR_CLK(iclk);
893 1.2 scw ch->ch_rbpr = ibpr;
894 1.2 scw } else {
895 1.2 scw ch->ch_rcor = 0;
896 1.2 scw ch->ch_rbpr = 0;
897 1.1 scw }
898 1.1 scw
899 1.1 scw /* Work out value to use for COR1 */
900 1.1 scw cor = 0;
901 1.1 scw if ( ISSET(t->c_cflag, PARENB) ) {
902 1.1 scw cor |= CLMPCC_COR1_NORM_PARITY;
903 1.1 scw if ( ISSET(t->c_cflag, PARODD) )
904 1.1 scw cor |= CLMPCC_COR1_ODD_PARITY;
905 1.1 scw }
906 1.1 scw
907 1.1 scw if ( ISCLR(t->c_cflag, INPCK) )
908 1.1 scw cor |= CLMPCC_COR1_IGNORE_PAR;
909 1.1 scw
910 1.1 scw switch ( t->c_cflag & CSIZE ) {
911 1.1 scw case CS5:
912 1.1 scw cor |= CLMPCC_COR1_CHAR_5BITS;
913 1.1 scw break;
914 1.1 scw
915 1.1 scw case CS6:
916 1.1 scw cor |= CLMPCC_COR1_CHAR_6BITS;
917 1.1 scw break;
918 1.1 scw
919 1.1 scw case CS7:
920 1.1 scw cor |= CLMPCC_COR1_CHAR_7BITS;
921 1.1 scw break;
922 1.1 scw
923 1.1 scw case CS8:
924 1.1 scw cor |= CLMPCC_COR1_CHAR_8BITS;
925 1.1 scw break;
926 1.1 scw }
927 1.1 scw
928 1.2 scw ch->ch_cor1 = cor;
929 1.1 scw
930 1.1 scw /*
931 1.1 scw * The only interesting bit in COR2 is 'CTS Automatic Enable'
932 1.1 scw * when hardware flow control is in effect.
933 1.1 scw */
934 1.2 scw ch->ch_cor2 = ISSET(t->c_cflag, CRTSCTS) ? CLMPCC_COR2_CtsAE : 0;
935 1.1 scw
936 1.1 scw /* COR3 needs to be set to the number of stop bits... */
937 1.2 scw ch->ch_cor3 = ISSET(t->c_cflag, CSTOPB) ? CLMPCC_COR3_STOP_2 :
938 1.2 scw CLMPCC_COR3_STOP_1;
939 1.1 scw
940 1.1 scw /*
941 1.1 scw * COR4 contains the FIFO threshold setting.
942 1.1 scw * We adjust the threshold depending on the input speed...
943 1.1 scw */
944 1.1 scw if ( t->c_ispeed <= 1200 )
945 1.2 scw ch->ch_cor4 = CLMPCC_COR4_FIFO_LOW;
946 1.1 scw else if ( t->c_ispeed <= 19200 )
947 1.2 scw ch->ch_cor4 = CLMPCC_COR4_FIFO_MED;
948 1.1 scw else
949 1.2 scw ch->ch_cor4 = CLMPCC_COR4_FIFO_HIGH;
950 1.1 scw
951 1.1 scw /*
952 1.1 scw * If chip is used with CTS and DTR swapped, we can enable
953 1.1 scw * automatic hardware flow control.
954 1.1 scw */
955 1.1 scw if ( sc->sc_swaprtsdtr && ISSET(t->c_cflag, CRTSCTS) )
956 1.2 scw ch->ch_cor5 = CLMPCC_COR5_FLOW_NORM;
957 1.2 scw else
958 1.2 scw ch->ch_cor5 = 0;
959 1.2 scw
960 1.2 scw s = splserial();
961 1.5 scw oldch = clmpcc_select_channel(sc, ch->ch_car);
962 1.5 scw
963 1.5 scw /*
964 1.5 scw * COR2 needs to be set immediately otherwise we might never get
965 1.5 scw * a Tx EMPTY interrupt to change the other parameters.
966 1.5 scw */
967 1.5 scw if ( clmpcc_rdreg(sc, CLMPCC_REG_COR2) != ch->ch_cor2 )
968 1.5 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
969 1.5 scw
970 1.5 scw if ( ISCLR(ch->ch_tty->t_state, TS_BUSY) )
971 1.2 scw clmpcc_set_params(ch);
972 1.5 scw else
973 1.2 scw SET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
974 1.5 scw
975 1.5 scw clmpcc_select_channel(sc, oldch);
976 1.5 scw
977 1.2 scw splx(s);
978 1.2 scw
979 1.2 scw return 0;
980 1.2 scw }
981 1.2 scw
982 1.2 scw static void
983 1.2 scw clmpcc_set_params(ch)
984 1.2 scw struct clmpcc_chan *ch;
985 1.2 scw {
986 1.2 scw struct clmpcc_softc *sc = ch->ch_sc;
987 1.4 scw u_char r1;
988 1.4 scw u_char r2;
989 1.1 scw
990 1.8 scw if ( ch->ch_tcor || ch->ch_tbpr ) {
991 1.4 scw r1 = clmpcc_rdreg(sc, CLMPCC_REG_TCOR);
992 1.4 scw r2 = clmpcc_rdreg(sc, CLMPCC_REG_TBPR);
993 1.4 scw /* Only write Tx rate if it really has changed */
994 1.4 scw if ( ch->ch_tcor != r1 || ch->ch_tbpr != r2 ) {
995 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_TCOR, ch->ch_tcor);
996 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_TBPR, ch->ch_tbpr);
997 1.4 scw }
998 1.2 scw }
999 1.1 scw
1000 1.8 scw if ( ch->ch_rcor || ch->ch_rbpr ) {
1001 1.4 scw r1 = clmpcc_rdreg(sc, CLMPCC_REG_RCOR);
1002 1.4 scw r2 = clmpcc_rdreg(sc, CLMPCC_REG_RBPR);
1003 1.4 scw /* Only write Rx rate if it really has changed */
1004 1.4 scw if ( ch->ch_rcor != r1 || ch->ch_rbpr != r2 ) {
1005 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_RCOR, ch->ch_rcor);
1006 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_RBPR, ch->ch_rbpr);
1007 1.4 scw }
1008 1.4 scw }
1009 1.4 scw
1010 1.4 scw if ( clmpcc_rdreg(sc, CLMPCC_REG_COR1) != ch->ch_cor1 ) {
1011 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_COR1, ch->ch_cor1);
1012 1.4 scw /* Any change to COR1 requires an INIT command */
1013 1.4 scw SET(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1014 1.2 scw }
1015 1.4 scw
1016 1.4 scw if ( clmpcc_rdreg(sc, CLMPCC_REG_COR3) != ch->ch_cor3 )
1017 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_COR3, ch->ch_cor3);
1018 1.4 scw
1019 1.4 scw r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1020 1.4 scw if ( ch->ch_cor4 != (r1 & CLMPCC_COR4_FIFO_MASK) ) {
1021 1.4 scw /*
1022 1.9 scw * Note: If the FIFO has changed, we always set it to
1023 1.4 scw * zero here and disable the Receive Timeout interrupt.
1024 1.4 scw * It's up to the Rx Interrupt handler to pick the
1025 1.9 scw * appropriate moment to write the new FIFO length.
1026 1.4 scw */
1027 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, r1 & ~CLMPCC_COR4_FIFO_MASK);
1028 1.4 scw r1 = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1029 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, r1 & ~CLMPCC_IER_RET);
1030 1.4 scw SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1031 1.4 scw }
1032 1.1 scw
1033 1.4 scw r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR5);
1034 1.4 scw if ( ch->ch_cor5 != (r1 & CLMPCC_COR5_FLOW_MASK) ) {
1035 1.4 scw r1 &= ~CLMPCC_COR5_FLOW_MASK;
1036 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_COR5, r1 | ch->ch_cor5);
1037 1.4 scw }
1038 1.1 scw }
1039 1.1 scw
1040 1.1 scw static void
1041 1.1 scw clmpcc_start(tp)
1042 1.1 scw struct tty *tp;
1043 1.1 scw {
1044 1.11 thorpej struct clmpcc_softc *sc =
1045 1.11 thorpej device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1046 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1047 1.6 scw u_int oldch;
1048 1.1 scw int s;
1049 1.1 scw
1050 1.1 scw s = spltty();
1051 1.1 scw
1052 1.6 scw if ( ISCLR(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1053 1.1 scw if ( tp->t_outq.c_cc <= tp->t_lowat ) {
1054 1.1 scw if ( ISSET(tp->t_state, TS_ASLEEP) ) {
1055 1.1 scw CLR(tp->t_state, TS_ASLEEP);
1056 1.1 scw wakeup(&tp->t_outq);
1057 1.1 scw }
1058 1.1 scw selwakeup(&tp->t_wsel);
1059 1.6 scw }
1060 1.1 scw
1061 1.9 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1062 1.9 scw CLMPCC_FLG_END_BREAK) ||
1063 1.9 scw tp->t_outq.c_cc > 0 ) {
1064 1.9 scw
1065 1.9 scw if ( ISCLR(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1066 1.9 scw CLMPCC_FLG_END_BREAK) ) {
1067 1.9 scw ch->ch_obuf_addr = tp->t_outq.c_cf;
1068 1.9 scw ch->ch_obuf_size = ndqb(&tp->t_outq, 0);
1069 1.9 scw }
1070 1.6 scw
1071 1.6 scw /* Enable TX empty interrupts */
1072 1.6 scw oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
1073 1.6 scw clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
1074 1.6 scw clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) |
1075 1.6 scw CLMPCC_IER_TX_EMPTY);
1076 1.6 scw clmpcc_select_channel(ch->ch_sc, oldch);
1077 1.6 scw SET(tp->t_state, TS_BUSY);
1078 1.1 scw }
1079 1.1 scw }
1080 1.1 scw
1081 1.1 scw splx(s);
1082 1.1 scw }
1083 1.1 scw
1084 1.1 scw /*
1085 1.1 scw * Stop output on a line.
1086 1.1 scw */
1087 1.1 scw void
1088 1.1 scw clmpccstop(tp, flag)
1089 1.1 scw struct tty *tp;
1090 1.1 scw int flag;
1091 1.1 scw {
1092 1.11 thorpej struct clmpcc_softc *sc =
1093 1.12 scw device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1094 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1095 1.1 scw int s;
1096 1.1 scw
1097 1.6 scw s = splserial();
1098 1.1 scw
1099 1.1 scw if ( ISSET(tp->t_state, TS_BUSY) ) {
1100 1.1 scw if ( ISCLR(tp->t_state, TS_TTSTOP) )
1101 1.1 scw SET(tp->t_state, TS_FLUSH);
1102 1.6 scw ch->ch_obuf_size = 0;
1103 1.1 scw }
1104 1.1 scw splx(s);
1105 1.1 scw }
1106 1.1 scw
1107 1.1 scw /*
1108 1.1 scw * RX interrupt routine
1109 1.1 scw */
1110 1.1 scw int
1111 1.1 scw clmpcc_rxintr(arg)
1112 1.1 scw void *arg;
1113 1.1 scw {
1114 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1115 1.1 scw struct clmpcc_chan *ch;
1116 1.1 scw u_int8_t *put, *end, rxd;
1117 1.1 scw u_char errstat;
1118 1.2 scw u_char fc, tc;
1119 1.2 scw u_char risr;
1120 1.2 scw u_char rir;
1121 1.1 scw #ifdef DDB
1122 1.1 scw int saw_break = 0;
1123 1.1 scw #endif
1124 1.1 scw
1125 1.1 scw /* Receive interrupt active? */
1126 1.1 scw rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1127 1.1 scw
1128 1.1 scw /*
1129 1.1 scw * If we're using auto-vectored interrupts, we have to
1130 1.1 scw * verify if the chip is generating the interrupt.
1131 1.1 scw */
1132 1.1 scw if ( sc->sc_vector_base == 0 && (rir & CLMPCC_RIR_RACT) == 0 )
1133 1.1 scw return 0;
1134 1.1 scw
1135 1.1 scw /* Get pointer to interrupting channel's data structure */
1136 1.1 scw ch = &sc->sc_chans[rir & CLMPCC_RIR_RCN_MASK];
1137 1.1 scw
1138 1.1 scw /* Get the interrupt status register */
1139 1.1 scw risr = clmpcc_rdreg(sc, CLMPCC_REG_RISRl);
1140 1.1 scw if ( risr & CLMPCC_RISR_TIMEOUT ) {
1141 1.1 scw u_char reg;
1142 1.1 scw /*
1143 1.1 scw * Set the FIFO threshold to zero, and disable
1144 1.1 scw * further receive timeout interrupts.
1145 1.1 scw */
1146 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1147 1.8 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg & ~CLMPCC_COR4_FIFO_MASK);
1148 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1149 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, reg & ~CLMPCC_IER_RET);
1150 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1151 1.1 scw SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1152 1.1 scw return 1;
1153 1.1 scw }
1154 1.1 scw
1155 1.1 scw /* How many bytes are waiting in the FIFO? */
1156 1.1 scw fc = tc = clmpcc_rdreg(sc, CLMPCC_REG_RFOC) & CLMPCC_RFOC_MASK;
1157 1.1 scw
1158 1.1 scw #ifdef DDB
1159 1.1 scw /*
1160 1.1 scw * Allow BREAK on the console to drop to the debugger.
1161 1.1 scw */
1162 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) &&
1163 1.1 scw risr & CLMPCC_RISR_BREAK ) {
1164 1.1 scw saw_break = 1;
1165 1.1 scw }
1166 1.1 scw #endif
1167 1.1 scw
1168 1.1 scw if ( ISCLR(ch->ch_tty->t_state, TS_ISOPEN) && fc ) {
1169 1.1 scw /* Just get rid of the data */
1170 1.1 scw while ( fc-- )
1171 1.1 scw (void) clmpcc_rd_rxdata(sc);
1172 1.1 scw goto rx_done;
1173 1.1 scw }
1174 1.1 scw
1175 1.1 scw put = ch->ch_ibuf_wr;
1176 1.1 scw end = ch->ch_ibuf_end;
1177 1.1 scw
1178 1.1 scw /*
1179 1.1 scw * Note: The chip is completely hosed WRT these error
1180 1.1 scw * conditions; there seems to be no way to associate
1181 1.24 perry * the error with the correct character in the FIFO.
1182 1.1 scw * We compromise by tagging the first character we read
1183 1.1 scw * with the error. Not perfect, but there's no other way.
1184 1.1 scw */
1185 1.1 scw errstat = 0;
1186 1.1 scw if ( risr & CLMPCC_RISR_PARITY )
1187 1.1 scw errstat |= TTY_PE;
1188 1.1 scw if ( risr & (CLMPCC_RISR_FRAMING | CLMPCC_RISR_BREAK) )
1189 1.1 scw errstat |= TTY_FE;
1190 1.1 scw
1191 1.1 scw /*
1192 1.1 scw * As long as there are characters in the FIFO, and we
1193 1.1 scw * have space for them...
1194 1.1 scw */
1195 1.1 scw while ( fc > 0 ) {
1196 1.1 scw
1197 1.1 scw *put++ = rxd = clmpcc_rd_rxdata(sc);
1198 1.1 scw *put++ = errstat;
1199 1.1 scw
1200 1.1 scw if ( put >= end )
1201 1.1 scw put = ch->ch_ibuf;
1202 1.1 scw
1203 1.1 scw if ( put == ch->ch_ibuf_rd ) {
1204 1.1 scw put -= 2;
1205 1.1 scw if ( put < ch->ch_ibuf )
1206 1.1 scw put = end - 2;
1207 1.1 scw }
1208 1.1 scw
1209 1.1 scw errstat = 0;
1210 1.1 scw fc--;
1211 1.1 scw }
1212 1.1 scw
1213 1.1 scw ch->ch_ibuf_wr = put;
1214 1.1 scw
1215 1.1 scw #if 0
1216 1.1 scw if ( sc->sc_swaprtsdtr == 0 &&
1217 1.1 scw ISSET(cy->cy_tty->t_cflag, CRTSCTS) && cc < ch->ch_r_hiwat) {
1218 1.1 scw /*
1219 1.1 scw * If RTS/DTR are not physically swapped, we have to
1220 1.1 scw * do hardware flow control manually
1221 1.1 scw */
1222 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_MSVR_RTS, 0);
1223 1.1 scw }
1224 1.1 scw #endif
1225 1.1 scw
1226 1.1 scw rx_done:
1227 1.1 scw if ( fc != tc ) {
1228 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR) ) {
1229 1.1 scw u_char reg;
1230 1.1 scw /*
1231 1.1 scw * Set the FIFO threshold to the preset value,
1232 1.1 scw * and enable receive timeout interrupts.
1233 1.1 scw */
1234 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1235 1.2 scw reg = (reg & ~CLMPCC_COR4_FIFO_MASK) | ch->ch_cor4;
1236 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg);
1237 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1238 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, reg | CLMPCC_IER_RET);
1239 1.1 scw CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1240 1.1 scw }
1241 1.1 scw
1242 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1243 1.34 ad softint_schedule(sc->sc_softintr_cookie);
1244 1.1 scw } else
1245 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1246 1.1 scw
1247 1.1 scw #ifdef DDB
1248 1.1 scw /*
1249 1.1 scw * Only =after= we write REOIR is it safe to drop to the debugger.
1250 1.1 scw */
1251 1.1 scw if ( saw_break )
1252 1.1 scw Debugger();
1253 1.1 scw #endif
1254 1.1 scw
1255 1.1 scw return 1;
1256 1.1 scw }
1257 1.1 scw
1258 1.1 scw /*
1259 1.1 scw * Tx interrupt routine
1260 1.1 scw */
1261 1.1 scw int
1262 1.1 scw clmpcc_txintr(arg)
1263 1.1 scw void *arg;
1264 1.1 scw {
1265 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1266 1.1 scw struct clmpcc_chan *ch;
1267 1.1 scw struct tty *tp;
1268 1.2 scw u_char ftc, oftc;
1269 1.9 scw u_char tir, teoir;
1270 1.9 scw int etcmode = 0;
1271 1.1 scw
1272 1.1 scw /* Tx interrupt active? */
1273 1.1 scw tir = clmpcc_rdreg(sc, CLMPCC_REG_TIR);
1274 1.1 scw
1275 1.1 scw /*
1276 1.1 scw * If we're using auto-vectored interrupts, we have to
1277 1.1 scw * verify if the chip is generating the interrupt.
1278 1.1 scw */
1279 1.1 scw if ( sc->sc_vector_base == 0 && (tir & CLMPCC_TIR_TACT) == 0 )
1280 1.1 scw return 0;
1281 1.1 scw
1282 1.1 scw /* Get pointer to interrupting channel's data structure */
1283 1.1 scw ch = &sc->sc_chans[tir & CLMPCC_TIR_TCN_MASK];
1284 1.2 scw tp = ch->ch_tty;
1285 1.1 scw
1286 1.1 scw /* Dummy read of the interrupt status register */
1287 1.1 scw (void) clmpcc_rdreg(sc, CLMPCC_REG_TISR);
1288 1.1 scw
1289 1.9 scw /* Make sure embedded transmit commands are disabled */
1290 1.9 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
1291 1.9 scw
1292 1.1 scw ftc = oftc = clmpcc_rdreg(sc, CLMPCC_REG_TFTC);
1293 1.1 scw
1294 1.2 scw /* Handle a delayed parameter change */
1295 1.2 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS) ) {
1296 1.6 scw CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
1297 1.2 scw clmpcc_set_params(ch);
1298 1.2 scw }
1299 1.2 scw
1300 1.6 scw if ( ch->ch_obuf_size > 0 ) {
1301 1.6 scw u_int n = min(ch->ch_obuf_size, ftc);
1302 1.1 scw
1303 1.6 scw clmpcc_wrtx_multi(sc, ch->ch_obuf_addr, n);
1304 1.2 scw
1305 1.6 scw ftc -= n;
1306 1.6 scw ch->ch_obuf_size -= n;
1307 1.6 scw ch->ch_obuf_addr += n;
1308 1.9 scw
1309 1.1 scw } else {
1310 1.1 scw /*
1311 1.9 scw * Check if we should start/stop a break
1312 1.1 scw */
1313 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK) ) {
1314 1.1 scw CLR(ch->ch_flags, CLMPCC_FLG_START_BREAK);
1315 1.9 scw /* Enable embedded transmit commands */
1316 1.9 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1317 1.9 scw ch->ch_cor2 | CLMPCC_COR2_ETC);
1318 1.9 scw clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1319 1.9 scw clmpcc_wr_txdata(sc, CLMPCC_ETC_SEND_BREAK);
1320 1.9 scw ftc -= 2;
1321 1.9 scw etcmode = 1;
1322 1.1 scw }
1323 1.1 scw
1324 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_END_BREAK) ) {
1325 1.1 scw CLR(ch->ch_flags, CLMPCC_FLG_END_BREAK);
1326 1.9 scw /* Enable embedded transmit commands */
1327 1.9 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1328 1.9 scw ch->ch_cor2 | CLMPCC_COR2_ETC);
1329 1.9 scw clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1330 1.9 scw clmpcc_wr_txdata(sc, CLMPCC_ETC_STOP_BREAK);
1331 1.9 scw ftc -= 2;
1332 1.9 scw etcmode = 1;
1333 1.1 scw }
1334 1.9 scw }
1335 1.9 scw
1336 1.9 scw tir = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1337 1.1 scw
1338 1.9 scw if ( ftc != oftc ) {
1339 1.9 scw /*
1340 1.9 scw * Enable/disable the Tx FIFO threshold interrupt
1341 1.9 scw * according to how much data is in the FIFO.
1342 1.9 scw * However, always disable the FIFO threshold if
1343 1.9 scw * we've left the channel in 'Embedded Transmit
1344 1.9 scw * Command' mode.
1345 1.9 scw */
1346 1.9 scw if ( etcmode || ftc >= ch->ch_cor4 )
1347 1.9 scw tir &= ~CLMPCC_IER_TX_FIFO;
1348 1.9 scw else
1349 1.9 scw tir |= CLMPCC_IER_TX_FIFO;
1350 1.9 scw teoir = 0;
1351 1.9 scw } else {
1352 1.1 scw /*
1353 1.9 scw * No data was sent.
1354 1.9 scw * Disable transmit interrupt.
1355 1.1 scw */
1356 1.9 scw tir &= ~(CLMPCC_IER_TX_EMPTY|CLMPCC_IER_TX_FIFO);
1357 1.9 scw teoir = CLMPCC_TEOIR_NO_TRANS;
1358 1.1 scw
1359 1.6 scw /*
1360 1.6 scw * Request Tx processing in the soft interrupt handler
1361 1.6 scw */
1362 1.6 scw ch->ch_tx_done = 1;
1363 1.34 ad softint_schedule(sc->sc_softintr_cookie);
1364 1.2 scw }
1365 1.2 scw
1366 1.9 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, tir);
1367 1.9 scw clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, teoir);
1368 1.1 scw
1369 1.1 scw return 1;
1370 1.1 scw }
1371 1.1 scw
1372 1.1 scw /*
1373 1.1 scw * Modem change interrupt routine
1374 1.1 scw */
1375 1.1 scw int
1376 1.1 scw clmpcc_mdintr(arg)
1377 1.1 scw void *arg;
1378 1.1 scw {
1379 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1380 1.2 scw u_char mir;
1381 1.1 scw
1382 1.1 scw /* Modem status interrupt active? */
1383 1.1 scw mir = clmpcc_rdreg(sc, CLMPCC_REG_MIR);
1384 1.1 scw
1385 1.1 scw /*
1386 1.1 scw * If we're using auto-vectored interrupts, we have to
1387 1.1 scw * verify if the chip is generating the interrupt.
1388 1.1 scw */
1389 1.1 scw if ( sc->sc_vector_base == 0 && (mir & CLMPCC_MIR_MACT) == 0 )
1390 1.1 scw return 0;
1391 1.1 scw
1392 1.1 scw /* Dummy read of the interrupt status register */
1393 1.1 scw (void) clmpcc_rdreg(sc, CLMPCC_REG_MISR);
1394 1.1 scw
1395 1.1 scw /* Retrieve current status of modem lines. */
1396 1.1 scw sc->sc_chans[mir & CLMPCC_MIR_MCN_MASK].ch_control |=
1397 1.1 scw clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1398 1.1 scw
1399 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_MEOIR, 0);
1400 1.34 ad softint_schedule(sc->sc_softintr_cookie);
1401 1.1 scw
1402 1.1 scw return 1;
1403 1.1 scw }
1404 1.1 scw
1405 1.10 scw void
1406 1.1 scw clmpcc_softintr(arg)
1407 1.1 scw void *arg;
1408 1.1 scw {
1409 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1410 1.1 scw struct clmpcc_chan *ch;
1411 1.2 scw struct tty *tp;
1412 1.23 perry int (*rint)(int, struct tty *);
1413 1.1 scw u_char *get;
1414 1.2 scw u_char reg;
1415 1.1 scw u_int c;
1416 1.1 scw int chan;
1417 1.1 scw
1418 1.1 scw /* Handle Modem state changes too... */
1419 1.1 scw
1420 1.1 scw for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
1421 1.1 scw ch = &sc->sc_chans[chan];
1422 1.2 scw tp = ch->ch_tty;
1423 1.2 scw
1424 1.1 scw get = ch->ch_ibuf_rd;
1425 1.14 eeh rint = tp->t_linesw->l_rint;
1426 1.1 scw
1427 1.1 scw /* Squirt buffered incoming data into the tty layer */
1428 1.1 scw while ( get != ch->ch_ibuf_wr ) {
1429 1.2 scw c = get[0];
1430 1.2 scw c |= ((u_int)get[1]) << 8;
1431 1.2 scw if ( (rint)(c, tp) == -1 ) {
1432 1.6 scw ch->ch_ibuf_rd = ch->ch_ibuf_wr;
1433 1.6 scw break;
1434 1.2 scw }
1435 1.1 scw
1436 1.2 scw get += 2;
1437 1.1 scw if ( get == ch->ch_ibuf_end )
1438 1.1 scw get = ch->ch_ibuf;
1439 1.1 scw
1440 1.1 scw ch->ch_ibuf_rd = get;
1441 1.1 scw }
1442 1.2 scw
1443 1.6 scw /*
1444 1.6 scw * Is the transmitter idle and in need of attention?
1445 1.6 scw */
1446 1.6 scw if ( ch->ch_tx_done ) {
1447 1.6 scw ch->ch_tx_done = 0;
1448 1.2 scw
1449 1.6 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_NEED_INIT) ) {
1450 1.6 scw clmpcc_channel_cmd(sc, ch->ch_car,
1451 1.6 scw CLMPCC_CCR_T0_INIT |
1452 1.6 scw CLMPCC_CCR_T0_RX_EN |
1453 1.6 scw CLMPCC_CCR_T0_TX_EN);
1454 1.6 scw CLR(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1455 1.6 scw
1456 1.6 scw /*
1457 1.6 scw * Allow time for the channel to initialise.
1458 1.6 scw * (Empirically derived duration; there must
1459 1.6 scw * be another way to determine the command
1460 1.6 scw * has completed without busy-waiting...)
1461 1.6 scw */
1462 1.6 scw delay(800);
1463 1.6 scw
1464 1.6 scw /*
1465 1.6 scw * Update the tty layer's idea of the carrier
1466 1.6 scw * bit, in case we changed CLOCAL or MDMBUF.
1467 1.6 scw * We don't hang up here; we only do that by
1468 1.6 scw * explicit request.
1469 1.6 scw */
1470 1.6 scw reg = clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1471 1.14 eeh (*tp->t_linesw->l_modem)(tp, reg != 0);
1472 1.6 scw }
1473 1.4 scw
1474 1.6 scw CLR(tp->t_state, TS_BUSY);
1475 1.6 scw if ( ISSET(tp->t_state, TS_FLUSH) )
1476 1.6 scw CLR(tp->t_state, TS_FLUSH);
1477 1.6 scw else
1478 1.6 scw ndflush(&tp->t_outq,
1479 1.6 scw (int)(ch->ch_obuf_addr - tp->t_outq.c_cf));
1480 1.2 scw
1481 1.14 eeh (*tp->t_linesw->l_start)(tp);
1482 1.6 scw }
1483 1.1 scw }
1484 1.1 scw }
1485 1.1 scw
1486 1.1 scw
1487 1.1 scw /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1488 1.1 scw /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1489 1.1 scw /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1490 1.1 scw /*
1491 1.1 scw * Following are all routines needed for a cd240x channel to act as console
1492 1.1 scw */
1493 1.1 scw int
1494 1.1 scw clmpcc_cnattach(sc, chan, rate)
1495 1.1 scw struct clmpcc_softc *sc;
1496 1.1 scw int chan;
1497 1.1 scw int rate;
1498 1.1 scw {
1499 1.1 scw cons_sc = sc;
1500 1.1 scw cons_chan = chan;
1501 1.1 scw cons_rate = rate;
1502 1.1 scw
1503 1.17 scw return (clmpcc_init(sc));
1504 1.1 scw }
1505 1.1 scw
1506 1.1 scw /*
1507 1.1 scw * The following functions are polled getc and putc routines, for console use.
1508 1.1 scw */
1509 1.1 scw static int
1510 1.1 scw clmpcc_common_getc(sc, chan)
1511 1.1 scw struct clmpcc_softc *sc;
1512 1.1 scw int chan;
1513 1.1 scw {
1514 1.1 scw u_char old_chan;
1515 1.1 scw u_char old_ier;
1516 1.1 scw u_char ch, rir, risr;
1517 1.1 scw int s;
1518 1.1 scw
1519 1.1 scw s = splhigh();
1520 1.1 scw
1521 1.4 scw /* Save the currently active channel */
1522 1.1 scw old_chan = clmpcc_select_channel(sc, chan);
1523 1.1 scw
1524 1.1 scw /*
1525 1.1 scw * We have to put the channel into RX interrupt mode before
1526 1.1 scw * trying to read the Rx data register. So save the previous
1527 1.1 scw * interrupt mode.
1528 1.1 scw */
1529 1.1 scw old_ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1530 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_RX_FIFO);
1531 1.1 scw
1532 1.1 scw /* Loop until we get a character */
1533 1.1 scw for (;;) {
1534 1.1 scw /*
1535 1.1 scw * The REN bit will be set in the Receive Interrupt Register
1536 1.1 scw * when the CD240x has a character to process. Remember,
1537 1.1 scw * the RACT bit won't be set until we generate an interrupt
1538 1.1 scw * acknowledge cycle via the MD front-end.
1539 1.1 scw */
1540 1.1 scw rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1541 1.1 scw if ( (rir & CLMPCC_RIR_REN) == 0 )
1542 1.1 scw continue;
1543 1.1 scw
1544 1.1 scw /* Acknowledge the request */
1545 1.1 scw if ( sc->sc_iackhook )
1546 1.1 scw (sc->sc_iackhook)(sc, CLMPCC_IACK_RX);
1547 1.1 scw
1548 1.1 scw /*
1549 1.1 scw * Determine if the interrupt is for the required channel
1550 1.1 scw * and if valid data is available.
1551 1.1 scw */
1552 1.1 scw rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1553 1.1 scw risr = clmpcc_rdreg(sc, CLMPCC_REG_RISR);
1554 1.1 scw if ( (rir & CLMPCC_RIR_RCN_MASK) != chan ||
1555 1.1 scw risr != 0 ) {
1556 1.1 scw /* Rx error, or BREAK */
1557 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR,
1558 1.1 scw CLMPCC_REOIR_NO_TRANS);
1559 1.1 scw } else {
1560 1.1 scw /* Dummy read of the FIFO count register */
1561 1.1 scw (void) clmpcc_rdreg(sc, CLMPCC_REG_RFOC);
1562 1.1 scw
1563 1.1 scw /* Fetch the received character */
1564 1.1 scw ch = clmpcc_rd_rxdata(sc);
1565 1.1 scw
1566 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1567 1.1 scw break;
1568 1.1 scw }
1569 1.1 scw }
1570 1.1 scw
1571 1.4 scw /* Restore the original IER and CAR register contents */
1572 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, old_ier);
1573 1.1 scw clmpcc_select_channel(sc, old_chan);
1574 1.1 scw
1575 1.1 scw splx(s);
1576 1.1 scw return ch;
1577 1.1 scw }
1578 1.1 scw
1579 1.1 scw
1580 1.1 scw static void
1581 1.1 scw clmpcc_common_putc(sc, chan, c)
1582 1.1 scw struct clmpcc_softc *sc;
1583 1.1 scw int chan;
1584 1.1 scw int c;
1585 1.1 scw {
1586 1.1 scw u_char old_chan;
1587 1.1 scw int s = splhigh();
1588 1.1 scw
1589 1.4 scw /* Save the currently active channel */
1590 1.1 scw old_chan = clmpcc_select_channel(sc, chan);
1591 1.4 scw
1592 1.4 scw /*
1593 1.4 scw * Since we can only access the Tx Data register from within
1594 1.4 scw * the interrupt handler, the easiest way to get console data
1595 1.4 scw * onto the wire is using one of the Special Transmit Character
1596 1.4 scw * registers.
1597 1.4 scw */
1598 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_SCHR4, c);
1599 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_STCR, CLMPCC_STCR_SSPC(4) |
1600 1.1 scw CLMPCC_STCR_SND_SPC);
1601 1.1 scw
1602 1.4 scw /* Wait until the "Send Special Character" command is accepted */
1603 1.1 scw while ( clmpcc_rdreg(sc, CLMPCC_REG_STCR) != 0 )
1604 1.1 scw ;
1605 1.1 scw
1606 1.4 scw /* Restore the previous channel selected */
1607 1.1 scw clmpcc_select_channel(sc, old_chan);
1608 1.1 scw
1609 1.1 scw splx(s);
1610 1.1 scw }
1611 1.1 scw
1612 1.1 scw int
1613 1.1 scw clmpcccngetc(dev)
1614 1.1 scw dev_t dev;
1615 1.1 scw {
1616 1.1 scw return clmpcc_common_getc(cons_sc, cons_chan);
1617 1.1 scw }
1618 1.1 scw
1619 1.1 scw /*
1620 1.1 scw * Console kernel output character routine.
1621 1.1 scw */
1622 1.1 scw void
1623 1.1 scw clmpcccnputc(dev, c)
1624 1.1 scw dev_t dev;
1625 1.1 scw int c;
1626 1.1 scw {
1627 1.1 scw if ( c == '\n' )
1628 1.1 scw clmpcc_common_putc(cons_sc, cons_chan, '\r');
1629 1.1 scw
1630 1.1 scw clmpcc_common_putc(cons_sc, cons_chan, c);
1631 1.1 scw }
1632