clmpcc.c revision 1.1 1 /* $NetBSD: clmpcc.c,v 1.1 1999/02/13 17:05:19 scw Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Steve C. Woodford.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Cirrus Logic CD2400/CD2401 Four Channel Multi-Protocol Comms. Controller.
41 */
42
43 #include "opt_ddb.h"
44
45 #include <sys/types.h>
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/ioctl.h>
49 #include <sys/select.h>
50 #include <sys/tty.h>
51 #include <sys/proc.h>
52 #include <sys/user.h>
53 #include <sys/conf.h>
54 #include <sys/file.h>
55 #include <sys/uio.h>
56 #include <sys/kernel.h>
57 #include <sys/syslog.h>
58 #include <sys/device.h>
59 #include <sys/malloc.h>
60
61 #include <machine/bus.h>
62
63 #include <dev/ic/clmpccreg.h>
64 #include <dev/ic/clmpccvar.h>
65 #include <dev/cons.h>
66
67
68 #if defined(CLMPCC_ONLY_BYTESWAP_LOW) && defined(CLMPCC_ONLY_BYTESWAP_HIGH)
69 #error "CLMPCC_ONLY_BYTESWAP_LOW and CLMPCC_ONLY_BYTESWAP_HIGH are mutually exclusive."
70 #endif
71
72
73 static int clmpcc_init __P((struct clmpcc_softc *sc));
74 static void clmpcc_shutdown __P((struct clmpcc_chan *));
75 static int clmpcc_speed __P((struct clmpcc_softc *, speed_t,
76 int *, int *));
77 static int clmpcc_param __P((struct tty *, struct termios *));
78 static void clmpcc_start __P((struct tty *));
79 static int clmpcc_modem_control __P((struct clmpcc_chan *, int, int));
80
81
82 cdev_decl(clmpcc);
83
84 #define CLMPCCUNIT(x) (minor(x) & 0x7fffc)
85 #define CLMPCCCHAN(x) (minor(x) & 0x00003)
86 #define CLMPCCDIALOUT(x) (minor(x) & 0x80000)
87
88 /*
89 * These should be in a header file somewhere...
90 */
91 #define ISSET(v, f) (((v) & (f)) != 0)
92 #define ISCLR(v, f) (((v) & (f)) == 0)
93 #define SET(v, f) (v) |= (f)
94 #define CLR(v, f) (v) &= ~(f)
95
96
97 extern struct cfdriver clmpcc_cd;
98
99
100 /*
101 * Make this an option variable one can patch.
102 * But be warned: this must be a power of 2!
103 */
104 u_int clmpcc_ibuf_size = CLMPCC_RING_SIZE;
105
106
107 /*
108 * Things needed when the device is used as a console
109 */
110 static struct clmpcc_softc *cons_sc = NULL;
111 static int cons_chan;
112 static int cons_rate;
113
114 static int clmpcc_common_getc __P((struct clmpcc_softc *, int));
115 static void clmpcc_common_putc __P((struct clmpcc_softc *, int, int));
116 int clmpcccngetc __P((dev_t));
117 void clmpcccnputc __P((dev_t, int));
118
119
120 /*
121 * Convenience functions, inlined for speed
122 */
123 #define integrate static inline
124 integrate u_int8_t clmpcc_rdreg __P((struct clmpcc_softc *, u_int));
125 integrate void clmpcc_wrreg __P((struct clmpcc_softc *, u_int, u_int));
126 integrate u_int8_t clmpcc_rdreg_odd __P((struct clmpcc_softc *, u_int));
127 integrate void clmpcc_wrreg_odd __P((struct clmpcc_softc *, u_int, u_int));
128 integrate u_int8_t clmpcc_select_channel __P((struct clmpcc_softc *, u_int));
129 integrate void clmpcc_channel_cmd __P((struct clmpcc_softc *,int,int));
130 integrate void clmpcc_enable_transmitter __P((struct clmpcc_chan *));
131
132 #define clmpcc_rd_msvr(s) clmpcc_rdreg_odd(s,CLMPCC_REG_MSVR)
133 #define clmpcc_wr_msvr(s,r,v) clmpcc_wrreg_odd(s,r,v)
134 #define clmpcc_wr_pilr(s,r,v) clmpcc_wrreg_odd(s,r,v)
135 #define clmpcc_rd_rxdata(s) clmpcc_rdreg_odd(s,CLMPCC_REG_RDR)
136 #define clmpcc_wr_txdata(s,v) clmpcc_wrreg_odd(s,CLMPCC_REG_TDR,v)
137
138
139 integrate u_int8_t
140 clmpcc_rdreg(sc, offset)
141 struct clmpcc_softc *sc;
142 u_int offset;
143 {
144 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
145 offset ^= sc->sc_byteswap;
146 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
147 offset ^= CLMPCC_BYTESWAP_HIGH;
148 #endif
149 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
150 }
151
152 integrate void
153 clmpcc_wrreg(sc, offset, val)
154 struct clmpcc_softc *sc;
155 u_int offset;
156 u_int val;
157 {
158 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
159 offset ^= sc->sc_byteswap;
160 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
161 offset ^= CLMPCC_BYTESWAP_HIGH;
162 #endif
163 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
164 }
165
166 integrate u_int8_t
167 clmpcc_rdreg_odd(sc, offset)
168 struct clmpcc_softc *sc;
169 u_int offset;
170 {
171 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
172 offset ^= (sc->sc_byteswap & 2);
173 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
174 offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
175 #endif
176 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
177 }
178
179 integrate void
180 clmpcc_wrreg_odd(sc, offset, val)
181 struct clmpcc_softc *sc;
182 u_int offset;
183 u_int val;
184 {
185 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
186 offset ^= (sc->sc_byteswap & 2);
187 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
188 offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
189 #endif
190 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
191 }
192
193 integrate u_int8_t
194 clmpcc_select_channel(sc, new_chan)
195 struct clmpcc_softc *sc;
196 u_int new_chan;
197 {
198 u_int old_chan = clmpcc_rdreg_odd(sc, CLMPCC_REG_CAR);
199
200 clmpcc_wrreg_odd(sc, CLMPCC_REG_CAR, new_chan);
201
202 return old_chan;
203 }
204
205 integrate void
206 clmpcc_channel_cmd(sc, chan, cmd)
207 struct clmpcc_softc *sc;
208 int chan;
209 int cmd;
210 {
211 int i;
212
213 for (i = 5000; i; i--) {
214 if ( clmpcc_rdreg(sc, CLMPCC_REG_CCR) == 0 )
215 break;
216 delay(1);
217 }
218
219 if ( i == 0 )
220 printf("%s: channel %d command timeout (idle)\n",
221 sc->sc_dev.dv_xname, chan);
222
223 clmpcc_wrreg(sc, CLMPCC_REG_CCR, cmd);
224 }
225
226 integrate void
227 clmpcc_enable_transmitter(ch)
228 struct clmpcc_chan *ch;
229 {
230 u_int old;
231
232 old = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
233
234 clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
235 clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) | CLMPCC_IER_TX_EMPTY);
236
237 clmpcc_select_channel(ch->ch_sc, old);
238 }
239
240 static int
241 clmpcc_speed(sc, speed, cor, bpr)
242 struct clmpcc_softc *sc;
243 speed_t speed;
244 int *cor, *bpr;
245 {
246 int c, co, br;
247
248 for (co = 0, c = 8; c <= 2048; co++, c *= 4) {
249 br = ((sc->sc_clk / c) / speed) - 1;
250 if ( br < 0x100 ) {
251 *cor = co;
252 *bpr = br;
253 return 0;
254 }
255 }
256
257 return -1;
258 }
259
260 void
261 clmpcc_attach(sc)
262 struct clmpcc_softc *sc;
263 {
264 struct clmpcc_chan *ch;
265 struct tty *tp;
266 int chan;
267
268 if ( cons_sc != NULL &&
269 sc->sc_iot == cons_sc->sc_iot && sc->sc_ioh == cons_sc->sc_ioh )
270 cons_sc = sc;
271
272 /* Initialise the chip */
273 clmpcc_init(sc);
274
275 printf(": Cirrus Logic CD240%c Serial Controller\n",
276 (clmpcc_rd_msvr(sc) & CLMPCC_MSVR_PORT_ID) ? '0' : '1');
277
278 sc->sc_soft_running = 0;
279 memset(&(sc->sc_chans[0]), 0, sizeof(sc->sc_chans));
280
281 for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
282 ch = &sc->sc_chans[chan];
283
284 ch->ch_sc = sc;
285 ch->ch_car = chan;
286
287 tp = ttymalloc();
288 tp->t_oproc = clmpcc_start;
289 tp->t_param = clmpcc_param;
290
291 ch->ch_tty = tp;
292
293 ch->ch_ibuf = malloc(clmpcc_ibuf_size * 2, M_DEVBUF, M_NOWAIT);
294 if ( ch->ch_ibuf == NULL ) {
295 printf("%s(%d): unable to allocate ring buffer\n",
296 sc->sc_dev.dv_xname, chan);
297 return;
298 }
299
300 ch->ch_ibuf_end = &(ch->ch_ibuf[clmpcc_ibuf_size * 2]);
301 ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
302
303 tty_attach(tp);
304 }
305
306 printf("%s: %d channels available", sc->sc_dev.dv_xname,
307 CLMPCC_NUM_CHANS);
308 if ( cons_sc == sc ) {
309 printf(", console on channel %d.\n", cons_chan);
310 SET(sc->sc_chans[cons_chan].ch_flags, CLMPCC_FLG_IS_CONSOLE);
311 SET(sc->sc_chans[cons_chan].ch_openflags, TIOCFLAG_SOFTCAR);
312 } else
313 printf(".\n");
314 }
315
316 static int
317 clmpcc_init(sc)
318 struct clmpcc_softc *sc;
319 {
320 u_int tcor, tbpr;
321 u_int rcor, rbpr;
322 u_int msvr_rts, msvr_dtr;
323 u_int ccr;
324 int is_console;
325 int i;
326
327 /*
328 * All we're really concerned about here is putting the chip
329 * into a quiescent state so that it won't do anything until
330 * clmpccopen() is called. (Except the console channel.)
331 */
332
333 /*
334 * If the chip is acting as console, set all channels to the supplied
335 * console baud rate. Otherwise, plump for 9600.
336 */
337 if ( cons_sc &&
338 sc->sc_ioh == cons_sc->sc_ioh && sc->sc_iot == cons_sc->sc_iot ) {
339 clmpcc_speed(sc, cons_rate, &tcor, &tbpr);
340 clmpcc_speed(sc, cons_rate, &rcor, &rbpr);
341 is_console = 1;
342 } else {
343 clmpcc_speed(sc, 9600, &tcor, &tbpr);
344 clmpcc_speed(sc, 9600, &rcor, &rbpr);
345 is_console = 0;
346 }
347
348 /* Allow any pending output to be sent */
349 delay(10000);
350
351 /* Send the Reset All command to channel 0 (resets all channels!) */
352 clmpcc_channel_cmd(sc, 0, CLMPCC_CCR_T0_RESET_ALL);
353
354 delay(1000);
355
356 /*
357 * The chip will set it's firmware revision register to a non-zero
358 * value to indicate completion of reset.
359 */
360 for (i = 10000; clmpcc_rdreg(sc, CLMPCC_REG_GFRCR) == 0 && i; i--)
361 delay(1);
362
363 if ( i == 0 ) {
364 /*
365 * Watch out... If this chip is console, the message
366 * probably won't be sent since we just reset it!
367 */
368 printf("%s: Failed to reset chip\n", sc->sc_dev.dv_xname);
369 return -1;
370 }
371
372 for (i = 0; i < CLMPCC_NUM_CHANS; i++) {
373 clmpcc_select_channel(sc, i);
374
375 /* All interrupts are disabled to begin with */
376 clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
377
378 /* Make sure the channel interrupts on the correct vectors */
379 clmpcc_wrreg(sc, CLMPCC_REG_LIVR, sc->sc_vector_base);
380 clmpcc_wr_pilr(sc, CLMPCC_REG_RPILR, sc->sc_rpilr);
381 clmpcc_wr_pilr(sc, CLMPCC_REG_TPILR, sc->sc_tpilr);
382 clmpcc_wr_pilr(sc, CLMPCC_REG_MPILR, sc->sc_mpilr);
383
384 /* Receive timer prescaler set to 1ms */
385 clmpcc_wrreg(sc, CLMPCC_REG_TPR,
386 CLMPCC_MSEC_TO_TPR(sc->sc_clk, 1));
387
388 /* We support Async mode only */
389 clmpcc_wrreg(sc, CLMPCC_REG_CMR, CLMPCC_CMR_ASYNC);
390
391 /* Set the required baud rate */
392 clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(tcor));
393 clmpcc_wrreg(sc, CLMPCC_REG_TBPR, tbpr);
394 clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(rcor));
395 clmpcc_wrreg(sc, CLMPCC_REG_RBPR, rbpr);
396
397 /* Always default to 8N1 (XXX what about console?) */
398 clmpcc_wrreg(sc, CLMPCC_REG_COR1, CLMPCC_COR1_CHAR_8BITS |
399 CLMPCC_COR1_NO_PARITY |
400 CLMPCC_COR1_IGNORE_PAR);
401
402 clmpcc_wrreg(sc, CLMPCC_REG_COR2, 0);
403
404 clmpcc_wrreg(sc, CLMPCC_REG_COR3, CLMPCC_COR3_STOP_1);
405
406 clmpcc_wrreg(sc, CLMPCC_REG_COR4, CLMPCC_COR4_DSRzd |
407 CLMPCC_COR4_CDzd |
408 CLMPCC_COR4_CTSzd);
409
410 clmpcc_wrreg(sc, CLMPCC_REG_COR5, CLMPCC_COR5_DSRod |
411 CLMPCC_COR5_CDod |
412 CLMPCC_COR5_CTSod |
413 CLMPCC_COR5_FLOW_NORM);
414
415 clmpcc_wrreg(sc, CLMPCC_REG_COR6, 0);
416 clmpcc_wrreg(sc, CLMPCC_REG_COR7, 0);
417
418 /* Set the receive FIFO timeout */
419 clmpcc_wrreg(sc, CLMPCC_REG_RTPRl, CLMPCC_RTPR_DEFAULT);
420 clmpcc_wrreg(sc, CLMPCC_REG_RTPRh, 0);
421
422 /* At this point, we set up the console differently */
423 if ( is_console && i == cons_chan ) {
424 msvr_rts = CLMPCC_MSVR_RTS;
425 msvr_dtr = CLMPCC_MSVR_DTR;
426 ccr = CLMPCC_CCR_T0_RX_EN | CLMPCC_CCR_T0_TX_EN;
427 } else {
428 msvr_rts = 0;
429 msvr_dtr = 0;
430 ccr = CLMPCC_CCR_T0_RX_DIS | CLMPCC_CCR_T0_TX_DIS;
431 }
432
433 clmpcc_wrreg(sc, CLMPCC_REG_MSVR_RTS, msvr_rts);
434 clmpcc_wrreg(sc, CLMPCC_REG_MSVR_DTR, msvr_dtr);
435 clmpcc_channel_cmd(sc, i, CLMPCC_CCR_T0_INIT | ccr);
436 delay(100);
437 }
438
439 return 0;
440 }
441
442 static void
443 clmpcc_shutdown(ch)
444 struct clmpcc_chan *ch;
445 {
446 int oldch;
447
448 oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
449
450 /* Turn off interrupts. */
451 clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER, 0);
452
453 if ( ISCLR(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
454 /* Disable the transmitter and receiver */
455 clmpcc_channel_cmd(ch->ch_sc, ch->ch_car, CLMPCC_CCR_T0_RX_DIS |
456 CLMPCC_CCR_T0_TX_DIS);
457
458 /* Drop RTS and DTR */
459 clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
460 }
461
462 clmpcc_select_channel(ch->ch_sc, oldch);
463 }
464
465 int
466 clmpccopen(dev, flag, mode, p)
467 dev_t dev;
468 int flag, mode;
469 struct proc *p;
470 {
471 struct clmpcc_softc *sc;
472 struct clmpcc_chan *ch;
473 struct tty *tp;
474 int oldch;
475 int error;
476 int unit;
477
478 if ( (unit = CLMPCCUNIT(dev)) >= clmpcc_cd.cd_ndevs ||
479 (sc = clmpcc_cd.cd_devs[unit]) == NULL ) {
480 return ENXIO;
481 }
482
483 ch = &sc->sc_chans[CLMPCCCHAN(dev)];
484
485 tp = ch->ch_tty;
486
487 if ( ISSET(tp->t_state, TS_ISOPEN) &&
488 ISSET(tp->t_state, TS_XCLUDE) && p->p_ucred->cr_uid != 0 )
489 return EBUSY;
490
491 /*
492 * Do the following iff this is a first open.
493 */
494 if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
495
496 ttychars(tp);
497
498 tp->t_dev = dev;
499 tp->t_iflag = TTYDEF_IFLAG;
500 tp->t_oflag = TTYDEF_OFLAG;
501 tp->t_lflag = TTYDEF_LFLAG;
502 tp->t_cflag = TTYDEF_CFLAG;
503 tp->t_ospeed = tp->t_ispeed = TTYDEF_SPEED;
504
505 if ( ISSET(ch->ch_openflags, TIOCFLAG_CLOCAL) )
506 SET(tp->t_cflag, CLOCAL);
507 if ( ISSET(ch->ch_openflags, TIOCFLAG_CRTSCTS) )
508 SET(tp->t_cflag, CRTSCTS);
509 if ( ISSET(ch->ch_openflags, TIOCFLAG_MDMBUF) )
510 SET(tp->t_cflag, MDMBUF);
511
512 /*
513 * Override some settings if the channel is being
514 * used as the console.
515 */
516 if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
517 tp->t_ospeed = tp->t_ispeed = cons_rate;
518 SET(tp->t_cflag, CLOCAL);
519 CLR(tp->t_cflag, CRTSCTS);
520 CLR(tp->t_cflag, HUPCL);
521 }
522
523 ch->ch_control = 0;
524
525 clmpcc_param(tp, &tp->t_termios);
526 ttsetwater(tp);
527
528 /* Clear the input ring */
529 ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
530
531 /* Select the channel */
532 oldch = clmpcc_select_channel(sc, ch->ch_car);
533
534 /* Reset it */
535 clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_CLEAR |
536 CLMPCC_CCR_T0_RX_EN |
537 CLMPCC_CCR_T0_TX_EN);
538
539 /* Enable receiver and modem change interrupts. */
540 clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_MODEM |
541 CLMPCC_IER_RET |
542 CLMPCC_IER_RX_FIFO);
543
544 /* Raise RTS and DTR */
545 clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
546
547 clmpcc_select_channel(sc, oldch);
548 } else
549 if ( ISSET(tp->t_state, TS_XCLUDE) && p->p_ucred->cr_uid != 0 )
550 return EBUSY;
551
552 error = ttyopen(tp, CLMPCCDIALOUT(dev), ISSET(flag, O_NONBLOCK));
553 if (error)
554 goto bad;
555
556 error = (*linesw[tp->t_line].l_open)(dev, tp);
557 if (error)
558 goto bad;
559
560 return 0;
561
562 bad:
563 if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
564 /*
565 * We failed to open the device, and nobody else had it opened.
566 * Clean up the state as appropriate.
567 */
568 clmpcc_shutdown(ch);
569 }
570
571 return error;
572 }
573
574 int
575 clmpccclose(dev, flag, mode, p)
576 dev_t dev;
577 int flag, mode;
578 struct proc *p;
579 {
580 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
581 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
582 struct tty *tp = ch->ch_tty;
583 int s;
584
585 if ( ISCLR(tp->t_state, TS_ISOPEN) )
586 return 0;
587
588 (*linesw[tp->t_line].l_close)(tp, flag);
589
590 s = spltty();
591
592 if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
593 /*
594 * Although we got a last close, the device may still be in
595 * use; e.g. if this was the dialout node, and there are still
596 * processes waiting for carrier on the non-dialout node.
597 */
598 clmpcc_shutdown(ch);
599 }
600
601 ttyclose(tp);
602
603 splx(s);
604
605 return 0;
606 }
607
608 int
609 clmpccread(dev, uio, flag)
610 dev_t dev;
611 struct uio *uio;
612 int flag;
613 {
614 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
615 struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
616
617 return ((*linesw[tp->t_line].l_read)(tp, uio, flag));
618 }
619
620 int
621 clmpccwrite(dev, uio, flag)
622 dev_t dev;
623 struct uio *uio;
624 int flag;
625 {
626 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
627 struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
628
629 return ((*linesw[tp->t_line].l_write)(tp, uio, flag));
630 }
631
632 struct tty *
633 clmpcctty(dev)
634 dev_t dev;
635 {
636 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
637
638 return (sc->sc_chans[CLMPCCCHAN(dev)].ch_tty);
639 }
640
641 int
642 clmpccioctl(dev, cmd, data, flag, p)
643 dev_t dev;
644 u_long cmd;
645 caddr_t data;
646 int flag;
647 struct proc *p;
648 {
649 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
650 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
651 struct tty *tp = ch->ch_tty;
652 int error;
653
654 error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
655 if (error >= 0)
656 return error;
657
658 error = ttioctl(tp, cmd, data, flag, p);
659 if (error >= 0)
660 return error;
661
662 error = 0;
663
664 switch (cmd) {
665 case TIOCSBRK:
666 SET(ch->ch_flags, CLMPCC_FLG_START_BREAK);
667 clmpcc_enable_transmitter(ch);
668 break;
669
670 case TIOCCBRK:
671 SET(ch->ch_flags, CLMPCC_FLG_END_BREAK);
672 clmpcc_enable_transmitter(ch);
673 break;
674
675 case TIOCSDTR:
676 clmpcc_modem_control(ch, TIOCM_DTR, DMBIS);
677 break;
678
679 case TIOCCDTR:
680 clmpcc_modem_control(ch, TIOCM_DTR, DMBIC);
681 break;
682
683 case TIOCMSET:
684 clmpcc_modem_control(ch, *((int *)data), DMSET);
685 break;
686
687 case TIOCMBIS:
688 clmpcc_modem_control(ch, *((int *)data), DMBIS);
689 break;
690
691 case TIOCMBIC:
692 clmpcc_modem_control(ch, *((int *)data), DMBIC);
693 break;
694
695 case TIOCMGET:
696 *((int *)data) = clmpcc_modem_control(ch, 0, DMGET);
697 break;
698
699 case TIOCGFLAGS:
700 *((int *)data) = ch->ch_openflags;
701 break;
702
703 case TIOCSFLAGS:
704 error = suser(p->p_ucred, &p->p_acflag);
705 if ( error )
706 break;
707 ch->ch_openflags = *((int *)data) &
708 (TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
709 TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
710 if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) )
711 SET(ch->ch_openflags, TIOCFLAG_SOFTCAR);
712 break;
713
714 default:
715 error = ENOTTY;
716 break;
717 }
718
719 return error;
720 }
721
722 int
723 clmpcc_modem_control(ch, bits, howto)
724 struct clmpcc_chan *ch;
725 int bits;
726 int howto;
727 {
728 struct clmpcc_softc *sc = ch->ch_sc;
729 struct tty *tp = ch->ch_tty;
730 int oldch;
731 int msvr;
732 int rbits = 0;
733
734 oldch = clmpcc_select_channel(sc, ch->ch_car);
735
736 switch ( howto ) {
737 case DMGET:
738 msvr = clmpcc_rd_msvr(sc);
739
740 if ( sc->sc_swaprtsdtr ) {
741 rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_DTR : 0;
742 rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_RTS : 0;
743 } else {
744 rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_RTS : 0;
745 rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_DTR : 0;
746 }
747
748 rbits |= (msvr & CLMPCC_MSVR_CTS) ? TIOCM_CTS : 0;
749 rbits |= (msvr & CLMPCC_MSVR_CD) ? TIOCM_CD : 0;
750 rbits |= (msvr & CLMPCC_MSVR_DSR) ? TIOCM_DSR : 0;
751 break;
752
753 case DMSET:
754 if ( sc->sc_swaprtsdtr ) {
755 if ( ISCLR(tp->t_cflag, CRTSCTS) )
756 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
757 bits & TIOCM_RTS ? CLMPCC_MSVR_DTR : 0);
758 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
759 bits & TIOCM_DTR ? CLMPCC_MSVR_RTS : 0);
760 } else {
761 if ( ISCLR(tp->t_cflag, CRTSCTS) )
762 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
763 bits & TIOCM_RTS ? CLMPCC_MSVR_RTS : 0);
764 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
765 bits & TIOCM_DTR ? CLMPCC_MSVR_DTR : 0);
766 }
767 break;
768
769 case DMBIS:
770 if ( sc->sc_swaprtsdtr ) {
771 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
772 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
773 if ( ISSET(bits, TIOCM_DTR) )
774 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
775 } else {
776 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
777 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
778 if ( ISSET(bits, TIOCM_DTR) )
779 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
780 }
781 break;
782
783 case DMBIC:
784 if ( sc->sc_swaprtsdtr ) {
785 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
786 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
787 if ( ISCLR(bits, TIOCM_DTR) )
788 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
789 } else {
790 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
791 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
792 if ( ISCLR(bits, TIOCM_DTR) )
793 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
794 }
795 break;
796 }
797
798 clmpcc_select_channel(sc, oldch);
799
800 return rbits;
801 }
802
803 static int
804 clmpcc_param(tp, t)
805 struct tty *tp;
806 struct termios *t;
807 {
808 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(tp->t_dev)];
809 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
810 int oclk, obpr;
811 int iclk, ibpr;
812 int oldch;
813 int cor;
814 int ier;
815 int s;
816
817 /* Check requested parameters. */
818 if ( t->c_ospeed && clmpcc_speed(sc, t->c_ospeed, &oclk, &obpr) < 0 )
819 return EINVAL;
820
821 if ( t->c_ispeed && clmpcc_speed(sc, t->c_ispeed, &iclk, &ibpr) < 0 )
822 return EINVAL;
823
824 oldch = clmpcc_select_channel(sc, ch->ch_car);
825
826 s = splhigh();
827 /* Disable channel interrupt while we do all this */
828 ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
829 clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
830 splx(s);
831
832 /*
833 * For the console, always force CLOCAL and !HUPCL, so that the port
834 * is always active.
835 */
836 if ( ISSET(ch->ch_openflags, TIOCFLAG_SOFTCAR) ||
837 ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
838 SET(t->c_cflag, CLOCAL);
839 CLR(t->c_cflag, HUPCL);
840 }
841
842 /* If ospeed it zero, hangup the line */
843 clmpcc_modem_control(ch, TIOCM_DTR, t->c_ospeed == 0 ? DMBIC : DMBIS);
844
845 if ( t->c_ospeed ) {
846 clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(oclk));
847 clmpcc_wrreg(sc, CLMPCC_REG_TBPR, obpr);
848 }
849
850 if ( t->c_ispeed ) {
851 clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(iclk));
852 clmpcc_wrreg(sc, CLMPCC_REG_RBPR, ibpr);
853 }
854
855 /* Work out value to use for COR1 */
856 cor = 0;
857 if ( ISSET(t->c_cflag, PARENB) ) {
858 cor |= CLMPCC_COR1_NORM_PARITY;
859 if ( ISSET(t->c_cflag, PARODD) )
860 cor |= CLMPCC_COR1_ODD_PARITY;
861 }
862
863 if ( ISCLR(t->c_cflag, INPCK) )
864 cor |= CLMPCC_COR1_IGNORE_PAR;
865
866 switch ( t->c_cflag & CSIZE ) {
867 case CS5:
868 cor |= CLMPCC_COR1_CHAR_5BITS;
869 break;
870
871 case CS6:
872 cor |= CLMPCC_COR1_CHAR_6BITS;
873 break;
874
875 case CS7:
876 cor |= CLMPCC_COR1_CHAR_7BITS;
877 break;
878
879 case CS8:
880 cor |= CLMPCC_COR1_CHAR_8BITS;
881 break;
882 }
883
884 clmpcc_wrreg(sc, CLMPCC_REG_COR1, cor);
885
886 /*
887 * The only interesting bit in COR2 is 'CTS Automatic Enable'
888 * when hardware flow control is in effect.
889 */
890 cor = ISSET(t->c_cflag, CRTSCTS) ? CLMPCC_COR2_CtsAE : 0;
891 clmpcc_wrreg(sc, CLMPCC_REG_COR2, cor);
892
893 /* COR3 needs to be set to the number of stop bits... */
894 cor = ISSET(t->c_cflag, CSTOPB) ? CLMPCC_COR3_STOP_2 :
895 CLMPCC_COR3_STOP_1;
896 clmpcc_wrreg(sc, CLMPCC_REG_COR3, cor);
897
898 /*
899 * COR4 contains the FIFO threshold setting.
900 * We adjust the threshold depending on the input speed...
901 */
902 cor = clmpcc_rdreg(sc, CLMPCC_REG_COR4) & ~CLMPCC_COR4_FIFO_MASK;
903 if ( t->c_ispeed <= 1200 )
904 ch->ch_fifo = CLMPCC_COR4_FIFO_LOW;
905 else if ( t->c_ispeed <= 19200 )
906 ch->ch_fifo = CLMPCC_COR4_FIFO_MED;
907 else
908 ch->ch_fifo = CLMPCC_COR4_FIFO_HIGH;
909 clmpcc_wrreg(sc, CLMPCC_REG_COR4, cor | ch->ch_fifo);
910
911 /* This ensure the new fifo threshold causes an initial interrupt */
912 ier |= CLMPCC_IER_RET;
913 CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
914
915 /*
916 * If chip is used with CTS and DTR swapped, we can enable
917 * automatic hardware flow control.
918 */
919 cor = clmpcc_rdreg(sc, CLMPCC_REG_COR5) & ~CLMPCC_COR5_FLOW_MASK;
920 if ( sc->sc_swaprtsdtr && ISSET(t->c_cflag, CRTSCTS) )
921 cor |= CLMPCC_COR5_FLOW_NORM;
922 clmpcc_wrreg(sc, CLMPCC_REG_COR5, cor);
923
924 /* The chip needs to be told that registers have changed... */
925 clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_INIT |
926 CLMPCC_CCR_T0_RX_EN |
927 CLMPCC_CCR_T0_TX_EN);
928
929 /* Restore channel interrupts */
930 clmpcc_wrreg(sc, CLMPCC_REG_IER, ier);
931
932 /*
933 * Update the tty layer's idea of the carrier bit, in case we changed
934 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
935 * explicit request.
936 */
937 cor = clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
938 (void) (*linesw[tp->t_line].l_modem)(tp, cor != 0);
939
940 clmpcc_select_channel(sc, oldch);
941
942 return 0;
943 }
944
945 static void
946 clmpcc_start(tp)
947 struct tty *tp;
948 {
949 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(tp->t_dev)];
950 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
951 int s;
952
953 s = spltty();
954
955 if ( ISCLR(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
956 if ( tp->t_outq.c_cc <= tp->t_lowat ) {
957 if ( ISSET(tp->t_state, TS_ASLEEP) ) {
958 CLR(tp->t_state, TS_ASLEEP);
959 wakeup(&tp->t_outq);
960 }
961 selwakeup(&tp->t_wsel);
962
963 if ( tp->t_outq.c_cc == 0 )
964 goto out;
965 }
966 SET(tp->t_state, TS_BUSY);
967 clmpcc_enable_transmitter(ch);
968 }
969
970 out:
971 splx(s);
972 }
973
974 /*
975 * Stop output on a line.
976 */
977 void
978 clmpccstop(tp, flag)
979 struct tty *tp;
980 int flag;
981 {
982 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(tp->t_dev)];
983 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
984 int s;
985
986 s = spltty();
987
988 if ( ISSET(tp->t_state, TS_BUSY) ) {
989 if ( ISCLR(tp->t_state, TS_TTSTOP) )
990 SET(tp->t_state, TS_FLUSH);
991
992 /*
993 * The transmit interrupt routine will disable transmit when it
994 * notices that CLMPCC_FLG_STOP has been set.
995 */
996 SET(ch->ch_flags, CLMPCC_FLG_STOP);
997 }
998 splx(s);
999 }
1000
1001 /*
1002 * RX interrupt routine
1003 */
1004 int
1005 clmpcc_rxintr(arg)
1006 void *arg;
1007 {
1008 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1009 struct clmpcc_chan *ch;
1010 u_int8_t *put, *end, rxd;
1011 u_char errstat;
1012 u_int fc, tc;
1013 int risr;
1014 int rir;
1015 #ifdef DDB
1016 int saw_break = 0;
1017 #endif
1018
1019 /* Receive interrupt active? */
1020 rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1021
1022 /*
1023 * If we're using auto-vectored interrupts, we have to
1024 * verify if the chip is generating the interrupt.
1025 */
1026 if ( sc->sc_vector_base == 0 && (rir & CLMPCC_RIR_RACT) == 0 )
1027 return 0;
1028
1029 /* Get pointer to interrupting channel's data structure */
1030 ch = &sc->sc_chans[rir & CLMPCC_RIR_RCN_MASK];
1031
1032 /* Get the interrupt status register */
1033 risr = clmpcc_rdreg(sc, CLMPCC_REG_RISRl);
1034 if ( risr & CLMPCC_RISR_TIMEOUT ) {
1035 u_char reg;
1036 /*
1037 * Set the FIFO threshold to zero, and disable
1038 * further receive timeout interrupts.
1039 */
1040 reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1041 clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg & CLMPCC_COR4_FIFO_MASK);
1042 reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1043 clmpcc_wrreg(sc, CLMPCC_REG_IER, reg & ~CLMPCC_IER_RET);
1044 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1045 SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1046 return 1;
1047 }
1048
1049 /* How many bytes are waiting in the FIFO? */
1050 fc = tc = clmpcc_rdreg(sc, CLMPCC_REG_RFOC) & CLMPCC_RFOC_MASK;
1051
1052 #ifdef DDB
1053 /*
1054 * Allow BREAK on the console to drop to the debugger.
1055 */
1056 if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) &&
1057 risr & CLMPCC_RISR_BREAK ) {
1058 saw_break = 1;
1059 }
1060 #endif
1061
1062 if ( ISCLR(ch->ch_tty->t_state, TS_ISOPEN) && fc ) {
1063 /* Just get rid of the data */
1064 while ( fc-- )
1065 (void) clmpcc_rd_rxdata(sc);
1066 goto rx_done;
1067 }
1068
1069 put = ch->ch_ibuf_wr;
1070 end = ch->ch_ibuf_end;
1071
1072 /*
1073 * Note: The chip is completely hosed WRT these error
1074 * conditions; there seems to be no way to associate
1075 * the error with the correct character in the FIFO.
1076 * We compromise by tagging the first character we read
1077 * with the error. Not perfect, but there's no other way.
1078 */
1079 errstat = 0;
1080 if ( risr & CLMPCC_RISR_PARITY )
1081 errstat |= TTY_PE;
1082 if ( risr & (CLMPCC_RISR_FRAMING | CLMPCC_RISR_BREAK) )
1083 errstat |= TTY_FE;
1084
1085 /*
1086 * As long as there are characters in the FIFO, and we
1087 * have space for them...
1088 */
1089 while ( fc > 0 ) {
1090
1091 *put++ = rxd = clmpcc_rd_rxdata(sc);
1092 *put++ = errstat;
1093
1094 if ( put >= end )
1095 put = ch->ch_ibuf;
1096
1097 if ( put == ch->ch_ibuf_rd ) {
1098 put -= 2;
1099 if ( put < ch->ch_ibuf )
1100 put = end - 2;
1101 }
1102
1103 errstat = 0;
1104 fc--;
1105 }
1106
1107 ch->ch_ibuf_wr = put;
1108
1109 #if 0
1110 if ( sc->sc_swaprtsdtr == 0 &&
1111 ISSET(cy->cy_tty->t_cflag, CRTSCTS) && cc < ch->ch_r_hiwat) {
1112 /*
1113 * If RTS/DTR are not physically swapped, we have to
1114 * do hardware flow control manually
1115 */
1116 clmpcc_wr_msvr(sc, CLMPCC_MSVR_RTS, 0);
1117 }
1118 #endif
1119
1120 rx_done:
1121 if ( fc != tc ) {
1122 if ( ISSET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR) ) {
1123 u_char reg;
1124 /*
1125 * Set the FIFO threshold to the preset value,
1126 * and enable receive timeout interrupts.
1127 */
1128 reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1129 reg = (reg & ~CLMPCC_COR4_FIFO_MASK) | ch->ch_fifo;
1130 clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg);
1131 reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1132 clmpcc_wrreg(sc, CLMPCC_REG_IER, reg | CLMPCC_IER_RET);
1133 CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1134 }
1135
1136 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1137 if ( sc->sc_soft_running == 0 ) {
1138 sc->sc_soft_running = 1;
1139 (sc->sc_softhook)(sc);
1140 }
1141 } else
1142 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1143
1144 #ifdef DDB
1145 /*
1146 * Only =after= we write REOIR is it safe to drop to the debugger.
1147 */
1148 if ( saw_break )
1149 Debugger();
1150 #endif
1151
1152 return 1;
1153 }
1154
1155 /*
1156 * Tx interrupt routine
1157 */
1158 int
1159 clmpcc_txintr(arg)
1160 void *arg;
1161 {
1162 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1163 struct clmpcc_chan *ch;
1164 struct tty *tp;
1165 int ftc, oftc;
1166 int tir;
1167
1168 /* Tx interrupt active? */
1169 tir = clmpcc_rdreg(sc, CLMPCC_REG_TIR);
1170
1171 /*
1172 * If we're using auto-vectored interrupts, we have to
1173 * verify if the chip is generating the interrupt.
1174 */
1175 if ( sc->sc_vector_base == 0 && (tir & CLMPCC_TIR_TACT) == 0 )
1176 return 0;
1177
1178 /* Get pointer to interrupting channel's data structure */
1179 ch = &sc->sc_chans[tir & CLMPCC_TIR_TCN_MASK];
1180
1181 /* Dummy read of the interrupt status register */
1182 (void) clmpcc_rdreg(sc, CLMPCC_REG_TISR);
1183
1184 ftc = oftc = clmpcc_rdreg(sc, CLMPCC_REG_TFTC);
1185
1186 /* Stop transmitting if CLMPCC_FLG_STOP is set */
1187 tp = ch->ch_tty;
1188 if ( ISSET(ch->ch_flags, CLMPCC_FLG_STOP) )
1189 goto tx_done;
1190
1191 if ( tp->t_outq.c_cc > 0 ) {
1192 SET(tp->t_state, TS_BUSY);
1193 while (tp->t_outq.c_cc > 0 && ftc > 0 ) {
1194 clmpcc_wr_txdata(sc, getc(&tp->t_outq));
1195 ftc--;
1196 }
1197 } else {
1198 /*
1199 * No data to send -- check if we should
1200 * start/stop a break
1201 */
1202 /*
1203 * XXX does this cause too much delay before
1204 * breaks?
1205 */
1206 if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK) ) {
1207 CLR(ch->ch_flags, CLMPCC_FLG_START_BREAK);
1208 }
1209
1210 if ( ISSET(ch->ch_flags, CLMPCC_FLG_END_BREAK) ) {
1211 CLR(ch->ch_flags, CLMPCC_FLG_END_BREAK);
1212 }
1213 }
1214
1215 if ( tp->t_outq.c_cc == 0 ) {
1216 tx_done:
1217 /*
1218 * No data to send or requested to stop.
1219 * Disable transmit interrupt
1220 */
1221 clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
1222 clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) &
1223 ~CLMPCC_IER_TX_EMPTY);
1224 CLR(ch->ch_flags, CLMPCC_FLG_STOP);
1225 CLR(tp->t_state, TS_BUSY);
1226 }
1227
1228 if ( tp->t_outq.c_cc <= tp->t_lowat )
1229 SET(ch->ch_flags, CLMPCC_FLG_START);
1230
1231 if ( ftc != oftc )
1232 clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, 0);
1233 else
1234 clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, CLMPCC_TEOIR_NO_TRANS);
1235
1236 return 1;
1237 }
1238
1239 /*
1240 * Modem change interrupt routine
1241 */
1242 int
1243 clmpcc_mdintr(arg)
1244 void *arg;
1245 {
1246 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1247 int mir;
1248
1249 /* Modem status interrupt active? */
1250 mir = clmpcc_rdreg(sc, CLMPCC_REG_MIR);
1251
1252 /*
1253 * If we're using auto-vectored interrupts, we have to
1254 * verify if the chip is generating the interrupt.
1255 */
1256 if ( sc->sc_vector_base == 0 && (mir & CLMPCC_MIR_MACT) == 0 )
1257 return 0;
1258
1259 /* Dummy read of the interrupt status register */
1260 (void) clmpcc_rdreg(sc, CLMPCC_REG_MISR);
1261
1262 /* Retrieve current status of modem lines. */
1263 sc->sc_chans[mir & CLMPCC_MIR_MCN_MASK].ch_control |=
1264 clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1265
1266 clmpcc_wrreg(sc, CLMPCC_REG_MEOIR, 0);
1267
1268 if ( sc->sc_soft_running == 0 ) {
1269 sc->sc_soft_running = 1;
1270 (sc->sc_softhook)(sc);
1271 }
1272
1273 return 1;
1274 }
1275
1276 int
1277 clmpcc_softintr(arg)
1278 void *arg;
1279 {
1280 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1281 struct clmpcc_chan *ch;
1282 int (*rint) __P((int, struct tty *));
1283 u_char *get;
1284 u_int c;
1285 int chan;
1286
1287 sc->sc_soft_running = 0;
1288
1289 /* Handle Modem state changes too... */
1290
1291 for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
1292 ch = &sc->sc_chans[chan];
1293 get = ch->ch_ibuf_rd;
1294 rint = linesw[ch->ch_tty->t_line].l_rint;
1295
1296 /* Squirt buffered incoming data into the tty layer */
1297 while ( get != ch->ch_ibuf_wr ) {
1298 c = *get++;
1299 c |= ((u_int)*get++) << 8;
1300 (rint)(c, ch->ch_tty);
1301
1302 if ( get == ch->ch_ibuf_end )
1303 get = ch->ch_ibuf;
1304
1305 ch->ch_ibuf_rd = get;
1306 }
1307 }
1308
1309 return 0;
1310 }
1311
1312
1313 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1314 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1315 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1316 /*
1317 * Following are all routines needed for a cd240x channel to act as console
1318 */
1319 int
1320 clmpcc_cnattach(sc, chan, rate)
1321 struct clmpcc_softc *sc;
1322 int chan;
1323 int rate;
1324 {
1325 cons_sc = sc;
1326 cons_chan = chan;
1327 cons_rate = rate;
1328
1329 return 0;
1330 }
1331
1332 /*
1333 * The following functions are polled getc and putc routines, for console use.
1334 */
1335 static int
1336 clmpcc_common_getc(sc, chan)
1337 struct clmpcc_softc *sc;
1338 int chan;
1339 {
1340 u_char old_chan;
1341 u_char old_ier;
1342 u_char ch, rir, risr;
1343 int s;
1344
1345 s = splhigh();
1346
1347 old_chan = clmpcc_select_channel(sc, chan);
1348
1349 /*
1350 * We have to put the channel into RX interrupt mode before
1351 * trying to read the Rx data register. So save the previous
1352 * interrupt mode.
1353 */
1354 old_ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1355 clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_RX_FIFO);
1356
1357 /* Loop until we get a character */
1358 for (;;) {
1359 /*
1360 * The REN bit will be set in the Receive Interrupt Register
1361 * when the CD240x has a character to process. Remember,
1362 * the RACT bit won't be set until we generate an interrupt
1363 * acknowledge cycle via the MD front-end.
1364 */
1365 rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1366 if ( (rir & CLMPCC_RIR_REN) == 0 )
1367 continue;
1368
1369 /* Acknowledge the request */
1370 if ( sc->sc_iackhook )
1371 (sc->sc_iackhook)(sc, CLMPCC_IACK_RX);
1372
1373 /*
1374 * Determine if the interrupt is for the required channel
1375 * and if valid data is available.
1376 */
1377 rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1378 risr = clmpcc_rdreg(sc, CLMPCC_REG_RISR);
1379 if ( (rir & CLMPCC_RIR_RCN_MASK) != chan ||
1380 risr != 0 ) {
1381 /* Rx error, or BREAK */
1382 clmpcc_wrreg(sc, CLMPCC_REG_REOIR,
1383 CLMPCC_REOIR_NO_TRANS);
1384 } else {
1385 /* Dummy read of the FIFO count register */
1386 (void) clmpcc_rdreg(sc, CLMPCC_REG_RFOC);
1387
1388 /* Fetch the received character */
1389 ch = clmpcc_rd_rxdata(sc);
1390
1391 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1392 break;
1393 }
1394 }
1395
1396 clmpcc_wrreg(sc, CLMPCC_REG_IER, old_ier);
1397 clmpcc_select_channel(sc, old_chan);
1398
1399 splx(s);
1400 return ch;
1401 }
1402
1403
1404 static void
1405 clmpcc_common_putc(sc, chan, c)
1406 struct clmpcc_softc *sc;
1407 int chan;
1408 int c;
1409 {
1410 u_char old_chan;
1411 int s = splhigh();
1412
1413 old_chan = clmpcc_select_channel(sc, chan);
1414
1415 clmpcc_wrreg(sc, CLMPCC_REG_SCHR4, c);
1416 clmpcc_wrreg(sc, CLMPCC_REG_STCR, CLMPCC_STCR_SSPC(4) |
1417 CLMPCC_STCR_SND_SPC);
1418
1419 while ( clmpcc_rdreg(sc, CLMPCC_REG_STCR) != 0 )
1420 ;
1421
1422 delay(5);
1423
1424 clmpcc_select_channel(sc, old_chan);
1425
1426 splx(s);
1427 }
1428
1429 int
1430 clmpcccngetc(dev)
1431 dev_t dev;
1432 {
1433 return clmpcc_common_getc(cons_sc, cons_chan);
1434 }
1435
1436 /*
1437 * Console kernel output character routine.
1438 */
1439 void
1440 clmpcccnputc(dev, c)
1441 dev_t dev;
1442 int c;
1443 {
1444 if ( c == '\n' )
1445 clmpcc_common_putc(cons_sc, cons_chan, '\r');
1446
1447 clmpcc_common_putc(cons_sc, cons_chan, c);
1448 }
1449