clmpcc.c revision 1.46 1 1.46 chs /* $NetBSD: clmpcc.c,v 1.46 2012/10/27 17:18:19 chs Exp $ */
2 1.1 scw
3 1.1 scw /*-
4 1.1 scw * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 scw * All rights reserved.
6 1.1 scw *
7 1.1 scw * This code is derived from software contributed to The NetBSD Foundation
8 1.1 scw * by Steve C. Woodford.
9 1.1 scw *
10 1.1 scw * Redistribution and use in source and binary forms, with or without
11 1.1 scw * modification, are permitted provided that the following conditions
12 1.1 scw * are met:
13 1.1 scw * 1. Redistributions of source code must retain the above copyright
14 1.1 scw * notice, this list of conditions and the following disclaimer.
15 1.1 scw * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 scw * notice, this list of conditions and the following disclaimer in the
17 1.1 scw * documentation and/or other materials provided with the distribution.
18 1.1 scw *
19 1.1 scw * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 scw * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 scw * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 scw * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 scw * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 scw * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 scw * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 scw * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 scw * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 scw * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 scw * POSSIBILITY OF SUCH DAMAGE.
30 1.1 scw */
31 1.1 scw
32 1.1 scw /*
33 1.1 scw * Cirrus Logic CD2400/CD2401 Four Channel Multi-Protocol Comms. Controller.
34 1.1 scw */
35 1.18 lukem
36 1.18 lukem #include <sys/cdefs.h>
37 1.46 chs __KERNEL_RCSID(0, "$NetBSD: clmpcc.c,v 1.46 2012/10/27 17:18:19 chs Exp $");
38 1.1 scw
39 1.1 scw #include "opt_ddb.h"
40 1.1 scw
41 1.1 scw #include <sys/param.h>
42 1.1 scw #include <sys/systm.h>
43 1.1 scw #include <sys/ioctl.h>
44 1.1 scw #include <sys/select.h>
45 1.1 scw #include <sys/tty.h>
46 1.1 scw #include <sys/proc.h>
47 1.1 scw #include <sys/conf.h>
48 1.1 scw #include <sys/file.h>
49 1.1 scw #include <sys/uio.h>
50 1.1 scw #include <sys/kernel.h>
51 1.1 scw #include <sys/syslog.h>
52 1.1 scw #include <sys/device.h>
53 1.1 scw #include <sys/malloc.h>
54 1.28 elad #include <sys/kauth.h>
55 1.34 ad #include <sys/intr.h>
56 1.1 scw
57 1.35 ad #include <sys/bus.h>
58 1.3 scw #include <machine/param.h>
59 1.1 scw
60 1.1 scw #include <dev/ic/clmpccreg.h>
61 1.1 scw #include <dev/ic/clmpccvar.h>
62 1.1 scw #include <dev/cons.h>
63 1.1 scw
64 1.1 scw
65 1.1 scw #if defined(CLMPCC_ONLY_BYTESWAP_LOW) && defined(CLMPCC_ONLY_BYTESWAP_HIGH)
66 1.1 scw #error "CLMPCC_ONLY_BYTESWAP_LOW and CLMPCC_ONLY_BYTESWAP_HIGH are mutually exclusive."
67 1.1 scw #endif
68 1.1 scw
69 1.2 scw
70 1.23 perry static int clmpcc_init(struct clmpcc_softc *sc);
71 1.23 perry static void clmpcc_shutdown(struct clmpcc_chan *);
72 1.23 perry static int clmpcc_speed(struct clmpcc_softc *, speed_t, int *, int *);
73 1.23 perry static int clmpcc_param(struct tty *, struct termios *);
74 1.23 perry static void clmpcc_set_params(struct clmpcc_chan *);
75 1.23 perry static void clmpcc_start(struct tty *);
76 1.23 perry static int clmpcc_modem_control(struct clmpcc_chan *, int, int);
77 1.1 scw
78 1.1 scw #define CLMPCCUNIT(x) (minor(x) & 0x7fffc)
79 1.1 scw #define CLMPCCCHAN(x) (minor(x) & 0x00003)
80 1.1 scw #define CLMPCCDIALOUT(x) (minor(x) & 0x80000)
81 1.1 scw
82 1.1 scw /*
83 1.1 scw * These should be in a header file somewhere...
84 1.1 scw */
85 1.1 scw #define ISCLR(v, f) (((v) & (f)) == 0)
86 1.1 scw
87 1.1 scw extern struct cfdriver clmpcc_cd;
88 1.1 scw
89 1.21 gehenna dev_type_open(clmpccopen);
90 1.21 gehenna dev_type_close(clmpccclose);
91 1.21 gehenna dev_type_read(clmpccread);
92 1.21 gehenna dev_type_write(clmpccwrite);
93 1.21 gehenna dev_type_ioctl(clmpccioctl);
94 1.21 gehenna dev_type_stop(clmpccstop);
95 1.21 gehenna dev_type_tty(clmpcctty);
96 1.21 gehenna dev_type_poll(clmpccpoll);
97 1.21 gehenna
98 1.21 gehenna const struct cdevsw clmpcc_cdevsw = {
99 1.21 gehenna clmpccopen, clmpccclose, clmpccread, clmpccwrite, clmpccioctl,
100 1.22 jdolecek clmpccstop, clmpcctty, clmpccpoll, nommap, ttykqfilter, D_TTY
101 1.21 gehenna };
102 1.1 scw
103 1.1 scw /*
104 1.1 scw * Make this an option variable one can patch.
105 1.1 scw */
106 1.1 scw u_int clmpcc_ibuf_size = CLMPCC_RING_SIZE;
107 1.1 scw
108 1.1 scw
109 1.1 scw /*
110 1.1 scw * Things needed when the device is used as a console
111 1.1 scw */
112 1.1 scw static struct clmpcc_softc *cons_sc = NULL;
113 1.1 scw static int cons_chan;
114 1.1 scw static int cons_rate;
115 1.1 scw
116 1.23 perry static int clmpcc_common_getc(struct clmpcc_softc *, int);
117 1.23 perry static void clmpcc_common_putc(struct clmpcc_softc *, int, int);
118 1.23 perry int clmpcccngetc(dev_t);
119 1.23 perry void clmpcccnputc(dev_t, int);
120 1.1 scw
121 1.1 scw
122 1.1 scw /*
123 1.1 scw * Convenience functions, inlined for speed
124 1.1 scw */
125 1.1 scw #define integrate static inline
126 1.23 perry integrate u_int8_t clmpcc_rdreg(struct clmpcc_softc *, u_int);
127 1.23 perry integrate void clmpcc_wrreg(struct clmpcc_softc *, u_int, u_int);
128 1.23 perry integrate u_int8_t clmpcc_rdreg_odd(struct clmpcc_softc *, u_int);
129 1.23 perry integrate void clmpcc_wrreg_odd(struct clmpcc_softc *, u_int, u_int);
130 1.23 perry integrate void clmpcc_wrtx_multi(struct clmpcc_softc *, u_int8_t *,
131 1.23 perry u_int);
132 1.23 perry integrate u_int8_t clmpcc_select_channel(struct clmpcc_softc *, u_int);
133 1.23 perry integrate void clmpcc_channel_cmd(struct clmpcc_softc *,int,int);
134 1.23 perry integrate void clmpcc_enable_transmitter(struct clmpcc_chan *);
135 1.1 scw
136 1.1 scw #define clmpcc_rd_msvr(s) clmpcc_rdreg_odd(s,CLMPCC_REG_MSVR)
137 1.1 scw #define clmpcc_wr_msvr(s,r,v) clmpcc_wrreg_odd(s,r,v)
138 1.1 scw #define clmpcc_wr_pilr(s,r,v) clmpcc_wrreg_odd(s,r,v)
139 1.1 scw #define clmpcc_rd_rxdata(s) clmpcc_rdreg_odd(s,CLMPCC_REG_RDR)
140 1.1 scw #define clmpcc_wr_txdata(s,v) clmpcc_wrreg_odd(s,CLMPCC_REG_TDR,v)
141 1.1 scw
142 1.1 scw
143 1.1 scw integrate u_int8_t
144 1.41 dsl clmpcc_rdreg(struct clmpcc_softc *sc, u_int offset)
145 1.1 scw {
146 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
147 1.1 scw offset ^= sc->sc_byteswap;
148 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
149 1.1 scw offset ^= CLMPCC_BYTESWAP_HIGH;
150 1.1 scw #endif
151 1.1 scw return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
152 1.1 scw }
153 1.1 scw
154 1.1 scw integrate void
155 1.41 dsl clmpcc_wrreg(struct clmpcc_softc *sc, u_int offset, u_int val)
156 1.1 scw {
157 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
158 1.1 scw offset ^= sc->sc_byteswap;
159 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
160 1.1 scw offset ^= CLMPCC_BYTESWAP_HIGH;
161 1.1 scw #endif
162 1.1 scw bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
163 1.1 scw }
164 1.1 scw
165 1.1 scw integrate u_int8_t
166 1.41 dsl clmpcc_rdreg_odd(struct clmpcc_softc *sc, u_int offset)
167 1.1 scw {
168 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
169 1.1 scw offset ^= (sc->sc_byteswap & 2);
170 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
171 1.1 scw offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
172 1.1 scw #endif
173 1.1 scw return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
174 1.1 scw }
175 1.1 scw
176 1.1 scw integrate void
177 1.41 dsl clmpcc_wrreg_odd(struct clmpcc_softc *sc, u_int offset, u_int val)
178 1.1 scw {
179 1.1 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
180 1.1 scw offset ^= (sc->sc_byteswap & 2);
181 1.1 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
182 1.1 scw offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
183 1.1 scw #endif
184 1.1 scw bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
185 1.1 scw }
186 1.1 scw
187 1.6 scw integrate void
188 1.41 dsl clmpcc_wrtx_multi(struct clmpcc_softc *sc, u_int8_t *buff, u_int count)
189 1.6 scw {
190 1.6 scw u_int offset = CLMPCC_REG_TDR;
191 1.6 scw
192 1.6 scw #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
193 1.6 scw offset ^= (sc->sc_byteswap & 2);
194 1.6 scw #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
195 1.6 scw offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
196 1.6 scw #endif
197 1.6 scw bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh, offset, buff, count);
198 1.6 scw }
199 1.6 scw
200 1.1 scw integrate u_int8_t
201 1.41 dsl clmpcc_select_channel(struct clmpcc_softc *sc, u_int new_chan)
202 1.1 scw {
203 1.1 scw u_int old_chan = clmpcc_rdreg_odd(sc, CLMPCC_REG_CAR);
204 1.1 scw
205 1.1 scw clmpcc_wrreg_odd(sc, CLMPCC_REG_CAR, new_chan);
206 1.1 scw
207 1.1 scw return old_chan;
208 1.1 scw }
209 1.1 scw
210 1.1 scw integrate void
211 1.41 dsl clmpcc_channel_cmd(struct clmpcc_softc *sc, int chan, int cmd)
212 1.1 scw {
213 1.1 scw int i;
214 1.1 scw
215 1.1 scw for (i = 5000; i; i--) {
216 1.1 scw if ( clmpcc_rdreg(sc, CLMPCC_REG_CCR) == 0 )
217 1.1 scw break;
218 1.1 scw delay(1);
219 1.1 scw }
220 1.1 scw
221 1.1 scw if ( i == 0 )
222 1.1 scw printf("%s: channel %d command timeout (idle)\n",
223 1.46 chs device_xname(sc->sc_dev), chan);
224 1.1 scw
225 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_CCR, cmd);
226 1.1 scw }
227 1.1 scw
228 1.1 scw integrate void
229 1.41 dsl clmpcc_enable_transmitter(struct clmpcc_chan *ch)
230 1.1 scw {
231 1.1 scw u_int old;
232 1.2 scw int s;
233 1.1 scw
234 1.1 scw old = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
235 1.1 scw
236 1.2 scw s = splserial();
237 1.1 scw clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
238 1.1 scw clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) | CLMPCC_IER_TX_EMPTY);
239 1.2 scw SET(ch->ch_tty->t_state, TS_BUSY);
240 1.2 scw splx(s);
241 1.2 scw
242 1.1 scw clmpcc_select_channel(ch->ch_sc, old);
243 1.1 scw }
244 1.1 scw
245 1.1 scw static int
246 1.42 dsl clmpcc_speed(struct clmpcc_softc *sc, speed_t speed, int *cor, int *bpr)
247 1.1 scw {
248 1.1 scw int c, co, br;
249 1.1 scw
250 1.1 scw for (co = 0, c = 8; c <= 2048; co++, c *= 4) {
251 1.1 scw br = ((sc->sc_clk / c) / speed) - 1;
252 1.1 scw if ( br < 0x100 ) {
253 1.1 scw *cor = co;
254 1.1 scw *bpr = br;
255 1.1 scw return 0;
256 1.1 scw }
257 1.1 scw }
258 1.1 scw
259 1.1 scw return -1;
260 1.1 scw }
261 1.1 scw
262 1.1 scw void
263 1.41 dsl clmpcc_attach(struct clmpcc_softc *sc)
264 1.1 scw {
265 1.1 scw struct clmpcc_chan *ch;
266 1.1 scw struct tty *tp;
267 1.1 scw int chan;
268 1.1 scw
269 1.1 scw if ( cons_sc != NULL &&
270 1.1 scw sc->sc_iot == cons_sc->sc_iot && sc->sc_ioh == cons_sc->sc_ioh )
271 1.1 scw cons_sc = sc;
272 1.1 scw
273 1.1 scw /* Initialise the chip */
274 1.1 scw clmpcc_init(sc);
275 1.1 scw
276 1.1 scw printf(": Cirrus Logic CD240%c Serial Controller\n",
277 1.1 scw (clmpcc_rd_msvr(sc) & CLMPCC_MSVR_PORT_ID) ? '0' : '1');
278 1.1 scw
279 1.13 scw sc->sc_softintr_cookie =
280 1.34 ad softint_establish(SOFTINT_SERIAL, clmpcc_softintr, sc);
281 1.13 scw if (sc->sc_softintr_cookie == NULL)
282 1.13 scw panic("clmpcc_attach: softintr_establish");
283 1.1 scw memset(&(sc->sc_chans[0]), 0, sizeof(sc->sc_chans));
284 1.1 scw
285 1.1 scw for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
286 1.1 scw ch = &sc->sc_chans[chan];
287 1.1 scw
288 1.1 scw ch->ch_sc = sc;
289 1.1 scw ch->ch_car = chan;
290 1.1 scw
291 1.44 rmind tp = tty_alloc();
292 1.1 scw tp->t_oproc = clmpcc_start;
293 1.1 scw tp->t_param = clmpcc_param;
294 1.1 scw
295 1.1 scw ch->ch_tty = tp;
296 1.1 scw
297 1.1 scw ch->ch_ibuf = malloc(clmpcc_ibuf_size * 2, M_DEVBUF, M_NOWAIT);
298 1.1 scw if ( ch->ch_ibuf == NULL ) {
299 1.46 chs aprint_error_dev(sc->sc_dev, "(%d): unable to allocate ring buffer\n",
300 1.37 cegger chan);
301 1.1 scw return;
302 1.1 scw }
303 1.1 scw
304 1.1 scw ch->ch_ibuf_end = &(ch->ch_ibuf[clmpcc_ibuf_size * 2]);
305 1.1 scw ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
306 1.1 scw
307 1.1 scw tty_attach(tp);
308 1.1 scw }
309 1.1 scw
310 1.46 chs aprint_error_dev(sc->sc_dev, "%d channels available",
311 1.1 scw CLMPCC_NUM_CHANS);
312 1.1 scw if ( cons_sc == sc ) {
313 1.1 scw printf(", console on channel %d.\n", cons_chan);
314 1.1 scw SET(sc->sc_chans[cons_chan].ch_flags, CLMPCC_FLG_IS_CONSOLE);
315 1.1 scw SET(sc->sc_chans[cons_chan].ch_openflags, TIOCFLAG_SOFTCAR);
316 1.1 scw } else
317 1.1 scw printf(".\n");
318 1.1 scw }
319 1.1 scw
320 1.1 scw static int
321 1.41 dsl clmpcc_init(struct clmpcc_softc *sc)
322 1.1 scw {
323 1.1 scw u_int tcor, tbpr;
324 1.1 scw u_int rcor, rbpr;
325 1.1 scw u_int msvr_rts, msvr_dtr;
326 1.1 scw u_int ccr;
327 1.1 scw int is_console;
328 1.1 scw int i;
329 1.1 scw
330 1.1 scw /*
331 1.1 scw * All we're really concerned about here is putting the chip
332 1.1 scw * into a quiescent state so that it won't do anything until
333 1.1 scw * clmpccopen() is called. (Except the console channel.)
334 1.1 scw */
335 1.1 scw
336 1.1 scw /*
337 1.1 scw * If the chip is acting as console, set all channels to the supplied
338 1.1 scw * console baud rate. Otherwise, plump for 9600.
339 1.1 scw */
340 1.1 scw if ( cons_sc &&
341 1.1 scw sc->sc_ioh == cons_sc->sc_ioh && sc->sc_iot == cons_sc->sc_iot ) {
342 1.1 scw clmpcc_speed(sc, cons_rate, &tcor, &tbpr);
343 1.1 scw clmpcc_speed(sc, cons_rate, &rcor, &rbpr);
344 1.1 scw is_console = 1;
345 1.1 scw } else {
346 1.1 scw clmpcc_speed(sc, 9600, &tcor, &tbpr);
347 1.1 scw clmpcc_speed(sc, 9600, &rcor, &rbpr);
348 1.1 scw is_console = 0;
349 1.1 scw }
350 1.1 scw
351 1.1 scw /* Allow any pending output to be sent */
352 1.1 scw delay(10000);
353 1.1 scw
354 1.1 scw /* Send the Reset All command to channel 0 (resets all channels!) */
355 1.1 scw clmpcc_channel_cmd(sc, 0, CLMPCC_CCR_T0_RESET_ALL);
356 1.1 scw
357 1.1 scw delay(1000);
358 1.1 scw
359 1.1 scw /*
360 1.1 scw * The chip will set it's firmware revision register to a non-zero
361 1.1 scw * value to indicate completion of reset.
362 1.1 scw */
363 1.1 scw for (i = 10000; clmpcc_rdreg(sc, CLMPCC_REG_GFRCR) == 0 && i; i--)
364 1.1 scw delay(1);
365 1.1 scw
366 1.1 scw if ( i == 0 ) {
367 1.1 scw /*
368 1.1 scw * Watch out... If this chip is console, the message
369 1.1 scw * probably won't be sent since we just reset it!
370 1.1 scw */
371 1.46 chs aprint_error_dev(sc->sc_dev, "Failed to reset chip\n");
372 1.1 scw return -1;
373 1.1 scw }
374 1.1 scw
375 1.1 scw for (i = 0; i < CLMPCC_NUM_CHANS; i++) {
376 1.1 scw clmpcc_select_channel(sc, i);
377 1.1 scw
378 1.1 scw /* All interrupts are disabled to begin with */
379 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
380 1.1 scw
381 1.1 scw /* Make sure the channel interrupts on the correct vectors */
382 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_LIVR, sc->sc_vector_base);
383 1.1 scw clmpcc_wr_pilr(sc, CLMPCC_REG_RPILR, sc->sc_rpilr);
384 1.1 scw clmpcc_wr_pilr(sc, CLMPCC_REG_TPILR, sc->sc_tpilr);
385 1.1 scw clmpcc_wr_pilr(sc, CLMPCC_REG_MPILR, sc->sc_mpilr);
386 1.1 scw
387 1.1 scw /* Receive timer prescaler set to 1ms */
388 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TPR,
389 1.1 scw CLMPCC_MSEC_TO_TPR(sc->sc_clk, 1));
390 1.1 scw
391 1.1 scw /* We support Async mode only */
392 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_CMR, CLMPCC_CMR_ASYNC);
393 1.1 scw
394 1.1 scw /* Set the required baud rate */
395 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(tcor));
396 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_TBPR, tbpr);
397 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(rcor));
398 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RBPR, rbpr);
399 1.1 scw
400 1.1 scw /* Always default to 8N1 (XXX what about console?) */
401 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR1, CLMPCC_COR1_CHAR_8BITS |
402 1.1 scw CLMPCC_COR1_NO_PARITY |
403 1.1 scw CLMPCC_COR1_IGNORE_PAR);
404 1.1 scw
405 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2, 0);
406 1.1 scw
407 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR3, CLMPCC_COR3_STOP_1);
408 1.1 scw
409 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, CLMPCC_COR4_DSRzd |
410 1.1 scw CLMPCC_COR4_CDzd |
411 1.1 scw CLMPCC_COR4_CTSzd);
412 1.1 scw
413 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR5, CLMPCC_COR5_DSRod |
414 1.1 scw CLMPCC_COR5_CDod |
415 1.1 scw CLMPCC_COR5_CTSod |
416 1.1 scw CLMPCC_COR5_FLOW_NORM);
417 1.1 scw
418 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR6, 0);
419 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR7, 0);
420 1.1 scw
421 1.1 scw /* Set the receive FIFO timeout */
422 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RTPRl, CLMPCC_RTPR_DEFAULT);
423 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_RTPRh, 0);
424 1.1 scw
425 1.1 scw /* At this point, we set up the console differently */
426 1.1 scw if ( is_console && i == cons_chan ) {
427 1.1 scw msvr_rts = CLMPCC_MSVR_RTS;
428 1.1 scw msvr_dtr = CLMPCC_MSVR_DTR;
429 1.1 scw ccr = CLMPCC_CCR_T0_RX_EN | CLMPCC_CCR_T0_TX_EN;
430 1.1 scw } else {
431 1.1 scw msvr_rts = 0;
432 1.1 scw msvr_dtr = 0;
433 1.1 scw ccr = CLMPCC_CCR_T0_RX_DIS | CLMPCC_CCR_T0_TX_DIS;
434 1.1 scw }
435 1.1 scw
436 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_MSVR_RTS, msvr_rts);
437 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_MSVR_DTR, msvr_dtr);
438 1.1 scw clmpcc_channel_cmd(sc, i, CLMPCC_CCR_T0_INIT | ccr);
439 1.1 scw delay(100);
440 1.1 scw }
441 1.1 scw
442 1.1 scw return 0;
443 1.1 scw }
444 1.1 scw
445 1.1 scw static void
446 1.41 dsl clmpcc_shutdown(struct clmpcc_chan *ch)
447 1.1 scw {
448 1.1 scw int oldch;
449 1.1 scw
450 1.1 scw oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
451 1.1 scw
452 1.1 scw /* Turn off interrupts. */
453 1.1 scw clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER, 0);
454 1.1 scw
455 1.1 scw if ( ISCLR(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
456 1.1 scw /* Disable the transmitter and receiver */
457 1.1 scw clmpcc_channel_cmd(ch->ch_sc, ch->ch_car, CLMPCC_CCR_T0_RX_DIS |
458 1.1 scw CLMPCC_CCR_T0_TX_DIS);
459 1.1 scw
460 1.1 scw /* Drop RTS and DTR */
461 1.1 scw clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
462 1.1 scw }
463 1.1 scw
464 1.1 scw clmpcc_select_channel(ch->ch_sc, oldch);
465 1.1 scw }
466 1.1 scw
467 1.1 scw int
468 1.39 cegger clmpccopen(dev_t dev, int flag, int mode, struct lwp *l)
469 1.1 scw {
470 1.1 scw struct clmpcc_softc *sc;
471 1.1 scw struct clmpcc_chan *ch;
472 1.1 scw struct tty *tp;
473 1.1 scw int oldch;
474 1.1 scw int error;
475 1.11 thorpej
476 1.39 cegger sc = device_lookup_private(&clmpcc_cd, CLMPCCUNIT(dev));
477 1.11 thorpej if (sc == NULL)
478 1.11 thorpej return (ENXIO);
479 1.1 scw
480 1.1 scw ch = &sc->sc_chans[CLMPCCCHAN(dev)];
481 1.1 scw
482 1.1 scw tp = ch->ch_tty;
483 1.1 scw
484 1.30 elad if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
485 1.1 scw return EBUSY;
486 1.1 scw
487 1.1 scw /*
488 1.1 scw * Do the following iff this is a first open.
489 1.1 scw */
490 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
491 1.1 scw
492 1.1 scw ttychars(tp);
493 1.1 scw
494 1.1 scw tp->t_dev = dev;
495 1.1 scw tp->t_iflag = TTYDEF_IFLAG;
496 1.1 scw tp->t_oflag = TTYDEF_OFLAG;
497 1.1 scw tp->t_lflag = TTYDEF_LFLAG;
498 1.1 scw tp->t_cflag = TTYDEF_CFLAG;
499 1.1 scw tp->t_ospeed = tp->t_ispeed = TTYDEF_SPEED;
500 1.1 scw
501 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_CLOCAL) )
502 1.1 scw SET(tp->t_cflag, CLOCAL);
503 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_CRTSCTS) )
504 1.1 scw SET(tp->t_cflag, CRTSCTS);
505 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_MDMBUF) )
506 1.1 scw SET(tp->t_cflag, MDMBUF);
507 1.1 scw
508 1.1 scw /*
509 1.1 scw * Override some settings if the channel is being
510 1.1 scw * used as the console.
511 1.1 scw */
512 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
513 1.1 scw tp->t_ospeed = tp->t_ispeed = cons_rate;
514 1.1 scw SET(tp->t_cflag, CLOCAL);
515 1.1 scw CLR(tp->t_cflag, CRTSCTS);
516 1.1 scw CLR(tp->t_cflag, HUPCL);
517 1.1 scw }
518 1.1 scw
519 1.1 scw ch->ch_control = 0;
520 1.1 scw
521 1.1 scw clmpcc_param(tp, &tp->t_termios);
522 1.1 scw ttsetwater(tp);
523 1.1 scw
524 1.1 scw /* Clear the input ring */
525 1.1 scw ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
526 1.1 scw
527 1.1 scw /* Select the channel */
528 1.1 scw oldch = clmpcc_select_channel(sc, ch->ch_car);
529 1.1 scw
530 1.1 scw /* Reset it */
531 1.1 scw clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_CLEAR |
532 1.1 scw CLMPCC_CCR_T0_RX_EN |
533 1.1 scw CLMPCC_CCR_T0_TX_EN);
534 1.1 scw
535 1.1 scw /* Enable receiver and modem change interrupts. */
536 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_MODEM |
537 1.1 scw CLMPCC_IER_RET |
538 1.1 scw CLMPCC_IER_RX_FIFO);
539 1.1 scw
540 1.1 scw /* Raise RTS and DTR */
541 1.1 scw clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
542 1.1 scw
543 1.1 scw clmpcc_select_channel(sc, oldch);
544 1.25 kleink }
545 1.24 perry
546 1.1 scw error = ttyopen(tp, CLMPCCDIALOUT(dev), ISSET(flag, O_NONBLOCK));
547 1.1 scw if (error)
548 1.1 scw goto bad;
549 1.1 scw
550 1.14 eeh error = (*tp->t_linesw->l_open)(dev, tp);
551 1.1 scw if (error)
552 1.1 scw goto bad;
553 1.1 scw
554 1.1 scw return 0;
555 1.1 scw
556 1.1 scw bad:
557 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
558 1.1 scw /*
559 1.1 scw * We failed to open the device, and nobody else had it opened.
560 1.1 scw * Clean up the state as appropriate.
561 1.1 scw */
562 1.1 scw clmpcc_shutdown(ch);
563 1.1 scw }
564 1.1 scw
565 1.1 scw return error;
566 1.1 scw }
567 1.24 perry
568 1.1 scw int
569 1.39 cegger clmpccclose(dev_t dev, int flag, int mode, struct lwp *l)
570 1.1 scw {
571 1.11 thorpej struct clmpcc_softc *sc =
572 1.39 cegger device_lookup_private(&clmpcc_cd, CLMPCCUNIT(dev));
573 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
574 1.1 scw struct tty *tp = ch->ch_tty;
575 1.1 scw int s;
576 1.1 scw
577 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) )
578 1.1 scw return 0;
579 1.1 scw
580 1.14 eeh (*tp->t_linesw->l_close)(tp, flag);
581 1.1 scw
582 1.1 scw s = spltty();
583 1.1 scw
584 1.1 scw if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
585 1.1 scw /*
586 1.1 scw * Although we got a last close, the device may still be in
587 1.1 scw * use; e.g. if this was the dialout node, and there are still
588 1.1 scw * processes waiting for carrier on the non-dialout node.
589 1.1 scw */
590 1.1 scw clmpcc_shutdown(ch);
591 1.1 scw }
592 1.1 scw
593 1.1 scw ttyclose(tp);
594 1.1 scw
595 1.1 scw splx(s);
596 1.1 scw
597 1.1 scw return 0;
598 1.1 scw }
599 1.24 perry
600 1.1 scw int
601 1.39 cegger clmpccread(dev_t dev, struct uio *uio, int flag)
602 1.1 scw {
603 1.39 cegger struct clmpcc_softc *sc = device_lookup_private(&clmpcc_cd, CLMPCCUNIT(dev));
604 1.1 scw struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
605 1.24 perry
606 1.14 eeh return ((*tp->t_linesw->l_read)(tp, uio, flag));
607 1.1 scw }
608 1.24 perry
609 1.1 scw int
610 1.39 cegger clmpccwrite(dev_t dev, struct uio *uio, int flag)
611 1.1 scw {
612 1.39 cegger struct clmpcc_softc *sc = device_lookup_private(&clmpcc_cd, CLMPCCUNIT(dev));
613 1.1 scw struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
614 1.24 perry
615 1.14 eeh return ((*tp->t_linesw->l_write)(tp, uio, flag));
616 1.16 scw }
617 1.16 scw
618 1.16 scw int
619 1.39 cegger clmpccpoll(dev_t dev, int events, struct lwp *l)
620 1.16 scw {
621 1.39 cegger struct clmpcc_softc *sc = device_lookup_private(&clmpcc_cd, CLMPCCUNIT(dev));
622 1.16 scw struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
623 1.16 scw
624 1.26 christos return ((*tp->t_linesw->l_poll)(tp, events, l));
625 1.1 scw }
626 1.1 scw
627 1.1 scw struct tty *
628 1.39 cegger clmpcctty(dev_t dev)
629 1.1 scw {
630 1.39 cegger struct clmpcc_softc *sc = device_lookup_private(&clmpcc_cd, CLMPCCUNIT(dev));
631 1.1 scw
632 1.1 scw return (sc->sc_chans[CLMPCCCHAN(dev)].ch_tty);
633 1.1 scw }
634 1.1 scw
635 1.1 scw int
636 1.39 cegger clmpccioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
637 1.1 scw {
638 1.39 cegger struct clmpcc_softc *sc = device_lookup_private(&clmpcc_cd, CLMPCCUNIT(dev));
639 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
640 1.1 scw struct tty *tp = ch->ch_tty;
641 1.1 scw int error;
642 1.1 scw
643 1.26 christos error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
644 1.20 atatat if (error != EPASSTHROUGH)
645 1.1 scw return error;
646 1.1 scw
647 1.26 christos error = ttioctl(tp, cmd, data, flag, l);
648 1.20 atatat if (error != EPASSTHROUGH)
649 1.1 scw return error;
650 1.1 scw
651 1.1 scw error = 0;
652 1.1 scw
653 1.1 scw switch (cmd) {
654 1.1 scw case TIOCSBRK:
655 1.1 scw SET(ch->ch_flags, CLMPCC_FLG_START_BREAK);
656 1.1 scw clmpcc_enable_transmitter(ch);
657 1.1 scw break;
658 1.1 scw
659 1.1 scw case TIOCCBRK:
660 1.1 scw SET(ch->ch_flags, CLMPCC_FLG_END_BREAK);
661 1.1 scw clmpcc_enable_transmitter(ch);
662 1.1 scw break;
663 1.1 scw
664 1.1 scw case TIOCSDTR:
665 1.1 scw clmpcc_modem_control(ch, TIOCM_DTR, DMBIS);
666 1.1 scw break;
667 1.1 scw
668 1.1 scw case TIOCCDTR:
669 1.1 scw clmpcc_modem_control(ch, TIOCM_DTR, DMBIC);
670 1.1 scw break;
671 1.1 scw
672 1.1 scw case TIOCMSET:
673 1.1 scw clmpcc_modem_control(ch, *((int *)data), DMSET);
674 1.1 scw break;
675 1.1 scw
676 1.1 scw case TIOCMBIS:
677 1.1 scw clmpcc_modem_control(ch, *((int *)data), DMBIS);
678 1.1 scw break;
679 1.1 scw
680 1.1 scw case TIOCMBIC:
681 1.1 scw clmpcc_modem_control(ch, *((int *)data), DMBIC);
682 1.1 scw break;
683 1.1 scw
684 1.1 scw case TIOCMGET:
685 1.1 scw *((int *)data) = clmpcc_modem_control(ch, 0, DMGET);
686 1.1 scw break;
687 1.1 scw
688 1.1 scw case TIOCGFLAGS:
689 1.1 scw *((int *)data) = ch->ch_openflags;
690 1.1 scw break;
691 1.1 scw
692 1.1 scw case TIOCSFLAGS:
693 1.31 elad error = kauth_authorize_device_tty(l->l_cred,
694 1.31 elad KAUTH_DEVICE_TTY_PRIVSET, tp);
695 1.1 scw if ( error )
696 1.1 scw break;
697 1.1 scw ch->ch_openflags = *((int *)data) &
698 1.1 scw (TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
699 1.1 scw TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
700 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) )
701 1.1 scw SET(ch->ch_openflags, TIOCFLAG_SOFTCAR);
702 1.1 scw break;
703 1.1 scw
704 1.1 scw default:
705 1.20 atatat error = EPASSTHROUGH;
706 1.1 scw break;
707 1.1 scw }
708 1.1 scw
709 1.1 scw return error;
710 1.1 scw }
711 1.1 scw
712 1.1 scw int
713 1.41 dsl clmpcc_modem_control(struct clmpcc_chan *ch, int bits, int howto)
714 1.1 scw {
715 1.1 scw struct clmpcc_softc *sc = ch->ch_sc;
716 1.1 scw struct tty *tp = ch->ch_tty;
717 1.1 scw int oldch;
718 1.1 scw int msvr;
719 1.1 scw int rbits = 0;
720 1.1 scw
721 1.1 scw oldch = clmpcc_select_channel(sc, ch->ch_car);
722 1.1 scw
723 1.1 scw switch ( howto ) {
724 1.1 scw case DMGET:
725 1.1 scw msvr = clmpcc_rd_msvr(sc);
726 1.1 scw
727 1.1 scw if ( sc->sc_swaprtsdtr ) {
728 1.1 scw rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_DTR : 0;
729 1.1 scw rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_RTS : 0;
730 1.1 scw } else {
731 1.1 scw rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_RTS : 0;
732 1.1 scw rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_DTR : 0;
733 1.1 scw }
734 1.1 scw
735 1.1 scw rbits |= (msvr & CLMPCC_MSVR_CTS) ? TIOCM_CTS : 0;
736 1.1 scw rbits |= (msvr & CLMPCC_MSVR_CD) ? TIOCM_CD : 0;
737 1.1 scw rbits |= (msvr & CLMPCC_MSVR_DSR) ? TIOCM_DSR : 0;
738 1.1 scw break;
739 1.1 scw
740 1.1 scw case DMSET:
741 1.1 scw if ( sc->sc_swaprtsdtr ) {
742 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) )
743 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
744 1.1 scw bits & TIOCM_RTS ? CLMPCC_MSVR_DTR : 0);
745 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
746 1.1 scw bits & TIOCM_DTR ? CLMPCC_MSVR_RTS : 0);
747 1.1 scw } else {
748 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) )
749 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
750 1.1 scw bits & TIOCM_RTS ? CLMPCC_MSVR_RTS : 0);
751 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
752 1.1 scw bits & TIOCM_DTR ? CLMPCC_MSVR_DTR : 0);
753 1.1 scw }
754 1.1 scw break;
755 1.1 scw
756 1.1 scw case DMBIS:
757 1.1 scw if ( sc->sc_swaprtsdtr ) {
758 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
759 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
760 1.1 scw if ( ISSET(bits, TIOCM_DTR) )
761 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
762 1.1 scw } else {
763 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
764 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
765 1.1 scw if ( ISSET(bits, TIOCM_DTR) )
766 1.1 scw clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
767 1.1 scw }
768 1.1 scw break;
769 1.1 scw
770 1.1 scw case DMBIC:
771 1.1 scw if ( sc->sc_swaprtsdtr ) {
772 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
773 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
774 1.1 scw if ( ISCLR(bits, TIOCM_DTR) )
775 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
776 1.1 scw } else {
777 1.1 scw if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
778 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
779 1.1 scw if ( ISCLR(bits, TIOCM_DTR) )
780 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
781 1.1 scw }
782 1.1 scw break;
783 1.1 scw }
784 1.1 scw
785 1.1 scw clmpcc_select_channel(sc, oldch);
786 1.1 scw
787 1.1 scw return rbits;
788 1.1 scw }
789 1.1 scw
790 1.1 scw static int
791 1.40 he clmpcc_param(struct tty *tp, struct termios *t)
792 1.1 scw {
793 1.11 thorpej struct clmpcc_softc *sc =
794 1.39 cegger device_lookup_private(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
795 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
796 1.2 scw u_char cor;
797 1.5 scw u_char oldch;
798 1.45 chs int oclk = 0, obpr = 0;
799 1.45 chs int iclk = 0, ibpr = 0;
800 1.1 scw int s;
801 1.1 scw
802 1.1 scw /* Check requested parameters. */
803 1.1 scw if ( t->c_ospeed && clmpcc_speed(sc, t->c_ospeed, &oclk, &obpr) < 0 )
804 1.1 scw return EINVAL;
805 1.1 scw
806 1.1 scw if ( t->c_ispeed && clmpcc_speed(sc, t->c_ispeed, &iclk, &ibpr) < 0 )
807 1.1 scw return EINVAL;
808 1.1 scw
809 1.1 scw /*
810 1.1 scw * For the console, always force CLOCAL and !HUPCL, so that the port
811 1.1 scw * is always active.
812 1.1 scw */
813 1.1 scw if ( ISSET(ch->ch_openflags, TIOCFLAG_SOFTCAR) ||
814 1.1 scw ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
815 1.1 scw SET(t->c_cflag, CLOCAL);
816 1.1 scw CLR(t->c_cflag, HUPCL);
817 1.1 scw }
818 1.1 scw
819 1.2 scw CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
820 1.2 scw
821 1.1 scw /* If ospeed it zero, hangup the line */
822 1.1 scw clmpcc_modem_control(ch, TIOCM_DTR, t->c_ospeed == 0 ? DMBIC : DMBIS);
823 1.1 scw
824 1.1 scw if ( t->c_ospeed ) {
825 1.2 scw ch->ch_tcor = CLMPCC_TCOR_CLK(oclk);
826 1.2 scw ch->ch_tbpr = obpr;
827 1.2 scw } else {
828 1.2 scw ch->ch_tcor = 0;
829 1.2 scw ch->ch_tbpr = 0;
830 1.1 scw }
831 1.1 scw
832 1.1 scw if ( t->c_ispeed ) {
833 1.2 scw ch->ch_rcor = CLMPCC_RCOR_CLK(iclk);
834 1.2 scw ch->ch_rbpr = ibpr;
835 1.2 scw } else {
836 1.2 scw ch->ch_rcor = 0;
837 1.2 scw ch->ch_rbpr = 0;
838 1.1 scw }
839 1.1 scw
840 1.1 scw /* Work out value to use for COR1 */
841 1.1 scw cor = 0;
842 1.1 scw if ( ISSET(t->c_cflag, PARENB) ) {
843 1.1 scw cor |= CLMPCC_COR1_NORM_PARITY;
844 1.1 scw if ( ISSET(t->c_cflag, PARODD) )
845 1.1 scw cor |= CLMPCC_COR1_ODD_PARITY;
846 1.1 scw }
847 1.1 scw
848 1.1 scw if ( ISCLR(t->c_cflag, INPCK) )
849 1.1 scw cor |= CLMPCC_COR1_IGNORE_PAR;
850 1.1 scw
851 1.1 scw switch ( t->c_cflag & CSIZE ) {
852 1.1 scw case CS5:
853 1.1 scw cor |= CLMPCC_COR1_CHAR_5BITS;
854 1.1 scw break;
855 1.1 scw
856 1.1 scw case CS6:
857 1.1 scw cor |= CLMPCC_COR1_CHAR_6BITS;
858 1.1 scw break;
859 1.1 scw
860 1.1 scw case CS7:
861 1.1 scw cor |= CLMPCC_COR1_CHAR_7BITS;
862 1.1 scw break;
863 1.1 scw
864 1.1 scw case CS8:
865 1.1 scw cor |= CLMPCC_COR1_CHAR_8BITS;
866 1.1 scw break;
867 1.1 scw }
868 1.1 scw
869 1.2 scw ch->ch_cor1 = cor;
870 1.1 scw
871 1.1 scw /*
872 1.1 scw * The only interesting bit in COR2 is 'CTS Automatic Enable'
873 1.1 scw * when hardware flow control is in effect.
874 1.1 scw */
875 1.2 scw ch->ch_cor2 = ISSET(t->c_cflag, CRTSCTS) ? CLMPCC_COR2_CtsAE : 0;
876 1.1 scw
877 1.1 scw /* COR3 needs to be set to the number of stop bits... */
878 1.2 scw ch->ch_cor3 = ISSET(t->c_cflag, CSTOPB) ? CLMPCC_COR3_STOP_2 :
879 1.2 scw CLMPCC_COR3_STOP_1;
880 1.1 scw
881 1.1 scw /*
882 1.1 scw * COR4 contains the FIFO threshold setting.
883 1.1 scw * We adjust the threshold depending on the input speed...
884 1.1 scw */
885 1.1 scw if ( t->c_ispeed <= 1200 )
886 1.2 scw ch->ch_cor4 = CLMPCC_COR4_FIFO_LOW;
887 1.1 scw else if ( t->c_ispeed <= 19200 )
888 1.2 scw ch->ch_cor4 = CLMPCC_COR4_FIFO_MED;
889 1.1 scw else
890 1.2 scw ch->ch_cor4 = CLMPCC_COR4_FIFO_HIGH;
891 1.1 scw
892 1.1 scw /*
893 1.1 scw * If chip is used with CTS and DTR swapped, we can enable
894 1.1 scw * automatic hardware flow control.
895 1.1 scw */
896 1.1 scw if ( sc->sc_swaprtsdtr && ISSET(t->c_cflag, CRTSCTS) )
897 1.2 scw ch->ch_cor5 = CLMPCC_COR5_FLOW_NORM;
898 1.2 scw else
899 1.2 scw ch->ch_cor5 = 0;
900 1.2 scw
901 1.2 scw s = splserial();
902 1.5 scw oldch = clmpcc_select_channel(sc, ch->ch_car);
903 1.5 scw
904 1.5 scw /*
905 1.5 scw * COR2 needs to be set immediately otherwise we might never get
906 1.5 scw * a Tx EMPTY interrupt to change the other parameters.
907 1.5 scw */
908 1.5 scw if ( clmpcc_rdreg(sc, CLMPCC_REG_COR2) != ch->ch_cor2 )
909 1.5 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
910 1.5 scw
911 1.5 scw if ( ISCLR(ch->ch_tty->t_state, TS_BUSY) )
912 1.2 scw clmpcc_set_params(ch);
913 1.5 scw else
914 1.2 scw SET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
915 1.5 scw
916 1.5 scw clmpcc_select_channel(sc, oldch);
917 1.5 scw
918 1.2 scw splx(s);
919 1.2 scw
920 1.2 scw return 0;
921 1.2 scw }
922 1.2 scw
923 1.2 scw static void
924 1.41 dsl clmpcc_set_params(struct clmpcc_chan *ch)
925 1.2 scw {
926 1.2 scw struct clmpcc_softc *sc = ch->ch_sc;
927 1.4 scw u_char r1;
928 1.4 scw u_char r2;
929 1.1 scw
930 1.8 scw if ( ch->ch_tcor || ch->ch_tbpr ) {
931 1.4 scw r1 = clmpcc_rdreg(sc, CLMPCC_REG_TCOR);
932 1.4 scw r2 = clmpcc_rdreg(sc, CLMPCC_REG_TBPR);
933 1.4 scw /* Only write Tx rate if it really has changed */
934 1.4 scw if ( ch->ch_tcor != r1 || ch->ch_tbpr != r2 ) {
935 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_TCOR, ch->ch_tcor);
936 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_TBPR, ch->ch_tbpr);
937 1.4 scw }
938 1.2 scw }
939 1.1 scw
940 1.8 scw if ( ch->ch_rcor || ch->ch_rbpr ) {
941 1.4 scw r1 = clmpcc_rdreg(sc, CLMPCC_REG_RCOR);
942 1.4 scw r2 = clmpcc_rdreg(sc, CLMPCC_REG_RBPR);
943 1.4 scw /* Only write Rx rate if it really has changed */
944 1.4 scw if ( ch->ch_rcor != r1 || ch->ch_rbpr != r2 ) {
945 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_RCOR, ch->ch_rcor);
946 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_RBPR, ch->ch_rbpr);
947 1.4 scw }
948 1.4 scw }
949 1.4 scw
950 1.4 scw if ( clmpcc_rdreg(sc, CLMPCC_REG_COR1) != ch->ch_cor1 ) {
951 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_COR1, ch->ch_cor1);
952 1.4 scw /* Any change to COR1 requires an INIT command */
953 1.4 scw SET(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
954 1.2 scw }
955 1.4 scw
956 1.4 scw if ( clmpcc_rdreg(sc, CLMPCC_REG_COR3) != ch->ch_cor3 )
957 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_COR3, ch->ch_cor3);
958 1.4 scw
959 1.4 scw r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
960 1.4 scw if ( ch->ch_cor4 != (r1 & CLMPCC_COR4_FIFO_MASK) ) {
961 1.4 scw /*
962 1.9 scw * Note: If the FIFO has changed, we always set it to
963 1.4 scw * zero here and disable the Receive Timeout interrupt.
964 1.4 scw * It's up to the Rx Interrupt handler to pick the
965 1.9 scw * appropriate moment to write the new FIFO length.
966 1.4 scw */
967 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, r1 & ~CLMPCC_COR4_FIFO_MASK);
968 1.4 scw r1 = clmpcc_rdreg(sc, CLMPCC_REG_IER);
969 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, r1 & ~CLMPCC_IER_RET);
970 1.4 scw SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
971 1.4 scw }
972 1.1 scw
973 1.4 scw r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR5);
974 1.4 scw if ( ch->ch_cor5 != (r1 & CLMPCC_COR5_FLOW_MASK) ) {
975 1.4 scw r1 &= ~CLMPCC_COR5_FLOW_MASK;
976 1.4 scw clmpcc_wrreg(sc, CLMPCC_REG_COR5, r1 | ch->ch_cor5);
977 1.4 scw }
978 1.1 scw }
979 1.1 scw
980 1.1 scw static void
981 1.39 cegger clmpcc_start(struct tty *tp)
982 1.1 scw {
983 1.11 thorpej struct clmpcc_softc *sc =
984 1.39 cegger device_lookup_private(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
985 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
986 1.6 scw u_int oldch;
987 1.1 scw int s;
988 1.1 scw
989 1.1 scw s = spltty();
990 1.1 scw
991 1.6 scw if ( ISCLR(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
992 1.36 ad ttypull(tp);
993 1.9 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK |
994 1.9 scw CLMPCC_FLG_END_BREAK) ||
995 1.9 scw tp->t_outq.c_cc > 0 ) {
996 1.9 scw
997 1.9 scw if ( ISCLR(ch->ch_flags, CLMPCC_FLG_START_BREAK |
998 1.9 scw CLMPCC_FLG_END_BREAK) ) {
999 1.9 scw ch->ch_obuf_addr = tp->t_outq.c_cf;
1000 1.9 scw ch->ch_obuf_size = ndqb(&tp->t_outq, 0);
1001 1.9 scw }
1002 1.6 scw
1003 1.6 scw /* Enable TX empty interrupts */
1004 1.6 scw oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
1005 1.6 scw clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
1006 1.6 scw clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) |
1007 1.6 scw CLMPCC_IER_TX_EMPTY);
1008 1.6 scw clmpcc_select_channel(ch->ch_sc, oldch);
1009 1.6 scw SET(tp->t_state, TS_BUSY);
1010 1.1 scw }
1011 1.1 scw }
1012 1.1 scw
1013 1.1 scw splx(s);
1014 1.1 scw }
1015 1.1 scw
1016 1.1 scw /*
1017 1.1 scw * Stop output on a line.
1018 1.1 scw */
1019 1.1 scw void
1020 1.40 he clmpccstop(struct tty *tp, int flag)
1021 1.1 scw {
1022 1.11 thorpej struct clmpcc_softc *sc =
1023 1.39 cegger device_lookup_private(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1024 1.1 scw struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1025 1.1 scw int s;
1026 1.1 scw
1027 1.6 scw s = splserial();
1028 1.1 scw
1029 1.1 scw if ( ISSET(tp->t_state, TS_BUSY) ) {
1030 1.1 scw if ( ISCLR(tp->t_state, TS_TTSTOP) )
1031 1.1 scw SET(tp->t_state, TS_FLUSH);
1032 1.6 scw ch->ch_obuf_size = 0;
1033 1.1 scw }
1034 1.1 scw splx(s);
1035 1.1 scw }
1036 1.1 scw
1037 1.1 scw /*
1038 1.1 scw * RX interrupt routine
1039 1.1 scw */
1040 1.1 scw int
1041 1.41 dsl clmpcc_rxintr(void *arg)
1042 1.1 scw {
1043 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1044 1.1 scw struct clmpcc_chan *ch;
1045 1.1 scw u_int8_t *put, *end, rxd;
1046 1.1 scw u_char errstat;
1047 1.2 scw u_char fc, tc;
1048 1.2 scw u_char risr;
1049 1.2 scw u_char rir;
1050 1.1 scw #ifdef DDB
1051 1.1 scw int saw_break = 0;
1052 1.1 scw #endif
1053 1.1 scw
1054 1.1 scw /* Receive interrupt active? */
1055 1.1 scw rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1056 1.1 scw
1057 1.1 scw /*
1058 1.1 scw * If we're using auto-vectored interrupts, we have to
1059 1.1 scw * verify if the chip is generating the interrupt.
1060 1.1 scw */
1061 1.1 scw if ( sc->sc_vector_base == 0 && (rir & CLMPCC_RIR_RACT) == 0 )
1062 1.1 scw return 0;
1063 1.1 scw
1064 1.1 scw /* Get pointer to interrupting channel's data structure */
1065 1.1 scw ch = &sc->sc_chans[rir & CLMPCC_RIR_RCN_MASK];
1066 1.1 scw
1067 1.1 scw /* Get the interrupt status register */
1068 1.1 scw risr = clmpcc_rdreg(sc, CLMPCC_REG_RISRl);
1069 1.1 scw if ( risr & CLMPCC_RISR_TIMEOUT ) {
1070 1.1 scw u_char reg;
1071 1.1 scw /*
1072 1.1 scw * Set the FIFO threshold to zero, and disable
1073 1.1 scw * further receive timeout interrupts.
1074 1.1 scw */
1075 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1076 1.8 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg & ~CLMPCC_COR4_FIFO_MASK);
1077 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1078 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, reg & ~CLMPCC_IER_RET);
1079 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1080 1.1 scw SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1081 1.1 scw return 1;
1082 1.1 scw }
1083 1.1 scw
1084 1.1 scw /* How many bytes are waiting in the FIFO? */
1085 1.1 scw fc = tc = clmpcc_rdreg(sc, CLMPCC_REG_RFOC) & CLMPCC_RFOC_MASK;
1086 1.1 scw
1087 1.1 scw #ifdef DDB
1088 1.1 scw /*
1089 1.1 scw * Allow BREAK on the console to drop to the debugger.
1090 1.1 scw */
1091 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) &&
1092 1.1 scw risr & CLMPCC_RISR_BREAK ) {
1093 1.1 scw saw_break = 1;
1094 1.1 scw }
1095 1.1 scw #endif
1096 1.1 scw
1097 1.1 scw if ( ISCLR(ch->ch_tty->t_state, TS_ISOPEN) && fc ) {
1098 1.1 scw /* Just get rid of the data */
1099 1.1 scw while ( fc-- )
1100 1.1 scw (void) clmpcc_rd_rxdata(sc);
1101 1.1 scw goto rx_done;
1102 1.1 scw }
1103 1.1 scw
1104 1.1 scw put = ch->ch_ibuf_wr;
1105 1.1 scw end = ch->ch_ibuf_end;
1106 1.1 scw
1107 1.1 scw /*
1108 1.1 scw * Note: The chip is completely hosed WRT these error
1109 1.1 scw * conditions; there seems to be no way to associate
1110 1.24 perry * the error with the correct character in the FIFO.
1111 1.1 scw * We compromise by tagging the first character we read
1112 1.1 scw * with the error. Not perfect, but there's no other way.
1113 1.1 scw */
1114 1.1 scw errstat = 0;
1115 1.1 scw if ( risr & CLMPCC_RISR_PARITY )
1116 1.1 scw errstat |= TTY_PE;
1117 1.1 scw if ( risr & (CLMPCC_RISR_FRAMING | CLMPCC_RISR_BREAK) )
1118 1.1 scw errstat |= TTY_FE;
1119 1.1 scw
1120 1.1 scw /*
1121 1.1 scw * As long as there are characters in the FIFO, and we
1122 1.1 scw * have space for them...
1123 1.1 scw */
1124 1.1 scw while ( fc > 0 ) {
1125 1.1 scw
1126 1.1 scw *put++ = rxd = clmpcc_rd_rxdata(sc);
1127 1.1 scw *put++ = errstat;
1128 1.1 scw
1129 1.1 scw if ( put >= end )
1130 1.1 scw put = ch->ch_ibuf;
1131 1.1 scw
1132 1.1 scw if ( put == ch->ch_ibuf_rd ) {
1133 1.1 scw put -= 2;
1134 1.1 scw if ( put < ch->ch_ibuf )
1135 1.1 scw put = end - 2;
1136 1.1 scw }
1137 1.1 scw
1138 1.1 scw errstat = 0;
1139 1.1 scw fc--;
1140 1.1 scw }
1141 1.1 scw
1142 1.1 scw ch->ch_ibuf_wr = put;
1143 1.1 scw
1144 1.1 scw #if 0
1145 1.1 scw if ( sc->sc_swaprtsdtr == 0 &&
1146 1.1 scw ISSET(cy->cy_tty->t_cflag, CRTSCTS) && cc < ch->ch_r_hiwat) {
1147 1.1 scw /*
1148 1.1 scw * If RTS/DTR are not physically swapped, we have to
1149 1.1 scw * do hardware flow control manually
1150 1.1 scw */
1151 1.1 scw clmpcc_wr_msvr(sc, CLMPCC_MSVR_RTS, 0);
1152 1.1 scw }
1153 1.1 scw #endif
1154 1.1 scw
1155 1.1 scw rx_done:
1156 1.1 scw if ( fc != tc ) {
1157 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR) ) {
1158 1.1 scw u_char reg;
1159 1.1 scw /*
1160 1.1 scw * Set the FIFO threshold to the preset value,
1161 1.1 scw * and enable receive timeout interrupts.
1162 1.1 scw */
1163 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1164 1.2 scw reg = (reg & ~CLMPCC_COR4_FIFO_MASK) | ch->ch_cor4;
1165 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg);
1166 1.1 scw reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1167 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, reg | CLMPCC_IER_RET);
1168 1.1 scw CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1169 1.1 scw }
1170 1.1 scw
1171 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1172 1.34 ad softint_schedule(sc->sc_softintr_cookie);
1173 1.1 scw } else
1174 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1175 1.1 scw
1176 1.1 scw #ifdef DDB
1177 1.1 scw /*
1178 1.1 scw * Only =after= we write REOIR is it safe to drop to the debugger.
1179 1.1 scw */
1180 1.1 scw if ( saw_break )
1181 1.1 scw Debugger();
1182 1.1 scw #endif
1183 1.1 scw
1184 1.1 scw return 1;
1185 1.1 scw }
1186 1.1 scw
1187 1.1 scw /*
1188 1.1 scw * Tx interrupt routine
1189 1.1 scw */
1190 1.1 scw int
1191 1.41 dsl clmpcc_txintr(void *arg)
1192 1.1 scw {
1193 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1194 1.1 scw struct clmpcc_chan *ch;
1195 1.1 scw struct tty *tp;
1196 1.2 scw u_char ftc, oftc;
1197 1.9 scw u_char tir, teoir;
1198 1.9 scw int etcmode = 0;
1199 1.1 scw
1200 1.1 scw /* Tx interrupt active? */
1201 1.1 scw tir = clmpcc_rdreg(sc, CLMPCC_REG_TIR);
1202 1.1 scw
1203 1.1 scw /*
1204 1.1 scw * If we're using auto-vectored interrupts, we have to
1205 1.1 scw * verify if the chip is generating the interrupt.
1206 1.1 scw */
1207 1.1 scw if ( sc->sc_vector_base == 0 && (tir & CLMPCC_TIR_TACT) == 0 )
1208 1.1 scw return 0;
1209 1.1 scw
1210 1.1 scw /* Get pointer to interrupting channel's data structure */
1211 1.1 scw ch = &sc->sc_chans[tir & CLMPCC_TIR_TCN_MASK];
1212 1.2 scw tp = ch->ch_tty;
1213 1.1 scw
1214 1.1 scw /* Dummy read of the interrupt status register */
1215 1.1 scw (void) clmpcc_rdreg(sc, CLMPCC_REG_TISR);
1216 1.1 scw
1217 1.9 scw /* Make sure embedded transmit commands are disabled */
1218 1.9 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
1219 1.9 scw
1220 1.1 scw ftc = oftc = clmpcc_rdreg(sc, CLMPCC_REG_TFTC);
1221 1.1 scw
1222 1.2 scw /* Handle a delayed parameter change */
1223 1.2 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS) ) {
1224 1.6 scw CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
1225 1.2 scw clmpcc_set_params(ch);
1226 1.2 scw }
1227 1.2 scw
1228 1.6 scw if ( ch->ch_obuf_size > 0 ) {
1229 1.6 scw u_int n = min(ch->ch_obuf_size, ftc);
1230 1.1 scw
1231 1.6 scw clmpcc_wrtx_multi(sc, ch->ch_obuf_addr, n);
1232 1.2 scw
1233 1.6 scw ftc -= n;
1234 1.6 scw ch->ch_obuf_size -= n;
1235 1.6 scw ch->ch_obuf_addr += n;
1236 1.9 scw
1237 1.1 scw } else {
1238 1.1 scw /*
1239 1.9 scw * Check if we should start/stop a break
1240 1.1 scw */
1241 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK) ) {
1242 1.1 scw CLR(ch->ch_flags, CLMPCC_FLG_START_BREAK);
1243 1.9 scw /* Enable embedded transmit commands */
1244 1.9 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1245 1.9 scw ch->ch_cor2 | CLMPCC_COR2_ETC);
1246 1.9 scw clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1247 1.9 scw clmpcc_wr_txdata(sc, CLMPCC_ETC_SEND_BREAK);
1248 1.9 scw ftc -= 2;
1249 1.9 scw etcmode = 1;
1250 1.1 scw }
1251 1.1 scw
1252 1.1 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_END_BREAK) ) {
1253 1.1 scw CLR(ch->ch_flags, CLMPCC_FLG_END_BREAK);
1254 1.9 scw /* Enable embedded transmit commands */
1255 1.9 scw clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1256 1.9 scw ch->ch_cor2 | CLMPCC_COR2_ETC);
1257 1.9 scw clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1258 1.9 scw clmpcc_wr_txdata(sc, CLMPCC_ETC_STOP_BREAK);
1259 1.9 scw ftc -= 2;
1260 1.9 scw etcmode = 1;
1261 1.1 scw }
1262 1.9 scw }
1263 1.9 scw
1264 1.9 scw tir = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1265 1.1 scw
1266 1.9 scw if ( ftc != oftc ) {
1267 1.9 scw /*
1268 1.9 scw * Enable/disable the Tx FIFO threshold interrupt
1269 1.9 scw * according to how much data is in the FIFO.
1270 1.9 scw * However, always disable the FIFO threshold if
1271 1.9 scw * we've left the channel in 'Embedded Transmit
1272 1.9 scw * Command' mode.
1273 1.9 scw */
1274 1.9 scw if ( etcmode || ftc >= ch->ch_cor4 )
1275 1.9 scw tir &= ~CLMPCC_IER_TX_FIFO;
1276 1.9 scw else
1277 1.9 scw tir |= CLMPCC_IER_TX_FIFO;
1278 1.9 scw teoir = 0;
1279 1.9 scw } else {
1280 1.1 scw /*
1281 1.9 scw * No data was sent.
1282 1.9 scw * Disable transmit interrupt.
1283 1.1 scw */
1284 1.9 scw tir &= ~(CLMPCC_IER_TX_EMPTY|CLMPCC_IER_TX_FIFO);
1285 1.9 scw teoir = CLMPCC_TEOIR_NO_TRANS;
1286 1.1 scw
1287 1.6 scw /*
1288 1.6 scw * Request Tx processing in the soft interrupt handler
1289 1.6 scw */
1290 1.6 scw ch->ch_tx_done = 1;
1291 1.34 ad softint_schedule(sc->sc_softintr_cookie);
1292 1.2 scw }
1293 1.2 scw
1294 1.9 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, tir);
1295 1.9 scw clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, teoir);
1296 1.1 scw
1297 1.1 scw return 1;
1298 1.1 scw }
1299 1.1 scw
1300 1.1 scw /*
1301 1.1 scw * Modem change interrupt routine
1302 1.1 scw */
1303 1.1 scw int
1304 1.41 dsl clmpcc_mdintr(void *arg)
1305 1.1 scw {
1306 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1307 1.2 scw u_char mir;
1308 1.1 scw
1309 1.1 scw /* Modem status interrupt active? */
1310 1.1 scw mir = clmpcc_rdreg(sc, CLMPCC_REG_MIR);
1311 1.1 scw
1312 1.1 scw /*
1313 1.1 scw * If we're using auto-vectored interrupts, we have to
1314 1.1 scw * verify if the chip is generating the interrupt.
1315 1.1 scw */
1316 1.1 scw if ( sc->sc_vector_base == 0 && (mir & CLMPCC_MIR_MACT) == 0 )
1317 1.1 scw return 0;
1318 1.1 scw
1319 1.1 scw /* Dummy read of the interrupt status register */
1320 1.1 scw (void) clmpcc_rdreg(sc, CLMPCC_REG_MISR);
1321 1.1 scw
1322 1.1 scw /* Retrieve current status of modem lines. */
1323 1.1 scw sc->sc_chans[mir & CLMPCC_MIR_MCN_MASK].ch_control |=
1324 1.1 scw clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1325 1.1 scw
1326 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_MEOIR, 0);
1327 1.34 ad softint_schedule(sc->sc_softintr_cookie);
1328 1.1 scw
1329 1.1 scw return 1;
1330 1.1 scw }
1331 1.1 scw
1332 1.10 scw void
1333 1.41 dsl clmpcc_softintr(void *arg)
1334 1.1 scw {
1335 1.1 scw struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1336 1.1 scw struct clmpcc_chan *ch;
1337 1.2 scw struct tty *tp;
1338 1.23 perry int (*rint)(int, struct tty *);
1339 1.1 scw u_char *get;
1340 1.2 scw u_char reg;
1341 1.1 scw u_int c;
1342 1.1 scw int chan;
1343 1.1 scw
1344 1.1 scw /* Handle Modem state changes too... */
1345 1.1 scw
1346 1.1 scw for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
1347 1.1 scw ch = &sc->sc_chans[chan];
1348 1.2 scw tp = ch->ch_tty;
1349 1.2 scw
1350 1.1 scw get = ch->ch_ibuf_rd;
1351 1.14 eeh rint = tp->t_linesw->l_rint;
1352 1.1 scw
1353 1.1 scw /* Squirt buffered incoming data into the tty layer */
1354 1.1 scw while ( get != ch->ch_ibuf_wr ) {
1355 1.2 scw c = get[0];
1356 1.2 scw c |= ((u_int)get[1]) << 8;
1357 1.2 scw if ( (rint)(c, tp) == -1 ) {
1358 1.6 scw ch->ch_ibuf_rd = ch->ch_ibuf_wr;
1359 1.6 scw break;
1360 1.2 scw }
1361 1.1 scw
1362 1.2 scw get += 2;
1363 1.1 scw if ( get == ch->ch_ibuf_end )
1364 1.1 scw get = ch->ch_ibuf;
1365 1.1 scw
1366 1.1 scw ch->ch_ibuf_rd = get;
1367 1.1 scw }
1368 1.2 scw
1369 1.6 scw /*
1370 1.6 scw * Is the transmitter idle and in need of attention?
1371 1.6 scw */
1372 1.6 scw if ( ch->ch_tx_done ) {
1373 1.6 scw ch->ch_tx_done = 0;
1374 1.2 scw
1375 1.6 scw if ( ISSET(ch->ch_flags, CLMPCC_FLG_NEED_INIT) ) {
1376 1.6 scw clmpcc_channel_cmd(sc, ch->ch_car,
1377 1.6 scw CLMPCC_CCR_T0_INIT |
1378 1.6 scw CLMPCC_CCR_T0_RX_EN |
1379 1.6 scw CLMPCC_CCR_T0_TX_EN);
1380 1.6 scw CLR(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1381 1.6 scw
1382 1.6 scw /*
1383 1.6 scw * Allow time for the channel to initialise.
1384 1.6 scw * (Empirically derived duration; there must
1385 1.6 scw * be another way to determine the command
1386 1.6 scw * has completed without busy-waiting...)
1387 1.6 scw */
1388 1.6 scw delay(800);
1389 1.6 scw
1390 1.6 scw /*
1391 1.6 scw * Update the tty layer's idea of the carrier
1392 1.6 scw * bit, in case we changed CLOCAL or MDMBUF.
1393 1.6 scw * We don't hang up here; we only do that by
1394 1.6 scw * explicit request.
1395 1.6 scw */
1396 1.6 scw reg = clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1397 1.14 eeh (*tp->t_linesw->l_modem)(tp, reg != 0);
1398 1.6 scw }
1399 1.4 scw
1400 1.6 scw CLR(tp->t_state, TS_BUSY);
1401 1.6 scw if ( ISSET(tp->t_state, TS_FLUSH) )
1402 1.6 scw CLR(tp->t_state, TS_FLUSH);
1403 1.6 scw else
1404 1.6 scw ndflush(&tp->t_outq,
1405 1.6 scw (int)(ch->ch_obuf_addr - tp->t_outq.c_cf));
1406 1.2 scw
1407 1.14 eeh (*tp->t_linesw->l_start)(tp);
1408 1.6 scw }
1409 1.1 scw }
1410 1.1 scw }
1411 1.1 scw
1412 1.1 scw
1413 1.1 scw /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1414 1.1 scw /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1415 1.1 scw /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1416 1.1 scw /*
1417 1.1 scw * Following are all routines needed for a cd240x channel to act as console
1418 1.1 scw */
1419 1.1 scw int
1420 1.41 dsl clmpcc_cnattach(struct clmpcc_softc *sc, int chan, int rate)
1421 1.1 scw {
1422 1.1 scw cons_sc = sc;
1423 1.1 scw cons_chan = chan;
1424 1.1 scw cons_rate = rate;
1425 1.1 scw
1426 1.17 scw return (clmpcc_init(sc));
1427 1.1 scw }
1428 1.1 scw
1429 1.1 scw /*
1430 1.1 scw * The following functions are polled getc and putc routines, for console use.
1431 1.1 scw */
1432 1.1 scw static int
1433 1.41 dsl clmpcc_common_getc(struct clmpcc_softc *sc, int chan)
1434 1.1 scw {
1435 1.1 scw u_char old_chan;
1436 1.1 scw u_char old_ier;
1437 1.1 scw u_char ch, rir, risr;
1438 1.1 scw int s;
1439 1.1 scw
1440 1.1 scw s = splhigh();
1441 1.1 scw
1442 1.4 scw /* Save the currently active channel */
1443 1.1 scw old_chan = clmpcc_select_channel(sc, chan);
1444 1.1 scw
1445 1.1 scw /*
1446 1.1 scw * We have to put the channel into RX interrupt mode before
1447 1.1 scw * trying to read the Rx data register. So save the previous
1448 1.1 scw * interrupt mode.
1449 1.1 scw */
1450 1.1 scw old_ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1451 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_RX_FIFO);
1452 1.1 scw
1453 1.1 scw /* Loop until we get a character */
1454 1.1 scw for (;;) {
1455 1.1 scw /*
1456 1.1 scw * The REN bit will be set in the Receive Interrupt Register
1457 1.1 scw * when the CD240x has a character to process. Remember,
1458 1.1 scw * the RACT bit won't be set until we generate an interrupt
1459 1.1 scw * acknowledge cycle via the MD front-end.
1460 1.1 scw */
1461 1.1 scw rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1462 1.1 scw if ( (rir & CLMPCC_RIR_REN) == 0 )
1463 1.1 scw continue;
1464 1.1 scw
1465 1.1 scw /* Acknowledge the request */
1466 1.1 scw if ( sc->sc_iackhook )
1467 1.1 scw (sc->sc_iackhook)(sc, CLMPCC_IACK_RX);
1468 1.1 scw
1469 1.1 scw /*
1470 1.1 scw * Determine if the interrupt is for the required channel
1471 1.1 scw * and if valid data is available.
1472 1.1 scw */
1473 1.1 scw rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1474 1.1 scw risr = clmpcc_rdreg(sc, CLMPCC_REG_RISR);
1475 1.1 scw if ( (rir & CLMPCC_RIR_RCN_MASK) != chan ||
1476 1.1 scw risr != 0 ) {
1477 1.1 scw /* Rx error, or BREAK */
1478 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR,
1479 1.1 scw CLMPCC_REOIR_NO_TRANS);
1480 1.1 scw } else {
1481 1.1 scw /* Dummy read of the FIFO count register */
1482 1.1 scw (void) clmpcc_rdreg(sc, CLMPCC_REG_RFOC);
1483 1.1 scw
1484 1.1 scw /* Fetch the received character */
1485 1.1 scw ch = clmpcc_rd_rxdata(sc);
1486 1.1 scw
1487 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1488 1.1 scw break;
1489 1.1 scw }
1490 1.1 scw }
1491 1.1 scw
1492 1.4 scw /* Restore the original IER and CAR register contents */
1493 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_IER, old_ier);
1494 1.1 scw clmpcc_select_channel(sc, old_chan);
1495 1.1 scw
1496 1.1 scw splx(s);
1497 1.1 scw return ch;
1498 1.1 scw }
1499 1.1 scw
1500 1.1 scw
1501 1.1 scw static void
1502 1.41 dsl clmpcc_common_putc(struct clmpcc_softc *sc, int chan, int c)
1503 1.1 scw {
1504 1.1 scw u_char old_chan;
1505 1.1 scw int s = splhigh();
1506 1.1 scw
1507 1.4 scw /* Save the currently active channel */
1508 1.1 scw old_chan = clmpcc_select_channel(sc, chan);
1509 1.4 scw
1510 1.4 scw /*
1511 1.4 scw * Since we can only access the Tx Data register from within
1512 1.4 scw * the interrupt handler, the easiest way to get console data
1513 1.4 scw * onto the wire is using one of the Special Transmit Character
1514 1.4 scw * registers.
1515 1.4 scw */
1516 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_SCHR4, c);
1517 1.1 scw clmpcc_wrreg(sc, CLMPCC_REG_STCR, CLMPCC_STCR_SSPC(4) |
1518 1.1 scw CLMPCC_STCR_SND_SPC);
1519 1.1 scw
1520 1.4 scw /* Wait until the "Send Special Character" command is accepted */
1521 1.1 scw while ( clmpcc_rdreg(sc, CLMPCC_REG_STCR) != 0 )
1522 1.1 scw ;
1523 1.1 scw
1524 1.4 scw /* Restore the previous channel selected */
1525 1.1 scw clmpcc_select_channel(sc, old_chan);
1526 1.1 scw
1527 1.1 scw splx(s);
1528 1.1 scw }
1529 1.1 scw
1530 1.1 scw int
1531 1.41 dsl clmpcccngetc(dev_t dev)
1532 1.1 scw {
1533 1.1 scw return clmpcc_common_getc(cons_sc, cons_chan);
1534 1.1 scw }
1535 1.1 scw
1536 1.1 scw /*
1537 1.1 scw * Console kernel output character routine.
1538 1.1 scw */
1539 1.1 scw void
1540 1.41 dsl clmpcccnputc(dev_t dev, int c)
1541 1.1 scw {
1542 1.1 scw if ( c == '\n' )
1543 1.1 scw clmpcc_common_putc(cons_sc, cons_chan, '\r');
1544 1.1 scw
1545 1.1 scw clmpcc_common_putc(cons_sc, cons_chan, c);
1546 1.1 scw }
1547