clmpcc.c revision 1.42 1 1.42 dsl /* $NetBSD: clmpcc.c,v 1.42 2009/03/14 21:04:19 dsl Exp $ */
2 1.1 scw
3 1.1 scw /*-
4 1.1 scw * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 scw * All rights reserved.
6 1.1 scw *
7 1.1 scw * This code is derived from software contributed to The NetBSD Foundation
8 1.1 scw * by Steve C. Woodford.
9 1.1 scw *
10 1.1 scw * Redistribution and use in source and binary forms, with or without
11 1.1 scw * modification, are permitted provided that the following conditions
12 1.1 scw * are met:
13 1.1 scw * 1. Redistributions of source code must retain the above copyright
14 1.1 scw * notice, this list of conditions and the following disclaimer.
15 1.1 scw * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 scw * notice, this list of conditions and the following disclaimer in the
17 1.1 scw * documentation and/or other materials provided with the distribution.
18 1.1 scw *
19 1.1 scw * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 scw * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 scw * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 scw * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 scw * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 scw * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 scw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 scw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 scw * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 scw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 scw * POSSIBILITY OF SUCH DAMAGE.
30 1.1 scw */
31 1.1 scw
32 1.1 scw /*
33 1.1 scw * Cirrus Logic CD2400/CD2401 Four Channel Multi-Protocol Comms. Controller.
34 1.1 scw */
35 1.18 lukem
36 1.18 lukem #include <sys/cdefs.h>
37 1.42 dsl __KERNEL_RCSID(0, "$NetBSD: clmpcc.c,v 1.42 2009/03/14 21:04:19 dsl Exp $");
38 1.1 scw
39 1.1 scw #include "opt_ddb.h"
40 1.1 scw
41 1.1 scw #include <sys/param.h>
42 1.1 scw #include <sys/systm.h>
43 1.1 scw #include <sys/ioctl.h>
44 1.1 scw #include <sys/select.h>
45 1.1 scw #include <sys/tty.h>
46 1.1 scw #include <sys/proc.h>
47 1.1 scw #include <sys/user.h>
48 1.1 scw #include <sys/conf.h>
49 1.1 scw #include <sys/file.h>
50 1.1 scw #include <sys/uio.h>
51 1.1 scw #include <sys/kernel.h>
52 1.1 scw #include <sys/syslog.h>
53 1.1 scw #include <sys/device.h>
54 1.1 scw #include <sys/malloc.h>
55 1.28 elad #include <sys/kauth.h>
56 1.34 ad #include <sys/intr.h>
57 1.1 scw
58 1.35 ad #include <sys/bus.h>
59 1.3 scw #include <machine/param.h>
60 1.1 scw
61 1.1 scw #include <dev/ic/clmpccreg.h>
62 1.1 scw #include <dev/ic/clmpccvar.h>
63 1.1 scw #include <dev/cons.h>
64 1.1 scw
65 1.1 scw
66 1.1 scw #if defined(CLMPCC_ONLY_BYTESWAP_LOW) && defined(CLMPCC_ONLY_BYTESWAP_HIGH)
67 1.1 scw #error "CLMPCC_ONLY_BYTESWAP_LOW and CLMPCC_ONLY_BYTESWAP_HIGH are mutually exclusive."
68 1.1 scw #endif
69 1.1 scw
70 1.2 scw
71 1.23 perry static int clmpcc_init(struct clmpcc_softc *sc);
72 1.23 perry static void clmpcc_shutdown(struct clmpcc_chan *);
73 1.23 perry static int clmpcc_speed(struct clmpcc_softc *, speed_t, int *, int *);
74 1.23 perry static int clmpcc_param(struct tty *, struct termios *);
75 1.23 perry static void clmpcc_set_params(struct clmpcc_chan *);
76 1.23 perry static void clmpcc_start(struct tty *);
77 1.23 perry static int clmpcc_modem_control(struct clmpcc_chan *, int, int);
78 1.1 scw
79 1.1 scw #define CLMPCCUNIT(x) (minor(x) & 0x7fffc)
80 1.1 scw #define CLMPCCCHAN(x) (minor(x) & 0x00003)
81 1.1 scw #define CLMPCCDIALOUT(x) (minor(x) & 0x80000)
82 1.1 scw
83 1.1 scw /*
84 1.1 scw * These should be in a header file somewhere...
85 1.1 scw */
86 1.1 scw #define ISCLR(v, f) (((v) & (f)) == 0)
87 1.1 scw
88 1.1 scw extern struct cfdriver clmpcc_cd;
89 1.1 scw
90 1.21 gehenna dev_type_open(clmpccopen);
91 1.21 gehenna dev_type_close(clmpccclose);
92 1.21 gehenna dev_type_read(clmpccread);
93 1.21 gehenna dev_type_write(clmpccwrite);
94 1.21 gehenna dev_type_ioctl(clmpccioctl);
95 1.21 gehenna dev_type_stop(clmpccstop);
96 1.21 gehenna dev_type_tty(clmpcctty);
97 1.21 gehenna dev_type_poll(clmpccpoll);
98 1.21 gehenna
99 1.21 gehenna const struct cdevsw clmpcc_cdevsw = {
100 1.21 gehenna clmpccopen, clmpccclose, clmpccread, clmpccwrite, clmpccioctl,
101 1.22 jdolecek clmpccstop, clmpcctty, clmpccpoll, nommap, ttykqfilter, D_TTY
102 1.21 gehenna };
103 1.1 scw
104 1.1 scw /*
105 1.1 scw * Make this an option variable one can patch.
106 1.1 scw */
107 1.1 scw u_int clmpcc_ibuf_size = CLMPCC_RING_SIZE;
108 1.1 scw
109 1.1 scw
110 1.1 scw /*
111 1.1 scw * Things needed when the device is used as a console
112 1.1 scw */
113 1.1 scw static struct clmpcc_softc *cons_sc = NULL;
114 1.1 scw static int cons_chan;
115 1.1 scw static int cons_rate;
116 1.1 scw
117 1.23 perry static int clmpcc_common_getc(struct clmpcc_softc *, int);
118 1.23 perry static void clmpcc_common_putc(struct clmpcc_softc *, int, int);
119 1.23 perry int clmpcccngetc(dev_t);
120 1.23 perry void clmpcccnputc(dev_t, int);
121 1.1 scw
122 1.1 scw
123 1.1 scw /*
124 1.1 scw * Convenience functions, inlined for speed
125 1.1 scw */
126 1.1 scw #define integrate static inline
127 1.23 perry integrate u_int8_t clmpcc_rdreg(struct clmpcc_softc *, u_int);
128 1.23 perry integrate void clmpcc_wrreg(struct clmpcc_softc *, u_int, u_int);
129 1.23 perry integrate u_int8_t clmpcc_rdreg_odd(struct clmpcc_softc *, u_int);
130 1.23 perry integrate void clmpcc_wrreg_odd(struct clmpcc_softc *, u_int, u_int);
131 1.23 perry integrate void clmpcc_wrtx_multi(struct clmpcc_softc *, u_int8_t *,
132 1.23 perry u_int);
133 1.23 perry integrate u_int8_t clmpcc_select_channel(struct clmpcc_softc *, u_int);
134 1.23 perry integrate void clmpcc_channel_cmd(struct clmpcc_softc *,int,int);
135 1.23 perry integrate void clmpcc_enable_transmitter(struct clmpcc_chan *);
136 1.1 scw
137 1.1 scw #define clmpcc_rd_msvr(s) clmpcc_rdreg_odd(s,CLMPCC_REG_MSVR)
138 1.1 scw #define clmpcc_wr_msvr(s,r,v) clmpcc_wrreg_odd(s,r,v)
139 1.1 scw #define clmpcc_wr_pilr(s,r,v) clmpcc_wrreg_odd(s,r,v)
140 1.1 scw #define clmpcc_rd_rxdata(s) clmpcc_rdreg_odd(s,CLMPCC_REG_RDR)
141 1.1 scw #define clmpcc_wr_txdata(s,v) clmpcc_wrreg_odd(s,CLMPCC_REG_TDR,v)
142 1.1 scw
143 1.1 scw
144 1.1 scw integrate u_int8_t
145 1.41 dsl clmpcc_rdreg(struct clmpcc_softc *sc, u_int offset)
146 1.1 scw {
147 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
148 1.1 scw offset ^= sc->sc_byteswap;
149 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
150 1.1 scw offset ^= CLMPCC_BYTESWAP_HIGH;
151 1.1 scw #endif
152 1.1 scw return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
153 1.1 scw }
154 1.1 scw
155 1.1 scw integrate void
156 1.41 dsl clmpcc_wrreg(struct clmpcc_softc *sc, u_int offset, u_int val)
157 1.1 scw {
158 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
159 1.1 scw offset ^= sc->sc_byteswap;
160 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
161 1.1 scw offset ^= CLMPCC_BYTESWAP_HIGH;
162 1.1 scw #endif
163 1.1 scw bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
164 1.1 scw }
165 1.1 scw
166 1.1 scw integrate u_int8_t
167 1.41 dsl clmpcc_rdreg_odd(struct clmpcc_softc *sc, u_int offset)
168 1.1 scw {
169 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
170 1.1 scw offset ^= (sc->sc_byteswap & 2);
171 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
172 1.1 scw offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
173 1.1 scw #endif
174 1.1 scw return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
175 1.1 scw }
176 1.1 scw
177 1.1 scw integrate void
178 1.41 dsl clmpcc_wrreg_odd(struct clmpcc_softc *sc, u_int offset, u_int val)
179 1.1 scw {
180 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
181 1.1 scw offset ^= (sc->sc_byteswap & 2);
182 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
183 1.1 scw offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
184 1.1 scw #endif
185 1.1 scw bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
186 1.1 scw }
187 1.1 scw
188 1.6 scw integrate void
189 1.41 dsl clmpcc_wrtx_multi(struct clmpcc_softc *sc, u_int8_t *buff, u_int count)
190 1.6 scw {
191 1.6 scw u_int offset = CLMPCC_REG_TDR;
192 1.6 scw
193 1.6 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
194 1.6 scw offset ^= (sc->sc_byteswap & 2);
195 1.6 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
196 1.6 scw offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
197 1.6 scw #endif
198 1.6 scw bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh, offset, buff, count);
199 1.6 scw }
200 1.6 scw
201 1.1 scw integrate u_int8_t
202 1.41 dsl clmpcc_select_channel(struct clmpcc_softc *sc, u_int new_chan)
203 1.1 scw {
204 1.1 scw u_int old_chan = clmpcc_rdreg_odd(sc, CLMPCC_REG_CAR);
205 1.1 scw
206 1.1 scw clmpcc_wrreg_odd(sc, CLMPCC_REG_CAR, new_chan);
207 1.1 scw
208 1.1 scw return old_chan;
209 1.1 scw }
210 1.1 scw
211 1.1 scw integrate void
212 1.41 dsl clmpcc_channel_cmd(struct clmpcc_softc *sc, int chan, int cmd)
213 1.1 scw {
214 1.1 scw int i;
215 1.1 scw
216 1.1 scw for (i = 5000; i; i--) {
217 1.1 scw if ( clmpcc_rdreg(sc, CLMPCC_REG_CCR) == 0 )
218 1.1 scw break;
219 1.1 scw delay(1);
220 1.1 scw }
221 1.1 scw
222 1.1 scw if ( i == 0 )
223 1.1 scw printf("%s: channel %d command timeout (idle)\n",
224 1.37 cegger device_xname(&sc->sc_dev), chan);
225 1.1 scw
226 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_CCR, cmd);
227 1.1 scw }
228 1.1 scw
229 1.1 scw integrate void
230 1.41 dsl clmpcc_enable_transmitter(struct clmpcc_chan *ch)
231 1.1 scw {
232 1.1 scw u_int old;
233 1.2 scw int s;
234 1.1 scw
235 1.1 scw old = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
236 1.1 scw
237 1.2 scw s = splserial();
238 1.1 scw clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
239 1.1 scw clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) | CLMPCC_IER_TX_EMPTY);
240 1.2 scw SET(ch->ch_tty->t_state, TS_BUSY);
241 1.2 scw splx(s);
242 1.2 scw
243 1.1 scw clmpcc_select_channel(ch->ch_sc, old);
244 1.1 scw }
245 1.1 scw
246 1.1 scw static int
247 1.42 dsl clmpcc_speed(struct clmpcc_softc *sc, speed_t speed, int *cor, int *bpr)
248 1.1 scw {
249 1.1 scw int c, co, br;
250 1.1 scw
251 1.1 scw for (co = 0, c = 8; c <= 2048; co++, c *= 4) {
252 1.1 scw br = ((sc->sc_clk / c) / speed) - 1;
253 1.1 scw if ( br < 0x100 ) {
254 1.1 scw *cor = co;
255 1.1 scw *bpr = br;
256 1.1 scw return 0;
257 1.1 scw }
258 1.1 scw }
259 1.1 scw
260 1.1 scw return -1;
261 1.1 scw }
262 1.1 scw
263 1.1 scw void
264 1.41 dsl clmpcc_attach(struct clmpcc_softc *sc)
265 1.1 scw {
266 1.1 scw struct clmpcc_chan *ch;
267 1.1 scw struct tty *tp;
268 1.1 scw int chan;
269 1.1 scw
270 1.1 scw if ( cons_sc != NULL &&
271 1.1 scw sc->sc_iot == cons_sc->sc_iot && sc->sc_ioh == cons_sc->sc_ioh )
272 1.1 scw cons_sc = sc;
273 1.1 scw
274 1.1 scw /* Initialise the chip */
275 1.1 scw clmpcc_init(sc);
276 1.1 scw
277 1.1 scw printf(": Cirrus Logic CD240%c Serial Controller\n",
278 1.1 scw (clmpcc_rd_msvr(sc) & CLMPCC_MSVR_PORT_ID) ? '0' : '1');
279 1.1 scw
280 1.13 scw sc->sc_softintr_cookie =
281 1.34 ad softint_establish(SOFTINT_SERIAL, clmpcc_softintr, sc);
282 1.13 scw if (sc->sc_softintr_cookie == NULL)
283 1.13 scw panic("clmpcc_attach: softintr_establish");
284 1.1 scw memset(&(sc->sc_chans[0]), 0, sizeof(sc->sc_chans));
285 1.1 scw
286 1.1 scw for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
287 1.1 scw ch = &sc->sc_chans[chan];
288 1.1 scw
289 1.1 scw ch->ch_sc = sc;
290 1.1 scw ch->ch_car = chan;
291 1.1 scw
292 1.1 scw tp = ttymalloc();
293 1.1 scw tp->t_oproc = clmpcc_start;
294 1.1 scw tp->t_param = clmpcc_param;
295 1.1 scw
296 1.1 scw ch->ch_tty = tp;
297 1.1 scw
298 1.1 scw ch->ch_ibuf = malloc(clmpcc_ibuf_size * 2, M_DEVBUF, M_NOWAIT);
299 1.1 scw if ( ch->ch_ibuf == NULL ) {
300 1.37 cegger aprint_error_dev(&sc->sc_dev, "(%d): unable to allocate ring buffer\n",
301 1.37 cegger chan);
302 1.1 scw return;
303 1.1 scw }
304 1.1 scw
305 1.1 scw ch->ch_ibuf_end = &(ch->ch_ibuf[clmpcc_ibuf_size * 2]);
306 1.1 scw ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
307 1.1 scw
308 1.1 scw tty_attach(tp);
309 1.1 scw }
310 1.1 scw
311 1.37 cegger aprint_error_dev(&sc->sc_dev, "%d channels available",
312 1.1 scw CLMPCC_NUM_CHANS);
313 1.1 scw if ( cons_sc == sc ) {
314 1.1 scw printf(", console on channel %d.\n", cons_chan);
315 1.1 scw SET(sc->sc_chans[cons_chan].ch_flags, CLMPCC_FLG_IS_CONSOLE);
316 1.1 scw SET(sc->sc_chans[cons_chan].ch_openflags, TIOCFLAG_SOFTCAR);
317 1.1 scw } else
318 1.1 scw printf(".\n");
319 1.1 scw }
320 1.1 scw
321 1.1 scw static int
322 1.41 dsl clmpcc_init(struct clmpcc_softc *sc)
323 1.1 scw {
324 1.1 scw u_int tcor, tbpr;
325 1.1 scw u_int rcor, rbpr;
326 1.1 scw u_int msvr_rts, msvr_dtr;
327 1.1 scw u_int ccr;
328 1.1 scw int is_console;
329 1.1 scw int i;
330 1.1 scw
331 1.1 scw /*
332 1.1 scw * All we're really concerned about here is putting the chip
333 1.1 scw * into a quiescent state so that it won't do anything until
334 1.1 scw * clmpccopen() is called. (Except the console channel.)
335 1.1 scw */
336 1.1 scw
337 1.1 scw /*
338 1.1 scw * If the chip is acting as console, set all channels to the supplied
339 1.1 scw * console baud rate. Otherwise, plump for 9600.
340 1.1 scw */
341 1.1 scw if ( cons_sc &&
342 1.1 scw sc->sc_ioh == cons_sc->sc_ioh && sc->sc_iot == cons_sc->sc_iot ) {
343 1.1 scw clmpcc_speed(sc, cons_rate, &tcor, &tbpr);
344 1.1 scw clmpcc_speed(sc, cons_rate, &rcor, &rbpr);
345 1.1 scw is_console = 1;
346 1.1 scw } else {
347 1.1 scw clmpcc_speed(sc, 9600, &tcor, &tbpr);
348 1.1 scw clmpcc_speed(sc, 9600, &rcor, &rbpr);
349 1.1 scw is_console = 0;
350 1.1 scw }
351 1.1 scw
352 1.1 scw /* Allow any pending output to be sent */
353 1.1 scw delay(10000);
354 1.1 scw
355 1.1 scw /* Send the Reset All command to channel 0 (resets all channels!) */
356 1.1 scw clmpcc_channel_cmd(sc, 0, CLMPCC_CCR_T0_RESET_ALL);
357 1.1 scw
358 1.1 scw delay(1000);
359 1.1 scw
360 1.1 scw /*
361 1.1 scw * The chip will set it's firmware revision register to a non-zero
362 1.1 scw * value to indicate completion of reset.
363 1.1 scw */
364 1.1 scw for (i = 10000; clmpcc_rdreg(sc, CLMPCC_REG_GFRCR) == 0 && i; i--)
365 1.1 scw delay(1);
366 1.1 scw
367 1.1 scw if ( i == 0 ) {
368 1.1 scw /*
369 1.1 scw * Watch out... If this chip is console, the message
370 1.1 scw * probably won't be sent since we just reset it!
371 1.1 scw */
372 1.37 cegger aprint_error_dev(&sc->sc_dev, "Failed to reset chip\n");
373 1.1 scw return -1;
374 1.1 scw }
375 1.1 scw
376 1.1 scw for (i = 0; i < CLMPCC_NUM_CHANS; i++) {
377 1.1 scw clmpcc_select_channel(sc, i);
378 1.1 scw
379 1.1 scw /* All interrupts are disabled to begin with */
380 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
381 1.1 scw
382 1.1 scw /* Make sure the channel interrupts on the correct vectors */
383 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_LIVR, sc->sc_vector_base);
384 1.1 scw clmpcc_wr_pilr(sc, CLMPCC_REG_RPILR, sc->sc_rpilr);
385 1.1 scw clmpcc_wr_pilr(sc, CLMPCC_REG_TPILR, sc->sc_tpilr);
386 1.1 scw clmpcc_wr_pilr(sc, CLMPCC_REG_MPILR, sc->sc_mpilr);
387 1.1 scw
388 1.1 scw /* Receive timer prescaler set to 1ms */
389 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TPR,
390 1.1 scw CLMPCC_MSEC_TO_TPR(sc->sc_clk, 1));
391 1.1 scw
392 1.1 scw /* We support Async mode only */
393 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_CMR, CLMPCC_CMR_ASYNC);
394 1.1 scw
395 1.1 scw /* Set the required baud rate */
396 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(tcor));
397 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TBPR, tbpr);
398 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(rcor));
399 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RBPR, rbpr);
400 1.1 scw
401 1.1 scw /* Always default to 8N1 (XXX what about console?) */
402 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR1, CLMPCC_COR1_CHAR_8BITS |
403 1.1 scw CLMPCC_COR1_NO_PARITY |
404 1.1 scw CLMPCC_COR1_IGNORE_PAR);
405 1.1 scw
406 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2, 0);
407 1.1 scw
408 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR3, CLMPCC_COR3_STOP_1);
409 1.1 scw
410 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, CLMPCC_COR4_DSRzd |
411 1.1 scw CLMPCC_COR4_CDzd |
412 1.1 scw CLMPCC_COR4_CTSzd);
413 1.1 scw
414 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR5, CLMPCC_COR5_DSRod |
415 1.1 scw CLMPCC_COR5_CDod |
416 1.1 scw CLMPCC_COR5_CTSod |
417 1.1 scw CLMPCC_COR5_FLOW_NORM);
418 1.1 scw
419 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR6, 0);
420 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR7, 0);
421 1.1 scw
422 1.1 scw /* Set the receive FIFO timeout */
423 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RTPRl, CLMPCC_RTPR_DEFAULT);
424 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RTPRh, 0);
425 1.1 scw
426 1.1 scw /* At this point, we set up the console differently */
427 1.1 scw if ( is_console && i == cons_chan ) {
428 1.1 scw msvr_rts = CLMPCC_MSVR_RTS;
429 1.1 scw msvr_dtr = CLMPCC_MSVR_DTR;
430 1.1 scw ccr = CLMPCC_CCR_T0_RX_EN | CLMPCC_CCR_T0_TX_EN;
431 1.1 scw } else {
432 1.1 scw msvr_rts = 0;
433 1.1 scw msvr_dtr = 0;
434 1.1 scw ccr = CLMPCC_CCR_T0_RX_DIS | CLMPCC_CCR_T0_TX_DIS;
435 1.1 scw }
436 1.1 scw
437 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_MSVR_RTS, msvr_rts);
438 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_MSVR_DTR, msvr_dtr);
439 1.1 scw clmpcc_channel_cmd(sc, i, CLMPCC_CCR_T0_INIT | ccr);
440 1.1 scw delay(100);
441 1.1 scw }
442 1.1 scw
443 1.1 scw return 0;
444 1.1 scw }
445 1.1 scw
446 1.1 scw static void
447 1.41 dsl clmpcc_shutdown(struct clmpcc_chan *ch)
448 1.1 scw {
449 1.1 scw int oldch;
450 1.1 scw
451 1.1 scw oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
452 1.1 scw
453 1.1 scw /* Turn off interrupts. */
454 1.1 scw clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER, 0);
455 1.1 scw
456 1.1 scw if ( ISCLR(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
457 1.1 scw /* Disable the transmitter and receiver */
458 1.1 scw clmpcc_channel_cmd(ch->ch_sc, ch->ch_car, CLMPCC_CCR_T0_RX_DIS |
459 1.1 scw CLMPCC_CCR_T0_TX_DIS);
460 1.1 scw
461 1.1 scw /* Drop RTS and DTR */
462 1.1 scw clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
463 1.1 scw }
464 1.1 scw
465 1.1 scw clmpcc_select_channel(ch->ch_sc, oldch);
466 1.1 scw }
467 1.1 scw
468 1.1 scw int
469 1.39 cegger clmpccopen(dev_t dev, int flag, int mode, struct lwp *l)
470 1.1 scw {
471 1.1 scw struct clmpcc_softc *sc;
472 1.1 scw struct clmpcc_chan *ch;
473 1.1 scw struct tty *tp;
474 1.1 scw int oldch;
475 1.1 scw int error;
476 1.11 thorpej
477 1.39 cegger sc = device_lookup_private(&clmpcc_cd, CLMPCCUNIT(dev));
478 1.11 thorpej if (sc == NULL)
479 1.11 thorpej return (ENXIO);
480 1.1 scw
481 1.1 scw ch = &sc->sc_chans[CLMPCCCHAN(dev)];
482 1.1 scw
483 1.1 scw tp = ch->ch_tty;
484 1.1 scw
485 1.30 elad if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
486 1.1 scw return EBUSY;
487 1.1 scw
488 1.1 scw /*
489 1.1 scw * Do the following iff this is a first open.
490 1.1 scw */
491 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
492 1.1 scw
493 1.1 scw ttychars(tp);
494 1.1 scw
495 1.1 scw tp->t_dev = dev;
496 1.1 scw tp->t_iflag = TTYDEF_IFLAG;
497 1.1 scw tp->t_oflag = TTYDEF_OFLAG;
498 1.1 scw tp->t_lflag = TTYDEF_LFLAG;
499 1.1 scw tp->t_cflag = TTYDEF_CFLAG;
500 1.1 scw tp->t_ospeed = tp->t_ispeed = TTYDEF_SPEED;
501 1.1 scw
502 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_CLOCAL) )
503 1.1 scw SET(tp->t_cflag, CLOCAL);
504 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_CRTSCTS) )
505 1.1 scw SET(tp->t_cflag, CRTSCTS);
506 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_MDMBUF) )
507 1.1 scw SET(tp->t_cflag, MDMBUF);
508 1.1 scw
509 1.1 scw /*
510 1.1 scw * Override some settings if the channel is being
511 1.1 scw * used as the console.
512 1.1 scw */
513 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
514 1.1 scw tp->t_ospeed = tp->t_ispeed = cons_rate;
515 1.1 scw SET(tp->t_cflag, CLOCAL);
516 1.1 scw CLR(tp->t_cflag, CRTSCTS);
517 1.1 scw CLR(tp->t_cflag, HUPCL);
518 1.1 scw }
519 1.1 scw
520 1.1 scw ch->ch_control = 0;
521 1.1 scw
522 1.1 scw clmpcc_param(tp, &tp->t_termios);
523 1.1 scw ttsetwater(tp);
524 1.1 scw
525 1.1 scw /* Clear the input ring */
526 1.1 scw ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
527 1.1 scw
528 1.1 scw /* Select the channel */
529 1.1 scw oldch = clmpcc_select_channel(sc, ch->ch_car);
530 1.1 scw
531 1.1 scw /* Reset it */
532 1.1 scw clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_CLEAR |
533 1.1 scw CLMPCC_CCR_T0_RX_EN |
534 1.1 scw CLMPCC_CCR_T0_TX_EN);
535 1.1 scw
536 1.1 scw /* Enable receiver and modem change interrupts. */
537 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_MODEM |
538 1.1 scw CLMPCC_IER_RET |
539 1.1 scw CLMPCC_IER_RX_FIFO);
540 1.1 scw
541 1.1 scw /* Raise RTS and DTR */
542 1.1 scw clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
543 1.1 scw
544 1.1 scw clmpcc_select_channel(sc, oldch);
545 1.25 kleink }
546 1.24 perry
547 1.1 scw error = ttyopen(tp, CLMPCCDIALOUT(dev), ISSET(flag, O_NONBLOCK));
548 1.1 scw if (error)
549 1.1 scw goto bad;
550 1.1 scw
551 1.14 eeh error = (*tp->t_linesw->l_open)(dev, tp);
552 1.1 scw if (error)
553 1.1 scw goto bad;
554 1.1 scw
555 1.1 scw return 0;
556 1.1 scw
557 1.1 scw bad:
558 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
559 1.1 scw /*
560 1.1 scw * We failed to open the device, and nobody else had it opened.
561 1.1 scw * Clean up the state as appropriate.
562 1.1 scw */
563 1.1 scw clmpcc_shutdown(ch);
564 1.1 scw }
565 1.1 scw
566 1.1 scw return error;
567 1.1 scw }
568 1.24 perry
569 1.1 scw int
570 1.39 cegger clmpccclose(dev_t dev, int flag, int mode, struct lwp *l)
571 1.1 scw {
572 1.11 thorpej struct clmpcc_softc *sc =
573 1.39 cegger device_lookup_private(&clmpcc_cd, CLMPCCUNIT(dev));
574 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
575 1.1 scw struct tty *tp = ch->ch_tty;
576 1.1 scw int s;
577 1.1 scw
578 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) )
579 1.1 scw return 0;
580 1.1 scw
581 1.14 eeh (*tp->t_linesw->l_close)(tp, flag);
582 1.1 scw
583 1.1 scw s = spltty();
584 1.1 scw
585 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
586 1.1 scw /*
587 1.1 scw * Although we got a last close, the device may still be in
588 1.1 scw * use; e.g. if this was the dialout node, and there are still
589 1.1 scw * processes waiting for carrier on the non-dialout node.
590 1.1 scw */
591 1.1 scw clmpcc_shutdown(ch);
592 1.1 scw }
593 1.1 scw
594 1.1 scw ttyclose(tp);
595 1.1 scw
596 1.1 scw splx(s);
597 1.1 scw
598 1.1 scw return 0;
599 1.1 scw }
600 1.24 perry
601 1.1 scw int
602 1.39 cegger clmpccread(dev_t dev, struct uio *uio, int flag)
603 1.1 scw {
604 1.39 cegger struct clmpcc_softc *sc = device_lookup_private(&clmpcc_cd, CLMPCCUNIT(dev));
605 1.1 scw struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
606 1.24 perry
607 1.14 eeh return ((*tp->t_linesw->l_read)(tp, uio, flag));
608 1.1 scw }
609 1.24 perry
610 1.1 scw int
611 1.39 cegger clmpccwrite(dev_t dev, struct uio *uio, int flag)
612 1.1 scw {
613 1.39 cegger struct clmpcc_softc *sc = device_lookup_private(&clmpcc_cd, CLMPCCUNIT(dev));
614 1.1 scw struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
615 1.24 perry
616 1.14 eeh return ((*tp->t_linesw->l_write)(tp, uio, flag));
617 1.16 scw }
618 1.16 scw
619 1.16 scw int
620 1.39 cegger clmpccpoll(dev_t dev, int events, struct lwp *l)
621 1.16 scw {
622 1.39 cegger struct clmpcc_softc *sc = device_lookup_private(&clmpcc_cd, CLMPCCUNIT(dev));
623 1.16 scw struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
624 1.16 scw
625 1.26 christos return ((*tp->t_linesw->l_poll)(tp, events, l));
626 1.1 scw }
627 1.1 scw
628 1.1 scw struct tty *
629 1.39 cegger clmpcctty(dev_t dev)
630 1.1 scw {
631 1.39 cegger struct clmpcc_softc *sc = device_lookup_private(&clmpcc_cd, CLMPCCUNIT(dev));
632 1.1 scw
633 1.1 scw return (sc->sc_chans[CLMPCCCHAN(dev)].ch_tty);
634 1.1 scw }
635 1.1 scw
636 1.1 scw int
637 1.39 cegger clmpccioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
638 1.1 scw {
639 1.39 cegger struct clmpcc_softc *sc = device_lookup_private(&clmpcc_cd, CLMPCCUNIT(dev));
640 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
641 1.1 scw struct tty *tp = ch->ch_tty;
642 1.1 scw int error;
643 1.1 scw
644 1.26 christos error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
645 1.20 atatat if (error != EPASSTHROUGH)
646 1.1 scw return error;
647 1.1 scw
648 1.26 christos error = ttioctl(tp, cmd, data, flag, l);
649 1.20 atatat if (error != EPASSTHROUGH)
650 1.1 scw return error;
651 1.1 scw
652 1.1 scw error = 0;
653 1.1 scw
654 1.1 scw switch (cmd) {
655 1.1 scw case TIOCSBRK:
656 1.1 scw SET(ch->ch_flags, CLMPCC_FLG_START_BREAK);
657 1.1 scw clmpcc_enable_transmitter(ch);
658 1.1 scw break;
659 1.1 scw
660 1.1 scw case TIOCCBRK:
661 1.1 scw SET(ch->ch_flags, CLMPCC_FLG_END_BREAK);
662 1.1 scw clmpcc_enable_transmitter(ch);
663 1.1 scw break;
664 1.1 scw
665 1.1 scw case TIOCSDTR:
666 1.1 scw clmpcc_modem_control(ch, TIOCM_DTR, DMBIS);
667 1.1 scw break;
668 1.1 scw
669 1.1 scw case TIOCCDTR:
670 1.1 scw clmpcc_modem_control(ch, TIOCM_DTR, DMBIC);
671 1.1 scw break;
672 1.1 scw
673 1.1 scw case TIOCMSET:
674 1.1 scw clmpcc_modem_control(ch, *((int *)data), DMSET);
675 1.1 scw break;
676 1.1 scw
677 1.1 scw case TIOCMBIS:
678 1.1 scw clmpcc_modem_control(ch, *((int *)data), DMBIS);
679 1.1 scw break;
680 1.1 scw
681 1.1 scw case TIOCMBIC:
682 1.1 scw clmpcc_modem_control(ch, *((int *)data), DMBIC);
683 1.1 scw break;
684 1.1 scw
685 1.1 scw case TIOCMGET:
686 1.1 scw *((int *)data) = clmpcc_modem_control(ch, 0, DMGET);
687 1.1 scw break;
688 1.1 scw
689 1.1 scw case TIOCGFLAGS:
690 1.1 scw *((int *)data) = ch->ch_openflags;
691 1.1 scw break;
692 1.1 scw
693 1.1 scw case TIOCSFLAGS:
694 1.31 elad error = kauth_authorize_device_tty(l->l_cred,
695 1.31 elad KAUTH_DEVICE_TTY_PRIVSET, tp);
696 1.1 scw if ( error )
697 1.1 scw break;
698 1.1 scw ch->ch_openflags = *((int *)data) &
699 1.1 scw (TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
700 1.1 scw TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
701 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) )
702 1.1 scw SET(ch->ch_openflags, TIOCFLAG_SOFTCAR);
703 1.1 scw break;
704 1.1 scw
705 1.1 scw default:
706 1.20 atatat error = EPASSTHROUGH;
707 1.1 scw break;
708 1.1 scw }
709 1.1 scw
710 1.1 scw return error;
711 1.1 scw }
712 1.1 scw
713 1.1 scw int
714 1.41 dsl clmpcc_modem_control(struct clmpcc_chan *ch, int bits, int howto)
715 1.1 scw {
716 1.1 scw struct clmpcc_softc *sc = ch->ch_sc;
717 1.1 scw struct tty *tp = ch->ch_tty;
718 1.1 scw int oldch;
719 1.1 scw int msvr;
720 1.1 scw int rbits = 0;
721 1.1 scw
722 1.1 scw oldch = clmpcc_select_channel(sc, ch->ch_car);
723 1.1 scw
724 1.1 scw switch ( howto ) {
725 1.1 scw case DMGET:
726 1.1 scw msvr = clmpcc_rd_msvr(sc);
727 1.1 scw
728 1.1 scw if ( sc->sc_swaprtsdtr ) {
729 1.1 scw rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_DTR : 0;
730 1.1 scw rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_RTS : 0;
731 1.1 scw } else {
732 1.1 scw rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_RTS : 0;
733 1.1 scw rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_DTR : 0;
734 1.1 scw }
735 1.1 scw
736 1.1 scw rbits |= (msvr & CLMPCC_MSVR_CTS) ? TIOCM_CTS : 0;
737 1.1 scw rbits |= (msvr & CLMPCC_MSVR_CD) ? TIOCM_CD : 0;
738 1.1 scw rbits |= (msvr & CLMPCC_MSVR_DSR) ? TIOCM_DSR : 0;
739 1.1 scw break;
740 1.1 scw
741 1.1 scw case DMSET:
742 1.1 scw if ( sc->sc_swaprtsdtr ) {
743 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) )
744 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
745 1.1 scw bits & TIOCM_RTS ? CLMPCC_MSVR_DTR : 0);
746 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
747 1.1 scw bits & TIOCM_DTR ? CLMPCC_MSVR_RTS : 0);
748 1.1 scw } else {
749 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) )
750 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
751 1.1 scw bits & TIOCM_RTS ? CLMPCC_MSVR_RTS : 0);
752 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
753 1.1 scw bits & TIOCM_DTR ? CLMPCC_MSVR_DTR : 0);
754 1.1 scw }
755 1.1 scw break;
756 1.1 scw
757 1.1 scw case DMBIS:
758 1.1 scw if ( sc->sc_swaprtsdtr ) {
759 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
760 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
761 1.1 scw if ( ISSET(bits, TIOCM_DTR) )
762 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
763 1.1 scw } else {
764 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
765 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
766 1.1 scw if ( ISSET(bits, TIOCM_DTR) )
767 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
768 1.1 scw }
769 1.1 scw break;
770 1.1 scw
771 1.1 scw case DMBIC:
772 1.1 scw if ( sc->sc_swaprtsdtr ) {
773 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
774 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
775 1.1 scw if ( ISCLR(bits, TIOCM_DTR) )
776 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
777 1.1 scw } else {
778 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
779 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
780 1.1 scw if ( ISCLR(bits, TIOCM_DTR) )
781 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
782 1.1 scw }
783 1.1 scw break;
784 1.1 scw }
785 1.1 scw
786 1.1 scw clmpcc_select_channel(sc, oldch);
787 1.1 scw
788 1.1 scw return rbits;
789 1.1 scw }
790 1.1 scw
791 1.1 scw static int
792 1.40 he clmpcc_param(struct tty *tp, struct termios *t)
793 1.1 scw {
794 1.11 thorpej struct clmpcc_softc *sc =
795 1.39 cegger device_lookup_private(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
796 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
797 1.2 scw u_char cor;
798 1.5 scw u_char oldch;
799 1.1 scw int oclk, obpr;
800 1.1 scw int iclk, ibpr;
801 1.1 scw int s;
802 1.1 scw
803 1.1 scw /* Check requested parameters. */
804 1.1 scw if ( t->c_ospeed && clmpcc_speed(sc, t->c_ospeed, &oclk, &obpr) < 0 )
805 1.1 scw return EINVAL;
806 1.1 scw
807 1.1 scw if ( t->c_ispeed && clmpcc_speed(sc, t->c_ispeed, &iclk, &ibpr) < 0 )
808 1.1 scw return EINVAL;
809 1.1 scw
810 1.1 scw /*
811 1.1 scw * For the console, always force CLOCAL and !HUPCL, so that the port
812 1.1 scw * is always active.
813 1.1 scw */
814 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_SOFTCAR) ||
815 1.1 scw ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
816 1.1 scw SET(t->c_cflag, CLOCAL);
817 1.1 scw CLR(t->c_cflag, HUPCL);
818 1.1 scw }
819 1.1 scw
820 1.2 scw CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
821 1.2 scw
822 1.1 scw /* If ospeed it zero, hangup the line */
823 1.1 scw clmpcc_modem_control(ch, TIOCM_DTR, t->c_ospeed == 0 ? DMBIC : DMBIS);
824 1.1 scw
825 1.1 scw if ( t->c_ospeed ) {
826 1.2 scw ch->ch_tcor = CLMPCC_TCOR_CLK(oclk);
827 1.2 scw ch->ch_tbpr = obpr;
828 1.2 scw } else {
829 1.2 scw ch->ch_tcor = 0;
830 1.2 scw ch->ch_tbpr = 0;
831 1.1 scw }
832 1.1 scw
833 1.1 scw if ( t->c_ispeed ) {
834 1.2 scw ch->ch_rcor = CLMPCC_RCOR_CLK(iclk);
835 1.2 scw ch->ch_rbpr = ibpr;
836 1.2 scw } else {
837 1.2 scw ch->ch_rcor = 0;
838 1.2 scw ch->ch_rbpr = 0;
839 1.1 scw }
840 1.1 scw
841 1.1 scw /* Work out value to use for COR1 */
842 1.1 scw cor = 0;
843 1.1 scw if ( ISSET(t->c_cflag, PARENB) ) {
844 1.1 scw cor |= CLMPCC_COR1_NORM_PARITY;
845 1.1 scw if ( ISSET(t->c_cflag, PARODD) )
846 1.1 scw cor |= CLMPCC_COR1_ODD_PARITY;
847 1.1 scw }
848 1.1 scw
849 1.1 scw if ( ISCLR(t->c_cflag, INPCK) )
850 1.1 scw cor |= CLMPCC_COR1_IGNORE_PAR;
851 1.1 scw
852 1.1 scw switch ( t->c_cflag & CSIZE ) {
853 1.1 scw case CS5:
854 1.1 scw cor |= CLMPCC_COR1_CHAR_5BITS;
855 1.1 scw break;
856 1.1 scw
857 1.1 scw case CS6:
858 1.1 scw cor |= CLMPCC_COR1_CHAR_6BITS;
859 1.1 scw break;
860 1.1 scw
861 1.1 scw case CS7:
862 1.1 scw cor |= CLMPCC_COR1_CHAR_7BITS;
863 1.1 scw break;
864 1.1 scw
865 1.1 scw case CS8:
866 1.1 scw cor |= CLMPCC_COR1_CHAR_8BITS;
867 1.1 scw break;
868 1.1 scw }
869 1.1 scw
870 1.2 scw ch->ch_cor1 = cor;
871 1.1 scw
872 1.1 scw /*
873 1.1 scw * The only interesting bit in COR2 is 'CTS Automatic Enable'
874 1.1 scw * when hardware flow control is in effect.
875 1.1 scw */
876 1.2 scw ch->ch_cor2 = ISSET(t->c_cflag, CRTSCTS) ? CLMPCC_COR2_CtsAE : 0;
877 1.1 scw
878 1.1 scw /* COR3 needs to be set to the number of stop bits... */
879 1.2 scw ch->ch_cor3 = ISSET(t->c_cflag, CSTOPB) ? CLMPCC_COR3_STOP_2 :
880 1.2 scw CLMPCC_COR3_STOP_1;
881 1.1 scw
882 1.1 scw /*
883 1.1 scw * COR4 contains the FIFO threshold setting.
884 1.1 scw * We adjust the threshold depending on the input speed...
885 1.1 scw */
886 1.1 scw if ( t->c_ispeed <= 1200 )
887 1.2 scw ch->ch_cor4 = CLMPCC_COR4_FIFO_LOW;
888 1.1 scw else if ( t->c_ispeed <= 19200 )
889 1.2 scw ch->ch_cor4 = CLMPCC_COR4_FIFO_MED;
890 1.1 scw else
891 1.2 scw ch->ch_cor4 = CLMPCC_COR4_FIFO_HIGH;
892 1.1 scw
893 1.1 scw /*
894 1.1 scw * If chip is used with CTS and DTR swapped, we can enable
895 1.1 scw * automatic hardware flow control.
896 1.1 scw */
897 1.1 scw if ( sc->sc_swaprtsdtr && ISSET(t->c_cflag, CRTSCTS) )
898 1.2 scw ch->ch_cor5 = CLMPCC_COR5_FLOW_NORM;
899 1.2 scw else
900 1.2 scw ch->ch_cor5 = 0;
901 1.2 scw
902 1.2 scw s = splserial();
903 1.5 scw oldch = clmpcc_select_channel(sc, ch->ch_car);
904 1.5 scw
905 1.5 scw /*
906 1.5 scw * COR2 needs to be set immediately otherwise we might never get
907 1.5 scw * a Tx EMPTY interrupt to change the other parameters.
908 1.5 scw */
909 1.5 scw if ( clmpcc_rdreg(sc, CLMPCC_REG_COR2) != ch->ch_cor2 )
910 1.5 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
911 1.5 scw
912 1.5 scw if ( ISCLR(ch->ch_tty->t_state, TS_BUSY) )
913 1.2 scw clmpcc_set_params(ch);
914 1.5 scw else
915 1.2 scw SET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
916 1.5 scw
917 1.5 scw clmpcc_select_channel(sc, oldch);
918 1.5 scw
919 1.2 scw splx(s);
920 1.2 scw
921 1.2 scw return 0;
922 1.2 scw }
923 1.2 scw
924 1.2 scw static void
925 1.41 dsl clmpcc_set_params(struct clmpcc_chan *ch)
926 1.2 scw {
927 1.2 scw struct clmpcc_softc *sc = ch->ch_sc;
928 1.4 scw u_char r1;
929 1.4 scw u_char r2;
930 1.1 scw
931 1.8 scw if ( ch->ch_tcor || ch->ch_tbpr ) {
932 1.4 scw r1 = clmpcc_rdreg(sc, CLMPCC_REG_TCOR);
933 1.4 scw r2 = clmpcc_rdreg(sc, CLMPCC_REG_TBPR);
934 1.4 scw /* Only write Tx rate if it really has changed */
935 1.4 scw if ( ch->ch_tcor != r1 || ch->ch_tbpr != r2 ) {
936 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_TCOR, ch->ch_tcor);
937 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_TBPR, ch->ch_tbpr);
938 1.4 scw }
939 1.2 scw }
940 1.1 scw
941 1.8 scw if ( ch->ch_rcor || ch->ch_rbpr ) {
942 1.4 scw r1 = clmpcc_rdreg(sc, CLMPCC_REG_RCOR);
943 1.4 scw r2 = clmpcc_rdreg(sc, CLMPCC_REG_RBPR);
944 1.4 scw /* Only write Rx rate if it really has changed */
945 1.4 scw if ( ch->ch_rcor != r1 || ch->ch_rbpr != r2 ) {
946 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_RCOR, ch->ch_rcor);
947 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_RBPR, ch->ch_rbpr);
948 1.4 scw }
949 1.4 scw }
950 1.4 scw
951 1.4 scw if ( clmpcc_rdreg(sc, CLMPCC_REG_COR1) != ch->ch_cor1 ) {
952 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_COR1, ch->ch_cor1);
953 1.4 scw /* Any change to COR1 requires an INIT command */
954 1.4 scw SET(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
955 1.2 scw }
956 1.4 scw
957 1.4 scw if ( clmpcc_rdreg(sc, CLMPCC_REG_COR3) != ch->ch_cor3 )
958 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_COR3, ch->ch_cor3);
959 1.4 scw
960 1.4 scw r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
961 1.4 scw if ( ch->ch_cor4 != (r1 & CLMPCC_COR4_FIFO_MASK) ) {
962 1.4 scw /*
963 1.9 scw * Note: If the FIFO has changed, we always set it to
964 1.4 scw * zero here and disable the Receive Timeout interrupt.
965 1.4 scw * It's up to the Rx Interrupt handler to pick the
966 1.9 scw * appropriate moment to write the new FIFO length.
967 1.4 scw */
968 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, r1 & ~CLMPCC_COR4_FIFO_MASK);
969 1.4 scw r1 = clmpcc_rdreg(sc, CLMPCC_REG_IER);
970 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, r1 & ~CLMPCC_IER_RET);
971 1.4 scw SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
972 1.4 scw }
973 1.1 scw
974 1.4 scw r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR5);
975 1.4 scw if ( ch->ch_cor5 != (r1 & CLMPCC_COR5_FLOW_MASK) ) {
976 1.4 scw r1 &= ~CLMPCC_COR5_FLOW_MASK;
977 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_COR5, r1 | ch->ch_cor5);
978 1.4 scw }
979 1.1 scw }
980 1.1 scw
981 1.1 scw static void
982 1.39 cegger clmpcc_start(struct tty *tp)
983 1.1 scw {
984 1.11 thorpej struct clmpcc_softc *sc =
985 1.39 cegger device_lookup_private(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
986 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
987 1.6 scw u_int oldch;
988 1.1 scw int s;
989 1.1 scw
990 1.1 scw s = spltty();
991 1.1 scw
992 1.6 scw if ( ISCLR(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
993 1.36 ad ttypull(tp);
994 1.9 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK |
995 1.9 scw CLMPCC_FLG_END_BREAK) ||
996 1.9 scw tp->t_outq.c_cc > 0 ) {
997 1.9 scw
998 1.9 scw if ( ISCLR(ch->ch_flags, CLMPCC_FLG_START_BREAK |
999 1.9 scw CLMPCC_FLG_END_BREAK) ) {
1000 1.9 scw ch->ch_obuf_addr = tp->t_outq.c_cf;
1001 1.9 scw ch->ch_obuf_size = ndqb(&tp->t_outq, 0);
1002 1.9 scw }
1003 1.6 scw
1004 1.6 scw /* Enable TX empty interrupts */
1005 1.6 scw oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
1006 1.6 scw clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
1007 1.6 scw clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) |
1008 1.6 scw CLMPCC_IER_TX_EMPTY);
1009 1.6 scw clmpcc_select_channel(ch->ch_sc, oldch);
1010 1.6 scw SET(tp->t_state, TS_BUSY);
1011 1.1 scw }
1012 1.1 scw }
1013 1.1 scw
1014 1.1 scw splx(s);
1015 1.1 scw }
1016 1.1 scw
1017 1.1 scw /*
1018 1.1 scw * Stop output on a line.
1019 1.1 scw */
1020 1.1 scw void
1021 1.40 he clmpccstop(struct tty *tp, int flag)
1022 1.1 scw {
1023 1.11 thorpej struct clmpcc_softc *sc =
1024 1.39 cegger device_lookup_private(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1025 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1026 1.1 scw int s;
1027 1.1 scw
1028 1.6 scw s = splserial();
1029 1.1 scw
1030 1.1 scw if ( ISSET(tp->t_state, TS_BUSY) ) {
1031 1.1 scw if ( ISCLR(tp->t_state, TS_TTSTOP) )
1032 1.1 scw SET(tp->t_state, TS_FLUSH);
1033 1.6 scw ch->ch_obuf_size = 0;
1034 1.1 scw }
1035 1.1 scw splx(s);
1036 1.1 scw }
1037 1.1 scw
1038 1.1 scw /*
1039 1.1 scw * RX interrupt routine
1040 1.1 scw */
1041 1.1 scw int
1042 1.41 dsl clmpcc_rxintr(void *arg)
1043 1.1 scw {
1044 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1045 1.1 scw struct clmpcc_chan *ch;
1046 1.1 scw u_int8_t *put, *end, rxd;
1047 1.1 scw u_char errstat;
1048 1.2 scw u_char fc, tc;
1049 1.2 scw u_char risr;
1050 1.2 scw u_char rir;
1051 1.1 scw #ifdef DDB
1052 1.1 scw int saw_break = 0;
1053 1.1 scw #endif
1054 1.1 scw
1055 1.1 scw /* Receive interrupt active? */
1056 1.1 scw rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1057 1.1 scw
1058 1.1 scw /*
1059 1.1 scw * If we're using auto-vectored interrupts, we have to
1060 1.1 scw * verify if the chip is generating the interrupt.
1061 1.1 scw */
1062 1.1 scw if ( sc->sc_vector_base == 0 && (rir & CLMPCC_RIR_RACT) == 0 )
1063 1.1 scw return 0;
1064 1.1 scw
1065 1.1 scw /* Get pointer to interrupting channel's data structure */
1066 1.1 scw ch = &sc->sc_chans[rir & CLMPCC_RIR_RCN_MASK];
1067 1.1 scw
1068 1.1 scw /* Get the interrupt status register */
1069 1.1 scw risr = clmpcc_rdreg(sc, CLMPCC_REG_RISRl);
1070 1.1 scw if ( risr & CLMPCC_RISR_TIMEOUT ) {
1071 1.1 scw u_char reg;
1072 1.1 scw /*
1073 1.1 scw * Set the FIFO threshold to zero, and disable
1074 1.1 scw * further receive timeout interrupts.
1075 1.1 scw */
1076 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1077 1.8 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg & ~CLMPCC_COR4_FIFO_MASK);
1078 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1079 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, reg & ~CLMPCC_IER_RET);
1080 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1081 1.1 scw SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1082 1.1 scw return 1;
1083 1.1 scw }
1084 1.1 scw
1085 1.1 scw /* How many bytes are waiting in the FIFO? */
1086 1.1 scw fc = tc = clmpcc_rdreg(sc, CLMPCC_REG_RFOC) & CLMPCC_RFOC_MASK;
1087 1.1 scw
1088 1.1 scw #ifdef DDB
1089 1.1 scw /*
1090 1.1 scw * Allow BREAK on the console to drop to the debugger.
1091 1.1 scw */
1092 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) &&
1093 1.1 scw risr & CLMPCC_RISR_BREAK ) {
1094 1.1 scw saw_break = 1;
1095 1.1 scw }
1096 1.1 scw #endif
1097 1.1 scw
1098 1.1 scw if ( ISCLR(ch->ch_tty->t_state, TS_ISOPEN) && fc ) {
1099 1.1 scw /* Just get rid of the data */
1100 1.1 scw while ( fc-- )
1101 1.1 scw (void) clmpcc_rd_rxdata(sc);
1102 1.1 scw goto rx_done;
1103 1.1 scw }
1104 1.1 scw
1105 1.1 scw put = ch->ch_ibuf_wr;
1106 1.1 scw end = ch->ch_ibuf_end;
1107 1.1 scw
1108 1.1 scw /*
1109 1.1 scw * Note: The chip is completely hosed WRT these error
1110 1.1 scw * conditions; there seems to be no way to associate
1111 1.24 perry * the error with the correct character in the FIFO.
1112 1.1 scw * We compromise by tagging the first character we read
1113 1.1 scw * with the error. Not perfect, but there's no other way.
1114 1.1 scw */
1115 1.1 scw errstat = 0;
1116 1.1 scw if ( risr & CLMPCC_RISR_PARITY )
1117 1.1 scw errstat |= TTY_PE;
1118 1.1 scw if ( risr & (CLMPCC_RISR_FRAMING | CLMPCC_RISR_BREAK) )
1119 1.1 scw errstat |= TTY_FE;
1120 1.1 scw
1121 1.1 scw /*
1122 1.1 scw * As long as there are characters in the FIFO, and we
1123 1.1 scw * have space for them...
1124 1.1 scw */
1125 1.1 scw while ( fc > 0 ) {
1126 1.1 scw
1127 1.1 scw *put++ = rxd = clmpcc_rd_rxdata(sc);
1128 1.1 scw *put++ = errstat;
1129 1.1 scw
1130 1.1 scw if ( put >= end )
1131 1.1 scw put = ch->ch_ibuf;
1132 1.1 scw
1133 1.1 scw if ( put == ch->ch_ibuf_rd ) {
1134 1.1 scw put -= 2;
1135 1.1 scw if ( put < ch->ch_ibuf )
1136 1.1 scw put = end - 2;
1137 1.1 scw }
1138 1.1 scw
1139 1.1 scw errstat = 0;
1140 1.1 scw fc--;
1141 1.1 scw }
1142 1.1 scw
1143 1.1 scw ch->ch_ibuf_wr = put;
1144 1.1 scw
1145 1.1 scw #if 0
1146 1.1 scw if ( sc->sc_swaprtsdtr == 0 &&
1147 1.1 scw ISSET(cy->cy_tty->t_cflag, CRTSCTS) && cc < ch->ch_r_hiwat) {
1148 1.1 scw /*
1149 1.1 scw * If RTS/DTR are not physically swapped, we have to
1150 1.1 scw * do hardware flow control manually
1151 1.1 scw */
1152 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_MSVR_RTS, 0);
1153 1.1 scw }
1154 1.1 scw #endif
1155 1.1 scw
1156 1.1 scw rx_done:
1157 1.1 scw if ( fc != tc ) {
1158 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR) ) {
1159 1.1 scw u_char reg;
1160 1.1 scw /*
1161 1.1 scw * Set the FIFO threshold to the preset value,
1162 1.1 scw * and enable receive timeout interrupts.
1163 1.1 scw */
1164 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1165 1.2 scw reg = (reg & ~CLMPCC_COR4_FIFO_MASK) | ch->ch_cor4;
1166 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg);
1167 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1168 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, reg | CLMPCC_IER_RET);
1169 1.1 scw CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1170 1.1 scw }
1171 1.1 scw
1172 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1173 1.34 ad softint_schedule(sc->sc_softintr_cookie);
1174 1.1 scw } else
1175 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1176 1.1 scw
1177 1.1 scw #ifdef DDB
1178 1.1 scw /*
1179 1.1 scw * Only =after= we write REOIR is it safe to drop to the debugger.
1180 1.1 scw */
1181 1.1 scw if ( saw_break )
1182 1.1 scw Debugger();
1183 1.1 scw #endif
1184 1.1 scw
1185 1.1 scw return 1;
1186 1.1 scw }
1187 1.1 scw
1188 1.1 scw /*
1189 1.1 scw * Tx interrupt routine
1190 1.1 scw */
1191 1.1 scw int
1192 1.41 dsl clmpcc_txintr(void *arg)
1193 1.1 scw {
1194 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1195 1.1 scw struct clmpcc_chan *ch;
1196 1.1 scw struct tty *tp;
1197 1.2 scw u_char ftc, oftc;
1198 1.9 scw u_char tir, teoir;
1199 1.9 scw int etcmode = 0;
1200 1.1 scw
1201 1.1 scw /* Tx interrupt active? */
1202 1.1 scw tir = clmpcc_rdreg(sc, CLMPCC_REG_TIR);
1203 1.1 scw
1204 1.1 scw /*
1205 1.1 scw * If we're using auto-vectored interrupts, we have to
1206 1.1 scw * verify if the chip is generating the interrupt.
1207 1.1 scw */
1208 1.1 scw if ( sc->sc_vector_base == 0 && (tir & CLMPCC_TIR_TACT) == 0 )
1209 1.1 scw return 0;
1210 1.1 scw
1211 1.1 scw /* Get pointer to interrupting channel's data structure */
1212 1.1 scw ch = &sc->sc_chans[tir & CLMPCC_TIR_TCN_MASK];
1213 1.2 scw tp = ch->ch_tty;
1214 1.1 scw
1215 1.1 scw /* Dummy read of the interrupt status register */
1216 1.1 scw (void) clmpcc_rdreg(sc, CLMPCC_REG_TISR);
1217 1.1 scw
1218 1.9 scw /* Make sure embedded transmit commands are disabled */
1219 1.9 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
1220 1.9 scw
1221 1.1 scw ftc = oftc = clmpcc_rdreg(sc, CLMPCC_REG_TFTC);
1222 1.1 scw
1223 1.2 scw /* Handle a delayed parameter change */
1224 1.2 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS) ) {
1225 1.6 scw CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
1226 1.2 scw clmpcc_set_params(ch);
1227 1.2 scw }
1228 1.2 scw
1229 1.6 scw if ( ch->ch_obuf_size > 0 ) {
1230 1.6 scw u_int n = min(ch->ch_obuf_size, ftc);
1231 1.1 scw
1232 1.6 scw clmpcc_wrtx_multi(sc, ch->ch_obuf_addr, n);
1233 1.2 scw
1234 1.6 scw ftc -= n;
1235 1.6 scw ch->ch_obuf_size -= n;
1236 1.6 scw ch->ch_obuf_addr += n;
1237 1.9 scw
1238 1.1 scw } else {
1239 1.1 scw /*
1240 1.9 scw * Check if we should start/stop a break
1241 1.1 scw */
1242 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK) ) {
1243 1.1 scw CLR(ch->ch_flags, CLMPCC_FLG_START_BREAK);
1244 1.9 scw /* Enable embedded transmit commands */
1245 1.9 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1246 1.9 scw ch->ch_cor2 | CLMPCC_COR2_ETC);
1247 1.9 scw clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1248 1.9 scw clmpcc_wr_txdata(sc, CLMPCC_ETC_SEND_BREAK);
1249 1.9 scw ftc -= 2;
1250 1.9 scw etcmode = 1;
1251 1.1 scw }
1252 1.1 scw
1253 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_END_BREAK) ) {
1254 1.1 scw CLR(ch->ch_flags, CLMPCC_FLG_END_BREAK);
1255 1.9 scw /* Enable embedded transmit commands */
1256 1.9 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1257 1.9 scw ch->ch_cor2 | CLMPCC_COR2_ETC);
1258 1.9 scw clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1259 1.9 scw clmpcc_wr_txdata(sc, CLMPCC_ETC_STOP_BREAK);
1260 1.9 scw ftc -= 2;
1261 1.9 scw etcmode = 1;
1262 1.1 scw }
1263 1.9 scw }
1264 1.9 scw
1265 1.9 scw tir = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1266 1.1 scw
1267 1.9 scw if ( ftc != oftc ) {
1268 1.9 scw /*
1269 1.9 scw * Enable/disable the Tx FIFO threshold interrupt
1270 1.9 scw * according to how much data is in the FIFO.
1271 1.9 scw * However, always disable the FIFO threshold if
1272 1.9 scw * we've left the channel in 'Embedded Transmit
1273 1.9 scw * Command' mode.
1274 1.9 scw */
1275 1.9 scw if ( etcmode || ftc >= ch->ch_cor4 )
1276 1.9 scw tir &= ~CLMPCC_IER_TX_FIFO;
1277 1.9 scw else
1278 1.9 scw tir |= CLMPCC_IER_TX_FIFO;
1279 1.9 scw teoir = 0;
1280 1.9 scw } else {
1281 1.1 scw /*
1282 1.9 scw * No data was sent.
1283 1.9 scw * Disable transmit interrupt.
1284 1.1 scw */
1285 1.9 scw tir &= ~(CLMPCC_IER_TX_EMPTY|CLMPCC_IER_TX_FIFO);
1286 1.9 scw teoir = CLMPCC_TEOIR_NO_TRANS;
1287 1.1 scw
1288 1.6 scw /*
1289 1.6 scw * Request Tx processing in the soft interrupt handler
1290 1.6 scw */
1291 1.6 scw ch->ch_tx_done = 1;
1292 1.34 ad softint_schedule(sc->sc_softintr_cookie);
1293 1.2 scw }
1294 1.2 scw
1295 1.9 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, tir);
1296 1.9 scw clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, teoir);
1297 1.1 scw
1298 1.1 scw return 1;
1299 1.1 scw }
1300 1.1 scw
1301 1.1 scw /*
1302 1.1 scw * Modem change interrupt routine
1303 1.1 scw */
1304 1.1 scw int
1305 1.41 dsl clmpcc_mdintr(void *arg)
1306 1.1 scw {
1307 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1308 1.2 scw u_char mir;
1309 1.1 scw
1310 1.1 scw /* Modem status interrupt active? */
1311 1.1 scw mir = clmpcc_rdreg(sc, CLMPCC_REG_MIR);
1312 1.1 scw
1313 1.1 scw /*
1314 1.1 scw * If we're using auto-vectored interrupts, we have to
1315 1.1 scw * verify if the chip is generating the interrupt.
1316 1.1 scw */
1317 1.1 scw if ( sc->sc_vector_base == 0 && (mir & CLMPCC_MIR_MACT) == 0 )
1318 1.1 scw return 0;
1319 1.1 scw
1320 1.1 scw /* Dummy read of the interrupt status register */
1321 1.1 scw (void) clmpcc_rdreg(sc, CLMPCC_REG_MISR);
1322 1.1 scw
1323 1.1 scw /* Retrieve current status of modem lines. */
1324 1.1 scw sc->sc_chans[mir & CLMPCC_MIR_MCN_MASK].ch_control |=
1325 1.1 scw clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1326 1.1 scw
1327 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_MEOIR, 0);
1328 1.34 ad softint_schedule(sc->sc_softintr_cookie);
1329 1.1 scw
1330 1.1 scw return 1;
1331 1.1 scw }
1332 1.1 scw
1333 1.10 scw void
1334 1.41 dsl clmpcc_softintr(void *arg)
1335 1.1 scw {
1336 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1337 1.1 scw struct clmpcc_chan *ch;
1338 1.2 scw struct tty *tp;
1339 1.23 perry int (*rint)(int, struct tty *);
1340 1.1 scw u_char *get;
1341 1.2 scw u_char reg;
1342 1.1 scw u_int c;
1343 1.1 scw int chan;
1344 1.1 scw
1345 1.1 scw /* Handle Modem state changes too... */
1346 1.1 scw
1347 1.1 scw for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
1348 1.1 scw ch = &sc->sc_chans[chan];
1349 1.2 scw tp = ch->ch_tty;
1350 1.2 scw
1351 1.1 scw get = ch->ch_ibuf_rd;
1352 1.14 eeh rint = tp->t_linesw->l_rint;
1353 1.1 scw
1354 1.1 scw /* Squirt buffered incoming data into the tty layer */
1355 1.1 scw while ( get != ch->ch_ibuf_wr ) {
1356 1.2 scw c = get[0];
1357 1.2 scw c |= ((u_int)get[1]) << 8;
1358 1.2 scw if ( (rint)(c, tp) == -1 ) {
1359 1.6 scw ch->ch_ibuf_rd = ch->ch_ibuf_wr;
1360 1.6 scw break;
1361 1.2 scw }
1362 1.1 scw
1363 1.2 scw get += 2;
1364 1.1 scw if ( get == ch->ch_ibuf_end )
1365 1.1 scw get = ch->ch_ibuf;
1366 1.1 scw
1367 1.1 scw ch->ch_ibuf_rd = get;
1368 1.1 scw }
1369 1.2 scw
1370 1.6 scw /*
1371 1.6 scw * Is the transmitter idle and in need of attention?
1372 1.6 scw */
1373 1.6 scw if ( ch->ch_tx_done ) {
1374 1.6 scw ch->ch_tx_done = 0;
1375 1.2 scw
1376 1.6 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_NEED_INIT) ) {
1377 1.6 scw clmpcc_channel_cmd(sc, ch->ch_car,
1378 1.6 scw CLMPCC_CCR_T0_INIT |
1379 1.6 scw CLMPCC_CCR_T0_RX_EN |
1380 1.6 scw CLMPCC_CCR_T0_TX_EN);
1381 1.6 scw CLR(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1382 1.6 scw
1383 1.6 scw /*
1384 1.6 scw * Allow time for the channel to initialise.
1385 1.6 scw * (Empirically derived duration; there must
1386 1.6 scw * be another way to determine the command
1387 1.6 scw * has completed without busy-waiting...)
1388 1.6 scw */
1389 1.6 scw delay(800);
1390 1.6 scw
1391 1.6 scw /*
1392 1.6 scw * Update the tty layer's idea of the carrier
1393 1.6 scw * bit, in case we changed CLOCAL or MDMBUF.
1394 1.6 scw * We don't hang up here; we only do that by
1395 1.6 scw * explicit request.
1396 1.6 scw */
1397 1.6 scw reg = clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1398 1.14 eeh (*tp->t_linesw->l_modem)(tp, reg != 0);
1399 1.6 scw }
1400 1.4 scw
1401 1.6 scw CLR(tp->t_state, TS_BUSY);
1402 1.6 scw if ( ISSET(tp->t_state, TS_FLUSH) )
1403 1.6 scw CLR(tp->t_state, TS_FLUSH);
1404 1.6 scw else
1405 1.6 scw ndflush(&tp->t_outq,
1406 1.6 scw (int)(ch->ch_obuf_addr - tp->t_outq.c_cf));
1407 1.2 scw
1408 1.14 eeh (*tp->t_linesw->l_start)(tp);
1409 1.6 scw }
1410 1.1 scw }
1411 1.1 scw }
1412 1.1 scw
1413 1.1 scw
1414 1.1 scw /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1415 1.1 scw /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1416 1.1 scw /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1417 1.1 scw /*
1418 1.1 scw * Following are all routines needed for a cd240x channel to act as console
1419 1.1 scw */
1420 1.1 scw int
1421 1.41 dsl clmpcc_cnattach(struct clmpcc_softc *sc, int chan, int rate)
1422 1.1 scw {
1423 1.1 scw cons_sc = sc;
1424 1.1 scw cons_chan = chan;
1425 1.1 scw cons_rate = rate;
1426 1.1 scw
1427 1.17 scw return (clmpcc_init(sc));
1428 1.1 scw }
1429 1.1 scw
1430 1.1 scw /*
1431 1.1 scw * The following functions are polled getc and putc routines, for console use.
1432 1.1 scw */
1433 1.1 scw static int
1434 1.41 dsl clmpcc_common_getc(struct clmpcc_softc *sc, int chan)
1435 1.1 scw {
1436 1.1 scw u_char old_chan;
1437 1.1 scw u_char old_ier;
1438 1.1 scw u_char ch, rir, risr;
1439 1.1 scw int s;
1440 1.1 scw
1441 1.1 scw s = splhigh();
1442 1.1 scw
1443 1.4 scw /* Save the currently active channel */
1444 1.1 scw old_chan = clmpcc_select_channel(sc, chan);
1445 1.1 scw
1446 1.1 scw /*
1447 1.1 scw * We have to put the channel into RX interrupt mode before
1448 1.1 scw * trying to read the Rx data register. So save the previous
1449 1.1 scw * interrupt mode.
1450 1.1 scw */
1451 1.1 scw old_ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1452 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_RX_FIFO);
1453 1.1 scw
1454 1.1 scw /* Loop until we get a character */
1455 1.1 scw for (;;) {
1456 1.1 scw /*
1457 1.1 scw * The REN bit will be set in the Receive Interrupt Register
1458 1.1 scw * when the CD240x has a character to process. Remember,
1459 1.1 scw * the RACT bit won't be set until we generate an interrupt
1460 1.1 scw * acknowledge cycle via the MD front-end.
1461 1.1 scw */
1462 1.1 scw rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1463 1.1 scw if ( (rir & CLMPCC_RIR_REN) == 0 )
1464 1.1 scw continue;
1465 1.1 scw
1466 1.1 scw /* Acknowledge the request */
1467 1.1 scw if ( sc->sc_iackhook )
1468 1.1 scw (sc->sc_iackhook)(sc, CLMPCC_IACK_RX);
1469 1.1 scw
1470 1.1 scw /*
1471 1.1 scw * Determine if the interrupt is for the required channel
1472 1.1 scw * and if valid data is available.
1473 1.1 scw */
1474 1.1 scw rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1475 1.1 scw risr = clmpcc_rdreg(sc, CLMPCC_REG_RISR);
1476 1.1 scw if ( (rir & CLMPCC_RIR_RCN_MASK) != chan ||
1477 1.1 scw risr != 0 ) {
1478 1.1 scw /* Rx error, or BREAK */
1479 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR,
1480 1.1 scw CLMPCC_REOIR_NO_TRANS);
1481 1.1 scw } else {
1482 1.1 scw /* Dummy read of the FIFO count register */
1483 1.1 scw (void) clmpcc_rdreg(sc, CLMPCC_REG_RFOC);
1484 1.1 scw
1485 1.1 scw /* Fetch the received character */
1486 1.1 scw ch = clmpcc_rd_rxdata(sc);
1487 1.1 scw
1488 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1489 1.1 scw break;
1490 1.1 scw }
1491 1.1 scw }
1492 1.1 scw
1493 1.4 scw /* Restore the original IER and CAR register contents */
1494 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, old_ier);
1495 1.1 scw clmpcc_select_channel(sc, old_chan);
1496 1.1 scw
1497 1.1 scw splx(s);
1498 1.1 scw return ch;
1499 1.1 scw }
1500 1.1 scw
1501 1.1 scw
1502 1.1 scw static void
1503 1.41 dsl clmpcc_common_putc(struct clmpcc_softc *sc, int chan, int c)
1504 1.1 scw {
1505 1.1 scw u_char old_chan;
1506 1.1 scw int s = splhigh();
1507 1.1 scw
1508 1.4 scw /* Save the currently active channel */
1509 1.1 scw old_chan = clmpcc_select_channel(sc, chan);
1510 1.4 scw
1511 1.4 scw /*
1512 1.4 scw * Since we can only access the Tx Data register from within
1513 1.4 scw * the interrupt handler, the easiest way to get console data
1514 1.4 scw * onto the wire is using one of the Special Transmit Character
1515 1.4 scw * registers.
1516 1.4 scw */
1517 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_SCHR4, c);
1518 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_STCR, CLMPCC_STCR_SSPC(4) |
1519 1.1 scw CLMPCC_STCR_SND_SPC);
1520 1.1 scw
1521 1.4 scw /* Wait until the "Send Special Character" command is accepted */
1522 1.1 scw while ( clmpcc_rdreg(sc, CLMPCC_REG_STCR) != 0 )
1523 1.1 scw ;
1524 1.1 scw
1525 1.4 scw /* Restore the previous channel selected */
1526 1.1 scw clmpcc_select_channel(sc, old_chan);
1527 1.1 scw
1528 1.1 scw splx(s);
1529 1.1 scw }
1530 1.1 scw
1531 1.1 scw int
1532 1.41 dsl clmpcccngetc(dev_t dev)
1533 1.1 scw {
1534 1.1 scw return clmpcc_common_getc(cons_sc, cons_chan);
1535 1.1 scw }
1536 1.1 scw
1537 1.1 scw /*
1538 1.1 scw * Console kernel output character routine.
1539 1.1 scw */
1540 1.1 scw void
1541 1.41 dsl clmpcccnputc(dev_t dev, int c)
1542 1.1 scw {
1543 1.1 scw if ( c == '\n' )
1544 1.1 scw clmpcc_common_putc(cons_sc, cons_chan, '\r');
1545 1.1 scw
1546 1.1 scw clmpcc_common_putc(cons_sc, cons_chan, c);
1547 1.1 scw }
1548